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Decay of Solutions of a Nonlinear Viscoelastic Hyperbolic Equation
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Abstract

In this work, we are going to study under some conditions on p, m
and suitable conditions on g, the decay of solutions of the nonlinear
viscoelastic hyperbolic equation in problem (P) ast — +oo:

t
u, —Au—wAu, + Ig(t —5)Au(x,s)ds + du, |m_2 u, = b|u|p_2 u,xeQ,t>0
0

u(0,x) =u,(x),x€Q

u,(0,x) =u,(x),x e

u(t,x)=0,xel’,t>0.

(P)

Where Q is a bounded domain in RN (N>1), with smooth boundary T,
and a, b, w are positive constants, m>2, p>2, and the function g(?)
satisfying some conditions. We show that the energy of solutions decays

exponentially if m=2 and polynomial if m>2, provided that the initial
data are small enough.

Keywords and phrases: Nonlinear Damping, Strong Damping,
Viscoelastic, Exponential Decay, Polynomial Decay.
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1. Introduction

In this article we consider the problem (P), where the function g(?)
satisfying some conditions. In the physical point of view, this type of
problems arise usually in viscoelasticity. This type of problems have
been considered first by Dafermos [8], in 1970, where the general decay
was discussed. A related problems to (P) have attracted a great deal of
attention in the last decades, and many results have been appeared on the
existence and long time behavior of solutions. See in this directions [2],
[3], [4]-[7], [13], [20], [22], [23], [26] and references therein.

In the absence of the strong damping Aw,, that is for w =0, and

when the function g vanishes identically ( i.e: g = 0), then problem (P)
can be reduced to the following initial boundary damped wave equation
with nonlinear damping and nonlinear sources terms.

u, —Au+a|u,|m_2ut :b|u|p_2u (1)

Some special cases of equation (1) arise in quantum field theory
which describe the motion of charged mesons in an electromagnetic field.
Equation (1) together with initial and boundary conditions of Dirichlet
type, has been extensively studied and results concerning existence, blow
up and asymptotic behavior of smooth, as well as weak solutions have
been established by several authors.

For b = 0, that is in the absence of the source term, it is well known
that the damping term |u,|"u, assures global existence and decay of the

solution energy for arbitrary initial data (see [12] and [16]).
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For a = 0, the source term causes finite-time blow-up of solutions
with a large initial data (negative initial energy). That is to say, the norm
of our solution u(¢,x) in the energy space reaches + oo when the time ¢

approaches certain value T* called " the blow up time", (see [1] and [15]

for more details). The interaction between the damping term |u,|m_2 u,

and the source term |u|p 1 makes the problem more interesting. This

situation was first considered by Levine [17], [18] in the linear damping
case (m = 2), where he showed that solutions with negative initial energy
blow up in finite time T*. The main ingredient used in [17] and [18] is
the "concavity method" where the basic idea of this method is to
construct a positive function L(t) of the solution and show that for some
y >0, the function L (t) is a positive concave function of t. In order to

find such y, it suffies to verify that:
d’L7 (1)
dt’

This is equivalent to prove that L(t) satisfies the differential
inequality

LL"—(1+)L" (¢) > 0,Vt > 0.

AT (O[LL =1+ y)L” ()] < 0,1 > 0.

Unfortunately, this method fails in the case of nonlinear damping
term (m>2). Georgiev and Todorova in their famous paper [10], extended
Levine’s result to the nonlinear damping case (m> 2). More precisely, in
[10] and by combining the Galerkin approximation with the contraction
mapping theorem, the authors showed that problem (1) in a bounded
domain with initial and boundary conditions of Dirichlet type has a
unique solution in the interval [0,T) provided that T is small enough.
Also, they proved that the obtained solutions continue to exist globally in
time if m > p and the initial data are small enough. Whereas for p>m the
unique solution of problem (1) blows up in finite time provided that the
initial data are large enough. (i. e: the initial energy is sufficiently
negative). This later result has been pushed by Messaoudi in [24] to the
situation where the initial energy £(0) < 0. For more general result in this
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direction, we refer the interested reader to the works of Vitillaro [28],
Levine [19] and Messaoudi [21].

In the presence of the viscoelastic term (g # 0) and for w=0, our
problem

(P) becomes
u, —Au+ Ig(t —5)Au(x,s)ds +alu, |mi2 u, = b|u|1r2 u,xeQ,t>0
0

u(0,x) =uy(x),x € Q (2)
u,(0,x) =u,(x),x€Q
u(t,x)=0,xel,t>0.

For a=0, problem (2) has been investigated by Berrimi and
Messaoudi [3]. They established the local existence result by using the
Galerkin method together with the contraction mapping theorem. Also,
they showed that for a suitable initial data, then the local solution is
global in time and in addition, they showed that the dissipation given by
the viscoelastic integral term is strong enough to stabilize the oscillations
of the solution with the same rate of decaying (exponential or
polynomial) of the kernel g. Also their result has been obtained under
weaker conditions than those used by Cavalcanti et al[6], in which a
similar problem has been addressed.

Messaoudi in [20], showed that under appropriate conditions
between m, p and g ablow up and global existence result, of course his
work generalizes the result by Georgiev and Todorova [10]. One of the
main direction of the research in this field it seems to find the minimal
dissipation such that the solutions of problems similar to (2) decay
uniformly to zero, as time goes to infinity. Consequently, several authors
introduced different types of dissipative mechanisms to stabilize these
problems. For example, a localized frictional linear damping of the form

a(x)u, acting in sub-domain wc Q has been considered by Cavalcanti
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et al[6]. More precisely the authors in [5] looked in to the following
problem

u, —Au+ .[g(t —8)Au(x,s)ds +a(x)u, + |u|7u =0. 3)
0

for y >0, g a positive function and a:Q — R" a function, which may be
null on a part of the domain Q. By assuming a(x)>a, >0 on the sub-

domain wc Q, the authors showed a decay result of an exponential rate,
provided that the kernel g satisfies

—¢18() < g'()<—¢,g(1),t 20, 4

and ||g|| L (02) is small enough.

This later result has been improved by Berrimi and Messaoudi [2], in
which they showed that the viscoelastic dissipation alone is strong
enough to stabilize the problem even with an exponential rate. In many
existing works on this field, the following conditions on the kernel

g't)<-¢ g"t),t20,p=1, )
is crucial in the proof of the stability.

For a viscoelastic systems with oscillating kernels, we mention the
work by Rivera etal[25]. In that work the authors proved that if the kernel
satisfies g(0) > 0 and decays exponentially to zero, that is for p =1 in (5),
then the solution also decays exponentially to zero. On the other hand, if
the kernel decays polynomially, i.e. (p>1) in the inequality (5), then the
solution also decays polynomially with the same rate of decay. In the
presence of the strong damping (w> 0) and in the absence of the
viscoelastic term (g =0), the problem (P) takes the following form
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u, —Au—wAu, + a|ut|m72ut = b|u|p72u,x eQt>0
u(0,x)=u,(x),x e Q
u,(0,x)=u,(x),xeQ

u(t,x)=0,xel’,t>0.

(6)

Problem (6) represents the wave equation with a strong damping
Au,. When m =2, this problem has been studied by Gazzola and

Squassina[9]. In their work, the authors proved some results on well
posedness and asymptotic be havior of solutions. They showed the global
existence and polynomial decay property of solutions provided that the
initial data is in the potential well. The proof in [9] is based on a method
used in [14]. Unfortunately their decay rate is not optimal, and their
result has been improved by Gerbi and Said-Houari [11], by using an
appropriate modification of the energy method and some differential and
integral inequalities. Introducing a strong damping term Au, makes the

problem from that considered in [10], for this reason less results where
known for the wave equation with strong damping and many problem
remain unsolved.

In this paper, we investigated problem (P), in which all the damping
mechanism have been considered in the same time (i. e. w>0, g =0, and
m=>2 ), these assumptions make our problem diffierent form those
studied in the literatur, we show that the energy of solutions decays
exponentially if m=2 and polynomial if m>2, provided that the initial
data are small enough, using the arguments in Rivera [27].

2. Preliminaries

In our work, we consider a viscoelastic wave equation, with strong
damping, polynomial nonlinear damping and source term. Namely we
looked in to the following problem

t
u, —Au—whAu, + J. g(t —s)Au(x,s)ds + a|u, |mf2 u, = b|u|k2 u,xeQt>0 (7)
0
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subjected to the following initial and boundary conditions
U(O,X) zuo(x)out (O,X) =U1(X),X€ Q (8)
u(t,x)=0,xel,t>0, 9)

where Q is a bounded domainin RN (N > 1), with smooth boundary T,
and a, b and w are positive constants, m>2, p>2, and g is a

nonnegative nonincreasing function. This type of problems are not only
important from the theoretical point of view, but also arise in many
physical applications and describe a great deal of models in applied
science. One of the most important field of such problems arise in the
models of nonlinear viscoelasticity. Many authors studied these types of
problems, and several results appeared in the literature.

The energy related to problem (P) is 2E(¢) = ||ut (t)||§ +2J(¢),

where

J(t) = %( -| g(s)dsJ Vu(); + (10)

and

I(t) = ( jg(s)dsJ”Vu(t)”

We assume that the kernel g satisfies the following conditions:

(Gl) g:R"—R" is a bounded C'-function such that

2(0)>0.,1 —jg(s)ds =[>0.
(G2) g(t)>0,g'(1)<0,g(¢) <-&g'(¢),Vt 2 0.

Let us denote by (gou)(f) = j a(t—s) j lu(s) —u(e)|” dxds.
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We first state a local existence theorem that can be established by
combining arguments of Georgiev and Todorova [10]. In fact this
depends on the parameters values of the coefficients and the exponents m
and p.

Let us introduce the following complete metric space

Y, = fu:ue (0.7} HY(Q)u, e C0, 7] H Q)" (0.T]xQ)}  (11)

Theorem 1. Let (uo,ul)e (Hé (Q))2 be given. Suppose thatm=22,p >2
be such that

max{m,p}é 2(n_1),n23. (12)

Then, under the conditions (G1) and (G2), the problem (P) has a unique
local solution u(x,t) €Y, for T small enough.

Now, we will state the global existence, for this purpose it suffices to
prove that the norm of the solution is bounded, independently of t, in the
following theorem. The existence of the source term Qur’_zu) forces us to

use the potential well depth method in which the concept of so called
stable set appears. Let us introduce the stable set as:

W =lue H\(Q): Ju) <d,I(u)>0}u{0} (13)
where
d= inf supJ(iu) (14)

ueHo(Q)/{0} 220

Theorem 2. Suppose that (Gl), (G2) and (12) hold. If
u, €W,u, € H(Q) and
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p2
2

bc! 2p
z ((p T E(O)J <1, (15)

where c. is the best Poincaré’s constant. Then the local solution u(t,x)

is global in time.

The following Lemma du to Nakao will play a decisive role in the
proof of our aim result.

Lemma 3 [27]. Let ®(¢) be a nonincreasing and nonnegative function
defined on [O,T ],T > 1, satisfying

@ (1) < ko (D(1) — D(t +1)),2 €[0, T},

for k, >1 and r>0. Then we have, for each t €[0,T},

o (1) < DO)expl—k [ -1] }r=0
L (16)

o) < o) +k fr-1] |7 >0

0

where [t —1]" =max {t —1,0}, and k = ln( ko ]

The following technical lemma will play an important role in the
sequel.

Lemma 4 [5]. Forany ve CI(O,T,HZ(Q)) we have

d
dt

£ ! gt —s)Ms)V (1)dsd _% (gon)(l‘)—%gt { ! g(s) i ‘Vv(t){zdxd%

1 1 2
_E ( gvon)(t) +E a(?) ;[ ‘Vv(t)‘ dxds
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3. Main result
The following lemma is very useful
Lemma 5. Suppose that (12) and (15) hold. Then

Blu)]! < (1- 77)(1 -| g(S)dS]"Vu(t)Hi (17)

where n =1- /.

We can now state and prove the asymptotic behavior of the solution
of our problem.

Theorem 6. Suppose that (G1), (G2) and (12) hold. Assume further that
u, €W and u, € H)(Q) satisfying (15). Then the global solution

satisfies

E(t)<E(0)exp(~ At),Vt>0 if m=2, (18)
or
E(0)<(BQ)" +kyrt) 0e20 if m>2, (19)

. m
where A and k, are constants independent of t, r:?_l and

Proof of Theorem 6.

Multiplying the first equation in (P), by u, and integrate over Q to
obtain

2

=@ Va0~ gV ..

2

d
EE(Z) + W”Vu, ||§ + a”ut

Then, integrate the last equality over [t, t +1] to get
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t+1 t+1
1

t+1 1+
B+~ B+ w [V s a [Ju ] ds = [(@¥pds— [e(o)|vu [,
Therefore,
1 t+1 1 t+1 5
(@)= E(+)=F" ()~ j (geVu)(s)ds +— j g(s)|Vu HZ ds, (20)

where

t+1 t+1

F@)" = wI||Vut||zds +a I”ut”:ds (21)

Using Poincaré’s inequality to find

t+l1 t+l1

[l ds < e J|u, | ds 22)
t t

Exploiting Holder’s inequality, we obtain

2
m m
2
F dsJ
m

m-2

t+1 5 t+1 7 t+1
[l s s( jdsJ { jQ|u,
t t t
1 2
+ m m
s[f Q|u,||i,,)2dsj

t

(23)

Combining (21), (22) and (23) we obtain, for a constant c¢;, depending on
Q

t+1

u|’ds<e F(t),c, >0. (24)
[l ds <e, 1
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By applying the mean value theorem, we get for some ¢, € [t,t+%}

te|lt+—,t+1
4

e, (&), <2¢(Q) " F(1),i=1,2. (25)

Hence, by (G2) and since

t+l1

[IVu | ds <c,F(e)*,c, >0. (26)

there exist ¢, € {t,t + %} t, € [t + %,t + 1} such that

[V, (t,)) <4c(@Q)F () i=1,2. 27)

Next, we multiply the first equation in (P) by u and integrate over
Qx|[t,,t,] to obtain

TKI - jg(r)dr]Vuz ds— bHuHZ }ds = —Tjuu,tdxds - wTIVuVutdxds - a]z.ju‘ut‘m_z u,dxds
4 0 4L Q LQ 5L Q

s

+ [ [ gts =) Vals\Vulr)- Vuls)] drdrds

Obviously,

Tl(s)ds = —th-J-uuttdxds - W]%IVuVutdxds - aTIu|ut |mi2 u,dxds
4 60 6o HO (28)

ty s

+ IIg(s — r)j Vu(s)[Vu(r)— Vu(s)] dxdrds + T(g oVu)(s)ds.

h

Note that by integrating by parts, to obtain
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uu dxd{

{ foun de —] [u dxd{

no hQ

I t, )dx— ju £ (2, )dx—]%_[utzdxd

Q Q
s

Using Holder’s and Poincaré’s inequalities, we get

< cfil”Vut(ti )||2HVu (ti XL +c?

By using Holder’s inequality once again, we have

I

4 Q

o . (29)

TI“”n dxds
Hno

H ||Vu || ds. (30)

Furthermore, by equation (27), we have

[V, (), [ (2)], < en(e(@) Py sup E(s)'", 31)

1 <s<t,

1/2
where, ¢, = 2[%} . We have by Holder’s inequality
p f—

1/2
”ZdtSJ:z E(s)m( 2p ) ||Vu || ds< ;03 supE(s)l/2j||Vu || ds,

)
J;l "Vut 2 ( p—

4 <s<t, 4]

Which implies

f 1/2 t 1/2
,||2dts(j ldtJ [j ||Vut||§dtJ S\/EF(t).

2

4 4

Then,
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.rz
4

Vi,

Vu | d < c,F(2) sup E(s)"”, (32)
2 ——

1 <s<t,
c34/3¢,
4

where ¢, = . Therefore equation (29), becomes

53

Ijuuﬂdxds <2clc,F(t)sup E(s)"? +clc,F(t). (33)
nQ tl\zsz;z

We then exploit Young’s inequality to estimate

tj f f gs = DVu(O)|Vu(s) - Vu(t) aixdi 5Tjg(s —~ r)Vu{jdzds+4—l5:|. (g0 Vu)dt, V5 >0.

400 40

Now, the third term in the right-hand side of equation (28), can be
estimated as follows

153

J-.Hut |m_2utudxds < ]Z..Hu”u, |m_ldxds,

e hQ

By Holder’s inequality, we find
m-1

) 2] i 2]

[l [ s < | [U [, } [f u de] }’S = [l
HQ t Q Q 4

By Sobolev-Poincaré’s inequality, we have

t 1 t

m—
[l s < (@),
4 4

ds.

m

m—1

Vu||2ds,

m

for 2<m< 2n
n_

>3 or 2<m<oo,n=12.
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Using Holder’s inequality, and since ¢,,¢, € [t,t+1] and E(t) decreasing
in time, we conclude from the last inequality and (21), that

h 1124,
j||ut||gfluu Hmdsgc(g)( 2p j j|| oy

I(p-

2 e 12
Q{ I(p- 2)} J:” t”m (E@) “ds

(i) spror{fhe[ja]
g(_)m @ (2] o
a

hmor) I(p-2)

(34)
Q

Then, taking in to account (33) and (34), estimate (28) takes the form

y 3c
j[(t)dté 2¢2 + X2 w |c, F(t) sup E(s)"?
h 4 vt

1/m

+cle,F(t) +

c;c(Q) sup E(s) > F()" (35)
nsvsty

+ 5ﬁ g(t = 5)|Vu dsdt + (i& + 1) j (g o Vu)(t)dt.

40

Moreover, we have

E®) =} +0

:_|| I ( j( - g(s)ds]”Vu" (zpzj(goVu)(t)+1](t)

By integrating (36) over [t1 ,1, ] , we obtain

(36)
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; 1% w2, (p=2V. | >, (p-21;

E@)dt=—||u, dt+(—l[£l— g(s)ds)V dt+( goVu ()dt+— | 1(t)dt,
e L e (B E T R e (FR O
(37)

which implies by exploiting (24)

j E(t)dt——(F(t)) ( » j j ( j g(s)ds)Wu" dt+( » j!(goVu)(t)dHll) ljz(z)d,:
(38)
By using Lemma (5), we see that

(1—} g(s)ds]"Vu”z <L (39)
0 n

Therefore, (38), takes the form

TE(t)dt<L)(F(t)) ( _ij(gow)(t)dt{l +—j [1(t)at (40)
! 2p p 2pn

4

Again an integration of E'(¢) over [s,t2 ],s € [O,tz] gives

o) " 1 o) 1 o) ' )
E(s)=E(t,)+a j ||ut||mdt+5 j g(z)||Vu||jdz—E j (goVu)(t)dter! [V |odr (41)
By using the fact that ¢, —¢, > % ,we have

j E(s)ds > j Et, )ds> E,). (42)

h

The fourth term in (35), can be handled as

Jete=opvifas-{vf fat-snas <2 @)
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Thus,

T 2p ( ) (1 l)
Vu|_ dsdt< E u S E S E(©). 44
,‘l 0‘ g(t S)" ” sdt< | (t 1< ( ) (t ) ( 2) (t) ( )

Hence, by (44), we obtain from (35)

| I(t)dt<(2c* V3f }:J(z) sup E(s)'"

1 <s<t,
a’" 1/2 m-1
c,¢(Q) sup E(s) > F (1) (45)
2 hv_J

1 <s<t,

+ele,F(t) +
p(L-1) AT
51( _2)E(t)+(46+1);1[(g Vu)(t)dt.

From (41) and (42) we have

t+l t+1 t+l

E0) <2jE(t)dt+a j e ds j gV, ds— j (goVu)(s)ds+w j [V lds  (46)

— 2]]' I (t)dt,}

+ a_[”u || ds +— jg(s)”Vu” ds ——_[(g oVu)(s)ds + wj”Vu || ds.

4

Obviously, (40) and (46) give us

153

E(r)< 2[@ (F(n) + (pz—;zjj(g o Vu\(t)dt + [% + ’2’

]

Consequently, plugging the estimate (45) into the above estimate, we
conclude that
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E() <c@)(F() + (p - 2}[ (goVu)n)dr
p

4

p 2pn

14 <s<t,

+(l+ P 2J[a”’”gc(Q) sup E(S)I/ZF(t)””] (47)
P 2p7 o

1, <s<t,

1 p-2) . pd-0) 1 .
+2(p+2pn)[51(p_2) E(t)+ ( 5+1)j (g vu)(r)dz}

+F()" +— J-g(s)”Vu” ds ——I(g oVu)(s)ds + wj- ||Vu || ds.

4

We also have, by the Poincaré’s inequality

1/2
2p 1/2
b, <, <o ;225 )

Choosing 0 small enough so that
1—2(l+p_2]5p(1_1)>0, (49)
p 2pn) l(p-2)

we can deduce, from (47) that there exists k > 0, such that

t+l

E(6) SHFQY +E0) Fioy+ E@)> F@y™ + Foy" |+ - j g()|Vu ds

e (221 +1j@+%ﬂfj}gow

Using (G2) again we can write

(50)
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15}

[(govu)nar <~ §T(g'0Vu)(t)dt, &> 0.

4 ]

Thus, we obtain, from (50),

t+1

E@) <{F(@) + E@©)" F@)+ E@) F@y™ + F@)" |+ % [g@Iva;ds
1+l [ (5 1)

—[51 %j [(goVuds,

t

where & =§[[p_2)+2($+1j(l+§_2ﬂ.
p p pn

An appropriate use of Young’s inequality in (51), we can find £, >0,
such

That

t+1

E() <k [F(ty + Fo™ +F(z)’"]+%Tg(s)||w||jds—(; +%j [(goVuds, (52)

for k, a positive constant. Using (G2) again to get

t+l t+l

E@) <k[F©? +Foy™ + Fey"+(1+2& )B | g(s)"Vuﬂids—% [ g‘oVu)ds} (53)

t
at this end we can distinguish between two cases:

Case 1: For m =2. In this case we use (20) and (53), we can find &, >0,
such that

E() <k F(t)* +(1+2¢, )Bj g(s)||w||j ds — %f (g.oVu)ds}

<k, [E(t)-E(t+1)]

(54)
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Since E(t) is nonincreasing and nonnegative function, an application of
Lemma 3 yields

E(t)<k,[E(®)-E@+1)]t>0, (55)
Which implies that
E(t)< E0)expl- A[t—1]") on [0,0) (56)
where A = ln[ ks ]

ky,—1

Case 2: For m >2. In this case we, again use (20) and (53) to arrive at

F(t)’ = [(E(t) —E(t+ 1))+% j (g'oVu)ds —% j g(s)|Vu; ds}m . (57)

We then use the algebraic inequality

m

(a+b)2 £22(a2 +b2],m22. (58)

To infer from (53), and by using (58), that

[EO] <k L+ F@ + F@oy ] Foy”

t+1

m m 1 t+1 ' 1 %
+22(142&)2 [_E j (g ovu)azs+E j g(s)”Vu”zds}
(59)

m

<k 1+ F )" + () | x[E(0) - E(t+1)]

m m 1 t+1 ' 1 %
+22(142&)2 |:_E I(g oVu)ds +E .!.g(s)”Vu”zdS}

t

where k, =22k, . We use (20) to obtain
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{_%ZI (g'oVu)ds + étj‘g(s)”Vu"z ds} "< (E()-E(t+ 1))%

t

(60)

A combination of (59), (60) yields

(B0 <kfi+Fer™ + Foy 2 (B - Bt +1)

+2£21(1+2§1)n51 [E) - B+ D2 [B)— it +1) (61)
{kj [1+ Feye +F(t)’”’2]%l 2 l +2.»;1)%1 [E@®) - B¢ +1)]’§“} x[E@) — Bt +1)]

By using (53), the estimate (61) takes the form

EOE S{IQT{HE(O)(’H) +E(O)’;l}+2’; (1+2§])g E(O)’;lzlx[E(t)—E(Hl)] ©2)
<k,|E@)- Bt +1)]
Again, using Lemma 3, we conclude

E) <[E©O) " + kot -1]'] (63)

with » = B} -1>0,s= and k, is some given positive constant.

-—m

This completes the proof.

4. Discussion

We can say that this work has enabled us to achieve the desired
result, namely the existence in time, uniqueness and the decay of
solutions at infinity which extends the recent result of the same author
concerning growth exponential of solutions when t — +oo.
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Indeed, in this work, we studied a class of hyperbolic problems
where it has a number of parameters modeling the vibration problems
and wave propagation in objects.

This study was focused specifically on:
A. Existence and uniqueness (local, global) without proofs.
B. Exponential and polynomial decay of solutions at infinity.

To end and complete the study of asymptotic behavior of solutions, it
would be interesting to show the blow up result in finite time. Let us
mention here that the study of decay of energy according to the function
g in unbounded domain R™ stay an open subject.
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