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Numerical Treatment of The Fredholm Integral Equations of the
Second Kind
By
Nujood Asad Abdulrahman Rihan
Supervisor
Prof. Naji Qatanani

Abstract

In this thesis we focus on the mathematical and numerical aspects of
the Fredholm integral equation of the second kinddue to their wide range of
physical application such as heat conducting radiation, elasticity, potential
theory and electrostatics. After the classification of these integral equations
we will investigate some analytical and numerical methods for solving the
Fredholm integral equation of the second kind. Such analytical methods
include: the degenerate kernel methods, converting Fredholm integral
equation to ODE, the Adomain decomposition method, the modified

decomposition method andthe method of successive approximations.

The numerical methods that will be presented here are: Projection methods
including collocation method and Galerkin method, Degenerate kernel

approximation methods and Nystrom methods.

The mathematical framework of these numerical methods together with

their convergence properties will be analyzed.

Some numerical examples implementing these numerical methods have

been obtained for solving a Fredholm integral equation of the second kind.

The numerical results show a closed agreement with the exact solution.



Introduction

The subject of integral equations is one of the most important
mathematical tools in both pure and applied mathematics. Integral
equations play a very important role in modern science such as numerous
problems in engineering and mechanics, for more details see [4] and [25].
In fact, many physical problems are modeled in the form of Fredholm
integral equations, such problems as potential theory and Dirichlet
problems which discussed in [4] and [37], electrostatics [34], mathematical
problems of radiative equilibrium [23], the particle transport problems of

astrophysics and reactor theory [29], and radiative heat transfer problems

which discussed in [40], [41], [42], and [49].

Many initial and boundary value problems associated with ordinary
differential equations (ODESs) and partial differential equations (PDEs) can
be solved more effectively by integral equations methods. Integral
equations also form one of the most useful tools in many branches of pure
analysis, such as the theories of functional analysis and stochastic

processes, see [27] and [32].

Historical background of the integral equation

An integral equation is an equation in which an unknown

function appears under one or more integral signs.
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There is a close connection between differential and integral
equations and some problems may be formulated either way. The
most basic type of integral equation is a Fredholm equation of the

second kind

AF () - f GOooNfOdy = ) xeD, A% 0 (1)

D

where D is a closed bounded set in R™, for some m > 1.

G is a function called the kernel of the integral equation and is
assumed to be absolutely integrable, and satisfy other properties
that are sufficient for the Fredholm Alternative Theorem, for more
details see [4]. For g # 0 , we have A which is a non zero real or
complex parameter and g  given, and we seek f, this is the
nonhomogeneos problem. For g = 0, equation (1) becomes an
eigenvalue problem, and we seek both the eigenvalue A and the

eigenfunction f.
The integral equation (1) can be written abstractly as
(I -2K)f =g (2)

with K is an integral operator on a Banach space X to the same

Banach space X, e.g. C [a, b] or L? [a, b].

At the time in the early 1960’s, researchers were interested principally in
one-dimensional case. It was for a kernel function G that was at least

continuous; and then it was assumed that G(x,y) was several times
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continuously differentiable. This was the type of equation studied by Ivar
Fredholm, and in his honor such equation is called Fredholm integral
equation of the second kind. Today the work is with multi-dimensional
Fredholm integral equations of the second kind in which the integral
operator is completely continuous and the integration region is commonly a
surface in R3, in addition, the kernel function G is often singular.
The Fredholm theory is still valid for such equations, and this theory is
critical for the convergence and stability analysis of associated numerical

methods. For more details see [4] and [14].

There are many analytical methods which are developed for
solving Fredholm integral equations such methods as the degenerate
kernel methods, converting Fredholm integral equation to ODE, the
Adomain  decomposition method, the modified decomposition
method, the method of successive approximations and others. For

more details see [1], [14], [28], [30], [44] and [50].

The numerical methods for solving Fredholm integral equations
may be subdivided into the following classes: Degenerate kernel
approximation methods, Projection methods, Nystréom methods. For
more details see [2], [5], [11], [13], [21], [36], [38] and [53]. All of
these methods have iterative variants. There are other numerical
methods, but the above methods and their variants include the most

popular general methods.
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There are only a few books on the numerical solutions of integral
equations as compared to the much larger number that have been
published on the numerical solution of ordinary and partial
differential equations. General books on the numerical solution of
integral equations include, in historical order, [10], and [16], and
[19]. More specialized treatments of numerical methods for integral

equations are given in [4], [7], [31] and [33].



Chapter 1

Mathematical Preliminaries
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Chapter 1
Mathematical Preliminaries
Definition 1.1

An integral equation is an equation in which the unknown function f

appears under the integral sign. A standard integral equation is of the form

u(x)

FOO) = g() + 2 j ISR L (1.1)

where u(x) and v(x) are limits of integration, A is a constant parameter,
and G (x,y) is a function of two variables x and y called the kernel or the
nucleus of the integral equation. The function f that will be determined
appears under the integral sign, and sometimes outside the integral sign.
The functions g(x) and G(x,y) are given. The limits of integration u(x)
and v(x) may be both variables, constants, or mixed, and they may be in

one dimension or two or more.
1.1 Classification of integral equations
1.1.1 Types of integral equations

There are four major types of integral equations, the first two are of main

classes and the other two are related types of integral equations.



1. Fredholm integral equations

The most standard form of Fredholm integral equations is given by the

form

h@ﬁ@)=g@)+l]G@JV@M% (1.2)

D

with D a closed bounded set in R™, for some m > 1.

(i) If the function h(x) = 1, then (1.2) becomes simply

f(x) =gl + 2 [, G, )fdy, (1.3)
and this equation is called Fredholm integral equation of the second kind.

(i) If the function h(x) = 0, then (1.2) yields

g@)+ALG@JM@My=Q (1.4)

which is called Fredholm integral equation of the first kind.

(#ii) If h(x) is neither 0 nor 1 then (1.2) called Fredholm integral equation

of the third kind
2. Volterra integral equations

The most standard form of Volterra integral equation is of the form
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huw@)=mm+1famwﬂww, (15)

where the upper limit of integration is a variable and the unknown function

f appears linearly or nonlinearly under the integral sign.

(i)  Ifthe function h(x) = 1, then equation (1.5) simply becomes

f@)=mw+1famwﬂww, (1.6)

and this equation is known as the Volterra integral equation of the second

kind.

(ii)  If the function h(x) = 0, then equation (1.5) becomes

gw>+Ajwavwwy=a (17)

which is known as the Volterra integral equation of the first kind.

(Zii) If h(x) is neither O nor 1 then (1.5) called Volterra integral equation of
the third kind.

3. Singular integral equations

When one or both limits of integration become infinite or when the kernel
becomes infinite at one or more points within the range of integration, the

integral equation is called singular. For example, the integral equation

f@o==gw)+11_@nr4x—ynﬂym% (1.8)

is a singular integral equation of the second kind.
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(i) Weakly singular integral equation: The kernel is of the form

H(x,y)

N e

or

G(x,y) = H(x,y) In|x — y|

where H(x,y) is bounded (that is, several times continuously
differentiable) a < x < banda < y < bwith H(x,y) # 0,and a is

a constant such that 0 < a < 1. For example, the equation

x 1
gx) =}\J0 mf(y)dy, 0<a<l1 (1.9)

is a singular integral equation with a weakly singular kernel. For more

details see [9] and [17].

(ii) Singular integral equation: Here the kernel is of the form

H(x,y)
X =y

G(x,y) =

where H(x,y) is a differentiable function of (x,y) with H(x,y) # 0, then

the integral equation is said to be a singular equation with Cauchy kernel

(y)

where the integral f f(y)dy is understood in the sense of Cauchy

Principal Value (CPV) and the notation P.V. fab Ii(%i? dy, is usually used to

denote this. Thus
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fx‘EH(x,y) dy+fb H(x,y) dy}

a xX=y +e X= ¥

bH(x,
P.V.j *x.7) dy =lim{
a XY €—0

(iii) Strongly singular integral equations: if the kernel G(x, y) is of the

form

H(x,y)

TN ey

where H(x,y) is a differentiable function of (x, y) with H(x,y) =+ 0, then
the integral equation is said to be a strongly singular integral equation. For

more details see [22].
4. Integro-differential equations

In this type of equations, the unknown function f appears as a
combination of both ordinary derivative and under the integral sign. In the
electrical engineering problem, the current / (¢) flowing in a closed circuit
containing resistance, inductance and capacitance is governed by the
following integro-differential equation,

LdI+RI+IftI()d = E(t) 1.10
T ) T)dt = (1.10)

where L is the inductance, R the resistance, C the capacitance, and E (t) the

applied voltage. Similar examples can be cited as follows

1 1
Fe =1- x+ [ wroddy, @ =1 @1
0
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F1e0 = g + 2 jo (x = ) FOAG),

f(0) =0, (0) = 1,(1.12)

Equations (1.10) and (1.12) are of Volterra type integro-differential
equations, whereas equation (1.11) is Fredholm type integro-differential

equations.
1.1.2. Linearity of integral equations

There are two kinds of integral equations according to linearity and this

depends on the unknown function under the integral sign.
(i) Linear integral equations

They are of the form

u(x)

FOO) = () + 2 j ISR OL (1.13)

where only linear operations are performed upon the unknown function
inside the integral sign, that is the exponent of the unknown inside the

integral sign is one, for example

3 1 1
fo) =3x-3+ [ G-nfoddy (1.14)
0

here the unknown function f'appears in the linear form.
(it)Nonlinear integral equations

They are of the form
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u(x)

f(x)=gx) +/1]( ) G(x,y, f())dy, (1.15)

the unknown function f under the integral sign has exponent other than
one, or the equation contains nonlinear functions of f, such as e/ , sinh f,

In(1 + f), for example

FE) =1+ j (1+x—y) f*()dy (1.16)
0

1.1.3 Homogeneity of integral equations

Integral equations of the second kind are classified as homogeneous or

non-homogeneous.
(i))Homogeneous integral equation

if the function g in the second kind of Volterra or Fredholm integral
equations is identically zero, the equation is called homogeneous, for

example,

fG) =2 j G y) F)dy (1.17)
D

and this kind of equations becomes an eigenvalue problem, and we seek
both the eigenvalue A and the eigenfunction f, where by an eigenvalue (or
characteristic value Ywe mean that the value of the constant A, for which
the homogeneous Fredholm equation has a solution f = f(x) which is not
identically zero on [a, b], the non-zero solution f = f(x) is called an

eigenfunction, or characteristic function.
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(if) Non-homogeneous integral equation

if the function g in the second kind of Volterra or Fredholm integral
equation is not equal zero, the equation is called non-homogeneous, for

example,

1

FGO) = g0 + j G(xy) f()dy (1.18)

0

where g(x) is not equal zero.

Notice that this property of classification holds for equations of the

second kind only since . For more details see [4] and [50].
1.2 Kinds of kernels

1. Separable or degenerate kernel

A kernel G(x,y) is called separable or degenerate if it can be expressed
as the sum of a finite number of terms, each of which is the product of a
function of x only and a function of y only, (some authors say G (x, y)is

degenerate if it is of finite rank) that means,

n
GEy) = ) w (w). (1.19)
i=1
The functions u; (x) and the functions v;(y) are linearly independent.

2. Symmetric (or Hermitian) kernel

A complex-valued function G (x, y) is called symmetric if
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G(x,y) = G*(y,%), (1.20)

where the asterisk denotes the complex conjugate. For a real kernel, this

coincides with definition
G(x,y) = G(y,x). (1.21)
3. Hilbert-Schmidt kernel

If the kernel G(x, y), for each sets of values of x, y in the squarea < x <

band a <y < b, is such that

b b
f j 16 (x,y)|2dxdy < oo,
a a

also for each valueof xina < x < b, is

b
f |G (x,y)|*dy < o,
a

And for each value of yina <y < b, is

b
j |G (x,v)|? dx < oo, (1.22)
a

has a finite value, then we call the kernel a regular kernel and the

corresponding integral equation is called a regular integral equation.
4. Cauchy kernel

If the kernel G (x, y) is of the form

G(x,y) = (1.23)
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where H(x,y) is a differentiable function of (x, y) with H(x,y) # 0, then

the integral equation is said to be a singular equation with Cauchy kernel.
5. Abel'’s kernels

If the kernel G (x, y) is of the form

H(x,y)

G(x,y) = =y

(1.24)

where 0 < a < 1 and the function H(x, y) is assumed to be several times
continuously differentiable such integral equations contain this kernel are

called Abel integral equation.
6. Hilbert kernel

The kernel is of the form

y_x],

. (1.25)

G(x,y) = cot [

where x and y are real variables, is called the Hilbert kernel and is closely

connected with the Cauchy kernel, since in the unit circle

td_tT =%(c0ty;x+ i) dy,

where t = e?, T = e™*.
7. Skew — symmetric kernel

The kernel is of the form

Gx,y) = —G(y,x) (1.26)
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For more details see [51].

1.3 Review of spaces and operators

Definition 1.2 Vector spaces

A vector space (or linear space) consists of the following:

1. afield F of scalors.

2. aset X of objects, called vectors.

3. arule (or operation), called vector addition, which associates with
each pair of vectors x, y in X a vector x + y in X, called the sum of
x and y, in such a way that

(1) addition is commutative,x + y = y + x.
(1) addition is associative,x + (y + z) = (x + y) + z.

(111) there 1s a unique vector 0 in V, called the zero vector,
suchthata + 0 = aforallain X.

(iv) for each vector x in X there is a unique vector - x in X  such
thatx + (—x) = 0.
4. A rule (or operation) called scalar multiplication, which associates

with each scalar ¢ in F and vector x in X a vector cx in X , called the

product of ¢ and x, in such a way that

(1) 1x = x, for every x in X.

(i) (c162) x = ¢1 (cz) x.

(i) c(x + y) = cx + cy.
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(1v) (c; + ) x = c1x + Cyx.
Definition 1.3 Vector norm on X

A vector norm on X is a function ||. || from X into F, (where the notation
|I. || denotes the norm, X is a set of vectors and F is a scalar field) whose

value at an x € X is denoted by ||x|| with the following properties:

(1) |x]| = 0 for all x € X

(ii) llx||= 0 iffx =0

(ii1) |lo< x||= |o<|||x]|] forall x € F and x € X

(iv) llx + v x| + |yl (triangular inequality)

Examples of the vector norms from R" into R (where R denotes the set of

all real numbers) are: the maximum norm
x|l = max{|x;]:1 <i < n}

and the Euclidean norm

- 1
il = O il 2
i=1

for the vectors x = (x4, ..., X)
Definition 1.4 Normed space

A normed space X is a vector space with a norm defined on it. The normed

space is denoted by (X, ||. []).



18

Definition 1.5 Cauchy sequence

A Cauchy sequence is a sequence whose elements become arbitrary close

to each other as the sequence progresses.

In the other words a sequence (x,) is said to be a Cauchy sequence if for
each € > 0 there exists a positive integer N such that in the case of real

numbers
forallmmn >N - |x,, —x,| <Ee. (1.27).

To define Cauchy sequences in any metric space X, the absolute

value |x,, — x,| is replaced by the distance d(x,,, x,,), where
d: XxX—R.
Definition 1.6 Complete space

X 1s complete if every Cauchy sequence of points in X has a limit that is

also in X or if every Cauchy sequence in X converges in X.
Definition 1.7 Banach space
Banach space is a complete normed vector space.

an example for Banach spaces is the finite-dimensional vector spaces R"

with the maximum norm
x|l = max{|x;]:1 <i < n}

1
and the Euclidean norm ||x||, = (X=,|x;|?) 2 for the vectors
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X = (X1, 0, Xp)

Definition 1.8: Let X be a Banach space, for x,e X and r > 0, the set
B (xo,7):= {xeX: ||x —xo|| <r}is called (closed) ball of X with the

centre xy and radius . A set S C X is called:

bounded if it is contained in a ball of X;

open if for any x, € S there is anr > 0 such that B(x,,7) € S;
closed if (x,,) € S,x,, = x implies x € S;

relatively compact if every sequence (x,) C S contains a convergent

subsequence (with a limit in X not necessarily belonging to S).
compact if S is closed and relatively compact.

The closure S of a set S C X is the smallest closed set containing S. A set

S c© X is said to be dense in X if S = X.

Theorem 1.1: The sequence of vectors {x"}converges to x in R" with

respect to ||. || if
limy,_o xF = x, foreachn= 1,2,.. n
Definition 1.9 Inner product and Inner product space

Let X be a vector space over F (either R or C) An inner product on X is a

function

(LDIY: XXX > F
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That assigns to each pair (x, y)e X? a number in F denoted (x, y) satisfying

the following properties.

1. Positivity: (x,x) = 0, moreover (x,x) = Oifandonlyifx = 0
2. Conjugate symmetry :(x,y) = (y,x)if F = R then (x,y) = (y, x)
3. Linearity: if the vector y € X is fixed and with respect to the first

variable forall a,b € F,

(axy + bxy,y) = a(xy,y) + b{x3,y),

The pair (X, (.,.))is an inner product space over F. If F = Citis a
complex inner product space, while if F = R it is a real inner product
space.

In particular the L* inner product on L?([a, b]) is defined as

b
(F. 9 = | FO9G dx forf.ger(abl.  (1.28)

Definition 1.10 Hilbert space (H)

It is a complete inner product space.

Definition 1.11 Linearly independent functions.

By linear independence of set of functions a;'s it is meant that, if
c1a, + ca, + ... + cpa, = 0,

where c; s are arbitrary constants, thenc; = ¢, = ... = ¢, = 0.
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Definition 1.12 L’-functions and L’-spaces.

L? function is a complex-valued function f(x) of a real variable x on an

interval (a, b), and such that in the Lebesgue sense

b
j FGOI? dx < oo (1.29)

The set of all such functions is referred to as the function space L’ [a, b];

in other words by Lebesgue sense

b
L*([a,b]) = {f [a, b] - C;f If(x)|?dx < oo} (1.30)

Where C is the complex numbers.

Two L? functions f and g which are equal for 'almost all' values of x, that
is, except for values of x being Lebesgue measure zero, are 'equivalent'.

Thus, f and g are equivalent if

b
f [f(x) —g(x)]?dx =0 (1.31)

while a function 4(x) (a mull function') which is zero almost everywhere

will not be distinguished from the zero function:

b
h(x) =0 & f h? (x)dx =0 (1.32)

With this convention, the set of L’-functions forms a complete inner

product space with respect to the inner product (1.28). Furthermore, the
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space L*, with an appropriate norm and inner product, is an example of a

Hilbert space.

We define the L? norm of an L? function as

1
b 2
Il = { [ reor dx} (133)
a
Definition 1.13 regularity conditions

For the two-dimensional kernel function G(x, y). It is an L*-function if the

following conditions are satisfied

(1)  For each set of values of x, y in the rectangle a <x <b, a <y <b,

b b
j j |G (x,y)|?dxdy < o, (1.34)
a a

(1i1)) Foreach setof valueofxin a<x<b,

b
j 1G(x, )2 dy < o0 (135)

(i11)) For each set of valueofyin a<y<b,

b
f 1G(x, y)|? dx < o0, (1.36)
a

and this is called the regularity conditions on the kernel G (x, y).
For more details see [16].

Definition 1.14 Measurabl functions

They are structure-preserving functions between measurable spaces; as

such, they form a natural context for the theory of integration. Specifically,
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a function between measurable spaces is said to be measurable if

the preimage of each measurable set is measurable.
Definition 1.15 L ’-space

The set of LP -functions (where p > 1) generalizes L* -space. Instead
of square integrable, the measurable function f must be p-integrable,

for f to be in LP.

On a measure space X, the LP norm of a function f is

|

Ifllr = < f If(x)lpdx> (1.37)
X

The LP -functions are the functions for which this integral converges.
For p # 2, the space of LP -functions is a Banach space which is not

a Hilbert space.
In the case where p = oo, we have L”(D) defined as
{f: measurable in D and ||f]|,, < o},
where
11l = inf {sup{|f (x)|: xeS},S <D} (1.38)
with Lebesgue measure of the set S equals zero.
Definition 1.16 The vector space C(R)

is a vector space consisting of all continuous functions f : R = F,
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where F stand for R or C.

C[0, 1] consists of all continuous functions f : [0,1] — F,

Ifllcton = Iflles = max | ()| (139)

Theorem 1.2 (Arzela-Ascoli)

A set S < (C[0,1] is relatively compact in C[0,1] if and only if the

following two conditions are fulfilled:

(1) the functions f € S are uniformly bounded, in the other words, there

is a constant c such that | f(x) | < cforallx € [0,1],f € S.

(i1) the functions f € S are equicontinuous, in the other words, for every

€ > 0 there is a § > 0 such that
X1,%; € [0,1],]x1 — x5 | <6
implies
| f(x1) — f(xx)| < eforallf € S.

Definition 1.17 The operators An
operator A : X — Yassigns to every function f € X a function Af €Y. It
is therefore a mapping between two function spaces. If the range is on

the real line or in the complex plane, the mapping is usually called

a functional instead.
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There are many kinds of operators such as:

Differential Operator, Integral Operator, Binary Operator, Convective

Operator, Delta Operator, Hermitian Operator, Identity Operator

Definition 1.18 Linear operator
Let X and Y be two vector spaces, then A : X — Y which is a function

defined on X and with values in Y is said to be a linear operator if;

A(f + g) = Af + Ag, A(af) = aAf

forallf,g € Xanda € R or C.
Assume now that X and Y are normed spaces. An operator A : X — Y is

said to be continuous if

Ifo = fllx = 0.
Implies
lAf, = Aflly = 0.

A linear operator A : X — Y occurs to be continuous if and only if it is

bounded, in other words, if there is a constant ¢ such that

IAflly < clifllx (1.40)

for all f € X. The smallest constant ¢ in this inequality is called the norm

of A,

Al xoy = sup{llAfily:f € X, |Ifllx = 1} (1.41)
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A sequence of linear bounded operators A, : X — Y is said to be point
wise convergent (or strongly convergent) if the sequence (4,f) is

convergent in Y forany f € X.

Definition 1.19 Inverse operator
Let X and Y be Banach spaces and A : X — Y a linear operator. Introduce

the subspaces
N(A) = {f € X: Af = 0} c X (the null space of A),
R(A) = {u € Y:u= Af,f € X} c Y (therange of A).
If N (A) = {0} then the inverse operator
A™L:R(A) c Y - X existsonR(A)?
that’s mean
ATYAf = f Vf € X,AA™'u = u Vu € R(4);

If N(A) = {0}and R (A) = Y (that means A is onto) then A is
invertible and the inverse operator A~1: Y — X is defined on whole Y and
linear by the theorem that says if A is a linear operator and invertible then

A~ 1is linear.
Definition 1.20 Compact operator

Let X and Y be normed vector spaces, and let K: X — Y be linear. Then

K 1s compact if the set
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{Kx|lxllx < 13 (1.42)

has compact closure in Y. This is equivalent to saying that for every
bounded sequence {x,} — X, the sequence { K x,, } has a subsequence
that is convergent to some point in Y. Compact operators are also called
completely continuous operators. (By a set S having compact closure in Y,

we mean its closure S is a compact set in Y).
Definition 1.21 Compact integral operators on C(D)

Let D be a bounded set in R™, for some n > 1, then the compact integral

operator on C (D) is defined as

Kf(x) = f GOofONdy,  xeD, feCD) (143)

D

together with ||. ||, . where C(D) is the vector space of all continuous

functions on D.
Definition 1.22

Let X and Y be vector spaces. The linear operator K: X — Y is a finite rank

operator if Range (K) is finite dimensional.
Lemma 1.3

Let X and Y be normed linear spaces, and let K: X — Y be a bounded

finite rank operator. Then K is a compact operator.

Proof: Let R = Range(K). Then R is a normed finite-dimensional space,

and therefore it is complete. Consider the set
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S=(Kx|lxl <1 (1.44)

The set S is bounded by ||K]|| . Also S < R. Then S has compact closure,
since all bounded closed sets in a finite dimensional space are compact.

This shows K 1s compact.
Lemma 1.4

Let KeL[X,Y]and L € L [Y,Z],where L[X,Y] denotes the set of linear
transformations from X to Y and L[Y, Z] denotes the set of linear
transformations from Y to Z, and let K or L (or both) be compact. Then L K

is compact on X to Z.
Lemma 1.5

Let X and Y be normed linear spaces, with Y complete. Let K € L [X,Y],
let { K, } be a sequence of compact operators in L[X,Y], and assume

K, — KinL [X,Y], which means
IK,, — K|l = 0. Then K is compact.

Proof: Let {x,} be a sequence in X satisfying [|x,,|| < 1,n = 1. We
must show that {K x,} contains a convergent subsequence.
Since K ; is compact, the sequence { K {X,} contains a convergent
subsequence. Denote the convergent subsequence by { K ;x, |n > 1},
and let its limit be denoted by y, €Y. For k = 2, inductively pick a
subsequence {x,% |n = 1} < {x,* D} such that {K ,x,®}

converges to a point y, € Y Thus,
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lim,__K,x% = yk and {x,®} < {x, D}, k > 1 (1.45)

n—oo

We will now choose a special subsequence {z,} < {x, } for which

{ K z} is convergent in Y. Let z; = Zj(l) for some j, such that

”le,gl) — y1|| < 1 for alln = j. Inductively, for k > 2, pick z, =
Zj(k) for some j, such that z, is further along in the sequence {x,, } than is

Zj—1 and such that
K 1 .
[Kext® =yl < 5. n= (1.46)

The sequence { K z;} is a Cauchy sequence in Y. To show this, consider
1K zerp = Kzi|| < [|KZkrp = KicZiewp|| + | KicZierp = Kieze|

+ || K2k — Kz ||

<2||IK — Kk||+||Kka+p —vie||+ Iy — Kiezeell

2

< 2||K—Kk”+ E’ p = 1 (147)
noting that z,, € {x,*} for allp > 1. Use the assumption that||[K —
Ky || = 0 to conclude the proof that { K z,} is a Cauchy sequence inY.

Since Y is complete, { K z;} is convergent in Y, and this shows that K is

compact.

For more details see [4], [16], [19] and [32].
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Chapter 2

Analytical methods for solving Fredholm integral

equations of the second kind

In this chapter we will present some important analytical methods for
solving the Fredholm integral equations of the second kind, but first we

state some theorems about the existence and uniqueness of the solution.
2.1 The existence and uniqueness

Some integral equations has a solution and some other has no solution or
that it has an infinite number of solutions, the following theorems state the
existence and uniqueness among the solution of Fredholm integral equation

of the second kind.

Note: It is important to say that we will discuss the analytical methods in

the space X = [a, b] with ||. || -
Theorem 2.1 (Fredholm Alternative Theorem)

If the homogeneous Fredholm integral equation

b
FG) = A f GO0y F () dy @.1)

has only the trivial solution f(x) = 0, then the corresponding

nonhomogeneous Fredholm equation

b
FO0 = gl +2 j 6o f()dy 2.2)
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has always a unique solution. This theorem is known by the Fredholm

alternative theorem.

Theorem 2.2 (Unique Solution) If the kernel G (x, y) in Fredholm integral
equation (2.2) is continuous, real valued function, bounded in the square
a<x<banda<y<b, and if g(x) is a continuous real valued
function, then a necessary condition for the existence of a unique solution

for Fredholm integral equation (2.2) is given by

A|M (b —a) <1, (2.3)
where

|G(x,y)| < M € R. (2.4)

On the contrary, if the necessary condition (2.3) does not hold, then a
continuous solution may exist for Fredholm integral equation.To illustrate

this, we consider the Fredholm integral equation

1

FG) =2—3x+ f Bx + MF)dy. 2.5)

0

Itisclearthat A =1, |G(x,y)| < 4 and (b —a)= 1. This gives
AAIM (b —a) =4 « 1. (2.6)
However, the Fredholm equation (2.5) has an exact solution given by

f(x) = 6x. (2.7)
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2.2 Some analytical methods for solving Fredholm integral

equations of the second kind

2.2.1 The degenerate kernel method

In this section, the degenerate kernel method will be applied to solve the
Fredholm integral equations with separable kernels. The method
approaches Fredholm integral equations in a direct manner and gives the
solution in an exact form and not in a series form, this method will be

applied for the degenerate or separable kernels of the form

n

6(xy) =) u@mO). (29)

where the functions u(x), ... , u,(x) and the functions v|(y), ... , vy(y) are

linearly independent. With such a kernel, the Fredholm integral of the

second kind,
b
FG) = g0 +A j 6o y)F () dy (2.10)
becomes
n b
F@) = 9@ +1) w6 | w0y, 211

The technique of solving this equation is essentially dependent on the

choice of the complex parameter A and on the definition of

b
@ = j B dy. (2.12)
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each integral at the right side depends only on the variable y with constant
limits of integration for y. This means that each integral is equivalent to a

constant. Based on this, substituting (2.12) in (2.11) gives

FO) =90+ 1) @), (2.13)
i=1

and the problem reduces to finding the quantities a;. To do this, we put the

value of f(x) as given by (2.13) in (2.11) and get

n

gy + kz ay uk(y)
k=1

n

> () {ai -/ )

i=1

dy} =0. (2.14)

But the functions u;(x) are linearly independent, therefore

b n
a; — L v;(y) lg(y) + 7\; ay uk(y)] dy =0, i=1,..,n (2.15)

Using the simplified notation

b b
f 2 NIy = b f 2 Nux Ny = cin, (2.16)

where h; and c;;, are known constants, equation (2.15) becomes

ai— A ) car =h; i=1,..,n (2.17)

w
||M=
=

that is, a system of n algebraic equations for the unknowns a;. The

determinant D(A) of this system is
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1 - }\Cll _}\Clz te _}\Cln
D(}\) _ _}\C:ZJ_ 1 _ }\CZZ ot _A:CZI’I (218)
—ACp;  —ACy, 71— ey

Which is a polynomial in A of degree at most n. Moreover, it is not

identically zero, since, when A = 0, it reduces to unity.

For all values of A for which D(A) # 0, the algebraic system (2.17), and
thereby the integral equation (2.10), has a unique solution. On the other
hand, for all values of A for which D(A) becomes equal to zero, the
algebraic system (2.17), and with it the integral equation (2.10), either is
insoluble or has an infinite number of solutions. Note that we have
considered only the integral equation of the second kind, where alone this

method is applicable.
Examples of separable kernels are x — y,xy,x? — y?,xy? + x2y, etc.
Example 2.1

To illustrate the above method we consider the following integral equation

in the degenerate kernel

T

2 4 (2
ﬂ@=—;w%ﬂ+;jcw@—wfwwy (2.19)
0

now the kernel G(x,y) =cos(x —y) can be written as G(x,y) =

cos(x) cos(y) + sin(x) sin(y) which is a separable kernel such that

n

6(x,) = ) u () (2:20)

i=0
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Where
u,(x) = cos(x) u,(x) = sin (x)
v1(y) = cos (¥) v, (y) = sin(y) (2.21)

Now using the techniques in section (2.2.1) in one dimension [a, b] and

the relations

b b
j 2NNy = cir [ worgmar.=n, @2

a

we have

s

: :
n = [ " ddy = [ “cos ¢)cos (ay
0 0

s

NI

2 1

= jz cos?(y)dy = E_I 1+ cos(2y) dy (2.23)
0 - 0

- 1[ +2sin@2y)|”

=7 |y +3sin(2y .

_1<n+1_ ) 1<0+1_ 0>_n

=513 2sm(ﬂ) > 2sm() =7

: :
C12 = f v1(Vu,(¥)dy = j cos(y) sin(y) dy = c;q (2.24)
0 0

Using the integration by parts we let w = sin(y) —» dw = cos (y)dy

Substituting w in (2.24) we have
Vs

fjwdw - Euz]o = Esinz(y)ﬁ = %(sinz (g) — sin? (0)> = %

NE
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13 13

2 2
s = f 7 (Nup () dy = j sin (y)sin (y)dy
0 0

T

2
= f sin”(y) dy
0

T

12
=—j —cos(2y) dy
2Jo

r
2
0

(2.25)

= %[y — %sin(Zy)] = %(g - %sin (7T)> - %(0 - %sin (0))

T
4

s

=" dy = 2 : d
1= [T 90y = - [eos)cosr)dy

Using the relation (2.23)

T

7 _2 (7
h, = f v,()g(y)dy = — f sin(y)cos(y)dy
0 0

Using the relation (2.24)

Now to find «; in the relation

a; — A Cikr = hi = 1, v, n

b
-
=

Where this can be written in the matrix form as

(2.26)

(2.27)



(e [21 izzmiiﬂ IS

T 1 1
1 01_%|4 2|\[*_|2
>l 1l-%|1 ~ az]——1
2 4
0 -2 1 -O 2 1
—_— — 2 —_— —
T [%1] _ | 2 a;]_ 1T U 2
- —2 [az]_ -1 _)[6(2]__4 2 ‘I—l‘ T
— 0 — Z 0 —
T T LTt 4
Now using the relation
n
fG) =90+ 1) @), (2:28)
i=1

flx) = —2 cos(x) + — (1) cos(x) + — * CD sin(x)
then
f(x) = sin(x) which is the exact solution of the example (2.19).
For more examples see [14], [4], and [28].
2.2.2 Converting Fredholm integral equation to ODE
Before starting the discussion of this method we state the

Leibnitz rule for differentiation of integrals.

Definition 2.1

Let f(x,y) be continuous and g—f be continuous in a domain of the x —y
y

plane that includes the rectanglea< x < b,y, <y <y, let
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u(x)

F(x) = j G y)dy, (2.29)
v(x)

then differentiation of this integral exists and is given by

) dF du(x) dv(x)
o)== f(;z,?(x))—l;xx — F (v () ';xx
HWYaf(x, y)

Ifv(x) = aand u(x) = b where a and b are constants, then the Leibniz

rule reduces to

dF .[baf(x,y)

a

which means that differentiation and integration can be interchanged such

as
d b b
— XYdy = XY dy. 2.31
dxfae y fye y (2.31)

It is interested to notice that Leibnitz rule is not applicable for the Abel’s
singular integral equation:

2 gy, 0<x<1. (2.32)

The integrand in this equation does not satisfy the conditions that f(x,y)

: ] : .
be continuous and é be continuous, because it is unbounded at x = y.
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Now a well-known method for solving Fredholm integral equations

b
FG) = g0 +2 j 6o f()dy (2.33)

Is converting these equations to equivalent boundary value problems. The
method is achieved simply by differentiating both sides of Fredholm
equations with respect to x as many times as we need to get rid of the
integral sign and come out with a differential equation. The conversion of
Fredholm equations requires the use of Leibnitz rule for differentiating the

integral at the right hand side.

The boundary conditions can be obtained by substituting x = a, and
x = b into f(x). The resulting boundary value problems can be solved
easily by using ODEs methods. The conversion process will be illustrated

by discussing the following two types of problems:

Typel: We

first consider the Fredholm integral equation given by

1

FG) = g(x) + f G(xy) FO)dy, (2.34)

0

where g(x) is a given function, and the kernel G(x, y) is given by

G(x,y) = {)’(1 —x)h(x) for0 <y < x,}

x(1=y)h(x) forx <y <1, (2.35)

For simplicity reasons, we may consider h(x) = A where A is constant.

Equation (2.34) can be written as
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£ = g(x) +2 j Yy - ) fO)dy
0

i j x(1 - ) fO)dy, (2.36)

or equivalently

X 1
FG) = g(x) + A1 — %) f y FO)dy +x f (1-y) F0)dy, (2.37)
0 X

Each term of the last two terms at the right side of (2.37) is a product of
two functions of x. differentiating both sides of (2.37), using the product

rule of differentiation and using Leibnitz rule we obtain
ff)=9"(x) + (1 —x)f (x) — Kj yf(d(y) — Ax(1 —x)f (x)
0
#1[ a-nredo.

—g'(0) -1 j YA + A f A-PfOAG),  (2.38)
0 X

To get rid of integral signs, we differentiate both sides of (2.38) again with

respect to x to find that
frx) = g"(x)- xf(x)- A1 = x)f (x) (2.39)
that gives the ordinary differential equations
'@+ Af () = g" (). (2.40)

The related boundary conditions can be obtained by substituting x =

Oandx = 11in(2.37) to find that

f(0) = g(0),f(1) = g(1). (2.41)
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Combining (2.40) and (2.41) gives the boundary value problem equivalent
to the Fredholm equation (2.34). Moreover, if h(x) is not a constant, we
can proceed in a manner similar to the discussion presented above to obtain
the boundary value problem. The technique above for type I will be

explained by studying the following examples.
Example 2.2

To illustrate the above method we consider the following integral equation

1

fG) = e + j 6(xy) FO)dy, (2.42)
0

where the kernel G(x,y) given by

9y(1—x) for0<y< x,} (2.43)

Gxy) = {9x(1 —y) forx<y<1,
to an equivalent boundary value problem.

The Fredholm integral equation can be written as

FG) = e* +9(1 - x) f y F)dy + 9x f -y fO)dy,  (244)

differentiating (2.44) twice with respect to x gives

X 1
Fo0=e*—9 f YFAG) +9 j 1= DFO)AG)  (245)
0 X

and

f'"(x)=e* —9f(x) (2.46)
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this in turn gives the ODE

f') +9f(x) = e, (2.47)

the related boundary conditions are given by

f(0)=g0)=1, f(1)= g)=¢ (2.48)
obtained upon substituting x = 0and x = 1 into (2.35).
Type II:

We next consider the Fredholm integral equation given by

1

FG0) = g(0) + j 6(xy) FO)dy, (2.49)
0

where g(x) is a given function, and the kernel G (x, y) is given by

yh(x) for0<y< x,} (2.50)

Glxy) = {xh(x) forx <y <1,
For simplicity reasons, we may consider h(x) = A where A is constant.
Equation (2.49) can be written as
x 1
F0) = 9@ 44 [ yf@Idy+ 2 [ FO)dy, (251)
0 x
each term of the last term at the right side of (2.51) is a product of two
functions of x. differentiating both sides of (2.51), using the product rule of

differentiation and using Leibnitz rule we obtain

F100 = g'(x) + A f F3AG), (2.52)
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to get rid of integral signs, we differentiate again with respect to x to find

that

') = g"(x)- Af (x), (2.53)

that gives the ordinary differential equations

fr)+ Af(x) = g" (x). (2.54)

Notice that the boundary condition f (1) in this case cannot be obtained
from (2.51). Therefore, the related boundary conditions can be obtained by

substituting x = Oand x = 11in (2.51) and (2.52) respectively to find that

f(0)= g(0),f' (1) = g'(D), (2.55)

combining (2.54) and (2.55) gives the boundary value problem equivalent
to the Fredholm equation (2.49). Moreover, if h(x) is not a constant, we
can proceed in a manner similar to the discussion presented above to obtain
the boundary value problem. The approach presented above for type 11 will

be illustrated by studying the following example.
Example 2.3

Consider the following Fredholm integral equation

1

FG) = e + f G(xy) FO)dy, (2.56)
0

where the kernel G(x, y) given by

forOSny,}

_ (%
G(x,y) = {4x forx <y <1. (2.57)



45

to an equivalent boundary value problem.
The Fredholm integral equation can be written as

fO) =e* +4 [y fFo)dy +4x [} f() dy, (2.58)
differentiating (2.58) twice with respect to x gives

1
F100 = e* +4 j FAG), (2.59)

and

f'(x) = e* - 4f(x), (2.60)

that gives the ordinary differential equations

f'(x) + 4f(x) = e”, (2.61)

the related boundary conditions are given by

f(0)= g(0) =1, ff)=g'Q) =e, (2.62)

obtained upon substituting x = 0 and x =1 into (2.58) and (2.59)

respectively. Recall that the boundary condition f(1) cannot obtained in

this case. For more details see [50].

2.2.3 The Adomain decomposition method, [50], section 4.2.1,

page 121.

The Adomian decomposition method (ADM) was introduced and

developed by George Adomian [1]. It consists of decomposing the
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unknown function f(x) of any equation into a sum of an infinite number of

components defined by the decomposition series

F0) = ful@, (2:63)
n=0
or equivalently
fG) = fo(x) + filx) + () +---, (2.64)

where the components f,(x),n = 0 are to be determined in a recursive
manner. The decomposition method concerns itself with finding the
components fy, f1, f2,... individually. The determination of these
components can be achieved in an easy way through a recurrence relation
that usually involves simple integrals that can be easily evaluated. To
establish the recurrence relation, we substitute (2.63) into the Fredholm

integral equation
f(x) =g +A[] GG y) fF()dy, (2.65)

to obtain

oo b (00]
> f) =g +2 [ GGy (2 fo (y)) dy,  (266)

or equivalently

fo() + fi(x) + fo(x) + - =g(x) + Aff GO fo(y) + A0) +

() +--1dy (2.67)
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The zeroth component f;(x) is identified by all terms that are not included

under the integral sign. This means that the components f;(x),j = 0 of the

unknown function f(x) are completely determined by setting the

recurrence relation

b
fo) = g farn() =2 j GOy, n>0,  (2.68)

a

or equivalently
folx) = g(x),

b
fi(x) = A j GO fo() dy,

£ =[G LG) dy,
00 =L G () dy, (2.69)

and so on for other components. As a result the components
fo(x), f1(x), f2(x), f53(x),... are completely determined. As a result, the
solution f{(x) of the Fredholm integral equation (2.65) is readily obtained in

a series form by using the series assumption in (2.63).

The decomposition method converted the integral equation into an
elegant determination of computable components, if an exact solution
exists for the problem, then the obtained series converges very rapidly to
that exact solution. However, for concrete problems, where a closed form

solution is not obtainable, a truncated number of terms is usually used for
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numerical purposes. The more components we use the higher accuracy we

obtain.
Example 2.4

To illustrate the above method we consider the following integral equation

which is shown in [50]

1

FG)=e* —x4x j YO dy. 2.70)

0

The Adomian decomposition method assumes that the solution f(x) has a
series form given in (2.63). Substituting the decomposition series (2.63)

into both sides of (2.70) gives

ifn(x)=eX_x+xjoly§:fn(y)dy. (2.71)
n=0 g

or equivalently

fo(x)+ fi(x)+ f5 (%) +"l;
=ex—x+xf W) + i) + o)+ 1dy  (272)

a

We identify the zeroth component by all terms that are not included under

the integral sign. Therefore, we obtain the following recurrence relation

1

fo) =X =%, fis () =x j Vidy, k=0 (273)

Consequently, we obtain

fo(x) =e* —x,
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1 1

2
A =x [ yhddy=x [ yer - ydy=5x
0 0

1 12 2

= d = —_ Zd = — ,
f2(x) xfo yfi(y)dy xfo 3V Ay =gx
200 = x [; vy = x [} 2y?dy = - x,

12 2

i) =x [y dy =x [y oy dy =2x, (274)

and so on. Using (2.63) gives the series solution

() = e* —x+2 (1+1+1+1+ ) 2.75
f(x)=e*—x 3 x 315157 (2.75)
Notice that the infinite geometric series at the right side has a; = 1, and
the ratior = % The sum of the infinite series is therefore given by
S= L 2.76
=—3°3 (276)
=3

The series solution (2.75) converges to the closed form solution
flx) =e”, (2.77)
obtained upon using (2.76) into (2.75).

2.2.4 The Modified Decomposition Method, [50], section 4.2.2,

page 128.

As shown before, the Adomian decomposition method provides the

solution in an infinite series of components. The components f;,j = 0 are
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easily computed if the inhomogeneous term g(x) in the Fredholm integral

equation:

b
FOO) = g() +A j 6(xy) FO)dy, 2.78)

consists of a polynomial. However, if the function g(x) consists of a
combination of two or more of polynomials, trigonometric functions,
hyperbolic functions, and others, the evaluation of the components  f;,j =
0 requires cumbersome work. A reliable modification of the Adomian
decomposition method was developed by Wazwaz [51]. The modified
decomposition method will facilitate the computational process and further
accelerate the convergence of the series solution. The modified
decomposition method will be applied, wherever it is appropriate, to all
integral equations and differential equations of any order. It is interesting to
note that the modified decomposition method depends mainly on splitting
the function g(x) into two parts; therefore it cannot be used if the function

g(x) consists of only one term.

To give a clear description of the technique, we recall that the standard

Adomian decomposition method admits the use of the recurrence relation:
folx) = g(x),

b
fesn () = A f oo i)y, k>0, (2.79)

where the solution f(x) is expressed by an infinite sum of components

defined by
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f0) = ful@, (2.80)
n=0

in view of (2.79), the components f,,(x),n = 0 can be easily evaluated.

The modified decomposition method introduces a slight variation to the
recurrence relation (2.79) that will lead to the determination of the
components of f(x) in an easier and faster manner. For many cases, the
function g(x) can be set as the sum of two partial functions, namely g, (x)

and g, (x). In other words, we can set

gx) = g.(x) + g>(x), (2.81)

in view of (2.81), we introduce a qualitative change in the formation of the
recurrence relation (2.79). To minimize the size of calculations, we identify
the zeroth component f,(x) by one part of g(x), namely g; (x) or g, (x).
The other part of g(x) can be added to the component f; (x) that exists in
the standard recurrence relation (2.79). In other words, the modified

decomposition method introduces the modified recurrence relation:
fO(x) = gl(x)l

b
£, = g2(0) + 2 f GO0 o) dy,
b
fern () = A j GOOfi() dy,k > 1. (2.82)

This shows that the difference between the standard recurrence relation

(2.79) and the modified recurrence relation (2.82) rests only in the
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formation of the first two components f,(x) and f;(x) only. The other
components f;,j = 2 remain the same in the two recurrence relations.
Although this variation in the formation of f,(x) and f;(x) is slight,
however it plays a major role in accelerating the convergence of the
solution and in minimizing the size of computational work. Moreover,
reducing the number of terms in g, (x)affects not only the component
f1(x), but also the other components as well. This result was confirmed by
several research works as in [52].

Two important remarks related to the modified method can be made

(i) by proper selection of the functions g, (x) and g,(x), the exact solution
f(x) may be obtained by using very few iterations, and sometimes by
evaluating only two components. The success of this modification depends
only on the proper choice of g, (x) and g, (x)and this can be made through

trials only.

(@) if g(x) consists of one term only, the standard decomposition method

can be used in this case.

It is worth mentioning that the modified decomposition method will be
used for Volterra and Fredholm integral equations, linear and nonlinear
equations. The modified decomposition method will be illustrated by

discussing the following example.
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Example 2.5

Consider solving the Fredholm integral equation by using the modified

decomposition method

fx) = Tr a2 Zsinh% -+ f_ zear“a”f (y)dy. (2.83)
We first decompose g(x) given by
glx) = T2 2sinh %, (2.84)
into two parts, namely
g1(x) = T2 g,(x) = —Zsinh%. (2.85)

We next use the modified recurrence formula (2.82) to obtain

o) = 0:() = 1

1

VA

AG) = ~2sink g+ | e f()dy =0,
-1

1
fen@ = | ey =0, k=1 (286)

-1

It is obvious that each component of f;,j = 11is zero. This in turn gives

the exact solution by

1
1+ x2

f(x) = (2.87)

For more details see [44], and [50].
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2.2.5 The method of successive approximations

The successive approximation method provides a scheme that can be used
for solving initial value problems or integral equations. This method solves
any problem by finding successive approximations to the solution by
starting with an initial guess as fy(x), called the zeroth approximation
which can be any real valued function f,(x), that will be used in a

recurrence relation to determine the other approximations.

Given the Fredholm integral equations of the second kind

b
FG0) = g() +A j G o) f()dy (2.88)

and according to the choice of f,(x) there is two methods of successive

approximations:

i) The Picard's method: is obtained when f,(x) = 0,1, or x, or any real-

valued function, where a < x < b. Accordingly, the first approximation

f1(x) of the solution of f(x) is defined by

b
£1(0) = g(x) +A f 6o fo () dy, (2.89)

The second approximation f,(x) of the solution f(x) can be obtained
by replacing fy(x) in equation (2.88) by the previously obtained f;(x);

hence we find
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b
£,(0) = () + A f GOy, (2.90)

This process can be continued in the same manner to obtain the nth
approximation. In other words, the various approximations can be put in a

recursive scheme given by

fo(x) = any selective real valued function

b
f) = g @) + 2 f GGV far Oy, n=1  (291)

Even though we can select any real-valued function for the zeroth
approximation fy(x), the most commonly selected functions for f,(x)are

fo(x) = 0,1,0r x. Notice that with the selection of fy(x) = 0, the first

approximation f; (x) = g (x).
The final solution f{(x) is obtained by

f(x) = lim f;,(x) (2.92)

so that the resulting solution f(x) is independent of the choice of

fo(x).
Example 2.6

We consider solving the Fredholm integral equation by using the

successive approximations method

1

f(x) =x+¢e* —f xyf(y)dy. (2.93)

0



56

for the zeroth approximation f;(x), we can select

fo(x) =0, (2.94)

the method of successive approximations admits the use of the iteration

formula

1

frnn () = x +e* f Oy, n=0.  (295)
0

substituting (2.94) into (2.95) we obtain

1

fi() = x +e* — j xyfo)dy = e* +x,
0

1

fa(x) =X+e"—j xyfi(y)dy = ex — Ly
0 37

1

1
() = x + e —j xyf;)dy = e* +=x,

0 9
1 —1 n
frs1 () =x+ex—j xyf(y)dy = ex+(3_n)x.
0

consequently, the solution f(x) of (2.93) is given by
fG) = lim frpa () = € (2.96)
For more details and examples see [14].

ii)The Neumann series method: is obtained when f,(x) = g(x), in the

other words all terms that are not included under the integral sign such that

b
£ = g0+ f GO0y fo()dy (2.97)
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b
= g0+ j G y)g(y)dy

= g(x) + A (x) (2.98)

where

b
01(0) = j G (6, )gy)dy (2.99)

The second approximation f,(x) can be obtained as

b
() = g0 +1 j 6o () dy
b
= g(0) + A j 66O + Agr(y)}dy

= g(x) + A1 (x) + 2%, (x) (2.100)

where

b
0:) = | 6G)0 0y (2:101)
a
Proceeding in this manner, the final solution f{x) can be obtained
f) =g(x) + Ay (x) + 222 (x) + -+ + Ay (x) + -+

=g+ ) Ny, (2.102)
n=1

where

b
on (%) = f G, y)Pn_r dy n>1  (2103)
a
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Series (2.102) is known as Neumann series. This infinite series is

absolutely and uniformly convergent, since

1 b b
W<l B= S0 620y)dxdy.

if in addition we have
b
j G%(x,y)dy < A, a<x<b,
a
where A is a constant, then the Neumann series converges absolutely and
uniformly on [a, b].
The final solution f (x) is obtained by

FOO = g0+ lim ) N (o). (2104)

For more details see [16], [44] and [50].
Example 2.7

Consider solving the Fredholm integral equation

1

FG) =1+ fO xf (y)dy

by using the successive approximation method (The Neumann series

method).

For solution let us consider the zeroth approximation is fo(x) = g(x) =

1, and then the first approximation can be computed as
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1

A =1+ [ 2f)dy
0
= 1+f01xdy
=1+x

Proceeding in this manner, we find

1

ﬁu)=1+Lxﬁwwy

1
=1+f x(1+y)dy
0

Civx(14))
In the same way, the third approximation is
3y
1+ )4
( 2 )

1+ (1+1+1)
- T 2%

1

p@=1+x

0

Thus, we get

1 1 1 1
fn(x)=1+x{1+§+2—2+2—3+---+2n_1}

and hence

fGO = lim f,(x)
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n

_ 1

=1+ lmx) o
k=0

1 -1
=1+ (1-—)
172

=1+ 2x

This 1s the desired solution.
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Chapter 3

Numerical methods for solving Fredholm integral

equations of the second kind
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Chapter 3

Numerical Methods for Solving Fredholm Integral
Equations of the Second Kind

There are many methods for solving integral equations numerically. Here

we are interested with the following numerical methods:
(i) Degenerate kernel approximation methods
(if) Projection methods

(iii) Nystrom methods (also called quadrature methods)

All of these methods have iterative variants. There are other numerical
methods, but these methods and their variants include the most popular

general methods.
3.1 Degenerate kernel approximation methods

We discussed the degenerate kernel method as an analytical method in

chapter two (2.2.1) for solving the Fredholm integral equation

FO) = g0 +2 f GOoy)fO)dy, xeD  (3.1)

with A # 0and D < R", for some m = 1. where D is a closed and

bounded set.



63

We said that the kernel G(x,y) is degenerate (or separable) if it can be
expressed as the sum of a finite number of terms, each of which is the

product of a function of x only and a function of y only such that

n

6(xy) =) u o). (3:2)

but most kernel functions G (x, y) are not degenerate, so that in this chapter

we seek to approximate them by degenerate kernels.

3.1.1 The solution of the integral equation by the degenerate

kernel method

In the view of the integral equation (3.1), the kernel function G (x, y) is to

be approximated by a sequence of degenerate kernel functions,

n

G2 = ) Uin(in0), 21 (33)

in such a way that the associated integral operators K,, satisfy

lim ||[K — K,,|| = 0 (3.4)
n—oo

where the associated integral operator is defined as

Ko f () = j G, )f)dy, x€D, fECD), n=1  (35)

D

where D is a closed bounded set in R™, for some m > 1, and using

X = C(D) with ||. ||, such that K: C(D) — C(D) is compact.

We can write the integral equation (3.1) in the operator form as
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(I—-2AK)f =g (3.6)

then (3.6)can be written using (3.5) as

(I = 2AK)fn = g (3.7)

Where f,, is the solution of the approximating equation. Using the formula

(3.3) for G,,(x, y), the integral equation (3.7) becomes
n
0= g0 +1Y () [ vin0)RGI.
i= D

And using the technique discussed in section (2.2.1) we have

n
fo@) = 900+ 1) @), (3:9)
i=1
where
n
a; — AZ Cix @ = h; i=1,..,n (3.10)
k=1
such that
h; = j v;(y)g(y)dy, (3.11)
and
o = | w00y, (3.12)

are known constants. Again as we stated in section 2.2.1 equation (3.10)
represents a system of n algebraic equations for the unknowns a; whose

determinant D (4) is given by
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1 - }\Cll _}\Clz te _}\Cln
D(}\) — _AC:21 1 _ }\CZZ o _)\:Czn (313)
—ACpy  —ACy, 71— ey

which is a polynomial in A of degree at mostn,that is not

identically zero.
To analyze the solution of (3.1) by the degenerate kernel method
the following situations arise:

Situation I : when at least one right member of the system (3.9)

hy, h,, ..., hy, 1s non zero, the following two cases arise under this
situation

(1) ifD(A) # 0, then a unique non zero solution of system (3.10)

exists and so (3.1) has unique non zero solution given by (3.9).

(i) if D(A) = 0 ,then the system (3.10) have either no solution or
they possess infinite solution and hence (3.1) has either no

solution or infinite solution.
Situation II: when g(x) = 0, then (3.11) shows that h; = 0 for

i = 1,2,...,n. Hence the system (3.10) reduces to a system of
homogenous linear equation .The following two cases arises

under this situation
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(1) if D(A) # 0 ,then a unique zero solution a; = a, =+ =
a, = 0 of the system (3.10) exists and so we see that (3.1)

has unique zero solution f,(x) = 0.

(i)  if D(A) = 0 ,then the system (3.10) posses infinite non zero
solutions and so (3.1) has infinite non zero solutions , those
value of A for which D(A) = 0 are known as the eigenvalues

and any nonzero solution of the homogenous Fredholm

integral equation f(x) = fD G(x,y)f(y)dy, is known as a

corresponding eigenfunction of integral equation .

Situation III: when g(x) # 0 but

| some=0 gowor=0...[ gomm=0 @i
D D D

that is g(x) is orthogonal to all the functions

Vl(y):vz(y)»---»vn()’): (315)

then

hy, hy, ..., hy, are zeros and reduces (3.11) to a system of homogenous

linear equations. The following two cases arise under this situation

(1) If D(A) # 0 ,then a unique zero solution a; = a, =+ =

a, = 0, and hence (3.1) has only unique solution f,,(x) = 0.

(i) If D(A) = 0 then the system (3.10) possess infinite nonzero

solutions and he (3.1) has infinite nonzero solutions.
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For more details, see [15], [20] and [39]

By returning to the approximating of the kernel which is not degenerate so
as to have degenerate one, We use different approximations to approximate

the solution of the integral equation (3.1) such as
Taylor series approximation

o Interpolatory degenerate kernel approximations
e Orthonormal expansions

Here we will discuss Taylor series approximation only.
3.1.2 Taylor series approximation, [4], section 2.2, page 29.

Let f(x,y) is a continuous function of two variables x and y, then
the Taylor series expansion of function fat the neighborhood of any real

number a with respect to the variable y is :

© —a)* 9"
Taylor (f,y,a) = Z S n!a) ay"f(x' a) (3.16)

and

m —a)" 9
Taylor (f,y,m,a) = Z & n!a) aynf(x,y =a) (3.17)

that mean the mth terms of Taylor expansion to the function at the

neighborhood a with respect to the variable y.

Consider the one-dimensional integral equation
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b

f) = g(x>+Aj GO F(dy, a<x<b

a

(3.18)

we can write G (x,y) as a power series in y using Taylor (G, y, a), then

6y =) @0 - a)
i=0

or a power series in x using Taylor (G, x, a), then

6(6y) = ) ()& - a)
i=0

(3.19)

(3.20)

Assume G, (x,y) denote the partial sum of the first n terms on the right side

of (3.19),

n—1
6r(x7) = ) 4 (O — 0
i=0

Using the notation of (3.2), G,,(x, y) is a degenerate kernel with
u;(x) = gq;-1(%), v =@-a,  i=12.,n
The linear system (3.14) with (3.13) becomes
n b .
o — 7\2 " f - qr-1(dy
k=1 a

b
= j gy —a)1dy, i=1,..,n
a
and the solution f,is given by

) = 90+ 1) iy i)

(3.21)

(3.22)

(3.23)

(3.24)
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The integrals in (3.23) are calculated numerically, However, the following

remarks are necessary:

(1)  The integrals involve the entire interval [a, b].

(i1) Most of the integrands will be zero or quite small, in the
neighborhood of y = a, the left end of the interval.

For more details see [4], [6], [20] and [46].

3.2 Projection methods

With all projection methods, we consider solving (3.1) within the
framework of some complete function space , usually C(D) or L?(D).We
choose a sequence of finite-dimensional approximating subspaces X,, S
X,n = 1, with X,, having dimension k,,. Let X,, have a basis {¢4,..., ¢k},
with k = k,, for notational simplicity. We seek a function f,, € X,,, which

can be written as

kn
fanlx) = z cip;(x), x € D. (3.25)
j=1
This is substituted into (3.1), and the coefficients {c,..., ¢} } are

determined by forcing the equation to be almost exact in some sense. For
later use, introduce

() = fulx) — A j 6OV f)dy — ()
D

k
D

j=1
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for x € D. This is called the residual in the approximation of the equation

when using f = f,,. Now, we write (3.1) in operator notation as
(I-AK)f = g. (3.27)
Then the residual can be written as
m=U-2K)f, - g.

The coefficients {c;, . . . , ¢ are chosen by forcing 7;,(x) to be
approximately zero in some sense. The hope, and expectation, is that the
resulting function f,,(x) will be a good approximation of the true solution

f (x). For more details see [4], [26] and [35].

We have different types of projection methods. The most popular of

these are

e collocation methods.

o Galerkin methods.
Before discussing these methods we illustrate this theoretical framework.
3.2.1 Theoretical framework
3.2.1.1 Lagrange polynomial interpolation
Let f'be a continuous function defined on a finite closed interval [a, b]. Let

Ara<xp<x; <--<x,<bh
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be a partition of the interval [a, b]. Choose X = C|[a,b], the space of
continuous functions f : [a,b] = F; (where F is real or complex) and
choose X, ;1 to be P,, the space of the polynomials of degree less than or
equal to n. Then the Lagrange interpolant of degree n of f is defined by the

conditions
pa(x) = f(x;), 0<i<n, Pn € P. (3.28)
Here the interpolation linear functionals are
Lif = f(x;) 0<i<n. (3.29)

If we choose the regular basis v(x) = x; (0 <j < n) for P,, then it can be

shown that

det (Liv) 1 . H(x,- —x;) # 0. (3.30)

Jj>i
Thus there exists a unique Lagrange interpolation polynomial.

Furthermore, we have the representation formula

Pl =Y fade®,  ew=]][s—> 63D

j#i J

called Lagrange’s formula for the interpolation polynomial. The functions

@; satisty the special interpolation conditions

(3.32)
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The functions {¢;}i—, form a basis for P,, and they are often called

Lagrange basis functions.
Theorem 3.1 The following statements are equivalent:
1. The interpolation problem has a unique solution.
2. The functionals ,, . . ., L, are linearly independent over X,,.
3. The only element f,, € X,, satisfying

Lifn =0, 1<i<n,

is f, = 0.
4. For any data {b;}/-, there exists one f,, € X,, such that
Lifn = b, 1<i<n. (3.33)

Outside of the framework of Theorem 3.1, the formula (3.31) shows
directly the existence of a solution to the Lagrange interpolation problem
(3.28). The uniqueness result can also be proved by showing that the

interpolant corresponding to the homogeneous data is zero.

let p, € Pn with p,(x;) = 0, 0 < i < n. Then the polynomial p,

must contain the factors (x — x;),1 < i < n. Since deg (p,) < nand

n
degl_[ (x—=x;))=n
i=1

we have
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pcd =c[ | =) (334

for some constant c. Using the condition p,(x,) = 0, we see that ¢ = 0
and therefore,p, = 0. We note that by Theorem 3.1, this result on the
uniqueness of the solvability of the homogeneous problem also implies the

existence of a solution.

In the above, we have indicated three methods for showing the existence
and uniqueness of a solution to the interpolation problem (3.28). The
method based on showing the determinant of the coefficient is nonzero, as
in (3.30), this can be done easily only in simple situations such as Lagrange
polynomial interpolation. Usually it is simpler to show that the interpolant
corresponding to the homogeneous data is zero, even for complicated
interpolation conditions. For practical calculations, it is also useful to have
a representation formula that is the analogue of (3.31), but such a formula

is sometimes difficult to find. For more details see [6].
3.2.1.2 Projection operators

Definition 3.1 Let X be a linear space, X; and X, subspaces of X. We say
X is the direct sum of X; and X, and write X = X; @ X,, if any element

v € X can be uniquely decomposed as

VvV =1 + Uy, V1 € Xl' %) € Xz. (335)
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Furthermore, if X is an inner product space, and (v,,v,) = 0 for any
v; € X;and any v, € X,, then X is called the orthogonal direct sum of

Xl and Xz.

There exists a one-to-one correspondence between direct sums and linear

operators P satisfying P? = P.

Proposition 3.2 Let V be a linear space. Then X = X; @ X, if and only if
there is a linear operator P: X — X with P2 = P such that in the
decomposition (3.35), v; = Pv and v, = (I — P)v, and also X; =

P(X)and X, = (I — P)(X).
Proof
Let X = X; @ X,.Then Pv = v, defines an operator from to X .

It is easy to verify that P is linear and maps X onto X; (Pv; = vy, Vv, €

X,),andsoX; = P(X).Obviously v, = (I- P)v

and (I - P)vz = v,,Vv, € X. Conversely, with the operator P, for any

v € X we have the decomposition
v=Pv+ (I- P
We must show this decomposition is unique. Suppose
V= v+ vy, v, € Xq, v, € X,.

Then v; = Pw, for some w € X.This implies
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Pv, = P*w = Pw = v,.
Similarly,
Pv, = 0.Hence,Pv = v;,thenv, = v — v; = (I — P)v.

Definition 3.2 Let v; and v, be vectors in an inner product space X. Then v,
is orthogonal to v, if (v;, v,) = 0; since this implies that v, is orthogonal to
vi we often simplify say that v; and v, is orthogonal. If W is a set of
vectors in X, then W is called an orthogonal set provided all pairs of
distinct vectors in W are orthogonal. An erthonormal set is an orthogonal

set W with the additional property that ||v|| = 1 for every v in W.

Definition 3.3 Let X be a Banach space. An operator P € L(X ), where
L(X) is the set of linear operators from X to X, with the property P? = P
is called a projection operator. The subspace P(X ) is called the

corresponding projection space. The direct sum
X=PX)® (I - P)X) (3.36)
is called a topological direct sum.

If X is a Hilbert space, P is a projection operator, and X = P(X) ®
(I — P)(X) is an orthogonal direct sum, then we call P an orthogonal

projection operator.
It is easy to see that a projection operator P is orthogonal if and only if

(Pv,[-Pw)=0 VYvw € X. (3.37)
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Proposition 3.3 (Orthogonal projection)

Let X, be a closed linear subspace of the Hilbert space , with its

orthogonal complement X{-. Let P : X — X ;. Then

(a) The operator P is an orthogonal projection if and only if it is a
selfadjoint projection. (We mean by selfadjoint that T* = T where T
is any linear operator on a finite dimension inner product space X

such that for any T there is a unique linear operator T on X such that
(Tvy,v,) = (v, T"v3), Vv,v, €X
(b) X=X, @ X1.

(c) There exists exactly one orthogonal projection operator P from X

onto X ;. We have
lv — Pv|| = infyex, llv—w|  VveX
The operator I — P is the orthogonal projection onto Xz

() IfP: X — Xis an orthogonal projection operator, then P(X ) is a

closed subspace of X , and we have the orthogonal direct sum
X=PX)® U-P)X).
Example 3.3 (Lagrange interpolation)

Let X = Cla,b], X, = P, the space of the polynomials of degree less

than or equal to n, and let 4: a = xp < x; <---< x, = b be a
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partition of the interval [a, b]. For v € C|a, b], we define Pv € P, to be
the Lagrange interpolant of v corresponding to the partition A; i.e., Pv
satisfies the interpolation conditions. Pv(x;) = v(x;),0 < i < n.From
the discussion of Section 3.2.1.1, the interpolant Pv is uniquely determined.
The uniqueness of the interpolant implies that P is a projection operator.

Explicitly,

Pv(x) = Z:;O Hzl__;]] v(xy),

J#i
For more details see [6].

3.2.2 Collocation method, [4], section 3.1.1, page 50

Pick distinct node points x4, . . ., x; € D, and require
r,(x;) =0, i=1,..,k, (3.38)
This leads to determine {c;, ..., ¢} as the solution of the linear system

k

z Cj {on(xi) - /1[ G(xi:Y)QDj(}’)dY} =9(x), i=1..,k (339)

j=1
An immediate question is whether this system has a solution and whether it

is unique. If so, does f,, converge to f ? This what we will answer later.

We should have written the node points as {x;,,...,Xx,}, but for
notational simplicity, the explicit dependence on n has been suppressed, to

be understood only implicitly.



78

The function space framework for collocation methods is often C(D),

which is what we use here.

As a part of writing (3.39) in a more abstract form, we introduce a
projection operator P, that maps X = C(D) onto X, . Given f €

C(D), define P, f to be that element of X ,, that interpolates f at the nodes

{xq1,...,x;}. This means writing
kn
PfCO) = ) & 000) (3.40)
j=1

with the coefficients {a;} determined by solving the linear system

kn

Z aj(p](xl) = f(xi), [ = 1, ,kn . (341)

j=1
This linear system has a unique solution if
det[p;(x)] # 0. (3.42)

Then in this chapter, we assume this is true whenever the collocation
method i1s being discussed. By a simple argument, this condition also
implies that the functions {¢; . .., ¢} are a linearly independent set over

D.

In the case of polynomial interpolation for functions of one variable and
monomials {1, x, ..., x"} as the basis functions, the determinant in (3.42) is
referred to as the Vandermonde determinant. To see more clearly that P, is

linear, and to give a more explicit formula, we introduce a new set of basis
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functions. For each i, 1 < i < k,, let L; € X, be that element that

satisfies the interpolation conditions
Li(x;) =65, j=1,..,ky (3.43)

By (3.42), there is a unique such L;; and the set {L,, ..., L;} is a new basis
for X, . With polynomial interpolation, such functions L; are called
Lagrange basis functions; and we use this name with all types of

approximating subspaces X ,. With this new basis, we can write
kn
P.f(x) = Z f(x)Lj (x), xe€D. (3.44)
j=1

In the view of Lagrange polynomial interpolation (which is illustrated
above) Clearly, P, is linear and finite rank. In addition, as an operator on

C(D) onto C(D),
kn
1Pl = max >[50, (3.45)
j=1

Example 3.4 Let X,, = span {1, x,...,x"}. Then

the Lagrange basis functions are given of

n

X — X
ll-(x)=||< ’>, i=01..,n (3.46)
xl-—xj

j=0
J#i

In this case, formula (3.44) is called Lagrange’s form of the interpolation

polynomial .
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Note that
P.f =0 ifandonlyif f(x)=0, j=1,.. k. (3.47)
Thus the condition (3.39) can now be rewritten as
P, =0
or equivalently,
Pl =AK) fn = Pug, fn € Xq. (3.48)

For more details see [8], [24] and [45].

There are two main types of collocation method

e Decompose the integration region D into elements Aq,---,A,, and

then approximate a function f € C(D) by a low degree polynomial
over each of the elements A;. These are referred to as piecewise
polynomial collocation methods, but when D is the boundary of a
region, these methods are called boundary element methods.

Approximate an f € C(D) by using a family of functions that are
defined over all of D, such as, polynomials, trigonometric
polynomials, or spherical polynomials. These approximating
functions in general are also infinitely differentiable. Sometimes
these types of collocation methods are referred to as spectral

methods, especially when trigonometric polynomials are used.

For more details see [4].
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Here we will study the first type of collocation method.
3.2.2.1 Piecewise linear interpolation
LetD =[a,b],n>0, h=(b—a)/n,and x; =a+ih, i =0,-,n.

The subspace X,, we take to be the set of all functions that are piecewise

linear on [a, b], with breakpoints {x, ..., X, ], so that its dimension is n + 1.

Introduce the Lagrange basis functions for piecewise linear interpolation:

1— |x — x;] <<
L;(x) = n Xi-1 =X = Xjyq (3.49)
0, otherwise

With the obvious adjustment of the definition for [,(x)and [,,(x).

The projection operator is defined by

Fuf () = Xiso f ()i (%) (3.50)

Now the linear system (3.39) takes the simpler form

n b
fn(xi) - Azj=0fn(xj)f G(xuy)l](y) dy = g(xl),L =0,--,n, (351)

and we can simplify the integral forj =1, ...,n — 1,

b
j G (oY) () dy

1 (%
=7 f G(x, V) (y — xj-1)dy

x]'_l

1 r*ji+1
+o j G(x,y)(x — y)dy (3.52)
Xj
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The integrals for j = 0 and j = n are modified accordingly. These must
usually be calculated numerically, and we want to use the quadrature

method with the trapezoidal rule.

3.2.3 Galerkin methods, [4], section 3.1.2, page 53.

Let X = L?(D) or some other Hilbert function space, and let{.,.) denote

the inner product for X. Require the residual 7, to satisfy
(r,o;)=0, i=1,..k, (3.53)
The left side is the Fourier coefficient of 7, associated with @;. If

{@1,..., 9} consists of the leading members of an orthonormal family
® = {¢;}; = 1 which spans X, then (3.53) requires the leading terms to

be zero in the Fourier expansion of r;, with respect to @.

To find f,,, apply (3.53) to (3.1) written as (A — K) f = g. This yields

the linear system

kn

> {0500 - NKe 00} = (g0, 1=1, kp (354

j=1
This is Galerkin’s method for obtaining an approximate solution to (3.1) or
(3.27). Does the system have a solution? If so, is it unique? Does the
resulting sequence of approximate solutions f,, converge to f in X? Does
the sequence converge in C(D), that means, does f,, converge uniformly
to f ? Note also that the above formulation contains double integrals

(K@j, ¢;). These must often be computed numerically.



83

As a part of writing (3.54) in a more abstract form, we recall the

orthogonal projection operator P, of Proposition (3.3) of Section 3.2.1.2,

which maps X onto X,,. Recall that
P,h =0 ifandonlyif (h,@;)=0, i=1,..,k, (3.55)

Using the orthogonal projection P,, we can rewrite (3.53) as

or equivalently,

P (I = AK) fn = Bpg, fn € Xno (3.56)
which is similar to (3.48).
Bernstein polynomials are used as trial functions in the basis. For this, we

give a short introduction of Bernstein polynomials first. Then we derive a

matrix formulation by the technique of Galerkin method.
For more details see [12].
3.2.3.1 Bernstein polynomials

The general form of the Bernstein polynomials of nth degree over the

interval [a, b] is defined by

Bin) = (1) S0

l

(b—a)" ,a<x<b, i=01,.,n (3.57)
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Note that each of these n+1 polynomials having degree n satisfies the

following properties:

i)Bin,(x) =0, ifi<0ori>n,

n
i)Y Bia@ =1
i=0
iii) B;n(a) = By (b) = 0, 1<i<n-1 (3.58)
2.3.2 Formulation of integral equation in matrix form

Consider a general linear Fredholm integral equation of second kind which
is 1s given in (3.1), and using the technique of Galerkin method mentioned
above to find an approximate solution f,(x) in (3.26). For this we assume

that

n

fo@) = ) iBin () (3:59)

=0

where B; ,(x) are Bernstein polynomials (basis) of degree i defined in eqn.

(3.57), and c; are unknown parameters, to be determined. Substituting

(3.59) into (3.1), we obtain

n

Z c;Bin (x) + Afb

i=0

dy = g(x), (3.60)

6(6,y) ) ciBin )

or,

n b
Z of [Bi,n(x) + lj G(x,y) Bi,n()’)dJ’] =g(x), (3.61)
i=0 a
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Then the Galerkin equations are obtained by multiplying both sides of

(3.61) by B; ,(x) and then integrating with respect to x from a to b, we

have

l

n b b
Ci U [Bi,n(x) + Aj G(x,y) Bi,n()’)d)’] Bjn(x)dx
=0 a a

b
=f B, (x)g(x)dx, j=01,..,n (3.62)
a

Since in each equation, there are three integrals, the inner integrand of the
left side is a function of x, and y, and is integrated with respect to y from a
to b, as a result the outer integrand becomes a function of x only and
integration with respect to x yields a constant. Thus for each j =0,1,...,n
we have a linear equation with n+1 unknowns ¢; (i = 0,1, ...,n). Finally

(3.63) represents the system of n + 1, linear equations in n + 1 unknowns,

n
Z Cin’j = D] ] = 0,1,2, v, n (363)
i=0
where
b b
Aij =f [Bi,n(x) +/1_[ G(x,y) Bin(y)dy|Bj,(x)dx (3.64)
a a
i,j=012..,n
b
D; = f Bin(x)g(x)dx, j=012,..,n (3.65)
a

Now the unknown parameters c; are determined by solving the system of

equations (3.63) and substituting these values of parameters in (3.59), we
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get the approximate solution f,(x) of integral equation (3.1). For more

details see [39] and [47].
3.2.4 The convergence of the projection methods, [4]

Let X be a Banach space, and let {X,|n = 1} be a sequence of finite
dimensional subspaces of dimensionn. Let P, : X — X, be a bounded

projection operator. This means that P, is a bounded linear operator with
Pf=f feXy
This implies P?> = P,, and thus
1Pl = |22 < NP1
1Pl = 1 (3.66)

we approximate (3.1) by attempting to solve the problem

P, (I - /U{)fn = g, fn € Xy (3.67)

This is the form in which the method is implemented, as it leads directly to
equivalent finite linear systems such as (3.39) and (3.54). For the error
analysis, we write (3.67) in an equivalent form such that if f,, is a solution

of (3.67), then by using P, f, = f,, the equation can be written as

(I — AP, K) f, = Prg, fa € Xy (3.68)
For the error analysis, we compare (3.68) with the original equation

(I-2K)f =g. (3.69)
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The theoretical analysis is based on the approximation of I — AP, K by

I — AK, since both equations are defined on the original space X, we have
[ —AP,K = (I — 1K) + (AK — AP,K)
= —-AK)[I+ (I -AK)"Y(AK — AP,K)] (3.70)
Now we use this in the following theorem.
Theorem 3.4 [4], page 55,

Assume K : X — X is bounded, with X a Banach space, and assume
1-1
A — K: X — X. Further assume

onto
IK—-P,K|| >0 as n- o (3.71)

Then for all sufficiently large n, say n = N , the operator
(A — P,K)~! exists as a bounded operator from X to X. Moreover, it is

uniformly bounded:

sup||(A — BK) M| < oo (3.72)

n=N

For the solution of (3.68) and (3.69),

f=fa=2A-BK)f - Bf) (3.73)

||

mﬂf—Pnf” < |If = fll

< @A = PEOTHINS — Bufxll (3.74)
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This leads to ||f — f,,|| converging to zero at exactly the same speed as

If = Bfl.

Proof

(a) Pick N such that

ey = sup||K — B,K|| < —
N L N TR Rt

Then the inverse [I + (A — K) 1(K — P,K)]™! exist and is uniformly
bounded by the geometric series theorem.

1 1
I < =
1-eyllA=K)71

I+ @ =K (K = K]

Using (3.70), (A — P,K) ™! exists,

A=BK)'=[I+A-K)Y K-BK)]*TA-K)*

A=K~
enll(A = K)7|

1A = PRI < 1= M (3.75)

This show (3.72).

(b) For the error formula (3.73), multiply (A — K)f = g by B,, and then we

rearrange to obtain
(A =PK)f = Rig + A(f = Rf)
Subtract (1 — P,K)f,, = P,g to get

(A =PBK)f = fo) = A(f = Buf) (3.76)
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f=fa=2AA=BK)(f - Bf)
Which is (3.73). Taking norms and using (3.75),
If = full S 1AIMIIf = RSl (3.77)
Thus if B,f — f,then f,, = f asn — oo,

(c) The upper bound in (3.74) follows directly from ( 3.33), as we have just

seen. The lower bound follows by taking bounds in (3.76), to obtain
IAIf = Bfll < 1A= BKIf = faull
This is equivalent to the lower bound in (3.74).
Now to obtain a lower bound which is uniform in n, note that forn = N,
1A= FRKI <A =Kl + [[K = PK ||
<[ A=Kl + ey

The lower bound in (3.74), can now be replaced by

2|
1A =Kl + ey

If = Pfll < If = fall

Combining this and (3.77), we have

2|
1A =Kl + ey

If =Sl < If = full < |AIMIf = B fI (3.78)

This shows that f,,, converges to f if and only if P,f converges to f.
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Moreover, if convergence does occur, then ||f — B,f|| and ||f — f,,|| tend to

zero with exactly the same speed.

To apply the above theorem, we need to know whether ||[K — B,K|| = 0

asn — oo. The following two lemmas address this question,

Lemma 3.5 Let X,Y be Banach spaces, and let4,, : X - Y,n > 1bea
sequence of bounded linear operators. Assume {A,f} converges for

all f € X. Then the convergence is uniform on compact subsets of X.

Lemma 3.6 Let X be a Banach space, and let {P,} be a family of bounded

projections on X with
Pf—-f as mn-oo, fEX (3.79)
LetK : X - X be compact. Then
|IK—-PK|| >0 as n-o
Proof

From the definition of operator norm,

IK — PK]|l = ”?ﬁpllle — R.Kfll = sup |lv— Ryl

vEK(U)

with K(U) = {Kf | ||fI| £ 1}. The set K(U) is compact. Therefore, by

the preceding Lemma 3.5 and the assumption (3.79),

sup |lv—Pww||—>0 as n—- o
VvEK(U)
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This proves the lemma.
For more details see [3] and [4].
3.3 Nystrom (Quadrature) method, [4], section 4.1, page 100,

The Nystrom method was found to handle approximations based on
numerical integration of the integral operator in the equation (3.1). The
solution is found first at the set of quadrature node points, and then it is
extended to all points in D by means of a special interpolation formula. The
numerical method is much simpler to implement on a computer, but the
error analysis is more sophisticated than for the methods of the preceding

two sections.

For solving the Fredholm integral equation in (3.1) by this method we use

the numerical integration scheme
ken
j h(y)dy = Z Wn,jh(xn,j), h e C(D) (3.80)
D :
j=1

with an increasing sequence of values of n. Assuming that the numerical

integrals for every 4 € D converge to the true integral as n— oo.

To simplify the notation, we omit the subscript n so that wy, ; = w;,

Xn,j = xj and sometimesk, = k, but we understand the presence of n

implicitly.
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Let the kernel function be continuous for all x, y € D where D is a closed
and bounded set in R™ for some m > 1. By approximating the integral in

(3.1) using the quadrature scheme in (3.80) we obtain a new equation
kn
fn(x) — 7\2 w; G(x, xj)fn(xj) = g(x), x €D (3.81)
j=1

where its solution f,,(x) is an approximation of the exact solution f(x) to
(3.1). A solution to a functional equation (3.81) may be obtained if we
assign x;'s to x in whichi = 1,...,k, and x; € D. In this way, (3.81) is

reduced to the system of equations
kn
fn(xi) - }\z W] G(xl,xj)fn(x]) = g(xi), [ = 1, ,kn (382)
j=1

which is a linear system of order k,,. The unknown is a vector

fo = [fuCe), s fulxg)]

Each solution f,(x) of (3.81) furnishes a solution to (3.82): merely
evaluate f,(x) at the node points. The converse is also true. To each

solution u = [uy, ..., u]tof (3.82), there is a unique solution of (3.81) that

agrees with u at the node points. If one solves for f,,(x) in (3.81), then

fn(x) is determined by its values at the node points {x;}. Therefore, when

given a solution u to (3.82), define

kn
u(x) = Az w; G(x, xj) u + g(x), X€D (3.83)
j=1
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This is an interpolation formula. In fact,
kn
u(x;) = }\Z w; G(x;, %) wj + g(xy),
j=1

=U; fori = 1,...,kn.

This formula (3.83) is called the Nystrom interpolation formula. In
the original paper of Nystrom, he uses a highly accurate Gaussian
quadrature formula with a very small number of quadrature nodes (for
example, k = 3). He then uses (3.83) to extend the solution to all other
x € D while retaining the accuracy found in the solution at the node points.

The formula (3.83) is usually a very good interpolation formula.
For more details see [4].

The last step follows from u being a solution to (3.82). Using this
interpolation result in (3.83), we have that u(x) solves (3.81). The
uniqueness of the relationship between u and u(x) follows from the

solutions f,,(x). Moreover, (3.82) can be represented by
(I -—AKD)f, =g, (3.84)
where
fo = (D], g =[g(x)]", K= [G(xi;xj)]:

and D = diag(wy, wy, ..., Wy).
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It is worth noting that I — AKD may be singular for a chosen quadrature
rule (3.80). However, under suitable restrictions, we can preserve the non-
singularity of I — AKD if we decide on a sufficiently accurate (3.80). In
addition, whether quadrature rule is sufficiently accurate or not itself

depends on A, G(x,y), and g(x).

For more details see [43] and [48].
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Chapter 4

Numerical Examples and Results
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Chapter Four
Numerical Examples and Results

In this chapter we try to apply some of the numerical methods illustrated in

chapter three to approximate the solution of the Fredholm integral equation

T

2 4 (2
FO) == cos) + 1 [Ceose - fO)dy. @)
0

These methods include: the degenerate kernel method, the collocation
method and the Nystrom method, we will use suitable algorithms and
Matlab software, then we will compare the exact solution with the

approximate one using suitable number of n points.

Note: the exact solution f(x) = sin (x) of the above integral equation (4.1)

is done in chapter two section 2.2.1

4.1 The numerical realization of equation (4.1) using the

degenerate kernel method

First we expand the kernel G (x, y), with respect to y using the Taylor series

such that

_ a)n on
n!  Jdy™

m
Taylor (G,y,a) = Z S G(x,y =a) (4.2)
n=0
where m is the number of Taylor series terms, by this expansion, the kernel
can be written as the sum of tow separated functions one with

respect to x, and the other with respect to y, such that
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m—1
Gm() = ) w4 (@0i()
i=0
where
1 ai—l
U1 (x) = (U) 5y G(x,a)
and

Vi (V) =@ -a)Lvi=12,..,m,

then we calculate the values c; I and h;, such that

b b
%=jw@ww®%=jw@mww,ﬁLhmn
a a

using the relations in section 2.2.1, and the above relations, we have
n
a; — 7\2 cl-ja’j = hi i = 1,
j=1

now putting this relations in the matrix form we have,

where
A=1-AC
such that I is the identity matrix,
C=cj|vij=12,...,m

H=[h]Vi=12,..m.

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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And the matrix
[ai] = A_lH.
the solution f,,,is given by
m-1
fn() = 90O+ A ) @i i) (48)
i=0

The following algorithm implements the degenerate kernel method using

the Matlab software.
Algorithm 1

1. Inputa,b, A,g(x),G(x,y)
2. input the number of Taylor series' terms m

3. calculate the Taylor expansion of G(x,y) with respect to y,

Tay

from f findu;(x)andv;(y),i=12,..,m

4. calculate c;, = f: viu,(dy i,k=1.2,..,m
5. calculate h; = f; vi(y)gly)dy i =1,2,...,m

6. calculate the matrix

1 - }\Cll _}\Clz te —7\C1m
4 = _7\(3.21 1 - Acyp _7\f32m
—ACpy1 —ACm2 1= Aem

7. calculate the determinate D(A) of matrix A
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8. ifg(x) # 0gotostep 12

9. if D(A) = 0 the system has infinite number of solutions ,go to step 16

10. the system has unique solutiona; = a, = -+ = a,,, = 0,go to step
16

11.ifh; # 0 go to step 15

12.if D(A) = 0, the system has infinite number of solutions, go to step
16, the system has unique solution a; = a, =+ =a,,, =0

13. if D(A) = 0,the system has no real solution, go to step 16

14. the solution of system is [a;] = [Ay ] [h;]T

then

fn@) = () + 1) (@)

15. end
For more details see [20].

By returning to the integral equation (3.85), and using algorithm 1, the
kernel of this integral equation G(x,y) = cos(x — y), can be expaneded

using Taylor series for 5 tems as

Taylor(cos(x — y),y,5) =
2 3 4

cos(x) + ysin(x) — y?cos(x) — %sin(x) + ;]—4cos(x) (4.10)

implies
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Uy (x) = cos(x),u,(x) = sin(x),uz(x) = TCos(x),u4(x)

= —sin(x), us(x) = %cos(x), (4.11)

and

i) =1 v, =y vs() =y% vG) =y’ vsO) =y*. (412)

The related Matlab program gives the following results

The matrix C =
1.0000 1.0000 -0.5000 -0.1667 0.0417
0.5708 1.0000 -0.2854 -0.1667 0.0238
0.4674 1.1416 -0.2337 -0.1903 0.0195
0.4510 1.4022 -0.2255 -0.2337 -0.1895
0.4793 1.8040 -0.2396 -0.3007 0.0200

The matrix A=1—AC =
-0.2732 -1.2732 0.6366 0.2122 -0.0531
-0.7268 -0.2732 0.3634 0.2122 -0.0303
-0.5951 -1.4535 1.2976 0.2423 -0.0248
-0.5742 -1.7853 0.2871 1.2976 0.2413

-0.6102 -2.2970 0.3051 0.3828 0.9746
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The matrix [o;] = A™*H =
0.8752
0.9251
1.0775
0.8782
1.7330

then

-2 4 .
fm(xj) = cos(xj) + E[ai][ui(xj)], ,j=12,..,m (4.13)

where

(b—a)

m— and x; = a, (4.14)

Xj+1 = Xj

Table 4.1 shows the exact and numerical results when m = 5, and showing

the error resulting of using the numerical solution,
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Table 4.1: The exact and numerical solution of applying Algorithm 1 for

equation (4.1).

X Analytical solution | Approximate solution | Error= |y; — y,|
y1 = sin (x) Y2
0 0 -0.116299822082018 | 0.116299822082018
0.3927 | 0.382683432365090 | 0.271988984127792 | 0.110694448237297
0.7854 1 0.707106781186547 | 0.618869933090427 | 0.088236848096121
1.1781 | 0.923879532511287 | 0.871533544809957 | 0.052345987701329
1.5708 | 1.000000000000000 | 0.991514074803429 | 0.008485925196571

Figure 4.1 shows the exact solution f(x) = sin (x) and the approximate

one when m = 5.

-anis

E-axis

|_.._'_J

Figure 4.1: The exact and numerical solution of applying Algorithm 1 for equation (4.1).
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While Figure 4.2 shows the absolute error which approaches zero .

Figure 4.2: The resulting error of applying algorithm 1 to equation (4.1).

4.2 The numerical realization of equation (4.1) using the

collocation method

First we expand the function f,,(x) as a sum of basis {¢,, . . ., @i} such that
kn
s
L@ =) got0,  xe€[0z]  (415)
j=1

Since the residual 7, (x) can be written as

() = fux) — A j 6o fa()dy — g(x) (4.16)

then by substituting (4.15) into the equation (4.16) so as to determine the

values of the coefficients {c, ..., ¢}, such that
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k

(%) = Z Ci {%-(x) - Aj G(x, y)wj(y)dy} — g(x), (4.17)
D

j=1
but we pick distinct node points x;, ..., x, € D, such that
(x)=0 i=1,..,n (4.18)

then (4.17) can be rewritten as

k

z Cj {wj(x) - lj G(x, y)qoj(y)dy} = g(x), (4.19)
j=1 P

In this example we have D = [a, b], h = (b — a)/n. Hence we take the

node points are,
x;=a+ih, i=0,1,...,n

we introduce the Lagrange basis functions for piecewise linear
interpolation as

1— lx — x;] < g <
L;(x) = B Nim1 =X =X (4.20)
0, otherwise

where the subspace X,, is the set of all functions that are piecewise linear

on [a, b], with breakpoints {xy, ..., X, }. Its dimension is n + 1.

The projection operator is defined by

PSGO) = ) fO) L) (421)

now for convergence of P, (x)
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w(f, h), f € Cla,b]

— P flle <4 A2 4.22
17 = F g If"lleo,  f€C*[ab] (*22)

where the function w is defined by

w(f,h) = _sup |f(x)—f() (4.23)

asx,y<
|x—y|<h

and it is called the modulus of the function f. This shows that
P.f - fforall f € C|a,b].

Now for any compact operator K : C[a,b] — C[a,b], Lemma (3.6)
implies ||[K — P,K|| = 0 as n — oo. Therefore the results of Theorem
(3.4) can be applied directly to the numerical solution of the integral
equation (A — K)f = g. For sufficiently large n, sayn > N, the equation
(A — B,K)f,, = P,g has a unique solution f,, for each g € C[a, b]; and we

can write

If = fallo < [AIMIIf = Py fllc

for f € C?[a, b],
hZ
If = falleo < 1AIM - 1If"lles (4.24)
The linear system (4.19) takes the simpler form

n b
=2 fil) [ 6GunbOIdy = g =0, (425)
J=0 a

And we can simplify the integral forj =1, ...,n — 1,
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b
] 6 G )L ()dy

1 %
=7 f G(x;, ) (y — xj_1)dy

x]'_l

1 Xj+1
+5 j G(x,y)(x; — y)dy (4.26)
Xj

we have calculated the integrals above numerically using quadrature rules

specifically Trapezoidal Rule which is of the form,

n-1 1

FOd +5f )| (427)
=1

b—a

b 1
|| Feode ~ 2 ) +

i
Now substituting (4.26) in (4.25) and putting this relation in the matrix

form we have

2 2
F — - F(KDU +KDV) = G - (1 — 5 (KDU + KDV))F =G (4.28)

Where
F=[fu(x)]", G =[gx)]", K = [G(xi,x)], D = diag(wy, wa, ..., wy,),
U = [Xi - xj—l]' V= [x] — xi].

The following algorithm implements the collocation method using the

Matlab software
Algorithm 2

Input a, b,n, A, g(x), G(x)

b—a
n

h -

X1 =0 Xpyq =D
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fori=2ton
Xi=a+hx*i
end

fori=1ton+1
Gy = g(x;)

S; = x;

D;; = h = D is diagonal matrix
forj=1ton+1
Kij = k(2 x;)

end

end

I - identity matrix
fori=1ton+1
forj=2ton+1
Ui = Xi — Xj_q

Vit = xj—x;

Uij =X; — xj—l
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Vij =xj—xi
A
lhs = 1 —E(DKU + DKV)
F - the answer of lhsx f =G

p(f) — the interpolating polynomial at [S;, f;]

Table 4.2 compare the exact solution f(x) = sin(x) with the approximate
one when n = 50, and showing the error resulting of using the numerical

solution.

Note: The table shows the first 10 values and the last 10 values only
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Table 4.2: The exact and numerical solution of applying Algorithm 2 for

equation (4.1).

X Analytical solution | Approximate solution Error = |y; —y,]|
y1 = sin (x) Y2
0 0 -0.031467686762045 0.031467686762045
0.0314 | 0.031410759078128 -0.000000000000004 0.031410759078132
0.0628 | 0.062790519529313 0.031467686762042 0.031322832767271
0.0942 | 0.094108313318514 0.062904318716399 0.031203994602115
0.1257 | 0.125333233564304 0.094278871702702 0.031054361861602
0.1571 | 0.156434465040231 0.125560382825064 0.030874082215167
0.1885 | 0.187381314585725 0.156717981008673 0.030663333577051
0.2199 | 0.218143241396543 0.187720917465807 0.030422323930735
0.2513 | 0.248689887164855 0.218538596041232 0.030151291123623
0.2827 | 0.278991106039229 0.249140603406845 0.029850502632384
1.2881 | 0.960293685676943 0.952780175523255 0.007513510153688
1.3195 | 0.968583161128631 0.962034086005045 0.006549075123586
1.3509 | 0.975916761938747 0.970338584991732 0.005578176947016
1.3823 | 0.982287250728689 0.977685476945429 0.004601773783260
1.4137 | 0.987688340595138 0.984067511370779 0.003620829224359
1.4451 | 0.992114701314478 0.989478389970310 0.002636311344168
1.4765 | 0.995561964603080 0.993912772860129 0.001649191742951
1.5080 | 0.998026728428272 0.997366283839667 0.000660444588605
1.5394 | 0.999506560365732 0.999835514710550 0.000328954344819
1.5708 | 1.000000000000000 1.001318028640015 0.001318028640015
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Figure 4.3 shows the exact solution f(x) = sin(x) with the approximate

one when n = 50.

e 3+ —

y-axis
*

04— s —

n2- c -

2z \ I I \ \ \

Figure 4.3: : The exact and numerical solution of applying Algorithm 2 for equation (4.1).

The CPU time is 0.066202 seconds.

These results show that the algorithm yields acceptable results since the

maximum absolute error which is 0.03 is less than or equal O(h).

While figure 4.4 shows the absolute error resulting of applying algorithm 2

on equation (4.1), and show how it approaches zero.
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Figure 4.4: the error resulting of applying algorithm 2 on equation (4.1)

4.3 The numerical realization of equation (4.1) using the

Nystrom method

To solve the Fredholm integral equation of the second kind which is given

by
T

2 4 (2
F0) = = Zcos() + 1 [ “costx =) F)dy.

0
by Nystrom method, first we should remember that the kernel cos(x — y)
and the function — % cos(x) must be continuous, secondly, we should know
that we can approximate the integral f: @(y)dy using quadrature rule by

i—ow;@(y;) . By such approximation, for a <x <b, the Fredholm

integral equation

FG) = g0 + A j GG.y)f()dy, x€D  (429)
D
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can be reduced to

frn(x) = /12 w; G(x, xj)fn(xj) + g(x), (4.30)
j=1

where its solution f;,(x) is an approximation of the exact solution f(x) to
(4.29). A solution to a functional equation (4.30) can be obtained if we
assign x;'s to x in whichi = 1,2,...,nand a < x; < b. In this way, (4.30)

is reduced to a system of equations

fule) = 2 ) w; G 3) fu(35) + 9, (4:31)
j=1

Next, writing the equation (4.31) in the matrix form
F=AKDF+G - F— AKDF=G - (I-AKD)F =G (4.32)
where

F=[f0)5S  G6=[gx)l,  K=[6xx)]

D = diag(Wl, Wy, ...,Wn)

It's worth to mention that in order to approximate the integral, we will use

the Trapezoidal Rule.

Here, we implement it in the form such that

b n
f G(x,y)dy =Z w; G(x;,x;) = DK (4.33)
a j=1

i=1
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where D is a diagonal matrix such that the elements of its diagonal equal A

where h depends on the initial and the end points of the interval [a, b], and

o b—
the number of the approximations » such thath = Ta. The elements of

the matrix K consist of the entries k(xl-, xj), where i,j = 1,2, ..., n,such that
the approximations x;s obtained as x; = a + h * i,where i = 2,3, ...,n,

and x; = a.

The following algorithm implements the Nystrom method using the Matlab

software.
Algorithm 3

Input a, b,n, A, g(x), G(x)

b—a
n

h -

Xy =a,X,=Db
fori=2ton—1
X;=a+hxi
end
fori=1ton

Gy =9g(x;)

S; = x;

D;; = h = D is diagonal matrix
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forj=1ton

Kij = k(xi, %))

end

end

I - identity matrix

lhs - I — ADK

F — the answer of lhsx f =G

p(f) — the interpolating polynomial at [S;, f;]

Table 4.3 shows the exact solution f(x) = sin(x) and the approximate one
when n = 50, and showing the error resulting of using the numerical

solution.

Note: The table shows the first 10 values and the last 10 values only
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Table 4.3: The exact and numerical solution of applying Algorithm 3 for

equation (4.1).

X Analytical solution | Approximate solution | Error = |y; —y,|
y1 = sin (x) &
0 0 0.031405592470328 | 0.031405592470328
0.0314 | 0.031410759078128 | 0.062780191412531 | 0.031369432334402
0.0628 | 0.062790519529313 | 0.094092833885359 | 0.031302314356046
0.0942 | 0.094108313318514 | 0.125312618091103 | 0.031204304772588
0.1257 | 0.125333233564304 | 0.156408733871965 | 0.031075500307661
0.1571 | 0.156434465040231 | 0.187350493115954 | 0.030916028075723
0.1885 | 0.187381314585725 | 0.218107360042338 | 0.030726045456613
0.2199 | 0.218143241396543 | 0.248648981336784 | 0.030505739940241
0.2513 | 0.248689887164855 | 0.278945216106394 | 0.030255328941540
0.2827 | 0.278991106039229 | 0.308966165625180 | 0.029975059585951
1.2881 | 0.960293685676943 | 0.968423843447016 | 0.008130157770073
1.3195 1 0.968583161128631 | 0.975756237987680 | 0.007173076859049
1.3509 | 0.975916761938747 | 0.982125678925927 | 0.006208916987179
1.3823 | 0.982287250728689 | 0.987525880392547 | 0.005238629663858
1.4137 | 0.987688340595138 | 0.991951513040665 | 0.004263172445527
1.4451 | 0.992114701314478 | 0.995398209305166 | 0.003283507990688
1.4765 | 0.995561964603080 | 0.997862567712965 | 0.002300603109885
1.5080 | 0.998026728428272 | 0.999342156239842 | 0.001315427811571
1.5394 | 0.999506560365732 | 0.999835514710546 | 0.000328954344814
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Figure 4.5 compare the exact solution f(x) = sin (x) with the approximate

one when n = 50, while Figure 4.6 shows the error resulting of applying

Algorithm 3 on the equation (4.1), and how it approaches zero.
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Figure 4.5: The exact and numerical solution of applying Algorithm 2 for equation (4.1).

The CPU time 1s 0.064010 seconds.

Figure 4.6: The resulting error of applying algorithm 3 to (4.1).
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4.4 The error analysis of the Nystrom method

If we consider the trapezoidal numerical integration rule

2 fo)dy ~ hYy "f(x)

(4.34)

. b_ . . . n
with h = Ta and x; = a + ih for i = 0, ...,n. The notation ), " means the

first and last terms are to be halved before summing. For the error,

h?(b —a)

b n
[ roray= 1Y ) = =52, f el
a i=0

n>1 (4.35)

with &, some point in [a, b]. There is also the asymptotic error formula

b n hZ
[ £oray = 1Y ") = - I ®) - £ @) + 00,
a i=0

f € C*[a,b], (4.36)

When this is applied to the integral equation

b
fO) = 9@ +2 [ GeNfOdy, asx<h
a
we obtain the approximating linear system

fule) = g + 2k ) "6(xpx)fug), = 01.m
j=0

which is of orderq,, = n + 1.

The Nystrom interpolation formula is given by

(4.37)

(4.38)
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}00 = g0+ 20 "G x)fu(), asx<h  (439)
j=0

The speed of convergence is based on the numerical integration error

h*(b —a) [02G(x, ) f (¥)
12 dy?

K -K)f(y) = - (4.40)

y=en(x)

with &, (x) € [a, b]. From (4.36), the asymptotic integration error is

+ 0(h%) (4.41)

(K_Kn)f(y) i

h? [0G(x, f ]’
12 dy ]y=a

From (4.40), we see the Nystrom method converges with an order of
0(h?), provided G(x,y)f(y) is twice continuously differentiable with

respect to y, uniformly in x. For more details see [18].

These results show that the algorithm 3 yields acceptable results since the

maximum absolute error which is 0.0003 < O(h?).
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Conclusions

In this thesis we have presented some analytical and numerical
methods for solving a fredholm integral equation of the second kind. The
analytical methods are the degenerate kernel methods, converting Fredholm
integral equation to ODE, the Adomain decomposition method, the
modified decomposition method and the method of successive

approximations.

Moreover, we have used the following numerical methods: Projection
methods including collocation method and Galerkin method, Degenerate
kernel approximation methods and Nystrom methods, for approximating

the solution of the Fredholm integral equations.

We have presented each numerical method as algorithm and applied
these algorithms on the same Freedholm integral equation using Matlab
Software; we have found that the numerical solution was approximately as
the exact solution. The absolute error has approached zero which was

shown that numerical results were acceptable.
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Appendix
Matlab Code for Collocation Method:

tic

$The collocation method to approximate the Fredholm
integral equation of the

%$second kind.

%the problem is f(x)=(-
2/pi) *cos(x)+(4/pi) *int (0,pi/2)cos (x-y) f(y)dy

clc

clear
format long
a=0;
b=pi/2;

lambda=4/pi;

for i=1l:n

X (i+1l)=a+h*i;
end
G=zeros (1l,n+1);
S=zeros (l,n+1);
z=zeros (1,n+1);
K=zeros (n+1,n+1);
u=zeros (n+l,n+1);
v=zeros (n+1l,n+1);

for i=1l:n+1
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for j=1l:n+l
K(i,3)=k(x(1),x(J));
end
end
% we approximate the integrals using Trapezoid rule.
for i=1l:n+l
D(i,1)=h;
end
for j=1l:n+l

for 1=2:n+1

end
end
I=diag(ones(n+1,1),0);
for 1=1:n+1
for j=l:n+1
c(l,3)=D(1l,1:n+1)*K(1l:n+1,7);
end
end
for 1=1:n+1
for j=1l:n+1l

e(l,j)=(lambda/h)* (c(1,3)*u(j,1));
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q(l,3J)=(lambda/h)* (c(1,3)*v(3,1));

end
end
for 1=1:n+1
for j=1l:n+l
lhs(1,3)=I(1,3)-(e(l,3)+q(l,3));
end
end
F=inv (lhs) *G';
Fe=sin(S) ;
y=Fe'-F;
m=[S',F, Fe',y ]
$The exact solution is f(x)=sin (x).
plot(s,F,"'*",S,Fe,'r.",S,vy)
plot(S,y)
%legend ('approximate', 'exact', 'error', 4)
$the nested functions are
% #1 to approximate the kernel
$function ker=k(x,vVy)
% ker=cos (x-y);
% #2 to approximate the known function g(x)
$function Ge=g(x)
%Ge=(-2/pi) *cos (x) ;

toc

Matlab Code for Nystrom Method:

tic
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$The Nystrum method to approximate the Fredholm integral
equation of the

%$second kind.

$the problem is f (x)=(-
2/pi) *cos(x)+(4/pi)*int (0,pi/2)cos (x-y) f(y)dy

clc

clear
format long
a=0 ;
b=pi/2;

lambda=4/pi;

for 1=1:n-1

X (1+1)=a+h*1;
end
G=zeros(1l,n);
S=zeros (1l,n);
F=zeros (1l,n);
K=zeros (n,n);

for i=1:n
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end
% we approximate the integrals using Trapezoid rule.
for i=l:n
D(i,1i)=h;
end
I=diag(ones(n,1),0);
lhs=T-lambda*D*K;
F=inv (lhs) *G';
$The exact solution is f(x)=sin(x).
Fe=sin(S);
y=[Fe'-F];
plot(s,F,"'*",S,Fe,'r.",S,vy)
plot(S,y)
splot (S, v)
%$legend ('approximate', 'exact', 'error',4)
disp(' S Fe F v')
[S',Fe', F, vI]
%the nested functions are
% #1 to approximate the kernel
$function ker=k(x,vVy)
% ker=cos (x-Vy) ;
% #2 to approximate the known function g(x)
$function Ge=g(x)
$Ge=(-2/pi) *cos (x) ;
toc
Matlab Code for degenerate kernel Method:

%Degenerate kernel method using taylor series



133
$the problem is: f(x)=1+ int(0,1)sin(x+y)dy

clc

clear

format long
a=0;b=pi/2;lambda=4/pi;

%$The five terms of taylor series s.t
G(x,y)=sum(i=1:m)ui (x)*vi (y)

m=5; h=(b-a)/(m-1);
u=zeros (m,m) ;
v=zeros (m,m) ;

c=zeros (m,m) ;

SWE USE THE TRAPOZOIDAL RULE TO APPROXIMATE THE INTEGRALS

for i=1:m
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D(1,1)=h/2;

D(m,m)=h/2;

for i=2:m-1

end
for i=1:m
for j=1:m

c(i,lim)=[v(i,]) "'"*ul(])"'; v(i
v(i,3)'"*ud((3)"'; v(i,3)" )

r(i)=v(i,J)*G(J)";
end
end
e=D*c;
n=r*D;
I=diag(ones(m,1),0);
lhs=I-lambda*e;
z=inv (lhs) *n’';
p=G'+lambda* [ul;u2;u3;u4d;ub]*z;
[ul;u2;u3;u4;ud]
k=[S",p]
pe=sin(S);
plot (S,p, '*',S,pe, 'r.")
%legend ('approximate', 'exact', 4)
$THE NESTED FUNCTIONS which related to g(x) and ui's(x)

% #1 function g=gl (x)

o°

g=1;
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$#2 function ker=kl (x,V)

Sker=sin (x+y) ;
$#3function ker=k2(x,Vy)
$ker=cos (xty) ;
$#4function ker=k3(x,Vy)
$ker=(-1/2)*sin (x+Vy) ;
$#4function ker=k4 (x,vV)
$ker=(-1/6) *cos (x+V) ;
$#5function ker=k5 (x,vy)

$ker=(1/24)*sin (x+y) ;



dgih g Fladl) daals

Ladad) el al) A0S

A Ao a0 (e Autalsl algany b e alaa Jad ased) Aadlaad

3as)

Olagy Craa ) ae dd 3 gad

il )

‘",a'l.'\h'é ga.l.'\ 2

408 A gaal) clbuaaly ) (A talbal) Ay o cldlaial YiaSind da g )by o2y cuadd

Cbaaadd — il Ayibgl) o lad) draly b L) il )

2013



A0 da Al Ge Alalsil) algany b cialaa Jad Lasd) dadlaal)
Aas)
Oy el 2 sl sgad
)
(kb Al ]

ua&ld\
ALl ol gay b ¥ aleay dualal) dyaaell 5 dpualyy)) il o UK da gyl oda 8
Al 5okl (any cliafinly Liad ) iV oleal) 028 oyl ey L A £ sl (g
LS s e ALKl Al gany B N alra Jal dgaaed)
oV ALl Al gany b Allae Jysad cJumadll AL 5) ) A6y Hha rciled Abdatl) (5l 238
4k 5 anad AL ey 48 )k ALl s A8l ddole Al dlalas

Al ey i

A4 Hh y aaeatl) A8 Hha 1 Lo g A0 genll Dl A5y Hla 2 e Lalil e Al dnael)l 5kl
POy A8y a5 Ay 8 Jaadll AL B) gl 48y Hha g ¢Sl

(S g sl e ALl gy 58 Al Ja Baaal okl a3 Aol it AR ey

Al AN e A 8 CulS Ay Sl daael) AL





