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Abstract

A new hyperbolic parabolic triangular finite element is developed in this
paper. The element has only five essential nodal degrees of freedom (three
general external degrees of freedom and two rotations) at each of the three
corner nodes. The displacement fields of the element satisfy the exact
requirements of rigid body modes of motion. Shallow shell formulation is used
and the element is based on an independent strain assumption insofar as it is
allowed by the compatibility equations. A hyperbolic Paraboloid shell dam for
which a previous solution exists is first analyzed using this new element to
validate the program and to compute the results. The element is then used in the
analysis of a complex type of hyperbolic Paraboloid shell roof, which normally
referred to as hyperbolic Paraboloid groined vault. It is usually made up of a
combination of four of intersecting hyper Paraboloids joined together to form a
square shape in plan view. This form of structure is often used by architects to
roof large span exhibition halls and public buildings. The distribution of various
components of forces is obtained to give designers an in—sight of the behavior

of such complex structures.
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Introduction

Considerable attention has been given to applying the finite element
method of analysis to curved structures. The early work on the subject
was presented by Grafton and Strome " who developed conical
segments for the analysis of shells of revolution. Jones and Strome
modified the method and used curved meridional elements which were
found to lead to considerably better results for the stresses.

Further research led to the development of curved rectangular as well
as cylindrical shell elements, Connor and Brebbia (3), Bonger et al (4),
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Cantin and Clough ®, and Sabir and lock . However, to model a shell
of arbitrary or triangular shape by the finite element method, a triangular
shell element is needed. Thus many authors have been occupied with the
development of curved triangular shell elements and consequently many
elements of lindberg et al ” and Dawe ®, resulting in an improvement of
the accuracy of the results. However this improvement is achieved at the
expense of more computer time as well as storage to assemble the overall
structural matrix.

Meanwhile, at United Kingdom, a simple alternative approach has
been used to the development of curved elements. This approach is based
on determining the exact terms representing all the rigid body modes
together with the displacement functions representing the straining of the
element by assuming independent strain functions insofar as it is allowed
by the compatibility equations. This approach has successfully employed
in the development of curved shell elements by Ashwell et al ®'”, and
by Sabir et al “'"'¥, and by Mousa > These elements were found to
yield faster convergence when compared with other available finite
elements.

In reference '”, Mousa used the strain-based approach to develop a
curved triangular shallow shell element which is suitable for the analysis
of hyperbolic Paraboloid shell Structures. The element processes has six
degrees of freedom at each corner node. This element was applied to the
analysis of a hyperbolic Paraboloid dam with constant thickness and the
dam is assumed to be in a rigid valley.

The strain-based approach is employed in the present paper to
develop a new triangular strain-based hyperbolic Paraboloid element
having only five degrees of freedom at each corner node.

The new element is first tested by applying it to the analysis of a
hyperbolic Paraboloid dam with constant thickness for which a previous
solution exists.

The work is then extended to the analysis of a complex type of
hyperbolic Paraboloid shell roof, which is normally referred to as
hyperbolic Paraboloid groined wvault. It is usually made up of a
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combination of four hyperbolic Paraboloid shell together to form square
shape in the plan view. This form is often used by Architects to provide
aesthetically pleasing structures with relatively large unobstructed spans.
They have been used for exhibition halls and other public buildings.

The distribution of the various components of stresses is obtained to
give designers an insight into the behavior of such complex structures.

Displacement function for the new strain-based hyperbolic
Paraboloid triangular shell element

Theoretical considerations

In a system of curvilinear coordinates, the simplified strain-
displacement relationship for the hyper shell element shown in Figure (1)
can be written as:
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Where u,v and w are the displacement in the x,y and z axes, & , &
are the in-plane direct axial and circumferential strains and 7y, 1s the in-
plane shearing strain. Also K,,K, and K, are the mid-surface changes of
curvatures and twisting curvature respectively, ry, and ry are the principle
radii of curvature.

Rectangular Element Triangular Element

Figure (1): Geometry and co-ordinate axes of triangular hyper shell
element.

Equation (1) gives the relationships between the six components of
the strain and the three displacements u,v and w. Hence, for such a shell
there must exist three compatibility equations which can be obtained by
eliminating u,v and w from equation (1).

This is done by a series of differentiations of equation (1) to yield the
following compatibility equations:
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To keep the triangular element as simple as possible, and to avoid the
difficulties associated with internal and non-geometric degrees of
freedom, the essential five degrees of freedom at each corner node are
used, namely u, v,w, ow/ox,0w/0oy . Thus, the triangular hyper element,
to be developed has a total of fifteen degrees of freedom and 15x15
stiffness matrix.

To obtain the rigid body components of the displacement field, all
the strains, as given by equations (1), are set to zero and the resulting
partial differential equations are integrated. The resulting equations for u,
v and w are given by:

u=—ax/rx—ap (y2/2ry +x%/2ry) — a3 Xy/tytastagy
vi=+ a1y/ry + arxy/ry + a3 (+y2/2ry — x2/2rx) + as-agx )
w1 = a; taxX + asy

Where u;, v and w; are the rigid body components of the

displacement fields u, v and w, respectively, and are expressed in terms
of the six independent constants aj, a; ... as.

Since the element has fifteen degrees of freedom, the final
displacement fields should be in terms of fifteen constants. Having used
six for the representation of the rigid body modes, the remaining nine
constants are available for expressing the straining deformation of the
element. These nine constants can be apportioned among the strains in
several ways, for the present element we take:

1
& =19, _r_(alzy%+alzxy%+a14y%)

1
£, :a8+g(awx%+a“y><%) (4
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In which the unbracketed independent constants terms in the above
equations were first assumed. The linking bracketed terms are then added
to satisfy the compatibility equation (2).

Equations (4) are then equated to the corresponding expressions, in
terms of u,v and w from equations (1) and the resulting equations are
integrated to obtain:

U= asx + agy/2 + alox3/6rx + a11x4y/24rX + :113y4/24ry +ags (xzy/4rx +

y/12ry).
Vo= agy + agx/2 — a11x5/120rx — 312y3/61'y — 313X}’3/6I‘y — al4y4/24ry —as
(xy?/dry + x/121y).

Wr= —ajo X2/2 — 311X3y/6 —a y2/2 — 313X}’2/2 — 314}’3/6 — alsxy/Z (5)

The complete displacement functions for the element are the sum of
corresponding expressions in equations (3) and (5). The rotation about
the x and y-axes respectively, are given by:

W:_;ﬂ:_az +a,X+a,x’y/2+a,y’ /2+a,Yy/2
X (6)

¢X:_@:—a3 +a, X’ /6-a,y—a,Xy—a,y’ /2—a.x/2

The stiffness matrix [K] for the shell element is calculated in the
usual manner using the equation.

K =[cT{[] s"oBav ffc '] (7)

Where B and D are the strain and rigidity matrices respectively and
C the matrix relating the no dal displacements to the constants a; to a;s,B
can be calculated from equations (1), (3) and (5) and D is given below.

Substituting the matrices B and D into equation (5), the integrated
within the bracketed terms of equation (4) are carried out explicitly and
the rest of the calculations are computed to obtain the stiffness matrix [K]
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Where E is Young’s modulus, t is the thickness and v is Poisson's
ratio.

Consistent load vector

In the finite element analysis, if the structure is subjected to any of
distributed vertical loading g, the equivalent set of nodal forces must be
first calculated, the simplest way is to allocate specific areas as
contributing to a node, such process is known as the lumping process. An
alternative and more accurate approach for dealing with distributed load
is the use of the consistent load vector. This is obtained by equating the
work done by applied distributed load on the displacement of the element
to the work done by nodal generalized forces on the nodal displacements.
If a triangular shell element is subjected to distributed load of intensity q
per unit area in the direction of w, the work done by this load F; is given
by:

b a
F, = I Iqwdxdy ©)

—-bay /b

Where a and b are the projected half-length of the sides of a right
angle triangular element in the x and y directions, respectively. If w is
taken to be represented by:

{w} = [IN"{a}=IN"][C"]{d} (10)

Where N for the present element is given by [see equations (3) and

(3))
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N'=[1,x,y, 0,0,0,0,0,0,-x*/2, -x’y/6, -y*/2, -xy*/2, -y*/6, -xy/2] 11

{a} is a vector of the independent constants, [C"'] is the inverse of
the transformation matrix and {d} is a vector of the nodal degrees of
freedom, the work F, done by the consistent nodal generalized forces {p}
on the nodal displacement {d} is given by”

F2= {p}'{d}

Hence from eqs (9), (10) and (11) we obtain:

b a
tpy =] [aINIT[CI"{d} = [N ] dxdy (12)

—-bay /b

The above equation gives the nodal forces for a single element and
these are then used in calculating the nodal forces for the whole structure.
This is achieved by adding the contributions from all the elements
meeting at each node.

Problems considered

Hyperbolic Paraboloid dam

The accuracy of the finite element results obtained from the use of
the strain- based triangular element developed in the present Paper is
demonstrated by applying it to hyperbolic Paraboloid shell dam.

The problem considered is that of hyperbolic dam shown in Figure
(2). The dam has the following dimensions and elastic properties:

1y = -1y= 43.25m, thickness (t)= 3m, height (h)= 30m,V = 0.16, and E=
210X 10 kn/m2, it is subjected to Hydrostatic Pressure. The dam is
assumed to be in a rigid valley and the external boundaries of the dam are
assumed to be fixed for all the degrees of freedom at each nodal points.

An - Najah Univ. J. Res. (N. Sc.) Vol. 20, 2006



72 “Finite Element Analysis of ...... ”

WL
e
t=3m
ry =-r,=43.25m
h=30m
Al
Hyperbolic Paraboloid dam Sec. A-B

Figure (2): General Dimensions of Hyperbolic Paraboloid Dam.

This problem was analyzed previously by Mousa ‘" using a
triangular hyper element with six degrees of freedom at each corner
node. Now the new strain based triangular hyper element developed in
the present paper is applied to analyze the same problem, the mesh
considered in the previous element (207 triangular elements) is shown in
Figure (3).
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Figure (3): Finite element mesh in the H.P. dam.

The results for the normal deflection along the vertical central line
using the same mesh size are given in Figure (4). Figures (5) to (8) give
the results for the vertical stresses and hoop stresses on both the upstream
and down stream faces, respectively, using the same mesh size.

The figures show that the present element gives a very good agreement
results.

It is found that the shell needs to be modeled by few elements to
obtain a very good agreement results for the deflection and stresses, these
results gave confidence in applying the present triangular hyper element
to the practical and complex problem of a hyper shell roof such as
hyperbolic parabolic groined vault.
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Figure (4): Radial deflection on central line of dam
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Figure (5): Vertical Stresses on central cantilever for dam (upstream)
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Figure (6): Vertical stresses on central of dam (down stream).
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Figure (7): Hoop stresses on central cantilever of dam (upstream).
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Figure (8): Hoop stresses on central cantilever of dam (downstream)
Analysis of hyperbolic paraboloid groined vault:

The complex type of a hyperbolic paraboloid shell roof, which is
usually referred to as the hyperbolic paraboloid groined vault is analyzed
in this section.

The structure consists of four intersecting hyper joints together to
form a square shape in the plan view, as shown in Figure (9).

T mm

Elevation view

H.P. geometry

Figure (9): Hyperbolic paraboloid groin vault roof.
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The model investigated is shown in Figure (10), the shell roof is
supported on its four low corners, the interior boundaries of the shell are
jointed in the groin arch spanning between support points. The exterior
edges of the shell are kept free and the groined arch consists of a V cross
section

CTOWTT HTIe
T(center line)

30m

[ o
SQm Junction line
Plan view (groined arch)

Figure (10): Groined vault roof dimensions and configuration.

As shown in Figure (10), a hyper-groined vault with straight edges,
30 m by 30 m square in plane is considered; the concrete shell thickness
is 10 cm. The dead load of shell plus it’s roofing is 0.3N/cm® of shell
surface and the live load is 0.15N/cm?” of horizontal projection. The input
geometry for a typical segment as shown in Figures (10) and (11), is;
A=15m; B=15m, C=11.25 m.

Figure (11): Typical segment of hyperbolic paraboloid roof.
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This structure is identical to that one analyzed in Ref "®, using
approximate method in which only was analyzed only under the dead
load of the shell and the results are obtained only for the axial forces (N,
Ny) along the central line of the shell.

In the present paper, the developed strain-based triangular hyper
element is used in analysis of the same structure and under the dead load
only and also analyzed under dead load and live load together.

Due to Symmetry and uniform loading, only one quadrant of the
shell is analyzed. The conditions for symmetry along the straight edges
are taken to be:

(a) Along the centerline (crown line) of the segment, the circumferential
displacement and rotation about the central line are zero.

(b) Along the junction arch, because of symmetry, the horizontal
displacement and rotation about the junction arch are zero. These
conditions, however, cannot be satisfied directly, due to discontinuity
of the slope of the middle surface of the shell along the junction (see
Figure (12)). This difficulty is overcame by transferring the co-
ordinates of the nodes of all elements adjacent to the line of
symmetry into a common set of co-ordinate axes.

Details of such transformations are given by Mousa and Sabir .
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P Segment

X

o

Figure (12): Displacement transformation at the joint of the two
segment.

Due to symmetry only one half of the segment shell is analyzed. The
mesh shown in Figure (13) is considered.

Y A
| 5
15m
N\ N 3,
y X
re 15m >

Figure (13): Finite element mesh.
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The results for the Ny and Ny stresses (under dead load only,
0.15N/cm) at the center line (crown line) are given in Figures (14) and
(15), respectively. These figures show the results obtained by the new
element and those plotted in reference ®.

The figures show that the present element gives a good agreement
results.

‘ f ‘ -280
20 15 G -290
~- -300 <
- -310 >
— = Ref (18) - 820 2
—e— Present Element - -330
-340
Distance - at point X , (m)
Figure (14): Axial force (Nx) along the central line of shell.
0
20 15 0 -50
- -100 ’g
- 150 2
z
—&— Ref (18) - -200
—m— Present Element - -250
-300
Distance - at point X , (m)

Figure (15): Axial force Ny along the central line of shell.
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The results for the normal force, shear force and bending moment
(under dead and live loads together, 0.30N/cm, 0.15N/cm) along the
groined arch, (Junction line), they are also obtained and given in the
Figures (16-17) and Figure (18) respectively.

‘ ! X 0
20 15 10 0 500
Z|
¥
- -1000 ©
S
- -1500 g
—e— Present Element <
-2000
Distance - at point (X, Y) (m)
Figure (16): Internal axial force along the groin arch.
80
P |

—— Present Element 60

z

<

40 g

S

- 20 5

T T 0 ﬁ

20 15 5 D
-20
Distance - at point (X, Y) (m)

Figure (17): Internal shear force along the groin arch.
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Figure (18): Internal bending moment (My) along the groin arch.

To study the effect of curved overhanging free edges of the shell
structures, two additional groined vaults, having the basic dimensions of
the preceding example are analyzed using the previous dead and live
loads. The three additional structures have curved overhangs, parabolic in

the plan view, with 3m, 6m maximum projections, as shown in Figure
(19).

Figure (19): Plan view of structure with various free edge overhanging
projections.
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A comparison of the internal forces (normal force, shearing force
and bending moment) along the groined arch (Junction line) for the 0,3,
and 6m projection cases are given in Figures (20, 21) and Figure 22.

It can be seen from the Figures (20 to 22) that there is a
significantly greater change in the bending moment than the axial force
as the overhang increase from 0 to 6m.

There is also a slight shift of the point of maximum moment
towards the support.

20 15 10

)
~ -500
~ -1000

—@— 0 m Proiection case
—m— 3 m Proiection case ~ -1500
—&— 6 m Proiection case

Axial force (KN)

-2000

Distance - at point (X. Y) (m)

Figure (20): The effect of overhanging on the internal axial force along
the groin arch.

300
—&— 0 m Projection case F 250
—=— 3 m Projection case - 200
—a&— 6 m Projection case - 150 g
- 100 3
\ - 50 8
T * — O _ch
20 15 1 -50 »
Distance - at point (X,Y ) (m) -100

Figure (21): The effect of overhanging on the central shear force along the
groin arch.
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700
- 600
—_a— 6m Projection case - 500
- 400
- 300
- 200
- 100
0

-100

—¢— 0 m Projection case
— @ 3 m Projection case

Bending moment (KN . M)

Distance - at point (X, Y) (m)

Figure (22): The effect of overhanging on internal bending moment along
the groin arch.

Conclusions

A new triangular strain-based finite hyperbolic paraboloid element is
developed using shallow shell formulation. The element has the essential
five degrees of freedom at each corner node.

The developed triangular hyper finite element is first applied to
analysis of a hyperbolic Paraboloid dam. The results for the deflections
and stresses are presented, and show that the developed element gave a
very good agreement results. This element is then used to analyze a
hyperbolic Paraboloid groined vault and the various components of
internal forces are given.

The effect of a curved overhanging free edge of the groined vaults on
the various internal stresses along the groined arch shell are studied, and
the various internal forces along the groin arch are presented.

It is found that there is a significantly greater change in the bending
moments than in the axial forces as the overhang increases from 0 to 6 m.
There is also a slight shift of the point of maximum moment to wards the
support.
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