MOBILE GUIDE

By:

Iyad Jamal (Mohammad Ali) Al-Hudhud

Supervised by:

Dr. Samer Arandi

OUTLINE

Motivation

□ What is Mobile Guide application

Tools and technologies

System diagram

U Web side

Mobile application module and its functionality

Augmented reality implantation

Demo

□ Future work

MOTIVATION

Why we built this application ?

- People don't know too much about archaeological places in the city.
- The tourists cant reach and get historical information about those

places without a guide.

MOBILE GUIDE APPLICATION

It's an application that allow user to:

• To access historical data about the places in the city that he wants to

visit.

- Access an offline map to city.
- Using new Navigation system that provides augmented reality Technology.

TOOLS AND TECHNOLOGIES

- Cordova
- Leaflet maps Library
- Three.js
- PHP
- Maparative

- MYSQL DATABASE
- jQuery & JS.
- HTML
- BOOT STRAP

SYSTEM DIAGRAM

WEB SIDE

It contains :

- Web server module
- Database module

WEB SERVER MODULE

- It contains client view and admin view.
- It handel the update operation.

QUICK VIDEO FOR WEB

DATABASE MODULE

MOBILE APPLICATION MODULE

Functionality:

- list of cities.
- List of archeological places & information
- map of archeological places.
- AR Navigation & AR explore mode
- Update Content

List of cities

Wataniya Mobile♥♥♥ ≌ ··· 73B/s iDt ♥ * ##130% I 5:10 PM

Palestine

Palestine

Nablus

List of archeological places & information

Wataniya Mobile 💝 🜵 🖞 · 156B/s រ៉∏៖ 🛜 ²,,,∥ 31% 📭 5:10 PM			
• MGuide Change City			
An-Nasr Mosque			
Manara Clock Tower			
Al-Teenah Mosque			
Sheikh Qasem Coffee Shop			
Khan al-Tujjar			
Hammam esh-Shifa			
Qasr Touqan			

Wataniya Mobile 💎 🜵 🌵 遙 📂	0K/s រ⊡៖ 奈 º₅. ı 319	% 🟊 I 5:11 PM
• MGui	ide	Route to

Sheikh Qasem Coffee Shop

Latitude: 32.218733 Longitude:35.262344 Belong To:Ottoman Empire

Information

It is oldest coffee shop in Nablus that have 400 Square meters. The owner of the coffee shop did not change any thing in it or use new technology. So, it still have the same view same old stuff from 200 years ago.

Images

Provide map of archeological places

Provide AR Navigation & AR explore mode

Updating content

AUGMENTED REALITY IMPLEMENTATION

- We implement it using three.js
- We faced some difficulties to mirror the virtual world to real world and to

solve this we used the following formulas:

- Haversine formula.
- Bearing angle equation.

HAVERSINE FORMULA GREATEST CIRCLE

dlat = p1.lat - p2.lat R= 6,371 Km Distance= dlat * (2πR / 360°) = dlat * (111.19)

HAVERSINE FORMULA

Here it is not greatest circle so R will change we need to compute the new R.

P1 and p2 lay on 30° latitude.

HAVERSINE FORMULA

 $a = b = 30^{\circ}$ $cos(30^{\circ})=R'/R => R'=R cos(30^{\circ})$

R'=5,517.44dlng = p1.lng – p2.lng Distance= dlat * (2 π R' / 360°)= dlat * (96.29)

HAVERSINE FORMULA

Final equation :

A= ((sin(dlat/2))^2)+((sin(dlng/2))^2) * cos(p1.lat) * cos(p2.lat)

Distance = $2 * asin(\sqrt{A}) * R$

R= 6,371 Km

BEARING ANGLE EQUATION.

Equation to determine the angle from Θ north.

Equation :

 $\theta = \operatorname{atan2}(\sin \Delta \lambda \cos \varphi 2, \cos \varphi 1 \sin \varphi 2 - \sin \cdot \cdot \varphi 1 \cos \varphi 2 \cos \Delta \lambda) \cdot \cdot$

 $\phi_{1,\lambda_{1}}$ is the start point, $\phi_{2,\lambda_{2}}$ the end point (Δ_{λ} is the

difference in longitude)

SET OBJECT IN THE VIRTUAL WORLD

X coordinate = Distance * sin (bearing) Z coordinate = Distance * cos (bearing) Y coordinate not used.

DEMO TIME :D

LIMITATION & DIFFICULTIES

FUTURE WORK

- Provide 3d objects in explore mode
- List of visited places
- Provide accounts for users
- Create lists of places
- Group users that touring in same city
- Group tracking.

Thank you