An-Najah National University
Faculty of Graduate studies

Knowledge and attitude toward genetic counseling and

 testing Among parents of children with genetic disorder in the West Bank/PalestineBy
Falasteen Yaseen

Supervisor
Dr. Eman Shawish

This Thesis is Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Public Health, Faculty Of Graduate Studies, An-Najah National University, Nablus / Palestine

Knowledge and attitude toward genetic counseling and testing among parents of children with genetic disorder in the West Bank/Palestine

By

Falasteen yaseen

This Thesis was Defended Successfully on 19/7/2017 and approved by:

Defense Committee Members

1. Dr. Eman Shawish / Supervisor
2. Dr. Raja' Jarrar / External Examiner
3. Dr. Mariam Tell / Internal Examiner

Signature

$$
\begin{gathered}
\text { III } \\
\text { الإهداءء }
\end{gathered}
$$

بسم الله الرحمن الرحيم

سنين مرت على دخولي كلية الاراسات العليا واخر المشوار حان بعد الكثير من الجه المبذول للوصول الى اعتاب التخرج من هنا الصرح العمي الثشامخ بأقسامه وموظفيه كلا بكانه، سنيني مرت مرور الكرام ولكن ايامي كانت زاخرة بالأصدقاء والمعارف والزملاء والمدرسين كلا له ذكرياته الخاصة منقوشة في وجداني وحياتي العملية والمهنية ، لا اسغني الا إن اتقام بالثكر الجزيل لكل من ساهم في دعمي بحرف أو كلمة في مسيرتي التعليمية ، لكل من ساهم في وصولي للمعرفة العلمية والعملية . اجتهت وقضيت اوقاتي في الوصول لهذّه اللحظة .

اليكم احبتي عائلتي زوجي وولايّ
الاين ساندوني بكل مراحل حياتي وما زالوا

اليكم اهدي هذه الرسالة

Acknowledgment

I am very much thankful to my supervisor, Dr. Eman Alshawish for her encouragement, guidance and support from the initial to the final level, who enabled me to understand and develop the subject. Also I would like to thank Al-Najah National University for supporting this work and allowing me to conduct my research, and I wish to bay my appreciation to all hospitals' departments and nurses and families for their cooperation. Finally I offer my regards and blessing to all of those who supported me or give me any help especially my family and my husband

园
 أنا الموقع//ة ادناه، مقلدم/ة الرسالة التّي تحمل العنوان :

Knowledge and attitude toward genetic counseling and testing among parents of children with genetic disorder in the West Bank/Palestine

$$
\begin{aligned}
& \text { أَّرَ بأن ما اشُتمت عليه هذد الرسلاة إنما هي نتّاج جهاي الخاص ، باستشاء ما تمت الإشارة } \\
& \text { إليه حيثّا ورد ، وان هذه الرسالة ككل ، أو أي جزء منها لم يقدم لثيل أي درجة أو لقب علمي } \\
& \text { أو بشُّي لـى أية مؤسسة تعليمة أو بشثيّة أخرى . }
\end{aligned}
$$

Declaration

The work provided in this thesis , unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification .

Student's Name :

اسم الطابة:
che cinemb. التوقيع:
Signature :

Table of Contents

Number	Topic	Page
	Dedication	III
	Acknowledgement	IV
	الاقرار	V
	Table of content	VI
	Table of Figures	I X
	List of tables	X
	Annexes	X I
	Abbreviations	X II
	Abstract	X III
	الخلاصة	ب
	Chapter 1: Introduction	1
1.1	Background	1
1.1.1	Genetic disorder	1
1.1.2	Genetic counseling	1
1.1.3	Genetic testing	2
1.1.4	Consanguinity	3
1.2	Thalassemia as successful example	4
1.3	Significance of the problem	4
1.3.1	Genetic disorders in Palestine	5
1.3.2	Reported diseases in Palestine	7
	Chapter 2: Literature review	8
2.1	Search strategy and keyword	8
2.2	Inclusion and exclusion criteria	8
2.3	Systematic review	9
2.4	Literature review discussion	10
2.5	Frame work	15
	Chapter 3: Methodology	16
3.1	Introduction	16
3.2	Study design	16
3.3	Hypothesis	16
3.4	Aim And objectives	17
3.5	Study setting	17

VII

3.6	Sampling and population	18
3.6.1	Population	18
3.6 .2	Sampling	18
3.7	Data collection	18
3.8	Data analysis	19
3.8.1	Variable types and definitions	21
3.9	Validity and Reliability	22
3.9.1	Piloting	22
3.9 .2	Translation	22
3.10	Reliability	23
3.11	Ethical considerations	23
3.12	Strength and limitation	24
3.12 .1	Strengths	24
3.12.2	Limitations	24
3.13	Summary	24
	Chapter 4: Results	26
4.1	Introduction	26
4.2	Sample distribution	26
4.3	Descriptive	28
4.3.1	Demographic data	28
4.3.2	Associated risk factors	32
4.3 .3	Knowledge evaluation	35
4.3.3.1	Parents' knowledge	35
4.3.3.2	Evaluation and scoring	39
4.3.4	Parents attitudes	40
4.4	Inferential statistics	44
4.4.1	Introduction	44
4.4.2	Chi square test	44
4.4.3	Correlation	44
4.4.4	ANOVA test	44
4.4.5	Results of Chi square analysis	45
4.4.6	Number of sick children and knowledge and attitudes	50
4.4.7	Number of lost children and knowledge and attitudes	51
4.4.8	Educational level and knowledge	52
4.4.9	Parents' income and knowledge	53
4.5	Summary	53

VIII

	Chapter 5: Discussion	56
5.1	Introduction	56
5.2	Socio-Demographic characteristics	56
5.3	Associated risk factors	57
5.4	Parent's knowledge	58
5.5	Parent's attitudes	60
5.6	Knowledge and attitudes	61
5.7	Number of sick or lost children and attitudes	65
5.8	Attitudes towards prenatal testing	66
5.9	Attitudes towards use the IVF	67
5.10	Conclusion	67
5.11	Recommendation	68
5.12	Summary	69
	References	72

IX
Table of Figures

Number	figure	Page
Figure (2.1)	Systematic review	7
Figure (2.2)	Frame work	12
Figure (3.1)	Distribution	21
Figure (4.2)	Knowledge level	32

List of Tables

Table Number	Title	Page
Table (2.1)	Key words	6
Table (3.1)	Variable types and definitions	17
Table (3.2)	Stability	19
Table (4.1)	Demographic data	22
Table (4.2)	Associated Risk factors	25
Table (4.3)	Knowledge evaluation	29
Table (4.4)	Knowledge level	32
Table (4.5)	Chi square significant table	36
Table (4.6)	Correlation	40
Table (4.7)	Number of sick children and attitudes	41
Table (4.8)	Number of deceased children and attitudes	42
Table (4.9)	Educational level and attitudes	43
Table (4.10)	Income and knowledge	44

Annexes

Number	Annex	Page
1.	Questionnaire	80
2.	Tables	87
3.	Chi-square analysis	89
4.	Table of Literature Review	96

Abbreviations

Abbreviation	Full Name
DNA	Deoxyribonucleic acid
IVF	In Vitro Fertilization
PMC	Palestine Medical Complex
ANOVA	Analysis or variance
IRB	Institutional Review Board
MOH	Ministry of Health
SPSS	Statistical Package for the Social Science
ICU	Intensive Care Unit
PCBS	Palestinian Center Bureau of Statistics
CHD	Congenital Heart Defect

XIII

Knowledge and attitude toward genetic counseling and testing among parents of children with genetic disorder in the West Bank /Palestine

By

Falasteen Yaseen
Supervisor
Dr. Eman Shawish

Abstract

Introduction: Genetic disorder is a health problem that caused by a defect in theindividuals' DNA. In Palestine there is no specific statistics about mortality rate of children who suffer from genetic disorders.

Although, there is a big chance to catch a lot of genetic, because of consanguinity rate which exceed (44\%) (Hussein, 2014). It is notacable that the newcase from the sane family have been increased without any genetic counseling or prevention. The insufficiency of public health services directed to the prevention of genetic disorders, with the lack of health care increase the problem. Therefor, the study aim is to describe parents knowledge and attitudes toward genetic counseling and testing and to determine if knowledge affect attitudes.

Methodology: A quantitative descriptive cross sectional study via a questionnaire, quiz test (to evaluate knowledge), and likert scale (to evaluate attitudes was used in this study, to discover the relationship between variables. The sample size was 121 participants who attended the two hospitals (Palestine Medical Complex and Al-Najah National Hospital) from (Feb\} 2 0 1 6 to Sep\2016).

Results: The study showed that there is a significant relationship between parents educational level and their knowledge regards genetic disorders (P. 0.003). The most significant risk factors for genetic disorder were ignoring premarital genetic testing for (99.2\%) ; consanguineous marriage (71,1\%) and family history of genetic problem for (55.4\%).

The study found that most of parents of children with genetic problems had good knowledge regards genetic disorders (63\%), Whereas, the attitudes of these parents were positive for a majority of items that measure attitude level (81% for agreed answer). The relationship between knowledge and attitudes was positive and research hypothesis regards the effect of knowledge on attitude had been accepted. However, here was no association between number of children whose affected or lost by genetic problems and the parents knowledge and attitudes in this study.

This study recommended to increase awareness of parents about genetic importance of premarital testing which avoid consanguinity and these are the golden tool to decrease genetic problem in Palestine.

Key words: knowledge, attitudes, parents, genetic testing, genetic counseling, children, disorder.

Chapter 1

Introduction

1.1 Background:

In any pediatric hospital, there are children suffering from a variety of illnesses and diseases. This is particularly true for children with chronic diseases, which are mainly caused by genetic transmission. However, these genetic diseases can be prevented or limited using simple, low-cost methods and technologies. These methods are often cheaper and easier to implement than treatment, especially since the field of genetic sciences in Palestine has advanced greatly, and genetic labs have become more available. Additionally, individuals affected by genetic conditions are now more likely to seek information about inheritance and risk factors (Harvey et al., 2007).

Before the development of modern genetic technologies, genetic counseling was the only option, and health professinals attempted to characterize the genetic behavior of diseases based on family history (WHO, 2015).

1.1.1 Genetic disorders:

A genetic disorder is a health problem that is caused by an abnormal defect in the individual's DNA. Abnormalities can be as small as a single mutation in just one gene, or they may involve the addition or subtraction of entire chromosomes (University of UTAH Health Sciences, 2015).

1.1.2 Genetic counseling:

Genetic counseling is a service that provides information and advice about genetics conditions. These conditions are caused by changes (mutations) in known genes, which are usually passed down through a family. It is conducted by healthcare professionals who have been specially trained in the science of human genetics (a genetic counselor or a clinical geneticist) (WHO, 2015).

Genetic counseling provides the individual or family with information and support regarding health concerns that run in their family. Genetic counseling may involve the diagnosis of a genetic condition, as well as the provision of information and supportive counseling (advice and guidance) by a team of health professionals. This enables families and individuals to better adjust to the diagnosis. Follow-up counseling is available to ensure ongoing support, to review previous information, or to answer new questions as they arise (NHS Choices, 2014).

Individuals who come to see genetic counselors may be people who have a disorder themselves and are concerned about their family and vice versa, couples with an affected child who wish to plan another pregnancy, couples who are planning their first pregnancy and wish to understand the disease susceptibility of their future child, as well as couples who are planning a pregnancy late in life and want to assess any potential risks. Genetic counseling services may be useful at all stages of development. For instance, services can be available for infants undergoing screening,
teenagers being tested for Thalassemia genes, or adults assessing their predisposition for genetic disorders as they enter their mid-life stage, and attempt to make the appropriate lifestyle changes (WHO, 2013).

1.1.3 Genetic testing:

Genetic testing is a type of medical test which identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition, or help determine a person's chance of developing or passing on a genetic disorder (WHO, 2015).

Genetic testing is voluntary. Testing has benefits as well as limitations and risks; therefore, the decision to be tested is a personal and complex one. A geneticist or genetic counselor can help by providing information about the pros and cons of the test, and by discussing the social and emotional aspects of testing (WHO, 2015).

Genetic testing is often used for other reasons as well. For example, carrier testing can be used to help couples learn if they carry a gene mutation for a disorder they might pass on to a child, such as cystic fibrosis, sickle-cell anemia, or Tay-Sachs disease. Meanwhile, prenatal screening can be used to diagnose some conditions in babies before they are even born, such as Down syndrome (WHO, 2013).

Newborn screening is the most widespread form of genetic testing. Newborns are screened for a number of inherited conditions, such as phenylketonuria (PKU), cystic fibrosis, sickle cell disease, and others. The tests required vary from state to state (WHO, 2013).

1.1.4: Consanguinity:

Consanguinity, or intermarriage, is defined as the marriage of two relatives, second cousins or two who are more closely related (NCHPEG, 2013). Consanguineous marriages have been practiced since the early existence of modern humans (Tadmori et al., 2009). It is a rooted social trend among one-fifth of the world's population. This tradition is mostly practiced in the Middle East, West Asia and North Africa, as well as among emigrants from these communities now residing in North America, Europe and Australia (Hamamy, 2012).

Until recently, consanguinity was widely practiced in several global communities, with a variety in rates depending on religion, culture, and geography (Tadmori et al., 2009). Arab populations have a long-held tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, especially first cousin marriages which may reach 25-30\% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could influence some reproductive health parameters such as postnatal mortality rates, and rates of congenital malformations (Tadmori et al., 2009)

1.2 Thalassemia as a successful example:

Thalassemia or Mediterranean anemia is endemic in almost all Arab countries. This is probably due to the historical presence of malaria in the region, and the high levels of consanguinity (WHO, 2014).

In the year 2012, there were 815 Palestinian patients suffering from anemia, and 16,000 carrying the genetic trait. The number of Thalassemia patients in Palestine before the year 2000 was 45 . This number decreased to five in 2000, and to zero after 2013 (PCBS, 2014).

This excellent achievement is related to the application of premarital genetic counseling to avoid new cases of Thalassemia. The experience of Thalassemia offers strong evidence in support of the effectiveness of genetic counseling to prevent or reduce future cases of genetic disorders.

1.3 Significance of the problem:

In the West Bank, pediatric wards in governmental and private hospitals have little to no statistics about the mortality rate of children suffering from genetic disorders. In some occasions, many members from the same family have been diagnosed with the same disorder. From the researcher's own experience as a nurse in the pediatrics suit in the Palestinian Medical Council, new children are often born with the same genetic diseases as previous siblings and family members, without the families being offered any genetic counseling or any prevention tools.

Unfortunately, only few epidemiological population studies were conducted to investigate the prevalence of genetic disorders among Palestinians (Abu Lebdeh and Teebe, 2010), especially for thalassemic and hemophiliac patients (PHIC, 2013).

On the level of the Arab world, a study was conducted by Ghazi Tadmori summarizing data from industrialized countries, which indicated that significant genetic diseases or birth defects may affect approximately 3\% of all pregnancies, account for up to 30% of pediatric hospital admissions, and cause about 50% of childhood deaths (Tadmori, 2010).

1.3.1 Genetic disorders in Palestine:

As an eastern society where consanguintity marriage is very common, the Palestinian society is particulalry prone to genetic disorders (Abu-Libdeh and Teebe, 2010). The Palestinian population is characterized by high consanguinity rates (about 44\%), large family size (5.5 children per family), and pregnancies in women over the age of 45 . These factors result in the high prevalence of genetic disorders among Palestinians (Hussein, 2014).

Additionally, insufficient public health services directed to the prevention of congenital and genetic disorders, as well as inadequate health care before, during, and after pregnancy, especially in low income countries, are all factors that increase the chances of genetic disorders among newborn children (Al-Gazali, 2006).

Services aiming to limit and control genetic disorders are constrained by certain cultural, legal, and religious limitations. Examples include the cultural fear of families with genetic diseases being stigmatized within their community, and the legal restrictions on selective termination of pregnancy of an affected fetus (Al-Gazali, 2006).

There is a need for easy public access to health resources, including the knowledge of the types of human diseases and methods to decrease and manage them. Misinformation or insufficient information can affect the public's impression about the fundamental concepts genomics, while an informed public can influence policy makers in the development of guidelines, and address the ethical, social and legal issues raised by expanding genomic technologies (WHO, 2015).

Sometimes, health professionals are unable to accurately diagnose a genetic condition. When this happens, physicians will say that a patient has an undiagnosed or rare genetic condition (NIH, 2011).

There is an advanced genetic lab in Al-maqased Hospital, where very rare genetic disorders are discovered. The genetic disease specialists summerized genetic disorders among Palestinians in the book "Genetic Disorders Among Arab Population" (2010). These diseases and disorders briefly are:
"Hemoglobinobathy, Familial Meditranian Fever, Cystic Fibrosis, Phenylketonuria, Bardet-Biedle Syndrom, Meckel Syndrom, Lysosomal Disorder, Familial Hydrocephalus, Genetic Disorders Causing Blindness,

Glansmann's Tthrompocytopenia, Nesidioblastosis (pancriatic disorder), Inborn Errors of Metabolism (46 defferent metabolic diseases), Cancer, Osteogenesis imperfecta" (Abu-Libdeh and Teebe, 2010).

1.3.2 New diseases reported among Palestinians:

Interestingly, there has been a number of new genetic diseases and disorders reported among Palestinians. These include:
"Limb/Pelvis Hypoplasia/aplasia Syndrom, Microcephaly with Normal Intelligence, Microfhthalmia, Disordered Pigmentation, Spastic Paraplagia, Hypogonadotropic Hypogonadism with Mental Retardation and Skeletal Abnormalities. Majeed Syndrom (congenetal deserthropiotic anemia type (1)) with chronic recurrent ostiomyelitis and sweet's syndrom" (AbuLibdeh and Teebe, 2010).

From the resaercher's point of view, these diseases deserve to be studied from several aspects. It is especillay important to become familiar with the knowledge and attitudes of parents and caretakers of the sick children with genetic problem.

In fact, genetic disorders are a big social, health, and economic problem. It is continuously increasing, and patients' families are often in the center of the problem, as well as the center of the solution. It is therefore important to become familiar with their knowledge and attitudes toward genetic disorders.

Chapter 2

Literature Review

2.1. Search strategy and key words:

Science Direct, PUBMED, Google Scholar, and HINARI are all databases that were used to research the body of literature on the topic, and to write the literature review.

The keywords used in the research were: knowledge, attitude toward genetic counseling, testing, awareness about genetic counseling and testing, perception toward genetic counseling, testing, family, parents, relatives, children, genetic diseases, genetic counseling, and genetic problems. Table (1) shows how these keywords were combined in the research.

Table (2.1): Key words:

No	Term	Combined with
1	Knowledge OR attitude OR awareness OR perception.	
2	Genetic counseling OR genetic testing OR genetic screening.	And
3	Family OR mothers OR parents OR relatives.	
4	Genetic disorders OR genetic disease OR genetic problems.	

2.2. Inclusion and exclusion criteria of articles:

A systematic review was conducted in order to capture the most relative articles to this research. Both qualitative and quantitative studies were included; some articles were excluded after reviewing the abstract, while
others were excluded after reviewing the entire article. The systematic review targeted articles published between 2005 and 2017. However, some articles were included in the literature review despite being published before 2005, as they were valuable and closely related to the topic.

2.3. Systematic review:

The following diagram (figure 1) showcases how this systematic review of the literature was conducted. After applying the inclusion and exclusion criteria, a total of 23 articles were selected for the review.

2.4. Literature Review Discussion:

2.4.1. Knowledge and attitudes about genetic testing and genetic counseling:

A knowledge, attitudes, and practice (KAP) study was conducted in the Kingdom of Saudi Arabia (KSA) in 2006 to assess knowledge of and attitudes toward premarital counseling. The study revealed that most subjects supported the application of premarital screening in KSA (Alam, 2006). Two years later, an interventional study (educational program) assessed the knowledge on the topic before and after the implementation of the educational campaign. The study found that knowledge about genetic counseling and testing was lower before the campaign, and significantly increased after the educational program (Ibrahim, et al. 2011).

Another cross-sectional study in the Netherlands used a questionnaire and a DNA test to conclude that older and lower-educated patients had less knowledge about genetic issues. Meanwhile, attitudes toward genetic testing and counseling were rather positive, and higher levels of genetic knowledge were associated with a more positive attitude toward genetic counseling (Morren and Rijken, 2006).

Another knowledge and attitude follow up study was conducted in the Netherlands over the span of two years, from 2002 to 2004. The study was done among patients of asthma, diabetes mellitus, and cardiovascular disease. Perceived knowledge on DNA-testing did not increase over the
span of the study, and attitudes toward genetic testing also were rather consistent. Little medical genetic knowledge as opposed to social genetic knowledge seems to be a predictor for a more reserved attitude toward genetic testing (Calsbeek et al., 2007).

Another knowledge and attitude study conducted in Ohio (US) in 2014 among parents of children with congenital heart defect showed that 73.8% of parents had accurate knowledge about the disease. There was a significant positive association between the accuracy of parents' knowledge, and their educational level and household income. Attitudes toward the health concerns of genetic testing were favorable, with about 57% of parents agreeing that genetic testing should be used for managing health care and finding cures for diseases (Fitzgerald-Butt et al., 2014).

Finally, a study was done in Australia in 2013 among Parkinson's disease patients to evaluate their knowledge and attitudes toward genetic testing. The level of knowledge was relatively low (37% accurate responses), but attitudes were positive. The vast majority of patients (97\%) supported diagnostic testing, while 90% would undertake a genetic test themselves. Support for predictive tests was lower (78\%), and prenatal genetic testing had the least support (58\%) (Scuffham et al., 2013).

2.4.2 Attitudes of families which have experienced genetic problems:

A study in Finland by Boardman (2014) revealed that the Finnish population in general, and family members of patients with genetic disorders in particular, have a favorable attitude toward genetic testing
(Hietala et al., 2000). In addition, a communication study done in America in 2007 showed that subjects who have a known history of genetic mutations communicated positively about genetic issues during counseling and testing (Ellington and Maxwel, 2006).

A study about cystic fibrosis (CF) found that the majority of affected families reject selective abortion for CF , and that many will curtail childbearing rather than use prenatal diagnosis (Wertz and Janes, 1992). The University of Central Lancashire in 1997 in UK studied the attitudes of deaf adults toward genetic testing for hereditary deafness. Participants had negative attitudes toward genetic testing, and said that they would rather have deaf children (Middleton and Hewison, 1998). This seems to contradict the findings of a study done in the USA in 2000, which showed that there was strong interest by families in genetic testing for deafness (Brunger et al., 2000). It also contradicts the results from the study in the Netherlands which examined the genetic knowledge and attitudes of patients with chronic diseases, and showed that attitudes toward genetic testing were rather positive, especially among younger and higher educated patients (Morren and Rijken, 2006).

2.4.3 Parents' attitudes toward prenatal testing and abortion:

All previous studies were conducted among families, however, in 2015, a comparative study was conducted among university students in Israel. Using Likert scale, the study compared students' attitudes towards genetic testing based on three aspects: their gender, their field of study, and their
religious affiliation. The most influential factor was found to be the religious affiliation of the student. Religious students, especially those who do not study life sciences (LS), place less trust in genetic tests than secular students and students studying LS. Students of LS show more critical thinking towards genetic testing than others. Gender was the least influential factor, showing a mixed trend of influence (Siani and Assaraf, 2015)

A study about prenatal testing used qualitative interviews and found that for families living with a case of spinal muscular atrophy, decisions against selective termination of pregnancy after prenatal testing were made by family members themselves (Boardman, 2014). However, there was high acceptability for prenatal diagnosis in b-Thalassemia afflicted families, and all couples with affected fetuses opted for abortion (Thawabteh et al., 2005).

2.4.4 In Vitro Fertilization (IVF) and genetic testing:

A study was conducted in the United Kingdom about pre-implantation diagnosis and other reproductive options in IVF to study attitudes of male and female carriers of recessive disorders. The majority of participants did not feel that pre-implementation genetic testing and diagnosis was the most useful option in their situation, especially for those who would not consider a termination (Snowdon and Green, 2000).

A German study analyzed the results of chromosome analysis and genetic counseling of infertile couples referred to genetic testing before undergoing
intracytoplasmic sperm injection. The study found a high rate of chromosomal abnormalities in female patients (Kaiser and Kiesel, 1997).

2.4.5 Genetic disorders: prevalence and statistics.

Ghazi Tadmori mentioned that there are around 752 genetic diseases in the Arab world. He further explained the data from industrialized countries, which showed that significant genetic diseases or birth defects may affect approximately 3% of all pregnancies, account for up to 30% of pediatric hospital admissions, and cause about 50% of childhood deaths (Tadmori, 2010).

Among the Palestinian population, Dr. Bassam Abu. Lebdeh and Dr. Ahmad Teebe highlighted about 98 types of genetic disorders, some of which are newly discovered mutations. They recommended increasing research and public education programs around issues of genetic diseases and genetic testing (Abu-Libdeh and Teebe, 2010).

2.4.6 Psychology and genetic counseling:

Elina Rantanen researched the literature to understand the expectations and concerns around genetic testing and counseling. The ideal genetic counseling seems to consist of information about the test, the condition, and the risks and their management. It also offers support in adjusting to this information, and in decision-making process concerning the test and its result (Rantanen, 2014).

To support these conclusions, another literature review study explored the psychological impact of genetic testing. The study found that highly
specific information provided by genetic testing can empower both clinicians and patients to develop behavioral strategies with the greatest impact on reducing disease morbidity and mortality (Tercyak et al., 2002). A meta-analytic review to discover the impact of genetic counseling found that genetic counseling significantly decreased anxiety (Meiser and Halliday, 2002).

2.4.7 The situation of genetic counseling and genetic testing:

Kocha and Svendsenb wrote about genetic counseling as imperative in disease prevention. They suggested that "solutions provide the framework within which certain problems can be stated (Kocha and Svendsenb, 2005). To evaluate genetic testing and counseling, a study conducted in the USA in 2004 found that traditional practice philosophies that have been longstanding in genetic counseling are being re-conceptualized to accommodate the shifts in genetics research brought about by the Human Genome Project. For future directions they recommended the implementation of more sophisticated research methods to overcome some of the existing limitations in the literature (Wanga et al., 2004).

2.5 Framework:

The framework was conceptualized according to the literature review, and helped the researcher develop the questionnaire. Figure 2 shows a flow chart of the development of the framework.

Figure (2.2): Framework

Chapter 3

Methodology

3.1 Introduction

This chapter describes the research and the aspects of the methodology, it identifies population, design, setting, data collection and analysis, validity and ethical considerations.

3.2 Study Design

A quantitative descriptive cross-sectional survey was used in this study in the form of a questionnaire. This design is the most appropriate to study knowledge and attitudes, and to investigate the relationships between different variables. The questionnaire covered all variables of the research, as shown in annex (1).

3.3 Hypothesis

1.Parents with high knowledge about genetic testing and counseling are expected to have positive attitudes toward it, and be more likely to use it.
2. Parents with sick children have more knowledge, and a more positive attitude toward genetic counseling.
3. Parents who have lost one or more children due to a genetic problem are more knowledgeable, and have more positive attitudes toward genetic counseling.

3.4 Aim and objectives:

3.4.1 Aim:

To determine parents' knowledge and attitudes toward genetic counseling and testing, and to determine if knowledge affects their attitudes.

3.4.2Specific objectives:

1.To assess parents' knowledge about genetic counseling and genetic testing.
2.To survey the associated risk factors for the emergence of genetic diseases.
3.To evaluate the effect of demographic data on parents' level of knowledge.
4.To explore parents' attitudes toward genetic counseling.
5.To investigate the relationship between the level of parents' level of knowledge about genetic testing and counseling, with their attitudes towards genetic counseling.
6.To compare the levels of knowledge of parents who have lost children due to genetic conditions or who have children diagnosed with genetic conditions, and parents who do not have these experiences.

3.5 Setting:

The study was conducted in two hospitals in the West Bank. The first hospital is Al-Najah National Hospital in Nablus (private hospital),
particularly in the pediatric ward and pediatric genetic clinic. The second is the Palestine Medical Complex (PMC) in Ramallah (governmental hospital), in the pediatric suite (Neonate ICU, Pediatric ICU and Pediatric ward) and pediatric clinic. Both hospitals are assumed to cover cases from all cities of the West Bank because they receive referrals from all of governmental and private hospitals.

3.6 Sampling and Population

3.6.1 Population

The population is all families of children who were admitted to pediatric suites in Al-Najah Hospital and PMC as cases of genetic disorders from the $15^{\text {th }}$ of February to the $15^{\text {th }}$ of September 2016.

3.6.2. Sampling and Sample size

Sampling Method

This study used a convenience sampling method. All cases present in both hospitals during the research period (15\2\2016-15\9\2016) were included. The researcher visited both hospitals to collect data. If the same family happened to have more than one file, the researcher considered it as a single case.

Sample Size

Subjects from the consecutive sample were a total of (121) from both hospitals. There was (140) subjects from the convenient sample, (19) of them were excluded, (10) subjects were excluded because they were
recurrent admission cases, and (9) subjects were brothers of the same family.

3.7 Data Collection

The data collection period was from $15 \backslash 2 \backslash 2016$ to $15 \backslash 9 \backslash 2016$ using a questionnaire with four sections:
1.Demographic data.
2.Potential risk factors: this section explains the risk factors for having genetic disease.
3.The knowledge section: this section is essentially a quiz that aims to evaluate the awareness of parents. There is no literature discussing a cut-off point to determine parents' knowledge levels. Therefore, results were summed into three groups (high, moderate and low). Details are given in page 36.
4. The attitudes section: this section is used to evaluate parents' attitudes toward genetic consulting and genetic testing. It also aims to understand what future plans parents have in order to avoid having more children with genetic conditions. A Likert scale questionnaire was used with five scales: (strongly agree, agree, I don't know, disagree, strongly disagree).

The researcher and supervisor built the questionnaire based on the literature review, with help from many experts in research and the field of genetics. To fill the questionnaire, the researcher met the families, asked the mother or father the different questions, and documented their answers.

3.8 Data analysis

The statistical analysis software, SPSS version 19, was used to analyze the data.

The questionnaire included the following sections:
1.Independent variables: education, address, age, number of lost children, number of sick children, income and knowledge.
2.Dependent variables: parents' attitudes toward genetic testing and counseling.

Parents' knowledge had been evaluated by a quiz, the quiz had ten multiple choice questions, and a total of ten marks, each correct answer equals one mark, with a scoring scale ranging from 0 to 10 . Scores were classified into three categories: good, moderate, and weak knowledge.

Parents attitudes were studied using a Likert scale questionnaire, which used five responses to answer questions. These were: strongly agree, agree, undecided, disagree, and strongly disagree. Positive attitudes were indicated by the answers: agree and strongly agree, while negative attitudes were indicated by disagree and strongly disagree.

Knowledge and attitudes relationship studied by (chi square) and the significant results studied by correlation to determine the type of relationship.

Associated factors had evaluated just by frequency.

3.8.1 Variable types and definitions:

Table (3.1) variable types and definitions:

Variable	Type of variable	Conceptual definition	Operational definition
Genetic $\underline{\text { disorder }}$	Categorical Nominal	Is an illness caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital) (Oxford, 2015).	A disease or deformity caused by genetic issue (Ellington et al., 2006).

Knowledge	Categorical Nominal	Facts, information and skills acquired through experience, or education, the theoretical or practical understanding of a subject (Oxford, 2015).	A score of answers of parents on many questions about genetic counseling and testing (Ibrahim et al., 2011).
Attitude	Categorical Nominal	A settled thinking or feeling about something (Oxford, 2015).	If you accept or refuse genetic testing and counseling and your conviction toward it (Ibrahim et al., 2011).
Counseling	Categorical Nominal	The provision or professional assistance or guidance in resolving personal or psychological problems (Oxford, 2015).	Asking a consult or advice from a specialist (Ellington et al., 2006).

Genetic testing	Categorical Nominal	The condition of being of the same blood; relationship by descent from a common ancestor; blood-relationship (Oxford, 2015).	DNA exam to avoid genetic disorder (Ellington et al., 2006).
Parents	Categorical Nominal	A person's mother or father (Oxford, 2015).	Mothers and fathers of children with genetic disorders (Ellington et al., 2006).
Consanguinity	Categorical Ordinal	Relationship by blood or by a common ancestor (Oxford, 2015).	Consanguinity, or intermarriage, is defined as the marriage of two relatives, second cousins or more closely related individuals (NCHPE,G2013).

3.9 Validity

3.9.1 Piloting:

The questionnaire was given to seven experts in the genetic research field to critique it and provide their suggestions. All feedback and comments were incorporated into the final questionnaire design. A pilot study was then conducted with ten families who have one or more children with a genetic disorder. The goal of the pilot study was to evaluate the questionnaire and to seek the families' feedback. These ten families were chosen randomly, five from PMC and the other five from Al-Najah National Hospital. No changes were made to the questionnaire's design as a result of the pilot study. The pilot sample was included in the main sample, and both were analyzed together.

3.9.2 Translation

The questionnaire was translated from Arabic to English by a specialist in the English language. Another specialist then translated it to Arabic without any significant differences. Lastly, a doctor specialized in genetics reviewed the final questionnaire, and gave positive comments.

3.10 Reliability

Cronbach's alpha is a measure of internal consistency, that is, how closely related a set of items are as a group. It is not a statistical test, but a coefficient of reliability (or consistency). It can be written as a function of
the number of test items and the average inter-correlation among the items (IDRE, 2016)

Stability of the scale, or the internal consistency, was calculated using Cronbach's alpha coefficient (Cronbach Alpha). The stability coefficient was 0.72 , which means the tool of the study has good stability.

Case Processing Summary			
		No.	\%
Cases	Valid	119	98.3
	Excluded	2	1.7
	Total	121	100.0

Table (3.2): Stability

3.11 Ethical considerations

The researcher obtained the permission of Al-Najah University's Institutional Review Board (IRB) before starting this study. Additionally, the thesis supervisor oversaw the development and implementation of all other steps throughout the research. Permission to conduct this study was also obtained from the directors of both the Palestine Medical Complex, and Al-Najah University Hospital.

The subjects were each given a consent form to sign prior to starting the questionnaire. All subjects had the option to withdraw from the study at
any point they wanted. In addition, no subject was obliged to provide their name or any piece of private information. Protecting the privacy of the subjects was taken into consideration in all steps of the data collection and analysis process.

The completed questionnaires and any information on the subjects are carefully kept in the researcher's office. The only people with access to this data are the researcher and the supervisor; however, they do not have the right to publish any of the subjects' private information.

3.12 strengths and limitation

3.12.1 Strengths of the study

1.Palestinian researchers rarely explore this topic, so it is still a relatively young research field.
2.This study is unique because it deals with parents of sick children.
3.This study will highlight the most important factors that help improve parents' knowledge about genetic counseling and testing.

3.12.1Limitations of the study

1.Patients of children with physical deformities due to genetic conditions could not be included, as they usually visit physiotherapy centers not hospitals.
2.Geographic limitations: the study was conducted in two hospitals only.
3.Small sample size.

3.13 Summary

The main method of this research was a quantitative, descriptive, crosssectional survey. This method was the most suitable to achieve the aim of this study, which was to determine parents' knowledge and attitudes toward genetic counseling and testing, and if knowledge affects attitudes.

The study was conducted in two hospitals: the first is governmental (PMC), and the other is private (AL- Najah National Hospital). A questionnaire was used to collect data from $15 \backslash 2 \backslash 2016$ to $15 \backslash 9 \backslash 2016$, the data was then analyzed using SPSS version 19. Ethical research standards were followed and taken into consideration.

Knowledge was measured by a quiz and attitudes by Likert scale. The relationship between knowledge and attitudes was measured using chi squire

Chapter 4

Results

4.1. Introduction:

Data from the descriptive cross-sectional study was analyzed using oneway ANOVA to assess the relationships and correlations between dependent and independent variables.

The first section of the questionnaire collected demographic data, which was then analyzed as descriptive data, and the variables treated as independent variables. Variables from the second section were also considered independent. These included causes and main risk factors of genetic problems. The third section was essentially a quiz to evaluate parents' knowledge, while the fourth section was a Likert scale used to discover parent' attitudes toward genetic testing and counseling. SPSS version 19 was used to analyze the data. The filter question "How many children with genetic disorders do you have?" helped in analyzing the data. ANOVA as a parametric test.

4.2 Sample distribution:

As figure 3 shows, the sample is normally distributed so it is suitable to use

Figure (3.1): Sample distribution

4.3 Descriptive statistics

4.3.1 Demographic data:

Table (4.1): Demographic data:

Demographic Data			
Variables		No.	$\%$
1.Hospital	P MC	42	35
	A l-Najah	79	65
	City	37	30.6

	Camp	18	14.9
	Bedouin	7	5.8
3.Gender	Male	30	25
	female	91	75
4.Age	≤ 20 years old	2	1.7
	21-30 years	54	44.6
	40-31years	52	43.0
	≥ 40 years old	13	10.7
5.Educational level	Primary school	8	6.6
	Middle school	30	24.8
	Tawjihi (Secondary)	34	28.1
	Diploma	17	14.0
	Higher academia	32	
6.Work	Employed	54	44.6
	Unemployed	67	55.4
7.Income	≤ 1500	19	15.7
	1500-2500	22	18.2
	2500-3500	38	31.4
	3500-4000	33	27.3
	> 4000	9	7.4
8.Number of children with genetic problem	One child	96	79.3
	Two children	23	19.0

	Three children	2	1.7
9.Genetic problem	Heart defect	10	8.3
	Diabetic	14	11.6
	Neurology	18	14.9
	Metabolic disorder	34	28.1
	Hemophilia	8	6.6
	Digestive	19	15.7
	Dermal	7	5.8
	Immunity	8	6.6
	Skeletal	3	2.5
10.Lost a child or children or child	Yes	35	28.9
	No	86	71.1
11.Number of children lost	One	27	77.1
	Two	4	11.4
	Three	2	5.7
	Four	0	0
	Five	0	0
	Six	2	5.7

Demographic data was collected using ten questions in the survey. The purpose of collecting this data is to discover if different demographic factors enhances parents' knowledge and attitudes (table 4).

The first question was used to indicate the distribution of subjects between the two hospitals. 35% of subjects $(\mathrm{n}=42)$ were in PMC, and $65 \%(\mathrm{n}=79)$ were in Al-Najah National Hospital. Additionally, 75% ($\mathrm{n}=91$) of subjects were females (mothers) and $25 \%(\mathrm{n}=30)$ were males (fathers). This is because individuals accompanying patients in pediatric wards tend to be women, particularly the mothers of the patients.

Near the half of subjects $(48.8 \%, \mathrm{n}=59)$ lived in villages, while $30 \%(\mathrm{n}=37)$ lived in cities, $14.9 \%(\mathrm{n}=18)$ in camps, and $5.8 \%(\mathrm{n}=7)$ were Bedouins nomads. The age of these parents ranged from 16 to 45 years old. Out of the total sample, 1.7% of parents $(\mathrm{n}=2)$ were 20 years old or younger, most of them ($44.6 \%, \mathrm{n}=54$) were in the $21-30$ age group, around $43 \%(\mathrm{n}=52)$ were in the 31-40 age group, and only 10.7% ($\mathrm{n}=13$) were older than 40 years old.

This study paid particular attention on the impact of the educational level of parents on their knowledge and attitudes toward genetic counseling and testing. About one third of subjects had low levels of educational, not exceeding the $12^{\text {th }}$ grade (secondary education or Tawjihi). Out of these parents, $6.6 \%(n=8)$ have only finished primary education, $24.8 \%(n=30)$ have only finished middle school, while $28.1 \% \quad(n=34)$ completed secondary school (Tawjihi). As for the subjects with education beyond the secondary school level, $14 \%(\mathrm{n}=17)$ completed a diploma program, while $26.4 \%(\mathrm{n}=32)$ had higher academic education.

It was also important to investigate the influence income has on knowledge and attitudes, therefore income data was collected. In this sample, 15.7% $(\mathrm{n}=19)$ of families lived on very low income (less than 1500 shekels a month). These families are considered to be living below the Palestinian poverty line. About $18.2 \%(\mathrm{n}=22)$ were in better conditions, and had an income between $1500-2500$ shekel a month. 31.4% of participants $(n=38)$ had an income of 2500-3500 shekel a month, and $27.3 \%(n=33)$ had an income of 3500-4000 shekels, which is considered a middle income level. However, only 7.4% of subjects $(\mathrm{n}=9)$ made what's considered a good income level, with more than 4000 shekel a month. Over half of the participants (55.4\%, $n=67$) had a job, while $44.6 \%(n=54)$ did not. This is because the majority of subjects were mothers 75% ($n=91$), who are often unemployed.

Families were also asked about the number of children suffering from genetic disorder. This was done to study if a complex problem affects the knowledge and attitude of parents. Most parents (79.3\% $\mathrm{n}=96$) had one affected child, $19 \%(n=23)$ had two children, and only $1.7 \%(n=2)$ had the maximum number of three children. The genetic diseases the patients suffered from were classified according to body systems as: congenital cardiac problems $(8.3 \%, \mathrm{n}=10)$, diabetes $(11.6 \%, \mathrm{n}=14)$, neurology $(14.9 \%$, $\mathrm{n}=18)$, metabolic disorders $(28.1 \%, \mathrm{n}=34)$ which are considered the most common in Palestine, hemophilia ($6.6 \%, \mathrm{n}=8$), gastrointestinal (15.7\%, ($\mathrm{n}=19$), dermal problems (5.8\%, $\mathrm{n}=7$), immune system problems (6.6\%,
$\mathrm{n}=8)$, and skeletal problems ($2.5 \%, \mathrm{n}=3$). Skeletal problems were the least common genetic problems.

Among these families, $28.9 \%(n=35)$ have lost children due to the same genetic problem while $71.1 \%(\mathrm{n}=86)$ did not. Most families who lost children lost one child $(77.1 \%, \mathrm{n}=27), 11.4 \%(\mathrm{n}=4)$ lost two, $5.7 \%(\mathrm{n}=2)$ lost three children, and $5.7 \%(n=2)$ lost six children.

4.3.2 Associated risk factors for genetic disorder:

Table (4.2): associated risk factors for genetic disorders

Associated risk factors			
Variables	N	$\%$	
	20 years or less	78	64.5
	$21-30$ years	41	33.9
	$40-31$ years	2	1.7
	40 years or more	0	0
2. Mother age when have	20 years or less	43	35.5
	$21-30$ years	76	62.8
	$40-31$ years	2	1.7
	40 years or more	0	0
3.Consanguineous	Yes	86	71.1
marriage	No	35	28.9
4.Level of consanguinity	First degree	34	39.5
	Second degree	40	46.5
	Third	12	14.0

5.Genetic test before marriage	Yes	1	0.8
	No	120	99.2
6.a The result	Positive	1	100
	Negative	0	0
7.Genetic problem with Relatives	Yes	67	55.4
	No	54	44.6
	Heart defect	6	9.0
	Diabetic	7	10.4
	Neurology	11	16.4
	Metabolic	16	23.9
	Hemophilia	7	10.4
	Digestive	9	13.4
	Dermal	7	10.4
	Immunity	4	6.0
	Skeletal	0	0
8. Do you live in an industrial Country?	Yes	8	6.6
	No	113	93.4
9.Did the mother do a detailed ultrasound?	Yes	65	53.7
	No	56	46.3
10.A Gestational age on detailed ultrasound	Less than 4 months	5	7.7
	4months or more	60	92.3

11.Did you receive information about genetic counseling and genetic problems?	No	66	54.5
	Yes	55	45.5
	A health center	29	43.9
	Social media	22	33.3
	school	7	10.6
	The family	1	1.5
	A clerk	0	0
	Health lecture	5	7.6
	The people	2	3.0
	around		

This study wanted to investigate the main associated risk factors leading to genetic problems in Palestine, especially under the common culture of consanguineous marriage. A variety of associated factors were explored using ten questions in the survey (annex 1) and analyzed as shown in table (4.2).

Despite the well-known high levels of consanguineous marriages in Palestine, only one of the subjects (0.8%) underwent a genetic test before marriage, while $99.2 \%(n=120)$ did not. This is the most important association for genetic problems. Additionally, 55.4\% ($\mathrm{n}=67$) of the subjects had a family history of genetic disorders.

Genetic disorders of subjects relatives were classified into the same categories as those of the children. However, the percentages differ as follows: congenital cardiac problems ($9 \%, \mathrm{n}=6$), diabetes $(10.4 \%, \mathrm{n}=7)$, neurology (16.4\%, $\mathrm{n}=11$), metabolic disorders (23.9\%, $\mathrm{n}=16$) which are considered the most common in Palestine, hemophilia ($10.4 \%, \mathrm{n}=7$), gastrointestinal (13.4\%, $n=9$), dermal problems (10.4\%, $n=7$) and immune system problems $(6 \%, n=4)$. None of the relatives had skeletal problems. It is important to note that the distribution of genetic problems among relatives is similar proportionally to the distribution of problems among the sick children

Consanguinity was a common cause of genetic disorders, this was clear in this study, where more than two thirds of couples (71\%, $\mathrm{n}=86$) were relatives, and only $29 \%(\mathrm{n}=35)$ were not. In addition, $39.5 \%(\mathrm{n}=34)$ of couples had first degree marriages, $46 \% \quad(n=40)$ of consanguineous marriages were second degree, and $14 \% \quad(\mathrm{n}=12)$ were third degree consanguinity.

Another associated factor investigates is the mother's age at marriage. Most mothers $(64.5 \%, n=78)$ got married at 20 years younger, $33.9 \%(n=41)$ got married at ages between 21-30 years, and just $1.7 \%(n=2)$ got married between 31-40 years of age. The first child was born at the age of 20 or younger for $35.5 \%(n=43)$ of mothers, while most of them $(62.8 \%, n=76)$ gave birth to the first child between 21-30 years of age.

Industrial areas may affect human genes and lead to creating genetic mutation, therefore subjects were asked about whether they lived in industrial areas or not. The answer of $6.6 \%(n=8)$ of them was yes, and 93.4\% ($\mathrm{n}=113$) answered no. However, it cannot be ignored that Palestine is not an industrialized country, and that the presence of heavily industrialized areas is scarce.

Another important associated factor in protecting children from advanced genetic problems is lack of antenatal care. Early diagnoses of genetic conditions can increase the opportunity of effective therapy. A detailed ultrasound is an advanced eco test done to examine the fetus's organs. Half of the mothers in this study ($53.7 \% \mathrm{n}=65$) had this test done, while 46.3% ($\mathrm{n}=56$) did not. Mothers did the test in different gestational ages, 7.7\% $(\mathrm{n}=5)$ did it before the gestational age of 4 months, and $92.3 \%(\mathrm{n}=60)$ did it after the gestational age of 4 months.

Health education is also very important for reproductive health, and when the subjects were asked whether they received any health education, 54.5\% ($\mathrm{n}=66$) answered with yes, and $45.5 \%(\mathrm{n}=55)$ said that they did not receive any health education. Sources of education were various, and often not valid or professional. Only $43 \%(\mathrm{n}=29)$ of families received education from health centers, $33.3 \%(\mathrm{n}=22)$ from social media, and $10.6 \% \quad(\mathrm{n}=7)$ remembered information from school. Family was a source of information for $1.5 \%(n=1)$ of subjects, health lectures were a source for $7.5 \%(n=5)$, and $3 \%(n=2)$ of subjects used other people around them as sources.

4.3.3 Knowledge evaluation:

4.3.3.1 Parents' knowledge:

This section covers the process and results of the evaluation of parents' knowledge about genetic counseling. It is essentially a quiz from which the knowledge was assessed. The quiz had ten multiple choice questions, and a total of ten marks (table 4.3).

Table (4.3): knowledge Evaluation

Knowledge evaluation			
Question	Answers	N	\%
1. The meaning of genetic testing:	Analyze the genes of the Mother and Father	31	25.6
	2. Analyze DNA to determine a genetic problem	21	17.4
	3.Discover the chromosome of defected Genes	13	10.7
	4. All of the above	56	46.3
2.the method of transmission of genetic disease is	1.genes	105	86.8
	2.infection by touch	1	. 8
	3.contaminated air and water	1	. 8
	4.couldnt be transmitted	14	11.6

3. The main purpose of genetic counseling is:	1. decrease the cases of genetic problems in the Society	68	56.2
	2. terminate the pregnancy of defected fetus	13	10.7
	3. treat children of genetic Problem	40	33.1
4. Most suitable time for genetic counseling	1. when planning for pregnancy	69	57.0
	2.the first trimester of pregnancy	39	32.2
	3. the last trimester of pregnancy	0	0
	4. directly after delivery	13	10.7
5. Genetic problem could be Decreased	1.Yes	99	81.8
	2. No	22	18.2
6. Consanguineous marriage may increase genetic problem	1. Yes	120	99.2
	2.No	1	0.8
7. The responsibility of transmission	1.Both mother's and father's genes	103	85.1

43

of genetic problem is due to:	2.Just mother's genes	10	8.3
	3.Just father's genes	8	6.6
8.Genetic counseling is important :	1. In the first pregnancy	51	42.1
	2.In every pregnancy	68	56.2
	3. Not important at all	2	1.7
9.The most prior Relatives to analyze DNA to determine the problem of the baby are	1.Child, s mother and father	109	90.1
	2.His grand parents	10	8.3
	3.Cousins	2	1.7
	4.No body	0	0
10.Genetic counseling before marriage is important for:	1.treat the genetic problems	59	48.8
	2.control the expansion of genetic disorders in Palestinian society	54	44.6
	3. to determine the gender of the baby.	4	3.3
	4.to avoid infectious diseases.	4	3.3

Question (1) was about the "meaning of genetic testing." The breakdown for the first question was as follows: analyzing the genes of the mother and father $(25.6 \%, \mathrm{n}=31)$, analyzing DNA to determine a genetic problem (17.4\%, $\mathrm{n}=21$), discovering the chromosome of defected genes $(10.7 \%$, $\mathrm{n}=13$), or all of the above, which is the correct answer ($46.3 \%, \mathrm{n}=56$).

Question (2) got the highest number of correct answers. The question was about "the method of transmission of genetic disease." The answer breakdown was: genes, which was the correct answer, ($86 \% \mathrm{n}=105$), infection by touch $(0.8 \%, n=1)$, by contaminated water and air $(0.8 \% \mathrm{n}=1)$, while ($11.6 \% \mathrm{n}=14$) seemed to believe that genetic disorders could not be transmitted.

Question (3) asked about "the purpose of genetic counseling." Most subjects $(56.2 \%, \mathrm{n}=68)$ chose the right answer which was "to decrease the cases of genetic problems in society." Meanwhile, $10.7 \%(\mathrm{n}=13)$ thought the purpose is to terminate the pregnancy of fetuses with genetic problems, and $33.1 \%(n=40)$ assumed that the purpose is for treatment.

Question (4) was about the most suitable time for genetic counseling. The correct answer is "when planning for pregnancy," which was chosen by $57 \%(n=69)$ of participants. $32.2 \%(n=39)$ seemed to think the most suitable time to be in the first trimester of pregnancy, and just 10.7% $(\mathrm{n}=13)$ thought the correct answer was directly after delivery.

Question (5) was "is it possible to reduce the incidence of genetic problems?" $81.8 \%(\mathrm{n}=99)$ answered with yes, and $18.2 \%(\mathrm{n}=22)$ believed it was not possible.

Question (6) was if "consanguineous marriage increases the incidence of genetic problems" and $99.2 \%(\mathrm{n}=120)$ answered with yes, it does.

Question (7) was asking whether "the responsibility of transmission of genetic problem is due to" the genes of both parents, which is the correct
answer $(85.1 \%, \mathrm{n}=103)$, the father's genes alone $(8.3 \%, \mathrm{n}=10)$, or the mother's genes alone $(6.6 \%, n=8)$.

Question (8) was about the "importance of the genetic counseling", and $42.1 \%(n=51)$ of parents believed it was only important in the first pregnancy. The correct answer is that it is important in every pregnancy, as $56.2 \%(n=68)$ of parents answered. Lastly, $1.7 \%(n=2)$ seemed to believe that it is not important at all.

Question (9): was "the relatives with the top priority to undergo DNA analysis to determine the genetic problem of a child are" the parents as $90.1 \%(n=109)$ of subjects answered. Some ($8.3 \%, \mathrm{n}=10$) thought grandparents should also do the analysis, while others ($1.7 \% \mathrm{n}=2$) thought that cousins also have a priority. None of the subjects $(0 \% \mathrm{n}=0)$ seemed to thinks that there is no need for DNA analysis.

Genetic counseling before marriage is not customary in the Palestinian society, therefore when subjects were asked about the importance of that in question 10, nearly half of the answers (48.8\% $\mathrm{n}=59$) wrongly chose "treatment of genetic diseases" as the answer, and approximately 44.6\% $(n=54)$ chose the correct answer, which is "to control the expansion of genetic disorders in Palestinian society." Meanwhile, $3.3 \%(n=4)$ thought "to determine the gender of the baby" is the correct answer, and another $3.3 \%(\mathrm{n}=4)$ thought it was to avoid infectious diseases.

4.3.3.2 Evaluation and scoring:

The purpose of the previous ten questions was to evaluate parents' knowledge (table 4.4). Each correct answer equals one mark, with a scoring scale ranging from 0 to 10 . Scores were classified into three categories: good, moderate, and weak knowledge. There is no literature discussing how to determine a cutoff point for knowledge scores, so the researcher divided the scores into three intervals: good (7-10), moderate (4-6), and weak (0-3). This makes classifying and evaluating knowledge levels easier, and makes it possible to link it with attitudes. In this sample, $5 \%(n=6)$ of parents had weak levels of knowledge, $31.4 \%(n=38)$ had moderate levels, and $63.6 \%(\mathrm{n}=77)$ had good knowledge levels.

Table (4.4): Knowledge level

Knowledge Level							Frequency	Percent
	Weak	6	5.0%					
	Moderate	38	31.4%					
	Good	77	63.6%					
	Total	121	100.0%					

Figure (4.2): knowledge level

4.3.4 Parents' attitude:

Table (4.5) in (annex 2) shows families' attitudes toward genetic counseling and testing. Attitudes were studied using a Likert scale questionnaire, which used five responses to answer questions. These were: strongly agree, agree, undecided, disagree, and strongly disagree. Positive attitudes were indicated by the answers: agree and strongly agree, while
negative attitudes were indicated by disagree and strongly disagree. For questions 6,10 , and 11 , positive attitudes were determined by answers (disagree and strongly disagree), which were used to avoid bias. A total of 22 questions were used for this evaluation:

Question (1): "Couples have to do genetic testing when they plan to get married": $88.4 \%(\mathrm{n}=107)$ of participants agreed, and $1.7 \%(\mathrm{n}=2)$ disagreed, so attitudes toward this question are considered significantly positive.

Question (2): "All pregnant women have to do genetic tests for the fetus": $93.3 \% ~(\mathrm{n}=113)$ of the answers were agreed, so attitudes toward this question are considered significantly positive.

Question (3): "Experience of genetic problem in the family will increase their care about genetic counseling": 97.5\% ($\mathrm{n}=118$) of couples agreed with this, which indicates positive attitude.

Question (4): "Genetic testing has to be available for people as needed": $99.2 \%(\mathrm{n}=120)$ of parents agreed, indicating a positive attitude.

Question (5): "Genetic counseling must be available even for families with family history free of genetic problems": 72\% ($\mathrm{n}=91$) of families agreed; again, this indicated a positive attitude.

Question (6): "Genetic counseling should never be used because of religious and social reasons." This question was written using negative wording, and $83.5 \%(\mathrm{n}=101)$ of answers disagreed, indicating a positive attitude.

Question (7): "IVF could be used to avoid defected genes when couples want to have a healthy child": answers to this question were: disagree ($22.3 \%, \mathrm{n}=27$), I don't know ($37.2 \%, \mathrm{n}=45$), and $40.5 \% ~(\mathrm{n}=49)$ said they agree. This is considered a negative attitude.

Question (8): "Genetic testing must be done for all newborns": 78.5\% $(\mathrm{n}=95)$ of answers agreed, and that's positive.

Question (9): "Each person has the right to know if he is at risk of having a genetic problem in the future": $95.5 \%(\mathrm{n}=116)$ of parents agreed , which is considered a positive attitude.

Question (10): "Each person has the right to know the probability of having a child with a genetic problem": 72\% ($\mathrm{n}=87$) of answers were I don't know, which is considered negative attitude.

Question (11): "We have to bow to the genetic problems without interference": this question was written in negative wording, and 91% $(\mathrm{n}=110)$ of answers were 'disagree', which indicates a positive attitude.

Question (12): "Genetic counseling must be avoided because it increases the probability of abortion": this question was in negative wording, and $79 \%(n=96)$ of answers disagreed, which is a positive attitude.

Question (13): "I will take a genetic consultation when I plan for pregnancy in the future": $86.7 \%(\mathrm{n}=105)$ of answers agreed, and that's a positive attitude.

Question (14): "I advise my children to have genetic counseling before marriage": $95 \%(\mathrm{n}=115)$ of families agreed, and that's a positive attitude.

Question (15): "The presence of a genetic disorder in a family may lead them to stop consanguineous marriage": 86\% (n=104) of families agreed, and that's positive.

Question (16): "Genetic testing helps couples discover their genetic history and may destroy their relationship" $76.5 \%(\mathrm{n}=84)$ of answers agreed, and that's positive.

Question (17): "Genetic counseling can lead to avoiding consanguineous marriage": $92.6 \%(\mathrm{n}=112)$ of answers agreed, indicating a positive attitude.

Question (18): "Genetic counseling decreases the probability of having a genetic problem": 74\% ($\mathrm{n}=90$) of answers agreed, which is considered a positive attitude.

Question (19): "It is important to consider the Islamic view in making the right decision to marry according to my family health history": 65.3% $(\mathrm{n}=79)$ of answers were agree, which is considered a positive attitude.

Question (20): "My information about genetic counseling is not insufficient": this question displays the desire of parents for education, $69.4 \%(n=84)$ of parents answered agree, which is considered positive.

Question (21): "Laboratories that offer genetic testing service are not available in my country": this question displays the desire of parents to
have benefits, $91 \%(\mathrm{n}=111)$ of them answered I agree, and that's a positive attitude.

Question (22): "High cost of genetic counseling may decrease the desire to take it": like the previous question, this question displays the parents' desire to have benefits, and $86 \%(n=104)$ of respondents agreed, and that's a positive attitude.

It is clear that most of the attitudes toward previous items were positive (20 out of 22), so it could be considered that parents' attitudes towards genetic counseling and testing are positive. The mean was calculated by taking the sum of positive answers (20) and dividing that by the number of items (22); the mean was 81%.

The following section will examine whether certain factors affect parents' attitudes. Education and the number of sick children are two of the most important factors to discuss.

4.4 Inferential:

4.4.1 Introduction:

To evaluate the relationship between the three categories of knowledge (weak, moderate, and good) and the 22 items for attitudes, a chi-square test was used. Results of significant differences were organized in Table (6), then correlation tests were done for significant results in order to discover the type of the relationship (positive or negative). To study the $2^{\text {nd }}$ and $3^{\text {rd }}$ hypotheses, ANOVA test was used to compare between and within groups.

4.4.2 Chi-square test

Chi-square is a statistical test commonly used to compare observed data with data we would expect to obtain according to a specific hypothesis (Fisher and Yates, 2006). It is used when the researcher has two categorical variables_from a single population, and wants to determine whether there is a significant association between the two variables with two or more values (Stat Trek, 2016).

4.4.3 Correlation:

A statistical method that measures the degree to which two variables move in relation to each other. It is computed into what is known as the correlation coefficient, the values of which must fall between -1 and 1 (Invostopedia, 2016)

4.4.4 ANOVA Test:

One-way analysis (ANOVA) or (Analysis of Variance) is used to determine whether there are any statistically significant differences between the means of two or more independent groups (Lund Research, 2013). (ANOVA) is used with one categorical independent variable (attitudes) (total evaluation: positive or negative) and one continuous variable (knowledge evaluation). The independent variable can consist of any number of groups (Richard, 1998). When we compare more than two groups (weak, moderate, and good), based on one factor (independent variable), ANOVA is the most suitable statistical tool (Statistics Solutions, 2013).

4.4.5 Knowledge and attitudes (chi square analysis):

Table(4.5)Chi square significant table(effect of knowledge on attitudes)

Item	Answer	Weak	Moderate	Good	Total	P -value
1.Couples have	Disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 2 \\ 1.8 \% \end{gathered}$	$\begin{gathered} 2 \\ 1.8 \% \end{gathered}$	0.004
testing	I don't know	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 8 \\ 6.6 \% \end{gathered}$	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{array}{r} 12 \\ 9.9 \\ \hline \end{array}$	
to get married	Agree	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	30 24.7%	$\begin{gathered} 73 \\ 60.3 \% \end{gathered}$	$\begin{gathered} 107 \\ 88.4 \% \end{gathered}$	
2. Genetic counseling	Disagree	$\begin{gathered} 3 \\ 2.5 \% \\ \hline \end{gathered}$	$\begin{array}{r} 10 \\ 8.2 \% \\ \hline \end{array}$	$\begin{gathered} 9 \\ 7.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 18.2 \% \\ \hline \end{gathered}$	0.02
must available even	I don't know	$\begin{gathered} 1 \\ 0.8 \% \end{gathered}$	$\begin{gathered} 2 \\ 1.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 4.1 \% \end{gathered}$	$\begin{array}{r} 8 \\ 6.6 \% \\ \hline \end{array}$	
for families which family history is free of genetic problems	Agree	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 26 \\ 21.4 \% \end{gathered}$	$\begin{gathered} 63 \\ 52 \% \end{gathered}$	$\begin{gathered} 91 \\ 75.2 \% \end{gathered}$	
3. Genetic counseling has	Disagree	$\begin{gathered} 2 \\ 1.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 23.9 \% \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ 57.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 101 \\ 83.4 \% \end{gathered}$	0.001
to be avoided for religious	I don't know	$\begin{gathered} 4 \\ 3.3 \% \\ \hline \end{gathered}$	$\begin{array}{r} 6 \\ 4.9 \% \\ \hline \end{array}$	7 5.8\%	$\begin{array}{r} 17 \\ 14 \% \\ \hline \end{array}$	
and social reasons	Agree	0	3	0	3	

		0.0\%	2.5\%	0.0\%	2.5\%	
4.Genetic testing must be	Disagree	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 6 \\ 4.9 \% \end{gathered}$	4 3.3%	$\begin{gathered} 12 \\ 9.9 \% \end{gathered}$	0.02
done for all newborns	I don't know	$\begin{gathered} 1 \\ 0.8 \% \\ \hline \end{gathered}$	6 4.9\%	$\begin{array}{r} 7 \\ 5.8 \% \\ \hline \end{array}$	$\begin{gathered} 14 \\ 11.7 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 3 \\ 2.5 \% \end{gathered}$	$\begin{gathered} 26 \\ 21.4 \% \end{gathered}$	$\begin{gathered} 66 \\ 54.5 \% \end{gathered}$	$\begin{gathered} 95 \\ 78.5 \% \end{gathered}$	
5.We have to bow to the	Disagree	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	$\begin{gathered} 33 \\ 7.3 \% \\ \hline \end{gathered}$	$\begin{array}{r} 73 \\ 60 \% \\ \hline \end{array}$	$\begin{gathered} 110 \\ 91 \% \end{gathered}$	0.01
genetic problems	I don't know	$\begin{gathered} 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 1.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 1.7 \% \\ \hline \end{gathered}$	
interference	Agree	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 3 \\ 2.5 \% \end{gathered}$	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	$\begin{gathered} 9 \\ 7.4 \% \end{gathered}$	
6. Genetic counseling	Disagree	$\begin{gathered} 3 \\ 2.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 20.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ 57.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ 79.3 \% \\ \hline \end{gathered}$	0.01
must be avoided	I don't know	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{array}{r} 7 \\ 5.8 \% \\ \hline \end{array}$	$\begin{gathered} 3 \\ 2.5 \% \\ \hline \end{gathered}$	12	
because it increases the probability of abortion	Agree	$\begin{gathered} 1 \\ 0.8 \% \end{gathered}$	$\begin{gathered} 8 \\ 6.6 \% \end{gathered}$	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	$\begin{gathered} 13 \\ 10.7 \% \end{gathered}$	

7. Genetic counseling	disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	4 3.3%	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	0.04
leads to avoiding	I don't know	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 3 \\ 2.5 \% \end{gathered}$	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 5 \\ 4.1 \% \end{gathered}$	
s marriage	Agree	$\begin{gathered} 6 \\ 4.9 \% \end{gathered}$	$\begin{gathered} 31 \\ 25.6 \% \end{gathered}$	$\begin{gathered} 75 \\ 61.9 \% \end{gathered}$	$\begin{gathered} 112 \\ 92.5 \% \end{gathered}$	
8. Genetic counseling	Disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 12 \\ 9.9 \% \end{gathered}$	$\begin{gathered} 6 \\ 4.9 \% \end{gathered}$	$\begin{gathered} 18 \\ 14.8 \% \end{gathered}$	
decreases the probability of	I don't know	$\begin{gathered} 2 \\ 1.7 \% \end{gathered}$	$\begin{gathered} 3 \\ 2.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 4.9 \% \end{gathered}$	$\begin{array}{r} 11 \\ 9 \% \end{array}$	0.01
genetic problem	Agree	$\begin{gathered} 4 \\ 3.3 \% \end{gathered}$	$\begin{gathered} 23 \\ 19 \% \end{gathered}$	$\begin{gathered} 63 \\ 52 \% \end{gathered}$	$\begin{gathered} 90 \\ 74.4 \% \end{gathered}$	

Table (4.6) shows the relationship between knowledge and attitudes. A total of eight items had a significant relationship with knowledge $(1,5,6,8$, $11,12,17$, and 18). In Table (4.6) the first item, "couples have to do genetic testing when they plan to get married," has a significant relationship with knowledge (P -value $=0.016$). The fifth item, "genetic counseling must be available even for families whose family history is free of genetic problems", the difference between the three groups was
significant $(\mathrm{P}$-value $=0.04)$. The correlation test shows that this is a positive relationship.

Item 6, "genetic counseling has to be avoided for religious and social reasons", had a negative significant difference between the groups (Pvalue $=0.001$). This item was written in negative framing, so a negative relationship means positive attitudes.

For Item 8, "genetic tests must be done for all newborn children", the difference between three groups is considered significant $(\mathrm{P}$-value $=0.02)$. The correlation test revealed this relationship to be positive.

The P-value for Item 11 "we have to bow to the genetic problems without interference," was 0.02 , indicating a significant difference between groups. The correlation test indicates a negative relationship between knowledge and attitudes towards this item; however, this item was worded negatively, so a negative relationship means positive attitudes.

As for Item 12, "genetic counseling must be avoided because it increases the probability of abortion", the difference between the three groups was also significant $(\mathrm{P}$-value $=0.01)$. The correlation test indicates a negative relationship between knowledge and attitudes towards this item, but this item was worded negatively, so a negative relationship means positive attitudes.

Item 17, "genetic counseling leads to avoiding consanguineous marriage", showed a significant difference between the three groups $(\mathrm{P}$-value $=0.04)$.

The correlation coefficient shows there is a positive relationship between knowledge and attitudes towards this item.

Lastly, the P -value for Item 18, "genetic counseling decreases the probability of having a genetic problem", was 0.01 , indicating a significant difference between groups. The correlation test revealed a positive relationship between knowledge and attitudes towards this item.

There were 14 items with no significant relationship between knowledge and attitudes. These items were: $2,3,4,7,9,10,13,14,15,16,19,20,21$, and 22 (annex 3).

These items and their respective P-values were: "all pregnant womlen have to do genetic tests for the fetus", (P-value= 0.7); "Genetic tests must be available as needed", $(\mathrm{P}$-value $=0.1)$; "Experience of genetic problem in the family will increase their care about genetic counseling", (P -value $=0.3$); "IVF could be used to avoid defective genes when couples want to have a healthy child", $(\mathrm{P}$-value $=0.1)$; "Each person has the right to know the risk of having a genetic problem in the future", (P-value $=0.3$); "Each person has the right to know the probability of having a child with a genetic problem", $(\mathrm{P}$-value $=0.6)$; "I will take a genetic consultation when I plan for pregnancy in the future", $(\mathrm{P}$-value $=0.7)$; "I advice my children to have genetic counseling before marriage", (P -value $=0.2$); "The presence of genetic disorder in a family may lead them to stop consanguineous marriage", $(\mathrm{P}$-value $=0.1)$; "Genetic testing helps couples to discover their genetic history and may destroy their relationship", $(\mathrm{P}$-value $=0.9)$; "It is
important to clarify the Islamic view before making the right decision to marry according to my family's health history", (P-value $=0.3$); "My information about genetic counseling are not insufficient", $(\mathrm{P}$-value $=0.1)$; "Laboratories that offer genetic testing service are not available in my country", (P -value $=0.3$); and "High cost of genetic counseling may decrease the desire to take it", $(\mathrm{P}$-value $=0.6)$. All these P -values indicate that there is no significant difference between groups for any of these items.

As discussed in the section about parents' attitudes, attitudes were clearly significantly positive (in 20 items from 22), however as can be seen from the results of the correlation test (table 4.7), only eight of these positive attitudes had a positive correlation with parents' knowledge levels.

Table (4.6) Correlations: to discover the relationship between

 knowledge and attitudes:| Item | Sig. | Correlation | Person's
 Coefficient | Correlation |
| :--- | :--- | :---: | :---: | :---: |
| Couples have to do
 genetic testing when
 they plan to get marry | 0.016 | Positive | 0.220 | Positive |
| Genetic counseling must
 be available even for
 families
 which family history | 0.04 | Positive | 0.272 | Positive |

free of genetic problems				
Genetic counseling had been never used for religious and social causes	0.001	Negative	-0.330	Negative
Genetic testing must be done for all newborns We have to bow to the genetic problems without interference	0.02	Positive	0.324	Positive
Genetic counseling must be avoided because it is increase the probability of abortion	0.01	Negative		
Genetic counseling leads to avoiding consanguineous marriage	0.0296	Negative		

The first hypothesis of this research was that parents who have high knowledge about genetic testing and counseling are expected to have more
positive attitudes towards testing and are more likely to use it. The previously-mentioned results allow the researcher to accept this hypothesis.

4.4.6 Number of sick children and parents' knowledge and attitudes:

To study the relationship between the number of children suffering from genetic disorder and parents' knowledge and attitudes, an ANOVA test was performed at the significance level of ($\alpha \leq 0.05$) with total (positive or negative) attitude evaluation (Table 4.7).

Table (4.7) ANOVA Test: Number of sick children and attitudes and knowledge:

Item		Df	Mean Square	F	Sig.
Attitudes	Between Groups	2	0.002	0.023	0.977
	Within Groups	118	0.101		
	Total	120		1.058	0.350
Knowledge	Between Groups	2	0.364		
	Within Groups	118	0.344		

This table shows that there are no differences between the means at a significance level of $(\alpha=0.05)$. The difference in attitudes between the different groups (parents with one child with a genetic disease, parents with
two children, and parents with three children) has a significance value of 0.977 , which is much higher than the significance level $(\alpha=0.05)$, and indicates an insignificant difference. Similarly for knowledge, the difference between groups had a significant value of 0.350 , which is again much higher than the significance level and indicates an insignificant difference.

These results suggest that there is no significant difference in parents' knowledge and attitudes towards genetic counseling and testing based on the number of children with genetic diseases that they have.

Based on these conclusions, the second hypothesis, which states that "Parents who have more children with genetic diseases have more knowledge and more positive attitudes towards genetic counseling" can be rejected and the null hypothesis can be accepted instead.

4.4.7 Number of lost children and parents' knowledge and attitudes:

To investigate the relation between the number of children who have died due to genetic disorders and their parents' knowledge and attitudes towards genetic testing and counseling, an ANOVA test was performed at the ($\alpha \leq 0.05$) significance level.

4.4.8 Parents' educational level and their knowledge evaluation and attitudes:

To study the relationship between parents' educational level and their knowledge and attitudes, another ANOVA test was done, again with a significance level of ($\alpha=0.05$).

Table (4.8): ANOVA Test: Number of deceased children and attitudes and knowledge:

Item		Df	Mean Square	F	Sig.
Attitudes	Between Groups	1	0.190	1.929	0.167
	Within Groups	119	0.099		
	Total	120			
Knowledge	Between Groups	1	0.009	0.025	0.875
	Within Groups	119	0.347		
	Total	120			

This table shows that there are no significant differences between groups at the 0.05 significance level. The significance value for differences in attitudes between the different groups (parents with one deceased child, parents with two deceased children, parents with three deceased children, and parents with six deceased children) is 0.167 , which is higher than the significance level, and indicates an insignificant difference. Additionally, the differences in knowledge between the different groups had a significance level of 0.875 , again indicating an insignificant difference.

These results suggest that there is no significant difference in parents' knowledge and attitudes towards genetic testing and counseling based on the number of children they've lost due to genetic disorders.

Therefore, the third hypothesis stating that "parents who lost more children due to a genetic problem have more knowledge and more positive attitudes towards genetic counseling" can be rejected, and the null hypothesis is accepted

Table (4.9): Parents' educational level and their knowledge and attitudes.

Item	Sum of Squares	Df	Mean Square	F	Sig.	
	Between Groups	0.374	4	0.093	0.938	0.445
	Knowledge	Between Groups	6.753	4	1.688	5.663

The table above shows that there are no significant differences between the attitudes of different groups (elementary education, middle school, secondary education, diploma education, or higher academic education)
toward genetic testing and counseling. The significance value for differences in attitudes was 0.445 , which is higher than the significance level of 0.05 , and indicates an insignificant difference. On the other hand, the table shows that there is a significant difference in knowledge levels between the different groups, with a significance value of 0.003 , indicating a significant difference.

4.4.9 Parents' income and knowledge:

To study the relationship between parents' income and their knowledge, an ANOVA test was done at the 0.05 significance level.

Table (4.10): Parents' income level and their knowledge evaluation

Item		Sum of Squares	Df	Mean Square	F	Sig.
Knowledge	Between Groups	6.753	3	1.488	5.663	0.29
	Within Groups	34.585	115	0.398		
	Total	41.339	122			

This table shows that there is no significant difference in knowledge between the different income groups. The significance value for this difference is 0.29 , which is larger than 0.05 and indicates an insignificant difference. This suggests that family income does not affect parents' knowledge about genetic testing and counseling.

4.5 Summary:

Data collected in this study was analyzed using SPSS Version 19. The first section of the survey collected general and demographic data, which showed that 75% of subjects were mothers, and 25% were fathers. Additionally, 79.3% of subjects had one child with a genetic condition, 19% had two, and only 1.7% had three. The genetic diseases that children suffered from were classified according to body systems impacted: 28.1% of children had metabolic disorders, which are considered the most common in Palestine.

The most common associated factors for genetic problems were: ignoring premarital genetic tests, early motherhood, consanguineous marriages, and a family history of genetic problems.

Parents' knowledge was evaluated using a quiz of ten questions, with a possible score ranging from 1 to 10 . Scores were classified into three categories based on three score intervals: good (7-10), moderate (4-6), and weak (0-3). In this sample, 5% of parents had weak knowledge, 31.4% scored moderately, and 63.6% had scores indicating good knowledge.

Parents' attitudes towards genetic testing and counseling were overwhelmingly positive; respondents agreed with 20 out of 22 items on the attitudes part of the questionnaire, which reflects a positive attitude.

Different relationships and correlations were investigated in order to study the following hypotheses:

Hypothesis (1): Parents who have high knowledge about genetic testing and counseling are expected to have more positive attitudes toward and are
more likely to use it. To study this hypothesis, a chi-square test was used to compare attitudes between groups. The chi-square test results suggest knowledge affects attitudes positively, which allows for the first hypothesis to be accepted.

Hypothesis (2): Parents who have more sick children have more knowledge and more positive attitudes towards genetic counseling. To investigate this, an ANOVA test was used. The results showed that there is no relationship between the number of sick children and parents' knowledge and attitudes towards genetic counseling and testing. Based on these results, the second hypothesis was rejected.

Hypothesis (3): Parents who have lost more children to genetic problems have more knowledge and more positive attitudes towards genetic counseling. An ANOVA test was used again, and the results indicated that there is no relationship between the number of deceased children and parents' attitudes. However, there was a relationship between the number of deceased children and parents' knowledge. The third hypothesis was also rejected based on these results.

Chapter (5)

Discussion

5.1 Introduction

Results of this study were compared with other national and international studies, some of which were previously mentioned Chapter 2 . The results of this study were sometimes similar and sometimes different from the articles in the literature review. In the following section, the different aspects of this study will be discussed in detail while comparing this study to other published works. The purpose of this is to discover how different socio-demographic factors affect knowledge and attitude data.

5.2 Socio-Demographic characteristics

Out of a total of 121 subjects, $35 \%(n=42)$ were in PMC, while the rest were in Al-Najah University Hospital. Moreover, 75% ($\mathrm{n}=91$) of them were females (mothers) and $25 \%(\mathrm{n}=30)$ were males (fathers). Most subjects ($48.8 \%, \mathrm{n}=60$) lived in villages, whereas $30 \%(\mathrm{n}=37)$ lived in cities, $14.9 \%(n=18)$ lived in camps, and only $5.8 \%(n=6)$ were Bedouin nomads. It is worth mentioning that consanguineous marriages, which are considered a significant risk factor, are more common in villages.

Unfortunately, only a few epidemiological population studies were conducted to investigate the prevalence of genetic disorders among Palestinians (Abu Lebdeh and Teebe, 2010).

The educational level of participants was as follows: 26.4\% ($\mathrm{n}=32$) had higher academic education, $52 \%(\mathrm{n}=64)$ went to middle and high school, and $6.6 \%(\mathrm{n}=8)$ only finished primary education. The results of this study suggest that parents' educational level positively affects their knowledge levels. The significance value (P -value) was 0.003 , indicating a significant relationship.

As for the income of the subjects, $15.7 \%(n=19)$ of families had very low income (less than 1,500 shekels a month), $27.3 \%(\mathrm{n}=33)$ had an income between $3,500-4,000$ shekels, which is considered a middle-class income level. However, only $7.4 \%(n=9)$ had an income of 4,000 shekels or more, which is what's considered as 'good' or 'high' income. This study found no relationship between parents' income and their knowledge $(\mathrm{P}-\mathrm{value}=0.29)$. However, a study in Ohio (2014) found a significant association between parents' knowledge and household income (Fitzgerald-Butt et al., 2014). Other Arab countries had similar demographic distributions; however, studies done in Ohio, USA, showed very different distributions. This is possibly because the USA is a developed country, and often has higher income levels than Arab countries.

5.3 Associated risk factors:

Early marriages are common in Arab countries; therefore, the mother's age was studied as a risk factor for genetic diseases. In this study, 35.5% $(\mathrm{n}=43)$ of mothers had their first child when they were 20 years old or younger, $63 \%(n=76)$ when they were between 21-31 years of age, 1.7%
$(\mathrm{n}=2)$ when they were between 31 and 40 years old, and no subjects had a child after the age of 40 . The high percentage of subjects with early motherhoods suggests that early marriage is, indeed, a risk factor in this study.

Another significant risk factor is consanguineous marriages, which are very common in Arab countries in general, and in Palestine in particular. Most parents in this study $(71 \%, \mathrm{n}=86)$ were married to their relatives, 40% ($\mathrm{n}=48$) of which were first-degree relatives. A study by Tadmori et al. (2009) mentioned that consanguineous marriages, especially among first cousins constitute about 25-30\% of marriages in Arab countries.

Although more than half of the subjects (55.4\% $\mathrm{n}=67$) had a family history of genetic problems (relatives suffering genetic problems), less than 1% $(\mathrm{n}=1)$ of the subjects did genetic counseling before marriage. This is the most significant risk factor. Additionally, lack of laboratories, high costs, and lack of awareness are considered obstacles that prevent families from undergoing premarital genetic testing.

Pollution was not significant as a risk factor, as only $6.6 \%(n=8)$ of families lived in industrialized areas or near a factory. However, it is important to take into consideration that Palestine in general is not an industrialized country.

To summarize, early marriage and motherhood, consanguineous marriage, and neglecting premarital genetic test are the most significant risk factors
for genetic problems in Palestine, while pollution was not a significant factor in this study.

5.4 Parents' knowledge

Parents were asked about the meaning of genetic testing, genetic problems, its causes, methods of transmission, and prevention methods. Each of these questions were scored, and constituted the knowledge evaluation part of this study. Only 5\% ($\mathrm{n}=6$) of parents had weak knowledge, $31.4 \%(\mathrm{n}=38)$ had moderate knowledge, and $63.6 \%(\mathrm{n}=77)$ had good knowledge.

These results are better than the results of an interventional study (educational program: pre and post exams) which was conducted in Saudi Arabia among university students, where knowledge levels about genetic counseling and testing were low (Ibrahim et al., 2011).

Another cross-sectional study in Netherland examined the knowledge and attitudes of patients with chronic diseases towards genetics and genetic testing using a questionnaire and a DNA test. The study found that genetic knowledge was low for older and lower educated patients (Morren and Rijken, 2006). This is consistent with the findings of this study which suggest that higher education is indicative of higher levels of knowledge $(\mathrm{P}$-value $=0.003)$.

Another knowledge and attitude study conducted in Ohio (US) in 2014 among parents of children with congenital heart defect revealed that parents' knowledge was good, with 73.8% of parents answering questions correctly (Fitzgerald-Butt et al., 2014). Meanwhile, a study conducted in

Australia in 2013 among Parkinson's disease patients to assess their knowledge and attitudes towards genetic testing found that the level of knowledge was relatively low (37% correct responses) (Scuffham et al., 2013).

It is clear that the subjects of this study had good knowledge levels about genetic testing and counseling. Different studies investigated various segments of society; including university students and chronic disease patients, both of which scored low on the knowledge evaluation. However, studies conducted among parents (like this study) seemed to have more knowledgeable subjects. It is possible that being a parent of a patient may push the individual to becoming more educated and aware about genetic issues, as well as genetic testing and counseling.

5.5 Parents' attitudes:

Attitudes toward genetic counseling and testing had been studied by a Likert scale questionnaire which used five aspects: (strongly agree, agree undecided, disagree, and strongly disagree), positive attitude was determined by the items (agree and strongly agree) and the negative counted by (disagree and strongly disagree).
(20) items from (22) had high percentage of (agree and strongly agree) and just (2) had high percentage (more than 50\%) of (disagree and strongly disagree), generally this result consider parents might have positive attitudes towards genetic counseling, which looks similar to many studies as shown below.

A cross sectional study in Netherland used questionnaire and DNA test, to examine knowledge of patients with chronic diseases and their attitudes towards genetics and genetic testing, found that attitudes toward genetics were positive and higher levels of genetic knowledge were associated with more positive attitude towards genetic counseling (Morren and Rijken, 2006).

Another knowledge attitude study conducted in Ohio (US) in (2014) among parents of congenital heart defect children showed attitudes towards the genetic testing were positive with (57\%) agreeing that genetic testing would be used for managing health care and finding cures for disease (Fitzgerald-Butt et al., 2014).

Parkinson disease patients were population for a study in Australia, their attitudes towards genetic testing and counseling were positive: the vast majority (97\%) supported diagnostic testing while (90\%) would undertake a genetic test themselves, support for predictive test was lower (78\%) and prenatal genetic testing had the least support (58\%) (Scuffham et al., 2013). All of above seems different from the study by University of Central Lancashire conducted in 1997 in the UK which studied the attitudes of deaf adults toward genetic testing for hereditary deafness. The study found negative attitudes and they said that they prefer to have deaf children (Middleton and Hewison, 1997). This is an old study; the tool was a questionnaire which was filled by delegation, which may have led to a lack of communication or misunderstanding, especially considering that the
population were deaf individuals. In general it is normal for any person to prefer to improve health and avoid having a genetic problem.

5.6 Knowledge and attitudes:

This section is to discuss the relationship between knowledge and attitudes; knowledge evaluation classified participants into three groups: good, moderate and weak.

Attitudes had been measured by the Likert scale and considered positive in general.

But when the three groups compared by Chi square, it is found that some significant results determined by which group had the positive results and if knowledge affecting attitudes (Table 4.6).

In the item (Couples have to do genetic testing when they plan to get married) there is a significant effect of good knowledge to have positive attitudes (p. value: 0.016).

A study conducted in Palestine by (Thawabteh, et al. 2005): families of Thalassemia mutation shows very good acceptability for prenatal diagnosis in b-Thalassemia afflicted families.

Both results are similar, both conducted in Palestine, so may culture affects their attitudes.

And regarding to the fourth item (Genetic counseling must be available even for families whose family history is free from genetic problems) it also has a significant positive attitude by the group of good evaluation (p.
value: 0.04). As mentioned before all of subjects had history of genetic problems and wants to stop that in the society.

The item (Genetic counseling has to be avoided for religious matters) is built in negative framing, so the answer 'disagree' expresses positive attitudes which significantly affected by the group of good knowledge (P.value:0.001).

Actually no studies in Arab or Moslem societies discussed attitudes according to religion, but in this study, although Palestinian society is conservative, religion was not considered as a barrier.

If (genetic test must be done for all newborns), it was a significant positive relationship between knowledge and attitudes (P. value: 0.02).

As mentioned before , this study and other literatures found that parents' attitudes towards testing were positive, especially those who had good knowledge.
(We have to accept to the genetic problems without interference) this item had a significant negative relationship between knowledge and attitudes towards this item, but this item had written in negative framing, so negative relationship mean positive attitudes.

Families want to stop suffering and live in a healthy society, so did not agree to bow to the genetic problems without interference.

Regards to Item 12 (Genetic counseling must be avoided because it increases the probability of abortion). The difference between the three
groups was negatively significant (P-value: 0.01). By correlation test it was a negative relationship between knowledge and attitudes towards this item, but this item was written in negative framing, so negative relationship mean positive attitudes, that similar to the finding of a study by (Thawabteh, et al. 2005) families of Thalassemia mutation show very good acceptability for prenatal diagnosis in b-Thalassemia afflicted families, and all couples with affected fetuses opted for abortion, this study was conducted in Palestine. While a study about prenatal testing by qualitative interviews found that parents' decisions around selective termination were not being made by unknown others, but by members of their own family (Boardman, 2014) that mean they may accept abortion for abnormal or sick fetus.

Otherwise abortion is not an easy decision, but may families refer that to religious and medical opinions.
(Genetic counseling leads to avoid consanguineous marriage): this Item had a significant positive association between knowledge and attitudes towards this item (P-value: 0.04). In the section of knowledge evaluation question (6) was if the consanguineous marriage increases the incidence of genetic problems $(99.2 \%(n=120)$ think yes it increases that (which was the correct answer).

So good knowledge about consanguineous marriage and genetics affects attitudes positively. On the other hand, consanguinity in this study considered as one of the associated risk factors.

The item (Genetic counseling decreases the probability of having genetic problems) most of subjects were agree and their evaluation was good.

A study in Germany to discuss the different aspects of genetic counseling in the infertile couples underwent chromosome analysis prior IVF couples referred to genetic testing and genetic counseling before intracytoplasmic sperm injection, the finding was high rate of chromosomal abnormalities in female patients (Kaiser and Kiesel, 1997). The aim of the study was to discuss the different aspects of genetic counseling in the infertile couples, but it could be useful to support this study because the genetic testing discovered serious genetic problems could be avoided.

Generally this study reflects that good knowledge significantly associated with positive attitudes towards genetic testing and counseling, and there are many literatures supported our result.

That is like a cross sectional study in Netherlands found patients of higher levels of genetic knowledge were associated with a more positive attitudes towards genetic counseling (Morren and Rijken, 2006).

To insure this idea other literatures found that the highly specific information provided about genetic testing can empower both clinicians and patients to target their efforts on behavioral strategies that will have the greatest impact on reducing disease morbidity and mortality (Tercyak, et al, 2002).

Another cross sectional study in Netherlands used questionnaire and DNA test found attitudes toward genetic testing were positive and higher levels
of genetic knowledge were associated with a more positive attitude towards genetic counseling (Morren and Rijken, 2006), also in Netherlands knowledge and attitude follow up study conducted over two years from (2002 to 2004) among patients of asthma, diabetes mellitus and cardiovascular disease, and found that the perceived knowledge on DNAtesting has not increased since 2002, and attitudes towards genetic testing also were rather consistent. Less perceived medical genetic knowledge and more perceived social genetic knowledge were found predictive for a more reserved attitude towards genetic testing (Calsbeek, et al,2007)

And finally there is a study conducted in Australia in (2013) among Parkinson's disease patients to assess their knowledge and attitudes towards genetic testing found that the level of genetic knowledge was relatively low (37\% correct responses), but their attitudes were positive (Scuffham, et al, 2013).

As discussed above most of studies found an association between knowledge and attitudes towards genetics, but it is essential to note that most of studies had good knowledge of subjects and found an association between that and positive attitudes, but the final one recorded low knowledge evaluation and also positive attitudes so it is obvious that people want to stop genetic problems.

5.7 Number of sick or lost children and attitudes (experience and attitudes):

All of sample subjects had experienced a genetic problem in the family, some of them had one sick child and some had more, while (29\%) of them lost a child or more, in table (4.9) it is found that no significant relationship between number of lost children because of genetic problem and parents knowledge about genetic counseling (P-value: 0.8) also no significant relationship between the number of lost children and parents' attitudes toward that (P-value: 0.16),

In table (4.8) there is no significant relationship between number of sick children because of genetic problem and parents' knowledge about genetic counseling (P-value: 0.3) also no significant relationship between number of sick children and parents' attitudes toward that (P-value: 0.9)

While a study in America in (2007), shows that subjects who are known as history of genetic mutation their communication about genetic was strongly positive among counseling and testing (Ellington and Maxwell, 2006), that seems different from the study by University of Central Lancashire in 1997 in UK, which studied the attitudes of deaf adults toward genetic testing for (hereditary deafness), that showed negative attitudes and they said that they preferred to have deaf children (Middleton and Hewison, 1997).

So when a family is suffering the problem from all dimensions, it is normal to refuse live that again, and to have positive attitudes towards genetic counseling, but deaf subjects who had negative attitudes towards genetic counseling, may lack of communication affect their answers.

5.8 Attitudes towards prenatal testing and abortion:

Subjects attitudes towards prenatal testing were positive (93\%) of them answered agree and strongly agree on (All of pregnant women have to do genetic analysis for the fetus), it is mentioned before that all of subjects had family history and experience of genetic disorders, and when asked if (Genetic counseling must be avoided because it increases the probability of abortion) (96%) of them disagreed. That means that subjects had positive attitudes towards prenatal testing and abortion, which is similar to the finding of Thawabteh et al. (2005) that families of Thalassemia mutation show very good acceptability for prenatal diagnosis in Thalassemia-affected families, and all couples with affected fetuses opted for abortion; this study was conducted in Palestine. Another study about prenatal testing by qualitative interviews found that parents' decisions around selective termination were not being made by unknown people, but by members of their own family (Boardman, 2014). Abortion is not an easy decision, but may families base their decision on religious and medical beliefs and knowledge.

5.9 Attitudes towards using the IVF to avoid affected gene:

IVF could be used to avoid defected gene when couples want to have a healthy baby, (60%) of parents inform negative attitudes, without significant differences between groups evaluations

A study conducted in the United Kingdom about pre-implantation diagnosis and other reproductive options in (IVF) to study attitudes of male
and female carriers of recessive disorders , the result shows that .the majority of the sample did not feel that it was the most useful option in their situation especially those who would not consider a termination (Snowdon and Green, 2000). Attitudes were negative among two different countries, which may be according to culture in Palestine, but according to fear of termination in the UK.

5.10 Conclusion:

The first hypothesis: Parents who have high knowledge about genetic testing and counseling expected to have positive attitudes toward s using it. This hypothesis had been accepted and the good knowledge evaluation parents had also positive attitudes towards genetic counseling and testing, chi square had been used to compare groups.

The second hypothesis: Parents who have more sick children have more knowledge and more positive attitudes towards genetic counseling.

This hypothesis had been rejected because it is found that no differences between the means and statistically no significant values, this is clear from the value of α which reach (0.167).

The third hypothesis: Parents who lost more children have good knowledge evaluation and more positive attitudes towards genetic counseling.

It is found that parents' attitudes were not affected by the number of lost children, (P-value: 0.875), so this hypothesis had been rejected.

5.11 Recommendations

1- The Ministry of health has to organize educational programs to increase people's awareness towards genetic problems and genetic counseling.

2- Adopt an initiative to start on inserting genetic tests in diagnostic process.

3- Expand the limitation of premarital tests to cover more genetic items.
4- Provide complementary laboratory services to cover genetic tests.

5- Recruit genetic counselors in primary health care centers.
6- Use media to publish awareness campaigns about consanguineous marriage and genetic problems, and about prenatal genetic exams.

7- Insert the genetic counseling in the process of antenatal care.

5.12 Summary :

In the West Bank governmental and private hospitals especially in pediatric wards there are no statistics about mortality rate of children who suffer from genetic disorders. In some occasions, many members from the same family have been diagnosed with the same disorder. From the researcher's own experience, there is a new child from the same family suffering from the same disease in the year after without any genetic counseling or any tool of prevention.

Unfortunately, only few population epidemiological studies were conducted to discover the incidence of genetic disorders among

Palestinians (Abu Lebdeh and Teebe, 2010), Except for thalassemic and hemophiliac patients (PHIC, 2013).

Sometimes, health professionals are unable to use a name to a genetic condition because it is newly appeared in some family. When this happens, physicians will say that a patient has an undiagnosed or rare genetic condition (NIH, 2011).

A quantitative descriptive cross sectional prospective survey had been used in this study using a questionnaire. The aim of the study was to describe the parents' knowledge about genetics and how it affects these attitudes toward genetic counseling and testing

The study was conducted in two hospitals in the West Bank: Al-Najah National Hospital in Nablus: pediatric ward and pediatric clinic (65\%) of subjects, and Palestine Medical Complex (PMC) in Ramallah: Pediatric suit (Neonate ICU, Pediatric ICU and Pediatric ward) (35\%) of subjects.

The questionnaire was built according to a literature review by the researcher and the supervisor with help from many experts in research and heredity. Data was collected from $(15 \backslash 2 \backslash 2016$ to $15 \backslash 9 \backslash 2016)$ the questionnaire contains four sections: Demographic data, associated risk factors, the section of knowledge; it is like a quiz to evaluate the awareness of parents, and the section of attitude to evaluate parent's attitudes toward genetic counseling and what their plan in the future to avoid it having other children with the same or other genetic problem is likert scale questionnaire
had been used in five aspects: (strongly agree, agree, undecided, disagree, strongly disagree).

Sample size (121) subjects, data analyzed by SPSS vergion 19.

Independent variables: education, address, age, number of children, income and Knowledge

Dependent variable: parents attitudes toward genetic testing and counseling There is a filter question (How many children with genetic disorders do you have?) this will help us to analyze the data.

In risk factors most risks were: Neglect the premarital genetic testing, consanguineous marriage and early marriage of mothers.

Ten questions had been used to evaluate parents' knowledge which was classified into three categories (good, moderate, and weak), (5\%) of parents had weak evaluation, (31.4\%) of them their evaluation was moderate, and good knowledge evaluation was (63.6\%). People who had good knowledge had also positive attitudes towards genetic counseling and testing, chi square had been used to compare groups, then correlation was tested. Hypothesis 2 and 3: if number of lost or affected children affects parents knowledge and attitudes had been refused and there is no significant relationship.

According to the previous results it is recommended to increase people's awareness about genetic problems and genetic counseling especially
premarital and prenatal prevention, and to insert genetic testing in diagnostic process in national hospitals.

References

-Abu-Libdeh, B. Teebe, A. (2010). Genetic disorder among Palestinian Populations. In: Teee AS. Genetic disorders among Arab populations. $\mathbf{2}^{\text {nd }}$ ed. London: Springer Science and Busness Media.P. 941.
-Alam, A, (2006). Perception of female students of King Saud University towards premarital screening. Journal of Family Community Med. 13(2): 83-88
-Al-Gazali, L. (2006). Genetic disorders in the Arab world, The BMJ. 333 (831).
-Boardman, F. (2014). The expressivist objection to prenatal testing: The experiences of families living with genetic disease. Social Science \& Medicine.107(14):18-25.
-Brunger, J, Murray, G, Riodan, M, Matthews, A, Smith, R, Robin, N. (2000). Parental Attitudes toward Genetic Testing for Pediatric Deafness. American Society of Human Genetics. 67 (6): 1621-1625.
-Calsbeek, H, Morren, M, Bensing, J, Rijken, M. (2007). Knowledge and attitudes towards genetic testing: a two year follow-up study in patients with asthma, diabetes mellitus and cardiovascular disease. Journal of Genetic Counseling. 16 (4) : 493-504.
-Ellington, L. Maxwel, A. (2006). Genetic counseling communication with an African American BRCA1 kindred. Social Science and Medicine. 64 (3): 724-734.
-Fitzgerald-Butt, S, Klima, J, Kelleher, K, Chisolm, D, McBride, K. (2014). Genetic knowledge and attitudes of parents of children with congenital heart defects. Pubmed. 14(12): 3069-3075.
-Fisher, R. Yates, F. (2006). Chi square test. Statistical Tables for Biological Agricultural and Medical Research. [Online] Available at: http://www2.lv.psu.edu/jxm57/irp/chisquar.html [Accessed 18 December 2016]
-Hamamy, H. (2012). Consanguineous marriages: Preconception consultation in primary health care settings. Journal of Community Medicine. 3 (3):185-192.
-Harvey,E. Harvey,C. Peyrot, M. (2007), Providers' knowledge of genetics: A survey of 5915 individuals and families with genetic conditions. Genetics in Medicine. 9 (5):259-267.
-Hietala,M, Hakonen,A , Aro, A , Peltonen,L, Aula, P.(2000). Attitudes toward Genetic Testing among the General Population and Relatives of Patients with a Severe Genetic Disease: A Survey from Finland, American Journal of Genetics. 56 (6):14399-1500.
-Ibrahim, N. Al-Bar, H. Al-Fakeeh, A, (2011). An educational program about premarital screening for unmarried female students in King AbdulAziz University, Jeddah. Journal of Infection and Public Health. 4(1): 30-40.
-Institute for Digital Research and Education, (2016). Crombach Alpha. [Online] available at: https://idre.ucla.edu/ . (Accessed 10 December 2016).
-Investopedia. (2016) Correlation [Online] available at:
http://www.investopedia.com/terms/c/correlation.asp. [Accessed 17
December 2016].
-Kaiser, P. Kiesel, L. (1997). Chromosomal findings in 150 couples referred for genetic counselling prior to intracytoplasmic sperm injection. Human Reproduction. 12 (5):930-937.
-Kocha,L. and Svendsenb, M. (2005) Providing solutions-defining problems: the imperative of disease prevention in genetic counseling. Social Science \& Medicine 60 (20) 823-832.
-Lund research, 2013. One-way ANOVA in SPSS Statistics, Laerd statistic. [Online] available at: https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php, [Accessed 21 December 2015].
-Meiser,B. Halliday, J. (2002). What is the impact of genetic counseling in women at increased risk of developing hereditary breast cancer? A metaanalytic review. Social Science a Medicine 54 (13): 1463-1470.
-Middleton, A. Hewison, J (1997). Attitudes of Deaf Adults toward Genetic Testing for Hereditary Deafness. Am. J. Hum. Genet. 63 (24):1175-1180.
-Morren, M. Rijken, R. (2006). Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease. Patient Education and Counseling: 65 (2) : 197-204.
-National Coalition for Professional Education in Genetics (NCPEG). (2013), Genetic Alliance. [online] available at: http://www.nchpeg.org/index.php?option=com_content\&view=article\&id= 424 [Accessed 17/11/2016].
-NIH, 2011. Specific Genetic Disorders. National Human Genome Research.Institute.[online].available.at:
http://www.genome.gov/10001204. [Accessed 22/ April 2015].
-NHS choices, 2014. health center for genetic education. [online] available at: http://www.nhs.uk/chq/Pages/2370.aspx. [accessed 20/ March 2015].
-Oxford University, 2015. Oxford Thesaurus of English. UK, John D. Wright.
-PHIC, 2013. Palistine Health Annual Report, annual report 2013. MOH
-PHIC, 2014. Palistine Health Annual Report, annual report 2014. MOH
-Rantanen,A. (2014). Expectations, frames and practices of genetic ounseling in different contexts of genetic testing. Annales Universitatis Turkuensis, Medica - Odontologica, Painosalama. [Online]. Available at:https://www.doria.fi/bitstream/handle/10024/98897/Annales\ D\%2 01130\%20Rantanen\%20DISS.pdf?sequence=2. [Accessed 13 April 2015]. -Richard, H. (1998), Between-Subjects ,One-Way ANOVA Description, Physiology world ,[online] available at:
https://web.mst.edu/~psyworld/anovadescribe.htm . [Accessed 2 December 2015].
-Siani, M. Assaraf, 0. (2015) University Students' Attitudes towards Genetic Testing: A Comparative Study. American Journal of Public Health Research,3(3):81-90.
-Statistics Solutions, (2013). ANOVA, Statistical Solutions Advancement Throw Clarity, [Online] available at:
http://www.statisticssolutions.com/manova-analysis-anova/. (accessed 13 September 2016).
-Stat Trek, (2016). Chi squire, Statistics and Probability Dictionary, [Online] Available at: http://stattrek.com/statistics/dictionary.aspx. (accessed 12 October 2016).
-Scuffham, T, McInerny-Leo, A, Mellick, G. (2013). Knowledge and attitudes towards genetic testing in those affected with Parkinson's disease. J Community Genet. 5(2) :167-177.
-Stat Trek. (2017). Chi-square test for independence. Stat Trek teach yourself statistics. [Online] Available at:
http://stattrek.com/statistics/dictionary.aspx?definition=Categorical\ v ariable [Accessed 22 September. 2016].
-Snowdon,C, Green, J. (2000). Preimplantation diagnosis and other reproductive options: attitudes of male and female carriers of recessive disorders. Human Reproduction._12(2):341-350.
-Tadmouri, Gh. Nair, P. Obeid, T. Al Ali, M. Al Khaja, N. Hamamy, H. (2009) Consanguinity and reproductive health among Arabs. Biomed Central. [Online] Available at: https://reproductive-health-journal.biomedcentral.com/articles/10.1186/1742-4755-6-17 [Accessed 22 Oct. 2015].
-Tadmori, Gh. (2010). Genetic Disorders in Arab Populations.In: Genetic Disorders in the Arab World. Dobai, Centre for Arab Genomic Studies, 22252; p 10.
-Tercyak, K. Hamann, H. Lerman, C. Croyle, R. (2002). Genetic Testing: Psychological Aspects and Implications. Journal of Consulting and Clinical Psychology. 70(3): 784-797.
-Thawabteh, N. Abu-Libdeh, B. Ayesh, S. (2005). Prenatal diagnoses of Beta-Thalassemia in the West- Bank and Gaza. Soudi Medical Juornal. 2005 Nov;26(11):1771-1776.
-University of UTAH Health Sciences, 2015. Genetic Science Learning Center. [Online]. Available at:
http://learn.genetics.utah.edu/content/disorders/ .[Accessed 20 May 2015]
-Wanga,C, Gonzalezb, R, Merajver, S. (2004). Assessment of genetic testing and related counseling services: current researchand future directions. Social Science \& Medicine 58 (2004): 1427-1442.
-Wertz,D. Janes,S, (1992). Attitudes toward the Prenatal Diagnosis of Cystic Fibrosis: Factors in Decision Making among Affected Families. Social Science \& Medicine. 50(5): 1077-1085.
-WHO, (2013). Genetic counceling services, Genomic resource centre. [online] available at:
http://www.who.int/genomics/professionals/counselling/en/. [Accessed 21 April 2015].
-WHO.(2014). Genetic laboratories and clinics, Genomic resource centre.[online]available at:
http://www.who.int/genomics/professionals/laboratories/en/\#.
[Accessed 21 April 2015].
-WHO. 2015, Resources for patients and the public. Human Genetics programme.[online] available-at:
http://www.who.int/genomics/public/en/. [Accessed 23 April 2015]

Annex (1) Questionnaire:

كلية الدراسات العليا
برنامـج ماجستير الصحة العامة
استنيان
المعرفة والموقف تجاه الاستشثارة الوراثية بين آباء الأطفال الذين يعانون من أمراض وراثية في الضفة الغربية/ فلسطين

اعداد الطالبة: فلسطين ياسين
المشرف: الدكتورة (يمان الثثاويش

معلومات أهالي الأطفال المصابين بأمراض وراثية عن الاستشارة الوراثية والفحص الجيني، وما
سيدي المشارك/ سيدي المشاركة:

أنا الباحثة فلسطين ياسين طالبة ماجستير صحة عامة في جامعة النجاح الوطنية يسرني أن
أدعوكم الى المشاركة في بحثي عن:
(معلومات أهالي الأطفال المصابين بأمراض وراثية عن الاستشارة الوراثية والفصص الجيني، وما رأيهم في اللجوء اليها)

$$
\begin{aligned}
& \text { مع العلم أن لديك الحق في قبول أو رفض المشاركة في البحث و أخذ الوقت الكافي للالفكير في } \\
& \text { المشاركة أو عدمها كما لديك الحق في طلب تفسير السؤال الذي لا تفهمه. }
\end{aligned}
$$

نضمن لك الحفاظ على سرية المعلومات المتعلة بك ولن نطلب منك ادراج اسمك أو معلومات خاصة.

بامكانك الانسحاب من المشاركة في أي وقت دون الحاجة لأن تبدي أي عذر أو تبرير . الهـف من الدراسة:

نهذف من خال هذه الدراسة الى وصف مدى معلومانكم حول الاستشارة والفحص الجيني ومدى تأثير ذلك على آرائكم تجاه استخدامها فيا لمستقبل، للثك نرجوا من حضرتكم مسادتتا في تعبئة هذه الاستبانة حيث سيتم طرح السؤال عليكم وتعبئة الجواب من قبل الباحث حيث من المتوقع أن تأخذ من وقتكا خمسة عشر دققة حيث تتكون من أربعة أقسام: نتكون الاستبانة من ثلاثة أفسام:

القسم الأول : معلومات عامة عنكم القسم الثاني : أسباب وجود المرض الوراثي

القسم الثالث : أسئلة لاختبار معلومانكم حول الاستشارة الوراثية والفحص الجيني عليكم اختيار اجابة واحدة فقط لكل سؤال.

القسم الرابع : أسئلة تكثف رأيكم في اللجوء الى الاسنتارة الوراثية والفحوصات الجينية حيث ينم الجواب على هذه الأسئلة باختيار :(أرفض بشدة ، أرفض ، لا يهم ، أوافق، أوافق بشدة) كما أن مشاركنلك في هذا البحث ستساهم في دعم الوضع الصحي في الوطن ومحاولة انجاب جيل جديد خال من الأمراض الوراثية. اختيار المشاركين:

سيتم اختبار ذوي المرضى المصابين بأمراض مشخصة بأنها وراثية وقد تم إدخالهم إلى قسم الأطفال بسببها وذللك في مستشفى النجاح الوطني (قسم الأطفال)، و مجمع فلسطين الطبي (قسم العناية المكثفة بالأطفال الخدج وقسم العناية المكثفة بالأطفال، وقسم الأطفال). معلومات عن الباحثّة:

الاسم : فلسطين على حسين ياسين العنوان: عصيرة القبلية/ نابلس البريد الالكتروني: falasteen-yaseen@hotmail.com رقم الهاتف: شr

المشرف على البحث: الدكتورة إيمان الثاويش إن كنت موافقا على المشاركة في الدراسة نرجو من حضرتك النوقيع في الأسفل التوقيع:

القسم الأول : معلومات سكانية عامة (أرجو وضع رقم الإجابة في المكان المخصص للإجابة)

الإجابة	خيارات الإجابة	السؤال	الرقم
\square	ا. مدينة r. برية r. غ. بادية	مكان السكن	.1
\square	ا. ذكر r. أ أنثى	الجنس	.r
\square	العمر	.r
\square	ا. لا شيء r. r. إعدادي ٪. ثانوي 0. دبلوم متوسط 7. بكالوريوس فأعىى	الحالة التعليمية	. $¢$
	1. r.	العمل	. 0
	1. . . 1 شيكل فأقل ro..-10.1. rer ه. أكثر من . . . ش شيكل	دخلك الثهري	. 7

	$\square \square$ إناث \qquad ذكور $\square \square$ المجموع	عدد الأطفال	. V
	\square إناث \square ذكور \square الدجموع	عد الأطفال المصابين بمرض وراثي	.^
\square	1. تشوهات في القلب r. سكري r. أعصاب \&. حموضة الام 0. تكسر الام الوراثي 7. هضمي V ^. 9. مرض آخر، اذكره	نوع المرض الذي يعاني منه طفلك	. 9
\square	ע.r نع	هل فققت طفلا أو أطفالا بسبب مرض وراثي؟	. 1
	\square إناث \square ذكور \square الججموع	إن كان جوابك نعم . كم عددهم	.11

القسم الثاني: العوامل المساعدة لظهو المرض الوراثي (أرجو وضع رقم الإجابة في المكان المخصص للإجابة)

الإجابة	خيارات الإجابة	السؤل	الرقم
\square		كم كان عمر الأم عند الزواج	.
\square	عمر الأم عند إنجاب الطفل الأول	.r
\square	ע.1 نת-	هل يوجد قرابة بين الأم والأب؟	.r
\square	ا.أولى ب. ثانية r. ثالثة	إذا كان الجواب نعم ما درجة القرابة؟	.
\square	y.r نr	هل تم إجراء أي الفحوصات الوراثية قبل الزواج؟ (بالإضافة إلى فحص الثلاسيميا)	. 0
	¢ ا.سلبية r. ايجابية	ماذا كانت النتيجة؟	. 7
\square	y.r	هل لايكم أقارب مصابون بمرض وراثي ؟	. V
\square	1. 1 .تشوهات في القلب r. سكري r. أعصصاب \&. حموضة الدم 0. تكسر الدم الوراثي 7. هضمي 「. جلاي ^. عظمي 9. مرض آخر اذكره	إذا كان نعم ، ما هو نوع المرض ¢	
\square	ע.t نr.	هل تقطنون في منطقة صناعية أو منطقة قريبة من إثعاعات (مفاعل ديمونا)؟ (الآن أو في السابق)	. \wedge
\square	ע.r	هل قامت الأم خال الحمل بعمل صورة تلفزيونية للجنين (فحص الأعضاء) ؟	. 9

\square	1. أقل من أربعة أشهر r. r. أربعة أثهر أو أكثر	إذا كان الجواب نعم كم كان عمر الحمل (الجنين)؟	
\square	ע.r ن.	هل سبق أن قدمت لك معلومات عن الأمراض الوراثة وطرق انتقلها، والحد من انتشارها ؟	1.
\square	1. مركز صحي r. r. وسائل الإعلام r. r. مدرسة \&. الأسرة ه. رجال الدين 7. ندوة صحية v. . من الناس المحيطين حولك	إن كان نعم ما هو مصدر المعلومة ¢	

القسم الثالث: معلوماتك عن الاستشثارة الوراثية والاختبارات الجينة
(اختر الجواب الذي تعتقد أنه صحيح)

الإجابة	خبارات الإجابة	السؤال	الرقم
\square	ا ـ فحص الجينات الوراثية للأم والأب r. فحص الحمض النووي للكثف عن صفة وراثية معينة r. الكشف عن الكروموسومات التي تحمل الجينات المصابة ؛. كل ما ذكر صحيح	الفحص الوراثي هو1
\square	1. الجينات r.r. العدوى بالملامسة r. الماء والهواء اللموثان ؛. لا ينتقل	المرض الوراثي ينتقل عن \qquad	r
\square	ا. النقليل من أطفال مصايين بأمراض وراثية Y. إجهاض الجنين المصاب بالمرض الوراثي r. علاج الطفل المصاب بالمرض الوراثي	الهدف الرئيسي من الاستثارة \qquad	.r
\square	1. عند التخطيط للحمل r. فـ الأششهر الأولى للحمل r. فـ الأشهر الأخيرة للحمل ؛. ؛ بعد الولادة مباشرة	الوقت المناسب للاستثارة \qquad	.
\square	ע.r	يمكن الثقليل من الإصابة بالأمراض الوراثة..........:	. 0
\square	ע.r نع	زواج الأقارب يزيد من احتمالية الإصابة بمرض وراثي........:	. 7

\square	ـ الأم r. r.	من السبب برأيك في انتقال . المرض الوراثي	. V
	ا. في أول حمل فقط r. 「. ليست ضرورية	الاستشارة الوراثثة ضرورية^
\square	1. الأم والأب r. الجد والجدة r. أبناء العمومية ६. لا داعي للفحص	الأفراد الذين يجب إخضاعهم للاسنشارة الوراثية إلى جانب الطفل المصاب هم	. 9
	1. علاج الأمراض الوراثية Y. التحكم في انتشار بعض الأمراض الوراثية في المجتمع r. تحديد جنس المولود \& .تجنب التترض للأمراض المعدية	برأبك ما أهمية الاستشارة الوراثبة قبل الزواج:	.).
	ا. ضعيف r. r. متوسط r. جيد	النقيبيم	

القسم الرابع: رأيك في اللجوء إلى الاستثشارة الوراثية والفحوصات الجينية قبل الإنجاب
أرجو وضع إشارة (V) أسفل الكلمة التي تعبر عن رأيك:

أوافق بشدة	أواقق	لا رأي	أعارض	أعارض بشدة	السؤل	الرقم
					ينبغي على الأفراد عمل فحوصـات وراثية عـد اختيار الزوج/النزجة	.
					ينبغي على كل النساء الحوامل عمل فحوصات وراثية للجبّين	.r
					ينغـي أن يكـون الفـص الـوراثي متاــا لأي شخص يحتّاجه	r
					يجب أن تتوفر الاستشــارة الوراثـة حتى للعائلـة الني ليس لديها ناريخ في الأمراض الوراثية	.
					الاستثـارة الوراثيـة لا يجب اللجوء إلبيها نهائيـا لأسباب ديبية واجتماعية	.
					تستخدم تنتــات أطفـال الأنابيب لاختــار الجين السليم عند الرغبة في الإنجاب.	.
					يجب عمل فحص وراثي لكل المواليد الجدد	v
					مـن حـق كـل فـرد أن يعـرف قابلبتـهـ للنـــرض للكمراض الوراثبة خال حياته.	. λ
					من حق كل فرد أن يعرف احتمالية إنجاب أطفال مصايين بأمراض وراثة.	. 9
					يجب النتليم بالهرض الوراثي دون تخل.	. 1

أوافق بشدة	أوافق	لا رأي	أعارض	أعارض بشدة	السؤال	الرقم
						. 11
					لإنجاب طفل في المستقبل.	. 1 r
					أنصح أبنائي في الدستقبل باللجوء إلى الاستشارة الوراثية قبل الزواج	. $1 \times$
					ظهور المـرض الوراثي يمنع من الاستمرار في زواج الأقارب في العائلة.	.) \leqslant
					تجربـة الإصابة بمرض وراثي داخل الأسرة تزيد من الاهتمام بالاستشارة الوراثية	. 10
					الفحوصـات الوراثيـة نسـاعد على كثـف الوضـع الصحي للمقبلين على الزواج وإلحاق الضرر بهم	. 17
					الاستشـارة الوراثية نساعد على الابتعاد عن زواج الأقارب.	. V
					الاستثــارة الوراثيـة تقلل من احتماليـة إصـابة أحد أفراد الأسرة بمرض وراثي	. 11
					مـن المهم توضيح رأي الثـرع في اتخـاذ القرار المناسـب فـي الـزواج حسـب التـاريخ الصــحي لعائلنتي المخطوبين	. 19
					المعلومـات المقـمـة لـي عن الاستنـــارة الوراثـــة غير كافية.	.r.

103

أوافق بشدة	أوافق	لا رأي	أعارض	أعارض بشدة	السؤال	الرقم
					الهختبرات التي تقدم خمة الفحص الوراثي غير متوفرة في منطتّي.	.r
					النكاليف المرنفعة للاستشارة الوراثية تشكل عائق في اللجوء إليها.	. M

Annex (2): Tables
 Table (4.5): Attitudes

Attitudes			
Attitude		N	\%
1. Couples have to do genetic testing when they plan to get marry	disagree	2	1.7
	I don't know	12	9.9
	Agree	107	88.4
2. All of pregnant women have to do genetic test for the fetus	disagree	5	4.1
	I don't know	3	2.5
	Agree	113	93.3
3.Experience of genetic problem in the family will increase their care about genetic counseling.	disagree	1	. 8
	I don't know	2	1.7
	Agree	108	97.5
4. Genetic testing have to be available for people as needed.	disagree	0	0
	I don't know	1	. 8
	Agree	120	99.2
5. Genetic counseling must be available even for families which family history free of genetic problems.	disagree	22	18.2
	I don't know	8	6.6
	Agree	91	75.2
6. Genetic counseling had been never used for religious and social causes	disagree	101	83.5
	I don't know	17	14.0
	Agree	3	2.5
7. IVF could be used to avoid defected gene when couples wont to	disagree	27	22.4
	I don't know	45	37.2

have a healthy baby.	Agree	49	40.5
8. Genetic testing must be done for all of new born.	Disagree	12	9.9
	I don't know	14	11.6
	Agree	95	78.5
9. Each person have the right to know if he is risky to have a genetic problem in the future	Disagree	4	3.7
	I don't know	1	. 8
	Agree	116	95.9
10. Each person have the right to know the probability to have a child with genetic problem	Disagree	5	4.1
	I don't know	87	71.9
	Agree	29	23.9
11.We have to bow to the genetic problems without interference	Disagree	110	90.9
	I don't know	2	1.7
	Agree	9	7.4
12.Genetic counseling must be avoided because it is increase the probability to abortion	Disagree	96	79.3
	I don't know	12	9.9
	Agree	13	10.8
13. I will take a genetic consultation when I plan for pregnancy in the future	Disagree	10	8.2
	I don't know	6	5.0
	Agree	105	86.7
14.I advice my children to have genetic counseling before marriage	Disagree	3	2.5
	I don't know	3	2.5
	Agree	115	95
15. The presence of genetic disorder in a family may lead them to stop consanguineous Marriage.	Disagree	9	7.5
	I don't know	7	5.8
	Agree	105	86.8

106			
16. Genetic testing help couples to discover their genetic history and may destroy their relationship	Disagree	21	17.3
	I don't know	16	13.2
	Agree	84	96.5
17. Genetic counseling lead to avoid consanguineous marriage	Disagree	4	3.3
	I don't know	5	4.1
	Agree	112	92.6
18. Genetic counseling decrease the probability of having genetic problem	Disagree	18	14.8
	I don't know	13	10.7
	Agree	90	74.3
19. It is important to clarify the Islamic view in making the right decision to marry according to my family health history	Disagree	8	6.6
	I don't know	34	28.1
	Agree	79	65.3
20. My information about genetic counseling are not insufficient	Disagree	32	26.5
	I don't know	5	4.1
	Agree	84	69.4
21. Laboratories that offer genetic testing service is not available in my country	Disagree	8	6.6
	I don't know	3	2.5
	Agree	111	90.9
22. High cost of genetic counseling may decrease the desire to take it	Disagree	11	9.1
	I don't know	6	5
	Agree	104	86

Annex(3) Chi-square analysis (relationship between knowledge and attitudes)

Attitude		Knowledge evaluation			Total	P-value
		weak	moderate	good		
1. Couples have to do genetic testing when they plan to get marry	Strongly disagree	$\begin{gathered} 0 \\ 0 \% \end{gathered}$	0.004			
	Disagree	$\begin{gathered} \hline 0 \\ 0 \% \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \% \end{gathered}$	$\begin{gathered} 2 \\ 100 \% \end{gathered}$	$\begin{gathered} \hline 2 \\ 100 \% \end{gathered}$	
	I don't know	$\begin{gathered} 2 \\ 16.7 \% \end{gathered}$	$\begin{gathered} 8 \\ 66.7 \% \end{gathered}$	$\begin{gathered} 2 \\ 16.7 \% \end{gathered}$	$\begin{gathered} 12 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 4 \\ 4.8 \% \end{gathered}$	$\begin{gathered} 26 \\ 31.0 \% \end{gathered}$	$\begin{gathered} 54 \\ 64.3 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 84 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ \hline .0 \% \end{gathered}$	$\begin{gathered} 4 \\ 17.4 \% \end{gathered}$	$\begin{gathered} 19 \\ 82.6 \% \end{gathered}$	$\begin{gathered} \hline 23 \\ 100.0 \% \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
2. All of pregnant women have to do genetic analysis for the fetus	Strongly disagree	$\begin{gathered} 0 \\ 0 \% \end{gathered}$	0.47			
	Disagree	$\begin{gathered} 0 \\ 0 \% \end{gathered}$	$\begin{gathered} 1 \\ 20 \% \end{gathered}$	$\begin{gathered} 4 \\ 80.0 \% \end{gathered}$	$\begin{gathered} 5 \\ 100.0 \% \end{gathered}$	
	I don't know	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 66.7 \% \end{gathered}$	$\begin{gathered} 1 \\ 33.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 6 \\ 6.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ 33.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 58 \\ 60.4 \% \end{gathered}$	$\begin{gathered} 96 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} \hline 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 17.6 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \\ 82.4 \% \end{gathered}$	$\begin{gathered} 17 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
3.Experience of genetic problem in the family will increase their care about genetic counseling	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} \hline 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	0.07
	Disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	
	I don't know	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} \hline 2 \\ 100.0 \% \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 5 \\ 5.6 \% \end{gathered}$	$\begin{gathered} 28 \\ 31.1 \% \end{gathered}$	$\begin{gathered} 57 \\ 63.3 \% \end{gathered}$	$\begin{gathered} 90 \\ 100.0 \% \end{gathered}$	
	Strongly agree	$\begin{gathered} 1 \\ 3.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 25.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 71.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
4. Genetic testing have	Strongly disagree	$\begin{gathered} 0 \\ 0 \% \end{gathered}$	0.06			

			108			
to be available for people as needed	Disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$				
	I don't know	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 6 \\ 6.0 \% \end{gathered}$	$\begin{gathered} 35 \\ 35 \% \end{gathered}$	$\begin{gathered} \hline 59 \\ 59 \% \end{gathered}$	$\begin{gathered} 100 \\ 100.0 \% \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 15.0 \% \end{gathered}$	$\begin{gathered} 17 \\ 85.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 100.0 \% \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
```5.Genetic counseling must be available even for families which family history free of genetic problems```	Strongly disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	0.02			
	Disagree	$\begin{gathered} 3 \\ 13.6 \% \end{gathered}$	$\begin{gathered} 10 \\ 45.5 \% \end{gathered}$	$\begin{gathered} 9 \\ 40.9 \% \end{gathered}$	$\begin{gathered} 22 \\ 100.0 \% \end{gathered}$	
	I don't know	$\begin{gathered} 1 \\ 12.5 \% \end{gathered}$	$\begin{gathered} 2 \\ 25.0 \% \end{gathered}$	$\begin{gathered} 5 \\ 62.5 \% \end{gathered}$	$\begin{gathered} 8 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 2 \\ 2.6 \% \end{gathered}$	$\begin{gathered} 23 \\ 29.9 \% \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ 67.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 100.0 \% \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 21.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 78.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
6. Genetic counseling had been never used for religious and social causes	Strongly disagree	$\begin{gathered} 1 \\ 2.3 \% \end{gathered}$	$\begin{gathered} 9 \\ 20.5 \% \end{gathered}$	$\begin{gathered} 34 \\ 77.3 \% \end{gathered}$	$\begin{gathered} 44 \\ 100.0 \% \end{gathered}$	0.001
	Disagree	$\begin{gathered} 1 \\ 1.8 \% \end{gathered}$	$\begin{gathered} 20 \\ 35.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 63.2 \% \end{gathered}$	$\begin{gathered} 57 \\ 100.0 \% \\ \hline \end{gathered}$	
	I don't know	$\begin{gathered} 4 \\ 23.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 35.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 41.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ 00.0 \% \end{gathered}$				
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
7. IVF could be used to avoid defected gene when couples wont to have a healthy baby	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 33.3 \% \end{gathered}$	$\begin{gathered} \hline 4 \\ 66.7 \% \end{gathered}$	$\begin{gathered} 6 \\ 100.0 \% \end{gathered}$	0.18
	Disagree	$\begin{gathered} 1 \\ 4.8 \% \end{gathered}$	$\begin{gathered} 9 \\ 42.9 \% \end{gathered}$	$\begin{gathered} 11 \\ 52.4 \% \end{gathered}$	$\begin{gathered} 21 \\ 100.0 \% \end{gathered}$	
	I don't know	$\begin{gathered} 3 \\ 6.7 \% \end{gathered}$	$\begin{gathered} 17 \\ 37.8 \% \end{gathered}$	$\begin{gathered} 25 \\ 55.6 \% \end{gathered}$	$\begin{gathered} 45 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 1 \\ 2.5 \% \end{gathered}$	$\begin{gathered} 9 \\ 22.5 \% \end{gathered}$	$\begin{gathered} 30 \\ 75.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 100.0 \% \end{gathered}$	
	Strongly agree	$\begin{gathered} 1 \\ 11.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 11.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 77.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
8. Genetic testing must	Strongly disagree	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \\ \hline \end{gathered}$	0.02


109						
be done for all of new Born	Disagree	$\begin{gathered} 2 \\ 16.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 33.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 100.0 \% \\ \hline \end{gathered}$	
	$\begin{array}{\|l\|} \hline \text { I don't } \\ \hline \end{array}$ know	$\begin{gathered} 1 \\ 7.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 42.9 \% \end{gathered}$	$\begin{gathered} 7 \\ 50.0 \% \end{gathered}$	$\begin{gathered} 14 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 3 \\ 4.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 32.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 64.0 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 2 \\ 10.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 90.0 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \\ \hline \end{gathered}$	
9. Each person have the right to know his risk to have a genetic problem in the future	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \\ \hline \end{gathered}$	0.16
	Disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \\ \hline \end{gathered}$	
	I don't know	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 6 \\ 6.6 \% \end{gathered}$	$\begin{gathered} 33 \\ 36.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ 57.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 91 \\ 100.0 \% \\ \hline \end{gathered}$	
	$\begin{aligned} & \text { Strongly } \\ & \text { agree } \end{aligned}$	Strongly agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 12.0 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ 88.0 \% \\ \hline \end{gathered}$	
	Total	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \\ \hline \end{gathered}$	
10. Each person have the right to know the probability to have a child with genetic problem	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	0.3
	Disagree	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \% \\ \hline \end{gathered}$	
	I don't know	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 1 \\ 25.0 \% \end{gathered}$	$\begin{gathered} 3 \\ 75.0 \% \end{gathered}$	$\begin{gathered} 4 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	$\begin{gathered} 6 \\ 6.9 \% \end{gathered}$	$\begin{gathered} 33 \\ 37.9 \% \end{gathered}$	$\begin{gathered} 48 \\ 55.2 \% \end{gathered}$	$\begin{gathered} 87 \\ 100.0 \% \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 14.3 \% \end{gathered}$	$\begin{gathered} 24 \\ 85.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} \hline 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
11. We have to bow to the genetic problems without interference	Strongly disagree	$\begin{gathered} 1 \\ 1.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 28.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 70.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 57 \\ 100.0 \% \\ \hline \end{gathered}$	0.01
	Disagree	$\begin{gathered} 3 \\ 5.7 \% \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 32.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 62.3 \% \end{gathered}$	$\begin{gathered} 53 \\ 100.0 \% \end{gathered}$	
	I don't know	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 2 \\ 25.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 25.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	


			110			
12. Genetic counseling must be avoided because it is increase the probability to abortion.	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 29.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 70.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 100.0 \% \\ \hline \end{gathered}$	0.01
	Disagree	$\begin{gathered} 3 \\ 6.1 \% \end{gathered}$	$\begin{gathered} 9 \\ 18.4 \% \end{gathered}$	$\begin{gathered} 37 \\ 75.5 \% \end{gathered}$	$\begin{gathered} \hline 49 \\ 100.0 \% \end{gathered}$	
	$\begin{aligned} & \text { I don't } \\ & \text { know } \end{aligned}$	$\begin{gathered} 2 \\ 16.7 \% \end{gathered}$	$\begin{gathered} 7 \\ 58.3 \% \end{gathered}$	$\begin{gathered} 3 \\ 25.0 \% \end{gathered}$	$\begin{gathered} 12 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 1 \\ 9.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 63.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 27.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
13. I will take a genetic consultation when I plan for pregnancy in the future	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \\ \hline \end{gathered}$	0.5
	Disagree	$\begin{gathered} 1 \\ 11.1 \% \end{gathered}$	$\begin{gathered} 3 \\ 33.3 \% \end{gathered}$	$\begin{gathered} 5 \\ 55.6 \% \end{gathered}$	$\begin{gathered} 9 \\ 100.0 \% \end{gathered}$	
	I don't know	$\begin{gathered} 1 \\ 16.7 \% \end{gathered}$	$\begin{gathered} 1 \\ 16.7 \% \end{gathered}$	$\begin{gathered} 4 \\ 66.7 \% \end{gathered}$	$\begin{gathered} 6 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 2 \\ 2.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 36.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 61.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly agree	$\begin{gathered} 2 \\ 7.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 21.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 71.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \end{gathered}$	
14. I advice my children to have genetic counseling before marriage	Strongly disagree	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \end{gathered}$	$\begin{gathered} 1 \\ 100.0 \% \end{gathered}$	0.7
	Disagree	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 100.0 \% \\ \hline \end{gathered}$	
	I don't   know	$\begin{gathered} 2 \\ 66.7 \% \end{gathered}$	$\begin{gathered} 1 \\ 33.3 \% \end{gathered}$	$\begin{gathered} 0 \\ .0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 100.0 \% \end{gathered}$	
	Agree	$\begin{gathered} 2 \\ 2.5 \% \end{gathered}$	$\begin{gathered} 30 \\ 37.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 60.0 \% \end{gathered}$	$\begin{gathered} \hline 80 \\ 100.0 \% \\ \hline \end{gathered}$	
	Strongly   agree	$\begin{gathered} 2 \\ 5.7 \% \end{gathered}$	$\begin{gathered} 6 \\ 17.1 \% \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 77.1 \% \end{gathered}$	$\begin{gathered} 35 \\ 100.0 \% \end{gathered}$	
	Total	6	38	77	121	
		5.0\%	31.4\%	63.6\%	100.0\%	
15. The	Strongly   disagree	0	0	2	2	0.3
presence of		. $0 \%$	. $0 \%$	100.0\%	100.0\%	
genetic	Disagree	0	5	2	7	
disorder in a		.0\%	71.4\%	28.6\%	100.0\%	
family may	I don't	2	4	1	7	

111

leadthem to stop	know	28.6\%	57.1\%	14.3\%	100.0\%	
	Agree	4	24	56	84	
consanguineo		4.8\%	28.6\%	66.7\%	100.0\%	
us marriage	Strongly	0	5	16	21	
	agree	. $0 \%$	23.8\%	76.2\%	100.0\%	
	Total	6	38	77	121	
		5.0\%	$31.4 \%$	63.6\%	100.0\%	
16. Genetic	Strongly	0	0	4	4	0.2
testing help	disagree	. $0 \%$	.0\%	100.0\%	100.0\%	
couples to	Disagree	1	6	10	17	
discover their		5.9\%	35.3\%	58.8\%	100.0\%	
genetic	I don't	1	5	10	16	
history	know	6.3\%	31.3\%	62.5\%	100.0\%	
And may destroy their relationship	Agree	4	24	43	71	
		5.6\%	$33.8 \%$	60.6\%	100.0\%	
	Strongly	0	3	10	13	
	agree	. $0 \%$	23.1\%	76.9\%	100.0\%	
	Total	6	38	77	121	
		5.0\%	$31.4 \%$	63.6\%	100.0\%	
17. Genetic	Strongly	0	0	0	0	0.04
counseling	disagree	. $0 \%$	0.0\%	0.0\%	00.0\%	
lead to avoid	Disagree	0	4	0	4	
consanguineo		. $0 \%$	100.0\%	. $0 \%$	100.0\%	


us marriage	I don't	0	3	2	5
	know	$.0 \%$	$60.0 \%$	$40.0 \%$	$100.0 \%$
	Agree	5	27	61	93


Islamic view in making the		.0\%	37.5\%	62.5\%	100.0\%	
in making the right decision	$\begin{aligned} & \text { I don't } \\ & \text { know } \end{aligned}$	$\begin{gathered} 2 \\ 5.9 \% \end{gathered}$	$\begin{gathered} 14 \\ 41.2 \% \end{gathered}$	$\begin{gathered} 18 \\ 52.9 \% \end{gathered}$	$\begin{gathered} 34 \\ 100.0 \% \\ \hline \end{gathered}$	
to marry according to	Agree	$\begin{gathered} 3 \\ 4.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 27.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 68.1 \% \end{gathered}$	$\begin{gathered} 69 \\ 100.0 \% \\ \hline \end{gathered}$	
according to my family health history	Strongly   agree	$\begin{gathered} 1 \\ 10.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 20.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 70.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \\ \hline \end{gathered}$	
20. My information about genetic counseling are not insufficient	Strongly   disagree	0   .0\%	$\begin{gathered} 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 100.0 \% \\ \hline \end{gathered}$	3   $100.0 \%$	0.6
	Disagree	0   .0\%	$\begin{gathered} 10 \\ 34.5 \% \end{gathered}$	$\begin{gathered} 19 \\ 65.5 \% \end{gathered}$	$\begin{gathered} 29 \\ 100.0 \% \\ \hline \end{gathered}$	
	I don't   know	0   .0\%	$\begin{gathered} 1 \\ 20.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 80.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 100.0 \% \\ \hline \end{gathered}$	
	Agree	4   6.3\%	$\begin{gathered} 18 \\ 28.1 \% \\ \hline \end{gathered}$	42   65.6\%	64 $100.0 \%$	
	Strongly   agree	$\begin{gathered} 2 \\ 10.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 45.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 45.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 100.0 \% \\ \hline \end{gathered}$	
	Total	$\begin{gathered} 6 \\ 5.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 31.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 63.6 \% \end{gathered}$	$\begin{gathered} 121 \\ 100.0 \% \\ \hline \end{gathered}$	
21.Laboratori es that offer	Strongly   disagree	0   .0\%	0 $.0 \%$	$\begin{gathered} 0 \\ 00.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 00.0 \% \\ \hline \end{gathered}$	0.8

114

genetic testing	Disagree	0	0	8	8	
service is not		. $0 \%$	. $0 \%$	100.0\%	100.0\%	
available inmy	I don't	0	0	3	3	
	know	0.0\%	0.0\%	100\%	100.0\%	
Country	Agree	1	20	35	56	
		1.8\%	35.7\%	62.5\%	100.0\%	
	Strongly	5	18	31	54	
	agree	9.3\%	33.3\%	57.4\%	100.0\%	
	Total	6	38	77	121	
		5.0\%	31.4\%	63.6\%	100.0\%	
22. High cost	Strongly	1	0	1	2	0.6
of	disagree	50.0\%	. $0 \%$	50.0\%	100.0\%	
genetic	Disagree	0	1	8	9	
counseling		.0\%	11.1\%	88.9\%	100.0\%	
may decreasethe desire to		0	2	2	4	
	know	. $0 \%$	50.0\%	50.0\%	100.0\%	
take it	Agree	1	16	28	45	
		2.2\%	35.6\%	62.2\%	100.0\%	
	Strongly	4	18	37	59	
	agree	6.8\%	30.5\%	62.7\%	100.0\%	
	Total	6	38	77	121	
		5.0\%	31.4\%	63.6\%	100.0\%	

## Annex (4): Table of Literature Review

	Methodology		
Author, year and Title	Aim, Study design and tool	Population and Sample	Finding
(Felicity.Kate	Cross sectional	Population:	idea that such
			screening and
Boardman, 2014)	Tool:	Families.and	selective termination
UK(The	Qualitative	individuals.	decisions are made in
expressivity	interview (over the	living with a genetic	the context of
objection.to	telephone (75\%),	.disease in	ignorance, or even
prenatal.testing:	via email (17\%)		prejudiced ideas,
The.experiences of	and face-to-face	sample:	about the reality of
Families.living	(8\%).	stratified sample	that particular
with.genetic	Aim:	61 subject	condition. Indeed,
			for families living
disease)	to explore the role		with inheritable
	that experiential		diseases such as
	knowledge of SMA		SMA, these
	played in		decisions around
	reproductive		selective termination
	decision-making		were not being made
	and attitudes		by unknown others,
	towards having		but by members of
	children with SMA		their own family.


ABALI,A.	Cross sectional	Families of	There were positive
AYAYDIN,	State-Trait Anxiety	hemophilic patients	correlations between
H20014, turkey	Scale	Sample:	overprotective
(An examination of	Aim:	Forty-two	mothering and
the symptoms of	To assess	male patients	marital conflict.
anxiety and parental	symptoms of	between the	Also, another
attitude in	anxiety in children	ages of 7 and 16	positive correlation
children with	with hemophilia	diagnosed and	was obtained
hemophilia)	and parental	followed as	between marital
	attitude towards	hemophiliac.	conflict and strict
	children with		discipline.
	hemophilia.		Fifteen mothers
			showed significant
			anxiety disorder
	Interventional	Unmarried female	This study highlights
Ibrahim, N. Al-Bar,	study.	students	that knowledge of
H. Al-Fakeeh,A	Tool:	In King Abdul-Aziz	female uni- versity
2012, KSA	Questionnaire	University	students about the
(An educational	before education	Sample:	PMS program was
program about	And another after	Multi-stage stratified	low before the
premarital screening	education program	random sample	educational
for	Aim:	method was used	campaign. On the
unmarried	present study was	with recruitment	other hand, there was
female students in	conducted	of 1563 students	general positive


King Abdul-	to assess		attitude towards the
Aziz University,	knowledge and		importance of the
Jeddah	attitude of		PMS. Our
	unmarried female		educational program
	students in King		was successful in
	Abdul-Aziz		improving students'
	University (KAU)		knowledge about
	towards premari-		PMS.
	tal screening		
	(PMS) program, to		There is certainly a
	determine		need for more
	predictors of high		information and
	students'		education about the
	knowledge scores		program.
	and to improve		
	their knowledge		
	about PMS through		
	conduction of an		
	educational		
Awatif A. Alam	Cross sectional	Population:	The students in the
2006 ksa	KAP survey	female students of	present study
(perception of	Tool:	King Saud University	demanded the
female students of	Questionnaire		extension of PMS to


king saud university	Aim:	sample:	investigate and
towards premarital	To in assess the	simple random	screen for other
screening	attitudes of	sampling method	diseases especially
	university students		sexually transmitted
	in Abha, KSA, in	135 students	diseases likely to
	2002 towards		adversely affect the
	premarital		health of individuals
	counseling.		and the community.
(Hietala, M \&	A case control	The population:	survey indicated that
Hakonen, A \& Aro,	study using self	1)Normal finland	the Finnish
A \& Peltonen,L \&	reported	population	population in
Aula, P.2000)	questionnaire	2)Relatives of pt.s	general, and family
Finland		with genetic	members of
(Attitudes toward	Aim:	disorders	patients with AGU in
Genetic Testing	explore the	Sampling:	particular, have a
among the General	attitudes of the	2 stratified samples	positive attitude
Population	Finnish	-control group:	toward genetic
and Relatives of	population toward	(1169 subjects)	testing in risk
Patients with a	genetic testing	-case group: (82	determination for a
Severe Genetic		subjects	variety
Disease:			of genetically
A Survey from			determined disorders.
Finland)			


(Snowdon, C. \&	A cross sectional	Population:	The majority of the
Green, J. 2000) UK	questionnaire	Couples carrying a	sample did not feel
(Preimplantation	passed study.	recessive disorder	that it was the most
diagnosis and other	Aim:	whom recorded in	useful option in their
reproductive	describes in detail	four genetics centers	situation
options: attitudes of	the	in the UK.	Those who would
male and female	attitudes of	Sample:	not consider a
carriers of   recessive disorders)	carriers of	The couple were still	termination were also
	recessive disorders	together; they were	those most likely to
	to pre-	of an age where they	choose PID, and it is
	implantation	may still be	for this group that
	Diagnosis (PID). In	considering (more)	PID may really offer
	IVF	children.	something new.
Ellington, L.	Pre and post test	Population: African	when providers were
Maxwel, A. 2006	protocol	American kinder	informing clients that
USA	Tool :	have a genetic	they
	Interview analyzed	mutation	were mutation
Genetic counseling	By RAIS scale	Sample:	carriers, they
communication	Aim:	87 participants that	provided more
with an African	to open the "black	underwent genetic	Biomedical
American	box', of	testing, 85	information and
BRCA1 kindred	genetic counseling	participated in the	Psychosocial
	communication	post-test session and	communication
		46 participants' pre-	(which includes


120			
		and post-test sessions	discussion of results with family members) and asked more psychosocial questions than when they talking with non-carriers.
(Awwad, R 2007)	A cross sectional	Population:	Several similarities
Palestine	comparative study	Tow group	and differences in
(Culture and	Tool:	population	native Palestinian
Acculturation	Demographic form	1)Native Palestinian	and
Influences on	and interview	2)American	Palestinian American
Palestinian	Aim:	Palestinian	responses were
Perceptions of	To investigate	Sample:	obtained. Similarities
Prenatal Genetic	influences of	17 native Palestinians	appear to be due to
Counseling)	culture and	and 14 Palestinian	common cultural
	acculturation on	Americans	roots, while
	prenatal decision		differences
	making processes		may be due to
	of		acculturation.
	native Palestinians		
	and Palestinian		
	Americans.		


121			
(Wertz,D. Janes,S,	A cross sectional	Population:	Attitudes toward prenatal diagnosis-
1992)	study	All parents who	and   the decisions that it
Israel	Tool:	visited CF centers	may present-may be
(Attitudes toward	Anonymous survey	within 4 mo of	related to fundamental
the Prenatal	questionnaires	a center's entry into	perceptions of the
Diagnosis of Cystic	Aim:	the study were asked	affected child that go beyond the child's
Fibrosis:	to explore	to participate.	present
Factors in Decision	psychosocial		health status or the parents'
Making among   Affected Families)	factors underlying	Sample:	Many parents
	decisions about use of prenatal	318 families receiving	in this study said that, after seeing retarded or
	Diagnosis for	questionnaires, 227	severely disabled
	cystic fibrosis	(71\%) responded.	children in their visits to pediatric
	(CF), among		clinics, they
	parents of affected		considered themselves fortunate
	children.		to have a child with CF .
(Rantanen,A. 2014)	Tool:	Population:	On the basis of the
Finland	Literature review	international	analysis of all
	Aim:	guidelines and	perspectives, the
	to review the kinds	recommendations,	ideal genetic
(Expectations,	of expectations that	produced mostly by	ounseling
frames and practices	are concentrated	international	seems to consist of
of genetic ounseling	on genetic		information about the


in different contexts	ounseling, and the	the WHO and	test, the condition,
of genetic testing)	different conceptions of	professional	the risks and their
		associations. Which	management; and of
	genetic information	naturally occurring	support in adjusting
	that lie behind those expectations.	data that interestingly	to this information
		reflect the ideals of	and in decision-
		genetic ounseling.	making
		Sample:	concerning the test
		The 56	and its result.
		documents produced	
		by 29 different	
		organizations.	


Meiser,B \&	A meta-analytic	Published studies	This review
Halliday,	review	about heredity breast	highlighted that most
2002(What is the	Aim:	cancer and genetic	research so
impact of genetic	to determine the	counseling	far focused on
ounseling in women	impact of genetic		generalized distress
at increased risk	ounseling on		and anxiety and
of developing	women with a		accuracy of
hereditary breast	family history of		perceived risk, to the
cancer?	Breast cancer.		exclusion of other,
A meta-analytic			perhaps equally
review)			Important
			types of outcomes.


124			
(Middleton, A.	Tool:	Population:	The sample group as
Hewison, J 1998)	questionnaire	There were 140	a whole had a
UK(Attitudes of	Aim:	delegates in the	negative attitude
Deaf	to document the	auditorium;	toward genetics
Adults toward	attitudes of deaf	completed	and genetic testing
Genetic Testing for	adults toward	questionnaires were	for deafness.
Hereditary	genetic	collected from 124	
Deafness)	testing for deafness.	British individuals	
		(response rate 89\%),	
		83 of whom	
		considered	
		themselves "deaf"	
		and 4 of whom	
		considered	
		themselves	
		"hearing impaired."	
		Sample :	
		87 individuals in 46	
		(53\%) considered	
		themselves culturally	
		Deaf, and 37 (43\%)	
		identified equally	
		with the Deaf and	
		hearing communities;	


(Afifi, H. Al-robe, F	A prevalence study	Population:	A high prevalence of
2010) Egypt	Tool:	-visitors of outpatient	genetic disorders
(The most	Medical files	clinic in Al-Giza	among Egyptians
encountered	Aim:	-NICU in Al-Giza	with frequencies
Group of genetic	To present the	Governmental	comparable with
disorders in Giza	prevalence of	Hospital	other Arab areas
Governorate, Egypt	genetic disorders in	Sample: 73260 pt	
	Al-Giza ,Egypt		
(Dolev, Y. Weiner,	a cross-national	Population:	interviewees from
N	comparative study	Two groups of	these two groups
2008)	tool:	Israeli and Germany	share similar
(New reproductive	interviews	counselors	knowledge
technologies,			concerning the fetus,
genetic ounseling	to compare	Sample:	and face similar
and the	between Israeli and	18 Israeli and 14	moral dilemmas in
standing of the	Germany morals	German genetic	their professional
fetus: views from	in the use of	counsellers	practice, they
Germany and Israel)	genetic technology		employ different
	and genetic		ethical reasoning in
	counseling		their considerations
			of the fetus.
(MORREN, M. and	Cross sectional	Population:	It was found that
RIJKEN, R . 2006)	study	Respondents of the	while chronically ill
(Perceived genetic	Questionnaire and	'Panel of Patients	patients indicate they


126			
knowledge,	DNA testing.	with Chronic	know little about
attitudes towards	Aim:	Diseases' (PPCD) in	genetic testing, their
genetic testing, and	to examine to what	Netherlands.	general view is
the relationship	extent patients with	Sample:	positive, although
between these   among patients with   a chronic disease)	chronic diseases	1916 patients.	they also expressed
	perceive to have genetic knowledge	Age at least 15 years,	some fears and
		living independently,	worries. In addition,
a chronic disease)	and what their	being aware of the	older and less
	attitudes towards	diagnosis, being	educated patients
	genetics and	mentally and	perceived to have
	genetic testing are.	physically fit to	relatively little
		participate.	genetic knowledge
			and found it more
			difficult to form an
			opinion about
			genetics. We also
			investigated the
			relationship between
			knowledge and
			attitudes among
			chronic patients.




(Siani and Assaraf,	Comparative study	Population:	the most influential
2015) (University	Tool: Likert scale	Undergraduate	is the students'
Students' Attitudes	questionnaire	students from a	religious affiliation.
towards Genetic	Aim: To	variety of higher	Religious students,
Testing: A	examine the	education institutes	especially those who
Comparative Study)	attitudes of	throughout Israel.	do not study life
	undergraduate	Sample:	sciences (LS), place
	Israeli students	490 students	less trust in genetic
	toward genetic		tests than secular
	issues and learn		Students of LS show
	how these are		more critical thinking
	affected by the		towards genetic
	field they study,		testing than others.
	their religious		Gender was least
	affiliation and their		influential, showing
	gender.		a mixed trend of.
(Fitzgerald-Butt, et	Cross sectional	Population:	Genetic knowledge
al, 2014)	study	parents of children	was assessed on an
(Genetic	Tool:	with CHD who	adapted measure on
Knowledge and	Likert scale	previously consented	which themean
Attitudes of Parents	questionnaire	to participate in a	percent correct was
of Children with	Aim:	separate research	73.8\%. Educational
Congenital Heart	To measure the	study of the genetic	attainment and
Defects)	demographics,	etiology of left	household income



Two Year Follow-	genetic knowledge	diseases (CVD) were	be considered
Up Study in	and	selected from the	an indicator for the
Patients with	attitude towards	Panel on the basis of	necessity
Asthma, Diabetes	genetic testing of	the patient's first	of social debates on
Mellitus and	patients with	diagnosis according	genetic
Cardiovascular	asthma, diabetes	to the followingcodes	testing.
Disease)	mellitus type II and	of the International	
	cardiovascular	Classification of	
		Primary Care.   Sample: 577 patients   responded: 299   patients with asthma,   144 with diabetes   mellitus type 2, and	
		134 with   cardiovascular disease	

Anl-ivajail ivaiiunai University

.
كليـــة الطب و علوم الصــــة
Department Of Graduate Studies

$$
\text { دانر }{ }^{\text {الثر اسـات العطبا }}
$$

## IRB Approval ietter

## Study title:

"Knowledge and attitude toward genetic counseling and testing among parents of children with genetic disorder in the West bank Palestine"

## Submitted by:

Falasteen Ali Hussain Yaseen.

## Date Reviewed:

February 4, 2016

## Date approved:

February 8, 2016

Your study titled: "Knowledge and attitude toward genetic counseling and testing among parents of children with genetic disorder in the west bank Palestine"
with archived number 123/February /2015 , was reviewed by An-Najah National University IRB committee and was approved on February 8, 2016


IRB Committee Chairman,
An-Najah National University

[^0] من أمراض وراثية في الضفة الغربية/ فلسطين

فلسطين ياسين

إشراف
الاكتورة إيمان الشاويش

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في الصحة العامة بكلية الدراسات العليا، في جامعة النجاح الوطنية، نابلس - فلسطين.

المعرفة والموقف تجاه الاستشارة الوراثية بين آباء الأطفال الذين يعانون من أمراض وراثية في الضفة الغربية/ فلسطين

إعداد
فلسطين ياسين
إشراف

## د. ايمان شاويش

## الملخص

تزداد الحالات المصابة بالأمراض الوراثية في الضفة الغربية بشكل لافت دون تدوين هذه الحالات أو عمل أبحاث عليها، لاسيما وأن العائلة الواحدة تعاني من إصابة أكثر من طفل بنفس المرض دون اللجوء إلى طريقة للحد من ذلك، هذا دفع الباحثة لدراسة معلومات أهالي الأطفال المصابين بالأمراض الوراثية عن الاستثـارة الوراثية، وتأثنر ذلك على رأيهم في اللجوء إليها.

تم استخدام دراسة مقطعة وصفية للبحث بوساطة استبيان مكون من اختبار لقياس للمعلومات ومقياس ليكرت لقياس الرأي والموقف، وتمت تغطية كل المتغيرات في الاستبيان.

معلومات الأهالي كانت جيدة بشكل عام حيث حصل (\%7\%) منهك على نقيبم جبد لمعلومانه، أيضا الموقف كان ايجابي حيث حصل • • عنصر على نتيجة ايجابية من أصل r من عناصر دراسة الموقف، وعند دراسة العلاقة كان لمعلومات الأهالي أثز ايجابي على مواقفهم تجاه الاستشارة الوراثية.

لذلك نوصي وزارة الصحة الفلسطينية بزيادة وعي الأهالي تجاه الاستشثارة الوراثية، ثم شمول (الفحص الجيني في تشخيص الأمراض بشكل عام.


[^0]:     Nablus - P.O Box:7 or 707 | Tel (970) (09) 2342902/4/:/8/14 | Faximile (970) (09) $2342910 \mid$ E-mail : hgs@najah.edu

