An-Najah National University Faculty of Graduate Studies

Energy Consumption and Economic Comparison between VRF System and Air to Water Chiller for Air Conditioning Systems Case study: An-Najah University Child Institute

By Ameer Mohammed Taher Khaleel

Supervisor Dr. Imad Braik Co-supervisor Dr. Abdelrahim Abusafa

This Thesis is Submitted in Partial Fulfillment of the Requirement for the Degree of Master in Clean Energy and Conservation Strategy Engineering, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine.

Energy Consumption and Economic Comparison between VRF System and Air to Water Chiller for Air Conditioning Systems Case study: An-Najah University Child Institute

By Ameer Mohammed Taher Khaleel

This Thesis was Defined Successfully on 6/2/2018, and Approved by:

Defense Committee Members	<u>Signature</u>
1. Dr. Imad Braik / Supervisor	
2. Dr. Abdelraheem abu safa / Co-Supervisor	••••••
3. Dr. Basem Al Sayed / External Examiner	
4. Dr. Mohammed Al sayed / Internal Examiner	•••••

To My wife (Sarah) To My daughter Ameera To the spirit of my grandfather teacher Taher Blessings and Peace be upon him To My big family (Khaleel) To My teachers To All friends and colleagues To All of them, I dedicate this work

iii

Dedication

Acknowledgments

First, I would like to thank Allah for this blessing opportunity of contributing to the research community through this research thesis.

I would like to thank Dr. Imad Braik, Dr. Abdelrahim Abu safa for their unlimited support, encouragement and guidance during the thesis.

Thanks also to the reviewers of this master thesis.

Finally, I would like to thank my parents for being patient during this time of work on my thesis, also a lot of thanks for my lovely wife Sarah for her giant support.

أنا الموقع أدناه، مقدم الرسالة التي تحمل العنوان:

Energy Consumption and Economic Comparison between VRF System and Air to Water Chiller for Air Conditioning Systems Case study: An-Najah University Child Institute

مقارنة بين نظام VRF ونظام VRF من حيث

استهلاك الطاقة ومن الناحية الاقتصادية في أنظمة تكييف الهواء

دراسة حالة: مبنى طفولة جامعة النجاح

أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن هذه الرسالة كاملة، أو أي جزء منها لم يقدم من قبل لنيل أي درجة علمية أو لقب علمي أو بحث لدى أي مؤسسة تعليمية أو بحثية أخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's name:	اسم الطالب:
Signature:	التوقيع:
Date:	التاريخ:

List of Abbreviations

ANCI	: An-Najah Child Institute
AC	: Air Cooled
ASHRAE	: American Society of Heating, Refrigerating, and Air Conditioning Engineers
CAV	: Constant Air Volume
VAV	: Variable Air Volume
DX	: Direct expansion
ECM	: Electronically Commutated Motor
FCU	: Fan Coil Unit
HVAC	: Heating Ventilation and Air conditioning
GHG	: Green House Gases
kWh	: kilo Watt Hour
NIS	: New Israeli Shekel
PCBS	: Palestine Central Bureau of Statistic
PEA	: Palestinian Energy Authority
TR	: Ton of Refrigerant
VRF	: Variable Refrigerant Flow
ESEER	: European Seasonal Energy Efficiency Ratio
DD	: Degree Days method

Table	of	contents

No.	Content	Page
	Didication	iii
	Acknowledgments	iv
	Declaration	V
	List of Abbeviations	vi
	Table of contents	vii
	List of Tables	ix
	List of Figures	xi
	List of Equations	xiii
	List of Appendices	xiv
	Abstract	XV
	Chapter One: Introduction	1
1.1	Energy in West Bank	2
	Problem Statement	4
1.2	Heating Ventelation and Air Conditioning Exsisting	5
1.2	systems	3
1.3	Case Study: An-Najah Child Institute (ANCI)	11
1.4	Cooling load	13
1.5	Objectives	15
	Sammary	16
	Chapter Two: Decentralized and Centralized Air	18
	Conditioning Systems	10
2.1	Decentralized Air Conditioning System Design	19
2.1.1	Window Air Conditioner	20
2.1.2	Split Air Constioning system	20
2.1.3	Variable Refrigerant Flow (VRF)	22
2.1.4	Packaged Air Conditioners	23
2.2	Centralized Air conditioning System Design	24
2.3	Comparison between Centralized and Decentralized Air Cnditioning Systems	28
2.3.1	Applications, Usage Patterns, and Zoning Comparison	28
2.3.2	Control Views	30
2.3.3	Structural Design and Costs	33
2.4	Energy Saving Opportunities in Centralized Air Conditioning Systems	35
2.4.1	Variable Air Volume Systems and Constant Air Volume Systems	37
2.4.2	Scheduling	40
2.4.3	Regular Motors, High efficient Motors, and Variable Frequency Drives	42

No.	Content	Page
2.5	Energy Saving Opportunities in Decentralized Air Conditioning Systems	46
2.5.1	Component Shading	47
2.5.2	Evaporative Cooling	49
2.5.3	Cleaning Air Conditiong Systems Filters	50
	Chapter Three: Variable Refrigerant Flow (VRF) Design for ANCI	53
3.1	Selection and Design of Variable Refrigerant Flow (VRF) System Components	54
3.2	VRF System Electrical Consumption	65
	Chapter Four: Air to Water chiller System (Air Cooled) design for ANCI	68
4.1	Air to Water chiller System Components Slection and Desgin	69
4.2	Air to Water chiller System Electrical Consumption	86
	Chapter Five: Economic Comparison between VRF and Air to Water Chiller Systems	94
5.1	VRF Economical Analysis	95
5.2	Chiller Air to Water Economical Analysis	100
5.3	Economical Comparison between VRF and Chiller Air to Water Systems using Degree Days method (DD _{cooling})	110
	Chapter Six: Conclusion and Recommendations	113
6.1	Conclusion	114
6.2	Recommendations	118
	References	120
	Appendices	123
	الملخص	ب

List of Tables	List	of	Tables
----------------	------	----	--------

No.	Table	Page
Table (1.1)	Target energy saving	3
Table (1.2)	Ground floor details at ANCI building	12
Table (1.3)	First floor details at ANCI building	12
Table (1.4)	Second floor details at ANCI building	13
Table (1.5)	Third floor details at ANCI building	13
Table (2.1)	Motors specification and their energy efficiency potential	45
Table (3.1)	Ground and first floors indoor unit specifications.	55
Table (3.2)	Second and third floors indoor unit specifications	56
Table (3.3)	Ground and first floors piping system quantities	56
Table (3.4)	Second and third floors piping system quantities	57
Table (3.5)	GF-1 st floors indoor unit's catalogue	65
Table (3.6)	2 nd and 3 rd floors indoor units' catalogue	67
Table (4.1)	Air cooled outdoor unit specification	70
Table (4.2)	Ground floor indoor units detail	71
Table (4.3)	First floor indoor units detail.	72
Table (4.4)	Second floor indoor units detail	72
Table (4.5)	Third floor indoor units detail	73
Table (4.6)	Secondary pump total head calculations	78
Table (4.7)	Ground and First floors indoor units' water flow rate	80
Table (4.8)	Second and Third floors indoor units water flow rate	80
Table (4.9)	Primary pump total head calculations	82
Table (4.10)	Ground floor indoor units with electrical specification.	89
Table (4.11)	First floor indoor units with electrical specification	90
Table (4.12)	Second floor indoor units with electrical specification	91
Table (4.13)	Third floor indoor units with electrical specification	91
Table (5.1)	Pipes network dimensions and capital costs	98
Table (5.2)	VRF system parts capital and running costs	99
Table (5.3)	Ground floor indoor units with electrical specification and unit prices	102
Table (5.4)	First floor indoor units with electrical specification and unit prices	102

x	~ ~
	x
11	11

No.	Table	Page
Table (5 5)	Second floor indoor units with electrical	102
1 able (5.5)	specification and unit prices.	105
Table (5 6)	Third floor indoor units with electrical	102
1 able (5.0)	specification and unit prices.	105
Table (57)	Duct work dimension and costs all over ANCI	100
1 able (5.7)	building	108
Table (5.8)	Air cooled system parts capital and running costs	109

List of Figures

No.	Figure	Page
Figure (1.1)	Potential national energy savings by technology	3
Figure (1.1)	category	3
Figure (1.2)	Central air conditioning circle	8
Figure (1.3)	VRF air conditioning schematic	10
Figure (1.4)	HAP 4.6 program parameters	15
Figure (2.1)	Window air conditioner type assembly	20
Figure (2.2)	Split air conditioner arrangement	21
Figure (2.3)	VRF air conditioning schematic	23
Figure (2.4)	Packaged air conditioners installation	24
Figure (2.5)	Centralized air conditioning system schematic	26
	Individualized control in decentralized air	22
Figure (2.6)	conditioning (split type).	32
Figure (2.7)	Individualized control in centralized air	20
Figure (2.7)	condition systems (VAV type).	32
$\mathbf{F}_{\mathbf{G}}$	Schematic plan of CAV distribution within a	20
Figure (2.8)	multiple zones.	30
$\mathbf{Figure}(2,0)$	Schematic plan of VAV distribution within a	28
Figure (2.9)	multiple zones.	38
Figure (2.10)	Hourly people schedule using HAP 4.6 program	41
Figuro (? 11)	People schedule profile description using HAP	<i>/</i> 1
Figure (2.11)	4.6 program	41
	Three different motor classes' energy analyzing	
Figure (2.12)	with 8000 and 2000 operating hours per year	44
	graphs	
Figure (2.13)	Outside box split unit	47
Figure (2.14)	Shading structure in outdoor split unit	48
Figure (2.15)	Evaporative cooling schematic	49
Figure (2.16)	Split unit filter.	50
Figure (? 17)	Two air conditioning filters one is clean and	52
Figure (2.17)	other is dirty	52
Figure (3.1)	Ground floor indoor unit's distribution	59
Figure (3.2)	First floor indoor unit's distribution	60
Figure (3.3)	Second floor indoor unit's distribution.	63
Figure (3.4)	Third floor indoor unit's distribution.	64
Figure (4-1)	Ground floor Air cooled indoor unit's	74
Figure (4.1)	distribution.	/4
Figure (4.2)	First floor Air cooled indoor unit's distribution	75
Figure (1 3)	Second floor Air cooled indoor units	76
1 iguit (4.3)	distribution	70

No.	Figure	Page
Figure (4.4)	Third floor Air cooled indoor units distribution	77
Figure (4.5)	Primary and secondary pumps installation	84
Figure (4.6)	Primary pump specification	85
Figure (4.7)	Secondary pump specification.	86
Figure (4.8)	Trane Electrical details for ducted indoor units HFCA.	88
Figure (4.9)	Trane Electrical details for Decorative indoor units HFCE.	88
Figure (5.1)	Air cooled system quotation for indoor and outdoor units	100
Figure (5.2)	Primary and secondary pumps official quotation	106
Figure (5.3)	VRF air conditioning system cash flow	111
Figure (5.4)	Air Cooled air conditioning system cash flow.	111
Figure (6.1)	Energy consumption comparison between VRF and Air cooled air conditioning systems.	115
Figure (6.2)	VRF and Air Cooled system components fixed costs.	116
Figure (6.3)	VRF and Air cooled system components running costs.	117

No.	Equation	Page
Eq (3.1)	Annual energy consumption	66
Eq (3.2)	Annual overall energy consumption (Cooling)	67
Eq (4.1)	Total Pump head	79
Eq (5.1)	Total capital cost of pipes network	98
Eq (5.2)	Energy consumption E (By degree days method)	99
Eq (5.3)	Duct area	108
Eq (5.4)	Total capital cost of isolated ducts	108
Eq (5.5)	Selvage value	109
Eq (5.6)	Maintenance cost	110
Eq (5.7)	Present Worth (PW)	110

xiii **List of Equations**

List of Appendices

No.	Appendix	Page
Appendix (1)	VRF outdoor unit catalogues	124
Appendix (2)	VRF indoor units catalogues	132
Appendix (3)	VRF piping system	137
Appendix (4)	VRF system official offers	138
Appendix (5)	Air cooled outdoor unit's catalogues	139
Appendix (6)	Air cooled indoor unit's catalogues (Concealed type)	143
Appendix (7)	Air cooled indoor unit's catalogues (Ducted type)	146
Appendix (8)	Air Cooled Primary Pump Catalogues	149
Appendix (9)	Air Cooled Secondary Pump Catalogues	152
Appendix (10)	Air Cooled Official Offers Catalogues	155
Appendix (11)	Cooling load final report using HAP 4.6	157
Appendix (12)	Compound interest table	164
Appendix (13)	Hourly data report for Nablus city	165

Energy Consumption and Economic Comparison between VRF System and Air to Water Chiller for Air Conditioning Systems Case study: An-Najah University Child Institute By Ameer Mohammed Taher Khaleel Supervisor Dr. Imad Braik Co-supervisor Dr. Abdelrahim Abusafa

Abstract

Air conditioning systems have the major amount of energy consumption in West Bank, with a poor and expansive amount of energy available in West Bank, energy conservation is needed.

In this research; two air conditioning systems: Variable Refrigerant Flow system (VRF) and Air to Water Chiller system were discussed in order to select the system the most feasible option. An-Najah Child Institute (ANCI) was selected to be the case study. Initially, the cooling load for ANCI was calculated using to be equal to 60 Tons.

Energy consumption and economic analysis were performed for the two system based on accurate design. The design of air conditioning system includes selecting the system parts; indoor units, outdoor units, pipes, and pumps based on the cooling load and configuration of the building. Actual pricing based on parts quotations from manufacturing and procuring companies were made.

The economic analysis was based on calculating present worth value for both air conditioning systems. The present worth value for VRF system was found to be -158,204 \$, while it was equal to -182,654.0 \$. For Chiller system. The less negative value was for VRF system, in other words, this system is more feasible and can save more money energy.

Chapter One Introduction

Chapter One Introduction

1.1 Energy in West Bank

Energy is the power of life for many sector such as residential, commercial and industrial sectors. In the last few years it was cleared that the electricity needs increasing more and more since the population increases and the increase of electrical equipment dependency.

The Palestinian (West Bank) region energy consumption according to Palestine central bureau of statistic (PCBS 2005) was estimated to be 890 GWh/year, and this is relatively low consumption and it is considered to be the lowest consumption in the region. [1]

Energy sector in west bank mostly depends on imported power supply, mainly from Israel of about 88% and 3% from Jordan and Egypt. As a result; fuel and energy costs considered to be one of the highest in the region. [1]

HVAC systems have the major amount of energy consumption in West Bank, according to (PCBS 2004) ,most of West Bank households used electricity as a main source for air conditioning. In the summer of 2004," 80.7% of families use electricity for air conditioning". Expenditure in energy was estimated to be one third of the consumer monthly budget in winter and two third of consumer monthly budget in summer. [1] Palestinian energy authority (PEA) put many strategies in order to sustain these disturbing numbers of energy consumptions. In March 2012 the cabinet of the Palestinian Authority approved a strategy specific to energy efficiency called the national energy efficiency action plan (NEEAP). This plan aims at reduce the energy consumption in important sectors in Palestine thus reducing the GHG greenhouse gases emissions. The main goal and target for this plan is to reach an amount of 384GWh cumulative energy electrical savings between 2012 and 2020, thus ramping up this amount of saving over the 9 year period in many west bank energy sectors such as industrial, buildings, and water pumping. Table (1.1) describes the PEA energy saving plan phases. [1]

Sector	phase I 2012-2014	phase II 2015-2017	phase III 2015-2017
Industrial	5	6	8
Buildings	38	130	195
Water pumping	0	1	1
Total	43	137	204

 Table (1.1): Target energy saving (GWh). [1]
 Image: Comparison of the state of the state

PEA energy saving plan targeted all sectors but the potential saving not the same of all. Households sector have the best savings potential, on the other hand people can't be convinced easily to use energy retrofits and make some changes in their homes. Industrial sector may have lower potential in energy saving, but unlike the households sector they can respond to polices, and retrofits to save energy. Due to the nature of industrial and services sector and the high energy consumption compared to residential sector any small amount of energy saving will be more effective end can save much more energy than residential sector. HVAC sector is the most cost effective technology category relating to many studies that PEA made, and relating to figure (1.1) shows the national energy savings potential by technology category.

Figure (1.1): National energy savings potential by technology category [1].

National energy savings potential by technology, displayed on a percent basis in year 2015, all these numbers was forecasted if the recommended actions and energy audits in each technology category were implemented. It's clear that the most cost-effective major category is HVAC systems around of 43%, for example at a marginal cost of 19% of the price of the energy consumed, 29GWh equivalent energy could be saved per year in the audited facilities primarily by targeting the HVAC, lighting, and heat recovery categories of energy efficiency actions.

Problem statement

As a conclusion, HVAC systems have the largest amount of energy consumption thus the largest amount of energy saving possibilities at the same time when implementing energy saving audits or opportunities within the system, structure, and surroundings. In the next chapters more details will be discussed about HVAC different systems (Centralized and Decentralizes) every system components and contents, every system energy consumption and installation. Also the energy saving opportunities within each centralized and decentralized air conditioning systems that could save the maximum amount of energy including the parts efficiency improvement or parts replacing will be discussed. In addition to many retrofits studies that may be save energy when conducted to each system.

The next chapters also include case study that show the differences between centralized and decentralized air conditioning systems in a selected building (An-Najah child institute -ANCI) ,this study compares between two air conditioning systems; Variable refrigerant flow system and Air to water chiller system. By using HVAC software design program cooling load for the building was calculated. At the end of the study, comparison was made between the two different air conditioning systems air cooled system and variable refrigerant flow system in order to know which one is better and show more potential in energy saving.

1.2 Heating Ventilation and Air Conditioning Existing Systems at West Bank

Air conditioning systems have many types, each type of them has its own properties, specifications, equipment, parts, way of connection, cost ...etc.

5

In general air conditioning systems can be classified into two categories:

1- Centralized air conditioning systems

2- Decentralized air conditioning systems.

The first category which is central air conditioning systems; multiple spaces can be served and fed from one base location that usually use chilled water and distribute air through a wide sheet metal work (ductwork) inside spaces to be conditioned.

In the second category Decentralized air conditioning systems the service almost for small spaces or multiple small spaces from bases locating within or directly near to the space. Air is cooled directly exchanging heat from the refrigerant. Direct expansion (DX) type most common used in this category.

Selection of most suitable air conditioning system depends on many parameters such as thermal comfort, building architecture, spaces included, performance and energy use, life cycle and cost. Each of these parameters has its own influence on the selection such as the thermal comfort that gives an indication about the internal environment of the building; whether the people are comfortable with the temperature and humidity of the indoor air, a number of variables interact with this comfort such as the activity level (what are the people doing inside ?). The American Society of Heating and Air-Conditioning Engineers (ASHRAE) standard 55-1981 gives the full description of this thermal comfort. [2] Building Architecture including the purpose of the building, area classification, occupancy, type of building structure, materials and thickness of walls and roofs, all these can influence the selection of air conditioning category.

Spaces included or the available spaces have a big deal in selecting air conditioning category in the way that considerable space is needed for mechanical rooms to house or keep air conditioning equipment.

The most important parameter that influencing our choice is the cost and energy use; because each component from our choice must use as low energy as possible and still meet the performance requirements.

Centralized air conditioning contain a closed circle of water begins as a chilled water generated from a chiller at one base location and distributed to fan coil units (FCU) or air handling units (AHU) located within building spaces, then such a fan can forces air to be heat exchange with this chilled water to be cooled and transferred through duct work.

Figure (1.2) shows the main component of central air conditioning, as we can see the parts are condenser, evaporator, compressor, cooling tower, pumps, and FCU.

Figure (1.2): Central air conditioning circle. [2]

Chilled water leaving the evaporator section toward the inlet of the FCU to exchange heat with the air supplied by the fan.

Return water leaves the FCU again to the chiller evaporator to close the circuit, the system energized by pump to make sure that the system pressurized. Cooled air leaves the FCU to the indoor space through duct work ending with a supply diffuser and return grill pull out the air inside by return air fan again to the FCU to be cooled again there alone or with mixed with fresh air and then cooled with the fresh air.

The condenser inside the chiller connected to a cooling tower, the hot water leaves the condenser and forced by a pump toward the cooling tower to reject heat there and then back again to the condenser through piping system.

Central system category divided into three main types:

1- Central systems with Constant Air Volume (CAV) air handling units

8

2- Central systems with Variable Air Volume (VAV) air handling units

3- Central systems with fan coil units (Water systems)

The difference between these types is that CAV system uses all air with constant volume, the VAV uses air also but with variable air volume which supplies different zones, and finally the FCU fan coil unit system uses all water in piping system with ductless system, the water reaches the FCU to make heat exchanging there with air.

Decentralized air conditioning system do not uses chilled water as an intermediate cooling medium. Direct expansion (DX) one of many generic names of Decentralized air conditioning systems that directly heat exchanging heat with refrigerant type inside cooling coil to deliver cooling into single room or spaces rather than building. Individual systems, floor by floor systems, unitary systems also commonly names of this category.

Decentralized systems contains many parts that all assembled into package, these parts are cooling coil, refrigerant coils, controllers, fans, filters, compressor, and condenser. Heat rejection and cooling happen inside this package.

There are plenty types of Decentralized system such as VRF systems, packaged air conditioners, split air conditioning systems, and window air conditioner Somehow they have the same principle of work. We will focus in VRF air conditioning systems principles and specifications in this research.

VRF air conditioning system (Variable Refrigerant Flow); unique system that can serve multiple spaces from an individual basis, it can automatically change refrigerant flow depending on the heating/cooling load of the building.

Figure (1.3) shows the main principle and schematic for VRF system. First in the outdoor unit a compressor increases the refrigerant pressure, then the condenser make the refrigerant reject heat out to reach the expansion valve with high pressure liquid, after that the refrigerant leaves the expansion valve with low pressure and temperature. VRF system come in two system formats, the simple one with two pipes that makes all the zones either in cooling or in heating mode. The other type is the heat recovery (HR) systems that have three pipes design which gives this system the ability to heat some zones and cool others at the same time. All this can be done with microprocessor based electronics. [3]

Figure (1.3): VRF air conditioning schematic. [3]

1.3 Case study: An-Najah Child Institute (ANCI)

An-Najah child institute is special place for modern teaching method dealing with all the kids talented groups and people with special needs and deals based on international scientific standards installed via the clinics that provides diagnosis and assessment and rehabilitation services. [4]

An-Najah child institute located in Nablus city west-south side beside An-Najah national university with latitude 32.2° and longitude 35.2° . ANCI consists of four floors ground, first, second, and third floor with total area of (1600 m²) and 3.5m high for each.

(First, second, third, and fourth floor drawings are given in Appendix 12).

Providing comfort conditions at ANCI building needs suitable air conditioning system, so Cooling and heating loads should be considered in all floors to set an accurate air conditioning system.

All necessary data was collected and tabulated in all building floors.

The ground floor contains 4 clinics rooms, one multisensory room, and one intervention room with different areas, the details are listed in table (1.2).

	Ground Floor		
Space	Area m ²	Windows	Doors
Clinic Room1	14.6	2	1
Clinic Room2	15	3	1
Clinic Room3	12.25	3	1
Clinic Room4	12.25	1	1
Multisensory Room	40.4	0	1
Intervention Room	45.3	4	1
Waiting Room	28	4	1
Lobby	4.6	0	0

Table (1.2): Ground floor details at ANCI building

First floor contains 3 class rooms, 1 Staff room, 1 Meeting room, 1 administration room, 1 secretary and waiting area, and 1 Pantry. Every space have its own area and details are given in Table (1.3) show below.

First Floor Area m² Windows Space Doors Class1 23 4 1 Class2 26.1 1 6 3 Class3 24.6 1 Staff Room 35.4 6 1 Meeting Room 21.6 3 1 Administration 17.4 3 1 Secretary and 17.5 2 2 waiting area Pantry 4.6 1 1 Lobby 63 0 0

Table (1.3): First floor details at ANCI building

Second floor spaces are listed in Table (1.4), Music room, LD room, Art room, Library, Resource and service, and Pantry. All these spaces contain persons inside.

	Second Floor		
Space	Area m ²	Windows	Doors
Music Room	23	4	1
LD Room	31.9	6	1
Art Room	31.7	3	1
Library	20.6	4	1
Resource and Service	19.4	1	1
Lobby	63	0	0
Pantry	4.6	1	1

Table (1.4): Second floor details at ANCI building

Finally third floor that contains meeting room, 4 admin offices, research room, and pantry with different areas and details as given in table (1.5).

	Third Floor		
Space	Area m ²	Windows	Doors
Meeting Room	28.4	4	1
Admin Office1	19.6	1	1
Admin Office2	17.5	1	1
Admin Office3	17.5	1	1
Admin Office4	19.4	1	1
Research Room	16.3	4	1
Lobby	63	0	0
Pantry	4.6	1	1

Table (1.5): Third floor details at ANCI building

1.4 Cooling load

Cooling load was calculated at ANCI building using HAP 4.6 air conditioning design program so that any air conditioning system can be evaluated and designed including indoor units, outdoor units, piping systems, and pumps. Cooling load variables considered at ANCI building are spaces area, space orientation, doors detail, windows detail, partitions detail, lighting, people occupancy, and electrical devices.

14

ANCI building was divided into many spaces, every space contain one zone or more. Every zone was covered by HAP program as figure (1.4) shows.

Cooling load depends on many variables, so that every zone can be unique depends on covered area, number of people inside zone, number and areas of windows and doors, orientation of the zone and many other variables.

HAP4.6 assumptions during cooling load calculation:

-Building weight 341.8 kg/m² [Med].

-Latitude = 32.2° , Longitude = 35.2° .

-Summer design DB Temp = 40 c° .

-Daylight saving = [Yes].

-Avg ceiling high = 3.5 m

-People/Activity level = office work

-Overhead lighting = Free hanging.

-Door U-Value = 1.7 W/m^2 .K

-Wall Assembly: 13mm gypsum plaster + 102mm common brick + 13 mm gypsum plaster + Air space

-Window Assembly/ Glass details: 3mm clear + 3mm clear + Air space.

	ビ 🚖 🔳 🖻 🗙 💭	Ф 🌃 🔩		2 M F. ?	
iew Sp.	ace	Floor Area			
Weather	<new default="" space=""></new>				
Systems	class 1 class 2	3.2			
Plants	ciass z	3.2			
Buildings	mooting room	10.0			
Schedules					
Walls 📃	Space Properties - [class	1]			x
Hoots	Concert Internale Walls V	vindous Doors	Daafa Ckuliahta Lusti	tration Eleans Dartit	innal
Doors			ribois, Skylights mini		
	Contraction of the second s				
🕊 Shades	Wall	1999 - 1999 - 19	Constructio	m Types	
Cooling Towers	Wali Gross _W Area	′indow Window 1 2 D	Constructio for Exposu	nn Types re: 1 (N)	
Chillers	Wall Gross W Area Exposure M2 Qi	′indow Window 1 2 D uantity Quantity Q	Constructio for Exposu por uantity	on Types re: 1 (N) (none)	-
Chillers Cooling Towers Boilers Electric Rates	Wall Gross w Area 1 ₩ ♥ 0 1	/indow Window 1 2 D uantity Quantity Q) 0 0	Constructio for Exposu Jantity Wall	on Types re: 1 (N) (none)	
Cooling Towers Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross W Area 1 N V C 2 not user V	'indow Window 1 2 D uantity Quantity Q 0 0 0	construction for Exposu antity	on Types re: 1 (N) (none) (none)	-
Chillers Chillers Boilers Electric Rates Fuel Rates	Wall Gross W Area 1 N 0 0 2 not usei V 3 not usei V	Yindow Window 1 2 D uantity Quantity Q 0 0 0	construction for Exposu window 1	n Types re: 1 (N) (none) (none) (none)	•
Chillers Chillers Boilers Electric Rates Fuel Rates	Wall Gross w Area 1 N V 0 2 not user V 3 not user V 4 not user V	Yindow Window 1 2 D uantity Quantity Q 0 0 0	construction for Exposu window 1	n Types re: 1 (N) (none) (none)	•
Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross Wall Gross Marea Area Exposure m2 Qr 1 Marea Qr 2 not user Qr 3 not user Qr 4 not user Qr 5 not user Qr	Yindow Window 1 2 D Quantity Quantity Q 0 0 0	Construction for Exposu window 1	n Types re: 1 (N) (none) (none) (none)	•
Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross Wall Gross Marea Marea 1 Marea Quality 2 not user Quality 3 not user Quality 4 not user Quality 5 not user Quality 6 not user Quality	findow Window 2 D 2 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Construction for Exposu window 1	on Types re: 1 (N) (none) (none) (none) (none)	
Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross Wall Gross Wall Gross Wall Gross Wall Exposure M2 1 V 0 2 not user 0 3 not user 0 4 not user 0 5 not user 0 6 not user 0 7 not user 0	Vindow Window 2 D uantity Quantity Q 0 0 0	Construction for Exposu window 1	on Types re: 1 (N) (none) (none) (none) (none)	
Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross w Gross w Area Marea m2 1 ▼ 0 0 2 not user	findow Window 2 D uantity Quantity Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Construction for Exposu window 1	on Types re: 1 (N) (none) (none) (none) (none) (none)	· · · · · · · · · · · · · · · · · · ·
Cooling Towers Boilers Electric Rates Fuel Rates	Wall Gross W Gross W Area Area Marea Qu 1 Image: I	findow Window 2 D uantity Quantity Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Construction for Exposu antity Window 1	on Types re: 1 (N) (none) (none) (none) (none) (none)	•

Figure (1.4): HAP 4.6 program parameters. [Appendix 11]

After making all zones details and interring them to HAP 4.6, this software offer final report that include all details about all desired zones and there cooling load beside the final cooling load for ANCI building which was **60 TR**, and this cooling load will be used in designing each of the two air conditioning systems in the next chapters.

Note: HAP4.6 cooling load calculations final report available at the appendix 11.

1.5 Objectives

The main objectives of this research:

- 1- comparing between centralized and decentralized air conditioning systems in terms of economically, energy consumption, controlling, and zoning including chillers and variable refrigerant flow air conditioning systems.
- 2- Redesigning variable refrigerant flow air conditioning system at An-Najah child institute based on cooling load and heating load calculations, the design include outdoor units, indoor units, piping system, and duct works.
- 3- Designing chilled (water to air) system at ANCI based on the same cooling and heating loads calculations used in designing VRF air conditioning system, this new design contains outdoor units, indoor units, piping system, duct work, and necessary pumps.
- 4- Calculating the energy consumption of chiller (water to air) and also for variable refrigerant flow system.
- 5- Calculating the fixed cost and running cost for both air conditioning systems chiller (water to air) and variable refrigerant flow.
- 6- Comparing between both air conditioning systems chiller (water to air) and variable refrigerant flow economically using present worth value.

Summary

West bank nowadays suffering from electricity problems. High population creates high electrical consumption, this high consumption led to Low voltage and high demand of electricity. HVAC systems have the major amount of energy consumption in west bank, related to (PCBS 2004) statistics most of west bank households use electricity as a main energy source for air conditioning system. So that any conservation on these air conditioning systems will help in decreasing the demand of electricity. [1]

This research contain an important comparison between two local air conditioning systems; VRF and air cooled systems. Every system has its own properties and components that was selected.

The comparison will be made to choose the most economic system. So that every system will be studied alone then a comparison will be made between them based on present worth values.

Chapter Two

Decentralized and Centralized Air Conditioning Systems

Chapter Two

Decentralized and Centralized Air Conditioning Syste

2.1 Decentralized Air Conditioning System Design

Decentralized systems are more efficient in low to medium demanding, it show high efficiency at low rise buildings such as office buildings and residences building. It is recommended when initial cost is effective for such a project budget. [3]

These systems provide cooled air to single spaces instead of the buildings. With many different market names such as floor by floor systems, unitary systems, and individual systems Decentralized system designed and manufactured as one package that includes all parts in one envelop including fans, filters, cooling coils, refrigerant side, heating source, controls, and condenser. Each part within this envelop is assembled to provide specific responsibilities and specifications.

Decentralized systems have many types, and each type has its own specifications and design. These types are:

Window air conditioner

Split air conditioning systems

Variable refrigerant flow (VRF) split system

Packaged air conditioners

2.1.1 Window air conditioner

In window air conditioner type, all components designed and manufactured to be inside one envelop namely the condenser, expansion valve or coil, evaporator, compressor, and cooling coil all are enclosed inside a single box.

As shown in figure (2.1), this unit box can be direct in a slot in the wall or fitted in a window shelf since its flexibility in structure and design.

Figure (2.1): Window air conditioner type assembly. [3]

This type of decentralized system can serves cooling only where and when needed. It is available with capacities varying within a range of about 0.5 - 3.0 TR.

2.1.2 Split air conditioning systems

This type basically has two parts working together to sustain the requirement demanding. These two parts are indoor unit and outdoor unit,
the indoor unit contains cooling coil, cooling fan, and the evaporator while the outdoor unit has the compressor, expansion valve, and the condenser.

The outdoor unit responsible for providing cooled refrigerant to the indoor unit through refrigerant pipes, while the indoor unit responsible for heat exchanging between the air and the cooled refrigerant, then supplying cooled air to the space.

As we can see in figure (2.2), outdoor unit and indoor unit connected with each other by refrigerant pipe. This pipe distance is critical and shouldn't be more than 30m.

Figure (2.2): Split air conditioner arrangement. [3]

It is very clear that this type of decentralized system easy to install so it gives an engineer that flexibility in maintaining the architectural and physical requirements.

2.1.3 Variable refrigerant flow (VRF)

Modern type of decentralized air conditioning system is variable refrigerant flow system (VRF) which is complex and efficient. It can serve multiple indoor units connected with refrigerant piping system to a single outdoor VRF condensing unit. [3]

Among these systems; VRF system can provide both heating and cooling simultaneously by control system. Control system has the ability to automatically control refrigerant flow to meet the cooling or heating load of the spaces needs by hand held control or the use of wall mounted key pads.

Figure (2.3) shows the main principle and schematic for VRF system first in the outdoor unit a compressor increases the refrigerant pressure, then the condenser make the refrigerant reject heat out to reach the expansion valve with high pressure liquid, after that the refrigerant leaves the expansion valve with low pressure and temperature. VRF system come in two system formats, the simple one with two pipes that makes all the zones either in cooling or in heating mode. The other format is the heat recovery (HR) systems that have three pipes design which gives this system the ability to heat some zones and cool others at the same time. All this can be done with microprocessor based electronics.

Figure (2.3): VRF air conditioning schematic. [3]

2.1.4 Packaged air conditioners

Packaged air conditioners most suitable for cooling capacities arranged between split air conditioners and central air conditioning systems. It is available in fixed rated capacities of 3, 5, 7, 10, and 15 tons. [3]

Packaged systems contain all important parts inside one house including compressor, cooling coil, air handling unit, and the air filter. According to the type of the cooling system used with packaged air conditioners it can be divided into two types: ones with air cooled condenser and ones with water cooled condenser.

In air cooled system the outdoor unit should be kept in a place where the atmospheric air is available to cool the condenser of the refrigeration

23

system. While in water cooled system the condenser of the refrigeration system cooled by water, so that water must be continuously available to maintain functioning of air conditioning system.

As shown in figure (2.4) packaged system can serve two rooms or more at the same time. Its available capacities ranging from about 5 TR up to about 100 TR, so it is more efficient to use in large spaces or offices.

Figure (2.4): Packaged air conditioners installation. [3]

But it should be noted that the larger of tonnage in packaged system the larger air flow will be, so that we will need duct work to cover all spaces and reduce noise.

2.2 Centralized air conditioning system design

Centralized air conditioning system uses one base location to serve single or multiple zones with cooled air, these system are most efficient in mid to high rise buildings that include five to seven and more floors. Centralized systems can be divided into three categories as the following:

Central systems with Constant Air Volume (CAV) air handling units Central systems with Variable Air Volume (VAV) air handling units Central systems with fan coil units (All-Water systems).

Constant air volume system (CAV) category is an all air system which maintains comfortable temperature and humidity (comfort conditions) in served zones by constant air volume supply and variable air temperature.

Variable air volume system (VAV) is an all air system which can serve multiple zones by supplying air at a constant temperature from the base central plant to one or many VAV units in each zone. But the amount of air flow to each zone can be adjusted to meet each zone cooling load requirements. And this is the main advantage of this system over the constant air volume system is the flexibility of air flow control that can serve any number of zones within the building at the same time.

Central system with fan coil unit is an all water system with FCU units. Outdoor unit produces chilled water to be passing through insulated pipes then pumped to the fan coil unit (FCU) placed inside the conditioned space, heat exchanging with air made there to produce cooled air, then cooled air transferred to the zones and back again to the FCU to be cooled again by cooling coils to make a close loop. Basically central systems design broken down into three major subsystems: the chilled water plant, the air delivery system, and the condenser water system (or heat rejection system). Every subsystem responsible for a private job, as we can see in figure (2.5) we have central system water to air divided into three subsystems shown in the figure below.

Figure (2.5): Centralized air conditioning system schematic. [4]

Chilled water substation begins its circle inside the chiller body evaporator section. Pumps make the system pressurized supplying the inlet of evaporator with water to be chilled there and then leaves the evaporator through piping system to supply chilled water to air handling units cooling coils to be heat exchanged with air supplied by fans. The system may have primary and secondary chilled water pumps, primary water pump sustain the system pressurized and ensure constant water flow through the chiller, while the secondary water pump serve chilled water to AHUs with quantities needed only. Chillers have three most common options; centrifugal compressors (200 to 2000 TR), screw compressors (100 to 750 TR), and reciprocating compressors (up to 200 TR). Each one has its own restrictions, properties, and peak load efficiency.

Air delivery subsystem responsible for delivering cooled air to spaces through duct system and registers to maintain the cooling load standards.

In most building cases air is back again to the AHU by return air system to be mixed with supply air with an amount to be recommended.

Return air system can be ducted returns or plenum returns. In ducted returns air is collected from each zone using return air devices attached to the ceiling or walls which supply air to AHU by direct duct work. Plenum returns collect the air from all zones through return air devices as in ducted returns to the space between drop ceiling and the real ceiling, then the air returned to the AHU by duct work or structural channels and conduits.

Before heat exchanging air should be filtered to remove particular matter (mold, dust, and allergens).

As any refrigeration system heat rejection must occur. Condenser water system is responsible for this part by two option of heat rejecting: 1- water cooled 2- air cooled.

Water cooled units are common used in large buildings such as hotels and airports, these units reject heat which absorbed from spaces or zones to water that with the same way can reject this heat via cooling towers or fluid coolers.

Air cooled option is the most common used in residential and light commercial applications. Heat absorbed from spaces or zones can be rejected to the ambient air.

2.3 Comparison between Centralized and Decentralized air conditioning systems

Every building type has its own regulations, specifications, and restrictions that affect Selecting HVAC system, and every HVAC system also has its own design and properties that influence the decision of type selected. So to make a decision and select the suitable type of HVAC system that fit our case we should first take a look at every type and summarize every type design, specification, properties, and limitations.

Centralized and Decentralized air conditioning systems have many differences parameters which at the end make one better than another in such a case, these parameters are:

Applications, usage patterns, and zoning

Control views, Structural design and costs

2.3.1 Applications, usage patterns, and zoning comparison

Central systems are used widely for completely air conditioning in large buildings, airports, hotels, shopping malls, theaters...etc. one base chiller or multiple chillers can be used to offer the desired load capacity and sometime a hybrid system is preferred which is a combination between centralized and decentralized system in such a couple of central plant and packaged split units that the central plant serve corridors and lobby, and the packaged system serves individual rooms such as guests rooms, meeting rooms.

Centralized systems like chillers are available in the market with maximum capacity 2000 tons, so these systems are best fit with cases that requires high usage time and consistent.

Multiple zones can be served with one central plant and can have many different control points since every zone contain its own control (thermostat) that provides signals to the main central plant to monitor the flow of chilled water.

Decentralized systems are more suitable for buildings which have unoccupied spaces at any given time to provide potential energy saving since every single space has its own air conditioning unit that can be shut off alone without influencing the others. Decentralized systems also preferred in low to mid rise buildings and low to intermittent air conditioning requirements such as small residential buildings and offices. But for large buildings, multiple package units can cover the desire loads.

For cases of that spaces which may have expansion or addition of more equipment, decentralized system can give the solution. Decentralized systems such as split units (DX) are only recommended to serve single zone applications since split units can't respond to many sensors (thermostat) signals and do not provide modulating control, every zone has its own thermostat connected with the single base unit that's due to the assembly of its content namely the compressor which only works with ON – OFF response to the signals coming from a thermostat, it can be either totally shut off or totally shut on. For multiple zones application it is required multiple units to cover them.

Decentralized air conditioning systems are available in the market with capacities range from 0.5 ton to 130 tons (for roof top package units).

2.3.2 Control views

Control is very important in all systems for energy saving such as capacity control. Central systems (chilled water type) show a good capacity control by modulating the chilled water flow rate through the cooling coils generally within the air handling unit or the fan coil unit, so every zone thermal load can be covered without influencing the control of any other zones in the other hand decentralized systems that do not provide modulating control since they have fixed coil temperature during the cooling mode, the only control available in decentralized systems like (DX) systems is by cycling the compressor ON and OFF depending on the sensor (thermostat) signals.

In air quality control, centralized systems offer high quality of air conditioning so that it can be used for applications demanding precise control and sensitive for environmental conditions. In decentralized systems the air quality less than that in central systems.

Decentralized air conditioning systems do not show that accuracy in temperature control since there is only two positions of control ON or OFF which makes the temperature and relative humidity swings. This might be happened in central systems when it balanced and it won't be hot spots in targeted zones due to the high level of control between the base unit and the indoor units (as an example FCUs).

In controlling fresh air and ventilation, central system gives good control in fresh air quantities allowing for fixed or varying quantities while decentralized system do not provide much flexibility in fresh air control.

We saw most of control views are better in centralized systems that in decentralized systems for energy saving opportunities. But in individualized control decentralized system are better due to capability to offer room by room control providing heating for space that needs heat and at the same time can provide cooling to adjacent that needs cooling without influencing each other as clear in figure (2.6).

Figure (2.6): Individualized control in decentralized air conditioning (split type).[4]

Central systems can't always provide individual control as flexibility as in decentralized systems. But in (VAV) central system figure (2.7) individual control is available by monitoring the air delivery rates to the spaces while keeping the coils as fixed temperature.

Figure (2.7): Individualized control in centralized air condition systems(VAV type). [4]

32

In central air conditioning systems (CAV) type also can provide individual control by keeping the air delivery constant and altering the coils temperature, this type not recommended due to huge quantities of energy wasted by simultaneous cooling and heating.

2.3.3 structural design and costs

Centralized systems have huge and heavy equipment that required large space to handle them called mechanical room that must be available in every building used in.

Central systems should contain plumping structure and drainage system arrangement in the mechanical rooms where air handling units or fan coil units are located there with their cooling coils, also in plant room where cooling water pumps available there.

In decentralized systems the situation is more simple cause of their simplicity which is smaller in size, so there is no need for mechanical rooms to handle the equipment and this can offer large free areas in the building. The plumping structure also simple since most of decentralized air conditioning systems evaporators are located inside or at the boundaries, the plumping need to be carried out in the indoor spaces connected with the zone drainage system itself and no need for a new special drainage line.

Capital costs for centralizes systems are much higher than decentralized systems. Capital costs can vary depending in the type of equipment used in the system, centrifugal chiller for example is most expensive then screw packaged chiller and the cheapest is reciprocating packaged chiller, but the cost can vary depending on the size of chillers such as centrifugal chiller under 200 tons is more expensive than reciprocating but becomes competitive in the larger sizes.

In another way central air cooled machines are much cheaper in capital costs than the water cooled machines about 10% - 15%, at the same time energy or power saving will be caught (running costs), so engineers should work out the pay pack period and make visibility studies before selecting which system to be chosen finally.[3]

Decentralized air conditioning systems mostly have lower capital costs than central systems paid for an equivalent custom system. These systems have fewer materials to install and so lower installation costs that make decentralized systems more preferable.

In engineering costs view decentralized systems also show a good cost saving since they are standard size units readily available so that installation is faster and simple that save time and installation operation costs. Central systems are much higher in installation costs since equipment and parts are heavy lifting and larger in size that make them require more costs for handling facility at site. Also central systems ductwork, piping system, insulation, and false ceiling give extra engineering costs.

For maintenance cost, central air conditioning systems can take much expensive and time consuming than decentralized air conditioning systems. All these costs depend on the type used and the capacity also, so costs vary in values and time.

Maintenance can be done directly in occupied spaces in most decentralized systems while it can be done within mechanical rooms or outdoors in central systems.

2.4 Energy Saving Opportunities in Centralized Air Conditioning Systems

Institutional and commercial organizations concentrate in energy efficiency nowadays to catch as much amount of energy saved as they can which lead for electricity saving thus money saving.

Managers in most projects looking for opportunities that may do this savings and recommended strongly to those whose responsible about structural and designs to do the best they can to maintain the most efficient behavior with less electricity consumption.

Since energy saving became a top priority in most projects, engineers concentrations have to be on finding more and best opportunities in energy saving within the projects related to heating ventilation and air conditioning systems (HVAC) including, boilers, chillers, and air handling units components since air conditioning makes as much as 60% of the total consumption of a building in a season.

In centralized air conditioning systems there is a big chance of energy saving, since they are used widely and with huge cooling or heating capacities. By the nature of these systems components and the big sizes any saving amount even its small will play a good role and will be more effective than decentralized air conditioning systems.

Energy saving opportunities in centralized air conditioning systems can be within the equipment (Internal opportunities category) or the surrounding (External opportunities category). Every category has its own cost and reliability and dependency.

The first step of energy saving is making an energy audit by plan the work, then work the plan. Such a plan need some data collection before going forward such as equipment logs, weather data, and structural data within the building.

Working the plan might be starting with opportunities easy to apply and with less cost going to more complex opportunities with more cost.

As air temperature increases the electricity consumption in air conditioning increases substantially. In addition to this process the cooling of air conditioning units decreases the same will happen if the air temperature decreases in winter season, this lead to consume more electricity also and heating of air conditioning units increases substantially. With this two cases engineers have to find the opportunities that can faces this increasing in electricity consumption.

Some of those opportunities are as following:

1- Variable air volume system and constant air volume system

2- Scheduling

3- regular motors, high efficient motors and variable frequency drives

Most of centralized air conditioning systems have issues with energy consumption that call for energy conservation and energy saving opportunities to solve these issues. Allot of these issues are within the design of the system or selection and equipment's installed, these opportunities are classified as internal energy saving opportunities and we will introduce and discuss some of most important of them.

2.4.1 Variable air volume system and constant air volume system

The first internal energy saving opportunity that could save energy within the air central air conditioning systems is that when we have such a system of constant air volume (CAV) designed to be serving out building. It's recommended to replace this current design with a new one that called variable air volume (VAV) when our case suitable for both systems according to reference [1].

Figure (2.8), and figure (2.9) show a schematic plans of CAV and VAV distribution within a multiple zones.

Figure (2.8): Schematic plan of CAV distribution within a multiple zones.

Figure (2.9): Schematic plan of VAV distribution within a multiple zones.

The two plans show the same case that include two zones one is west and the other is east direction, with the same load and air flow and with different peak time, they are connected with CAV system once and with VAV once again. In the 1st case with CAV connection the east room contains thermostat inside while the west room doesn't. when the system goes on and start pumping cooled air toward the two rooms through duct work system, at time 9 A.M and around this time the east room needs the big load while the west room doesn't, that means the west room will reach its design temperature (assume 24° C). At the same time the east room still receiving more cooling air, this mean that the system will remain ON and pushing more and more cooled air toward two rooms till east room reached its design temperature.

As a result; when east room reach its design temperature, the west room temperature will be lower than the design temperature due to of nonstopping cooling so that all these cooling are waste, and become an extra load for the system that consume and cost an addition energy to the system.

This issue can be avoided by using VAV air conditioning system which can serve the two rooms individually without wasting extra energy. With the same case at 9 A.M the east room will reach its design temperature while the west one doesn't, but unlike the CAV system, VAV system will shut off the cooling toward the west room by a mean of (servo motor and damper system). When the thermostat send such a signal to the VAV system that the desire temperature was reached, the servo will make the damper to partially close so that decreasing the amount of cooled air delivered to the room. As a result; VAV system conserve energy and prevent wasting energy when the desire temperature reached and save money. These systems are easy to install and cost less. In addition VAV systems can save as much as 30% in energy costs comparing to other conventional systems.

2.4.2 Scheduling

Most buildings that contain an air conditioning system it will shut on the system at the first moment it start working or occupied with people. So energy consumption starts till the last moment of that working day.

In our case study An-Najah child institute building, the working hours schedule is as following:

7 AM: Cleaners and guards

8 AM –11:30 AM: Employees, officers, and students

11:30 AM – 12:30 PM: Break

12:30 PM – 3 PM: Employees, officers, and students

When designing an air conditioning system especially in centralized air conditioning systems like chillers it is better to keep in mind the above working schedule distribution to have an accurate cooling and heating loads as a result and so sizing of the air conditioning system equipment's. Figure (2.10) and figure (2.11) describes schedule of people used in calculating and designing the air conditioning system via designing program HAP 4.6. [1]

Figure (2.10): Hourly people schedule using HAP 4.6 program

Figure (2.11): People schedule profile description using HAP 4.6 program.

Figure (2.10) give working hours distribution Vs the load distribution relating to the building working hours table. It is clear that the load between 7AM till 8AM have about 15% of total capacity, while between 8AM till 11:30 AM the capacity is 100%, and between 11:30 and

41

12:30 there is only about 10% cooling capacity of full load, and finally at 12:30 till the end of that working day the system will work with full load capacity 100%.

This schedule will huge amount of energy cause of the rest intervals that could be in many hours with less load capacity and for sure will increase the life time of the system equipment's. Also if we applied this schedule to ventilation design we will harvest another energy saving since ventilation causes an extra cooling load to the system and make the system consume more energy to cooling that air coming from outside.

Relating to figure (2.11) the people schedule can be more accurate and be applied to the days of the week or the days of the months and so on. This strategy saves more and more energy since the cooling load will decreases as we exclude many hours and 2 days a week from our cooling load calculations. So that the system equipment's will be smaller and cost less money as a capital cost and cost less in running cost as an electricity bill during the months.

2.4.3 Regular motors, high efficient motors and variable frequency drives

The highest energy consumers in both residential and commercial sectors are motor-driven components. In residential sector HVAC applications represent around 63% of motor driven energy use, and refrigeration represents around 28%. In commercial sector, the HVAC and

refrigeration categories together represent 93% of motor driven energy use, while electric motor-driven systems and their components in appliances and equipment account for more than 25% of the primary consumption in both commercial and residential sectors [4].

This huge energy consumption of motors used in air conditioning systems (fan motors and compressor motors) can be reduced by using high efficient motors instead of regular motors or by installing variable frequency drives VSD especially in variable load applications plus other non- energy benefits such as reducing the noise and the ability to reach higher rotational speeds. These retrofits have capital costs first and that the major problem, but nowadays and regarding to new semiconductors and electronics modern technologies the high efficient motors costs decayed and the payback period became more realistic and feasible.

The International Electro technical commission (IEC) has published an international standard that defines three distinct energy efficiency classes for single speed and three phase motors (IE1, IE2 ,IE3) figure (2.13) related to reference [3], IE1 with standard efficiency, IE2 with high efficiency and IE3 with premium efficiency. Figure (2.12) show conclude these standards with their capital cost, maintenance cost, and energy cost with two cases, one with 8000 operating hours per year and the other one with 2000 operating hours per year.[5]

Figure (2.12): Three different motor classes' energy analyzing with 8000 and 2000 operating hours per year graphs. [5]

According to table (2.1) we can see the potential of energy saving between three motor standard types, when using motor type IE2 the payback period will be about 7 months in 8000 operating hour's case. While in 2000 operating hours case we will get our investment by energy saving within 3 years. We can also use equations below to calculate energy saving:

$$\Delta P \ saving = Pout(\left(\frac{1}{\gamma 1}\right) - \left(\frac{1}{\gamma 2}\right)) \dots \text{Eq}(2.1)$$

Moto	er type	IE1	IE2	IE3	IE4	IE 5
Three-phase cage- roter induction motors (ASM)	Random wound windings, IP2x (open motors)	¥66	Yes	Yes	Difficult	No
	Form wound windings; IP2x (open maters)	Yes	Yes	DifficeIt	No	No
	Random wound windings; IP4x and above (enclosed motors greater then 0.75 kW)	Yes	Yes	Yes	Difficult	No
	Random wound windings; IP4x and above (enclosed motors less than or equal to 0.75 kW)	Yes	Yas	Yes	Difficult	No
	Form wound windings; IP4x and above	Yes	Yes	Yes	Difficult	No
Three-phase wound metors	roter induction	Yes	Yes	Yes	Difficult	No
Single-phase	Start capacitor	Difficult	Na	No	No	No
induction motors	Run sepecitor	Yes	D #ficult	No	No	No
	Start/run copecitor	Yes	Diffiquit	No	No	No
	Splii-phase	Difficult	Na	No	No	Na
Synchronous motors	Lice-start permanent-magnet (LSPM*)	Yes	Yes	Yes	Difficult	No

Table (2.1): Motors specification and their energy efficiency potential.[6]

Energy saving not excluded only in improvement of motor efficiencies, it is also can be achieved by using variable frequency drives VFDs especially on those systems which spend the majority of their operational life at a part load.

VFDs used to control the speed of an HVAC fan or pump motor (like a throttle on a car) depending on the demand. VFDs can make the fans or motors work under 100% full load when the system don't need a full load demand while the regular fans and pumps without VFDs can only working with 100% load or 100% off load, so that VFDs can conserve energy and save money.

VFDs adjusting the frequency to control and change the speed of a fan or motor, typical frequency adjustment range can vary from 10-60 Hz. At the same time they system has VFDs it is recommended to have also a Bypass to keep the system running when VFDs interrupted or under servicing.

VFDs can save energy as much as 30-70% when it's connected to fans and motors (centrifugal fans and pumps only). [6]

2.5 Energy saving opportunities in Decentralized air conditioning systems

Decentralized air conditioning systems have many shapes and structures differ from those in centralized air conditioning systems thus they differ when using energy saving opportunities. So when using such energy saving opportunities we should go deeply and understand the system structure and principles to use the suitable opportunities for suitable system and gain more energy conservation.

Many researches were done for energy saving among these air conditioning systems, some effective and some are not and others under study.

In this section we will introduce some of these opportunities that might be best fit or somehow effective. These opportunities are as following:

1– Components shading

- 2– Evaporative cooling
- 3- Cleaning air conditioning system filters

2.5.1 Component Shading

Decentralized air conditioning systems specially split air conditioners contain an outside box that include compressor and condenser unit within, condenser component is responsible for heat dropping the heat coming from inside spaces toward outside air surrounding (heat exchanger), in different words it dropping hot air to hotter air. As we know natural air moves from cold to hot, so the heat will moves from hot to hotter naturally. Figure (2.13) shows outside box that contain condenser unit within.

Figure (2.13): Outside box split unit

As we can see the air flow in this outside unit is vertical, and sometimes the air flow may be horizontally and this is an important note in this case when using shading to keep the outdoor unit away from the direct sunlight.

Shading can reduce the direct solar gain toward condenser body so that its efficiency will improve and capability of dropping hot air to surrounding will increases, and that can make the return air temperature deceases. Since the temperature difference became less between the return air and inside space air, cooling capacity will be reduced and energy consumption also reduced.

This energy saving opportunity is sensitive to the shading structure we used, it should be noted the direction of the fan exhaust first and the structure of the shading in the other side. Figure (2.8) showing the perfect shading structure in an outdoor unit.

Figure (2.14): Shading structure in outdoor split unit. [7]

Related to the previous figure (2.14) the suitable and perfect shading should not interrupt the air flow between the fan and the air surrounding (heat exchanging), and it should not be totally closed so air still circulates around.

This shading strategy is more effective in long time term to gain more saving and be feasible for about 10% energy saving to install relating to study done by FSEC [7]

2.5.2 Evaporative cooling

Evaporative cooling is similar to our bodies sweating, when skin sense of hot condition it sweat and producing liquid water to be changed into vapor water, this process keep make our skin rejecting heat by the evaporation of the liquid water produced, this phase changing from liquid to vapor need heat to be done, so heat will be rejected from our skins and that the main principle of evaporative cooling. Figure (2.15) describes the evaporative cooling schematic.

Figure (2.15): Evaporative cooling schematic. [7]

Evaporative cooling is most feasible in system with dry conditions it used a water distributer to spread the water into the condenser body to make the tiny water droplets evaporates taking heat out to the surrounding, so the temperature of the air decrease and thus increases the cooling capacity.

This opportunity make air conditioning system more efficient and save energy. We can use this strategy in centralized air conditioning.

2.5.3 Cleaning air conditioning system filters

Filters very important in air conditioning systems to keep the air inside spaces with high quality and meet the standards ASHRAE. The return air line should contain filters since the air inside contain many harmful particles and must be removed before recycling. [1]

Almost these filters got blocked due to the accumulation of harmful particles within and make the air hard to pass through.

Figure (2.16) shows a split unit filter.

Figure (2.16): Split unit filter. [7]

Air conditioning system filters blockage is almost a serious problem because it reduced the air quality inside spaces and can spread many diseases and illnesses. Addition to that filters blockage can increases the consumption of energy since the air will be hard to circulate cause increasing in pressure.

In decentralized ducted air conditioning systems almost there is a blower which is the heart of the system that is responsible for pulling out the air from spaces to the ducts to be conditioned again in AHU, the blower is powered by an electronically commutated motor (ECM) that controlling the speed depending on varying conditions, and sometimes connected to permanent split capacitor (PSC) which is not as ECM (not a variable speed motor).

When the filter gets too dirty and somehow blocked the blower will fight against an extra pressure above the maximum (typically 0.5 inches of water column iwc). In this case high pressure will make the ECM motor will ramp up in an attempt to maintain proper air flow and fight against high pressure and make it dissipating more heat thus more cooling load causing an extra energy consumption also causing damage on the motor in long term and loss in efficiency.

Figure (2.17) shows two different filters, one is clean and other in dirty. Changing air conditioning filters constantly will save energy as much as 20- 30%. [7]

Figure (2.17): Two air conditioning filters one is clean and other is dirty.. [7]

Chapter Three Variable Refrigerant Flow (VRF) Design for ANCI

Chapter Three

Variable Refrigerant Flow (VRF) Design for ANCI

Variable refrigerant flow system is a modern air conditioning system that use refrigerant as the cooling and heating medium, VRF system consists of outdoor units, indoor units, and piping system.

Compressed refrigerant lift the outdoor unit through pipes to reach indoor units and have heat exchanging there with air. No ducts for this type of air conditioning.

3.1 Selection and Design of Variable Refrigerant Flow (VRF) System Components

All components selection based on **Toshiba** air conditioning catalogues. As in appendix 1, and appendix 2.

- Selection of outdoor units

Outdoor units was divided into two parts, one for ground floor, and first floor and the other one for second floor and third floor.

With total area of 550 m² for ground and first floors, the outdoor unit selected was 42HP with code name of (<u>MMY-AP4216HT8P-E</u>) The second floor and third floor with total area of 380 m², the outdoor unit selected with capacity of 32HP with code name of (<u>MMY-AP3216HT8P-E</u>) <u>E</u>)

- Selection of Indoor units

Indoor units was selected to cover target zones in all floors as following:

Ground and first floor contain 17 indoor units, 3 are ducted models and 14 wall mounted models. As in Table (3.1)

Second and third floors contains 16 indoor units. Two are ducted models and 14 are wall mounted models. As in Table (3.2)

Table (3.1): Ground and first floors indoor unit specifications.

Madal Marga	Unit Name	Capacity	For Second	Capacity (Total/Sensible) [kW]			
Model Name	a Room	Code	Fan Speed	Mode	Rated	Conected	Required
MMD-AP0365BHP-E		4.0HP	High	Cooling	11.20/8.80	9.56/7.65	
				Heating	12.60	8.93	
MAID ADDEREDUD E		6.040	High	Cooling	16.00/11.50	13.74/10.05	
MMD-AP00000HP-C		0.0HP		Heating	18.00	12.87	
				Cooling	16.00/11.50	13.94/10.20	
MMD-AP0566BHP-E		6.0HP	High	Heating	18.00	12.93	
				Cooling	4.50/3.20	3.93(2.84	
MMK-AP0153H		1.7HP	High	Heating	6.00	3.59	
LARCE ADDARDAL		1710	15.1	Cooling	4.50/3.20	3.78/2.73	
MMK-AP0153H		1.7HP	high	Heating	5.00	3.55	
			High	Cooling	4.50/3.20	3.78/2.73	
MMK-AP0153H		1.7HP		Heating	6.00	3.65	
				Cooling	4.50/3.20	3.80(2.75	
MMK-AP0153H		1.7HP	High	Heating	6.00	3.65	
		1710		Cooling	4.50/3.20	3.83/2.77	
MMK-APU153H		1./HP	high	Heating	5.00	3.57	
ARRY ADDRESS		2.010	15.4	Cooling	6.60/3.90	4.80/3.40	
MMK-APU163H		2011	righ	Heating	6.30	4.50	
LINE ADDARDU		2.01.02	11.4	Cooling	5.60/3.90	4.79(3.39	
MMK-APU183H		2.08P	High	Heating	6.30	4.50	
MMK-AP0183H		2010	HC-1	Cooling	5.60/3.90	4.83/3.42	
	200	righ	Heating	6.30	4.51		
		Mark	Cooling	5.60/3.90	4.89/3.46		
WWW-PP-0103H		2000	riigh	Heating	6.30	4.53	
MARY ADDIVIDU		2.040	Link	Cooling	5.60/3.90	4.83/3.42	
MMP-APU 163PI		2.000	ngn	Heating	6.30	4.51	

Model Name	Unit Name & Room	Capacity Code	Fan Speed	Mode	Capac Rated	ity (Total/Sensib Corrected	le) [KW] Required
MMD_AD03668HD_E		4.0HD	Hinh	Cooling	11.20/8.80	9.53/7.62	
MMD-MP0300DHP-C		4.000	righ	Heating	12.50	9.25	
MMD-AP0366BHP-E		4.0HP	High	Cooling Heating	11.20/8.80 12.50	9.49/7.58 9.23	
MMK-AP0123H		1.25HP	High	Cooling Heating	3.60(2.60	3.08/2.26 2.96	
MMK-AP0163H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.83/2.77 3.70	
MMK-AP0153H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.82/2.76 3.70	
MMK-AP0163H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.82/2.77 3.70	
MMK-AP0163H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.91/2.83 3.72	
MMK-AP0153H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.91/2.83 3.72	
MMK-AP0153H		1.7HP	High	Cooling Heating	4.50/3.20 5.00	3.83/2.77 3.70	
MMK-AP0183H		2.0HP	High	Cooling Heating	5.60/3.90 6.30	4.81/3.41 4.68	
MMK-AP0183H		2.0HP	High	Cooling Heating	5.60/3.90 6.30	4.85/3.44 4.69	
MMK-AP0183H		2.0HP	High	Cooling Heating	5.60/3.90 6.30	4.91/3.48 4.70	
MMK-AP0183H		2.0HP	High	Cooling Heating	5.60/3.90 6.30	4.97/3.52 4.72	

Table (3.2): Second and third floors indoor unit specifications.

- Piping length calculations

Ground and first floors piping lengths and diameters are given in table (3.3).

Table (3.3):	Ground and	first floors	piping s	system qua	antities
--------------	------------	--------------	----------	------------	----------

Pipe Diameter	Gas side (m)	Discharge side (m)	Liquid side (m)	Total Length (m)
¥"	0	0	17.5	17.5
%"	0	0	31.5	31.5
½"	17.5	0	12.5	30
%"	31.5	0	5	38.5
%"	0	0	7.5	7.5
%"	12.5	0	13	25.5
1%"	8	0	0	8
1%*	4.5	0	0	4.5
1%'	13	0	0	13
Second and third floors piping lengths and diameters as shown in table (3.4).

Pipe Diameter	Gas side (m)	Discharge side (m)	Liquid side (m)	Total Length (m)
14"	0	Q	33	33
%"	7	0	12	19
%"	26	0	16	42
5/ " 79	12	0	12	24
%"	0	0	11	11
¼"	16	0	Q	16
1%"	12	0	Û	12
1%"	11	0	Û	11

Table (3.4): Second and third floors piping system quantities.

- Indoor units distribution for ground floor

8 indoor units were distributed in all targeted zones at ground floor, as figure (3.1) gives, there are 8 indoor units distributed as following:

- 1- Wall mounted 4.50 kW (Clinic1- 14.60 m²)
- 2- Wall mounted 4.50 kW (Clinic 2- 15.00 m²)
- 3- Wall mounted 4.50 kW (Clinic 3- 12.25 m²)
- 4- Wall mounted 4.50 kW (Clinic 4- 12.25 m²)
- 5- Wall mounted 5.60 kW (Intervention north- 45.30 m²)

- 6- Wall mounted 5.60 kW (Intervention east- 45.30 m²)
- 7- Ducted unit 16.00 kW (Lobby west)
- 8- Ducted unit 16.00 kW (Lobby east)

- Indoor units distribution for first floor

9 indoor units were distributed in all targeted zones at first floor, as we can see in figure (3.2) there are 9 indoor units distributed as following:

1- Wall mounted 6.30 kW (secretaria1- 16.00 m^2)

- 2- Wall mounted 6.30 kW (administration- 17.40 m²)
- 3- Wall mounted 6.30 kW (Offic1- 20.00 m^2)
- 4- Wall mounted 5.00 kW (Offic2 west 38.00 m^2)
- 5- Wall mounted 5.00 kW (Offic2 north- 38.00 m²)
- 6- Wall mounted 8.00 kW (Class 1- 23.00 m²)
- 7- Wall mounted 8.00 kW (Class 2- 23.00 m²)
- 8- Wall mounted 8.00 kW (Class $3-23.00 \text{ m}^2$)
- 9- Ducted unit 12.50 kW (Lobby)

Figure (3.1): Ground floor indoor units distribution

Figure (3.2): First floor indoor units distribution

- Indoor units distribution for second floor

8 indoor units were distributed in all targeted zones at ground floor, as can be see in figure (3.3) there are 8 indoor units distributed as following:

1- Wall mounted 4.00 kW (Resource and Service- 10.0 m²)

2- Wall mounted 6.30 kW (Library- 20.60 m^{2})

3- Wall mounted 5.00 kW (Art room north- 31.70 m^2)

4- Wall mounted 5.00 kW (Art room west- 31.70 m²)

5- Wall mounted 5.00 kW (LD-room west- 31.90 m²)

6- Wall mounted 5.00 kW (LD-room north- 31.90 m²)

7- Wall mounted 6.30 kW (Music room- 23.00 m^2)

8- Ducted unit 12.50 kW (Lobby).

- Indoor units distribution for third floor

9 indoor units were distributed in all targeted zones at first floor, as we can see in figure (3.4) there are 9 indoor units distributed as following:

1- Wall mounted 6.30 kW (Research room- 16.30 m^2)

- 2- Wall mounted 6.30 kW (Admin office1- 19.60 m²)
- 3- Wall mounted 6.30 kW (Admin office2- 17.50 m²)

- 4- Wall mounted 6.30 kW (Admin office3- 17.50 m²)
- 5- Wall mounted 6.30 kW (Admin office4- 19.40 m²)
- 6- Wall mounted 5.00 kW (Meeting room north- 28.40 m²)
- 7- Wall mounted 5.00 kW (Meeting room west- 28.40 m²)
- 8- Ducted unit 12.50 kW (Lobby).

Figure (3.3): Second floor indoor unit's distribution.

Figure (3.4): Third floor indoor unit's distribution.

64

3.2 Electrical Consumption in VRF system

(Cooling Mode)

Ground and First floors:

Electrical consumption depends on number of outdoor units capacity, and also depend on number of indoor units and capacity.

Ground floor and first floor contain 1 outdoor unit with 103.70 kW cooling capacity beside of 17 indoor units all contains electrical fans that consume variable Kilo Watts as shown in table (3.5).

According to manufacturer catalogue the outdoor unit used to serve ground and first floors is (MMY-AP4216HT8P-E) power input during cooling mode equals to 40.50 kW. (Appendix1)

Outdoor unit power consumption = 40.50 kW.

Related to manufacturer catalogue for indoor units distributed in both ground and first floors Table (3.5), the power input for all indoor units (1x $0.172 + 2x \ 0.198 + 5 \ x \ 0.043 + 6 \ x \ 0.043 + 3 \ x \ 0.05 = 1.191 \ kW.$

Table (3	3.5): (GF-1 st	floors	indoor	unit's	catalogue.
----------	---------	--------------------	--------	--------	--------	------------

Model name	Description	Quantity
MMD-AP0366BHP-E	4.0HP Standard Concealed Duct	1
MMD-AP0566BHP-E	6.0HP Standard Concealed Duct	2
MMK-AP0153H	1.7HP High Wall Standard (Series 3)	5
MMK-AP0183H	2.0HP High Wall Standard (Series 3)	6
MMK-AP0243H	2.5HP High Wall Standard (Series 3)	3

Electrical consumption $(GF + 1^{st} floor) = 1.19 kW$

ESEER = 7.13

Using equation (1)

Annual energy consumption = over all electrical consumption X Total operation hours per year ... Eq (3.1)

With an assumption of operating hours per year (summer) = 700 hours

Annual energy consumption $(1^{st} + GF \text{ indoor units}) = 1.19 \text{ kW X}$ 700 hrs = 833 kWh

Second and Third floors indoor units

Second and third floor contain 1 outdoor unit with 79.30 kW capacity, and also 16 indoor units all contains electrical fans that consume variable kW as shown in table (3.6).

According to manufacturer catalogue the outdoor unit used to serve ground and first floors (MMY-AP3216HT8P-E) the power input in cooling mode equal to 28.60 kW. (Appendix 1)

Outdoor 32HP unit power consumption = 28.60 kW

Related to manufacturer catalogue for indoor units distributed in both second and third floors Table (3.6).

The power input for <u>all indoor units related to appendix (2)</u> 2 indoor units x 0.172 kW + 1 indoor unit x 0.021kW + 6 indoor units x 0.043 kW + 7 indoor unitsx 0.043 kW = 0.924 kW

Table (3.6): 2nd and 3rd floors indoor units' catalogue.

Model name	Description	Quantity
MMD-AP0366BHP-E	4.0HP Standard Concealed Duct	2
MMK-AP0123H	1.25HP High Wall Standard (Series 3)	1
MMK-AP0153H	1.7HP High Wall Standard (Series 3)	6
MMK-AP0183H	2.0HP High Wall Standard (Series 3)	7

ESEER = 7.59

With an assumption of operating hours per year (summer) = 700 hours

Applying equation (3.1): Annual energy consumption $(2^{nd} \text{ and } 3^{rd} \text{ indoor units}) = 0.924 \text{ kW X 700 Hrs} = 646 \text{ kWh}$

- Annual overall energy consumption of indoor units (Cooling) = $GF-1^{st}$ energy consumption (Cooling mode) + $2^{nd} - 3^{rd}$ energy consumption (Cooling mode) ... Eq(3.2)

Chapter Four Air to Water Chiller System (Air Cooled)

Chapter Four

Air to Water Chiller System (Air Cooled)

4.1 Air to Water Chiller Design

Chiller air to water air conditioning system or in other name (Air cooled liquid chillers ACLC), consists of many important parts: outdoor units, indoor units, water pumps, ductworks, and water pipes network. Every part integrates the other, and every part design should complete the other.

- Air to Water Chiller outdoor and indoor unit selection

- Selection of outdoor units

All components here selected based on **TRANE** air conditioning manufacturer catalogues. (Appendix 5)

The cooling load in the studied area is = 213 kW = 60 TOR and relating to TRANE catalogues; one unit was selected to cover four floors at ANCI building as shown in figure (4.1).

Table P	able PD-8— 60Ton — CGAF-C60															
		Entering Condenser Air Temperature (Degree F)														
			75.0			85.0			85.0			106.0			115.0	
LWT	Percent	Capacity	System		Capacity	System :		Capacity	System :		Capacity	System		Capacity	System	
Deg F)	Glycol	(kns)	<u>i KW</u>	EER	(kns)	KW	EER	(kns)	<u> </u>	EER	(Tons)	<u>`KW</u>	EEA	(Tons)	<u> </u>	EER
20	28	37.2	50.1	8.9	35.3	55.0	7.7	33.4	60.7	6.6	31.3	67.2	5.6	29.2	74.6	4.7
25	24	41.6	51,3	9.7	39.6	56,4	8.4	37.4	62.2	72	35.2	68.8	6.1	32.9	76.3	5.2
30	19	48,4	52.6	10.6	44.1	67.8	8.2	41.8	63.8	7.9	39,4	70.6	6.7	38.8	78.2	6.7
35	- 14	51,4	54.0	11.4	48.9	59.3	9.9	46.4	65.4	85	43.7	72.3	7.3	41.0	80.1	6.1
40	0	57,2	55.6	12.3	54.5	61,1	10,7	51.7	67.3	92	48.8	74,4	7.9	45,8	82.2	6.7
42	0	59.2	682	12.7	56.5	61.7	11.0	53.6	68.0	85	50.6	75.1	81	47,5	83.0	6.9
44	0	61.4	56,8	13.0	58.5	62.3	11.3	55.6	68.7	9.7	52.5	75.9	83	49,3	83.8	7.1
45	0	62.5	57.1	13.1	59.6	62.7	11,4	56.6	69.1	88	53,4	76.2	8.4	50.2	84.2	72
48	0	63.6	<u>67</u> 4	13.3	60.6	63.0	11.5	57.6	69.4	9.9	54,4	76.6	8.5	51,1	84.6	72
48	0	65.8	58.0	13.6	62.7	63,7	11.8	59.6	70.2	10.2	56.3	77.4	8.7	52.9	85,4	7.4
50	0	68.0	58.6	13.9	64.9	64,4	12.1	61.7	70.9	10,4	58,3	78.2	8,9	54,8	<u>96.3</u>	7.8
55	0	73.8	60.3	14.7	70.4	66.1	12.8	66.9	72.8	11.0	63.3	80.2	9.5	59.6	88.4	8.1
60	0	79.7	62.0	15.4	76.1	68.0	13.4	72.4	74.8	11.6	68.5	82.4	10.0	64,5	90.7	8.5

Table (4.1): Air cooled outdoor unit specification

Total area to be air conditioned and served in ground, first, second, and third floors at ANCI building = 786 m², and total cooling load = 60 TOR. By assuming the design leaving chilled water temperature is 44° F, and the entering condenser air temperature is 75° F; one air cooled liquid chiller was chosen with code number of **CGAF-C60** with full capacity of 61.40 Tons (the shaded row in table (4.1)).

- Selection of Indoor units

Based on cooling load in every space, Indoor units were selected to cover all spaces in each of ANCI building floors with two types of indoor units; one is ducted indoor unit, and the other is decorative high wall indoor unit. Related to TRANE catalogues (Appendix 6 and 7) for indoor units; HWCF -50 Hz series was chosen for decorative high wall, and HFCA series was chosen for ducted indoor units. Based on assumptions that the entering water temperature (EWT) in decorative wall mounted indoor type is 45° F and the entering water temperature of ducted indoor type is 41° F

Tables (4.2), (4.3), (4.4), and figure (4.5) contain all indoor units in each floor with their specifications. We can easily define every indoor unit in each space of all floors.

	Ground Floor						
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM
Clinic Room1	14.60	4.20	decorative	1	4.20	HWCF06	600
Clinic Room2	15.00	4.20	decorative	1	4.20	HWCF06	600
Clinic Room3	12.25	4.20	decorative	1	4.20	HWCF06	600
Clinic Room4	12.25	4.20	decorative	1	4.20	HWCF06	600
Multisensory Room	40.40	16.50	ductable	1	16.50	HFCA14	1400
Intervention Room	45.30	4.20	decorative	2	8.40	HWCF10	2000
Waiting Room	28.00	16.50	ductable	1	16.50	HFCA14	1400
Lobby	4.60	0	ductable	0	0	-	-

 Table (4.2): Ground floor indoor units detail.

	First Floor						
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM
Class1	23.00	6.62	decorative	1	6.62	HWCF08	800
Class2	26.00	7.70	decorative	1	7.70	HWCF10	1000
Class3	24.60	7.20	decorative	1	7.20	HWCF08	800
Staff Room	35.40	10.60	decorative	1	10.60	HWCF12	1200
Meeting Room	21.60	5.70	decorative	1	5.70	HWCF08	800
Adminstrati on	17.40	5.10	decorative	1	5.10	HWCF06	600
Secretsry and waiting area	17.5	5.80	decorative	1	5.80	HWCF08	800
Pantry	4.60	0	ductable	0	0	-	-
Lobby	63.00	12.50	ductable	1	12.50	HFCA12	1200

Table (4.3): First floor indoor units detail.

Table (4.4): Second floor indoor units detail.

	Second Floor						
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM
Music Room	2300	6.20	decorative	1	6.20	HWCF08	800
LD Room	31.90	9.50	decorative	1	9.50	HWCF12	1200
Art Room	31.70	9.50	decorative	1	9.50	HWCF12	1200
Library	20.60	6.00	decorative	1	6.00	HWCF08	800
Resource and Service	19.40	2.90	decorative	1	2.90	HWCF03	300
Lobby	63.00	12.50	ductable	1	12.50	HFCA12	1200
Pantry	4.60	0	ductable	1	0	-	-

	Third Floor						
Space	Area m ²	Load kW	Indoor unit type	Indoor units #	Total load kW	Indoor unit code#	Indoor unit air flow CFM
Meeting Room	28.40	8.30	decorative	1	8.30	HWCF10	1000
Admin Office1	19.60	5.70	decorative	1	5.70	HWCF08	800
Admin Office2	17.50	5.10	decorative	1	5.10	HWCF06	600
Admin Office3	17.50	5.10	decorative	1	5.10	HWCF06	600
Admin Office4	19.40	5.70	decorative	1	5.70	HWCF08	800
Research Room	16.30	4.80	decorative	1	4.80	HWCF06	600
Lobby	63.00	12.50	ductable	1	12.50	HFCA12	1200
Pantry	4.60	0	ductable	0	0	-	-

Table (4.5): Third floor indoor units detail.

- Indoor units distribution

Indoor units distribution should covering all zones so that every zone reach its comfort condition.

Drawings given in figures (4.1, 4.2, 4.3, and 4.4) give a full description for all indoor units distribution and connection, in addition to pipes network and

Figure (4.1): Ground floor Air cooled indoor unit's distribution.

Figure (4.2): First floor Air cooled indoor unit's distribution

75

Figure (4.3): Second floor Air cooled indoor units distribution

Figure (4.4): Third floor Air cooled indoor units distribution

-Riser and Pumps selection

Secondary pump (Variable volume) for circulating chilled water through indoor units is operating with variable speed according to cooling load.

To select secondary pump, total head was calculated as following:

 Table (4.6): Secondary pump total head calculations.

Description	Flow (gpm)	Equivalent length	Head loss	Total head m
3" elbow	138	4	0.031	0.248
4"X3" REDUCER		2	0.031	0.124
3" straight pipe		5	0.031	0.310
tee 3"x2"x3"		2	0.031	0.124
21/2" straight pipe		4	0.08	0.640
tee 21/2"x2"x21/2"		2	0.08	0.320
21/2" straight pipe		4	0.04	0.320
tee 21/2"x2"x21/2"		2	0.04	0.160
2" straight pipe		4	0.035	0.280
2" elbow		2.5	0.035	0.175
2" straight pipe		1.5	0.035	0.105
2" tee		1	0.035	0.070
2" straight pipe		3.5	0.02	0.140
tee 2"x11/4"x2"		2	0.02	0.080
2" straight pipe		1	0.02	0.040
2" 45 elbow		1	0.02	0.040
2" straight pipe		5	0.02	0.200
tee 11/4"x3/4"x11/4"		1	0.02	0.040
straight pipe 11/4"		3.5	0.02	0.140
tee 11/4"x3/4"x11/4"		1	0.02	0.040
11/4"X1" REDUCER		1	0.02	0.040
reducer 11/4"x1"		1	0.02	0.040
1" straight pipe		3	0.02	0.120
tee 1"x3/4"x1"		1	0.02	0.040
3/4" straight		2.5	0.02	0.100
3/4" elbow		1	0.02	0.040
tee 3/4"		1	0.02	0.040
3/4" gate valve		8	0.02	0.320
3/4" strainer		3	0.02	0.120
3/4" drv valve		3	0.02	0.120
3/4" union		1	0.02	0.040
3/4" motorised valve		3	0.02	0.120

We can see at figure (4.6) every section of chilled water pipe line has its own equivalent length, for example we got (Tee 3"x2"x3") installed on primary pump pipe line. Equivalent length for this Tee is (2), with head loos equal to 0.031. [12]

Total Pump Head = Equivalent length X Head loss \dots Eq (4.1)

Total head (Tee 4"x3"x4") = 2 x 0.031 x 2 = 0.124 m.

And so on we got Total head for all secondary pump pipe lines equal to 4.736.

By adding Factor of Safety of 15%, residual pressure (5m), and drop during FCU's (1.5m)

Total Head (Secondary pump) = 12.2 m

Note: fittings equivalent length table available within the Index.

To calculate the flow rate of secondary pump; each of building floors indoors units water flow rate was calculated, then accumulated sum was found.

Ground Floor				First Floor			
Space	Indoor unit code#	Indoor unit air flow CFM	Indoor unit air flow CFM	Space	Indoor unit code#	Indoor unit air flow CFM	Indoor unit air flow CFM
Clinic Room1	HWCF06	600	3.63	Class1	HWCF08	800	4.84
Clinic Room2	HWCF06	600	3.63	Class2	HWCF10	1000	6.10
Clinic Room3	HWCF06	600	3.63	Class3	HWCF08	800	4.84
Clinic Room4	HWCF06	600	3.63	Staff Room	HWCF12	1200	7.23
Multisensory Room	HFCA14	1400	12.20	Meeting Room	HWCF08	800	4.84
Intervention Room	HWCF10	2000	6.10	Adminstration	HWCF06	600	3.63
Waiting Room	HFCA14	1400	12.20	Secretsry and waiting area	HWCF08	800	4.84
Lobby	-	-	-	Pantry	-	-	-
-	-	-	-	Lobby	HFCA12	1200	10.93
Total	0	6600	51.12	total	0	7200	47.25

Table (4.7): Ground and First floors indoor units' water flow rate.

Table (4.8): Second and Third floors indoor units water flow rate.

Second				Third			
Floor				Floor			
Space	Indoor unit code#	Indoor unit air flow CFM	Indoor unit air flow CFM	Space	Indoor unit code #	Indoor unit air flow CFM	Wate r flow rate GPM
Music Room	HWCF08	800	4.84	Meeting Room	HWCF10	1000	6.10
LD Room	HWCF12	1200	7.23	Admin Office1	HWCF08	800	4.84
Art Room	HWCF12	1200	7.23	Admin Office2	HWCF06	600	3.63
Library	HWCF08	800	4.84	Admin Office3	HWCF06	600	3.63
Resource and Service	HWCF03	300	1.83	Admin Office4	HWCF08	800	4.84
Lobby	HFCA12	1200	10.93	Research Room	HWCF06	600	3.63
Pantry	-	-	-	Lobby	HFCA12	1200	10.93
-	-	-	-	Pantry	-	-	-
total	0	5500	36.9	Total	0	5600	37.6

Table (4.7) shows ground and first floors indoor units' water flow rate, while table (4.8) shows second and third floors indoor units water flow rate.

Ground floor water flow rate = 51.00 GPM

First floor water flow rate = 47.00 GPM

Second floor water flow rate = 37.00 GPM

Third floor water flow rate = 37.00 GPM

<u>Total water flow rate</u> = Ground floor water flow rate + First floor water flow rate + Second floor water flow rate + Third floor water flow rate = 51.00 + 47.00 + 37.00 + 37.00 = 173.00 GPM.

Primary pump (constant volume) for circulating chilled water through outdoor unit is operating with constant speed within chiller loop.

To select primary pump, total head was calculated as following:

Description	Flow	Equivalent	Head	Total
Description	(GPM)	length	loss	head m
4" flexible connector	172.8	67	0.0015	0.201
straight pipe	172.8	12	0.0015	0.036
tee 4"x3"x4"	172.8	7	0.0015	0.021
tee 4"x3"x4"	172.8	7	0.0015	0.021
elbow 4"	172.8	3.5	0.0015	0.011
elbow 4"	172.8	3.5	0.0015	0.011
4" CHILLER STRAINER	172.8	20	0.0015	0.060
4" BUTTER FLY valve	172.8	40	0.0015	0.120
4" BUTTER FLY valve	172.8	40	0.0015	0.120
4" DRV	172.8	40	0.0015	0.120
PUMP VALVE	172.8	40	0.0015	0.120
PUMP STRAINER	172.8	20	0.0015	0.060
PUMP FLEXIBLE CONN	172.8	70	0.0015	0.210
PUMP STRAINER	172.8	20	0.0015	0.060
DROP DURING CHILLER	172.8			2.700

Table (4.9): Primary pump total head calculations

According to Table (4.9), Total fittings head = 3.9 m

By adding Factor of Safety of 15%, and residual pressure (5 m).

Total Head (primary pump) = 9.5 m

Note: fittings equivalent length table available within the Index.

Primary pump water flow rate equal to the sum of (GF, 1^{st} , 2^{nd} , 3^{rd}) floors water flow rate.

Primary pump water flow rate = 172.8 GPM.

Figure (4.6) shows both primary and secondary pumps installation over the roof and also shows the design data.

Both primary and secondary pumps were selected based on two parameters (Flow 'GPM', Head 'm'):

Primary pump: Flow = 172 GPM, Head = 9.5 m Secondary pump: Flow = 172 GPM, Head = 12.2 m

Figure (4.5): Primary and secondary pumps installation

These data were sent to the available pumps market in West bank, and we got the best offer from KSB Company sales engineer as shown in figure (4.7) for primary pumps, and figure (4.8) for secondary pumps.

- 1- 2x Inline primary pumps with actual flow rate = $43.31 \text{ m}^3/\text{h}$, actual Head = 14.65m, and serial number = 065-065-250-GG.
- 2- 2x Inline secondary pumps with actual flow rate = $39.41 \text{ m}^3/\text{h}$, actual Head = 9.22m, and serial number = 065-065-160-GG.

Data sheet	Primary pump	KSE	з Б.
Customer item no.: Communication dated: Doc. no.: Quantity: 1 ETL 065-065-160 GG AV66 Inline pump	D200154 BKSBIE3	Number: Item no.: Date: 30 Page: 1 / Version no	ES 5044013 : 100 /04/2017 / 5 :: 1
Operating data Requested flow rate Requested developed head Pumped medium Ambient air temperature Fluid temperature Fluid density	40.00 m ³ h 9.50 m Antifreeze on ethylene glycol base, inhibited, closed system, e.g. Antifrogen N or similar products Cooling water with antifreeze- concentration 30% (pH >= 7.5) Not containing chemical and mechanical substances which affect the materials 20.0 °C 1040 kg/m ³	Actual flow rate Actual developed head Efficiency MEI (Minimum Efficiency Index) Power absorbed Pump speed of rotation NPSH required Permissible operating pressure	39.41 m³/h 9.22 m 77.7 % ≥ 0.70 1.33 kW 1451 rpm 1.46 m 16.00 bar.g
Fluid viscosity Suction pressure max. Mass flow rate Max. power on curve Min. allow. flow for continuous stable operation Shutoff head	2.22 mm²/s 0.00 bar.g 11.39 kg/s 1.70 kW 6.97 m³/h 11.29 m	Discharge press. Min. allow. mass flow for continuous stable operation Max, allow. mass flow Design	0.94 bar.g 2.01 kg/s 21.45 kg/s Single system 1 x 100 % Tolerances to ISO 9906 Class 38; below 10 kW acc. to paragraph 4.4.2

Note: official request available at the appendix. (Appendix 7)

Figure (4.7): Primary pump specification. [Appendix 8]

Figure (4.8): Secondary pump specification. [Appendix 9]

4.2 Air to water chiller system Electrical consumption

Outdoor unit, indoor units, and both primary and secondary pumps are the main components that consume the large amount of electricity in air cooled system.

The main component within the outdoor unit system that consumes the most amount of energy is the compressor, but indoor units fans consumes the largest amount, while in the primary and secondary pumps the impellers need the most energy input when it converted to torque.

- Outdoor units

Relating to manufacturer catalogue for outdoor unit CGAF-C60; one outdoor unit was chosen as shown in figure (4.1), the electrical consumption equal to <u>56.8 kW</u>, and EER equal to 13. (Appendix 5)

86

*Assuming that operating hours per year = 700 hours [8 hours/day X 22 days/month X 4 months /year]

By applying equation (1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption = 56.8 kW X 700 hrs = 39760 kWh

- Indoor units

Indoor units distributed inside ANCI floors are divided into two types; one is ductable type, and the others are decorative type.

Figure (4.9) shows full electrical description for ducted indoor units from the main manufacturer catalogue. While figure (4.10) shows full electrical description for decorative type based on Trane manufacturer catalogue.

TRANE

Performance Data

Coolin	ng Capacity	y:kW			Cooling	Rows:3				SH : Sensible Cooling Capacity, kW					
EAT : 26.0 °C/ 60.0% Motor F							: 50Hz			WPD : Water Pressure Drop, M					
ESP:0Pa TH:To						al Cooling	Capacity	, kW		WFR :	Water Flo	w Rate, L	./s		
				-					-						
	Nominal	WTR					Enter	ring Wate	r Temper	rature					
Model	Airflow	CCI		5	'C			7	°C	9°C					
	(CMH)	()	SH	TH	WFR	WPD	SH	TH	WFR	WPD	SH	TH	WFR	WPI	
		3.0	3.19	5.17	0.41	7.60	2.86	4.43	0.35	5.74	2.54	3.65	0.29	4.0	
03 509	5.0	2.92	4.55	0.22	2.47	2.59	3.78	0.18	1.77	2.30	3.02	0.14	1.1		
		7.0	2.62	3.85	0.13	1.02	2.32	3.10	0.11	0.69	2.06	2.39	0.08	0.44	
~	0.70	3.0	4.81	7.81	0.62	21.93	4.32	6.72	0.53	16.63	3.84	5.57	0.44	11.8	
04	0/8	5.0	4.40	7.02	0.33	7.30	3.97	5.87	0.28	0.31	3.52	4./4	0.23	3.0	
		2.0	4.08	0.13	0.21	3.20	3.03	3.02	0.17	2.23	3.22	3.97	0.14	1.4	
	1010	5.0	0.32	0.00	0.08	9.30	4.70	7.30	0.08	7.00	2.05	6.00	0.46	4.8	
00	1010	2.0	4.00	7.00	0.30	3.04	4.33	6.27	0.30	2.1/	3.60	3.00	0.24	1.7	
	├	0.1	4.39	0.41	0.22	1.20	3.90	0.10	0.18	0.80	3.40	3.99	0.14	0.0	
	1257	3.0	0.92	11.15	0.89	17.08	0.23	9.00	0.70	13.33	0.00	7.88	0.03	9.3	
uo	U8 1357	5.0	0.38	9.90	0.47	0.60	5.09	0.24	0.38	4.10	0.00	6.63	0.32	2.0	
		2.0	0.01	0.00	0.28	2.40	0.19	0.97	0.24	1.72	9.02	0.40	0.19	2.5	
10	0 1696	5.0	7.60	11.40	0.55	1.62	7.30	0.54	0.91	3.04	5.00	7.52	0.75	2.0	
10		7.0	6.66	0.27	0.35	0.57	5.05	7.15	0.40	0.26	5.80	5.15	0.30	0.7	
		3.0	10.24	18.58	1.32	0.07	0.20	14.14	1.12	6.02	0.12	11.60	0.10	4.2	
12	12 2036	5.0	9.41	14.41	0.60	2.66	9.30	11.02	0.57	1.03	7.48	9.52	0.62	1.2	
12 2030	7.0	8.43	12.03	0.41	1.03	7.49	9.56	0.33	0.68	8.62	7.25	0.25	0.4		
		3.0	11 19	17.92	143	14 15	10.06	15.06	1.33	11.51	8.93	13.15	1.05	8.2	
14	2366	5.0	10.30	16 10	0.77	4.23	9.17	13.67	0.65	3.32	8.04	11.00	0.53	2.2	
	20000	7.0	9.35	14.08	0.48	2.15	8.21	11.40	0.30	1.40	7.13	8.89	0.30	0.0	
pec./	Input Po	wer				03	04		16	08	10	1	2	14	
ominal	Airflow (C)	MHD)				500	679	10	11.0	1357	1808	20	28	2266	
put Pov	ver (Watts)					000	0/0			1001	1080	20	~~	2000	
-Static	Motor					88	110	1	38	180	218	25	50	317	
ormal N	Aoter					73	82	1	14	132	162	10	96	226	
wailable	e with 115	//60Hz, 2	20V/50H	z, or 220\	//60Hz										
ptions:															
Heat C	Capacity Ty	pe													
 Hot 	Water 1Ro	w (kW)				2.86	3.71	4	95	6.16	6.91	7.	94	9.26	
						EWT=55	°C; EAT=2	1°C; WFR	=0.3L/S (I	Hot Water B	EWT must	be below	60°C)		
 Electrony 	tric Sheat	ned Elem	ent			1.0	1.5		2	3	3.5		4	. 4	
-						Available	with high	temperat.	ire cutout	(Electric he	eater start	s when the	e I 🛶 is be	elow 27	
The second se	n/Filters					Return a	r plenum i	with filters	-washable	e toarn or al	umnum				

Figure (4.9): Trane Electrical details for ducted indoor units HFCA. (Appendix 5)

	General Data HFCE 50 Hz											
Product Specification		1184844	URABAS	URABAA	UPARIA	UPAPAR			1154544			
MODEL Dated Valle (Dt (Va		HFCE04	HFCEU6	HFCEU8	HFCE10	HFCE12	HFCE14	HFCE16	HFCE18	HFCE20		
Rated - Volts/Ph/Hz		220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50		
System Data	,	400							4 000			
Nominal Airflow	ctm	400	600	800	1,000	1,200	1,400	1,600	1,800	2,000		
Cooling Capacity	Btu/h	12,000	18,000	24,000	30,000	36,000	42,000	48,000	54,000	60,000		
Water Injet Connection Size	in i	5/8 5/0	5/8 E/0	5/8 E/0	5/8 E/0	5/8 5/9	3/4	3/4	3/4	3/4		
Water Outlet Connection Size	in	3/8	3/8	3/8	3/8	3/8	3/4	3/4	3/4	3/8		
Water Connection Size		Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed		
INDOOR COIL												
Fin Type					Corrug	ate						
Pins per inch*			10		10							
3-KOW COII		12	12	15	18	18	14	14	14	14		
4-KOW COII		14	15	16	15	10	16	10	10	10		
Drain Connection Size	In	1/2	1/2	1/2	1/2	1/2	1/2	1/2	4/2	42		
FAN					Dudle I-I		0					
Fan Type No. usod		2	2	,	Double Ini	2 Centrirugai Forward	Curved Fan	2	2	,		
No. used		Direct	Direct	Direct	2 Dimet	Z Direct	Z Diseat	Direct	2 Dimet	Z Dimet		
FAN MOTOR (STANDARD)												
Motor Power	W	13	47	59	162	186	394	394	453	453		
nor or opeca												
Qty x (RLA/LRA)		1 x (0.20/0.35)	1 x (0.49/0.71)	1 x (0.56/0.69)	1 x (1.36/2.31)	1 x (1.35/2.41)	1 x (3.33/5.08)	1 x (3.33/5.08)	1 x (0.43/6.98)	1 x (0.43/6.98		
DIMENSION (HxWxD)												
Uncrated with plenum (Net)	mm	265 x 824 x 510	278 x 940 x 510	278 x 1,117 x 510	300 x 1,087 x 608	300 x 1,240 x 608	433 x 1,095 x740	433 x 1,095 x740	433 x 1,248 x 670	433 x 1,248 x 6		
WEIGHT												
3-Row Uncrated (Net)	kg	26	30	36	42	46	54	54	62	62		
4-Row Uncrated (Net)	kg	27	32	38	44	48	57	57	66	66		

Figure (4.10): Trane Electrical details for Decorative indoor units HFCE. [Appendix7]

	Ground Floor								
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM	Water flow rate GPM	Motor power Watt
Clinic Room1	14.60	4.20	decorative	1	4.20	HFCE06	600	3.63	47
Clinic Room2	15.00	4.20	decorative	1	4.20	HFCE06	600	3.63	47
Clinic Room3	12.25	4.20	decorative	1	4.20	HFCE06	600	3.63	47
Clinic Room4	12.25	4.20	decorative	1	4.20	HFCE06	600	3.63	47
Multisens ory Room	40.40	16.50	ductable	1	16.50	HFCA14	1400	12.20	317
Interventi on Room	45.30	4.20	decorative	2	8.40	HFCE10	2000	12.20	162
Waiting Room	28.00	16.50	ductable	1	16.50	HFCA14	1400	12.20	317
Lobby	4.60	0	ductable	0	0	-	-	-	-
Total	172.40	54			58.20	0	7200	51.12	984

 Table (4.10): Ground floor indoor units with electrical specification.

	First Floor								
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM	Water flow rate GPM	Motor power Watt
Class1	23.00	6.62	decorative	1	6.62	HFCE08	800	4.84	59
Class2	26.10	7.70	decorative	1	7.70	HFCE10	1000	6.10	162
Class3	24.60	7.20	decorative	1	7.20	HFCE08	800	4.84	59
Staff Room	35.40	10.60	decorative	1	10.60	HFCE12	1200	7.23	186
Meeting Room	21.60	5.70	decorative	1	5.70	HFCE08	800	4.84	59
Administr ation	17.40	5.10	decorative	1	5.10	HFCE06	600	3.63	47
Secretary and waiting area	17.50	5.80	decorative	1	5.80	HFCE08	800	4.84	59
Pantry	4.60	0	ductable	0	0	-	-	-	-
Lobby	63	12.5	ductable	1	12.5	HFCA12	1200	10.93	250
total	233.2	61.22			61.22	0	7200	47.25	881

 Table (4.11): First floor indoor units with electrical specification.

	Second Floor								
Space	Area m ²	Load kW	indoor unit type	indoor units #	total load kW	Indoor unit code#	Indoor unit air flow CFM	Water flow rate GPM	Motor power Watt
Music Room	23.00	6.20	decorative	1	6.20	HFCE08	800	4.84	59
LD Room	31.90	9.50	decorative	1	9.50	HFCE12	1200	7.23	186
Art Room	31.70	9.50	decorative	1	9.50	HFCE12	1200	7.23	186
Library	20.60	6.00	decorative	1	6.00	HFCE08	800	4.84	59
Resource and Service	19.40	2.90	decorative	1	2.90	HFCE03	300	1.83	13
Lobby	63.00	12.50	ductable	1	12.50	HFCA12	1200	10.93	250
Pantry	4.60	0	ductable	1	0	-	-	-	-
total	194.2	46.6			46.6	0	5500	36.9	753

Table (4.12): Second floor indoor units with electrical specification.

Table (4.13): Third floor indoor units with electrical specification.

	Third Floor								
Space	Area m ²	Load kW	Indoor unit type	Indoor units #	Total load kW	Indoor unit code#	Indoor unit air flow CFM	Water flow rate GPM	Motor power Watt
Meeting Room	28.40	8.30	decorative	1	8.30	HFCE10	1000	6.10	162
Admin Office1	19.60	5.70	decorative	1	5.70	HFCE08	800	4.84	59
Admin Office2	17.50	5.10	decorative	1	5.10	HFCE06	600	3.63	47
Admin Office3	17.50	5.10	decorative	1	5.10	HFCE06	600	3.63	47
Admin Office4	19.40	5.70	decorative	1	5.70	HFCE08	800	4.84	59
Research Room	16.30	4.80	decorative	1	4.80	HFCE06	600	3.63	47
Lobby	63.00	12.50	ductable	1	12.50	HFCA12	1200	10.93	250
Pantry	4.60	0	ductable	0	0	-	-	-	-
Total	186.30	47.20			47.20	0	5600	37.60	671

Indoor unit's electrical consumption for all floors was calculated Related to tables (4.9, 10, 11, and 4.12) as following:

Total electrical consumption at ANCI for Indoor units = GF electrical consumption + 1^{st} electrical consumption + 2^{nd} electrical consumption + 3^{rd} electrical consumption = 984 + 881 + 753 + 671 = 3289Watts

*Assuming that operating hours per year = 700 hours [8 hours/day
X 22 days/month X 4 months /year]

By applying equation (1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption (Indoor units) = 3.289 kW X 700 Hrs = 2302 kWh

-Pumps (Primary and secondary)

Related to KSB official offer for both primary and secondary pumps shown in figure (4.7), and figure (4.8). Appendix (Appendix 8) The electrical consumption as the following:

1- Inline primary pump (065-065-250-GG) with electrical consumption = 1.33 kW.

2-Inline secondary pump (065-065-160-GG) with electrical consumption = 2.46 kW.
<u>*Assuming that operating hours per year = 700 hours [8 hours/day</u>
<u>X 22 days/month X 4 months /year]</u>

By applying equation (1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption (Primary pump) = 1.33 kW X 700 Hrs = <u>931 kWh</u>

Annual energy consumption (Secondary pump) = 2.46 kW X 700 Hrs = $\underline{1722 \text{ kWh}}$

- Primary and Secondary pumps:

Total power consumed (Primary plus secondary)= 1.33 + 2.46 = 3.79 kW

<u>*Assuming that operating hours per year = 700 hours [8 hours/day</u>
<u>X 22 days/month X 4 months /year]</u>

By applying equation (3.1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption (Primary plus secondary pumps) = $3.79 \times 700 = 2653 \text{ kWh}$

Chapter Five

Economic comparison between VRF and Air to water chiller system

Chapter Five

Economic comparison between VRF and Air to water chiller system

5.1 VRF economical part

In this section all system parts economically studied, Indoor units, outdoor units, piping system, ducts, and monitoring system.

Every system part has its own capital cost and there is some parts which time depending have running cost.

Economical study was carried out along 20 years, and all prices according to manufacturer official prices (Toshiba). (Appendix 1)

- Capital costs of <u>outdoor units</u> for VRF system

GF and 1^{st} Floors served by one outdoor unit of 42HP heat pump capacity with capital cost = 22370 \$.

 2^{nd} and 3^{rd} floors served by one outdoor unit of 32HP heat pump capacity with capital cost = 19740 \$.

- Running cost of outdoor units for VRF system

- Considering that the electrical cost of 1 kWh (grid supplied) = 0.17 \$ (3 Phase).

42HP heat pump in summer power input (40.50) kW

32HP heat pump in summer power input (28.60) kW

according to the assumption of operating hours = 700 hours. Overall energy consumption by 42HP and 32HP outdoor unit during the year = 28350 + 20020 = 48370 kWh/year.

And a total running cost of = 48370 X 0.6 = 29022 NIS/year = <u>8292</u> <u>\$/year</u>

- Capital cost of indoor units for VRF system

Related to figure (3.5) and figure (3.6), we got 33 indoor units at ANCI building and referring to the official offer for VRF indoor unit price, the total capital cost for 33 indoor units equal = 36214 \$. Note: Official offer for indoor unit price available within the (Appendix 2).

- Running cost of indoor units for VRF system

GF and 1^{st} floors indoor units power consumption = $(1 \times 0.172 + 2 \times 0.198 + 5 \times 0.043 + 6 \times 0.043 + 3 \times 0.05 = 1.191 \text{ kW})$

GF and 1^{st} floors indoor units energy consumption= power consumption kW X operation hours per year = 1.191 X 700 = 833.00 kWh/year

By applying equation (3.3):

Running cost of GF and 1st floors indoor units = Energy consumption per year X unit price of kWh =833.7 X 0.6/3.5 = 142 \$/year. 2^{nd} and 3^{rd} floors indoor units power consumption = $(2 \ge 0.172 + 1 \ge 0.021 + 6 \ge 0.043 + 7 \ge 0.043) = 0.924 \text{ kW}.$

By applying equation (3.3):

 2^{nd} and 3^{rd} floors indoor units energy consumption= power consumption kW X operation hours per year = 0.924 X 700 = <u>646.8</u> <u>kWh/year.</u>

Running cost of 3^{rd} and 2^{nd} floors indoor units = Energy consumption per year X unit price of kWh =646.00 X 0.60 = <u>112 \$/year</u>.

Total capital cost of (VRF- 42HP and 32HP heat pumps) = 22370 + 19740 = 42110 \$.

- Total capital cost for (VRF 33 indoor units) equal = 36214 \$.

- Total running cost of (VRF Out door units) per year = <u>8292 \$/year</u>

- Total running cost of (VRF Indoor units) per year =142 + 112 = 254 <u>\$/year</u>

-Piping network capital cost for VRF system:

The pipes used at ANCI building network was made of isolated copper, the pipes network was designed to cover all zones and serving all desired spaces.

Table (5.1) shows the full description of pipes network at ANCI building project with all pipes dimension and capital costs.

Pipe Diameter	Total	Unit Price	Total unit
inch	Lenghth m	\$/m	lenghth price \$
1/4"	50.50	1.50	75.75
3/8"	50.50	2.30	119.00
1/2"	72.00	3.00	219.00
5/8"	60.50	4.40	268.00
3/4"	18.50	5.80	108.00
7/8''	36.50	8.30	303.00
1 1/8"	24.00	8.30	199.00
1 3/8"	16.50	11.10	183.00
1 5/8"	24.00	14.70	353.00

Table (5.1): Pipes network dimensions and capital costs.

Every pipe branch has its own dimensions in inches, the capital cost of pipes is depending on the dimension of the pipe section so that every pipe diameter has its own capital cost as clear in table (5.1). [Based on local market prices 2017]

Total capital cost of pipes network = $\sum (\text{Ln X Pn}) \dots \text{Eq} (5.1)$

Where:

n: Pipe diameter

Ln: Total length of pipe diameter n

Pn: Unit price of pipe diameter n

By applying equation (5.1):

Total capital cost of pipes network = 1830 \$.

Table (5.2) shows all VRF system capital and running costs for all system parts.

	VRF system	
Part name	Fixed cost \$	Running cost \$
Outdoor units	42110	8292
Indoor units	36114	254
Piping system	1830	0
Total	80054	8564

Table (5.2): VRF system parts capital and running costs.

The total Capital Cost of VRF parts = 80054 \$.

The total running cost of VRF parts = 8564 \$.

- Degree Days Method (DD)

- Using Degree Days method (DD) to find the real operating hours for the air conditioning system = Average summer months temperatures – (System temperature on-off) = 28.09 - 18.3 = 9.79 C° [Appendix 13]

Energy consumption E (By degree days method)= $P_{cooling} X 8$ hours/day X DD^o X C_v / T_i - T_o ... Eq(5.2) [16].

Where: $P_{cooling}$ = Air conditioning system power consumption kw Cv: Correction factor = 0.77 [16]

T_i: Desire inside temperature, T_o: Desire outside temperature

E = 71.2 kW X 8h/day X 24Day/month X 9.79 X 0.77/ (35-24) = 37473 kwh /summer season

Running cost according to DD method = 37473 kWh X 0.17\$/kWh= 6424 \$/season

5.2 Chiller air to water system economical part

Economical part was studied for all air cooled parts, and the study covered both capital costs and running costs for every part in air cooled system such as outdoor unit, indoor units.

Every system part has its own capital cost and there is some parts which is time depending have running cost.

Economical study was carried out along 20 years, and all prices according to manufacturer official prices (**Daikin**). (Appendix 10)

Figure (5.1): Air cooled system quotation for indoor and outdoor units. [Appendix 10]

- Capital costs of Outdoor units for Air cooled system

GF, 1^{st} , 2^{nd} , and 3^{rd} Floors served by one outdoor unit of 61.4 Tons capacity, and relating to figure(4.13) the capital cost = 47518 \$

- Running costs of Outdoor units for Air cooled system

- Considering that the electrical cost of 1 kWh (grid supplied) = 0.6 NIS (3
 Phase).
- With an assumption of 700 hours operation time (8h/day 22 day/month 4months/year)
- 61.4 Tons Chiller power input (56.8) kWh, and EER equal to 13.

By assuming that operating hours per year = 700 hours

By applying equation (3.1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption = 56.8 kW X 700 Hrs = 39760 kWh

Running cost of 61.4 Tons outdoor unit per year = overall energy consumption kWh/year X 1 kWh cost \dots Eq(3.3)

39760 X 0.6/3.5 = <u>6816 \$</u>/year

- Capital costs of indoor units for Air cooled system

Related to tables (5.3, 5.4, 5.5, 5.6), we got 30 indoor units at ANCI building spreading air into spaces, referring to the official offer for indoor unit quotation, the total capital cost for 30 indoor units equal = 41906 \$ = (**31870 \$**.

After discount made by the manufacturer sales engineer). Note: Official offer for indoor unit price available within (Appendix10).

Ground Floor							
Space	indoor unit type	indoor units #	Indoor unit code#	Indoor unit air flow CFM	Motor power Watt	Unit Price \$	Total Price \$
Clinic Room1	decorative	1	HFCE06	600	47	916	916
Clinic Room2	decorative	1	HFCE06	600	47	916	916
Clinic Room3	decorative	1	HFCE06	600	47	916	916
Clinic Room4	decorative	1	HFCE06	600	47	916	916
Multisensory Room	ductable	1	HFCA14	1400	317	2706	2706
Intervention Room	decorative	2	HFCE10	1000	162	916	1832
Waiting Room	ductable	1	HFCA14	1400	317	2706	2706
Lobby	ductable	0	-	-	-	-	-
Total			0	6200	984	9992	10908

Table (5.3): Ground floor indoor units with electrical specification and unit prices for air to water chiller system.

Table (5.4): First floor indoor units with electrical specification and unit prices for air to water chiller system.

First Floor							
Space	indoor unit type	indoor units #	Indoor unit code#	Indoor unit air flow CFM	Motor power Watt	Unit Price \$	Total Price \$
Class1	decorative	1	HFCE08	800	59	1234	1234
Class2	decorative	1	HFCE10	1000	162	1392	1392
Class3	decorative	1	HFCE08	800	59	1234	1234
Staff Room	decorative	1	HFCE12	1200	186	1512	1512
Meeting Room	decorative	1	HFCE08	800	59	1234	1234
Adminstration	decorative	1	HFCE06	600	47	1234	1234
Secretsry and waiting area	decorative	1	HFCE08	800	59	1234	1234
Pantry	ductable	0	-	-	-	-	-
Lobby	ductable	1	HFCA12	1200	250	2706	2706
total			0	7200	881	11780	11780

Second Floor							
Space	indoor unit type	indoor units #	Indoor unit code#	Indoor unit air flow CFM	Motor power Watt	Unit Price \$	Total Price \$
Music Room	decorative	1	HFCE08	800	59	1234	1234
LD Room	decorative	1	HFCE12	1200	186	1512	1512
Art Room	decorative	1	HFCE12	1200	186	1512	1512
Library	decorative	1	HFCE08	800	59	1234	1234
Resource and Service	decorative	1	HFCE03	300	13	752	752
Lobby	ductable	1	HFCA12	1200	250	2706	2706
Pantry	ductable	1	-	-	-	-	-
total			0	5500	753	8950	8950

Table (5.5): Second floor indoor units with electrical specification and unit prices for air to water chiller system.

Table (5.6): Third floor indoor units with electrical specification and unit prices for air to water chiller system.

Third Floor							
Space	Indoor unit type	Indoor units #	Indoor unit code#	Indoor unit air flow CFM	Motor power Watt	Unit Price \$	Total Price \$
Meeting Room	decorative	1	HFCE10	1000	162	1392	1392
Admin Office1	decorative	1	HFCE08	800	59	1234	1234
Admin Office2	decorative	1	HFCE06	600	47	1234	1234
Admin Office3	decorative	1	HFCE06	600	47	1234	1234
Admin Office4	decorative	1	HFCE08	800	59	1234	1234
Research Room	decorative	1	HFCE06	600	47	1234	1234
Lobby	ductable	1	HFCA12	1200	250	2706	2706
Pantry	ductable	0	-	-	-	-	-
Total			0	5600	671	10268	10268

104

- Running costs of Indoor units for Air cooled system

Total power consumption by Indoor units at ANCI = GF power consumption + 1st power consumption + 2nd power consumption + 3^{rd} power consumption = 984 + 881 + 753 + 671 = <u>3289 Watts</u>

*With an assumption of operating hours per year = 700 hours

8 hours/day X 22 days/month X 4 months/year

By applying equation (3.1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption = 3.289 KW X 700 Hrs = 2302 kWh

By applying equation (3.3):

Running cost of GF, 1^{st} , 2^{nd} and 3^{rd} floors <u>indoor</u> units = Energy consumption per year X unit price of kWh =2302 X 0.6 = <u>394 \$/year</u>.

- Capital cost for Air cooled system pumps

Air cooled system got two pump lines, one is primary with two pieces in parallel and the other line is secondary with two pieces in parallel also. So the capital cost was taken for all pumps in air cooled system, four pumps, two are online, and the others are standby.

Related to figure (5.2), primary and secondary pumps capital cost was calculated as the following:

Capital cost for two primary pumps = 7400 \$

Capital cost for two primary pumps = <u>9240 </u>\$

Running cost for primary pump was calculated based on one pump only since the other primary pump will be offline and doesn't absorb energy.

Related to KSB official offer for both primary and secondary pumps shown in figure (4.11), and figure (4.12). The electrical consumption as the following:

- 1- Inline primary pump (065-065-250-GG) with electrical consumption = 1.33 kW.
- 2-Inline secondary pump (065-065-160-GG) with electrical consumption = 2.46 kW.
- Assuming that the operating hours per year = 700 hours

Juston		Ker no 20	- 2011	ALCO AND DO	
Addres	s: Ramallah – West Bank	Currency: El	JRO	VA.T: no	t include
hone	: 0592854808	Payment: 809	% in advance	20% after deli	very
mail :	eng.ameer.ps@gmail.com	Validity: 30 d	ays		
tem#	Descriptio	n	QTY	Unit Price	Line Total
1	ETL 065-065-250 GG AV66D2003 Inline pump Actual flow rate 43.31 m³/h Actual developed head 14.65 m	IO4 BK\$BIE3	2	4620	9240
2	ETL 065-065-160 GG AV66D2001 Inline pump Actual flow rate 39.41 m³/h Actual developed head 9.22 m	I54 BK\$BIE3	2	3700	7400
				TOTAL	16640

Figure (5.2): Primary and secondary pumps official quotation. [Appendix 11]

By applying equation (3.1) Annual energy consumption = over all

electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption (Primary pump) = 1.33KW X 700 Hrs =

<u>931 kWh</u>

Annual energy consumption (Secondary pump) = 2.46 kW X 700

Hrs = <u>1722 kWh</u>

- Primary and Secondary pumps:

Total power consumed (Primary plus secondary)= 1.33 + 2.46 =3.79 kW Assuming that the operating hours per year = 700 hours

By applying equation (3.1) Annual energy consumption = over all electrical consumption X Total operation hours per year \dots Eq(3.1)

Annual energy consumption (Primary and secondary) = 3.79×700 = <u>2653 kWh</u>

By applying equation (3.3):

Running cost of Primary and secondary pumps (online pumps only) = Energy consumption per year X unit price of kWh =2653 X 0.6/3.5 = 455/year.

- Duct work capital cost for Air cooled system:

Ducts was designed to cover all zones with different dimensions spreading cooled air all over desired spaces.

Isolated rectangular duct was chosen in ANCI building project, and all duct branches quantities was measured in order to find to capital cost. Table (5.7) shows the full description of all rectangular dimensions and costs.

ITEM			Duct size	-	Duct area = {(H	+W)x2}L	Unit
NO	atu	Width	Height	Length	Surface Area		Price
110.	qıy	(mm)	(mm)	(mm)	(m ²)	type	\$
1	3	350	300	5000	19.50	isolated	594
2	3	250	250	5000	15.00	isolated	457
3	3	500	300	5500	26.40	isolated	805
4	3	350	300	8500	33.15	isolated	1011
5	3	500	300	2000	9.60	isolated	292
6	2	350	200	10000	22.00	isolated	671
7	2	250	200	4000	7.20	isolated	219
8	1	500	300	3500	5.60	isolated	170
9	1	350	200	5000	5.50	isolated	167
10	2	250	200	7000	12.60	isolated	384
11	1	600	350	5000	9.50	isolated	289
12	1	300	200	7000	7.00	isolated	213
13	1	350	300	7500	9.75	isolated	297
14	1	350	200	9000	9.90	isolated	301

Table (5.7): Duct work dimension and costs all over ANCI building.

Related to table (5.7) the area of duct was calculated using equation Duct area = [(High + Width) x 2] x Length ... Eq (5.3).

The cost of 1 m^2 area of isolated duct = 30.5 \$. [Based on local market prices 2017]

Total capital cost of isolated ducts = Total area of isolated duct $m^2 X$ price of 1 m^2 of isolated duct ... Eq (5.4).

All unit prices was calculated and then the summation was found.

Total duct work capital cost = **5877 \$**.

Table (5.8) shows all Air cooled system capital and running costs for all system parts.

	Air cooled system	
Part name	Fixed cost \$	Running cost \$
Outdoor units	47518	6816
Indoor units	31870	394
Duct work	5877	0
Pumps	16640	455
Total	101905	7665

Table (5.8): Air cooled system parts capital and running costs.

The total Capital Cost of VRF parts = 101905 \$.

The total running cost of VRF parts = 7665 \$.

-Degree Days Method (DD)

- Using Degree Days method (DD) to find the real operating hours for the air conditioning system = Average summer months temperatures – (system temperature on-off) = $28.09 - 18.3 = 9.79 \text{ C}^{\circ}$ [Appendix 13]

Energy consumption E (Degree Days Method)= $P_{cooling} X 8$ hours/day X DD^o X C_v / T_i - T_o ... Eq(5.2) [16]

Where: $P_{cooling} = Air$ conditioning system power consumption kw

Cv: Correction factor = 0.77 [16]

T_i: Desire inside temperature, T_o: Desire outside temperature

E = 63.87 kw X 8h/day X 24Day/month X 9.79 X 0.77/ (35-24) = <u>33615</u> <u>kwh /summer season</u>

Running cost according to DD method = 37473 kWh X 0.17\$/kWh= 5714 \$/season

5.3 Economical comparison between VRF and Air cooled air systems using Degree Days Method (DD _{cooling}).

Based on all calculations performed in previous chapters, the final comparison between the two air conditioning systems (VRF, Air cooled) be based on the economical calculations (Present worth PW).

Economic analysis were done in order to use them in present worth calculation. Capital cost, running cost, selvage cost, and maintenance cost for every system were calculated as following:

- Capital costs were calculated in previous chapters for both systems, and the same was done for running cost.
- Running costs related to Degree Days (DD_{cooling}) method were taken.
- Selvage value was taken in both air conditioning systems as a fixed percentage for every system capital cost, this percentage equal 6%.

Selvage value = Capital Cost X $0.06 \dots Eq(5.4)$

Selvage value $^{(Air cooled)} = 101905 \times 0.06 = 6114$ \$.

Selvage value $^{(VRF)} = 80054 \text{ X} 0.06 = 4803 \text{ }$ \$.

 Maintenance cost was taken as 5% percentage for every system fixed cost as following:

Maintenance cost = Fixed cost X $0.05 \dots Eq(5.6)$

Maintenance cost $^{(Air cooled)} = 101905 \times 0.05 = 5095$ \$.

Maintenance cost $^{(VRF)} = 80054 \text{ X} 0.05 = 4002 \text{ }$ \$.

In order to calculate the present worth PW for both air conditioning systems discussed, cash flow should be designed first. By using an interest rate of 10% and a life time of 15 years which is the average life time of any mechanical system. Figure (5.3) and figure (5.4) shows the cash flow for air cooled and VRF air conditioning system.

Figure (5.3): VRF air conditioning system cash flow.

Figure (5.4): Air Cooled air conditioning system cash flow.

Present Worth (PW) = -Capital Cost –[(Maintenance cost + Running cost) X (P/A, i, n)] + [Salvage value X (P/F, i, n)] ... Eq(5.7)

The factors (P/F and P/A) was found relating to reference [14]. Also available in (Appendix 12).

 $PW_{1(VRF \text{ system})} = -80054 - (4002 + 6424) X (P/A, 10\%, 15)^{7.606} + 4803 X (P/F, 10\%, 15)^{0.2394} = -158,204 \text{ s}$

 $PW_{2 (Air Cooled system)} = -101905 - (5095 + 5714) X (P/A, 10\%, 15)$ $^{7.606} + 6114 (P/F, 10\%, 15)^{0.2394} = -182,654$

Present worth for both air conditioning systems was done using equation (5.3) and using Degree Days ($DD_{cooling}$) method, it is clear that the present worth PW for Air Cooled is less than PW for VRF system. And by the rule of present worth formula " less negative is more feasible". So that the VRF air conditioning system is more feasible than the Air cooled system proofed by present worth economical test. [13]

Chapter Six Conclusion and Recommendation

Chapter Six Conclusion and Recommendation

6.1 Conclusion

This research main objective was making a full comparison between two air conditioning systems at an educational building ANCI (An-Najah child institute), one of these systems was VRF (Variable refrigerant flow) and the other was Chiller Air to water (Air cooled). Full design was made for both systems including outdoor units, indoor units, piping network, and duct work based on cooling load for ANCI building. The comparison was made based on electrical consumption for every system component, and economically based on present worth value for each air conditioning system to find which is more feasible and can conserve more energy than the other to choose it as the suitable air conditioning system at ANCI building.

The design of VRF and Air cooled systems were made based on 60 TR cooling load at ANCI building calculated by air conditioning program HAP 4.6. VRF system consists of two outdoor units; one was 42HP and the other was 32HP to serve all zones. While Air cooled system consists of one outdoor unit with 61 TR.

For the VRF system 33 indoor units were selected, where the number of indoor units was 30 units for the air cooled system. Some of the air cooled indoor units were ducted, and the others were high wall mounted. Every type got its own description and so its energy consumption. As a

114

result; the seasonal energy consumption for those which belongs to VRF was (1480 kWh) while for Air cooled system was (2302 kWh) based on an assumption of 700 working hours, and it is clear that the amount of energy consumption by indoor units in Air cooled system is larger than VRF system. Figure (6.1) shows a simple comparison between two air conditioning systems VRF and Air cooled by their main components. As we can see the amount of energy consumed by Air cooled system components is larger and there is an extra source of energy consumption within this system which is the chilled water pumps (Primary and Secondary pump), that add an additional amount of energy consumption to Air Cooled system.

Figure (6.1): Energy consumption comparison between VRF and Air cooled air conditioning systems.

More energy consumption means more cost, relating to figure (6.1) the outdoor unit of VRF system consumes more energy than Air cooled system and that means VRF outdoor system will pay much more money than Air cooled system for electricity per year. As a result the total annual energy consumption by all mechanical and electrical components including outdoor units, indoor units, and pumps in VRF system = (49850 kWh/year), while in Air cooled system = (44715 kWh/year) based on an assumption of 700 working hours. Figure (6.2) shows the fixed costs for indoor units, outdoor units, piping network, duct work, and pumps for both air conditioning systems (VRF and Air cooled). The total fixed cost of VRF system equal (80054 \$), and the total fixed cost of Air cooled system is equal (101905 \$). It is clear that the fixed cost of Air cooled system more than VRF system with around (21851 \$) difference.

Figure (6.2): VRF and Air Cooled system components fixed costs.

Figure (6.3) shows both air conditioning systems components running costs. For outdoor units installed to Air cooled system the running cost was (6626 \$) while the running cost for outdoor units installed to VRF was (8061 \$). Indoor units running cost for Air cooled system equal

to (1381 \$), and for VRF system was (247 \$). Finally the pumps which is exclusive for Air cooled system, the running cost was about (1591 \$) all results depending on an assumption of 700 working hours.

Figure (6.3): VRF and Air cooled system components running costs.

Based on Degree Days ($DD_{cooling}$) method; the results show that the total running cost of Air cooled system equal to (5714 \$), and for VRF system equal to (6424 \$).

Total fixed cost and total running cost for Air cooled system are much higher than VRF system. In order to find which one is more feasible; present worth value was calculated for both air conditioning systems.

Present worth value for VRF air conditioning system equal (-158204 \$) based on DD_{cooling} method, and for Air cooled air conditioning system equal to (-182654 \$) relating to equation (5.3) and based on DD_{cooling}

equation (5.2). Since $PW_{1(VRF \text{ system})}$ is less negative than $PW_{2 \text{ (Air Cooled system)}}$ this means that the VRF system is more feasible than Air cooled system to install and use this system at ANCI building to cover all desired spaces.

Present Worth (PW) = -Capital Cost –[(Maintenance cost + Running cost) X (P/A, i, n)] + [Salvage value X (P/F, i, n)] ... Eq (5.6)

The factors (P/F and P/A) was found relating to reference [14]. Also available in the Appendix (C).

 $PW_{1(VRF \text{ system})} = -80054 - (4002+6424) X (P/A, 10\%, 15)^{7.606} + 4803 X (P/F, 10\%, 15)^{0.2394} = -158,204 \text{ s}$

 $PW_{2 (Air Cooled system)} = -101905 - (5095 + 5714) X (P/A, 10\%, 15)$ $^{7.606} + 6114 (P/F, 10\%, 15)^{0.2394} = -182,654$

6.2 Recommendation

Although this research got many applicable and accurate results and conclusions, it might be more accurate and better and can be improved. There a lot of suggestions and recommendations can be performed to improve the results and were not possible to perform and accomplish during one year of work within this research.

Using better and stronger software for air conditioning design like (Revit), this program can do heating and cooling loads easily, and can do all mechanical calculations on building plans with two dimensions and three dimensions. Selection of outdoor units and indoor units can easily accomplished by Revit, because this program offer many international manufacturers and brands for every air conditioning system components. Finally this program can do all piping and ducts networks easily and accurately and by this way we can save a lot of time and money too.

For future work, one can make some energy conservation to both air conditioning systems (VRF, Air cooled), as mentioned in the first two chapters shading one of many ways to conserve energy and save energy and money. Another way for energy saving is scheduling as mentioned in chapter two. It is recommended to be added to research calculations and find results after energy saving, and after that find the net between the result before saving and results after saving.

References

- 1- Palestine central bureau of statistics (PCBS).(2004-2013) Energy sector
 [Online] Available from: http://www.pcbs.gov.ps/site/lang ar/923/Default.aspx .
- 2- American Society of Heating and Air-Conditioning Engineers (ASHRAE) standard 55-1981.
- 3- A.Bhatia Continuing Education and Development, (2012) Centralized Vs Decentralized air conditioning systems [Online] available from: http://www.seedengr.com/Cent%20Vs%20Decent%20AC%20System s.pdf.
- 4- Energy saving potential and opportunities for high efficiency electric motors in residential and commercial equipment (2013) building technologies office. [Online] available from: http://energy.gov/sites/prod/files/2014/02/f8/Motor%20Energy%20Sa vings%20Potential%20Report%202013-12-4.pdf.
- 5- Martin Doppelbaue (2012) Motor efficiency classes. [Online] available from: http://www.motorsummit.ch/data/files/MS_2012/presentation/ms12_d oppelbauer update.pdf.
- 6- David Gibson- Act on energy. [Online] Available from: http://www.actonenergy.com/portals/0/business/forms/VFD-Presentation-Handout.pdf.

120

- 7- Allison Bailes (2015) Energy Vanguard. [Online] available from: http://www.energyvanguard.com/blog-building-science-hers-bpi/willshading-your-air-conditioner-save-you-money.
- 8- U.S. Department of Energy. (2013)U.S. Department of Energy

9- KYOTO AND ENERGY. (2002). CO2, KYOTO AND ENERGY.

- 10- Imad Ibrik, Marwan Mahmoud Energy Efficiency Improvement Procedures and Audit Results of Electrical, Thermal and Solar Applications in Palestine, Elsevier – Energy Policy 33 (2005) 651-658.
- 11- Environmental Protection Agency EPA. (2008) IAQ building education and assessment model. [Online]Available from: https://www.epa.gov/sites/production/files/2014-08/documents/text_modules_energy_efficiency.pdf
 [last update 21th October 2008].
- 12- Carrier chapter three. (2017) Piping design. [Online] Available from: https://www.scribd.com/document/59779869/Carrier-Chapter3
- 13- Present value calculator. Calculator soup. [Online] Available from: https://www.calculatorsoup.com/calculators/financial/present-valuecalculator-basic.php .

- 14- Oxford University press (2017). Compound interest tables. [Online]
 Available from: http://global.oup.com/us/companion.websites/9780199778126/pdf/Ap
 pendix_C_CITables.pdf
- 15- Palestinian Metrological Department (2016)- Nablus Temperature distribution .[Online] Available from: <u>http://www.pmd.ps/englishIndexPage.do</u>
- 16- Heating and Air Conditioning. For residential buildings. 5th Edition

Appendices

Appendix (1)

VRF outdoor unit catalogues

			TOSHIBA	
and the state of the	- La Charles Constant	and a		a state to be
		-		-
Tos	hiba Design 🗛 💦 - I	Project Eq	uipment Lis	st
ulkarm-Health (Care Center Equipment	List		
Outdoor Units				
Nodel name	Description			Quantity
MMY-AP3216HT8P-E	32HP SMMSe			1
MY-AP4216H18P-E	42HP SMMSe			1
ndoor Units				
Model name	Description			Quantity
MMD-AP0366BHP-E	4.0HP Standard Concealed Duct			3
MMD-AP05668RP-E	6.0HP Standard Concealed Duct	200		2
MMK-APD123H	1.25HP High Wall Standard (Series	(3)		
MMK-AP0153H	1.7HP High Wall Standard (Series	3)		11
MMK-APU183H	2.0HP High Wall Standard (Series)	2)		13
имк-кер243н	2.5HP High Wall standard (Series .	2)		1
r joints				
Model name	Description			Quantity
RBM-BYSSE	Y Joint			10
RBM-6Y105E	Y Joint			12
RBM-BY205E	Y Joint			7
RBM-BY305E	Y Joint			2
RBM-BT24E	Outdoor Unit Branch Kit			2
Accessories				
Model name	Description			Quantity
RBC-AMT32E	Main Wired RC			33
Central Control Dev	ices			
Nodel name	Description			Quantity
BM8-CM1280TLE	Compilant Manager			1.0
Piping Length				
Pipe Diameter	Gas side (m)	Discharge side (m) Liquid side (m)	Total Length (m)
97	0	0	50.5	50.5
		0	43.5	50.5
	43.5	0	28.5	72
	43.5	6	17	10.5
6-	20 5	0	10.5	415
136 -				30
%-	15.5	0	0	15.5
	0.00	(7)÷		0.025

Note Name Name Control of 13.00 Name Control of 13.00 Note Name Control of 13.00 Note Name Control of Name Note Name	Madal Nama	Rated	ooling (kW)	emotional	Dated	Heating (kV	n Corrected	Div	ersity Duilding	
Norway (NT) ST-R XUU Y XU Y XUU	Model Name	NGLEO	Co	necied	Rated		Conecteo	system	Duitoits	
Addoor Units Val Name Capacity	WM1-9-3210010F-2	50.00		/3.30	100.00		76.30	104.576		
Unit Name Capacity Capacity (Total Speechie) (MU Midel Name Gooling 1.208.80 \$137.62 Mid-Arg3688HP-6 4.04P High Cooling 1.208.80 \$437.62 Mid-Arg3688HP-6 4.04P High High Status \$437.62 Mid-Arg3688HP-6 4.04P High High \$407.58 \$437.62 Mid-Arg3688HP-6 4.04P High High \$407.20 \$331.77 Mid-Arg3688HP-6 1.204P High High \$30 \$30.276 Mid-Arg3681H 1.714P High High \$30 \$32.77 Mid-Arg3681H 1.714P High High \$30 \$37.2 Mid-Arg3681H 1.714P High Heating \$5.00 \$37.2 Mid-Arg3681H 1.714P High Heating \$5.00 \$37.2 Mid-Arg3681H 1.714P High Heating \$5.00 \$37.2 Mid-Arg3683H 2.04P High Heating \$5.00	ndoor Units									
MD-APD358HPFE Lower High Coming 11208.80 9.537.752 MD-APD358HPFE LowP High Coming 11208.80 9.437.58 MD-APD358HPFE LowP High High 9.23 9.23 MMC-APD358H 1.25HP High High 6.0010 3.802.36 3.802.36 MMC-APD153H 1.77HP High High High 5.00 3.70 MMC-APD153H 1.77HP High High Heating 5.00 3.70 MMC-APD153H 1.77HP High Heating 5.00 3.72 MMC-APD153H 1.77HP High Heating 5.00 3.72 MMC-APD153H 1.77HP High Heating 5.00 3.72 MMC-APD153H 1.77HP High Cooling 4.801.20 3.820.77 MMC-APD163H 2.0HP High Heating 5.00 3.70 MMC-APD163H 2.0HP High Cooling 5.800.80 4.810.41	Model Name	Unit Name & Room	Capacity	Fan Sneed	Mode	Capa Rated	city (Total/Sen	sible) (kV Re	/] equired	
Mithod Low Hotor Hotor Hotor Hotor Hotor Hotor State State Hotor State State <ths< td=""><td>MMD-APD3558HP-E</td><td></td><td>4 OHP</td><td>High</td><td>Cooling</td><td>11.20/8.80</td><td>9.53/7.52</td><td></td><td></td></ths<>	MMD-APD3558HP-E		4 OHP	High	Cooling	11.20/8.80	9.53/7.52			
MD-APD3568HP-E 4.0HP High Cooling 11.206.80 5.487.58 MMCAPD123H 1.25HP High Heating 1.250 5.23 MMCAPD123H 1.25HP High Heating 5.00 3.70 MMCAPD153H 1.7HP High Heating 5.00 3.72 MMCAPD163H 2.0HP High Heating 5.00 4.68 MMCAPD163H 2.0HP High Heating 5.00 4.69 MMCAP0163H 2.0HP High H					Heating	12.50	9.25			
Mit (-APD123H) 1,25HP High Cooling 3,802,80 3,802,25 Mit (-APD153H) 1,7HP High Hearing 4,00 2,36 Mit (-APD153H) 1,7HP High Hearing 5,00 3,70 Mit (-APD153H) 1,7HP High Hearing 5,00 3,70 Mit (-APD153H) 1,7HP High Hearing 5,00 3,72 Mit (-APD153H) 1,7HP High Hearing 5,00 3,802,77 Mit (-APD153H) 2,0HP High Hearing 5,00 3,802,77 Mit (-APD163H) 2,0HP High Hearing 5,00 4,813,44 Mit (-APD163H) 2,0HP High Hearing 5,00 4,76 Mit (-APD163H)	MMD-AP03668HP-E		4.0HP	High	Cooling	11.20/8.80	9.49/7.58			
Marc AP0123H 1,25HP High Hearing 4,00 2.56 MMC AP0153H 1,7HP High Cooling 4.5013.20 3.830,277 MMC AP0153H 1,7HP High Cooling 4.5013.20 3.801,276 MMC AP0153H 1,7HP High Cooling 4.5013.20 3.801,277 MMC AP0153H 1,7HP High Hearing 5.00 3.70 MMC AP0153H 1,7HP High Hearing 5.00 3.77 MMC AP0153H 1,7HP High Hearing 5.00 3.72 MMC AP0153H 1,7HP High Hearing 5.00 3.72 MMC AP0153H 1,7HP High Hearing 5.00 3.70 MMC AP0153H 2,0HP High Hearing 5.00 4.61,41 MMC AP0163H 2,0HP High Hearing 5.00 4.63 MMC AP0163H 2,0HP High Hearing 5.00 4.61,44 MMC AP0163H 2,0HP					Cooling	3.60/2.60	3.08/2.26			
MK-AP0153H 1.7HP High Cooling 4.501.3.0 3.801.277 MK-AP0153H 1.7HP High Cooling 4.501.3.0 3.821.277 MK-AP0153H 1.7HP High Cooling 4.501.3.0 3.821.277 MK-AP0153H 1.7HP High Cooling 4.501.3.0 3.810.277 MK-AP0153H 1.7HP High Hearing 5.00 3.70 MK-AP0153H 1.7HP High Hearing 5.00 3.71 MK-AP0153H 1.7HP High Hearing 5.00 3.72 MK-AP0153H 1.7HP High Hearing 5.00 3.72 MK-AP0153H 1.7HP High Hearing 5.00 3.70 MK-AP0163H 2.0HP High Hearing 5.00 4.68 MK-AP0163H 2.0HP High Hearing 5.03 4.472 MK-AP0163H 2.0HP High Hearing 5.03 4.72 MK-AP0163H 2.0HP <t< td=""><td>MMK-AP0123H</td><td></td><td>1.25HP</td><td>High</td><td>Heating</td><td>4.00</td><td>2.96</td><td></td><td></td></t<>	MMK-AP0123H		1.25HP	High	Heating	4.00	2.96			
нами нами 5.00 3.70 MKK-AP9153H 1.7HP High Cooling 4.501.20 3.922.76 MKK-AP9153H 1.7HP High Heating 5.00 3.70 MKK-AP9153H 1.7HP High Heating 5.00 3.71 MKK-AP9153H 1.7HP High Heating 5.00 3.912.283 MKK-AP9163H 1.7HP High Heating 5.00 4.813.41 MKK-AP9163H 2.0HP High Heating 5.00 4.813.41 MKK-AP9163H 2.0HP High Heating 5.30 4.81 MKK-AP9163H 2.0HP High Heating 5.30 4.97.152 MKK-AP9163H 2.0HP High Heating 5.30 4.97.2	MK-APD153H		1.7HP	High	Cooling	4.50/3.20	3.83/2.77			
MMC-APD (53H 1.7HP High Cooling 4.50/3.20 3.20/2 MMC-APD (53H 1.7HP High Cooling 4.50/3.20 3.91/2.83 MMC-APD (53H 1.7HP High Cooling 4.50/3.20 3.91/2.83 MMC-APD (53H 1.7HP High Cooling 4.50/3.20 3.91/2.83 MMC-APD (53H 1.7HP High Heating 5.00 3.72 MMC-APD (53H 1.7HP High Heating 5.00 3.72 MMC-APD (53H 1.7HP High Heating 5.00 3.72 MMC-APD (53H 1.7HP High Heating 5.00 3.70 MMC-APD (53H 2.0HP High Heating 5.00 4.81 MMC-APD (53H 2.0HP High Heating 5.00 4.91/3.44 MMC-APD (53H 2.0HP High Heating 5.00 4.71/2 MMC-APD (53H 2.0HP High Heating 5.00 4.72 Spect <td< td=""><td></td><td></td><td></td><td>100000</td><td>Heating</td><td>5.00</td><td>3.70</td><td></td><td></td></td<>				100000	Heating	5.00	3.70			
MK-APD163H 1.7HP High Cooling 4.50/3.20 3.82/2.77 MK-APD163H 1.7HP High Hearing 5.00 3.73 MK-APD163H 2.0HP High Hearing 5.00 4.81 MK-APD163H 2.0HP High Hearing 5.30 4.69 MK-APD163H 2.0HP High Hearing 5.30 4.72 MK-APD163H 2.0HP High Hearing 5.30 4.72 MK-APD163H 2.0HP High Hearing 5.30 4.72 MK-APD163H Care CentRegistered To: ArBader Heating & Ar-Cenditi	MMK-AP0153H		1.7HP	High	Heating	5.00	3.82/2.76			
Milk APD183H 1.7HP High Heating 5.00 3.70 MMK APD183H 1.7HP High Heating 5.00 3.72 MMK APD183H 1.7HP High Heating 4.501.320 3.912.65 MMK APD183H 1.7HP High Heating 5.00 3.72 MMK APD183H 1.7HP High Heating 5.00 3.72 MMK APD183H 1.7HP High Heating 5.00 3.70 MMK APD183H 2.DHP High Heating 5.00 4.81 MMK APD183H 2.DHP High Heating 5.00 4.81 MMK APD183H 2.DHP High Heating 5.30 4.87 MMK APD183H 2.DHP High Heating 5.30 4.72 MMK APD183H 2.DHP High Heating 5.30 4.72 MMK APD183H 2.DHP High Heating 5.30 4.72			122.02		Cooling	4.50/3.20	3.82/2.77			
MK-AP0193H 17HP High Cooling 4.501.200 3.72 MK-AP0193H 1.7HP High Heating 5.00 3.72 MK-AP0193H 1.7HP High Heating 5.00 3.72 MK-AP0193H 1.7HP High Heating 5.00 3.70 MK-AP0193H 2.0HP High Heating 5.00 4.84 MK-AP0193H 2.0HP High Heating 5.00 4.85 MK-AP0193H 2.0HP High Heating 5.30 4.85 MK-AP0183H 2.0HP High Heating 5.30 4.91 MK-AP0183H 2.0HP High Heating 5.30 4.70 MK-AP0183H 2.0HP High Heating 5.30 4.72 MK-AP0183H 2.0HP High Heating 5.30 4.72 Viet Tulkam-Health Care Centificipistered To: Al-Bader Healing & Ar-Conditioning 0d.0.0.89 Rev: Fage 10 Toshiba Design All N - System Deta	MMK-AP0153H		1.7HP	High	Heating	5.00	3.70			
Mit APD153H It /HP High Cooling Cooling 4.801.30 3.91.2.3 Mit APD153H 1.7HP High Heating 5.00 3.72 Mit APD153H 1.7HP High Heating 5.00 3.72 Mit APD153H 1.7HP High Heating 5.00 3.70 Mit APD163H 2.0HP High Heating 5.00 4.81.3.41 Mit APD183H 2.0HP High Heating 5.30 4.85 Mit APD183H 2.0HP High Heating 5.30 4.70 Mit APD183H 2.0HP High Heating 5.30 4.70 Mit APD183H 2.0HP High Heating 5.30 4.70 Mit APD183H 2.0HP High Heating 5.30 4.72 Mit APD183H 2.0HP High Heating 6.00.85 Rer: Fage 10 Totame-Heatin Care Centificepistered To: Al-Bader Heating & Alr-Conditioning 0d.0.0.85 Rer: Fage 10 <td <="" colspant="" td=""><td>MK-APD153H</td><td></td><td>1.7HP</td><td>High</td><td>Cooling</td><td>4.50/3.20</td><td>3.91/2.83</td><td></td><td></td></td>	<td>MK-APD153H</td> <td></td> <td>1.7HP</td> <td>High</td> <td>Cooling</td> <td>4.50/3.20</td> <td>3.91/2.83</td> <td></td> <td></td>	MK-APD153H		1.7HP	High	Cooling	4.50/3.20	3.91/2.83		
MK-APD153H 1.7HP High Cooling 4.5013.20 3.91/2.83 MK-APD153H 1.7HP High Gooling 4.5013.20 3.891/2.77 MK-APD153H 1.7HP High Gooling 5.6013.80 4.813.41 MK-APD153H 2.0HP High Gooling 5.6013.80 4.851.44 MK-APD163H 2.0HP High Heating 6.30 4.65 MK-APD163H 2.0HP High Heating 5.30 4.70 MK-APD163H 2.0HP High Heating 5.30 4.77 MK-APD163H 2.0HP High Heating 5.30 4.77 MK-APD163H 2.0HP High Heating 5.30 4.77 MK-APD163H 2.0HP High Heating 6.30 4.72 Spect Tuikam-Heath Care CenteRegistered To: Al-Bader Heating & Al-Conditioning Od.0.0.89 Rev: Page 10 COSHIBA Leading Innovation Spect Spect Spect Spect Moor Units </td <td></td> <td></td> <td>(Access)</td> <td></td> <td>Heating</td> <td>5.00</td> <td>3.72</td> <td></td> <td></td>			(Access)		Heating	5.00	3.72			
Image: Subject of the subjec	MK-AP0153H		1.7HP	High	Cooling	4.50/3.20	3.91/2.83			
MK-APD163H 1.7HP High Cooling 4.5013.30 3.83/2.77 MK-APD163H 2.0HP High Cooling 5.6013.80 4.813.41 MK-APD163H 2.0HP High Heating 6.30 4.851.44 MK-APD163H 2.0HP High Heating 5.03.80 4.851.44 MK-APD163H 2.0HP High Heating 5.03.80 4.917.45 MK-APD163H 2.0HP High Heating 5.03.80 4.917.45 MK-APD163H 2.0HP High Heating 5.03.80 4.977.52 MK-APD163H 2.0HP High Heating 5.30 4.72 INK-APD163H 2.0HP High Heating 6.30 4.72 Intermediation Cooling 5.503.80 4.971.52 4.72 Intermediation Cooling S.30 4.72 Feet 10				00250	Heating	5.00	3.72			
Inter-APD183H 2.0HP High Cooling 5.600.360 4.813.41 INter-APD183H 2.0HP High Heating 5.30 4.86 INter-APD183H 2.0HP High Heating 5.30 4.86 INter-APD183H 2.0HP High Heating 5.30 4.86 INter-APD183H 2.0HP High Heating 5.30 4.87 INter-APD183H 2.0HP High Heating 5.30 4.77 INter-APD183H 2.0HP High Heating 5.30 4.773 Inter-APD183H 2.0HP High Heating 6.30.3.93 4.873.82 Inter-APD183H 2.0HP High Heating 6.30.3.93 4.72 Inter-APD183H 2.0HP High Heating 0.0.0.89 Rev: Page 10	MK-AP0153H		1.7HP	High	Cooling	4.50/3.20	3.83/2.77			
MK-APD183H 2.0нР High Heating 6.30 4.68 MK-APD183H 2.0HP High Heating 5.30 4.65 MK-APD183H 2.0HP High Heating 5.30 4.65 MK-APD183H 2.0HP High Heating 5.30 4.51 MK-APD183H 2.0HP High Heating 5.30 4.57 MK-APD183H 2.0HP High Heating 5.30 4.57 MK-APD183H 2.0HP High Heating 5.30 4.57 MK-APD183H 2.0HP High Heating 5.30 4.77 Spect Tuikam-Health Care Centificepistered To: Al-Bader Heating & Alr-Conditioning @d.0.0.89 Rev: Page 10 Toshiba Design All M Conditioning @d.0.0.89 Rev: Page 10 Toshiba Design All M Conditioning @d.0.0.89 Rev: Page 10 Toshiba Design All M Conditioning @d.0.0.89 Rev: Page 10 Toshiba Design All M Conditioning @d.0.0.89 Rev: Page 10 <t< td=""><td></td><td></td><td></td><td></td><td>Cooling</td><td>5.00</td><td>4 94 12 44</td><td></td><td></td></t<>					Cooling	5.00	4 94 12 44			
NKK-APD183H 2.0HP High Cooling 5.603.90 4.853.44 NKK-APD183H 2.0HP High Heating 5.30 4.513 NKK-APD183H 2.0HP High Cooling 5.603.90 4.973.42 NKK-APD183H 2.0HP High Heating 5.30 4.70 NKK-APD183H 2.0HP High Heating 5.30 4.72 INK-APD183H 2.0HP High Heating 5.30 4.72 InkexAPD183H 2.0HP High Heating 6.30 4.97.852 InkexAPD183H 2.0HP High Heating 64.00.89 Rev: Page 10	MMK-APD183H		2.0HP	High	Heating	6.30	4.68			
MK-APD183H 2.0HP High Heating 5.30 4.69 MK-APD183H 2.0HP High Gooling 5.600.360 4.591.348 MK-APD183H 2.0HP High Heating 5.30 4.70 MK-APD183H 2.0HP High Heating 5.30 4.70 MK-APD183H 2.0HP High Heating 5.30 4.72					Cooling	5.60/3.90	4.85/3.44			
MK-AP0183H Z.DHP High Cooling 5.60.3.90 4.91/3.48 MK-AP0183H Z.DHP High Heating 6.3.0 4.70 MK-AP0183H Z.DHP High Heating 5.80.3.90 4.97/3.52 AMK-AP0183H Z.DHP High Heating 6.3.0 4.72	IMK-APD183H		2.0HP	High	Heating	6.30	4.69			
Internation Latin Hole Heating 6.30 4.70 INK-APD183H 2.0HP High Gooling 5.500.3.90 4.973.52 INK-APD183H 2.0HP High Heating 6.30 4.72 Intervention 6.30 4.72 Heating 6.30 4.72 Intervention Intervention Intervention Rev Page 10 Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Interve			2 DHP	Hist	Cooling	5.60/3.90	4.91/3.48			
NMK-APD183H 2.0HP High Cooling 5.600.3.00 4.577.3.52 aject: Tulkarm-Health Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Interaction Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Image: Tulkarm-Health Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Image: Tulkarm-Health Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Image: Tulkarm-Health Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Image: Tulkarm-Health Care Centifiegistered To: Al-Bader Healting & Al-Conditioning @d.0.0.89 Rev: Page 10 Image: Tulkarm-Healting Al					Heating	6.30	4.70			
oject: Tulkam-Health Care Centifiegistered To: Al-Bader Heating & Al-Conditioning 0d.0.0.99 Rev: Page 10	/MK-APD183H		2.0HP	High	Cooling	5.60/3.90	4.97/3.52			
Toshiba Design AIRS - System Details Moor Units Mc-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 MK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 MK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 MK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39 MK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39 MK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39	oject: Tuikarm-Hea	th Care CentRegis	etered To: AFB	ader Heating & A	r-Conditioning	04.0.0.89	Rev:		Page 10 o	
Toshiba Design AIIX's - System Details Modoor Units Indel Name Capacity & Room Capacity Code Fan Speed Mode Capacity (Total/Sensible) [KW] Rated Connected Required IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 Heating 6.30 4.55 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.78/3.39 Heating 6.30 4.65				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			TOSHIBA			
Model Name Capacity Codel/Sensible/ [kW] Model Name Capacity Codel/Sensible/ [kW] Model Name Capacity Code/ Fan Speed Mode Rated Cooling S.60/3.50 4.85/3.44 MK-APD183H 2.0HP High Cooling S.60/3.50 4.85/3.44 MK-APD183H 2.0HP High Cooling S.60/3.50 4.78/3.39 MK-APD183H 2.0HP High Cooling S.60/3.90 4.78/3.39 MK-APD183H 2.0HP High Cooling S.60/3.90 4.78/3.39			-	a constant of	in the second second					
Toshiba Design AIRS - System Details Modoor Units Indel Name Unit Name & Room Capacity Code Fan Speed Mode Capacity (Total/Sensible) [kW] Rated Corrected Required IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 Heating 6.30 4.55 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.78/3.39 Heating 6.30 4.65										
Indeor Units Indext Name Capacity & Room Capacity Code Capacity Fan Speed Capacity Mode Capacity Rated Coll/Sensible) [kW] IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39		Toshi	ba Des	ign Al R	- Sys	tem D	etails			
Indeor Units Unit Name Capacity 8 Room Capacity Code Capacity Fan Speed Mode Capacity Rated Corrected Required IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.78/3.39 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.78/3.39										
Model Name & Room Column Faile Fan Speed Mode Rated Connected Required IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.69 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.79/3.39	ndoor Units	Unit Name	Capacity			Carr	acity (Tobal/See	sible) 044	1	
IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.85/3.44 IMK-APD183H 2.0HP High Heating 6.30 4.69 IMK-APD183H 2.0HP High Cooling 5.60/3.90 4.78/3.39 Heating 6.30 4.65 4.65 4.65	Model Name	& Room	Code	Fan Speed	Mode	Rated	Corrected	R	equired	
MK-APD183H 2.0HP High Cooling 5.50 4.78/3.39 Heating 6.30 4.65	MMK-AP0183H		2.0HP	High	Cooling	5.60/3.90	4.85/3.44			
IMK-AP0183H 2.0HP High Heating 6.30 4.66					Cooling	5.60/3.90	4.03			
	MMK-AP0183H		2.0HP	High	Heating	6.30	4.66			
Cooling 5.60/3.90 4.92/3.49			12/2/12	100000	Cooling	5.60/3.90	4.92/3.49			

TOSHIB/	Leading Innovation >>		-	-	ATTEN	and the second s
	Leading into ration 32			-	(Lalle)	
				TREAM	TOSHIRA	
and the second second	And a state of the			1		
					-	
1000	and the second second				a B anad	
	Toshiba Des	sign /	S- Sy	stem De	tails	
door Units						
and the second second	Unit Name Capacity			Capac	ity (Total/Sen	sible) [kW]
lodel Name	& Room Code	Fan Speed	Mode	Rated	Corrected	Required
MK-AP0183H	2.0HP	High	Cooling	5.60/3.90	4.84/3.43	
			Cooling	7 104 00	4,51	
MK-AP0243H	2.5HP	High	Heating	8.00	5.74	
			Cooling	7 10/4 80	6 12/4 21	
MK-AP0243H	2.5HP	High	Heating	8.00	5.73	
			Cooling	7.10/4.80	6.08/4.19	
MK-AP0243H	2.5HP	High	Heating	8.00	5.72	
SEER						
ESEER	EER @ 100%	EER Ø	075%	EER @ 5	0%	EER @ 25%
	2.90	4.6	80	7.48		10.39
7.33	A = 0.03	8-0	0.33	C = 0.4	1	D = 0.23
COP			7000	000 @	10%	COP @ 25%
COP	COP @ 100%	COP #	0/5%	COF IN 1		
COP SCOP	COP @ 100% 2.93	COP	3	5.06	and a second	6.28

2010/10/07/06	Name	Heat pump		MMY-AP3216HT8P-E	MMY-AP3416HT8P-E	MMY-AP3616HT8P-E	MMY-AP3816HT8P-E
Model			t —	MMY-MAP1606HT8P-E	MMY-MAP1806HT8P-E	MMY-MAP2006HT8P-E	MMY-MAP2206HT8P-E
	Combination	Heat pump		MWY-MAP1606HT8P-E	MMY-MAP1606HT8P-E	MMY-MAP1606HT8P-E	MMY-MAP1606HT8P-E
Dutdoor unit type			-	Inverter unit	Inverter unit	Inverter unit	Inverter unit
Cooling capacity (*	1)		kW.	90.0	95.4	101.0	106.5
Heating capacity (*	10		kW	100.0	106.0	113.0	114.0
Capacity range			HP	32	34	36	38
ower supply				3N~ 50Hz 400V(380-415V)	3N~ 50Hz 400V(380-415V)	3N~ 50Hz 400V(380-415V)	3N~ 50Hz 400V(380-415V)
		Minimum	L V	342	342	342	342
/oltage range (*2)		Maximum	V	456	456	456	456
	0.0	Running purrent	A	44.8	45.3	49.2	58.0
	Cooling	Power input	kW	28.6	28.9	31.6	37.5
2010/02/02	Creatings	EER	kW/kW	3.15	3.3	32	2.84
lectrical		Running purrent	A	40.4	42.3	46.3	46.7
haracteristic (*1)	Heating	Power input	- KW	25.8	27.0	29.9	30.0
	1350.003	COP	KW/KW	3.88	3.93	3.78	3.8
	Starting current	A.5-03-02	A	Soft Start	Soft Start	Soft Start	Soft Start
Veight	Heat pump		kg	300 + 300	371 + 300	371 + 300	371 + 300
Colour				Silky shade	Silky shade	Silky shade	Silky shade
				(Munsell 1Y8.5/0.5)	(Munsell 1Y8.5/0.5)	(Munisell 1Y8.5/0.5)	(Munsel 1Y8.5/0.5)
Compressor	Туре			Hermetic twin rolary compressor	Hermetic twin rotary compressor	Hermetic twin rotary compressor	Hermetic twin rotary compres
2002/2020/02	Motor output		kW	5.8x2 + 5.8x2	6.5x2 + 5.8x2	7.6x2 + 5.8x2	9.0x2 + 5.8x2
	Fan			Propeller fan	Propeller fan	Propeller fan	Propeller fan
an unit	Motor output		kW	1.0 = 1.0	2.0 + 1.0	2.0 + 1.0	2.0 + 1.0
ENVESTINA.	Air volume		m3/h	12600 + 12600	17300 + 12600	17900 + 12600	18500 + 12600
Aax, external static	pressure		Pa	40	40	40	40
feat exchanger				Finned tube	Finned tube	Finned tube	Finned tube
	Name			R410A	R410A	R410A	R410A
Refrigerant	Charge	Hestminn	ka	11.5 + 11.5	11.5 + 11.5	11.5 + 11.5	11.5 + 11.5
tigh-pressure switc	h	Tricarparty	Pa	OFF3.2 ON 4.15	OFF:3.2 ON:4.15	OFF 3.2 ON:4.15	OFF:3.2 ON:4.15
Protective devices			1 1.5	(*3)	(*3)	(*3)	(*3)
		MCA (*4)	A	71.6	76.4	80.7	85.1
ower supply wiring		MUCP (*5)	A	0.08	100.0	100.0	100.0
		Type	-	Brazing	Brazing	Brazing	Brazing
	999	Diameter	mm	34.9	34.9	41.3	41.3
	1 Parcel at	Type		Flare	Flare	Flare	Flare
ping connections	ridnig	Diameter	mm	19.1	19.1	22.2	22,2
	Delawar	Туре		Flare	Flare	Flare	Flare
	uaidrice	Diameter	mim	9.5	9.5	9.5	9.5
fax. number of con	nected indoor un	vits	6	64	64	64	64
		Cooling	dB(A)	65.0	64.5	64.5	64.5
sound pressure levi	H	Heating	dB(A)	67.0	66.0	66.5	66.5
2.000 estimates a		Cooling	dB(A)	84.0	84.0	84.5	85.5
Sound power level		Heating	dB(A)	86.0	86.0	86.5	86.5
		Conling	CDB	-50 to 460	-5.0 to 46.0	50 to 46.0	-5.0 to 45.0
Operation temperat	ure range	and and a second s	CHUD	DE D to AF P	25.0 10.0	26.04-46.6	28.0 4 48.6

Note (*1) Rated conditions

 Note
 Cooling : Indoor 27 degC Dry Bub / 19 degC Wet Bub , Outdoor 35 degC Dry Bub.

 (*1) Rated conditions
 Cooling : Indoor 27 degC Dry Bub / 19 degC Wet Bub , Outdoor 35 degC Dry Bub.

 Based on equivalent piping length of 7.5m and piping height difference of 0m.
 Based on equivalent piping length of 7.5m and piping height difference of 0m.

 (*2) Voltage range : Units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits.
 (*3) Discharge term, sensor / Subin term, sensor / John-pressure sensor / Low-pressure sensor / Compressor case thermostat / PC board fuse

 (*4) Select wire size base on the larger value of MCA.
 MCA : Minimum Cincut Amps

 (*5) MOCP : Maximum Overcurrent Protection(Amps)
 (*6) Low ambient heating (-20/segC or less) for extended periods of time is not allowed

Appendix (2)

VRF indoor units catalogues

	ign H	()				Ş.	"EUIr	IUA	Tions	
Conceal	ad Duct Ty	39 (6 T	series)) Taanoone Taariyeese	Aforms Affrein	APREN LANSON	Tanka	49994	APART APORT	
Model many		NMO-	an state	600-1(9)8-0-1(9)	10-103-0-0170)	OF LODGER LT	0.007-01700	10 P 10/78	ave also not simi-	
Cedbog I HeilP	All colorests (11)	100	12(14)	189.02 189.691	45/10 (11/63)	TAILS ADDAD	dan na	1.11	HOURS READ	
	Priver August	-	1	ginnin 10 Hz 221 OK	in i provi de Halas	A V (becaste pourt	(Auto) NO	éccuir unit	tangand:	
	Ranning Birty	444	2,24	129	6.42	00	1 141	1.01	120	
Cleaners chaiwiteiteite	And and Application	44	3.0		4,44		104	1.12	1.0	
	Vision National States	100	0.008	840	0.040	8.877	136	0.10	438	
	Writig-Laries	1.87	DELECT	(0.00 (0.00)	0/1/3/8	0.001818	106-111	101104	r/11/320	
Appaintent					The ho	A design of a local property				
	Huge:	110.				11				
Distant	Ndl.	140		72		1800		<u></u>	180	
	Death	100	-			760		_		
The state		12		- 20		1.000 - F				
Hadi Babiange	for the second se	_	-			Address Case				
	Tap	<u> </u>	-			August and				
	Rendard ay fast propint Mill Floor		5401-000 1300	010(460.000	10/00/50	10010001079	1007	1022 1029 1029	2101-(1740-1920)	
i and	Mater Subject	17			HØ		-		16	
	Robertul statu: potezuile Autoro chila att	90		30		40			<u>16</u>	
	Expense mont	T _N	-		21-42-40-4	4-0-00-00-00-0	ALC: N			
11.0	201600	125	-							
Ar sea		_				THE LEY WORK	_			
-	Towney.	T and	-	1011	411		01	14		
Contention	19,010	100	t	10.4			- 10	44		
691	Dian (m) Normal Roll	10			2.74	pring chikinde tekel				
Bard protection proprietation	e mod Arti	đA	29 (26) (11	0/0/0	0/0/8	30101	r -		40/06/08	

and Markov	Unit Name	Capacity			Capac	sty (Total/Sensibl	ejikwi
lodel Name	& Room	Code	Fan Speed	Mode	Rated	Corrected	Required
MD-AP03668HP-E		4 OHP	High	Cooling	11.20/8.80	9.56/7.65	
INTER CONTRACTOR				Heating	12.50	8.93	
HID-APRESENHP-E		5 OHP	High	Cooling	16.00/11.50	13.74/10.05	
Morror a source of a		Sec. 1	Citrate.	Heating	18.00	12.87	
NO ADDSSERVER		5 OHP	High	Cooling	16.00/11.50	13.94/10.20	
MD-APUSOBAT L		S.M.S.	Figure	Heating	18.00	12.93	
100 100 100		1740	1 Link	Cooling	4.50/3.20	3.93/2.84	
MK-APU153H		1./hr	High	Heating	5.00	3.59	
		4 700	All all	Cooling	4,50/3.20	3.78/2.73	
MK-APU153R		L/hr	High	Heating	5.00	3.55	
		1.000	1000	Cooling	4.50/3.20	3.78/2.73	
MK-APD153H		1.7HP	High	Heating	5.00	3.55	
				Cooling	4.50/3.20	3.80/2.75	
MK-APD153H		1.7HP	High	Heating	5.00	3.55	
				Cooling	4 50/3.20	3.83/2.77	
MK-APD153H		1.7HP	High	Heating	5.00	3.57	
				Conting	C 60/2 80	4 90/3 40	
MK-APD183H		2.0HP	High	Vesting	5.30	4.50	
				Casilon	0.00	4.00	
MK-APD183H		2.0HP	High	Cooling	5.60/3.50	4.10/3.35	
				Heating	6.30	4.50	
MK-APD183H		2.0HP	High	Cooling	5.60/3.90	4.83/3.42	
		Stores.	1.000	Heating	6.30	4.51	
K-APD183H		2.0HP	Hist	Cooling	5.60/3.90	4.89/3.46	
MINTER ALL AND		50010481	1.0000	Heating	6.30	4.53	
			111-1	Cooling	5.60/3.90	4.83/3.42	
MK-APD183H		2.049	Hun.	Heating	6.30	4.51	
MK-AP0183H)ject Tulkarm-Hei	aith Care Centifiegin	2.DHP	ngn sder Heating & A	Heating In-Conditioning	6.30 7 Gd.0.0 89	4.51 Rev:	Page 21 of
NK-APD183H Nect Tulkarm-He	allh Care Centifiegi	stered To: AI-Bi	ader Heating & A	Heating	6.30	4.51 Rev:	Page 21 o
NK-APD183H Ject Tulkarm-He	allh Care Centifiegi	stered To: AFBi	ader Heating & A	Heating	6.30	4.51	Page 21 of
MK-APD183H Ject Tulkarm-He	alth Care Centifiegi Leading Inno Toshi	stered To: AFBi ovation >>> ba Des	ader Heating & A	Heating In-Conditioning	6.30 2 001.0.0.89	4.51 Rev:	Page 21 o
NK-APD183H	aith Care CentRegi	stered To: AFBs ovation >>> ba Des	sder Heating & A	I-Conditioning	6.30 9 0d.0.089	4.51 Rev:	Page 21 o
NIK-APD183H	allh Care Centifiegi Leading Inno Toshi Unit Name & Room	stered To: AFBi ovation >>> ba Des Capacity Code	ader Heating & A	Heating I-Conditioniny	6.30 2 0d.0.0.89 2 0d.0.0.89	4.51 Rev: Conservation Rev: tails	Page 21 of
NMK-APD183H	aith Care Centifiegt Leading Innu Toshi Unit Name & Room	stered To: AFBi ovation >>> ba Des Capacity Code	ader Heating & A	Heating I-Conditioniny	6.30 2 Oct.0.0.89 2 Oct.0.0.89 Stem De Stem De Capac Rated 5.60/3.80	4.51 Rev: Tostone etails	Page 21 of
MK-APD183H	alth Care Centifiegi Leading Inno Toshi Unit Name & Room	stered To: AFB/ ovation >>> ba Des Capacity Code 2.0HP	ader Heating & A	Heating I-Conditioniny S - System Mode Cooling Heating	6.30 9 6d.0.0.89 9 7 6d.0.0.89 9 7 6d.0.0.89 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.51 Rev: Toshing tails	Page 21 of
MK-APD183H	aith Care Centifiegi Leading Innu Toshi Unit Name & Room	stered To: AFBi ovation >>> ba Des Capacity Code 2.0HP	ader Heating & A	Heating I-Conditioniny S - System Mode Cooling Heating Cooling	6.30 2 0d.0.0.89 2 0d.0.89 2	4.51 Rev: TOBHING Stails Alger/3.43 4.51 6.16/4.23	Page 21 o
MMK-APD183H	aith Care CentRegi Leading Inn Toshi Unit Name & Room	stered To: AFB	ader Heating & A	Heating I-Conditionin, I-Con	6.30 9 0d.0.0.89 9 0d.0.89 9 0d.0.89 9 0d.0.99 9 0d.0.99	4.51 Rev: TOBHING Etails Rev: Rev: Rev: Rev: Rev: Rev: Rev: Rev:	Page 21 o
MK-APD183H	aith Care Centifiegi Leading Inno Toshi Unit Name & Room	stered To: AFB ovation >>> ba Des Capacity Code 2.0HP 2.5HP 2.5HP	ader Heating & A	Heating In-Conditionin, In-Con	6.30 9 0d.0.0.89 9 0d.0.90 9 0d.00	4.51 Rev: TOSHING Stails Alger/3.43 4.51 6.164.23 5.74 6.124.21 5.74	Page 21 o
MMK-APD183H	aith Care CentRegi Leading Inn Leading Inn Toshi	stered To: AFB ovation >>> ba Des Capacity Code 2.0HP 2.5HP 2.5HP	ader Heating & A	Heating In-Conditioniny In-Conditioniny In-Conditioniny In-Conting Heating Cooling Heating Cooling Heating Cooling Heating	6.30 9 0d.0.0.89 9 0d.0.0.89	4.51 Rev: Tobhen etails ity (Total/Sensible Corrected 4.54/2.43 4.51 6.16/4.23 5.74 6.12/4.21 5.73	Page 21 o

Appendix (3)

VRF piping system

Pipe Diameter	Gas side (m)	Discharge side (m)	Liquid side (m)	Total Length (m)
¥"	0	0	50.5	50.5
<u>%</u> '	1	0	43.5	60.5
¥"	43.5	0	28.5	72
<u>"</u>	43.5	0	17	60.5
% "	Û	Û	18.5	18.5
%"	285	0	13	41.5
1%*	20	Û	0	20
1%"	15.5	0	0	15.5

Appendix (4)

VRF system official offers

سعر المتر الواحد \$	سعر المتر الواحد NIS	الصنف
1.527777778	5.5	نحاس معزول ابيض ١/٤
2.361111111	8.5	نحاس معزول ابيض ٣/٨
3.055555556	11	نحاس معزول ابيض ١/٢
4.44444444	16	نحاس معزول ابيض ١٨٥
5.833333333	21	نحاس معزول ابيض ٣/٤
8.3333333333	30	نحاس معزول ابیض ۷/۸
8.3333333333	30	ماسورة نحاس ١,١/٨
11.11111111	40	ماسورة نحاس ١,٣/٨
14.72222222	53	ماسورة نحاس ١,٥/٨

	то	SHIBA-	VRF-Heat Pump System	
السعر الاجمالي	السعر \$	الكمية	الوصف	النوعية
19740	19740	1	Toshiba VRF Heat Pump 32 hp Outdoor Unit	T-MMY-MAP3216HT8P-E
22370	22370	1	Toshiba VRF Heat Pump 42 hp Outdoor Unit	T-MMY-MAP4216HT8P-E
4095	1365	3	Concealed Ducted-Type Indoor Unit 11.2 KW CC/ 12.5 KW HC	T-MMD-AP03668HP-E
2956	1478	2	Concealed Ducted-Type Indoor Unit 16.0 KW CC/ 18.0 KW HC	T-MMD-AP05668HP-E
958	958	1	Wall Mounted-Type Indoor Unit 3.6 KW CC/ 4.5 KW HC	T-MMK-AP0123H
11330	1030	11	Wall Mounted-Type Indoor Unit 4.5 KW CC/ 5.0 KW HC	T-MMK-AP0153H
13650	1050	13	Wall Mounted-Type Indoor Unit 5.6 KW CC/ 6.0 KW HC	T-MMK-AP0183H
3225	1075	3	Wall Mounted-Type Indoor Unit 7.1 KW CC/ 8.0 KW HC	T-MMK-AP0243H
2700	2700	1	Central Smart Manager (optional), but highly recommended for the facility	T-BMS-SM1280ETLE
81024				المجموع

ملاحظات هامة رد

الاسعار أعلاه بالدولار الأمريكي شاملة لتصريبة التيمة الم
 العرض ساري المفعول لعدة إسبوعين من تاريخه.

3- الأسعار أعلاه هاملة للشبكة النحاسية والرفدت مع كوابل الكهرباء والتحكم والثيرموستان.

4- الأسعار أعلاه شاملة لتركيب النظام كاملا بجميع البنود أعلاه حتى التسليم مع التشغيل. وغير شاملة أعمال قنوات الدكت أو أية أعمال غير مذكورة. 5- النظام شامل لكفالة ٣ سنوات.

Appendix (5)

Air cooled outdoor unit's catalogues

Table Pi	0-8-60	Īon – Ο	3AF-C80													
						6	intering	Condenser	Air Tempe	rature (C	legree F)					
			76.0			850			95.0			166.0			116.0	
IML	Percent	Capacity	System -		Capacity	System :		Capacity	System		Capacity	System		Capacity	System	
Deg P)	Glycol	(kns)	W		(kns)	N#	EER	(kns)	KW.	EE R	(Ions)	ΪŴ	668	(Tons)	Ì	EER
20	28	372	50.1	8.9	35.3	55.0	\mathcal{U}	33,4	60.7	6.6	81.3	67.2	5.6	29.2	74.6	47
25	24	41.6	51.3	9.7	39.6	58.A	8,4	37,4	62.2	72	352	68.8	61	32.9	78.3	52
30	19	48,4	828	10,6	44,1	57.8	82	41.8	63.8	79	39.4	70.6	67	38.8	782	67
35	14	51.A	54.0	11.4	48.9	59.3	9.9	48,4	65,4	85	437	72.3	73	41.0	80.1	6.1
40	Q	572	55.6	123	54,5	61,1	10,7	61,7	67.3	82	48.8	74,4	78	45.8	82.2	67
42	Q	<u>582</u>	<u>882</u>	127	58.5	61,7	11.0	53.6	68.0	85	50.6	75.1	81	47.5	820	69
44	0	<mark>61.4</mark>	58.8	130	58.5	62.3	113	55.6	68.7	97	52.5	75.9	83	49.3	83.8	7.1
46	Ó	625	67.1	121	59.6	(27	11,4	56.6	69,1	88	63.4	762	84	50.2	84,2	72
46	Q	63.6	57A	133	60.6	63.0	115	57.6	69,4	8.9	54.4	76.6	85	61,1	84,6	72
48	0	65.8	58.0	136	62.7	63,7	11.8	59.6	70.2	10.2	56.3	77.A	87	52.9	85.4	7.4
50	Ø	68.0	58 6	139	64,9	(4,4	121	61,7	70,9	10,4	58.3	782	88	54.8	863	78
55	0	788	60.3	147	70.4	66,1	128	68.9	72.8	11.0	68.3	80.2	95	59.6	88.4	8,1
60	0	79.7	62.0	154	781	68.0	184	72.4	74.8	11.6	68.5	82.4	10.0	64.5	907	85

Electrical (10–60 Ton) Data - 50 HZ

Table ED-2 - Electrical Data

			Un	itWiring					Motor)ata		
	Model	Nameplate	Voltage		Max Fuse	Rec. Dual	0	ompressor (E	a	_	Fans (Ea)	
Tons	Number	Voltage	Range	MCA	Size	Element	Qty.	RLA	LRA	Qty	KW	FLA
10	CGA100BD	380-415/50/3	342-456	24.1	30	-	2	9.5	63	1	0.57	2.7
15	CGA150BD	380-415/50/3	342-456	32.7	45	-	2	13.1	99.5	2	0.33	1.6
20	CGAF-C20	380/50/3 415/50/3	342-418 373-456	44 44	60 60	50 50	2 2	17.2 17.2	110 110	2 2	0.75 0.75	1.7 1.7
25	CGAF-C25	38050/3 415/50/3	342-418 373-456	55 55	80 80	70 70	2 2	17.3/25.2 17.3/25.2	110/174 110/174	3 3	0.75 0.75	1.7 1.7
30	CGAF-C30	390/50/3 415/50/3	342-418 373-456	65 65	80 80	80 80	2 2	25.2 25.2	174 174	4	0.75 0.75	1.7 1.7
40	CGAF-C40	380/50/3 415/50/3	342-418 373-456	81 81	90 90	90 90	4 4	17.2 17.2	110 110	4	0.75 0.75	1.7 1.7
50	CGAF-C50	380/50/3 415/50/3	342-418 373-456	97 97	110 110	110 110	4 4	15.5/24.2 15.5/24.2	110/174 110/174	6 6	0.75 0.75	1.7 1.7
60	CGAF-C60	380/50/3 415/50/3	342-418 373-456	119 119	125 125	125 125	4	25.2 25.2	174 174	6 6	0.75 0.75	1.7 1.7

Notes:

 MCA: Minimum Circuit Ampacity is 125% of the largest compressor RLA, plus 100% of the other compressor(s) RLA, plus the sum of the condenser fan FLA, plus any other load rated at 1 AMP or more.

 Maximum Fuse Size: 225% of the largest compressor RLA, plus 100% of the other compressor(s) RLA, plus the sum of the condenser fan FLA, plus any other load rated at 1 AMP or more.

Recommended Dual Element Fuse Size: 150% of the largest compressor RLA, plus 100% of the other compressor(s) RLA, plus the sum of the condenser fan FLA, plus any
other load rated at 1 AMP or more.

4. RLA: Rated in accordance with UL standard 1995.

5. Local codes may take precedence.

6. Control kw includes operational controls only. Does not include evaporator heat tape.

7. All units are across the line starting. Compressors will never start simultaneously.

8. One 240/50/1, 5 AMP jobsite provided power connection is required to operate the evaporator heat tape.

General Data

Table GD-1 - General Data - 10-60 Ton Units

	10 Tan	18Ten	20Ten	25 Ton	20 Ton	40 Jun	Selien	60 Tan
Model Number	OGA120	CIGA190	OGAF-C20	OGAF-025	CGAF-CSD	OGAF-C40	CGAF-050	OGAF-C60
Compressor Data								
Modal	Scroll	Seroli	Seroli	Scroll	Scroll	Scroll.	Seroli	Scroll.
Quantity	2	2	2	1/1	2	4	202	4
Nominal Tons per Compressor	5	7.5	10	10/15	15	10	10/15	16
Evaporator								
Nominal Size (Tona)	10	15	20	25	20	40	50	80
Water Storage Capacity (Gallons)	1.4	1.5	2.2	2.7	3.2	4,1	5.0	74
Min. Flow Rate (GPM)	12.0	19.0	24	20	26	49	60	72
Max, Flow Rate (GPM)	38.0	54.0	72	99	108	144	180	216
Max EWT At Start-Up - Deg F	100	100	108	108	108	101	108	108
Condenser								
Nominal Size (Tons)	10	15	20	25	30	40	59	60
Number of Colls	1	2	1	2	2	2	2	2
Coll Size (ea., Inches)*	28 x 108	28 x 83	61 x 71	45 x 71/85 x 71	58 x 70	58 x 70	57 x 88	57 x 98
Number of Rosa	2	2	2	2	3	2	2	4
Subcooler Siza (co., inches)	4 x 108	4 x 83	10 x 71	14 x 71	8 x 70	9×70	9 x 98	9 x 98
Condenser Fans								
Quantity	1	2	2	2	4	4	6	6
Diameter (Inches)	28	26	26	28	28	26	28	28
CFM (Total)	8,120	11,600	15,000	21,650	29,200	29,200	42,300	40,700
Nominal RPM	1100	1100	1140	1140	1140	1140	1140	1140
Tip Speed (FeMin)	1000	7490	7750	7750	7750	7750	7750	7750
Motor HP (ee.)	1.0	1/2	1.0	1.0	1.0	1.0	1.0	1.0
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct
Minimum Outdoor Air Temperature I	Permissible							
For Mechanical Cooling ¹								
Standard Amblent Control Unit (*F)	50	50	20	20	20	30	20	20
Standard Ambiant wHot Gas Bypass (1)	F) 60	60	40	40	49	40	49	40
Low Ambient Option ("F)	0	0	D	0	0	0	0	0
Low Ambient Control w/Not Gas Bypass	(5) 15	15	10	10	10	10	10	10
General Unit								
United Steps	100-50	100-59	100-50	100-80-40	100-50	100.75-50.25	100-80-60-30	100-75-50-25
No. of Independent Refrig. Circuits	2	2	1	1	1	2	2	2
Refrigerant Charge (bs. R22/Circuit)	8.25	11.5	40.5	54.0	72.0	38.0	49.0	75.00
OII Charge (Pints/Circuit)	4.1	7.5	17.0	22.3	27.6	17.0	22.3	27.6
High address down and some shifts and	and the latent of							

*Unitedian state depend upon which compressor is lead compress;

Appendix (6)

Air cooled indoor unit's catalogues (Concealed type)

Mont Specification HCEE0A HFCEE0A		Gen	ieral Data HF	⁼CE 50 Hz							
MORE HFCEIGA HFCEIGA HFCEIGA HFCEIGA HFCEIA HFCEI	Product Specification										
Network/Ph/Hut Z00-240/1/50 Z00-240/1/5	MODEL		HFCE04	HFCE06	HFCE08	HFCE10	HFCE12	HFCE14	HFCE16	HFCE18	HFCE20
Optimularity (in) 400 600 800 1,000 <th< th=""><th>Rated - Volts/Ph/Hz</th><th></th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th><th>220-240/1/50</th></th<>	Rated - Volts/Ph/Hz		220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50
Nemial Afflow Cfm 400 600 1000 1,200 1,600 <t< td=""><td>System Data</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	System Data										
Coling Capacity Bu/li 1.200 18.00 24,000 30,00 30,00 42,000 49,000 49,000 Water Infe Connection Size in 5/8 5/8 5/8 5/8 5/8 5/8 3/4 3/4 Water Infe Connection Size in 5/8 5/8 5/8 5/8 5/8 3/4 3/4 3/4 Water Ontlet Connection Size in 5/8 5/8 5/8 5/8 5/8 3/4 3/4 Motor Cont in 1/2 1/2 1/2 1/2 1/2 1/4 3/4 Fina per inclut in 1/2 1/2 1/2 1/2 1/2 1/2 1/2 Fina per inclut in i/2 1/2 1/2 1/2 1/2 1/2 1/2 Fina per inclut in set No. set in set in set in set in set in set in set <td>Nominal Airflow</td> <td>cfm</td> <td>400</td> <td>600</td> <td>800</td> <td>1,000</td> <td>1,200</td> <td>1,400</td> <td>1,600</td> <td>1,800</td> <td>2,000</td>	Nominal Airflow	cfm	400	600	800	1,000	1,200	1,400	1,600	1,800	2,000
Water Intel Connection Size i 5/8 5/8 5/8 5/8 5/8 5/8 5/8 3/4 3/4 3/4 Water Onthet Connection Size Bazed	Cooling Capacity	Btu/h	12,000	18,000	24,000	30,000	36,000	42,000	48,000	54,000	60,000
Water Outlet Connection Size i	Water Inlet Connection Size	.⊑	5/8	5/8	5/8	5/8	5/8	3/4	3/4	3/4	3/4
Water Connection Size Bazed Bazed<	Water Outlet Connection Size	.⊑	5/8	5/8	5/8	5/8	5/8	3/4	3/4	3/4	5/8
Tin per inclution Commagate Fin Type Em Type Fin Type 12 12 12 13 14 14 Fin Sper inclution 14 15 15 15 15 15 16 A Row coli 14 15 15 15 15 16 16 A Row coli 14 15 16 17 17 17 17 A Row coli 14 15 16 15 16 16 16 A Row coli 14 15 12 12 12 12 12 An Urcut Pree Dent Dent Dent Dent Dent Dent Dent Motor Power W 3 3 3 4 <td< td=""><td>Water Connection Size</td><td></td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td><td>Brazed</td></td<>	Water Connection Size		Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed
Fin Type Corrugate Fin Sperinch* 12 12 15 18 14 14 Fin sperinch* 12 12 15 15 15 16 16 Fin sperinch* 14 15 16 15 17 17 16 16 Fin Sperinch* 14 15 16 15 17 17 17 17 Dain Connection Size 1 12 12 12 12 12 Fan Type nouble Inlet Centrifugal Forward Curved Fan 0 12 12 12 Fan Type 2 2 2 2 2 2 2 No. used 2 2 2 2 2 2 2 No. used 2 3 3 3 4 4 4 No. uf Speed 3 3 3 4 4 4 4 Norted North 1 1 1 1	INDOOR COIL										
Ting per num 12 12 12 12 13 16 14 14 3-Row coli 14 15 15 15 15 15 15 16 16 3-Row coli 14 15 15 15 15 15 16 16 Dein Comection Size 1 1/2 1	Fin Type					Corruga	te				
Flow coll 12 12 12 12 12 13 14 14 4 how coll 14 15 15 15 15 15 16 15 Are not connection Size 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 Fan Fan Denicit Direct <	FINS per Inch*										
4-Row coll 14 15 16 15 15 15 16 16 Dain Connection Size in 1/2 1/2 1/2 1/2 1/2 1/2 1/2 Fan Tom Connection Size in 1/2 1/2 1/2 1/2 1/2 1/2 Fan Tom Connection Size in 1/2 1/2 1/2 1/2 1/2 1/2 Fan Tom Connection Size 2 2 2 2 2 2 No. used 2 2 2 2 2 2 2 Divect Divect Divect Divect Divect Divect Divect Motor Power W 13 47 59 162 186 394 Motor Power W 1 1 0.56/0.69) 1 1<(1.36/2.41)	3-Row coil		12	12	15	18	18	14	14	14	14
Drain Connection Size in 1/2	4-Row coil		14	15	16	15	15	16	16	16	16
FM Double Inlet Certifugal Forward Curved Fan Fan Type 2 3 <t< td=""><td>Drain Connection Size</td><td>.⊑</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td><td>1/2</td></t<>	Drain Connection Size	. ⊑	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Fan Type Double Inlet Centrifugal Forward Curved Fan No. used 2 34 34 4	FAN										
No. used 2<	Fan Type					Double Inle	t Centrifugal Forward (urved Fan			
Dive Type Direct Dir	No. used		2	2	2	2	2	2	2	2	2
FAN MOTOR (STANDARD) Motor Power W 13 47 59 162 186 394 394 394 Motor Power W 3 3 3 3 34 34 34 34 34 395 394 394 394 394 394 394 394 394 394 394 394 394 395 334 3335 314 313 313 313 313 313	Drive Type		Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct
Motor Power W 13 47 59 162 186 394 304 0 0 of Speed 3 3 3 4	FAN MOTOR (STANDARD)										
No. of Speed 3 3 3 4 <	Motor Power	M	13	47	59	162	186	394	394	453	453
Qty x (RLA/LRA) 1 x (0.20/0.35) 1 x (0.49/0.71) 1 x (0.56/0.69) 1 x (1.35/2.41) 1 x (3.33/5.08) 1 x (3.33/5.08) <th< td=""><td>No. of Speed</td><td></td><td>m</td><td>m</td><td>m</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td></th<>	No. of Speed		m	m	m	4	4	4	4	4	4
DIMENSION (HxWxD) DIMENSION (HxWxD) Uncrated with plenum (Net) mm 265 x 824 x 510 278 x 1,117 x 510 300 x 1,087 x 608 433 x 1,095 x740 433 x 1,095 x740 433 WEIGHT mm 265 x 824 x 510 278 x 1,117 x 510 300 x 1,087 x 608 300 x 1,240 x 608 433 x 1,095 x740 433 WEIGHT mm 26 30 36 42 46 54 54 3-Row Uncrated (Net) kg 26 30 36 42 46 54 54	Qty × (RLA/LRA)		1 x (0.20/0.35)	1 x (0.49/0.71)	1 x (0.56/0.69)	1 x (1.36/2.31)	1 x (1.35/2.41)	1 x (3.33/5.08)	1 x (3.33/5.08)	1 x (0.43/6.98)	1 x (0.43/6.98)
Uncrated with plenum (Net) mm 265 x 824 x 510 278 x 1,117 x 510 300 x 1,087 x 608 433 x 1,095 x740 431 x 1,095 x740 431 x 1,095 x740 431 x 1,095 x740 431 x 1,095 x740 441 x 1,095 x740 441 x 1,095 x740 <td>DIMENSION (HXWXD)</td> <td></td>	DIMENSION (HXWXD)										
WEIGHT 37 36 42 46 54 54 3-Row Uncrated (Net) kg 26 30 36 42 46 54 54	Uncrated with plenum (Net)	mm	265 x 824 x 510	278 x 940 x 510	278 x 1,117 x 510	300 x 1,087 x 608	300 x 1,240 x 608	433 x 1,095 x740	433 x 1,095 x740	433 x 1,248 x 670	433 x 1,248 x 67
3-Row Uncrated (Net) kg 26 30 36 42 46 54 54	WEIGHT										
	3-Row Uncrated (Net)	þ	26	30	36	42	46	54	54	62	62
4-Row Uncrated (Net) kg 27 32 38 44 48 57 57	4-Row Uncrated (Net)	<u> </u>	27	32	38	44	48	57	57	99	99

Cooling Capacity for EWT Unit Size (F) UNIT	an using with options r <u>3</u> - Row Coi Rated Airflow CFM 4000 1000 1200 1200 1200 1800 2000 2000	Migh state model MTR WTR WTR WTR WTR 15 11 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 10 17 15 18 8 8 8 8 8 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	or TC 7C 8.46 6.551 6.551 6.551 6.551 12.04 8.97 8.97 8.97 8.97 8.97 11.15 11.	72 1 SC 5.90 SC 7.50 SC 7.50 SC 10.59 SC 10.59 SC 114.26 SC 114.26 SC 114.26 SC 114.26 SC 114.26 SC 114.26 SC 113.22 SC 113.22 SC 123.23 SC	Control Control <t< th=""><th>PD PD 1</th><th>13 3</th><th>Effe 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7</th><th>Perf MM MM Air Mod Air Air MM Air Air Main Air Air Mina Air Air Main Air Air</th><th>OTM3 - ED - E</th><th>CEC0. CCE0. CCE0. CCE0. 8.074 8.075 8.</th><th>Oata FTC FTC Permission Provided for the formation of the</th><th>Cool = For =</th><th>ing Capacity is the capacity i</th><th>Apac, MeH MeH MeH MeH MeH MeH MeH MeH MeH MeH</th><th>1111 1 11111 1 1111</th><th>er er 11:58 11:58 11:58 11:58 11:58 11:58 12:55 12:55 12:55 12:55 13:53 13:53 13:53 13:53 13:53 13:53 13:53 13:53 13:55 1</th></t<>	PD PD 1	13 3	Effe 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7	Perf MM MM Air Mod Air Air MM Air Air Main Air Air Mina Air Air Main Air Air	OTM3 - ED - E	CEC0. CCE0. CCE0. CCE0. 8.074 8.075 8.	Oata FTC FTC Permission Provided for the formation of the	Cool = For =	ing Capacity is the capacity i	Apac, MeH	1111 1 11111 1 1111	er er 11:58 11:58 11:58 11:58 11:58 11:58 12:55 12:55 12:55 12:55 13:53 13:53 13:53 13:53 13:53 13:53 13:53 13:53 13:55 1
Trane optimizes the performance of home and b and HVAC systems, comprehensive building services เทรน (ประมาศไทย) เลรที่ 1124/2 ขึ้น จอง1 คาคารายัน 2 ณาพรนุริศักโหม แ	buildings around th s, and parts. For mo แขวงมักกะสัน เขทราร	15 he world. A bu ore information, มหวี กรุงเทพฯ 10	22.19 siness of Inge visit www.tran	21.90 ersoll Rand, ethailand.cor	the leader ii	creating an	d sustaining	.58 3.7 safe,comfort	2 1.37 able, and ene	rgy efficiente	nvironments,	5.88	3.02 broad portfoli	60.19 o of advance o	42.47 controls	8.00	5.15

Appendix (7)

Air cooled indoor unit's catalogues (Ducted type)

TRANE

Performance Data

Cooling Capacity (Example)

HI-Static Motor

Normal Moter

* Plenum/Filters

O American Standard Inc. 2001

Options: * Heat Capacity Type • Hot Water 1Row (kW)

Electric Sheathed Element

*Available with 115V/60Hz, 220V/50Hz, or 220V/60Hz

Note: It reserves the right to change design and specification without notice.

Cooling Capacity : KW	Cooling Rows : 3	SH : Sensible Cooling Capacity, kW
EAT : 26.0°C/ 60.0%	Motor Frequency : 50Hz	WPD : Water Pressure Drop, M
ESP:0 Pa	TH : Total Cooling Capacity, KW	WFR : Water Flow Rate, L / S

	Nominal	MITE		Entering Water Temperature										
Model	Alifiow	WIR		5	'C			7	°C			9	'C	
	(CMH)	(9	SH	TH	WFR	WPD	SH	TH	WFR	WPD	SH	TH	WFR	WPD
		3.0	3.19	5.17	0.41	7.60	2.86	4.43	0.35	5.74	2.54	3.65	0.29	4.03
03	509	5.0	2.92	4.55	0.22	2.47	2.59	3.78	0.18	1.77	2.30	3.02	0.14	1.18
		7.0	2.62	3.85	0.13	1.02	2.32	3.10	0.11	0.69	2.06	2.39	0.08	0.44
		3.0	4.81	7.81	0.62	21.93	4.32	6.72	0.53	16.63	3.84	5.57	0.44	11.80
04	678	5.0	4.45	7.02	0.33	7.35	3.97	5.87	0.28	5.31	3.52	4.74	0.23	3.60
		7.0	4.08	6.13	0.21	3.20	3.63	5.02	0.17	2.23	3.22	3.97	0.14	1.45
		3.0	5.32	8.58	0.68	9.38	4.78	7.35	0.58	7.06	4.24	6.05	0.48	4.96
06	1018	5.0	4.86	7.55	0.36	3.04	4.33	6.27	0.30	2.17	3.85	5.03	0.24	1.46
		7.0	4.39	6.41	0.22	1.26	3.90	5.16	0.18	0.86	3.46	3.99	0.14	0.54
		3.0	6.92	11.15	0.89	17.68	6.23	9.56	0.76	13.33	5.55	7.88	0.63	9.39
08	1357	5.0	6.38	9.90	0.47	5.80	5.69	8.24	0.39	4.16	5.06	6.63	0.32	2.81
		7.0	5.81	8.55	0.29	2.48	5.19	6.97	0.24	1.72	4.62	5.48	0.19	1.12
		3.0	8.42	13.48	1.07	4.87	7.56	11.50	0.91	3.64	6.71	9.40	0.75	2.53
10	1696	5.0	7.60	11.60	0.55	1.52	6.77	9.54	0.46	1.07	5.98	7.53	0.36	0.70
		7.0	6.66	9.27	0.32	0.57	5.85	7.15	0.24	0.36	5.12	5.15	0.18	0.20
		3.0	10.34	16.56	1.32	8.05	9.30	14.14	1.12	6.03	8.26	11.60	0.92	4.22
12	2036	5.0	9.41	14.41	0.69	2.56	8.40	11.93	0.57	1.82	7.46	9.53	0.45	1.21
		7.0	8.43	12.03	0.41	1.03	7.48	9.56	0.33	0.68	6.62	7.25	0.25	0.42
		3.0	11.19	17.92	1.43	14.15	10.06	15.06	1.24	11.51	8.93	13.15	1.05	8.21
14	2366	5.0	10.30	16.10	0.77	4.23	9.17	13.67	0.65	3.32	8.04	11.09	0.53	2.24
		7.0	9.35	14.08	0.48	2.15	8.21	11.49	0.39	1.40	7.13	8.89	0.30	0.91
Spec./	Input Po	wer												
Model						03	04	0)6	08	10	1	2	14
Nominal	Airflow (Cl	MH)				509	678	10)18	1357	1696	20	36	2366
Input Pov	ver (Watts)*												

88

73

110

82

4

138

114

180

132

Available with high temperature cutout (Electric heater starts when the $T_{\rm wh}$ is below 27°C) Return air plenum with filters-washable foam or aluminum

2.86 3.71 4.95 6.16 6.91 7.94 EWT-55'C; EAT-21'C; WFR-0.3L/S (Hot Water EWT must be below 60'C) 1.0 1.5 2 3 3.5 4

218

162

250

198

317

226

9.26

4

HFCA-PRC001-EN

1	4	8
т.		U.

Appendix (8)

Air Cooled Primary Pump Catalogues

Data sheet			
		KSI	3 (), j
Customer item no.:			
Communication dated:		Number	: ES 5044013
Doc. no.:		Item no.	: 100
quantity. T		Page: 1	/5
ETL 065-065-160 GG AV66 Inline pump	D200154 BKSBIE3	Version n	D.: 1
Operating data			
Requested flow rate	40.00 m³/h	Actual flow rate	39.41 m³/h
Requested developed head	9.50 m	Actual developed head	9.22 m
Pumped medium	Antifreeze on ethylene glycol	Efficiency MEL/Minimum Efficiency	> 0.70
	system, e.g. Antifrogen N or	Index)	20.70
	similar products	Power absorbed	1.33 kW
	concentration 30% (nH >=	Pump speed of rotation	1451 rpm
	7.5)	Permissible operating	16.00 bar.o
	Not containing chemical and mechanical substances which affect the materials	pressure	,
Ambient air temperature	20.0 °C		
Fluid temperature	20.0 °C		
Fluid density	1040 kg/m³		
Fluid viscosity	2.22 mm³/s	Discharge press.	0.94 bar.g
Suction pressure max.	0.00 bar.g	Min. allow. mass flow for	2.01 kg/s
Mass now rate Max, power on curve	17.39 kg/s	Max. allow, mass flow	21.45 kg/s
Min. allow. flow for continuous	6.97 m³/h	Design	Single system 1 x 100 %
stable operation			Tolerances to ISO 9906
Shutoff head	11.29 m		to paragraph 4.4.2
Design			
Pump standard	Without	Material code	Q7Q7EGG
can be different to the previous	generation of Etaline.	Sealing plan	Single-acting mechanical sea
Design	Close-coupled in-line		with vented chamber (A-type
Orientation Suction nominal dia	Vertical DN 85	Seal chamber design	casing cover, taper bore) Conical seal chamber (A trans
Suction nominal pressure	PN 16	oear onamoer design	cover)
Suction position	180° (down)	Contact guard	With
Suction flange drilled	EN1092-2	Wear ring Impeller diameter	Casing wear ring 174.0 mm
Discharge nominal dia.	DN 65	Free passage size	11.6 mm
Discharge norminal pressure	PN 16	Direction of rotation from	Clockwise
Discharge position Discharge flange drilled	top (0°/360°) EN1092-2	drive Silicon free nump accombly	Vec
according to standard		Bearing bracket construction	Close-coupled
Shaft seal	Single acting mechanical seal	Bearing bracket size	25
Manufacturer Type	Burgmann MG13G6	Bearing type Lubrication type	Anti-friction bearings Grease

Appendix (9)

Air Cooled Secondary Pump Catalogues

Data sheet		KSB	6
Customer item no.: Communication dated: Doc. no.: Quantity: 1		Number: Item no.: Date: 30/ Page: 1 /	ES 5044007 100 04/2017 5
ETL 065-065-250 GG AV66 Inline pump	D200304 BKSBIE3	Version no.	:1
Operating data			
Requested flow rate Requested developed head Pumped medium	40.00 m*/h 12.50 m Antifreeze on ethylene glycol base, inhibited, closed system, e.g. Antifrogen N or similar products Cooling water with antifreeze- concentration 30% (pH >= 7.5) Not containing chemical and mechanical substances which affect the materials	Actual flow rate Actual developed head Efficiency MEI (Minimum Efficiency Index) Power absorbed Pump speed of rotation NPSH required Permissible operating pressure	43.31 m*/h 14.65 m 73.0 % ≥ 0.70 2.46 kW 1451 rpm 1.87 m 16.00 bar.g
Ambient air temperature Fluid temperature Fluid density	20.0 °C 20.0 °C 1040 kg/m³		
Fluid viscosity Suction pressure max. Mass flow rate Max. power on curve Min. allow. flow for continuous stable operation Shutoff head	2.22 mm³/s 0.00 bar.g 12.51 kg/s 3.00 kW 7.89 m³/h 18.48 m	Discharge press. Min. allow. mass flow for continuous stable operation Max. allow. mass flow Design	1.49 bar.g 2.28 kg/s 20.96 kg/s Single system 1 x 100 % Tolerances to ISO 9906 Class 3B; below 10 kW acc. to paragraph 4.4.2
Design			
Pump standard Design Orientation Suction nominal dia.	Without Close-coupled in-line Vertical DN 65	Shaft seal code Sealing plan	66 Single-acting mechanical seal with vented chamber (A-type casing cover, taper bore)
Suction nominal pressure Suction position Suction flange drilled according to standard	PN 16 180° (down) EN1092-2	Seal chamber design Contact guard Wear ring	Conical seal chamber (A-type cover) With Casing wear ring
Discharge nominal dia. Discharge norminal pressure Discharge position Discharge flange drilled	DN 65 PN 16 top (0°/360°) EN1092-2	Impeller diameter Free passage size Direction of rotation from drive	223.0 mm 10.0 mm Clockwise
according to standard Shaft seal Manufacturer Type Material code	Single acting mechanical seal Burgmann MG13G6 Q7Q7EGG	Silicon free pump assembly Bearing bracket construction Bearing bracket size Bearing type Lubrication type Color	Yes Close-coupled 25 Anti-friction bearings Grease Vermilion (RAL 2002)

Appendix (10)

Air Cooled Official Offers Catalogues

1

ear Sir,			
ase find attacher	d our offer for the supply of Air - Conditionin	g units as follow	s:
		USP	_
otal Price:	Description	Price (JD)	special pr
	EWYQ-F Chiller	63357	- 47,518
	2-Pipe Flexi FWL (wall \ ceiling) Unit (Decorative)	19890	14, 918
	2-Pipe Flexi FWR (wall \ ceiling) Unit (Decorative)	9072	6. 804
	2-Pipe Ducted Unit FWD (Horizontal \ Vertical Concealed) High Static	13530	010,148
	Total	105849	-079,387
			Aris an a
Brand: DA	IKIN	311	5/2017

	2-Pipe Flexi (wall \ ceiling) Unit (Decorative)												
Model	Heating (W)	Heating (Kcalh)	Cooling (Kw)	Cooling (Ton)	Quantity	Unit Price (USD)	Total Price (USD)						
FWL03DTN	8760	7580	2.93	0.84	1	752	752						
FWL04DTN	12890	11124	4.33	1.24	4	854	3416						
FWE06DTN	14620	12617	4.77	1.36	2	916	1832						
FWL08DTN	19550	16872	8.71	1.92	9	1234	11106						
FWL10DTN	25350	21877	8.71	2.49	2	1392	2784						
			Contraction of the	1 2000 1		Total	19890						

Note: All units are without controller,

6	2-Pip	pe Flexi (v	vall \ ceili	ng) Unit (Decorativ	0)	
Model	Heating (W)	Heating (Kcallh)	Cooling (Nw)	Cooling (Ton)	Quantity	Unit Price (USD)	Total Price (USD)
FWR08ATN	11180	9648	10.05	2.88	6	1512	9072
	12					Total	9072

Note: All units are without controller.

Ducted High Static	
2-Pipe Ducted Unit (Horizontal \ Vertical Concealed) Hig	h Static
Model Heating Heating Cooling Cooling Quantity Unit (W) (Kcalih) (Kw) (Tori) Quantity (U	Price Total Price (USD)
FWD16AT 44570 38464 16.40 4.69 5 2	708 1353
T	otal 1353

Appendix (11)

Cooling load final report using HAP 4.6

Project Name: Child institute Prepared by: ameer				06/02/201/ 01:52
ir System Information				
Air System Name AHU1 FF		Number of zones		
Equipment Class CW AHU		Floor Aree	1733.0	0 2
Air System Type VAV		Location Ammar	Jordan	1 1 -
izing Calculation Information Zone and Space Sizing Method:			9	
Zone CFM Peak zone sensible load		Calculation MonthsJ;	an to Dec	
Space CFM Individual peak space loads		Sizing Data	alculated	
Total coil load	Tons	Load occurs at	Sep 1500	
Total coil load 238.7	MBH	OA DB / WB 10	2.7 / 63.6	°F
Sensible coil load	MBH	Entering DB / WB 7	7.1 / 59.9	°F
Coil CFM at Sep 1500 10520	CFM	Leaving DB / WB 5/	4.1 / 51.3	°F
Max block CFM at Oct 1500 11493	CFM	Coil ADP	51.5	°F
Sum of peak zone CFM 11810	CFM	Bypass Factor	0.100	
Sensible heat ratio 1.000		Resulting RH	39	96
ft²/Ton		Design supply temp.	55.0	°F
BTU/(hr-ft ²) 137.7		Zone T-stat Check	7 of 7	OK
Water flow @ 10.0 °F rise 47.77	gpm	Max zone temperature deviation	0.0	°F
Preheat Coil Sizing Data				
Max coil load	МВН	Load occurs at	Des Htg	
Coil CFM at Des Htg	CFM	Ent. DB / Lvg DB 3	3.7 / 50.0	°F
Max coil CFM	CFM			
Water flow @ 20.0 °F drop 0.46	gpm			
upply Fan Sizing Data				
Actual max CFM at Oct 1500 11493	CFM	Fan motor BHP	2.05	BHP
Standard CFM 10478	CFM	Fan motor kW	1.63	kW
Actual max CFM/ft ² 6.63	CFM/ft ²	Fan static	0.60	in wg
Jutdoor Ventilation Air Data				
Design sinflow CEM 282	CFM	CFM/person	8.31	CFM/perso
Design airliow OFM				

	ZOUG 21	izing su	mma	ry tor P	HU1					
roject Name: Child Institute				-					06/02	/2016
repared by: ameer									D	1:520
r system information										
Air System Name	AHU1 FF		No	mber of zor	ies.			7		
Equipment Class	CW AHU		Flo	or Area				1788.0	π°	
Air System Type	VAV		Loc	ation			Amman	n, Jordan		
zing Calculation Information										
Zone and Space Sizing Method:										
Zone CFM Peak zone	sensible load		Cal	iculation Me	onths		Ja	in to Dec		
Space CFM Individual peak	k space loads		81 Z	ing Data			Ca	aloulated		
ne Sizina Deta										
[Maulas			Misterry		Time	Maulaura	-		
	Maxim		ecign	Minimur	n	Time	Maximum	20	one	
	Cool	ling	Air	A	Ir	of	Heating	FI	oor	_
	sens	ID10	Flow	FIO	w	Peak	Load	A	rea	Zon
Zone Name	(Mi	BH) (CFM)	(CFN	0	Load	(MBH)		(ft°)	CFM/I
Zone 1		9.9	503	2	2	Jun 1500	3.4	18	\$7.3	2.6
Zone 2	3	36.3	1845	3	6	Jul 1500	2.3	24	7.6	7.4
Zone 3	3	38.3	1945	3	5	Oct 1500	3.9	23	2.5	8.3
Zone 4	4	41.1	2088	3	7	Nov 1500	2.0	26	34.8	7.8
Zone 5	3	37.0	1877	4	6	Jun 1500	2.1	23	2.5	8.0
Zone 6		4.7	240	4	3	Jun 1500	2.2	18	7.3	1.2
Zone 7		50.6	3075		5	Oct 1500	4.9	20	1.0	8.0
Zune /		5U.8	30/5	-	2	00011500	۰.۵		1.0	0.1
	Reh	R	eheat Coll	Zon Ht	e 0	Zone Hta	Mixing			
	Reh	neat Coll 1	eheat Coll Water	Zon Ht	0	Zone Htg Water	Mixing Rev Exp			
	Reh	R Coll N	oheat Coll Nater	Zon Ht Co	0 	Zone Htg Water	Mixing Box Fan			
Zona Nama	Reh C	R Coll V cad	eheat Coll Water gpm	Zon Ht Co Loa	0 0 11 0	Zone Htg Water gpm	Mixing Box Fan Airflow			
Zone Name	Reh C Li (Mi	R Coll V oad BH) (8 2	eheat Coll Water gpm 0.0 °F	Zon Ht Co Loa (MBH		Zone Htg Water gpm @ 20.0 °F	Mixing Box Fan Airflow (CFM)			
Zone Name Zone 1 Zone 2	Reh C Lo (Mi	R Coll N Coll N BH) @ 2 3.8	oheat Coll Water gpm 0.0 °F 0.38	Zon Ht Co Loa (MBH		Zone Htg Water gpm @ 20.0 °F 0.00	Mixing Box Fan Airflow (CFM) 0			
Zone Name Zone 1 Zone 2	Reh (Li	R Coll N Coll N BH) @ 2 3.8 2.8	eheat Coll Water gpm 0.0 °F 0.38 0.28	Zon Ht Co Loa (MBH 0. 0.		Zone Htg Water gpm @ 20.0 °F 0.00 0.00	Mixing Box Fan Airflow (CFM) 0			
Zone Name Zone 1 Zone 2 Zone 3	Reh (Li	R Coll N Dad BH) (2 2 3.8 2.8 4.5	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.45	Zon Ht Co Loa (MBH 0. 0.		Zone Htg Water gpm © 20.0 °F 0.00 0.00 0.00	Mixing Box Fan Airflow (CFM) 0 0			
Zone Name Zone 1 Zone 2 Zone 3 Zone 4	Reh (Li	R neat Coll N 0ad BH) (@ 2 3.8 2.8 4.5 2.5	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.45 0.25	Zon Ht Co (MBH 0. 0. 0. 0.		Zone Htg Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00	Mixing Box Fan Airflow (CFM) 0 0 0			
Zone Name Zone 1 Zone 2 Zone 2 Zone 4 Zone 5	Reh C (Mi	R teat Coll 1 0ad BH) (@ 2 3.8 2.8 4.5 2.5 2.5 2.8	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.45 0.25 0.28	Zon Ht Co (MBH 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00 0.00	Mixing Box Fan Ainflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6	Reh C	R teat Coll N oad BH) (2 2 3.8 2.8 4.5 2.5 2.8 2.8 2.8	eheat Coll Water gpm 0.0 ∘F 0.38 0.28 0.45 0.25 0.28 0.28 0.28	Zon Ht Co Loa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm @ 20.0 *F 0.00 0.00 0.00 0.00 0.00 0.00	Mixing Box Fan Ainflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7	Reh (L (MI	R teat Coll 1 3.8 2.8 4.5 2.8 2.8 2.8 2.8 2.8 5.8	eheat Coll Water gpm 0.0 ∘F 0.38 0.28 0.28 0.25 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Loa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7	Reh (L (M)	R teat Coll 1 3.8 2.8 4.5 2.8 2.8 2.8 2.8 2.8 5.8	eheat Coll Water 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows	Reh ((Mi	R teat Coll 1 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	eheat Coll Water 0.0 °F 0.38 0.28 0.28 0.25 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co (MBH 0. 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm @ 20.0 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Mixing BoxFar Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows	Reh ((M)	R teat Coll 1 aad BH) @ 2 3.8 2.8 2.8 2.8 2.8 2.8 5.8 5.8	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.45 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Htg Water gpm g 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ood		
Zone Name Zone 1 Zone 2 Zone 3 Zone 3 Zone 5 Zone 6 Zone 7 pace Loads and Airflows	Reh ((MI	R 1001 1 1000 1000	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.45 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Alrflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oor	80	
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Dece Loads and Airflows Zone Name /	Reh (Li (MI	R and the second secon	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	• • • • • • • • • • • • • • • • • • •	Zone Hig Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oor	Space	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Space Name	Mult.	R teat Coll V aad BHI (0 2 3.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 5.8 Cooling 8encible (MBH)	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.25 0.25 0.28 0.28 0.28 0.28	Zon Ht Co Loss (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oor rea (ft ²)	8pape CFM/It ²	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Bpace Name Zone 1	Mult.	R act 1 act 1 act 1 BH 02 2 3.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.58	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00r 198 (fi ²)	Space CFM/ft=	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Dece Loads and Airflows Zone Name / Space Name Zone 1 FF Administration office FF Administration office	Mult.	R 1001 1 1000 1 100	eheat Coll Water 0.0 °F 0.38 0.28 0.28 0.25 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Losa (MBH 0: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g d d d d d d d d d d d d d	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Alrflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007 rea (ft²)	8раое СFM/H ² 2.69	
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Dace Loads and Airflows Zone Name / Base Name Zone 1 FF Administration office Zone 2	Mult.	R and Coll V Coll V 8H1 Q2 2 3.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 Cooling 8ensible (MBH) 9.9	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.28 0.25 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e o u u u u u u u u u u u u u	Zone Hig Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007 res (ff ²) 7.3	8pape CFM/Ht 2.69	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Bpsoe Name Zone 1 FF Administration office Zone 2 FF Class1 N	Mult.	R and the set of the	eheat Coll Water 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Loss (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007 rea fff ^c) 77.3	8раое СFM/It ² 2.59 7.46	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loada and Airflows Zone Name / Bpace Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3	Mult.	R and the set of the	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007 198 (f ^[2]) 17.5	8pace CFMM* 2.69 7.45	
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Space Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 W	Mult.	R neat Coll V 8H) @ 2 3.8 2.8 4.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Losa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Mixing Box Fan Alrflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00r rea (ff²) 77.3	8pace CFM/H* 2.69 7.46 8.37	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / 8psoe Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1W Zone 4	Mult.	R neat Coll V 8H/ (0, 2 3.8 2.8 2.8 2.8 2.8 2.8 5.8 Cooling 3ensible (MBH) 9.9 9.9 36.3 38.3	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Loss (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e o u u u u u u u u u u u u u	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00r rea (ff2) 77.3 77.6	8pace CFMM 2.69 7.45 8.37	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Bpace Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 W Zone 4 FF Class2 E	Mult.	R neat Coli V oad BHI (0) 2 3.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00r res (ff5) 17.3 17.6	8pace CFM/H ² 2.69 7.46 8.37 7.88	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Bpace Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 N Zone 4 FF Class2 E Zone 5	Mult.	R 10 at 1 10 at 1	eheat Coll Water gpm 0.0 % 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Loas (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00r res (f/5) 17.6 17.6	8psoe CFM/tf- 2.69 7.46 8.37 7.88	
Zone Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Dace Loads and Airflows Zone Name / Space Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 W Zone 4 FF Class2 E Zone 5 EE Meeting mom	Mult.	R neat Coll V Sad BHJ (0, 2 3.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Losa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water gpm @ 20.0 °F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60r res fff; 7.6 22.5 4.8 22.5	8psoe CFM/tt ² 7.45 8.37 7.88	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Space Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1W Zone 4 FF Class1W Zone 4 FF Class2 E Zone 5 FF Meeting room	Mult.	R neat Coll V aad BHI (0, 2 3.8 2.8 2.8 2.8 2.8 2.8 5.8 5.8 Cooling Sencible (MBH) 9.9 38.3 38.3 38.3 38.3	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Losa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007 788 (ft ²) 77.3 77.5 22.5 34.8	8pace CFM/H ² 2.69 7.46 8.37 7.88 8.37	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loade and Airflowe Zone Name / Bpace Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 N Zone 4 FF Class2 E Zone 5 FF Meeting room Zone 6 EE excelore and watten	Mult.	R and the set of the	eheat Coll Water gpm 0.0 % 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Loaa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Hig Water 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0007 rea (ff ²) 77.3 77.6 77.6 77.6 77.6 77.6 77.6 77.6	8psoe CFMHt ^c 2.69 7.46 8.37 7.88 8.37	
Zone Name Zone 1 Zone 2 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Pace Loads and Airflows Zone Name / Bpace Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 W Zone 4 FF Class2 E Zone 5 FF Meeting room Zone 6 FF Secretary and waltin Yone 7	Mult.	R neat Coll V 8H) (2 2 3.8 2.8 4.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	eheat Coll Water gpm 0.0 °F 0.38 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.2	Zon Ht Co Load (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Htg Water 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0007 798 (ff ²) 77.6 32.5 34.8 32.5	8psoe CFM/Ifi- 2.69 7.46 8.37 7.88 8.37 1.28	
Zone Name Zone 1 Zone 2 Zone 2 Zone 2 Zone 4 Zone 5 Zone 6 Zone 7 Dace Loads and Airflows Zone Name / Space Name Zone 1 FF Administration office Zone 2 FF Class1 N Zone 3 FF Class1 W Zone 4 FF Class2 E Zone 5 FF Meeting room Zone 6 FF secrateray and waltin Zone 7	Mult. 1 1 1 1 1 1 1 1 1 1 1 1 1	R neat Coll V 8H) (0, 2 3.8 2.8 2.8 2.8 2.8 2.8 5.8 Cooling 3ensible (MBH) 9.9 36.3 38.3 38.3 44.1 4.7	eheat Coll Water gpm 0.0 °F 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	Zon Ht Co Losa (MBH 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e g g g g g g g g g g g g g	Zone Htg Water 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Mixing Box Fan Airflow (CFM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0007 rea fff=) 77.6 22.5 44.8 25 77.3	8pace CFM/tt- 2.69 7.46 8.37 7.88 8.37 7.88 8.07 1.28	

Air System Design Load Summary for AHU1 FF

Project Name: Child institute Prepared by: ameer 08/02/2016 01:52Ö

	DE	SIGN COOLIN	G	DESIGN HEATING			
	COOLING DATA	AT Sep 1500		HEATING DATA	AT DES HTG		
	COOLING OA DE	3/WB 102.7	°F / 63.6 °F	HEATING OA D	B/WB 33.0°F	/ 27.5 °F	
		Sensible	Latent		Sensible	Later	
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/h	
Window & Skylight Solar Loads	405 ft ²	17495	-	405 ft ²	-		
Wall Transmission	1456 ft ²	6478	-	1456 ft ²	12144		
Roof Transmission	0 ft ²	0	-	0 ft2	0		
Window Transmission	405 ft ²	5531	-	405 ft ²	8542		
Skylight Transmission	0 ft2	0	-	0 ft²	0		
Door Loads	0 ft ²	0	-	0 ft²	0		
Floor Transmission	0 ft2	0	-	0 ft2	0		
Partitions	2889 ft ²	0	-	2889 ft²	0		
Ceiling	1633 ft ²	2325	-	1633 ft ²	0		
Overhead Lighting	4025 W	7012	-	0	0		
Task Lighting	2340 W	5823	-	0	0		
Electric Equipment	57190 W	171428	-	0	0		
People	34	5160	4084	0	0		
Infiltration	-	0	0	-	0		
Miscellaneous	-	409	409	-	0		
Safety Factor	0% / 0%	0	0	0%	0		
>> Total Zone Loads	-	221661	4493	-	20687		
Zone Conditioning	-	216439	4493	-	17118		
Plenum Wall Load	13%	1286	-	0	0		
Plenum Roof Load	70%	0	-	0	0		
Plenum Lighting Load	30%	4120	-	0	0		
Return Fan Load	10520 CFM	0	-	288 CFM	0		
Ventilation Load	282 CFM	7302	-4129	282 CFM	9865		
Supply Fan Load	10520 CFM	5129	-	288 CFM	-1610		
Space Fan Coil Fans	-	0	-	-	0		
Duct Heat Gain / Loss	2%	4433	-	2%	414		
>> Total System Loads	-	238709	364	-	25786		
Central Cooling Coil	-	238709	0	-	0		
Preheat Coil	-	0	-	-	4623		
Terminal Reheat Coils	-	0	-	-	21163		
>> Total Conditioning	-	238709	0	-	25786		
Key:	Positive	e values are cig	j loads n loads	Positive values are algorithm			

Zone Design Load Summary for AHU1 FF

Project Name: Child institute Prepared by: ameer

Zone 1	DES	IGN COOLING	DESIGN HEATING			
	COOLING DATA A	T Jun 1500	HEATING DATA	AT DES HTG		
	COOLING OA DB	/WB 104.1 °F	HEATING OA DB	/WB 33.0 °F/	27.5 °F	
	OCCUPIED T-STA	T 75.0 °F		OCCUPIED T-ST/	AT 70.0 °F	
ZONE LOADS	Details	Sensible (BTU/hr)	Latent (BTU/hr)	Details	Sensible (BTU/hr)	Laten (BTU/hr
Window & Skylight Solar Loads	30 ft ⁼	1286	-	30 ft*	-	
Wall Transmission	336 ft*	2127	-	336 ft=	2802	
Roof Transmission	0 ft=	0	-	0 ft⁼	0	
Window Transmission	30 ft²	434	-	30 ft²	633	
Skylight Transmission	0 ft=	0	-	0 ft=	0	
Door Loads	0 ft=	0	-	0 ft=	0	
Floor Transmission	0 ft ⁻	0	-	0 ft=	0	
Partitions	396 ft ⁻	0	-	396 ft⁼	0	
Ceiling	187 ft ⁻	0	-	187 ft ⁻	0	
Overhead Lighting	435 W	758	-	0	0	
Task Lighting	1740 W	4330	-	0	0	
Electric Equipment	200 W	600	-	0	0	
People	2	304	240	0	0	
Infiltration	-	0	0	-	0	
Miscellaneous	-	68	68	-	0	
Safety Factor	0% / 0%	0	0	0%	0	
>> Total Zone Loads	-	9906	308	-	3435	

Zone 2	DE	SIGN COOLIN	G	DESIGN HEATING HEATING DATA AT DES HTG			
	COOLING DATA	AT Jul 1500					
	COOLING OA DE	3/WB 105.1	°F / 65.0 °F	HEATING OA D	B/WB 33.0°F	/ 27.5 °F	
	OCCUPIED T-ST/	AT 75.0 °F		OCCUPIED T-ST	TAT 70.0 °F		
		Sensible	Latent		Sensible	Latent	
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)	
Window & Skylight Solar Loads	60 ft°	1960	-	60 ft=	-	-	
Wall Transmission	120 ft ⁻	538	-	120 ft ^e	999	-	
Roof Transmission	0 ft⁼	0	-	0 ft=	0	-	
Window Transmission	60 ft°	902	-	60 ft*	1266	-	
Skylight Transmission	0 ft*	0	-	0 ft*	0	-	
Door Loads	0 ft⁼	0	-	0 ft=	0	-	
Floor Transmission	0 ft*	0	-	0 ft*	0	-	
Partitions	450 ft ⁼	0	-	450 ft*	0	-	
Ceiling	248 ft*	0	-	248 ft²	0	-	
Overhead Lighting	575 W	1002	-	0	0	-	
Task Lighting	100 W	249	-	0	0	-	
Electric Equipment	10350 W	31024	-	0	0	-	
People	4	607	480	0	0	0	
Infiltration	-	0	0	-	0	0	
Miscellaneous	-	68	68	-	0	0	
Safety Factor	0%/0%	0	0	0%	0	0	
>> Total Zone Loads	-	36350	549	-	2264	0	

06/02/2016 01:520

Zone 3	DE	SIGN COOLIN	G	DESIGN HEATING				
	COOLING DATA	AT Oct 1500		HEATING DATA AT DES HTG				
	COOLING OA DE	3/WB 98.1°	F/61.0 °F	HEATING OA D	B/WB 33.0 °	F/27.5°F		
	OCCUPIED T-ST	AT 75.0 °F		OCCUPIED T-S	TAT 70.0 °F			
		Sensible	Latent		Sensible	Latent		
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)		
Window & Skylight Solar Loads	90 ft²	5437	-	90 ft ²	-			
Wall Transmission	245 ft ²	877	-	245 ft ²	2041			
Roof Transmission	0 ft ²	0	-	0 ft ²	0			
Window Transmission	90 ft ²	994	-	90 ft ²	1898	-		
Skylight Transmission	0 ft ²	0	-	0 ft ²	0			
Door Loads	0 ft ²	0	-	0 ft ²	0			
Floor Transmission	0 ft ²	0	-	0 ft ²	0			
Partitions	386 ft ²	0	-	386 ft²	0	-		
Ceiling	233 ft ²	0	-	233 ft ²	0			
Overhead Lighting	540 W	941	-	0	0			
Task Lighting	100 W	249	-	0	0			
Electric Equipment	9720 W	29136	-	0	0	-		
People	4	607	480	0	0	C		
Infiltration	-	0	0	-	0	C		
Miscellaneous	-	68	68	-	0	C		
Safety Factor	0% / 0%	0	0	0%	0	0		
>> Total Zone Loads	-	38309	549	-	3940	(

Zone 4	D	DESIGN COOLING			DESIGN HEATING			
	COOLING DATA	AT Nov 1500		HEATING DATA	AT DES HTG			
	COOLING OA D	B/WB 90.7°	F / 58.2 °F	HEATING OA D	B/WB 33.0 °	F/27.5 °F		
	OCCUPIED T-ST	AT 75.0 °F		OCCUPIED T-S	TAT 70.0 °F			
		Sensible	Latent		Sensible	Latent		
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)		
Window & Skylight Solar Loads	60 ft ²	5296	-	60 ft ²	-	-		
Wall Transmission	82 ft²	227	-	82 ft²	685	-		
Roof Transmission	0 ft ²	0	-	0 ft ²	0	-		
Window Transmission	60 ft ²	409	-	60 ft ²	1266	-		
Skylight Transmission	0 ft2	0	-	0 ft ²	0	-		
Door Loads	0 ft2	0	-	0 ft ²	0	-		
Floor Transmission	0 ft2	0	-	0 ft ²	0	-		
Partitions	477 ft ²	0	-	477 ft ²	0	-		
Ceiling	265 ft ²	0	-	265 ft²	0	-		
Overhead Lighting	615 W	1071	-	0	0	-		
Task Lighting	100 W	249	-	0	0	-		
Electric Equipment	11070 W	33183	-	0	0	-		
People	4	607	480	0	0	0		
Infiltration	-	0	0	-	0	0		
Miscellaneous	-	68	68	-	0	0		
Safety Factor	0% / 0%	0	0	0%	0	0		
>> Total Zone Loads	-	41110	549	-	1950	0		

Zone 5	DE	ESIGN COOLIN	G	DESIGN HEATING HEATING DATA AT DES HTG			
	COOLING DATA	AT Jun 1500					
	COOLING OA DE	B/WB 104.1	°F / 65.0 °F	HEATING OA D	B/WB 33.0 °	F/27.5°F	
	OCCUPIED T-ST	OCCUPIED T-STAT 75.0 °F			TAT 70.0 °F		
		Sensible	Latent		Sensible	Laten	
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr	
Window & Skylight Solar Loads	45 ft ²	1928	-	45 ft ²	-		
Wall Transmission	136 ft ²	828	-	136 ft ²	1133		
Roof Transmission	0 ft ²	0	-	0 ft ²	0		
Window Transmission	45 ft ²	651	-	45 ft ²	949		
Skylight Transmission	0 ft ²	0	-	0 ft ²	0		
Door Loads	0 ft ²	0	-	0 ft ²	0		
Floor Transmission	0 ft ²	0	-	0 ft ²	0		
Partitions	407 ft ²	0	-	407 ft ²	0		
Ceiling	233 ft ²	2325	-	233 ft ²	0		
Overhead Lighting	540 W	941	-	0	0		
Task Lighting	100 W	249	-	0	0		
Electric Equipment	9720 W	29136	-	0	0		
People	6	911	721	0	0		
Infiltration	-	0	0	-	0		
Miscellaneous	-	0	0	-	0		
Safety Factor	0% / 0%	0	0	0%	0		
>> Total Zone Loads		36968	721	-	2082		

Zone 6	D	DESIGN COOLING			DESIGN HEATING			
	COOLING DATA	A AT Jun 1500		HEATING DATA AT DES HTG				
	COOLING OA D	B/WB 104.1	°F / 65.0 °F	HEATING OA DB / WB 33.0 °F / 27.5 °F				
	OCCUPIED T-S	OCCUPIED T-STAT 75.0 °F O			TAT 70.0 °F			
		Sensible Latent			Sensible	Latent		
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)		
Window & Skylight Solar Loads	30 ft²	863	-	30 ft²	-	-		
Wall Transmission	185 ft²	837	-	185 ft²	1545	-		
Roof Transmission	0 ft ²	0	-	0 ft ²	0	-		
Window Transmission	30 ft ²	434	-	30 ft ²	633	-		
Skylight Transmission	0 ft ²	0	-	0 ft ²	0	-		
Door Loads	0 ft ²	0	-	0 ft ²	0	-		
Floor Transmission	0 ft ²	0	-	0 ft ²	0	-		
Partitions	425 ft ²	0	-	425 ft ²	0	-		
Ceiling	187 ft ²	0	-	187 ft ²	0	-		
Overhead Lighting	435 W	758	-	0	0	-		
Task Lighting	100 W	249	-	0	0	-		
Electric Equipment	200 W	600	-	0	0	-		
People	6	911	721	0	0	0		
Infiltration	-	0	0	-	0	0		
Miscellaneous	-	68	68	-	0	0		
Safety Factor	0% / 0%	0	0	0%	0	0		
>> Total Zone Loads		4749	700		2470	0		

Zone Design Load Summary for AHU1 FF

Project Name: Child institute Prepared by: ameer

UΟI	02/201	0
		-
	04.60	Ċ,
	01:02	U

Zone 7	ne 7 DESIGN COOLING			DESIGN HEATING				
	COOLING DATA	AT Oct 1500		HEATING DATA AT DES HTG				
	COOLING OA DB	/WB 98.1 °	F/61.0 °F	HEATING OA D	B/WB 33.0 °F	/ 27.5 °F		
	OCCUPIED T-STA	AT 75.0 °F		OCCUPIED T-ST	FAT 70.0 °F			
		Sensible	Latent		Sensible	Laten		
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr		
Window & Skylight Solar Loads	90 ft ²	7186	-	90 ft²	-			
Wall Transmission	352 ft ²	1559	-	352 ft²	2939			
Roof Transmission	0 ft ²	0	-	0 ft ²	0			
Window Transmission	90 ft ²	994	-	90 ft²	1898			
Skylight Transmission	0 ft2	0	-	0 ft2	0			
Door Loads	0 ft2	0	-	0 ft2	0			
Floor Transmission	0 ft2	0	-	0 ft2	0			
Partitions	368 ft ²	0	-	368 ft²	0			
Ceiling	281 ft²	0	-	281 ft ²	0			
Overhead Lighting	885 W	1542	-	0	0			
Task Lighting	100 W	249	-	0	0			
Electric Equipment	1593D W	47750	-	0	0			
People	8	1214	961	0	0			
Infiltration	-	0	0	-	0			
Miscellaneous	-	68	68	-	0			
Safety Factor	0% / 0%	0	0	0%	0			
>> Total Zone Loads	-	60562	1029	-	4837			

Space Design Load Summary for AHU1 FF

06/02/2016 01:52Ö

Project Name: Child institute Prepared by: ameer

TABLE 1.1.A. COMPONENT LOADS FOR SPACE "FF Administration office" IN ZONE "Zone 1"									
	0	ESIGN COOLIN	G	DESIGN HEATING					
	COOLING DAT	A AT Jun 1500		HEATING DATA	AT DES HTG				
	COOLING OA D	B/WB 104.1	°F / 65.0 °F	HEATING OA D	B/WB 33.0°F	F/27.5°F			
	OCCUPIED T-S	TAT 75.0 °F		OCCUPIED T-S	TAT 70.0 °F				
		Sensible	Latent		Sensible	Latent			
SPACE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)			
Window & Skylight Solar Loads	30 ft ²	1286	-	30 ft ²	-	-			
Wall Transmission	336 ft ²	2127	-	336 ft ²	2802	-			
Roof Transmission	0 ft ²	0	-	0 ft ²	0	-			
Window Transmission	30 ft ²	434	-	30 ft ²	633	-			
Skylight Transmission	0 ft ²	0	-	0 ft ²	0	-			
Door Loads	0 ft ²	0	-	0 ft ²	0	-			
Floor Transmission	0 ft ²	0	-	0 ft ²	0	-			
Partitions	396 ft ²	0	-	396 ft ²	0	-			
Ceiling	187 ft ²	0	-	187 ft ²	0	-			
Overhead Lighting	435 W	758	-	0	0	-			
Task Lighting	1740 W	4330	-	0	0	-			
Electric Equipment	200 W	600	-	0	0	-			
People	2	304	240	0	0	0			
Infiltration	-	0	0	-	0	0			
Miscellaneous	-	68	68	-	0	0			
Safety Factor	0% / 0%	0	0	0%	0	0			
>> Total Zone Loads	-	9906	308	-	3435	0			

TABLE 1.1.B. ENVELOPE LOADS FOR SPACE "FF Administration office" IN ZONE "Zone 1"										
	COOLING COOLING									
	Area	U-Value	Shade	TRANS	SOLAR	TRANS				
	(ft²)	(BTU/(hr-ft ² -°F))	Coeff.	(BTU/hr)	(BTU/hr)	(BTU/hr)				
NE EXPOSURE										
WALL	336	0.225	-	2127	-	2802				
WINDOW 1	30	0.570	0.887	434	1286	633				

Appendix (12)

Compound interest table

10%				Compound I	nterest Factors				10%
	Single Pa	yment	-	Uniform Pa	yment Series	-	Arithmeti	c Gradient	
п	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	Gradient Uniform Series Find A Given G A/G	Gradient Present Worth Find P Given G P/G	
1	1.100	.9091	1.0000	1.1000	1.000	0,909	0	0	1
2	1.210	.8264	.4762	.5762	2.100	1.736	0.476	0.826	2
3	1.331	.7513	.3021	.4021	3.310	2.487	0.937	2.329	3
4	1.464	.6830	.2155	.3155	4.641	3.170	1.381	4.378	4
5	1.611	.6209	.1638	.2638	6.105	3.791	1.810	6.862	5
6	1.772	.5645	.1296	.2296	7.716	4.355	2.224	9.684	6
7	1.949	.5132	.1054	.2054	9.487	4.868	2,622	12.763	7
8	2.144	.4665	.0874	.1874	11.436	5.335	3.004	16.029	8
9	2.358	.4241	.0736	.1736	13.579	5.759	3.372	19.421	9
10	2.594	.3855	.0627	.1627	15,937	6,145	3.725	22.891	10
11	2.853	.3505	.0540	.1540	18.531	6.495	4.064	26.396	11
12	3.138	.3186	.0468	.1468	21.384	6.814	4.388	29.901	12
13	3.452	.2897	.0408	.1408	24.523	7.103	4.699	33.377	13
14	3.797	.2633	.0357	.1357	27.975	7.367	4.996	36.801	14
15	4.177	.2394	.0315	.1315	31.772	7.606	5.279	40,152	15
16	4.595	.2176	.0278	.1278	35.950	7.824	5.549	43.416	16
17	5.054	.1978	.0247	.1247	40.545	8.022	5.807	46.582	17
18	5.560	.1799	.0219	.1219	45.599	8.201	6.053	49.640	18
19	6.110	.16.55	.0195	.1195	51,159	8.305	6.286	52.583	19
20	0.728	.1480	.0175	.11/5	51.215	8.314	0.508	55.407	20
21	7.400	.1351	.0156	.1156	64.003	8.649	6.719	58.110	21
22	8.140	.1228	.0140	.1140	71.403	8.772	6,919	60.689	22
23	8.954	.1117	.0126	.1120	79.543	8.883	7.108	05.140	23
25	9.830	.1013	0102	1102	08 347	0.903	7.459	67.606	25
40	10.855	.0923	.0102	.1102	90.347	9.077	7.4.30	07.090	40
26	11.918	.0839	.00916	.1092	109.182	9,161	7.619	69.794	26
2/	15.110	.0763	.00826	.1085	121.100	9.237	7.770	71.777	2/
20	15.863	.0095	.00745	10/5	139.210	9.307	8.049	75.415	20
30	17 449	0573	00608	1061	164 494	9 427	8 176	77 077	30
21	10.104	0521	00550	1055	181.044	0.470	8 104	79.640	21
32	21 114	.0521	.00330	1055	201 138	9.479	8.400	80.108	32
33	23 225	0431	00450	1045	201.150	9.560	8 515	81.486	32
34	25.548	.0391	.00407	1041	245.477	9.609	8.615	82.777	34
35	28,102	.0356	.00369	.1037	271.025	9,644	8,709	83,987	35
40	45.759	0221	00226	1023	442 593	9 779	9 096	88 053	40
45	72 891	0137	00139	1014	718 905	9 863	9 374	92.454	45
50	117,391	.00852	.00086	.1009	1 163.9	9,915	9,570	94,889	50
55	189.059	00529	00053	1005	1 880.6	9 947	9 708	96 562	55
Appendix (13)

Hourly data report for Nablus city

Hourly Data Report														
		Fre	om date:	01/01/2	015 To	Date: 31	/12/201	.5						
Station Nan	ne: NA	B00003	Nablus	(Latitud	(Latitude: 32, 13 N Longitude: 35 .15 E (Elv. 570)									
Element Na	ame: Dr	v bulb ter	np. ?c							/ <u> </u>				
		1	"F								I			
											'			
Month: 06/2015														
Time Dec Dec Dec											1600			
Day	0	3	6	9	12	15	18	21	Avg	Min	Max			
01	16.8	16.3	19.0	25.0	26.0	21.0	18.6	18.0	20.1	16.3	26.0			
02	17.7	18.0	19.0	24.5	26.0	24.3	20.5	17.6	21.0	17.6	26.0			
03	17.2	16.0	22.5	26.5	28.6	24.0	20.0	17.8	21.6	16.0	28.6			
04	17.2	16.4	21.0	25.0	25.8	24.0	18.0	16.8	20.5	16.4	25.8			
05	16.4	16.0	18.6	23.0	23.0	20.0	19.0	18.0	19.3	16.0	23.0			
06	16.0	14.8	23.0	24.4	25.7	22.2	20.0	18.2	20.5	14.8	25.7			
07	17.5	17.0	21.5	27.0	28.0	25.7	21.2	20.8	22.3	17.0	28.0			
08	19.3	18.2	27.0	32.0	34.0	35.3	30.0	26.5	27.8	18.2	35.3			
09	25.0	23.3	26.5	27.5	29.9	26.0	21.2	19.6	24.9	19.6	29.9			
10	19.0	18.6	20.4	24.0	25.7	22.0	19.5	18.6	21.0	18.6	25.7			
	18.0	17.8	20.0	24.0	24.5	25.7	19.4	18.0	20.7	17.8	24.5			
12	17.0	15.5	10.2	25.4	20.8	25.2	18.0	11.4	20.7	15.5	20.8			
14	17.0	10.7	21.0	25.2	21.0	25.0	20.0	10.0	20.0	10.7	27.0			
14	18.7	17.0	21.0	24.5	24.0	25.0	20.0	10.5	21.1	17.0	24.0			
15	18.0	18.0	20.0	20.0	27.7	25.0	20.0	22.0	21.0	18.0	21.1			
17	20.7	20.1	27.0	30.4	31.2	28.0	25.0	23.5	25.7	20.1	31.2			
11/	22.0	20.0	28.6	31.5	32.5	28.2	24.3	22.8	26.2	20.0	32.5			
10	22.9	21.7	28.9	29.6	29.0	24.6	21.3	20.6	24.8	20.6	29.6			
20	19.7	19.2	20.0	23.0	25.9	23.8	22.0	19.0	21.6	19.0	25.9			
21	19.0	18.7	24.0	26.3	25.1	23.0	19.7	19.2	21.9	18.7	26.3			
22	18.0	18.2	24.0	25.6	26.8	23.8	20.0	19.2	22.0	18.0	26.8			
23	18.7	18.0	19.2	26.4	28.0	23.6	20.0	19.0	21.6	18.0	28.0			
24	18.8	18.5	23.0	24.0	25.8	23.4	21.0	18.6	21.6	18.5	25.8			
25	17.6	17.2	20.8	24.2	26.4	23.2	20.0	19.0	21.1	17.2	26.4			
26	18.8	19.0	22.4	24.2	27.2	24.3	21.0	20.4	22.2	18.8	27.2			
27	20.0	19.7	26.0	28.2	31.1	30.0	26.0	25.5	25.8	19.7	31.1			
28	23.4	21.0	23.0	24.6	26.0	24.6	20.6	19.7	22.9	19.7	26.0			
29	18.7	18.1	23.5	25.2	26.4	24.7	20.6	19.0	22.0	18.1	26.4			
30	18.4	17.8	23.0	24.0	26.0	24.0	20.2	19.2	21.6	17.8	26.0			
Avg	18.9	18.2	22.6	26.0	27.4	24.6	21.0	19.7	1					
Min	16.0	14.8	18.6	23.0	23.0	20.0	18.0	16.8	I					
Max	25.0	23.3	28.9	32.0	34.0	35.3	30.0	26.5	L					

		Fre	om date:	01/01/2015 To Date: 31/12/2015									
Station Nar	me: NA	B00003	Nablus	(Latitude: 32_13 N) Longitude: 35_15 E) (Elv. 570)									
Element Name: Dry bulb temp. ?c													
Month: 07/2015													
Month: 0//2015													
Time Day	0	3	6	9	12	15	18	21	Avg	Min	Max		
01	18.1	17.8	21.0	26.8	29.2	27.0	22.0	20.0	22.7	17.8	29.2		
02	20.0	19.8	23.0	26.8	28.7	25.6	22.0	20.8	23.3	19.8	28.7		
03	20.0	19.0	24.4	26.0	28.0	26.0	21.4	19.6	23.1	19.0	28.0		
04	18.5	18.1	23.2	26.5	28.3	26.8	21.6	19.7	22.8	18.1	28.3		
05	19.8	18.8	26.3	28.2	32.6	30.8	24.7	22.7	25.5	18.8	32.6		
06	23.0	21.7	28.2	31.5	31.5	26.4	23.6	21.0	25.9	21.0	31.5		
07	19.9	19.1	21.0	26.3	27.4	25.4	21.0	19.8	22.5	19.1	27.4		
08	19.2	18.7	23.0	26.3	28.4	27.0	22.0	21.0	23.2	18.7	28.4		
09	20.0	19.0	27.0	29.0	31.5	27.2	22.8	20.2	24.6	19.0	31.5		
10	19.4	19.1	21.0	28.0	29.0	26.2	21.2	20.4	23.0	19.1	29.0		
11	20.0	20.3	23.0	26.0	27.6	26.6	23.0	22.0	23.6	20.0	27.6		
12	21.0	20.2	25.0	26.3					23.1	20.2	26.3		
13			22.0	27.5	28.0	26.0	22.4	21.2	24.5	21.2	28.0		
14	21.1	20.5	24.0	28.6	29.0	26.6	23.2	22.0	24.4	20.5	29.0		
15	21.0	20.0	25.3	28.0	29.0	27.5	24.2	22.5	24.7	20.0	29.0		
16	21.7	20.0	24.4	27.4	30.7	28.3			25.4	20.0	30.7		
17	22.8	20.8	24.4	31.8	32.0	28.0	24.0	22.8	25.8	20.8	32.0		
18	22.6	22.0	25.0	30.0	30.3	28.3	25.0	24.0	25.9	22.0	30.3		
19	22.6	20.5	25.8	31.0	32.0	28.2	24.3	22.7	25.9	20.5	32.0		
20	21.5	20.4	26.0	29.3	31.2	29.5	24.2	22.2	25.5	20.4	31.2		
21	21.2	20.8	26.0	29.5	30.0	28.6	24.4	22.7	25.4	20.8	30.0		
22	21.8	22.2	26.0	30.0	31.5	29.3	24.9	23.2	26.1	21.8	31.5		
23	21.9	20.6	28.2	32.0	33.7	29.3	25.6	22.2	26.7	20.6	33.7		
24	21.7	24.8	27.2	32.2	35.8	31.8	26.3	26.9	28.3	21.7	35.8		
25	28.2	24.0	32.0	33.7	33.2	30.0	25.6	22.8	28.7	22.8	33.7		
26	22.3	22.3	24.5	30.4	30.6	27.6	23.6	22.4	25.5	22.3	30.6		
27	21.7	21.5	23.2	27.2	30.2	27.2	22.2	21.7	24.4	21.5	30.2		
28	21.2	20.8	24.0	28.6	29.0	27.4	24.2	24.2	24.9	20.8	29.0		
29	24.3	24.2	27.0	32.0	33.1	29.3	24.6	23.2	27.2	23.2	33.1		
30	20.9	20.3	27.0	32.0	35.0	31.0	28.0	25.8	27.5	20.3	35.0		
31	24.4	23.8	28.0	35.0	35.7	31.9	26.6	24.7	28.8	23.8	35.7		
Avg	21.4	20.7	25.0	29.2	30.7	28.0	23.7	22.2			1		
Min	18.1	17.8	21.0	26.0	27.4	25.4	21.0	19.6					
Max	28.2	24.8	32.0	35.0	35.8	31.9	28.0	26.9					

Hourly Data Report From date: 01/01/2015 To Date: 31/12/2015 Station Name: NAB00003 Nablus Latitude: 32_13 N Longitude: 3515 Elv. 570 Element Name: Dry bulb temp. ?c												
Month: 08/2015												
Time Day	0	3	6	9	12	15	18	21	Avg	Min	Max	
01	25.0	23.1	30.2	35.0	35.5	31.6	28.2	29.0	29.7	23.1	35.5	
02	25.8	25.0	32.0	38.0	39.5	38.3	34.4	32.9	33.2	25.0	39.5	
03	29.7	29.2	29.0	35.0	36.5	34.2	29.2	26.7	31.2	26.7	36.5	
04	24.9	24.4	28.8	34.0	36.2	31.4	27.4	26.0	29.1	24.4	36.2	
05	24.2	24.0	27.4	33.2	32.5	29.8	25.6	24.5	27.7	24.0	33.2	
06	24.0	23.0	26.4	30.0	30.5	28.6	24.5	23.4	26.3	23.0	30.5	
07	22.6	21.8	30.0	33.0	35.4	33.4	28.3	27.2	29.0	21.8	35.4	
08	25.5	24.5	34.6	35.7	37.3	32.7	26.0	24.8	30.1	24.5	37.3	
09	24.3	22.9	26.4	31.0	31.0	26.6	24.8	23.7	26.3	22.9	31.0	
10	23.1	22.7	25.4	29.5	30.0	28.7	24.9	23.7	26	22.7	30.0	
11	23.1	23.0	25.4	30.0	31.6	27.0	25.0	23.6	26.1	23.0	31.6	
12	23.2	22.6	24.0	28.0	31.8	27.2	24.2	23.6	25.6	22.6	31.8	
13	23.0	22.5	24.5	29.4	30.0	28.5	24.3	22.8	25.6	22.5	30.0	
14	22.4	22.3	25.5	30.2	32.4	27.4	24.8	23.1	26.0	22.3	32.4	
15	22.6	21.7	25.4	31.2	35.0	30.0	26.7	26.3	27.4	21.7	35.0	
16	25.0	23.2	32.0	35.0	37.0	34.7	32.1	30.2	31.2	23.2	37.0	
17	30.1	27.2	31.3	35.0	35.9	32.4	28.0	25.4	30.7	25.4	35.9	
18	25.0	24.2	27.6	32.5	33.0	30.0	25.5	24.4	27.8	24.2	33.0	
19	24.0	23.4	26.0	30.0	31.5	29.6	25.3	23.7	26.7	23.4	31.5	
20	23.2	22.8	26.0	30.0	32.0	29.6	25.2	23.5	26.5	22.8	32.0	
21	23.3	22.5	25.0	27.8	30.3	27.6	24.0	22.8	25.4	22.5	30.3	
22	22.4	21.8	23.4	28.0	32.0	27.6	24.0	23.0	25.3	21.8	32.0	
23	22.4	22.0	24.0	28.5	30.4	28.8	24.4	23.3	25.5	22.0	30.4	
24	22.8	22.8	24.2	28.0	30.3	27.5	24.4	21.8	25.2	21.8	30.3	
25	22.2	21.7	23.8	26.0	28.6	26.5	23.6	22.2	24.3	21.7	28.6	
26	21.4	21.0	25.0	29.0	32.0	27.8	24.6	23.5	25.5	21.0	32.0	
27	22.6	22.7	25.5	30.0	31.2	28.4	24.2	23.1	26.0	22.6	31.2	
28	22.8	23.4	25.6	31.5	32.0	27.4	24.0	23.6	26.3	22.8	32.0	
29	23.0	21.6	25.5	31.0	31.9	28.0	24.3	23.6	26.1	21.6	31.9	
30	22.8	22.2	24.4	28.3	30.1	26.6	24.2	23.2	25.2	22.2	30.1	
31	22.3	21.6	24.4	28.4	30.4	28.3	24.4	23.3	25.4	21.6	30.4	
Avg	23.8	23.1	26.7	31.0	32.7	29.6	25.8	24.6			·	
Min	21.4	21.0	23.4	26.0	28.6	26.5	23.6	21.8				
Max	30.1	29.2	34.6	38.0	39.5	38.3	34.4	32.9				

		Fr	om date:	Hourly Data Report									
a			Jiii date.										
Station Nar	ne: NA	B00003	Nablus	Latitud	e: 32_13	N	Longitu	de: 35 .1) E)(Elv.	570		
Element Na	ame: Dr	y bulb ter	np. ?c										
			-										
Month: 09/2015													
Time	0	3	6	9	12	15	18	21	Avg	Min	Max		
Day													
01	22.5	22.1	24.4	28.4	28.8	28.0	24.7	25.4	25.5	22.1	28.8		
02	23.0	22.0	25.4	30.9	32.8	28.2	23.0	22.9	20.1	22.0	32.8		
03	22.2	21.8	25.0	30.0	33.2	27.8	24.8	24.0	20.1	21.8	20.2		
04	25.1	22.3	25.4	28.0	20.0	20.8	22.2	21.0	23.0	21.0	20.0		
05	22.3	22.0	23.0	28.4	29.6	26.6	23.0	22.0	24.7	22.0	29.6		
07	23.4	23.3	25.0	29.5	32.0	28.8	25.3	26.2	26.7	23.3	32.0		
08	29.7	30.0	29.8	31.0	33.0	32.5	31.7	32.7	31.3	29.7	33.0		
09	29.0	26.1	29.5	33.8	35.8	29.0	27.8	28.2	29.9	26.1	35.8		
10	28.4	26.7	29.6	35.0	36.5	31.8	30.0	27.4	30.7	26.7	36.5		
11	25.1	24.4	30.2	35.2	36.0	30.7	27.0	28.7	29.7	24.4	36.0		
12	26.0	24.2	27.0	30.2	35.8	31.0	26.3	25.5	28.3	24.2	35.8		
13	25.0	23.6	26.0	29.8	32.8	28.4	25.0	24.2	26.9	23.6	32.8		
14	23.2	22.8	26.0	30.0	32.0	28.7	24.8	23.0	26.3	22.8	32.0		
15	23.3	23.1	24.5	30.0	31.0	29.0	25.6	25.0	26.4	23.1	31.0		
16	24.4	23.8	25.5	30.0	31.0	26.7	24.0	22.7	26.0	22.7	31.0		
17	20.8	20.4	26.5	29.5	32.0	26.8	23.7	22.8	25.3	20.4	32.0		
18	21.3	21.6	25.8	27.8	29.3	27.7	22.4	22.0	24.7	21.3	29.3		
19	20.8	19.8	20.7	29.8	32.2	28.0	25.7	20.4	20.2	19.8	32.2		
20	20.0	23.5	29.0	35.0	33.0	29.0	20.5	24.5	28.0	23.5	33.0		
21	10.8	18.7	24.0	20.4	30.5	20.0	25.1	22.5	24.5	18.7	30.5		
22	20.7	22.0	30.0	35.4	24.3	29.8	25.0	23.4	26.3	20.7	35.4		
23	22.6	21.8	30.0	33.0	33.3	28.5	24.9	24.4	27.3	21.8	33.3		
25	22.2	24.1	28.4	29.6	30.2	30.2	23.6	23.0	26.4	22.2	30.2		
26	21.4	21.0	27.2	28.9	30.4	26.8	22.0	21.0	24.8	21.0	30.4		
27	20.5	20.0	25.0	28.0	29.8	24.6	21.7	21.0	23.8	20.0	29.8		
28	20.3	19.8	24.5	28.0	30.3	24.6	22.3	21.7	23.9	19.8	30.3		
29	21.3	21.1	24.5	26.0	27.8	25.6	22.4	21.3	23.8	21.1	27.8		
30	20.2	19.5	24.0	27.8	30.0	27.5	24.6	23.5	24.6	19.5	30.0		
Avg	23.1	22.5	26.4	30.0	31.4	28.2	24.7	24.0					
Min	19.8	18.7	23.0	26.0	24.3	24.6	21.7	21.0					
Max	29.7	30.0	30.2	35.4	36.5	32.5	31.7	32.7					

جامعة النجاح الوطنية كلية الدراسات العليا

مقارنة بين نظام VRF ونظام Chiller Air to Water مقارنة بين نظام vRF ونظام من حيث استهلاك الطاقة ومن الناحية الاقتصادية في أنظمة تكييف الهواء، دراسة حالة: مبنى طفولة جامعة النجاح

إعداد أمير محمد طاهر خليل

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في هندسة الطاقة النظيفة وترشيد الاستهلاك بكلية الدراسات العليا في جامعة النجاح الوطنية في نابلس، فلسطين.

2018م

مقارنة بين نظام VRF ونظام Chiller Air to Water من حيث استهلاك الطاقة ومن الناحية الاقتصادية في أنظمة تكييف الهواء، دراسة حالة: مبنى طفولة جامعة النجاح

إعداد أمير محمد طاهر خليل إشراف د. عماد بريك د. عبد الرحيم أبو صفا الملخص

تحتل انظمة التكييف والتبريد مراتب عليا في نسبة استهلاك الطاقة في الضفة الغربية في الوقت الذي تعاني منه الضفة الغربية من شح و غلاء لموارد الطاقة والكهرباء، لذلك ترشيد الاستهلاك في الطاقة اصبح ضرورة ملحة فيها.

في هذا البحث تم مناقشة ودراسة نظامين للتكييف والتبريد، الاول هو نظام الجريان المتغيير للمبرد والنظام الثاني هو نظام التكييف المركزي التشيلر وذلك بهدف الخروج بالنظام الاكثر توفيرا للطاقة و توفيرا للمال. هذه المناقشة طبقت على مبنى مركز طفولة النجاح المكون من اربع طابق وحسبت الاحمال الحرارية في المبنى باستخدام برنامج التصميم الحراري وكان مجمل الحمل الحراري في المبنى 60 طن.

تخلل هذه الدراسة تحليل وتصميم للنظامين من ناحية ميكانيكية وحرارية للوحدات الخارجية والداخلية وحساباتها وايضا شبكات الانابيب والصاج الداخلي والمضخات وحساباتها. بعد ذلك تم طلب الاسعار الرسمية من الشركات المحلية ليتم بعد ذلك مقارنة الاسعار الرسمية باستخدام قاعدة ال القيمة الحالية، بحيث ان القيمة الاقل سالبية للنظامين تدل على ان هذا النظام افضل من ناحية اقتصادية و موفر للطاقة، وكانت القيمة الحالية لنظام التدفق المتغير للمبرد -افضل من ناحية اقتصادية و موفر للطاقة، وكانت القيمة الحالية لنظام التدفق المتغير للمبرد -الحالية فالقيمة الحالية نعبّر عن النظام المركزي \$ 158,2640-، وحسب قاعدة القيمة الحالية فالقيمة الاقل سالبية تعبّر عن النظام المناسب والاقل كلفة و الاكثر توفيرا للطاقة وهـو نظام الجريان المتغير للمبرد.