An-Najah Univ. J. Res., Vol. 12, (1998) 1-6.

The Multiplier Algebra of Orlicz Spaces جبر مضاعفات فضاء اورلکس

Abdallah Hakawati

عبد اللہ حکواتی

Department of Mathematics, An-Najah N. University - Nablus, Palestine. Received: (21/1/1998). Accepted: (19/7/1998).

Abstract

In this paper we prove that if ϕ is a modulus function and if X = [0,1]is given the Lebesgue measure, then $M(L_{\phi}) = L_{\phi}$ if and only if $\overline{\lim_{x \to 0} \frac{\phi(x^2)}{\phi(x)}} <\infty$; L_{ϕ} being the Orlicz space $L_{\phi}(X)$; and $M(L_{\phi})$ its multiplier algebra.

في بحثنا هذا نثبت أنه إذا أعطيت الفترة
$$X = [0,1] = X$$
 قياس لبيج وإذا كان ϕ اقتر انــــا
قياسيا، وكان $L_{\phi}(X)$ فضاء أورلكس المصاحب والــذي نختصــره علــى الصيغــة L_{ϕ} فــان
 $M(L_{\phi}) = L_{\phi}$ إذا وفقط إذا كان $\infty > \frac{\phi(x^2)}{\phi(x)}$ حيث أن $M(L_{\phi})$ ترمـــز إلــى جــبر
مضاعفات L_{ϕ}

1. Introduction

Let ϕ be a strictly increasing continuous subadditive function defined on $[0, \infty]$ with $\phi(0) = 0$. Such a function is called a modulus function. Let (X, μ) be a finite measure space. The Orlicz space $L_{\phi}(X)$ is the set of all complex-valued measurable functions f which are defined on X and satisfy

$$|f|_{\phi} = \int_{X} \phi(|f|) d\mu < \infty$$

With the metric $|.|\phi$, the space $L_{\phi}(X)$ becomes a complete linear topological space [1]. We will supress X, unless otherwise specified, and write L_{ϕ} for $L_{\phi}(X)$.

If $\phi(x) = x^P$, $0 \le P \le 1$, then $L\phi$ is the space L^p , and $|.|\phi$ is a norm if and only if $L_{\phi} = L^1$. If ϕ is bounded then L_{ϕ} becomes the space of all measurable functions [1].

Being increasing and subadditive, ϕ is easily seen to satisfy $\overline{\lim_{x \to \infty}} \frac{\phi(x)}{x} \le k$ for some real constant k. It then follows that $L^1 \subset L\phi$ for all modulus functions ϕ .

If $\phi(x) = \log(1+x^p)$, $0 < P \le 1$, then ϕ is modulus and $L\phi$ will be donoted by Np. For more on Np-spaces, see[2]. It is not hard to see that the function defined as $\phi(x) = \frac{x}{1+x}$ is modulus and that the composition of two modulus functions is again modulus [3].

A multiplier of $L\varphi$ is a measurable function g on X for which $f.g \in L\varphi$ for all $f \in L\varphi$. $M(L\varphi)$ will denote the space of all multipliers of $L\varphi$.

In [1], Deep introduced two classes of modulus functions which resemble a natural interplay between $L\infty$, $L\varphi$ and $M(L\varphi)$. Specifically, assuming φ unbounded and $\varphi(1) = 1$, (we may do this without loss of generality); he, on the one hand, proved that, if $\varphi(xy) \ge \varphi(x) \varphi(y)$ for all $x \ge 1$ and $y \ge 0$ then $M(L\varphi) = L^{\infty}$, and as an immediate corollary that $M(L^p) = L^{\infty}$ for all $0 \le p \le \infty$. On the other hand, if $\varphi(xy) \le \varphi(x) + \varphi(y)$ for all x and y, he, then proved that $M(L\varphi) = L\varphi$, and hence concluded that M(Np) = Np for $0 \le p \le 1$.

In this paper, we characterize those modulus functions φ so that $M(L\varphi)=L\varphi.$

An-Najah Univ. J. Res., Vol. 12, (1998).

Since the function f(x) = 1 for all $x \in X$ is in L ϕ , then $M(L\phi) \subset L\phi$ and it is clear that $L^{\infty} \subset M(L\phi)$ for all modulus function ϕ . In what follows, we will assume that ϕ is a modulus function which is increasing without bound, $\phi(1) = 1$, and X is our measure space with finite measure μ

2. The Multiplier Agebra of Lø

It was pointed out earlier that $L\phi$ is a linear space, and so it is evident that $M(L\phi) = L\phi$ if and only if $L\phi$ is an algebra. We establish the following.

Lemma 1: L ϕ is an algebra if and only if $f \in L\phi$ whenever $f \in L\phi$

Proof: If $L\phi$ is an algebra, then, obviously $f^2 \in L\phi$ when ever $f \in L\phi$. Conversely; suppose $f^2 \in L\phi$ for all $f \in L\phi$, and let $f, g \in L\phi$ be arbitrary.

$$(f+g)^2 = f^2 + 2fg + g^2$$

so, $fg = \frac{1}{2}[(f+g)^2 - f^2 - g^2]$

hence $fg \in L\phi$

Since f, g were arbitrary, L¢ is an algebra.

In the following theorem, which is our main result we assume X = [0,1] and equipped with the lebesgue measure.

Theorem 1: $\overline{\lim_{x\to\infty}} \frac{\phi(x^2)}{\phi(x)} < \infty$ if and only if $f^2 \in L\phi$ for all $f \in L\phi$. Proof: Suppose first that $\overline{\lim_{x\to\infty}} \frac{\phi(x^2)}{\phi(x)} < \infty$, and let $f \in L\phi$.

There are positive numbers M and K so that

 $\phi(x^2) \leq M\phi(x)$ for all $x \geq k$.

Let $A = \{x \in X : f(x) \le K\}$ and

$$B = \{x \in X: f(x) > K\}$$

$$\int_{X} \phi(|f^{2}|) d\mu = \int_{A} (|f^{2}|) d\mu + \int_{B} \phi(|f^{2}|) d\mu$$

$$\leq \int_{X} \phi(K^{2}) d\mu + \int_{X} M \phi(|f|) d\mu$$

$$= \phi(K^{2}) \mu(x) + M \int_{X} \phi(|f|) d\mu$$

$$< \text{ since } f \in L \phi.$$
Therefore, $f^{2} \in L \phi.$
Conversely, suppose that $\overline{\lim_{x \to \infty}} \frac{\phi(x^{2})}{\phi(x)} < \infty$
There is a sequence $\{x_{n}\}$ of real numbers such that $\lim_{X \to \infty} \frac{\phi(x_{n}^{2})}{\phi(x_{n})} = \infty$
So, for each M, there is a positive integer N so that $\frac{\phi(x_{n}^{2})}{\phi(x_{n})} > M$ for all $n \ge N$.

Since ϕ is continuous, for each m, there is an interval $I_m = (a_m, b_m)$ such that $\frac{\phi(x_n^2)}{\phi(x_n)} > m$ for all $x \in I_m$ and such that $I_m \cap I_n = \phi$ if $m \neq n$.

Let, for each m, J_m = $(\alpha_m,\ \beta_m)$ such that the length ℓ (J_m) of J_m satisfies.

$$\ell (\mathbf{J}_{\mathrm{m}}) \boldsymbol{\phi} (\mathbf{b}_{\mathrm{m}}) = \frac{1}{\mathrm{m}^2}$$

and that $J_m \cap J_n = \phi$ if $m \neq n$. Define f on X as,

An-Najah Univ. J. Res., Vol. 12, (1998).

$$f(X) = \begin{cases} \frac{x - \alpha_n}{\beta_n - \alpha_n} (b_n - a_n) + a & \text{if } x \in J_n \\ 0 & \text{elsewhere} \end{cases}$$
Now,
$$\int_X \phi(|f|) d\mu = \sum_n \int_{\alpha_n}^{\beta_n} \phi(|f|) d\mu$$

$$= \sum_n \int_{a_n}^{b_n} \phi(|y|) \frac{\beta n - \alpha n}{b n - a n} dy$$

$$= \sum_n \ell (Jn) \frac{1}{b n - a n} \int_{a_n}^{b_n} \phi(|y|) dy$$

$$= \sum_n \ell (Jn) \phi(yn) \quad (\text{where, for each n, yn is appropriate for the Mean Value Theorem for integrals).}$$

$$=\sum_{n}rac{1}{n^2}<\infty$$

It therefore follows that $f \in L\phi$.

But,
$$\int_{X} \phi(|f^{2}|) d\mu = \sum_{J_{n}} \phi(|f^{2}(x)|) dx \ge \sum_{n} n \int_{J_{n}} \phi(|f(x)|) dx$$
$$= \sum_{n} n \frac{\beta n - \alpha n}{bn - \alpha n} \int_{\alpha n}^{bn} \phi(y) dy = \sum n \phi(y_{n}) \ell(J_{n}); \text{ (y_{n} is as above)} = \sum \frac{1}{n} = \infty$$
Hence, $f^{2} \notin L\phi$.

This completes the proof of the theorem.

With X as in theorem 1, we get the following:

An-Najah Univ. J. Res., Vol. 12, (1998).

Corollary 1.:
$$M(L\phi) = L\phi$$
 if and only if $\overline{\lim_{x \to \infty}} \frac{\phi(x^2)}{\phi(x)} < \infty$

References

- [1] W. Deeb, Multipliers and isometries of Orlisz Spaces, in "Proceedings of the Conference on Mathematical Analysis and its Applications, Kuwait Univ., Kuwait, Feb. 18-21", 1985.
- [2] L. Waelbrock, "Topological Vector Spaces, Lecuture Notes in Mathematics", Springer-Verlag, No. 331(1972), 1-40.
- [3] W. Deeb and R. Khalil, Best Approximation in L^{P} (I,X), $0 \le p \le 1$, Journal of Approximation Theory, **58**, (1), (1989), 68-77.

An-Najah Univ. J. Res., Vol. 12, (1998).