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Abstract

In this paper we prove that if ¢ is a modulus function and if X = [0,1]
is given the Lebesgue measure, then M(Ly) = L, if and only if
im b(x")
X0 d) ( X )
algebra.

<oo; Ly being the Orlicz space Ly(X); and M(L,) its multiplier
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1. Introduction

Let ¢ be a strictly increasing continuous subadditive function defined
on [0, «] with ¢(0)=0. Such a function is called a modulus function. Let
(X, u) be a finite measure space. The Orlicz space Ly(X) is the set of all
complex-valued measurable functions f which are defined on X and satisfy
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If],= _f¢(|f‘)du < o

With the metric |. ¢, the space Ly(X) becomes a complete linear
topological space [1]. We will supress X, unless otherwise specified, and

write L, for Ly(X).

If d(x)=x", 0 <P <1, then L is the space L?, and B ld) is a norm if
and only if L, = L'. If ¢ is bounded then L, becomes the space of all
measurable functions [1].

Being increasing and subadditive, ¢ is easily seen to satisfy

EM <k for some real constant k. It then follows that L' < L¢ for all
X > X

modulus functions ¢.

If (x) = log(1+xF), 0 < P < 1, then ¢ is modulus and L¢ will be
donoted by Np. For more on Np-spaces, see[2]. It is not hard to see that

is modulus and that the composition of

the function defined as ¢(x) = X
1+x

two modulus functions is again modulus [3].

A multiplier of L¢ is a measurable function g on X for which fg € L
for all f € Ld. M(L¢) will denote the space of all multipliers of L.

In [1], Deep introduced two classes of modulus functions which
resemble a natural interplay between Loo, L and M(L¢). Specifically,
assuming ¢ unbounded and ¢(1) = 1, (we may do this without loss of
generality); he, on the one hand, proved that, if ¢(xy)=d(x) ¢(y) for all x > 1
and y > 0then M(L$) =L”, and as an immediate corollary that M(L?) = L*
for all O<p<eco. On the other hand, if $(xy)< $(x)+ ¢(y) for all x and y, he,
then proved that M(L¢) = Lé, and hence concluded that M(Np) = Np for
0<p<l.

In this paper, we characterize those modulus functions ¢ so that
M(L¢) = L.
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Since the function f{x) = 1 for all x € X is in L¢, then M(L¢$)c Lo
and it is clear that Loo — M(L¢) for all modulus function ¢. In what follows,
we will assume that ¢ is a modulus function which is increasing without
bound, ¢(1) = 1, and X is our measure space with finite measure 1

2. The Multiplier Agebra of L¢

It was pointed out earlier that L¢ is a linear space, and so it is evident
that M(Ld) = L¢ if and only if L¢ is an algebra. We establish the following.

2
Lemma I: L is an algebra if and only if f € L¢$ whenever f € L¢

2
Proof: If L is an algebra, then, obviously f € L¢ when ever fe Lo.
2

Conversely; suppose f e L¢ for all fe L¢, and let f, ge L be
arbitrary.

3 2
(frg)’=f + 2fg + g
1 2
o, fg = [(Frg)* - -]
hence fg € L
Since f, g were arbitrary, L¢ is an algebra.

In the following theorem, which is our main result we assume
=[0,1] and equipped with the lebesgue measure.

——(x”)

Theorem 1: llm ———= 5 ——=<0 if and only if f e L¢ forall f e L.
X—>0 x
_ 2
Proof: Suppose first that limLx) <ac, and let f € L.

e §(x)
There are positive numbers M and K so that
d(x%) < Md(x) for all x > k.
Let A= {x €X: f(x) <K} and
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B={x e X f{x)>K}
Jollelau = [{efjau + Jo{e*]jan

JoRdu + [Mo|fl)du

IA

Il

H(K? Jucx) + M o(|f)du

< sincef e L¢.

2
Therefore, f € L¢.

Conversely, suppose that lim~———= Tim 2% )

e g(x)

2
There is a sequence {x,} of real numbers such that lim #5,) =00

Xoe g(x,

So, for each M, there is a positive integer N so that $(x2) _ ,, for
6(x,)

alln > N.

Since ¢ is continuous, for each m, there is an interval I, = (am,bn)

o(x;) .
=12 > m forall x € I, and such that I, ~ I, =¢ if m#

such that
(%)
n.
Let, for each m, Jn = (0w, PBm) such that the length ¢ (J,,) of Jn,
satisfies.

/mm®)=;

and that J, nJ,=¢ ifm = n.
Define f on X as,
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.

X% (b -a)+a if xel,

fX) = 1B, -,

0 elsewhere

Now. oo - 5 [ol)on

"Z“’HBH om dy

. bn—an

2! (n) f¢ (9

=Z€(Jn).¢5(yn) (where, for each n, yn is appropriate for

the Mean Value Theorem for integrals).
=T e
~n
It therefore follows that f € L.

But, [(f%)Jdu = 3 j (|7 (o) Jax = ;n [ (£ col)ax

._Zn

n

I¢(VWZ"¢0’ JIJ,); (va is as above) = Z% =

bn—an

Hence, f ¢ L.
This completes the proof of the theorem.

With X as in theorem 1, we get the following:

An-Najah Univ. J. Res., Vol. 12, (1998).



The Multiplier Algebra of Orlicz Spaces

—(x
Corollary 1. M(L¢) = Lo if and only if lim (( ))
d(x

X—>w
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