The Multiplier Algebra of Orlicz Spaces جبر مضاعفات فضاء اورلكس

Abdallah Hakawati

عبد الله حكواتي

Department of Mathematics, An-Najah N. University - Nablus, Palestine.
Received: (21/1/1998). Accepted: (19/7/1998).

Abstract

In this paper we prove that if ϕ is a modulus function and if $X=[0,1]$ is given the Lebesgue measure, then $M\left(L_{\phi}\right)=L_{\phi}$ if and only if $\varlimsup_{x \rightarrow 0} \frac{\phi\left(x^{2}\right)}{\phi(x)}<\infty ; L_{\phi}$ being the Orlicz space $L_{\phi}(X)$; and $M\left(L_{\phi}\right)$ its multiplier algebra.

L

1. Introduction

Let ϕ be a strictly increasing continuous subadditive function defined on $[0, \infty]$ with $\phi(0)=0$. Such a function is called a modulus function. Let (X, μ) be a finite measure space. The Orlicz space $L_{\phi}(X)$ is the set of all complex-valued measurable functions f which are defined on X and satisfy

$$
|\mathrm{f}|_{\phi}=\int_{\mathrm{x}} \phi(|\mathrm{f}|) \mathrm{d} \mu<\infty
$$

With the metric $|.| \phi$, the space $L_{\phi}(X)$ becomes a complete linear topological space [1]. We will supress X , unless otherwise specified, and write L_{ϕ} for $\mathrm{L}_{\phi}(\mathrm{X})$.

If $\phi(x)=x^{p}, 0<P \leq 1$, then $L \phi$ is the space L^{p}, and $|.| \phi$ is a norm if and only if $L_{\phi}=L^{1}$. If ϕ is bounded then L_{ϕ} becomes the space of all measurable functions [1].

Being increasing and subadditive, ϕ is easily seen to satisfy $\varlimsup_{x \rightarrow \infty} \frac{\phi(x)}{x} \leq k$ for some real constant k. It then follows that $L^{1} \subset L \phi$ for all modulus functions ϕ.

If $\phi(x)=\log \left(1+\mathrm{x}^{\mathrm{P}}\right), 0<\mathrm{P} \leq 1$, then ϕ is modulus and $\mathrm{L} \phi$ will be donoted by Np . For more on Np -spaces, see[2]. It is not hard to see that the function defined as $\phi(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x}}$ is modulus and that the composition of two modulus functions is again modulus [3].

A multiplier of $L \phi$ is a measurable function g on X for which $f g \in L \phi$ for all $\mathrm{f} \in \mathrm{L} \phi . \mathrm{M}(\mathrm{L} \phi)$ will denote the space of all multipliers of $\mathrm{L} \phi$.

In [1], Deep introduced two classes of modulus functions which resemble a natural interplay between $L \infty, L \phi$ and $M(L \phi)$. Specifically, assuming ϕ unbounded and $\phi(1)=1$, (we may do this without loss of generality); he, on the one hand, proved that, if $\phi(x y) \geq \phi(x) \phi(y)$ for all $x \geq 1$ and $y \geq 0$ then $M(L \phi)=L^{\infty}$, and as an immediate corollary that $M\left(L^{p}\right)=L^{\infty}$ for all $0<p \leq \infty$. On the other hand, if $\phi(x y) \leq \phi(x)+\phi(y)$ for all x and y, he, then proved that $\mathrm{M}(\mathrm{L} \phi)=\mathrm{L} \phi$, and hence concluded that $\mathrm{M}(\mathrm{Np})=\mathrm{Np}$ for $0<p \leq 1$.

In this paper, we characterize those modulus functions ϕ so that $M(L \phi)=L \phi$.

Since the function $f(x)=1$ for all $x \in X$ is in $L \phi$, then $M(L \phi) \subset L \phi$ and it is clear that $L \infty \subset M(L \phi)$ for all modulus function ϕ. In what follows, we will assume that ϕ is a modulus function which is increasing without bound, $\phi(1)=1$, and X is our measure space with finite measure μ

2. The Multiplier Agebra of $\mathbf{L} \phi$

It was pointed out earlier that $L \phi$ is a linear space, and so it is evident that $\mathrm{M}(\mathrm{L} \phi)=\mathrm{L} \phi$ if and only if $\mathrm{L} \phi$ is an algebra. We establish the following.
Lemma 1:L ϕ is an algebra if and only if $f^{2} \in L \phi$ whenever $f \in L \phi$
Proof: If $L \phi$ is an algebra, then, obviously $f^{2} \in L \phi$ when ever $f \in L \phi$.
Conversely; suppose $f \in L \phi$ for all $f \in L \phi$, and let $f, g \in L \phi$ be arbitrary.

$$
\begin{aligned}
& (\mathrm{f}+\mathrm{g})^{2}=\mathrm{f}^{2}+2 \mathrm{fg}+\mathrm{g}^{2} \\
& \text { so, } \mathrm{fg}=\frac{1}{2}\left[(\mathrm{f}+\mathrm{g})^{2}-\mathrm{f}^{2}-\mathrm{g}^{2}\right]
\end{aligned}
$$

hence $\mathrm{fg} \in \mathrm{L} \phi$
Since f, g were arbitrary, $L \phi$ is an algebra.
In the following theorem, which is our main result we assume $\mathrm{X}=[0,1]$ and equipped with the lebesgue measure.
Theorem l: $\varlimsup_{x \rightarrow \infty} \frac{\phi\left(x^{2}\right)}{\phi(x)}<\infty$ if and only if $\mathrm{f}^{2} \in L \phi$ for all $\mathrm{f} \in L \phi$.
Proof: Suppose first that $\varlimsup_{\mathrm{x} \rightarrow \infty} \frac{\phi\left(\mathrm{x}^{2}\right)}{\phi(\mathrm{x})}<\infty$, and let $\mathrm{f} \in \mathrm{L} \phi$.
There are positive numbers M and K so that
$\phi\left(x^{2}\right)<M \phi(x)$ for all $x \geq k$.
Let $A=\{x \in X: f(x) \leq K\}$ and

$$
\begin{aligned}
& \mathrm{B}=\{\mathrm{x} \in \mathrm{X}: \mathrm{f}(\mathrm{x})>\mathrm{K}\} \\
& \int_{\mathrm{X}} \phi\left(\left|\mathrm{f}^{2}\right|\right) \mathrm{d} \mu=\int_{\mathrm{A}}\left(\left|\mathrm{f}^{2}\right|\right) \mathrm{d} \mu+\int_{\mathrm{B}} \phi\left(\left|\mathrm{f}^{2}\right|\right) \mathrm{d} \mu \\
& \leq \int_{\mathrm{X}} \phi\left(\mathrm{~K}^{2}\right) \mathrm{d} \mu+\int_{\mathrm{X}} \mathrm{M} \phi(|\mathrm{f}|) \mathrm{d} \mu \\
& =\phi\left(\mathrm{K}^{2}\right) \mu(\mathrm{x})+\mathrm{M} \int_{\mathrm{X}} \phi(|\mathrm{f}|) \mathrm{d} \mu
\end{aligned}
$$

$<\quad$ since $\mathrm{f} \in \mathrm{L} \phi$.
Therefore, $\mathrm{f}^{2} \in \mathrm{~L} \phi$.
Conversely, suppose that $\varlimsup_{x \rightarrow \infty} \frac{\phi\left(x^{2}\right)}{\phi(x)}<\infty$
There is a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ of real numbers such that $\lim _{\mathrm{X} \rightarrow \infty} \frac{\phi\left(x_{n}^{2}\right)}{\phi\left(x_{n}\right)}=\infty$
So, for each M, there is a positive integer N so that $\frac{\phi\left(x_{n}^{2}\right)}{\phi\left(x_{n}\right)}>M$ for all $n \geq N$.

Since ϕ is continuous, for each m, there is an interval $I_{m}=\left(a_{m}, b_{m}\right)$ such that $\frac{\phi\left(x_{n}^{2}\right)}{\phi\left(x_{n}\right)}>m$ for all $x \in I_{m}$ and such that $I_{m} \cap I_{n}=\phi$ if $m \neq$ n .

Let, for each $m, J_{m}=\left(\alpha_{m}, \beta_{m}\right)$ such that the length $\ell\left(J_{m}\right)$ of J_{m} satisfies.
$\ell\left(\mathrm{J}_{\mathrm{m}}\right) \phi\left(\mathrm{b}_{\mathrm{m}}\right)=\frac{1}{\mathrm{~m}^{2}}$
and that $\mathrm{J}_{\mathrm{m}} \cap \mathrm{J}_{\mathrm{n}}=\phi$ if $\mathrm{m} \neq \mathrm{n}$.
Define f on X as,
$f(X)=\left\{\begin{array}{cc}\frac{x-\alpha_{n}}{\beta_{n}-\alpha_{n}}\left(b_{n}-a_{n}\right)+a & \text { if } x \in J_{n} \\ 0 & \text { elsewhere }\end{array}\right.$
Now, $\int_{x} \phi(|f|) \mathrm{d} \mu=\sum_{\mathrm{n}} \int_{\alpha n}^{\beta n} \phi(|\mathrm{f}|) \mathrm{d} \mu$

$$
=\sum_{\mathrm{n}} \int_{\mathrm{an}}^{\mathrm{bn}} \phi(|y|) \frac{\beta \mathrm{n}-\alpha \mathrm{n}}{\mathrm{bn}-\mathrm{an}} d y
$$

$$
=\sum_{n} \ell(J n) \frac{1}{b n-a n} \int_{a n}^{b n} \phi(|y|) d y
$$

$$
=\sum_{n} \ell(J n) \phi(y n) \text { (where, for each } \mathrm{n}, \mathrm{yn} \text { is appropriate for }
$$ the Mean Value Theorem for integrals).

$=\sum_{\mathrm{n}} \frac{\mathrm{l}}{\mathrm{n}^{2}}<\infty$
It therefore follows that $f \in L \phi$.

$$
\begin{aligned}
\text { But, } & \int_{\mathrm{x}} \phi\left(\left|\mathrm{f}^{2}\right|\right) \mathrm{d} \mu=\sum \int_{\mathrm{J}_{\mathrm{n}}} \phi\left(\left|\mathrm{f}^{2}(\mathrm{x})\right|\right) \mathrm{dx} \geq \sum_{\mathrm{n}} \mathrm{n} \int_{\mathrm{J}_{\mathrm{n}}} \phi(|\mathrm{f}(\mathrm{x})|) \mathrm{dx} \\
& =\sum_{n} n \frac{\beta n-\alpha n^{b n}}{b n-a n} \int_{a n} \phi(y) d y=\sum n \phi\left(y_{n}\right) \ell\left(J_{n}\right) ;\left(\mathrm{y}_{\mathrm{n}} \text { is as above }\right)=\sum \frac{1}{\mathrm{n}}=\infty
\end{aligned}
$$

Hence, $\mathrm{f}^{2} \notin \mathrm{~L} \phi$.
This completes the proof of the theorem.
With X as in theorem 1 , we get the following:

Corollary $1 .: \mathrm{M}(\mathrm{L} \phi)=\mathrm{L} \phi$ if and only if $\overline{\mathrm{l}}_{\mathrm{x} \rightarrow \infty} \frac{\phi\left(\mathrm{x}^{2}\right)}{\phi(\mathrm{x})}<\infty$

References

[1] W. Deeb, Multipliers and isometries of Orlisz Spaces, in "Proceedings of the Conference on Mathematical Analysis and its Applications, Kuwait Univ., Kuwait, Feb. 18-21", 1985.
[2] L. Waelbrock, "Topological Vector Spaces, Lecuture Notes in Mathematics", Springer-Verlag, No. 331(1972), 1-40.
[3] W. Deeb and R. Khalil, Best Approximation in $L^{p}(I, X), 0<p<1$, Journal of Approximation Theory, 58, (1), (1989), 68-77.

