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Abstract 

The immense growth of the computer-supported communication systems, 

especially the internet, made it imperative to design protocols that have to 

be efficient and scalable to support the work of the networks’ 

infrastructure. By scalable is meant the ability of the protocol to cope with 

the requirements of groups of the communicating processes when they 

grow very large in size. 

The ever increasing demand on communication and the high capability of 

modern networks call continuously for efficient solutions to problems of 

communication. Among these solutions was the introduction of multicast 

routing and also the use of periodic unacknowledged messaging. 

Related to these two solutions of the problem of scalability, certain 

techniques were used to overcome this problem, including the suppression  

technique. 

This study deals with utilizing probabilistic distribution functions (pdfs) in 

the suppression technique with the aim of improvement of scalability of 

multicast routing in communication networks. 
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The two most employed distributions in the suppression techniques are the 

uniform and the exponential distributions, the first outperforms the second 

in the performance time metric, while the exponential excels  in the 

performance metric of extra messages. 

This study introduces a modified form of the logistic distribution as a 

candidate for use in the suppression technique and compares it with the two 

other above mentioned distributions. The MATLAB software was used in 

calculating the values of the performance metrics and in drawing the 

corresponding figures for comparing the results. 

The logistic distribution was proved to excel or compete with the other two 

pdfs in time performance metrics and to have a comparable performance in 

the overhead metrics. 
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1.1 Introduction 

This chapter presents the concepts and conditions that underlie the 

communication in computer-supported networks, related to suppression 

and scalability which constitute the main subject of this study. 

The chapter contains the following topics: 

• Computer Networks 

• Multicasting 

• Algorithms 

• Multicast Routing  Constraints 

• Multicasting Algorithms & Protocols 

• Scalability & Multicast Protocols 

• Probability Distribution Functions 

 

1.2 Computer Networks 

During the 20
th

 century the key technology was information gathering, 

processing and distribution. Among other developments we witnessed the 

birth and immense growth of computer industry (Tanenbaum, 2002, p.1). 

The merging of computer and communications has had a profound 

influence on the way computer systems are organized. Those systems are 

called computer networks, the design and organization of which constitute 

the domain of study of this section. 
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In 1983 networks were used by the universities and large businesses; in 

1996, computer networks, especially the internet, had become a daily 

reality for millions of people. Networks are classified in accordance with 

two dimensions:  

a) Transmission Technology: broadcasting, unicasting, and 

multicasting 

b) Scale: Local Area Network (Lan) in buildings and campuses, 

Metropolitan Area Network (Man) in cities, Wide Area 

Network (Wan) in country or continent and Internet (Planet). 

In the 1980s, many kinds of Lan and Wan existed, but now, 

the internet is dominating. 

1.2.1 Network Software 

It was difficult to standardize networks with regard to their hardware, so 

they were standardized with regard to software. There are two 

standardizing methods, each considering the network as a stack of layers 

or levels; these layers with the protocols that define communication 

between the corresponding layers in different appliances, constitute the 

architecture of the network. 

There are two important network architectures: the Open System 

Interconnection (OSI) reference model and the Transmission Control 

Protocol/Internet Protocol (TCP/IP) reference model. 

Although the protocols, of the OSI model are rarely used now, the features 

of each layer in this model are still very important; the opposite is with the 

TCP/IP model. Here, it suffices to give a brief description of the OSI 

model. 
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1.2.2 Network Layers 

The OSI depends on proposals by International Standards Organization 

(ISO), and has seven layers Figure 1.1 each built over the one below it, 

and each offers certain services to the higher layer; when a layer(A), in a 

certain appliance uses its protocols to interact with the corresponding layer 

(A1) on another appliance, it does this by sending the message to the layer 

directly down it, in its own appliance, till it reaches the physical layer; and 

when the message is transferred to the other appliance, it goes upwards till 

it reaches the corresponding layer (A1). 

OSI TCP/IP  

7- Application Application  

6- Presentation  Not present 

5- Session  In the model 

4- Transport Transport  

3- Network Internet  

2- Data Link Host to network  

1- Physical   
 

Figure (1.1): The OSI and TCP/IP Models 

The seven layers are:- 

1- The Physical Layer 

It is concerned with transmitting raw bits over a communication 

channel; the design issues, here, deal mainly with mechanical, 

electrical and timing interfaces. 

2- The Data Link Layer 

This layer includes the Media Access Control (MAC) which is a 

sub layer that is responsible for the control of media access. In the 
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internet (TCP/IP) model, this sub layer is part of the network access 

component. 

3- The Network Layer 

The main task of the network layer is to provide unique network 

addressing and to route data efficiently toward its destinations in the 

global network.(Wittmann, 2001, pp.45-48). 

4- The Transport Layer 

The task of this layer is to support data exchange between the 

communication partners. It accepts data from above, passes them 

correctly to the network layer; it also determines what type of 

service to provide to the session layer, and ultimately, to the user of 

the network. 

5- The Session Layer 

It allows users on different machines to establish sessions between 

them. 

6- The Presentation Layer 

It is concerned not with moving data around as in lower layers, but 

with the syntax and semantics of the information transmitted, 

transforming the entering or leaving code systems of the data. 

7- The Application Layer 

It contains a variety of protocols, including those in e- mail and 

others on which the world wide web (www) depends. 

 



 
6 

1.3 Multicasting 

With the spread of diverse communication networks, like LAN, WAN, 

and the largest network of networks i.e. the INTERNET, various methods 

of communication were devised between and among them, to cope with 

the differing nature of the appliances and the different needs of their users. 

Three main methods of communication were used: broadcasting, 

unicasting and multicasting Figure 1.2 . 

 

      

 

Broadcast      Unicast  

 

  

Multicast 

Figure( 1.2): Broadcast, Unicast and Multicast 
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Broadcasting, e.g. radio and TV systems, is a too general method of data 

delivery: a copy of the message by the sender is received by every 

possible receiver in the systems network. 

Unicast is a too individual method of data delivery, a separate copy of the 

message is delivered to the receiver to which the address corresponds e.g. 

small networks. 

Multicasting a set of interested receivers are assigned one address and a 

copy of any message is delivered to each one of the set (Comer, 2001, 

p.635). 

Compared to broadcasting, multicasting is an efficient method of 

communication; and though, in both, a single sender exists, however, with 

broadcast there is no restriction with respect to the group of receivers, data 

is sent to all potential receivers; any one who is equipped with the required 

device is capable of receiving the data, with the only restriction being 

whether the device is activated (Wittman, 2001, p.5); also the interfaces in 

multicasting do not automatically forward the frames to the CPU – hence 

wasting resources as in broadcasting - but instead, the hardware of the 

interface are programmed with specifications of which multicast frames to 

accept and which to reject (Comer,2001, pp.126 –127). 

Also in comparing unicasting with multicasting we observe clearly the 

advantage of multicasting in group communication, Figure 1.2. And 

though most communications in the Internet, for example, is done by 

unicasting, where a file is transferred from the server to a computer; if 

many persons want the same file, bandwidth becomes important and the 

economy provided by multicast becomes necessary. 
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Multicasting system consists of four components: 

1- Definition of multicast host groups by multicast address;  

2- A mechanism for joining and leaving the host group; 

3- Routers with routing protocols to handle the duplication of 

multicast as needed and to handle issues surrounding group 

management and; 

4- Application protocols for creating and managing the data that are 

distributed in a multicasting session. 

The applications of multicasting, in IP, are diverse and include multimedia 

applications, like video conferencing, and internet audio, replication; and 

data applications, like stock quotes, news feeds; interactive gaming, 

information delivery, database replication and software distribution. 

Despite the advantages that multicasting has in comparison with 

unicasting and broadcasting (mainly decrease of the network load in 

certain situations), it suffers from certain problems (Kineriwala, 1999): 

1- Joining and leaving a group; 

2- Time sensitive delivery of multicast traffic; 

3- Scalability: the potential increase of the members of a group. 

4- Security matters 

The word “routing” has, in general, two identities: 

1- routing protocols which have the task of identifying the state of 

the network, its available resources and distributing this 

information through the network;  
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2- routing algorithms which use this information to compute the 

most economic paths (Kuipers, 2001). 

In the following three sections we’ll discuss these two identities of routing 

with concentration on multicast routing. 

1.4 Algorithms  

An algorithm represents a set of steps designed to achieve a complex 

mathematical operation, each step carrying the operation forward by one 

small increment, and with, perhaps, a built-in repetition of one or more of 

the steps until certain conditions are reached (Encyclopedia Britannica). 

1.4.1 Computational Complexity 

Certain problems may have different algorithms for their solutions; hence, 

a way for comparing algorithms becomes eminent, and certain guidelines 

will be useful. Among these we have the natural size of the data (N) to be 

treated in the problem. The parameter N might be the degree of a 

polynomial, the size of a file to be sorted or searched, the number of nodes 

in a graph, etc. Depending on the parameter N, most algorithms have 

running time proportional to one of the following functions: 

1:  This is the case when all of the instructions of a program are 

executed once or few times only. 

Log N: This is the case when a problem is solved by transforming it 

into a smaller problem, cutting the size by some constant 

fraction. 

N:  This is the case when a small amount of processing is done on 

each element of the input. 
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N log N: Similar to log N, but with smaller subproblems of the original 

problem. 

N
2
: This is the case in processing all pairs of data items, perhaps in 

a double nested loop. 

N
3
: Similar to N

2
. 

2
N
: These problems which grow exponentially are not practical 

(with brute force solution). 

The running time of a particular problem may be some constant times one 

of the above functions (e. g. N
3
), in that case, we say the computational 

complexity is of the order of that function (e.g. o(N
3
)).(Sedgewick,1988). 

P/NP- Problems 

Problems themselves may be subdivided in accordance with the 

computational complexity of the available algorithms that are used in 

solving them. 

In regard to the practicality of the running time of program: Problems are 

divided into two types (Sedgewick, 1988, pp. 634,635): 

a) P– Problems 

These are the problems that can be solved by deterministic 

algorithms in polynomial time. 

“Deterministic”, here, means that actual computers don’t face many 

choices in moving, from on step of the algorithm to another; and 

“polynomial” means that change of computer affects the running 

time by only a polynomial factor. 
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Of the P- problems we may mention the sorting problem, where 

running time is proportional to N
2
. 

 

b) NP - Problems  

These are the problems that can be solved by non–deterministic 

algorithms in polynomial time. 

“Non determinism” means that the algorithm, when faced by a 

choice of several options after a certain step, has the power to 

“guess” the right option and also to verify the correctness of the 

solution. 

The relation between P–problems and NP– problems is not clear; but a 

certain subset of NP–problems is distinct by being easy to solve on a non–

deterministic computer, but none of them has an efficient algorithm for 

solution on a conventional computer, this subset of NP– problems is called 

NP–complete Problems ( Sedgewick, 1988, p.636,639). 

1.5 Multicast Routing Constraints 

In order to better understand the multicast routing problem, one may 

utilize the most commonly used terms from Graph theory, where a graph 

G is undirected and without loops, and nodes (v) in the graph Figure 1.3 

represent hosts, and edges, (E) represent network links, N(v) denotes the 

set of neighbors of v Є V, δ(v) the number of such neighbors. (Oliveira & 

Pardalos, 2003). 
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Figure( 1.3): Graphs, Edges and Nodes 

 

With each edge (i,j) Є E, functions are associated that represent 

characteristics of the network links including: 

1- Capacity e(i,j) i.e. the maximum amount of data that can be 

transmitted between nodes i and j; 

2- Cost w(i,j) i.e. the cost of using the link (i,j) including leasing, 

maintenance, etc; 

3- Delay d(i,j) i.e. the time needed to transmit information between 

the nodes i, and j. 

Capacity is related to the problem of congestion, where congestion on a 

link is defined as the difference between capacity and usage. Though 

multicast routing is built on the idea of reducing bandwidth used in 

transmission of data, difficulties may arise in certain cases, and enhanced 

measures and procedures ought to be taken. 

The cost of a path p or w(p) is defined as the sum of the costs of all edges 

that constitute the path. Optimizing the cost is an objective of multicast 

routing, and a problem arises when there is a conflict between need of 

large resources and satisfying this objective. 
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Real time multicast is characterized by the fact that messages in it should 

be received by all destinations within a specified delay bound. The exact 

amount of delay bound depends on particular applications, but one can 

define delay bound for a node (Widyono, 1994, p.5), to be “the longest 

delay at it that a packet can tolerate without missing its end–to–end 

deadline”. 

Delay constraint may be defined by “link delay” where delay means the 

delay that packets experience on that link, including queuing, 

transmission, and propagation. (Chakraborty, 2003, p.5). 

The path delay is an additive function, i.e. it equals the sum of delays from 

source to destination, for all destinations; hence the problem of finding the 

path is solvable in polynomial time shortest path algorithms, such as 

Dijkstra, can be used to achieve this objective. But adding the constraint 

of delay to the original problem of multicast routing makes the problems 

either delay-constrained Steiner tree, or delay-shortest path tree, both of 

which are NP-complete problem (Moqbel, 1999, p.6). 

Many multimedia real-time applications such as audio and video 

conferencing, collaborative environments and multiplayer games, need 

multicast for efficient transmission, and need also Quality of Service 

(QoS) guarantees to run correctly, these guarantees are related to 

bandwidth, delay, jitter (delay variation), congestion and reliability. 

But guaranteeing QoS and source utilization are conflicting objects and 

require a trade-off (Kuipers, 2001); historically, conventional multicast 

routing protocols such as CBT (Core Based Trees) and PIM (Protocol-

Independent Multicasting) are not QoS aware and are designed for 

delivery of best-effort traffic (Dai, 2002). 



 
14 

The main goal of QoS multicast routing is to construct a feasible multicast 

tree with sufficient resources to satisfy the link constraints (e.g. 

bandwidth) and tree constraints (e.g. end-to-end delay bound). In fact, this 

proved to be a NP-complete problem when there are multiple routing 

objectives to satisfy, and cannot be solved by efficient algorithms (Dai, 

2002). 

1.6 Multicasting Algorithms and Protocols 

Data is not forwarded to individual receivers in the network, but to a 

group of receivers generally. This requires the establishment of multicast 

trees, and consequently routing algorithms and routing protocols Figure 

1.4 (Wittmann & Zitterbrat, 2001, p. 53). 

 

Figure( 1.4): Networks and Routers (Wittman & Zitterbrat, p. 79) 

Network Protocols are used to exchange routing information in the 

network and build routing tables. Information consists of packets which 

are of two types: 
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i)  Control Packets that are sent by routing protocols for the purpose 

of exchanging information between routers about how to deliver 

data packets through the network 

ii)  Data Packets which use the network to communicate data between 

hosts. 

Routing is defined as the process by which a router calculates a 

forwarding table by using its knowledge of network taken from local 

configuration and dynamic routing protocols. (Edwards, 2002,  p.320). 

A router is a network layer device that typically has two or more interfaces 

on different networks Figure 1.4 and enables forwarding of packets 

between those networks. Routers perform their function depending on 

routing tables, which provide information on how data is to be formulated 

in a router. With static algorithms, this table does not change during 

operation (Wittmann & Zitterbrat, 2001, Pp 53-54). 

1.6.1 Routing Algorithms 

There are two basic types of routing algorithms: static routing algorithms 

and adaptive (dynamic) routing algorithms Figure 1.5 . 

In the static routing algorithms, the routing table is initialized during the 

system set-up, and remains without change during operations. In fact, this 

type of routing algorithms  is limited to static groups, and is not useful for 

practical data in networks: dynamic groups with members leaving or new 

members participating, and also for cases of overloaded links or 

intermediate systems. 
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On the contrary, adaptive routing algorithms are able to adapt their 

routing information dynamically to current data in the network, and hence 

they are used with most applications. 

Adaptive routing algorithms are subdivided into: centralized algorithms 

and distributed algorithms. 

With centralized algorithms, a central entity makes the decision, in the 

networks; this is accompanied with the advantage of having complete 

knowledge of the state of the network, but it also has the disadvantage of 

the possibility of bottlenecks and breakdown of the whole system. 

Practically, distributed algorithms are currently used in networks, where 

each router independently makes a routing decision based on the 

information available to it. 

Distributed routing algorithms include two basic types: Distance- vector 

algorithms and link state algorithms. 

Distance-vector algorithms have the objective of determining the shortest 

distance to a communication partner, and they generally utilize the 

Bellman-Ford algorithm in their calculations. 

Link state algorithms assume that each network node has a map of the 

network, and can consequently calculate the optimal path to every other 

system in the network; in link state algorithm, the Dijkstra algorithm is 

usually employed in the calculations. 

The above typology of routing algorithms is summarized in Figure 1.5 
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Routing Algorithm 

 
Static Algorithm   Adaptive Algorithm 

 

 

 

   Centralized Algorithm  Distributed Algorithm 

 

 

   Distance Vector   Link State 

   Algorithm    Algorithm 
 

Figure( 1.5): Classification of Routing Algorithm 

 (Wittmann & Zitterbrat, p.77) 

1.6.2 Distribution Trees 

In contrast to the single path between sender and receiver in unicast 

routing, some form of distribution tree is required for multicast routing. 

A distribution tree is a path for delivering data to interested listeners 

created by joining and pruning branches of delivery, also referred to as 

multicast data path (Edwards et al, 2002, p 310). 

Several algorithms are available today for constructing distribution trees 

Figure 1.6, one of the simplest of these is the flooding algorithm, in which 

a router, when receiving data, sends it to all interfaces joined to it with the 

exception of the interface from which the data was received. 

 An alternative type of algorithms is that of spanning trees, this type 

includes three basic techniques (Wittmann and Zitterbart, 2001,p.80): 
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Figure( 1.6): Distribution Tree (Wittman, p.77) 

a) Source- based Routing 

This is based on the assumption that the receiver initiates the 

calculation of routing information, which implies the creation of a 

spanning tree for each source. 

b) Steiner Trees 

This type of tree aims at a global optimization of the cost in 

establishing a spanning tree, and not necessarily between any certain 

pair of nodes. The Steiner tree problem is NP- Complete and 

heuristics are proposed for the construction. 
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c) Rendezvous- points trees 

In contrast to Steiner trees these trees consider multiple senders and 

receivers, and in contrast to source-based trees they do not suffer 

from the initial network wide flooding of data units. 

Compared to Steiner trees, only the selection of an optimal rendezvous 

point presents an NP-complete problem. Simple heuristics are generally 

used for the selection of rendezvous points.  

1.6.3 Multicasting Protocols 

Here, we discuss protocols related to the internet; these are based on 

source-based routing or trees with rendezvous points. 

Choosing a multicast routing protocol may depend on the particular 

environment in which it is to be used. Some environments have plentiful 

bandwidth, and multicast group members are densely distributed 

throughout the network (i.e. many of the subnets contain at least one 

group member); this type of environment is called “dense- mode”. In this 

case the following protocols are used: Distance Vector Multicast Routing 

Protocol (DVMRP), Multicast Open Shortest Path First (MOSPE), and 

Protocol-Independent Multicast-Dense Mode (PIM- DM) (Maufer & 

Semeria, 1997, p.26). 

The opposite case (Sparse-Mode) is when the Multicast groups are widely 

dispersed (not necessarily small) and a high bandwidth is not available; in 

such cases, using the flood technique is wasteful (in opposition to the 

dense mode); the sparse-mode routing protocols include Core- Based 

Trees (CBT) and Protocol-Independent Multicast Sparse Mode(PIM-SM). 
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1.7 Scalability and Multicast Protocols 

The immense growth of the computer-supported communication systems, 

especially the internet, made it imperative to design protocols that have to 

be efficient and scalable to support the work of the networks’ 

infrastructure. By scalable is meant the ability of the protocol to cope with 

the requirements of groups of the communicating processes when they 

grow very large in size. 

By large groups is meant “those groups that consist of several hundred or 

thousand members” (Wittmann, 2001, p.19). An example of large groups 

is distributed games which may consist of very large members of users. 

Among the problems of large groups is the heavy burden placed on group  

management due to the highly dynamic nature of such groups, and also the 

additional data exchange created within the group. 

Scalability of a system can be measured along three different dimensions. 

First, a system can be scalable w.r.t. its size, meaning that we can easily 

add more users and resources to the system. Second, a geographically 

scalable system is one in which users and resources may lie far a part. 

Third, a system may be administratively scalable, meaning that it can still 

be easy to manage even if it spans many independent administrative 

organizations. Unfortunately, a system that is scalable in one or more of 

these dimensions often exhibits some loss of performance as the system 

scales up. (Tanenbaum and Van Steen, 2002, p.10). 

Another important aspect related to scalability is the aspect of reliability 

which means that “all data is delivered to the receiver in the correct order 

without any errors and without any duplication” (Wittmann, 2001, p. 23). 

Reliability may be achieved through the exchange of control data between 
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the communication processes.  This places an additional burden on 

bandwidth and demands special mechanisms to meet the problem. 

Other aspects related to scalability or group size is the group topology in 

the form of geographical distribution and the heterogeneity of the group 

members; heterogeneity is related to the technical possibilities that apply 

to members (e.g. the networks being high-speed or over slow, error-prone 

wireless connections). 

Multicast protocols were designed to face the problem of scalability; 

hence, they deal with more scalability issues than other protocols, 

including the problem of restricting the transmission of special hosts, 

which means that entire subsets might not have any receivers.  These 

protocols include algorithms for routing, quality of service, real-time 

transport, distributed directories and domain name systems (Schooler, et 

al, 2001). 

Among the techniques used for solving the problem of scalability of 

multicast protocols, we have the three fundamental techniques or micro 

algorithms: suppression, Announce-listen, and leader election. These 

techniques share the property of reducing the number of messages that are 

transmitted by a group of communication processes (Schooler, 2001, p.4). 

1.7.1  Announce-Listen 

Instead of sending acknowledgments (ACKs) by the receiver of a message 

to denote its reception, or Negative-acknowledgment (NACKs) for loss of 

a message, in Announce-listen a sender process disseminates information 

to a group of processes by sending, periodically, multicast announcement, 

and receiver passively listens for these announcements Figure 1.7. A 

listener process infers information about the global state of a system from 
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the periodic receipt or loss of message from announcer processes. This 

method largely reduces the number of messages, in contrast with the 

(ACK) and (NACK) which may allow implosion in certain cases 

(Schooler, 2001, p.4). 

 

Figure (1.7): Announcement and Acknowledgement 

1.7.2 Leader-Election 

In this technique, the number of messages is reduced by identifying a 

single leader, to act on behalf of a group; and, in fact, this technique helps 

a group of processes to behave as if it were one process. 

1.7.3 Suppression 

The first uses of suppression technique for delaying of messages were 

known decades ago with the ALOHA protocol and the Ethernet protocol, 

in both cases messaging is of contentious nature which led to the 

possibility of collision of messages during transmission (Schooler, 2001, 

p.30). 

In the suppression technique, a process waits for a certain delay period, 

chosen randomly in accordance with a particular probability distribution 

function (pdf) before sending a message. In the delay period, if it receives 
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a message it suppresses its own massage; otherwise the announcement is 

sent as intended, This method of unacknowledged announcement where 

announcement is resent periodically ad infinitum and the network is not 

permanently disconnected, denote that the system is reliable.  

Suppression reduces the number of messages, like other techniques; it 

promotes scalability because it spreads out simultaneous transmissions 

over a given interval, while at the same time allowing the receipt of earlier 

messages to suppress later messages containing identical content 

(Schooler, et al, 2001), and it has special importance in cases when 

processes arrive into a system concurrently e.g. replying to the same 

message simultaneously which is the usual situation in teleconferencing.  

In suppression, we differentiate between:- 

1. Lossy and nonlossy conditions i.e. when messages may 

be lost in the network and the opposite case. 

2. Fixed delay and non-delay conditions i.e. when the 

transmission delay is fixed and when the delay is zero. 

Suppression is a random technique which depends on certain pdf’s in its 

application (See section 1.7), the effectiveness of which is measured by 

two performance metrics: time elapsed, which is the minimum time 

selected by any process, and extra messages which are unnecessary 

messages sent by processes other than the one which sent the earliest 

message owing to delay in the time of transmission of this message. 

The problem facing the research in suppression technique is that 

optimizing one of these two metrics affects adversely the optimization of 

the other metric; and hence it becomes imperative to make a trade off 

between the two. 
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1.8 Probability Distribution Functions  

Probability distribution functions depend on the notion of the random 

variable. 

A random variable x, is a function where the domain is any partition of the 

sample space, and the codomain is the real set of numbers R. 

(Encyclopedia Britannica).  

It is clear from the definition of the random variable  that any value xi of a 

finite random variable has a corresponding probability p(xi); hence, the 

values the random variable takes with their corresponding probabilities 

form a function called the probabilistic distribution function , f(xi), such 

that: 

i) f(xi) ≥  0, for all xi 

ii) ∑f(xi) = 1 

In continuous random variables, a probability density function serves to 

represent a probability distribution in terms of integrals. Any function that 

is everywhere non-negative and whose integral from -∞ to +∞ is equal to 

1 is a probability density function. If a probability distribution has density 

f(x), then intuitively the infinitesimal interval [x,x+dx] has probability 

f(x)dx. 

Also, we notice the two following conditions for the pdf: 

i) f(x) ≥  0 

ii) ∫
∞

∞−
= 1)( dxxf  
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In the case of the continuous distribution function of a random variable the 

pdf is defined as the derivative if it exists of that function, and it is usually 

calculated in two ways:- 

a) finding the probability of x lying in an interval [a,b]: 

∫=≤≤
b

a
dxxfbxaP )()(  

b) finding the probability of x being less than or equal to a certain value 

(Cumulative Distribution Function) 

∫ ∞−
=≤

a

dxxfaxP )()(  

For explaining the relation between the random variable and its pdf, we 

notice in the accompanying Figure 1.8 that the total area under the curve is 

one unit, y = f(x) represents pdf of the random variable x; the probability 

of x being in the interval (a,b) equals the shaded area or  

∫=<<
b

a
dxxfbxaP )()(  

 

 

 

 

 

                                        a         b 

  Figure (1.8): a Probability Density Function 

The probability of x being in the interval (-∞,b)  Figure 1.9 equals the 

shaded area or 

∫ ∞−
=<<−∞

b

dxxfbxP )()(  

Area = P(a<x<b) 

y=f(x)  
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Figure( 1.9): a Probability Density Function 

There are many distributions of the random variables, but only some of 

them are used in multicast protocols. 

1.8.1 The Uniform Distribution  

The uniform (rectangular) distribution function, is defined by u( βα , ), 

with the probability density p(t)  = 
αβ −

1
, and the domain  βα << x , 

Where  ∞<<<<∞− βα x  

The mean of u( βα , ) = (
2

βα +
) and the variance = 

12

)( 2βα −
, (Sugakkai, 

1980) 

In multicast protocols where the time (t) replaces the x variable, the 

domain becomes βα << t  where ∞<<< βα0 , Figure 1.10 illustrates the 

case of the uniform distribution where 0 < t < T , if T=10 then 

p(t) = 
10

1

)010(

1

)0(

1
=

−
=

−T
 

 

 

 

 

 

Figure (1.10): The Uniform Density Function 

p(t) = 
T

1
, 0<t<T 

T  

1/T  

Area = P(-∞<x<b) 

y = f(x)  
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1.8.2 The Decaying Exponential Distribution  

The general exponential distribution function is denoted by e(µ,σ), with 

pdf = σ

µ

σ

)(
1

−− x

e  and the domain µ <x < ∞. Where  –∞ < µ < x < ∞ , σ > 0.  

The mean is µ and the variance = σ2
 . 

In multicast protocols, where the time (t) replaces the x variable, we have 

the adapted decaying exponential distributions with µ = 0, 0 < t < ∞, its 

pdf  p(t) = α

α

t

e

−
1

 

Figure 1.11 illustrates the case of the decaying exponential distribution 

with α = 1 

 

 

 

 

 

 

 

 

 

Figure(1.11): The Decaying Exponential Distribution with α=1 

1.8.3 The Logistic Distribution 

The logistic distributed function has had a lengthy history in classical 

statistics, specially in population studies by Verhulst (1804-1849) and 

others. Verhulst’s equation is formalized by the differential equation 

   )( PKrP
dt

dP
−=  

p(t)= t
e

−  

t 

1 
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This equation represents the type of growth called logistic, in which a 

quantity P grows in proportion to both its present size and its distance 

from an upper limit K (Berresford, 1996, p.666) 

P represents population size and t represent time, the constant r defines 

the growth rate and K is the carrying capacity i.e. the maximum value that 

P may have. The general solution to this equation is a logistic function. In 

ecology, species are sometimes referred to as r-strategist or K-strategist 

depending upon the selective processes that have shaped their life history 

strategies. (Wikipedia, the logistic function) 

The solution of this logistic differential equation is the logistic function  

P = 
rKt

ce

K
−+1

 

(appendix I). 

In statistics, the logistic distribution function plays a leading role in the 

methodology of logistic regression, where it makes an important 

contribution to the literature on classification. The logistic distribution 

function has also appeared in many guises in neural network research. In 

early work, in which continuous time formalisms tended to dominate, it 

was justified via its being the solution to a particular differential equation. 

In later work, with the emphasis on discrete time, it was generally used 

more heuristically as one of the many possible smooth, monotonic 

functions that map real values into a bounded interval. More recently 

however, with the increasing focus on learning, the probabilistic properties 

of the logistic function have begun to be emphasized. This emphasis has 

led to better learning methods and has helped to strengthen the links 

between neural networks and statistics. (Jordan, 1995). 
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Logistic distribution functions are good models of biological population 

growth in species which have grown so large that they are near to 

saturating their ecosystems, or of the spread of information within 

societies. They are also common in marketing where they chart the sales 

of new products over time; in a different context, they can also describe 

demand curves. (Math 120). 

In addition to the above mentioned qualities and uses, the similarity of 

certain forms of the logistic distribution function to the normal distribution 

and relative ease of treatment (Ass’ad, 1988, p.4.14) make it a candidate 

for study in our work. 

The pdf of the logistic distribution is 

f(x) = 
2

)(

)(

)1(
λ

σ

λ
σ

σ −−

−−

+
x

a

x
a

e

ea
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Figure (1.12): The Logistic Distribution 
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where -∞ < x < ∞ , σ > 0 (Wikipedia). 

The standardized logistic distribution has the mean λ = 0, variance 2σ  = 1, 

and f(x) = 
2)1( ax

ax

e

ae
−

−

+
, see Figure 1.12. 

In multicast protocols where the time variable (t) replaces the x variable, 

the modified function of the pdf of the logistic distribution function will 

be 

f(t) = 
2)1(

)2(
at

at

e

ae
−

−

+
 

where 0 ≤  t < ∞ 
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Figure (1.13): The Modified Logistic Distribution 
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The mean value for the logistic distribution function p(t) = 
2)1(

)2(
at

at

e

ae
−

−

+
 equals 

2ln
2

a
. The mean and the variance of the logistic distribution may be 

calculated from the formulas ∫
∞

0

)(. dttft , ∫
∞

−
0

2 )()( dttPt µ , (appendices B,C). 
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Chapter Two 

 

Time Elapsed & Extra Messages 

In Non Lossy Communication 
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2.1 Introduction 

In this chapter, we study the suppression technique (see: 1.7.3) under two 

conditions:  

a- No messages are lost (non lossy case) 

b- Delay transmission time (∆) is not equal to zero, it will be 

considered here as constant between all pairs of nodes in the 

network. 

Two performance metrics in the suppression technique will be studied, 

namely: time elapsed, or the delay incurred by a process that utilizes the 

suppression technique, and extra messages, or the corresponding 

messaging overhead. 

In studying these two performance metrics, a number of parameters are 

utilized, which are defined, with their realistic values as follows: 

1) N, the number of processes participating in the algorithm, this lies 

in the range of O(1) to O(100,000) 

2) T, the upper bound of the suppression interval, or it is the interval at 

which announcement messages are sent periodically, which lies in 

the range of O(1) second to O(5) minutes. 

3) ∆, the transmission delay, which depends on the domain of 

communication, it lies in the range of O(0.1) msec to O(10) 

seconds.  

We assume that 1  ,1 ≥≥ NT  and 1  ; ≤
∆

≤∆
T

T ; 
T

∆
 lies generally in the  
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range ( 5.0,103 6−× ) and  
N

T
 lies in the range ( 300,101 5−× ) (Schooler, 

2001, p.20). 

4)  α of the exponential distribution is supposed equal to T. 

5) a of the logistic distribution is supposed equal to 2/T. (see 2.2.1.3). 

2.2 The Suppression Algorithm and Its Performance Metrics 

In suppression, a process waits (sleeps) in an interval of time without 

sending a message. The time interval is chosen randomly depending on an 

already given pdf and a delay time T; if a message arrives during the 

sleeping time, the process suppresses its own message, otherwise it sends 

the message. 

The suppression algorithm is represented by the following pseudocode:- 

SUPPRESSION(p,T) 

1 t = random(p,T) 

2 sleep(t) 

3 if no_message_received( ) then 

4 send_message( ) 

where t is a random delay time chosen by a process in the system 

depending on a procedure random(p,T) where p(t) is the pdf of the time 

distribution and T is a parameter of the distribution (Schooler, 2001, p.12). 

We shall treat the performance metrics for the three pdfs, of the study (the 

uniform, the decaying exponential, and the logistic distribution functions) 

separately, and then compare the different values of their performance 

analytically and/ or with graphs. 
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2.2.1 Time Elapsed 

The time elapsed, chosen by any process i, measures the sleeping time 

selected by the process; in other words, it is the minimum delay, that the 

process i allows the other processes before becoming suppressed (and also 

the algorithm before being completed). 

In the accompanying graph Figure 2.1, for the uniform distribution 

function (any other pdf will do), if p(x) represents the value of the pdf on 

which the process i depends on choosing the minimum time (tmin) then: 

 

Figure (2.1): Cumulative Distribution for the Uniform Distribution 

Pi(t) (Shaded area) represents the probability the process i may choose 

time less then t; and (1-Pi(t)) represents the probability that the process i 

may choose time greater than t. 

Pi(t) is called the cumulative distribution function, and may be calculated 

by the value of ∫
t

dxxp
 

0 
)(  

Having N processes to deal with, our metric for time elapsed, will be 

E(tmin), or the expected value of (tmin) which is the minimum elapsed time 
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before one of the processes wakes up and sends a message, using the 

general formula: 

∫= dttpttE )(.)(  

we have 

[ ] ∫ ∑ 







==

<≤
<≤

T

Ni

ii
Ni

dttPttEtE
0

0
0

min )(min)(      (2.1) 

Where )(tPi is the probability that ti is the minimum. This event occurs if i 

takes the minimum value t with probability p(t) and all other processes 

have times greater than t, i.e. each with probability (1-P(t)) 

1))(1)(()( −−= N

i tPtptP  (independent events) 

( )∫
−

−=
T

N
dttPttNptE

0

1

min )(1)()(  

( ) ∫∫ −−=−
− NN

tPtddttPttNp ))(1()(1)(
1     (2.2) 

using integration by parts 

∫∫ −= duvvuudv ..  

u = t, ( )N
tPddv )(1−=  

so for the equation (2.2) we have 

 ( )













−−−−=−− ∫∫ dttPtPttPtd

NNN )(1))(1())(1(  
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     ( )
T

N

T
N

tPtdttP

00

))(1()(1 −−−= ∫  

     ( ) [ ]NN

T
N

TdttP )01)(0()11()(1
0

−−−−−= ∫  

     ( )∫ −=
T

N
dttP

0

)(1  

Where N is the number of processes, P(t) is the cumulative distribution 

function, and will be calculated separately for each one of the pdf's of the 

study from the formula P(t) = ∫
t

dxxp
  

0  
)(  

2.2.1.1  Time Elapsed for the Uniform Distribution Function 

The Uniform distribution function is the most applied in suppression 

algorithm; it has also inherent properties which encourage its use: mainly, 

its simplicity and effectiveness; and in fact it is used as a reference with 

which other distribution functions are compared. 

For the uniform distribution:- 

  p(t) = 
T

1
,  Tt ≤≤0  

P(t) = 
T

t
t

T
t

TT
dx

T

t t

x ==−==∫
1

  )0(
1

  
1

    
1

0

 

0 
  

( ) ∫∫ 







−=−=

T NT
N

dt
T

t
dttPtE

00

min 1)(1)(  

Let Tdudt
Tdt

du

T

t
u −=⇒

−
=⇒−=

1
1  
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∫ +
−=−=∴

+

1
)()(

1

min
N

u
TduTutE

N
N  

substitute for u 

( )( )
1

)01(11
1

1
1

)(
0

1
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+

+
=−−−

+

−
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


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


−

+

−
=

+

N

T

N

T

T

t

N

T
tE

TN

 (2.3) 

This relation was used by Nonnenmacher to estimate the value of  N, 

given T, and treceived  = tmin  +  ∆  in one round in the form 

  1−
∆−

=
receivedt

T
N   (Nonnenmacher, 1999 ) 

2.2.1.2  Time Elapsed for the Decaying Exponential Distribution 

Function 

The decaying exponential distribution has been used in collision – 

avoidance algorithms in Ethernet and packet radio and shared media 

networks generally.  

For the exponential distribution:- 

p(t) = α

α

t

e

−
1

 

P(t) = dxedxxp

t xt
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=
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  (2.4) 

2.2.1.3 Time Elapsed for the Logistic Distribution Function 

The logistic distribution function has many  applications in many fields 

like statistics, neural networks, economics, and education (Jordan, 1995). 

Its similarity to the normal distribution and relative ease of treatment 

(Ass’ad, 1988) make it a candidate for study in our work. 

For the modified logistic distribution function  

p(t) = 
2)1(
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substitute the original values 

P(t)  = dx
e

ae
ax

axt

2

0
)1(

2
−

−

+∫  =   )1(2 1−−+ ax
e

t

0
 

= 2( 








+
−








+ − 11

1

1

1
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e
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= 1
1

2
−

+ −ate
       (2.5) 

The cumulative area under the logistic distribution function starting at t = 

0 and ending at infinity must be equal to one 

P(∞ )  = dt
e

ae
at

at

2

0
)1(

2
−

−∞

+∫  

P( ∞ )  = 
∞

−+ 0)1(

2
at

e
 

= 








+
−








+ ∞− 11

2

1

2

e
 = 112 =−  

We notice here that the total area under the curve of the pdf is equal to (1), 

which means that the modified formula of the logistic function satisfies 

the probability distribution function requirements. 

To solve for the expected minimum time for suppression we use the 

formula 

E(tmin)  = ( )∫
∞

−
0

)(1 dttP
N  

E(tmin) for the logistic function equals 

E(tmin)  = ∫
∞

− 















−

+
−

0

1
1

2
1 dt

e

N

at
 

= ∫
∞

− 
















+
−

0
1

2
2 dt

e

N

at
 

= ∫
∞

− 
















+
−

0
1

1
12 dt

e

N

at

N  
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let  u = ( ) 1
11

1

1
1

−−

−
+−=









+
− at

at
e

e
 

( ) ( )atat
aee

dt

du −−− −+=
2
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( ) 2
1

−−− +−
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eae

du
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( )at
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1

1
1  
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u

u
e
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−
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1
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E(tmin)  = ( )
( ) 2
1

.2
−−− +−

∫ atat

NN

eae

du
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=
( )2
1

)1(
.

2

uu

duu
u

a

N
N

−

−

− ∫  

= du
u

u

a

NN

.
1

2 1

∫ −−
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Since u = 








+
−

−at
e1

1
1 , and t takes values between zero and ∞,  

1- u = 
at

e
−+1

1
 satisfies the inequality: 

11
2

1
<−≤ u , using this result in E(tmin) leads to:- 

E1(tmin) = 11   ,
22 1 →−

−
=

− ∫
−

u
N

u

a
duu

a

NN
N

N
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E2(tmin) = 
2

1
1   ,

22
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2 1
1

1
1 →−

−
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−
=
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+
−

+
−

∫∫ u
N
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duu
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NN
N

N
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Substitute u  =  








+
−

−at
e1

1
1   in E1 and E2  leads to 
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


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
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E2(tmin) = ( )




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
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


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
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aN

tE
aN

2
)(

1
min <<∴  

To prove the convergence of the integral in E(tmin) we notice that: 

1) The functions 1
1

2,
1

−
−

−

N
N

u
u

u
, are both continuous in any interval 

[a,b], (u ≠ 1); hence they are integrable 

2) 1
1

1 2
1

2 −
−

− ⇒
−

≥ N
N

N
u

u

u
u  dominates 

u

u
N

−

−

1

1

, and 12 −N
u is convergent 

u

u
N

−
⇒

−

1

1

 

is convergent also in accordance of the Domination Test for 

convergence of improper integrals (Thomas-Finney, 1999, p.525). 

To check the validity of these approximation formulas Table 2.1 in 

calculating E(tmin) for the logistic distribution function, we compared the 

graphs of the two bounding formulas E1 and E2 with the graph of the 
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original formula, depending on the trapezoidal rule for evaluating the 

integral, see Figure 2.2; the comparison showed that the graph of the 

integral formula lies between the graphs of E1 and E2 as expected, and is 

almost identical with E2 (the upper bound). 
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Figure (2.2): Comparison: E(tmin) vs N  

To specify the parameters α  and a, we give equal values to p(t) at t = 0, 

for the three distribution functions. 

Taking T = 10,  

For the uniform pdf: 

p(0) = 
T

1
 = 0.1 

For the decaying exponential pdf: 

p(t) = α

α

t

e

−
1
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p(0) = 1.01*
1

=
α

→ α  = 10 

For the logistic pdf: 

p(t) = 
2)1(

2
at

at

e

ae
−

−

+
 

p(0) = 1.0
2)11(

1*2
2

==
+

aa
 → a = 0.2 

With these values of the parameters, we may compare time elapsed metric 

E(tmin) for the three distribution functions, as given in the Table 2.2 . 

 

Table (2.1): E(tmin) for the three distribution functions 

Name of 

Distribution function 
pdf mean E(tmin) 

Uniform 
p(t) = 

T

1
 

 
22

T
=

+ βα
 

1+N

T
 

Exponential p(t) = α

α

t

e

−
1

 α  
N

α
 

Logistic p(t) = 
2)1(

2
at

at

e

ae
−

−

+
 2ln

2

a
 aN

tE
aN

2
)(

1
min << , 

aN
tE

2
)( min ≈  

 

Table (2.2): E(tmin) for the three distribution functions (T=10) 

Distribution Function E(tmin) 

Uniform = 
1

10

+N
 

Decaying exponential = 
N

10
 

Logistic ))((  ,
10

2.0

2
min2 tEin

N
or

N
<<  
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From Table 2.1 and Table 2.2, we conclude: 

1- For large values of N, time elapsed is inversely proportional to the 

number of processes N, and tends to zero where N is large enough 

(see Figure 2.3) . 

2- Time elapsed is directly proportional to the mean for constant N in 

all the three distributions. 

3- Comparing the values of E(tmin) for the three distributions: 

It is clear from the Table 2.2 that the logistic distribution 

function excels the other two distribution functions (which are 

almost equal) in terms of E(tmin), since the smaller the time 

elapsed is, the better. 

Figure 2.4a also shows this result in comparison of the performance 

metric, time elapsed, of the three distributions, for different values of N 

(number of processes). 

2.3  E(tmin): Comparison for The Three pdfs 

Realistic values of the variables and parameters T, N, α , a  were adopted 

in all the following graphs, as presented in Table 2.2 . 

2.3.1  Variation of E(tmin) for the Logistic pdf vs N  

To illustrate the relationship between E(tmin) and N, we draw the graph 

relating E(tmin) vs N for different values of N, where N ranges from 1 to 

1000 processes and T = 10, see Figure 2.3 . 

Using the log scale on the y axis for E(tmin) vs N, we find that E(tmin) 

decreases continuously with a slower rate with increase of N. 
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Figure (2.3): E(tmin) vs N 

 2.3.2 E(tmin) for the three pdfs vs N  

To compare the relationships between E(tmin) and N, for the three 

distribution functions we draw the graphs Figures 2.4a,b relating E(tmin) vs 

N for different values of N, where N ranges from 1 to 1000 processes. 

Using the log scale on the y-axis for E(tmin), we find from the graphs of the 

three distributions: the uniform, the exponential and the logistic as seen in 

Figure 2.4a that the logistic distribution function outperforms the two 

other distribution functions in general, this is markedly clear for large 

values of N as is shown in Figure 2.4b, while the uniform distribution 

function slightly outperforms the exponential distribution in general. 
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Figure (2.4a): Comparison:  E(tmin) vs N 
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Figure (2.4b): Comparison: E(tmin) vs N, in large scale 
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2.4 Extra Messages in Non-lossy Networks 

2.4.1 Introduction 

Extra messages represent the other performance metric with which we 

measure the efficiency and effectiveness of pdfs used in the suppression 

algorithm, in addition to time elapsed which we studied before. 

In this section we will study extra messages in a lossless network with 

delay, where delay (∆), the message transmission time, is greater than 

zero. 

The reason for occurrence of extra messages is that the earliest message 

sent takes time (delay) to reach other processes; and hence they might 

send messages if their suppression times admit. Let the number of the 

participating processes be N (0,1,2 … N-1), each choosing its own time 

elapsed; these values of time elapsed may be arranged in ascending order 

(t0, t1, t2,.. tN-1); naming the processes in accordance with the time vector  

(t0, t1, t2,.. tN-1) such that process P0 corresponds to t0, P1 corresponds to t1 

and so on. In Figure 2.5, let all processes begin together, each with its own 

suppression time elapsed, P0 being the process with the least suppression 

time (tmin) = t0, P0 sends its message which reaches the other processes in 

time = t0 + ∆ . 

In Figure 2.5, Since the suppression time of Pk is less than t0 + ∆, Pk 

awakens and sends a message (i.e. extra message); on the other hand, the 

message sent by P0 reaches Pi before it awakens and hence Pi  suppresses 

its own message. 
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Figure (2.5): Comparison: Extra messages and delay (∆) 

The condition that a certain process k whose suppression time is tk sends 

an extra message, any message beyond the earliest message whose 

suppression time is tmin, is: 

tmin < tk < tmin + ∆ 

It is obvious that this relation is meaningful only if ∆ is greater than zero. 

2.4.2 Expected Value of the Number of Extra Messages 

From the preceding inequality: 

tmin < tk < tmin + ∆    (2.6) 

We may derive the following inequalities: 

tmin < tk     (2.7) 

tk < tmin+∆     (2.8) 

tk-∆ < tmin     (2.9) 

From (2.7) and (2.9) we have: 

tk-∆ < tmin < tk    (2.10) 

Any process that may send an extra message must satisfy inequality 

(2.10); hence we may calculate the probability that tmin lies between tk-∆ 

 

P0         

                                   t0                      ∆ 

 

Pk 

                                                    tk 

Pi 

                                                                                      ti 



 
50 

and tk by determining the probability that each process i≠k chooses a time 

greater than tk-∆, and subtracting from it the probability that every process 

chooses a time greater than tk. 

E[#extra]  = [ ]∑
<≤

<<∆−
Nk

kk ttt
0

minPr  

p(t) 

1/T 

t 

 0  tk-∆    tk     T 

Figure (2.6): E[#extra] 

To find E[#extra] we notice that a process x chooses a suppression value  

x ≥ t, with probability ( ))(1 tP−  and chooses a suppression value x ≥ t-∆, 

with probability ( ))(1 ∆−− tP . 

For process x: 

E[#extra]  ( ) ( )∫∫
∆

−

∆

−
−−∆−−=

T
N

T
N

dttPtpdttPtp
11

)(1)()(1)(  

For N process: 

E[#extra]  ( ) ( )∫∫
∆

−

∆

−
−−∆−−=

T
N

T
N

dttPtNpdttPtpN
11

)(1)()(1)(  

( ) ( )∫∫
∆∆

−
−−∆−−=

T
N

T
N

tPddttPtpN )(1)(1)(
1  

( ) ( )
T

N
T

N
tPdttPtpN

∆
∆

−
−−∆−−= ∫ )(1)(1)(

1  
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( ) ( )NN

T
N

PdttPtpN ))(1()11()(1)(
1

∆−−−−∆−−= ∫
∆

−

 

( ) N

T
N

PdttPtpN ))(1()(1)(
1

∆−−∆−−= ∫
∆

−  

using the approximation formula for small values of x  

( ) Nxx
N

−≈− 11  

The result will be: 

( ) ))(1()(1)(
1

∆−−∆−−= ∫
∆

−
NPdttPtpN

T
N  

   E[#extra] = ( )∫
∆

−
∆−−+−∆

T
N

dttPtpNPN
1

)(1)(1)(.   (2.11) 

Where 

N: number of processes, 

∆: message transmission delay,  

T: the maximum amount of time a process waits before issuing a 

message, 

P(∆): the cumulative probability P(t) when t = ∆ . 

2.4.3 Extra Messages for the Uniform Distribution Function 

For the Uniform distribution 

  p(t)  =
T

1
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P(∆)  = 
T

∆
 

P(t-∆) = 
T

t ∆−
 

E(#extra) = ( )∫
∆

−
∆−−+−∆

T
N

dttPtpNPN
1

)(1)(1)(.  

= ∫
∆

−








 ∆−
−+−

∆
T N

dt
T

t

T
N

T
N

1

1
1

1.  

= ∫
∆

−








 ∆−
−+−

∆
T N

dt
T

t

T

N

T

N
1

11  

= ∫
∆

−








 ∆
+−+−

∆
T N

dt
TT

t

T

N

T

N
1

11  

let        u = 






 ∆
+−

TT

t
1  








−=⇒

Tdt

du 1
Tdudt −=⇒  

   E(#extra)  = ( )
N

u
N

T

N
duTu

T

N

T

N
N

N
−−

∆
=−+−

∆
∫

−
1)(1

1  

Substituting in the original value of u will give 

   E(#extra)  =
TN

TT

t

N

N

T

N

∆








 ∆
+−−−

∆
11  

=



















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∆
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 ∆
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∆
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N
1111  
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
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
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
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∆
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= 11 +






 ∆
−−

∆
N

TT

N
 

=
N

TT

N







 ∆
−

∆
      (2.12) 

2.4.4 Extra Messages for the Exponential Distribution Function 

For the exponential distribution:- 

  p(t)  =
α

α

t

e

−

 

P(t) = α

t

e

−

−1   

P(∆) = α

∆−

− e1   

   E(#extra)  = ( )∫
∆

−
∆−−+−∆

T
N

dttPtpNPN
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)(1)(1)(.  

= ∫
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∆
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

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
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NeN

N
t

t
1

)(
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Solving for the integration first 

∫
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
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
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α

)()(
1
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e
dt
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eu  
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dueedt

t

ααα
∆−

−=  

substituting for dt 
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− dueeu
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αα
α

α
α

)(
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( ) c
N

u
NeduuNe

N
N

+−=
∆−

−
∆−
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)( ∆−− t
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∞

∆
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∆−
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α
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substituting  α

)(∆−

e  for the integral in the formula for E(#extra)  we get  

   E(#extra)  = ∫
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
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
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   E(#extra)  = eeNN αα

∆
−

∆
−

+−− 1  

= )1)(1( eN α

∆
−

−−       (2.13) 
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2.4.5 Extra Messages for the Logistic Distribution Function 

For the logistic distribution:- 

     E(#extra) = ( )∫
∆

−
∆−−+−∆

T
N

dttPtpNPN
1

)(1)(1)(.  

Where  

N: number of processes, 

∆: message transmission delay,  

T: the maximum amount of time a process waits before issuing a 

message. 

Substituting for the logistic distribution we have 

     E(#extra) = ( )∫
∆

−
∆−−+−∆

T
N

dttPtpNPN
1

)(1)(1)(.  

= 
( )∫

∞
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−


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







+
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ee

ae
NNP
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1
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2
1

1

2
1)(  (2.8) 

2.4.6 Graphical Representation 

Realistic values for the variables and parameters T, N, α, and a were 

adopted in all the following graphs as presented in Table 2.2 . 

For the time delay ∆, we used values ranging from 0.1 msec - 10 sec. 

2.4.6.1 Variation of E(#extra) for the Logistic Distribution Function 

versus ∆ 

To illustrate the relationship between E(#extra) and ∆, with a = 0.2, we 

calculate the E(#extra) messages for certain values of N, giving ∆ values 
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ranging from (0 – 1), we use the Trapezoidal rule to find the value of 

integration, given in the general formula for extra messages. 

Form Figure 2.7 (small values of N) and Figure 2.8 (large values of N), we 

find that E(#extra) increases with increase of ∆ and also it increases with 

increase of N. This result is expected since increase of ∆ allows more 

processes to release messages which are extra messages because they do 

not suppress other processes, suppression is caused only by the first sent 

message. 

The first message arrives at any other process before other (extra) 

messages because the time it takes is  ∆+0t ,  where  

  0 ,   0 >< itt i  

and hence it causes suppression of the other process. 
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Figure (2.7): E(#extra) vs ∆ 
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Figure (2.8): E(# extra) vs ∆ 

2.4.6.2 Variation of E(#extra) for the Logistic Distribution Function 

versus N 

To illustrate the relationship between E(#extra) and N for the logistic 

distribution function, we draw the graph relating E(#extra) versus N, 

where N ranges from (0-200). From Figures 2.9a, b we notice that, 

E(#extra) for the logistic distribution increases with increase of N for any 

value of ∆, and it also increases with increase of values of ∆. 

This result is expected since increase of N (for the same value of ∆) allows 

more processes to release extra messages. 
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Figure (2.9a): E(# extra) vs N 

 

Figure (2.9b): E(#extra) vs N 
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2.4.6.3 E(#extra) for the Uniform, Exponential, and Logistic 

Distributions versus ∆ 

To compute the relationships between E(#extra) and ∆, for the three 

distribution functions, we draw the graphs relating E(#extra) versus ∆ for 

different values of ∆, where ∆ ranges from (0.1 – 1.0 sec), and N = 100. 

From Figure 2.10 we notice that the logistic distribution function 

outperforms the other two distributions for all values of ∆ up to delta 

≈0.85sec. 

By comparing Figure 2.10 with N = 100 and Figure 2.11a with N = 500, 

we notice that the logistic distribution function outperformed the other two 

pdfs in the first case for values of ∆ ( 0.1- 0.85 sec) and in the second case 

for values of ∆(0.1–0.35), which suggests that the logistic distribution 

outperforms the other two pdfs in the extra messages metric for smaller 

values of ∆ as N increases. 

 
Figure (2.10): E(# extra) vs ∆ 
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 Figure (2.11a): E(# extra) vs ∆ 

 
Figure( 2.11b): E(#extra) vs ∆ 
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2.4.6.4 E(#extra) for the Uniform, Exponential and Logistic 

Distributions versus  N 

To compare the relationships between E(#extra) and N, for the three 

distributions, we draw the graphs relating E(#extra) versus N for different 

values of N, where N ranges from 1-1000, and ∆ = 0.1, 0.3, 0.5, 0.9, as 

shown in Figures 2.12a,b,c,d,e,f . 

The logistic distribution outperforms the uniform distribution for all 

values of N and ∆, it also outperforms the exponential distribution for 

values of N ranging from 1 to N = x, where x decreases with increase of 

the value of ∆. 

 

Figure (2.12a): Comparison: E(# extra) vs N 
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Figure (2.12b): Comparison: E(# extra) vs N 

 
Figure (2.12c): Comparison: E(# extra) vs N 
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Figure (2.12d): Comparison: E(# extra) vs N 

 
Figure (2.12e): Comparison: E(# extra) vs N 

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

N

E(# extra) for the Uniform, Exponential & Logistic vs N, ∆ =.9

Uniform

Exponential

Logistic

L
o
g
1
0
(E

(#
 e

x
tr

a
))



 
64 

 
Figure (2.12f): Comparison: E(# extra) vs N 
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In this chapter we studied two performance metrics, time elapsed and 

extra messages, in the non lossy case which is the ideal case when no loss 

of messages occurs, and could be used when the probability of loss is 
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2.5.1 Time Elapsed 

The metric used here to measure the time elapsed is E(tmin), which is the 
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of N, sharply at first, but slowly for large values of N, which means that 

when the number of participators of the group is small, the addition or the 

departure of a few number of participators greatly affects E(tmin); but it is 

of little significance if N is large. 

E(tmin) was found to decrease with increase of N, for the three 

distributions, the uniform, exponential and the logistic distribution, with 

the logistic distribution outperforming the other two distributions in 

general, this out performance becomes markedly significant for large 

values of N. 

2.5.2 Extra Messages 

Extra messages are produced because of the existence of ∆ (the time 

delay), i.e. the time taken by the earliest message to reach the other 

processes causing them to send unnecessary messages (Extra Messages). 

The extra messages metric is measured by E(# extra). 

For the logistic distribution, E(# extra) was found to increase as ∆ 

increases for a certain value of N; also for the same value of ∆, E(# extra) 

increases as N increases. 

Number of extra messages, increases with increase of N, for all three 

distributions. Number of extra messages also increases with increase of ∆, 

for all three distributions. 

In comparing the performance of the three pdfs regarding extra messages, 

the logistic distribution outperforms the uniform distribution function for 

all N and ∆, it also outperforms the exponential distribution for values of 

N in the interval [1, x], where x decreases with increase of the value of ∆. 
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Chapter Three 

 

 

Suppression With Loss 
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3.1 Introduction 

Loss in multicast networking denotes the case when a message sent by a 

sender, is not received by one or more of the potential destinations. It is 

worth noting that loss occurs in the majority of cases, though with 

differing degrees. 

In lossy multicasting, we differentiate between two types of loss: 

correlated loss i.e. the loss occurs near the sender, which affects many 

receivers, and uncorrelated loss which occurs close to the receivers, whose 

effect differs with the location of the concerned receivers in the network. 

(see Figure 3.1). In fact, we limit our study to the two extreme cases: fully 

correlated loss (closest to the sender) and fully uncorrelated loss (closest 

to the receivers), though in real – life situation, most losses lie in between 

the two extreme cases (Schooler, 2001, p.40). 

  

Figure (3.1): Correlated & Uncorrelated Loss 

In assessing the suppression technique, in the lossy case, new performance 
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 metrics are introduced, in addition to those discussed in the non-lossy 

case: 

1) Time Elapsed: 

a) E(tmin k) the expected value of the k
th

 smallest time. 

b) E(tmin e) or effective E(tmin). 

c) E(tmax) the maximum time elapsed. 

2) Extra Messages: 

a) E(# messages), expected number of messages generated. 

b) E(# required), expected number of messages required. 

c) E(# extra), expected number of extra messages with loss. 

These performance metrics will be introduced to answer questions like:- 

How much delay is incurred when N processes participate? How much 

messaging overhead is generated when the loss probability is l? How long 

before all processes have completed the algorithm? 

These performance metrics will be studied, and compared for different 

pdfs in the following sections. 

3.2 Time Elapsed with Loss 

In the non-lossy case it was sufficient to use the expected time when the 

first message is sent, namely E(tmin); but in the lossy case the first message 

may be lost, and hence we may depend on two new time performance 

metrics: 

a- Effective E(tmin) = E(tmin e) 

b- E(tmax). 
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In studying these two time metrics, we have to study first the metric 

E(tmin k). 

3.2.1 E(tmin k) Time Metric 

E(tmin k), the expected value of the k
th

 smallest time, is particularly 

important in calculating the values of E(tmin e) and E(tmax), the two main 

time performance metrics in the lossy case. 

For time ti to be the k
th

 smallest time, there must be k processes of shorter 

times and (N-1-k) processes of longer time than it. This event has the 

probability  

kN

i

k

i tPtP
k

N
−−−







 −
1))(1())((

1
  

where  N = # of processes 

 i =  index # of process 

  k= # of elapsed times less than elapsed time of i’th process 

For calculating the probability for a particular time ti to be the k
th

 smallest 

time, we notice that the number of groups each of which has k elements, 

taken from (N-1) elements = 






 −

k

N 1
; since the i

th
 element is not included. 

For a specific group of k elements with time less than ti, we have also a 

specific group of (N-k-1) elements with time greater than ti. 

These two specific groups have probability of happening  

= kN

i

k

i tPtP
−−− 1))(1())((  
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Therefore the probability for all the groups  

= kN

i

k

i tPtP
k

N
−−−







 −
1))(1())((

1
. 

In general, expectation will have the formula  

E(t) = ∫ dtttp )(  

Noting that for E(tmin k) depending on process (i), t will be  

t = kN

i

k

ii tPtP
k

N
t

−−−






 −
1))(1())((

1
 

since we have N processes we multiply by N 

E(tmin k) = dttPtP
k

N
tNtp kNk

T

−−−






 −
∫

1

0

))(1())((
1

)(   (3.1) 

3.2.1.1  E(tmin k ) with the Distributions 

E(tmin k), the expected value of the k
th

 smallest time, depends on N (# of 

processes) and k, which takes the values from 1 to N-1, E(tmin k) is 

calculated by formula (3.1) . 

3.2.1.1.1  E(tmin k) for the Uniform Distribution 

        E(tmin k) = dttPtP
k

N
tNtp kNk
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= dt
T

t

T

t

kNk

NN kN
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= dt
T

t

T
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N kN
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)!(
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Solving for the integration 

         I = dt
T

t

T

t kN

T

k −−+ −∫
1

0

1 )1()(  

Let Tdxdt
Tdt

dx

T

t
x =⇒=⇒=

1
 

          I = dxxxT
kNk −−+ −∫

11 )1(  

Putting  

yxyx
22 cos1sin =−⇒=  

dyyydxyy
dy

dx
.cos.sin.2cossin2 =⇒=  

I    = y.dyyy)(y)(T
kNk cossin2cossin 1212 −−+

∫  

= dyy)(y)(T
kNk 21232 cossin2 −−+

∫  

calculating the new integration boundaries  

x = 
T

t
  =>  t = Tx 

t = 0, T    =>  x = 0, 1  
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x = sin
2
y 

x = 0  =>  y = 0 

x = 1 =>  y = 
2

π
 

I = dyy)(y)(T kNk 212
2

0

32 cossin2 −−+

∫

π

 

Using the formula followed to compute the integration 
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π

  (Gillespie, (1959), p. 22) 

m and n should be odd numbers. 

Using this method we have the value of the integration to be 

=
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from (3.2), (3.3) 
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E(tmin k) = 
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3.2.1.1.2  E(tmin k) for the Exponential Distribution 

For the exponential distribution 

p(t) = α

α

t

e

−
1

, 

P(t) = α

t

e

−

−1 ,  

Substituting these values of p(t), and P(t) into the general formula of  

E(tmin k):  
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3.2.1.1.3 E(tmin k) for the Logistic Distribution 

For the logistic distribution 
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Substituting these values of p(t), and P(t) into the general formula of  

E(tmin k),  
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Figure 3.2 shows the relationship between E(tmin k) and k for N=10 (# of 

processes), k takes the values (1, 2… N-1 = 9). 
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Figure (3.2): E(tmin k) vs k 

 

Figure (3.3): E(tmin k) vs k 
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From the Figure 3.2 (when N = 10) we notice that the values of E(tmin k) 

increase with k from ≈ 0.2 (when k = 1) to ≈ 1.8 (when k = 9). 

Figure 3.3 shows the relationship between E(tmin k) and k, for N=50 ; the 

values of E(tmin k) increase when k increases, similar to Figure 3.2, but 

corresponding values of E(tmin k) for the same k, differ in the two figures 

such that those in Figure 3.3 are less than the corresponding ones in  

Figure 3.2. 

This result is expected: as N increases the probability of tmin having 

smaller values becomes higher, e.g. in Figure 3.2 in which N=10, the 

value of E(tmin 5) was about 0.6, while in Figure 3.3 in which N=50, the 

value of E(tmin 5) was about 0.1 . 

3.2.1.1.4 E(tmin k) vs k for the Uniform, Exponential, and Logistic pdf’s 

Figure 3.4 shows the relationship between E(tmin k) and k for the three pdf 

distributions, where N = 10. 

From Figure 3.4 we notice the following:- 

1- The curves of the graphs (3 pdf’s) show that E(tmin k) increases with 

the increase of the values of k. 

2- The least value of E(tmin k) for the three pdf’s is nearly 0.25, but 

with increase of k, the difference between values of E(tmin k) 

increases. 

3- The uniform distribution outperforms the other two pdf’s in the 

time metric E(tmin k), with the logistic lying in between the other 

two. 
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Figure (3.4): Comparison E(tmin k) vs k 
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Figure (3.5): E(tmin k) vs k 
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bound for E(tmin e), the correlated loss E(tmin e) will be adopted as a time 

performance metric in this study. 

To compute E(tmin e) we designate first the probability of message loss by 

(l), the probability of receiving the message successfully will be (1- l). 

Supposing that tmin0, tmin1,… tminN-1, are the earliest suppression times of 

the processes given in ascending order, it is evident that the probability 

that  

tmin k is the smallest time equals (1-l) l
 k
 , where (1-l) represents the success 

of sending a message by the k
th

-process, and  l
 k
 represents the failure of k-

processes (0,1,2,….,k-1) in sending successful messages 

E(tmin e)  =  










−

−++−++−+−+− −
−

)1(

)1(...)1(...)1()1()1( 1min

1

min2min

2

1min0min

N

N

N

k

k

l

tlltlltllltltl
E (3.8) 

where (1-l
N
) is the normalization factor expressing the fact that one 

message at least was successful. 

E(tmin e) = 








−

−
∑

<≤ Nk

k

k

N
tlE

l

l

0

min.
1

1
        (3.9) 

Substituting for tmin k we have 

E(tmin e)= dttPtP
k

N
tNtpl

l

l kNk

T

Nk

k

N

−−

<≤

−






 −

−

−
∫∑ 1

00

))(1())((
1

)(
1

1
   (3.10) 

To find a simplified form of the formula, we first prove that  

kNkN
tPtP

k

N
tPtlP

−−− −






 −
=−+ 11 ))(1())((

1
)))(1()((  
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using the binomial theorem 

kkN
N

k

N
ba

k

N
ba

−

=

∑ 







=+

0

)(  

let   a = 1 - P(t) 

 b =  l.P(t) 

substituting in the right hand side of the identity, we have 

kkN

Nk

N
tlPtP

k

N
ba ))(())(1(

1
)( 1

10

1 −−

−<≤

− −






 −
=+ ∑  

E(tmin e) = dttPtP
k

N
tNtpl

l

l kNk

T
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k

N

−−

<≤

−






 −

−

−
∫∑ 1
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))(1())((
1

)(
1

1
 

Hence  

E(tmin e) = dttPtlPtNtp
l

l N

T

N

1

0

)))(1()(()(
1

1 −−+
−

−
∫                   (3.11) 

Putting Q(t) = (1-l)(P(t)), we find that 

lP(t)+1-P(t) = P(t)( l-1)+1 = 1 – P(t)(1-l) ≡ 1-Q(t) 

Substituting in (3.11) we get 

E(tmin e) ∫
−−−

−

−
=

T

N

tq

N
dttQttplN

l
0

1

)(

))(1()()1(
1
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43421
 

E(tmin e) ∫
−−

−

−
=

T

N

N
dttQtNq

l
0

1))(1)((
1

1
 

E(tmin e) [ ]∫ −
−

−
=

T
N

N
tQtd

l
0

)(1
1

1
              (3.12) 
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Integrating by parts ∫ ∫−= vduuvudv  

u = t 

v = (1-Q(t))
N
 

∫ ∫ −−−= dttQtQtudv
NN ))(1())(1(  

 (3.12) becomes 
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)(1
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This formula, being easy to manipulate, is sometimes used for simplifying 

the calculations related to E(tmin e) 

3.2.2.1  E(tmin e) and the Probability Distributions 

From the general formula of E(tmin e) (3.11), we notice that the formula 

contains both p(t) and P(t), which means that its value varies with the used 

pdf in the suppression technique. 
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3.2.2.1.1 The Uniform Distribution:- 

p(t) = Tt
T

<≤0,
1

,  

P(t) = Tt
T

t
<≤0,  

let c = 1-l, Q(t) = cP(t), q(t) = cp(t) 

       E(tmin e)  
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   (3.14) 

3.2.2.1.2 The Exponential Distribution 

p(t) = te

t

≤
−

0,
1

α

α
,  

P(t) = te

t

≤−
−

0,1 α   

let c = 1 - l,  Q(t) = cP(t), q(t) = cp(t) 

E(tmin e) 
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The formula of  

 E(tmin e) 
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
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
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)1(

)1(

)1( N

N

N

N
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l

l

NTl

N α

α
 (Schooler, p.52) 

Was found incompatible with the integration formula using the trapezoidal 

rule which we used in our calculations. 

3.2.2.1.3  The Logistic Distribution 
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     P(t)  = t
e

at
≤−

+ −
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)1(
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     Q(t)  = (1-l)P(t) = )1
)1(

2
)(1( −
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−at
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E(tmin e) 
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dttQTl
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∫
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)(1
0  

3.2.2.2 E(tmin e): Graphical Representation 

The following realistic values of the variables and parameters T, N, a and l 

were adopted in the following graphs: 

T  = 1 

α = T = 1 

N  = ranges from 1 to 1000 

a = 
T

2
= 2 

)1,0(∈l  

The formulas used are those relating to correlated loss, see section (3.1)  

3.2.2.2.1  Variation of E(tmin e) for the Logistic Distribution vs N 

To illustrate the relationship between E(tmin e) and N, we draw the graph of 

E(tmin e) vs N for different values of N, where N ranges from 1 to 1000 

processes, taking l = 0.2, 0.5, 0.9 . 

Figure 3.6a, which describes the above relationship shows that E(tmin e) 

decreases as N increases, which is intuitively true since when more 
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processes participate, any value of tmin including a small one becomes 

more probable. 

Figure 3.6a also shows that the values of E(tmin e) increase with the 

increase of the loss parameter l which is also expected since small values 

of (tmin k) may not be effective due to loss 

 

Figure (3.6a): E(tmin e) vs N 

To show clearly the effect of l on E(tmin e) we magnify Figure 3.6a for the 

values 1-60 for N, as shown in Figure 3.6b. 

3.2.2.2.2  E(tmin e) for Uniform, Exponential and Logistic Distributions 

To compare the relationship between E(tmin e) and N (correlated case) for 

the 3 pdfs, we draw the graphs of E(tmin e) vs N Figures 3.7a, b, c, d, e, f  

where N ranges from (1–100), and l takes the values 0.1, 0.4, 0.8 . 
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Figure (3.6b): E(tmin e) vs N (different scale) 
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Figure (3.7a): Comparison: E(tmin e) vs N 
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Figure (3.7b): Comparison: E(tmin e) vs N (different scale) 
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Figure (3.7c): Comparison: E(tmin e) vs N 
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Figure (3.7d): Comparison: E(tmin e) vs N (different scale) 
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Figure (3.7e): Comparison: E(tmin e) vs N 
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Figure (3.7f): Comparison:  E(tmin e) vs N (different scale) 

The relationship between E(tmin e) vs N for the three distributions depends 

on the value of l. The following summarizes this relationship:- 

a. As N increases E(tmin e) decreases for the three pdfs. 

b. For small values of N, (1 – 15) the uniform distribution function 

outperforms the exponential and the logistic distributions 

irrespective of the value of l. 

c. For values of N greater than (15),  The logistic distribution 

outperforms the exponential for all values of l and N; the uniform 

distribution outperforms the logistic generally but the greater the 

value of l,  the performance of the logistic becomes nearly equal to 

that of the uniform. 
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3.2.3  Maximum Time Elapsed, E(tmax) 

E(tmax): the expected time selected by the last process that actually 

generates a message; this time is generally much less than E(tmin N-1). It is 

useful, particularly with message loss in knowing how long it takes the 

algorithm to complete. It also denotes completion time that is important 

when suppression by an algorithm is followed by another algorithm. 

In lossless case E(tmax)≤ E(tmin)+∆, which means that each message is sent 

within  ∆ of the earliest message. In the lossy case E(tmax) is not defined in 

terms of E(tmin), In both cases lossy and nonlossy E(tmax)+ ∆ means the 

expected time after which all nodes are in agreement to halt the algorithm. 

3.2.3.1  Calculating E(tmax) 

We calculate E(tmax) by using the probability distribution of tmin k 

E(tmax) ∆=0 = ∑
<≤

=∆=
Nk

kk ttt
0

0minmaxmin )Pr(*            (3.17) 

Supposing we have a very small value of  delay i.e. near zero, and very 

small relative to T, and noting that E(tmax) in uncorrelated loss is higher 

than the correlated case, we calculate E(tmax) in these conditions:- 

(∆ = 0) and uncorrelated loss. 

We first find a formula Pr(tmax = tmin k); tmax = tmin k occurs if the two 

conditions are satisfied:- 

1- when process k loses all the messages sent from processes j, 

kj <≤0  

2- processes 11 −<≤+ Njk  receive at least one message from 

processes kj ≤≤0  that generate messages. (see Figure 3.8) 
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Suppose that the processes kj <≤0  generate i messages where i ranges 

from 1 to k. 

    K    N-k-1 

      0 1   k    N-1 

Figure (3.8): Messages in E(tmax) 

If i messages were sent, k must have lost them all while the processes 

from 11 −<≤+ Njk  each must have received 1 message at least, the 

probability of this event = 11 )1( −−+− KNii
ll . 

In the nonlossy case:  tmax = tmin k = tmin happens when all subsequent N-1 

processes receive the first message 

Pr(tmax = tmin 0) ∆=0 = (1-l)
N-1 

∑
≤≤

−−+
=∆ −==

ki

KNii

k llsentmessagesiexactlytt
0

11

0minmax )1(*)Pr()Pr(   (3.18) 

Equation (3.17)  takes the form 

∑∑
≤≤

−−+

<≤

=∆ −=
ki

KNii

Nk

k llsentmessagesiexactlyttE
0

11

0

min0max )1(*)Pr(*)( (3.19) 

Let P(i,n): represent the probability that exactly i messages are sent by n 

processes, this event can be decomposed into two disjoint parts:- 

1- Process n-1 sends a message and processes  10 −<≤ nj  send 

(i-1) messages; in this case process (n-1) must lose the (i-1) 

messages sent, which happens with probability )( 1−i
l , 

2- Process n-1 does not send a message, and processes  

10 −<≤ nj  send (i) messages; in this case process (n-1) must 
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receive at least one of the (i) messages sent, which happens 

with probability )1( i
l− . 

   )1(*)1,(*)1,1(),( 1 ii
lniPlniPniP −−+−−= −  

so  P(0,n) = 0 

   P(i,i) = 1321 ...... −i
llll  

To find the values of P(i,n) the following procedure was used noting that 

no points lie under the diagonal in Figure 3.9 because the number of 

processes n will always exceed or equal number of messages: 

a- Diagonal points: 

The rule 2
)*1(

),(

i
i

liiP
−

=  was used, where i ranges between the values 

1 to n. 

b- For points P(1,n): 

using induction we have 

1)1,1( =P , (from P(i,i) rule) 

11 )1()1(*)1,1()2,1( llPP −=−= , (from the P(i,n) rule) 

21 )1()1(*)2,1()3,1( llPP −=−=  

  … 

11 )1()1(*)1,1(),1( −−=−−= n
llnPnP  

c- For points other than those of previous parts (a,b): 

we use the general rule  
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   )1(*)1,(*)1,1(),( 1 ii
lniPlniPniP −−+−−= −  

 
Figure (3.9): Representing P(i,n), (i ≤ n). 

 

 

The above procedure was used in a Matlab program for determining the 

values of P(i,n) for calculating the time metric E(tmax) and E(# required) 

messages in the lossy case. 

Summing up, the formula for E(tmax) is derived as follows:- 

∑
<≤

−−+
=∆ −==

ki

KNii

k llsentmessagesiexactlyttE
1

11

0minmax )1(*)Pr()(  

∑∑
<≤
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=∆ −=
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KNii

Nk

k llsentmessagesiexactlyttE
0

11

0

min0max )1(*)Pr(*)(  
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E(tmin k) = dttPtP
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3.2.3.2 E(tmax): Graphical Representation 

Figure 3.10 and Figure 3.11 show the relationship between E(tmax) for the 

logistic distribution function and a small number of processes N (N=10) 

for various values of the loss factor (l = 0.2, 0.4, 0.8) and also for (N=50) 

with the same values of (l). 

 
Figure (3.10): E(tmax) vs N 
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Figure (3.11): E(tmax) vs N 

From the figures we notice the following:- 

1- E(tmax) increases with increase of N. 

2- From nearly equal values at N=2, the 3 curves for different l 

become wide apart for values near 10 for the first figure and 

similarly in the second, with the largest value of E(tmax) 

corresponding to the largest loss factor (l = 0.8). 

3- There is some indication that for low values of (l) the curves 

tend to become steady before other values of (l). 

The value of E(tmax) depends on the number of processes N, and the value 

of k (formula (3.17)). Hence in comparing E(tmax) for the same value of k, 
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in the two figures, we notice that  different relationships might exist 

between the three curves representing the different values of l. 

3.2.3.3  E(tmax) vs N for the Uniform, Exponential and Logistic 

Distributions 

The Figures 3.12a,b,c, show the relationship between E(tmax) for the three 

pdf’s: uniform, exponential and logistic with the # of processes N at 

 l = 0.2, 0.5, 0.9 . 
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Figure (3-12a): Comparison: E(tmax) vs N  
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Figure (3-12b): Comparison: E(tmax) vs N  
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Figure (3-12c): Comparison: E(tmax) vs N  
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From the Figures 3.12a,b,c , we notice the following:- 

1- E(tmax) increases with increase of N for all the three pdfs. 

2- The lowest values of E(tmax) are for the uniform distribution and the 

highest are for the exponential, while those of the logistic lie in 

between the two. 

3.3   Extra and Required Messages in Lossy Conditions 

3.3.1  Introduction 

In the non- lossy case, it was the first sent message that had to be taken 

into consideration in the suppression of other messages. In fact, the first 

message is the only required message (that affects suppression); all other 

issued messages are regarded extra messages. 

In the lossy case, the first sent message, like other messages, may be lost; 

the loss factor (l) and the existence of transmission delay (∆) may 

complicate the calculation of required and extra messages. 

Taking into consideration the possible values of (l) and(∆), we 

differentiate between four cases in calculating the number of required 

messages and extra messages: 

1)   l = 0 , ∆ = 0 

In this case, the first sent message suppresses all other messages i.e. 

we have one required message, no extra messages, and the total 

number of messages = 1. 

2)   l = 0,  ∆ ≠ 0 

This is the non- lossy case which we studied in chapter 2, the first 

sent message is the only required message, 
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E(tmax) = ∫
∆

−∆−−+−∆
T

N
dttPtpNPN

1))(1)((1)(. , 

 The total number of messages = 

∫
∆

− +∆−−+−∆
T

N dttPtpNPN 1))(1)((1)(. 1  

           ∫
∆

−∆−−+∆=
T

N
dttPtpNPN

1))(1)(()(.  

3)   l ≠ 0, ∆ = 0 

In this case no extra messages are produced, all the produced 

messages are required messages; this case will be treated in detail in 

the following sections. 

4)   l ≠ 0, ∆ ≠ 0 

This case is difficult to treat analytically; it is outside the scope of our 

study, and it suffices here to use the results of case 3 as an 

approximation to this case. 

3.3.2 Uncorrelated Loss 

In the lossy case many messages may contribute to suppressing different 

processes, so we may think of different numbers of messages (i) used in 

the process of suppression: hence we may use the following equation to 

determine the number of messages sent 

E(#messages) = ∑
≤≤ Ni

sentmessagesiexactlyi
1

)Pr(*  

In the uncorrelated case, which is accompanied by a higher # of generated 

messages, the last equation will be modified according to the fact that the 
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probability that (i) messages sent in the zero delay case can be calculated. 

The last equation will be of the following form 

E(#messages)∆=0  = ∑
≤≤ Ni

sentmessagesiexactlyi
1

)Pr(*  

         = ∑
≤≤ Ni

NiPi
1

),(*  

To calculate the number of required messages, we notice that this number 

is equivalent to the number of messages generated when there is no 

transmission delay, in fact if all messages are received in the same time 

there is no chance of sending extra messages and hence we may consider: 

E(#required) l=p, ∆=d  = E(#messages) l=p, ∆=0 

i.e. the number of required messages is independent of the value of ∆. 

In the uncorrelated case simulation demonstrates that higher number of 

required messages are produced (see also sec. 3.3.4). From the above, it 

follows that: 

   E(#required) l=p, ∆=d  = E(#messages) l=p, ∆=0 

    = ∑
≤≤ Ni

sentmessagesiexactlyi
1

)Pr(*  

       = ∑
≤≤ Ni

NiPi
1

),(*  

for evaluating P(i,N), a special algorithm was formulated by using the two 

recurrence formulas in section (3.2.3.1) using the MatLab software. 

3.3.3  Correlated Loss 

In the last section, we illustrated the fact that E[#messages] and 

E[#required] are higher in the case of uncorrelated loss. It follows from 
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this fact that E[#extra] are comparatively low with the uncorrelated loss; 

this may lead us to suggest that extra messages E[#extra] will be high with 

correlated loss, which is certified by the results of simulation (Schooler, p: 

49). 

To calculate E[#extra] we find E[#required] first: 

E[#required]  = ]Pr[*
1

∑
≤≤ Nk

sentmessageskk  

But k messages sent, implies the loss of k-1 messages, and the success of 

reception of the k
th

 message, hence probability of this event = (1–l)l
k-1

 

∑
≤≤

−−=∴
Nk

k
llkrequiredE

1

1*)1(][#  

          ∑
≤≤

−−=
Nk

k
lkl

1

1*)1(  

∑
≤≤

−=
Nk

k
lkS

1

1*  

12321 )1(...4321 −− +−+++++= NN
NllNlllS  

NNN
NllNlNlllSl +−+−+++++= −− 12321 )1()2(...320.  

--------------------------------------------------- 
NN

NllllllS −+++++=− −1321 ...1)1(  

 

          N
N

Nl
l

l
−

−

−
=

1

1
 

 

      N
N

Nl
l

l
SlrequiredE −

−

−
=−=

1

1
)1(][#  

 E[#extra] l = p, ∆= d  = E[# messages] l = p, ∆= d -  E [ # required] l = p, ∆= d 

= E[# messages] l = p, ∆= d -  E [ # required] l = p, ∆= 0 
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3.3.4 Comparisons of Required Messages 

Figure 3.13 shows E(#required) vs N in the correlated case for different 

values of Loss l =0.9, 0.5, 0.2 and N takes the values from 1 to 100. 
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Figure (3.13): E(# required) vs N  

It’s clear from the figure that the required messages increase with increase 

of the value of l, also for small values of l, the # of required messages 

tends to be steady for relatively small values of N, 

Figure 3.14 shows E(# required) vs N in the uncorrelated case for different 

values of loss l = 0.9, 0.5, 0.2 and N takes the values from 1 to 100. 
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Figure (3.14): E(# required) vs N  

It’s clear from the figure that the required messages increase with increase 

of the value of l, we may conclude from the figure that E(# required) 

becomes quickly almost constant for small values of l. 

Figure 3.15a compares E(# required) for the correlated and uncorrelated 

case for different values of N, where N ranges between 1 and 200, and 

l = 0.9, it is clear from the Figure 3.15a, that the values of E(# required) in 

the uncorrelated case are greater than those of the correlated case for all 

values of N. 

The same result holds in Figure 3.15b, but the ratio between the two 

values increases as l decreases. 
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Figure (3.15a): E(# required) vs N  
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Figure (3.15b): E(# required) vs N  
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3.4 Conclusions 

There are certain similarities between the results we found in this chapter 

and those of the previous chapter regarding the relationship between the 

pdfs of the study and the performance metrics of both time and extra 

messages, but we had to add new more performance metrics due to the 

effect of probability of loss (l) in receiving the messages in the network. 

3.4.1 Time Performance Metrics 

a- E(tmin e) or effective E(tmin): the expected time of the earliest messages 

sent but not completely dropped in the network – which corresponds 

to E(tmin) in non lossy case – was found similar to the nonlossy case, 

in that:  

E(tmin e) decreases as N (# of processes) increases, and that the 

uniform distribution outperforms – though slightly – the logistic pdf, 

and the logistic distribution outperforms the decaying exponential 

distribution. 

For the logistic distribution, regarding the probability of loss (l), it 

was found that E(tmin e) increases with increase of (l) in the correlated 

case which is the case studied owing to the fact that the loss in this 

case is greater than in the uncorrelated case. 

b- E(tmax): expected time selected by the last process that actually 

generates messages, which is a characteristic metric of the loss case, 

was found to increase with increase of N for the three pdfs; and also 

as (l) increases, E(tmax) increases. 
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Comparing E(tmax) for the three pdfs in the uncorrelated case where it is 

higher than that of the correlated case, it was found that the uniform 

distribution was the best pdf in this case, with the logistic coming next to 

it. 

3.4.2 Extra and Required Messages 

Owing to the possibility of loss of messages, we introduced a new metric 

in calculating messages, i.e. the required messages, which means the # of 

messages required to fully suppress a group of processes of size N, this is 

equivalent to the number of messages generated when there exists no 

transmission delay. 

For the uncorrelated case, E(# required) was found to be higher than that 

of the correlated case, and also that the E(# required) increases with the 

increase of (l), while E(# extra) is higher in the correlated than in the 

uncorrelated case. 
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Chapter Four 

 

Optimization 

of the Performance Metrics 



 
108 

4.1 Introduction 

So far, we have studied the two performance metrics i.e. time elapsed and 

extra messages separately, and found that the logistic distribution 

outperforms generally both the uniform and the exponential distributions 

with regard to time elapsed, and it was also comparable in the extra 

messages produced, to the exponential distribution, which is generally 

used in the suppression technique. 

The question arises as to the minimization of both performance metrics 

(time elapsed and extra messages). The difficulty of solving this problem 

lies in the fact that trying to minimize one of them leads to increase of the 

values of the other. 

In this chapter we will try to examine the relationship between the two 

performance metrics for the three pdf’s in both lossy and nonlossy cases, 

with the aim of improving the contribution of the pdf’s in the suppression 

technique to enhance the scalability of the communication in the networks. 

4.2 Optimization in the Nonlossy Case  

The presence of simple formulas for the time elapsed metric for the three 

pdfs makes it comparatively easy to build the relation between extra 

messages and time elapsed in the nonlossy case; generally, we substitute 

time elapsed represented by E(tmin) for the parameters (T, α, a) in the 

formulas of the extra messages represented by E(#extra). Then we 

illustrate the relationship by drawing the corresponding figures depending 

on: 

1- Selected values of N (# of processes) 3, 10, 50 and 100 for a fixed value 

of ∆. 
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2- Selected values of ∆ (delay) 0.01, 0.1, 1 and 10 for a fixed value of N. 

4.2.1 Uniform Distribution 

To show the relationship between the two performance metrics for various 

values of N and ∆ we eliminate the common parameter (T) from the two 

formulas of the E(#extra) & E(tmin), we get an equation relating the two 

performance metrics where, extra messages is given as a function of time 

elapsed. 

 

E(tmin) = 
1+N

T
, and  

E(# extra) = N

TT
N )()(

∆
−

∆
  

Let Y =  E(#extra) and  x  =  E(tmin), then we have: 

Y = 

N

NxNx

N









+

∆
−

+

∆

)1()1(

.
    (4.1) 

 

For Varying N:- 

Figures 4.1a,b,c,d represents the graph of formula (4.1) for x = 1 to 10, 

and N having values 3,10, 50 and 100. 
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Figure (4.1a): E(#extra) vs E(tmin) 
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Figure (4.1b): E(#extra) vs E(tmin) 
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Figure (4.1c): E(#extra) vs E(tmin) 
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Figure (4.1d): E(#extra) vs E(tmin) 
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From the above figures we notice the following:- 

1- For a fixed N, the relationship between the number of extra 

messages which measures the overhead and time elapsed 

which measures the responsiveness of the system is an 

inverse one, i.e. as time elapsed increases, extra messages 

decrease and vice versa. 

2- For a fixed E(tmin), increase of N leads to increase in 

E(#extra) also for a fixed value of E(#extra) increase of N 

leads to increase in E(tmin). 

3- For large values of N, As N→∞ the relation E(#extra) vs 

E(tmin) is given by:  

y ≈ 
x

∆
 

4- The largest value of extra messages differs with value of ∆: it 

does not exceed the value of ∆ in each case. 

For Varying ∆:- 

Figures 4.2a,b represent the graph of this formula (4.1) for x = 1 to 10, and 

∆ having values 0.01, 0.1, 1 and 10. 
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Figure (4.2a): E(#extra) vs E(tmin) 
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Figure (4.2b): E(#extra) vs E(tmin) 
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From the above figures we notice the following:- 

1- For a fixed ∆, the relationship between the number of extra 

messages which measures the overhead and the time elapse 

which measures the responsiveness of the system is an 

inverse one, i.e. as time elapse increases, extra messages 

decreases and vice versa. 

2- For a fixed E(tmin), increase of ∆ leads to increase in 

E(#extra) also for a fixed value of E(#extra) increase of ∆ 

leads to increase in E(tmin) 

3- E(#extra) ranges between the two values 0 (for small values 

of ∆ e.g. 0.01, 0.1) up to ≈10. (for ∆ = 10). 

4- The largest value of extra messages differs with value of ∆: it 

does not exceed the value of ∆ in each case. 

4.2.2 Exponential Distribution 

To show the relationship between the two performance metrics for various 

values of N and ∆, we eliminate the common parameter (α) from the two 

formulas of the E(#extra) and E(tmin), we get an equation relating the two 

performance metrics where, extra messages is given as a function of time 

elapse. 

E(tmin) = 
N

α
, and  

E(#extra) = )1)(1( α

∆
−

−− eN   

Let Y= E(#extra) and x = E(tmin), 
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x = Nx
N

=→ α
α

 then we have: 

Y = )1)(1( NxeN

∆
−

−−      (4.2) 

For Varying N:- 

Figures 4.3a,b,c,d represents the graph of this formula for x = 1 to 10, and 

N having values 3,10, 50 and 100. 
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Figure (4.3a): E(#extra) vs E(tmin) 
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Figure (4.3b): E(#extra) vs E(tmin) 
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Figure (4.3c): E(#extra) vs E(tmin) 
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Figure (4.3d): E(#extra) vs E(tmin) 

From the above figures we notice the following:- 

1- The relationship between the number of extra messages which 

measures the overhead and the time elapse which measures the 

responsiveness of the system is an inverse one, i.e. as time elapse 

increases, extra messages decreases and vice versa. 

2- For a fixed E(tmin), increase of N leads to increase in E(#extra) also 

for a fixed value of E(#extra) increase of N leads to increase in 

E(tmin) 

3- For determining the relationship between E(#extra) and E(tmin) for 

large values of N: 
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using the Taylor expansion for ( x
e ): 

....
!2

1
2

+++=
x

xe
x  

0,11 >−≤−⇒+≥ xxexe
xx  

Nx
e Nx

∆
≤−

∆
−

1  

we have 

E(#extra) = )1)(1( NxeN

∆
−

−− , 

for large values of N,  

E(#extra) 
xNx

N
∆

=
∆

≤ .  

For Varying ∆:- 

Figures 4.4a,b represents the graph of formula (4.2) for x = 1 to 10, and ∆ 

having values 0.01, 0.1, 1 and 10.  

From the above figures we notice the following:- 

1- For a fixed ∆, the relationship between the number of extra 

messages which measures the overhead and the time elapse which 

measures the responsiveness of the system is an inverse one, i.e. as 

time elapse increases, extra messages decreases and vice versa. 

2- For a fixed E(tmin), increase of ∆ leads to increase in E(#extra) also 

for a fixed value of E(#extra) increase of ∆ leads to increase in 

E(tmin) 
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Figure (4.4a): E(#extra) vs E(tmin) 
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Figure (4.4b): E(#extra) vs E(tmin) 
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3- E(#extra) ranges between the two values 0 (for small values of ∆ 

e.g. 0.01, 0.1) up to ≈ 9 (for ∆ = 10). 

4- The largest value of extra messages differs with value of ∆: it does 

not exceed the value of ∆ in each case. 

4.2.3 Logistic Distribution 

To show the relationship between the two performance metrics for various 

values of N and ∆, we eliminate the common parameter (a) from the two 

formulas of the E(#extra) and E(tmin), we get an equation relating the two 

performance metrics, where, extra messages is given as a function of time 

elapse. 

E(tmin)  
aN

2
≈ , (the approximation value of the logistic) and  

E(#extra) = 
( )∫

∞

∆

−

∆−−−

∆−−
∆−
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Let y = E(#extra) and x = E(tmin), a = 
Nx

2
 then we have: 

y = ∫
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∆
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∆
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1)(  (4.3) 

Varying N:- 

Figures 4.5a,b,c,d represents the graph of this formula for x=1 to 10, and n 

having values 3,10, 50 and 100. 
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Figure (4.5a): E(#extra) vs E(tmin) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.5b): E(#extra) vs E(tmin) 
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Figure (4.5c): E(#extra) vs E(tmin) 
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Figure (4.5d): E(#extra) vs E(tmin) 
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From the above figures we notice the following:- 

1- The relationship between the number of extra messages which 

measures the overhead and the time elapse which measures the 

responsiveness of the system is an inverse one, i.e. as time elapse 

increases, extra messages decreases and vice versa. 

2- For a fixed E(tmin), increase of N leads to increase in E(#extra) also 

for a fixed value of E(#extra) increase of N leads to increase in 

E(tmin) 

For Varying ∆:- 

Figures 4.6a,b represents the graph of this formula for x = 1 to 10, and ∆ 

having values 0.01, 0.1, 1 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.6a): E(#extra) vs E(tmin)  
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Figure (4.6b): E(#extra) vs E(tmin)  

From the above figures we notice the following:- 

1- For a fixed ∆, the relationship between the number of extra 

messages which measures the overhead and the time elapse which 

measures the responsiveness of the system is an inverse one, i.e. as 

time elapse increases, extra messages decreases and vice versa. 

2- For a fixed E(tmin), increase of ∆ leads to increase in E(#extra) also 

for a fixed value of E(#extra) increase of ∆ leads to increase in 

E(tmin) 

3- E(#extra) ranges between the two values 0 (for small values of ∆ 

e.g. 0.01, 0.1) up to ≈ 10 (for ∆ = 10). 
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4- The largest value of extra messages differs with value of ∆: it does 

not exceed the value of ∆ in each case. 

4.2.4 Comparison of the Uniform, Exponential, and Logistic pdfs 

Figures 4.7a, b give graphical representations of the relationship between 

E(#extra) and E(tmin) for the three pdfs, the first for N = 10 and the second 

for N = 50. 

 
Figure (4.7a): Comparison: E(#extra) vs E(tmin) 

 

Both figures show that the logistic distribution function is the least 

sensitive one in the relationship between E(#extra) and E(tmin), and this is 

clear from the fact that its graph lies below the graph of the other two 

distribution functions in both Figures 4.7a,b. 

 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
(#

 e
x
tr

a
)

E(tmin)

E(# extra) vs E(tmin) for the Distributions using N=10, Delta=1

Uniform

Exponential

Logistic



 
126 

 
Figure (4.7b): Comparison: E(#extra) vs E(tmin) 

With increase of E(tmin) we notice that the uniform and exponential 

distributions become almost identical while the logistic becomes more 

distinct and still below both of them. 

For large values of N and small values of E(tmin) the graphs corresponding 

to the three pdfs are very close to each other, but for large values of N and 

large values of E(tmin) the graph of the logistic becomes clearly distinct 

from the other two graphs and still lying below them. 
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Figure (4.8a): Comparison: E(#extra) vs E(tmin) 
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Figure (4.8b): Comparison: E(#extra) vs E(tmin) 
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Figure (4.8c): Comparison: E(#extra) vs E(tmin) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.8d): Comparison: E(#extra) vs E(tmin) 
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From Figures 4.8a,b,c,d we notice that: 

* For large values of N, for the three pdfs, we can say that extra messages 

become inversely proportional to N. 

* For large values of N, for the three pdfs, we can say that extra messages 

become directly proportional to the value of ∆. 

* For large values of N, for the three pdfs, we can say that extra messages 

become inversely proportional to E(tmin). 

Concluding, the logistic distribution is the least sensitive distribution in 

the relationship between E(#extra) and E(tmin), i.e. for the same value of 

E(tmin), the logistic distribution function produces less extra messages than 

the other two distributions, which means that it is a better candidate for 

solving the problem posed above: optimizing the performance metrics. 

4.3 Optimization in the Lossy case  

Our study of the lossy case in chapter three was limited to the state where 

the time delay (∆ = 0); this choice of ∆ excludes by definition the 

generation of extra messages and limits the messages generated to 

required messages, the number of which is independent of the pdf chosen; 

hence we will be left with measures of time elapsed in our attempt for 

optimization of the performance metrics. This was actually studied in 

chapter three, where we found that: 

1. E(tmin e) decreases as N (# of processes) increases, and that the uniform 

distribution outperforms – though slightly – the logistic pdf, and the 

logistic distribution outperforms the decaying exponential distribution. 
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2. Comparing E(tmax) for the three pdfs in the uncorrelated case where it is 

higher than that of the correlated case, it was found that the uniform 

distribution was the best pdf in this case, with the logistic coming next 

to it, while the decaying exponential ranked third in this metric. 

These results, though limited in scope to the performance metric of time, 

taken together with the results of the nonlossy case, encourage the 

application of the logistic distribution function in communication 

networks, and making further studies on the subject. 



 
131 

 

 

 

Chapter Five 

 

Conclusion and Suggestions 

for  

Future Work 

 



 
132 

5.1 Conclusion 

This thesis addresses the problem of scalability in multicast routing 

depending on the suppression technique. The suppression technique 

employs probabilistic distribution functions in its execution, of which the 

most commonly used are the uniform and the exponential distributions. 

The need for the use of other pdfs is apparent, owing to the increase of 

multicast routing and increasing sizes of the participant processes in real-

time applications like video conferencing, whiteboards, games, etc. Since 

it was found that while the uniform distribution is more efficient regarding 

one performance metric, namely time elapsed which measures response 

time, it is less efficient than the exponential distribution for the other 

performance metric, namely extra messages which measures messaging 

overhead, this is generally true in both types of networks: the lossy, and 

the nonlossy ones. 

A new pdf was proposed to enhance the suppression technique, which is a 

modified form of the logistic distribution. This distribution was tested 

regarding the performance metrics of the suppression technique in the 

lossy and the nonlossy networks and it proved to excel the two other pdfs 

in the time elapsed in the nonlossy case; In the lossy case it comes next to 

the uniform distribution excelling the exponential in the time metric 

E(tmax) which measures the expected completion time of the algorithm, 

while in the time metric  E(tmin e) which measures the expected minimum 

time for suppression of the algorithm, the performance of the three 

distributions where almost alike with the uniform distribution coming first 

followed by the logistic distribution, the curves of the two distributions 

become closer, with increase of N or ∆. 
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As regards the other performance metric in the nonlossy case, i.e. extra 

messages, the proposed distribution outperformed the uniform pdf while it 

competes with the exponential excelling it for values of ∆ less than 0.9 for 

small values of N, and for values of ∆ less than 0.4 for large values of N, 

In the lossy case (∆ = 0) required messages in the uncorrelated case were 

proved to be greater than in the correlated case for all values of N and ∆. 

In studying the optimization of both metrics, the logistic distribution is the 

least sensitive distribution in the relationship between E(#extra) and 

E(tmin), i.e. for the same value of E(tmin), the logistic distribution produces 

less extra messages than the other two distributions, which means that it is 

a better candidate for solving the problem posed above: optimizing the 

performance metrics. 

In trying to implement analytical methods of study, we deduced some 

approximate formulas, proved given formulas using calculus methods and 

rules, and in other cases  Matlab software was used to compare the values 

of the infinite integrals using the Trapezoidal rule to calculate the values 

of the performance metrics for the three distributions: uniform, 

exponential and logistic. 

While trying to prove the formulas used in related work to this study 

(Schooler, 2001; Schooler, et al, 2001), 

N
N

Nl
l

ll
requiredE −

−

−
=

1

)1(
][#  

 the formula which we arrived at for calculating the average value of 

required messages in the correlated case was found to be  

N
N

Nl
l

l
requiredE −

−

−
=

1

1
][#  
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in fact, the original formula leads to much smaller values compared with 

the proved formula. 

5.2 Suggestions for Future Work 

The work of this thesis can be extended in the following areas: 

• Simulation may be used to check the results of the study practically 

for various values of number of processes and different values of 

transmission delay. 

• Simulation may also be used to compare the performance of the 

three pdfs in lossy networks in the case where (l ≠ 0) and  (∆ ≠ 0). 

• The proposed distribution should be implemented in suppression 

algorithms to be used in real networks. 

• Studying the performance metrics for the 3 pdfs in the case of delay 

variation. 

• We would also like to compare and evaluate other scalability 

techniques with the one used in this thesis. 
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Appendix (I) 

The Logistic Differential Equation 
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The solution of separating the variables, we have:   
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by integrating both sides and using the integration formula 
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let the constant part in the integration be Ce
Kc =−  and substitute it in the 

formula 
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The solution of this logistic differential equation is the logistic distribution  
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Appendix (II) 

The Mean of the Logistic Distribution (used in the study) 

 

The mean of a continuous random variable x is calculated from the 

formula 
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Appendix (III) 

The Variance of the Logistic Distribution 

  

The variance of a continuous random variable x is calculated from the 

formula: 

[ ] [ ] 2222 )( µµσ −=−= xExE , where µ = mean. 

For finding the variance of the logistic distribution; we use the second 

form: 
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The value of the integral as computed by the trapezoidal rule =3.2787 

hence 

2

2

2 )
)2ln(2

()2787.3(
1

aa
−=σ  

in case a =1 then  3597.12 =σ  



���	

� ا�	
  ��� ا� ا

  

�����
  ��م�� ا
���ح ا

�ر
���اآ��� ا�
  س�ت ا

  

!"#
�����)& '& %#��$ ا
  دراس� اس)-�ام ا
)�زی( ا

�د�(

  م� أ�0 %�س�( ا
"/ ا

  

  

  

  إ2�اد

�
� 0��  ه�دي 2�& خ

  

  

  إ8	اف

� ن��: أس��. د
  م>

  

�م! ه?< ا=@�Aی�	
�"�ت در�� ا

���)�	 '& اB(

 Dً�
  �ت ا

>�س"��	و�� اس)#

��B��' ،G���� '& ��م�� ا
���ح ا
����� '& ن���
�راس�ت ا
��� ا#�.  

2007



  ب 
  

!"#
�����)& '& %#��$ ا
  دراس� اس)-�ام ا
)�زی( ا

�د�(

  م� أ�0 %�س�( ا
"/ ا

  إ2�اد

�
� 0��  ه�دي 2�& خ
  

  إ8	اف

� ن��: أس��. د
  م>
  

K-�

  ا

����� ��	
 ��
��
 �����  �� ����	
 ���	
 �� �� ��� �������
 �
���� � �!�"	
 �

����#$	 ���"�	
 ����	
 %
�� &��	 '!��	
 ��$��(� )���	�� *���� ��������� &��
� &*$�	
 .

 )*��,
 ������� ���$-�� ���
�� .$� ��������	
 )��( ��/ '!��	
 ��$��0� �
0��


�� ���� �/��� 1�
� ����� �$

���	
.  

!�� ������	
  $-	
 �� ���$-�� �2��"	
 ����#$	 )����	
 )��0	
� ����
��
 .$� �
���

 ����� ��$"	
 34/ ��� �� ��� �(� ��
��
 �5�#�	 ����� ��$" �
���!�� " 7����

��!��
  

���	
 8�� "“Multicast Routing "��88!
 :	4�� ���	
 ��; <���	
 ��88!��
 ��� 

"Un Acknowledged Periodic Messeging". 

 ��
*�	
 .$� �$

���	
 �������	
 )��( <� �'!��	
 ��$��( �$�#�	 ��$"	
 ��4�� -�����

���	
 �� ����	
� ����� �'!��	
 ��$��( �$�#� .$�  $=�$	 ����� ������� �����!
 )���> 

 ���	
 :����“Suppression”. 



  ت 

  

  


 :���� �� ��	���"�
 ����*��	
 ���
��(
 �!
��	
 34/ &���!� ��$��( ��!"� @��� ���	

!��
 7����	 '!��	
��
��
 ����# �� �����	
 �� .A� �� ��
���!
 �2�,
 ����*��	
 ���

 &����	
 '�*��	
 ���	
 :����(Uniform) �!,
 '�*��	
� (Exponential) ���	�� B�C��� 

 ���*	
 %
�,
 D��0� �� ��E
 .$�“Time Elapse "� ������2 B�C�� ��" �� %
�� D��0� �

)�F
*	
 �F�888!�	
  “Extra Messages”.  

 ���� 5�# �	�!�	
 34/ �$���	 ��!��$	
 �	���"�
 '�*��$"Logistic” &
���!5	 1#��� 

�C�G �����4�	
 ����*��	
 '� ��!��$	
 '�*��	
 ����0�� ���( ���� ��� ���	
 :���� �� . �(�

 H����� &���!
MATLABD���0�  �!" ��  ����0� �� )�����	
 ���#,
 &!�� %
�,
 

HF���	
.  

 %
�,
 D���0� �� ����E
 ����*��	
 .$� ��!��$	
 '�*��	
 B�C� .$� �!
��	
 ��/��

�>�� )�F
*	
 �F�!�	
 %
�� D���0� �� ���	 7�!���� .$�� &�� 7��� ���*	
.  



 


