An-Najah National University Faculty of Graduate Studies

The Effects of Pipe Material and Age on the Formation of Disinfection By – Products (DBP) In Nablus Water Network

By

Nabeel Abdullah Jameel Omar

Supervisors Prof. Dr. Marwan Haddad Dr. Laurie McNeill

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Water and Environmental Engineering, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine

The Effects of Pipe Material and Age on the Formation of Disinfection By – Products (DBP) In Nablus Water Network

By

Nabeel Abdullah Jameel Omar

This Thesis was defended successfully on 05/12/2010 and approved by:

Defense Committee Members

- 1. Prof. Dr. Marwan Haddad/ Major Supervisor
- 2. Dr. Laurie McNeill/ Co-Supervisor
- 3. Dr. Shehdi Jodi/ Internal Examiner
- 4. Dr. Maher Abu-Madi/ External Examiner

Signature

M. m. Worn Hachdd L Som = Mail

Sheheld Jodel

M Amar

Dedicated to

My parents and wife

ACKNOWLEDGMENTS

First of all, praise is to my god for helping and enabling me to achieve this thesis.

Then, I would like to express my sincere gratitude to Prof. Dr. Marwan Haddad and Dr. Laurie McNeill for their supervision, guidance and constructive advice. Thanks a lot for the defense committee members on their efforts.

For Nablus Municipality mayor, members and employees, and also its water and waste water department, for GTZ which gave me generous fund and all its employees, for all employees in Chemical Biological and Drug Analysis (CBDA) Center at An-Najah National University, specially Dr Shehdi Jodi, for my second family, Beita Municipality, members and employees, for my parents, brothers and sisters, all my friends and fellow graduate students, for all of them I would like to say thank you for being a great source of support and encouragement.

Special thanks to my dear wife Manar (Om Abdullah) for her love, moral support and patience.

أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

تأثير نوع وعمر الأنبوب على تشكل النواتج الثانوية في شبكة مياه نابلس

The Effects of Pipe Material and Age on the Formation of Disinfection By – Products (DBP) In Nablus Water Network

أقر بأن ما اشتملت عليه هذه الرسالة إنما هي نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وإن هذه الرسالة ككل، أو أي جزء منها لم يقدم من قبل لنيل درجة أو لقب علمي أو بحثي لدى أية مؤسسة تعليمية أو بحثية أخرى.

Declaration

The Work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's Nar	ne :	اسم الطالب:
Signature	:	التوقيع:
Date	:	التاريخ:

TABLE OF CONTENTS

Content		
Approval of Committee Members		II
Dedication		III
Acknowledgments		IV
Declaration		V
Table of Co	ontents	VI
List of Figu	ires	Х
List of Tabl	es	XI
List of abbr	eviations	XIII
Abstract		XIV
Chapter On	e: Introduction	1
1.1	Background	2
1.2	Research question	4
1.3	Research objectives	4
1.4	Motivations	5
1.5	Thesis outline	5
Chapter Tw	o: Literature Review	7
2.1	Introduction	8
2.2	Chlorination	11
2.3	Disinfection By – Products (DBPs)	12
2.3.1	Introduction	12
2.3.1.1	Halomethanes	13
2.3.2	Regulations:	14
2.3.3	Factors affecting the formation of DBP in drinking water	16
2.3.3.1	Chlorine dose and residual concentration	16
2.3.3.2	Concentration and characteristics of precursors	16
2.3.3.3	Temperature	17
2.3.3.4	Water chemistry	17
2.3.3.5	Time dependency of DBP formation	17

VII		
	Content	Page
2.3.3.6	Pipe material	17
2.3.4	Models used to predict the occurrence of DBPs in drinking water	
Chapter Th	ree: Description of the Study Area	21
3.1	Location	22
3.2	Water supply system	23
3.2.1	Water sources	24
3.2.2	Storage facilities and pumping stations	26
3.2.3	Water distribution network	27
3.3	People served	28
3.4	Water quality	30
Chapter Fo	our: Research Methodology	32
4.1	Field survey	34
4.1.1	Field survey plan	34
4.1.2	Sampling locations	34
4.1.3	Sampling procedure	35
4.2	Laboratory pipe experiment	36
4.2.1	Laboratory pipe experiment	36
4.2.2	Experiment setting and description	37
4.2.3	Experiment sampling	41
4.3	Sample analysis	42
4.3.1	Sample collection	42
4.3.2	Solid-phase microextraction (SPME)	42
4.3.3	Quantitative analysis	43
4.4	Statistical analysis	44
Chapter Five: Results and Discussion		45
5.1	Results	46
5.1.1	Field survey results	46
5.1.2	Pipe experiment results	48
5.1.2.1	Case one	48
5.1.2.2	Case two	48

VIII			
	Content	Page	
5.1.2.3	Case three	49	
5.1.2.4	Case four	49	
5.1.2.5	Case five	50	
5.1.2.6	Case six	50	
5.2	Statistical analysis	51	
5.2.1	Analysis of Variance (ANOVA)	51	
5.2.1.1	Test of pipe materials means	51	
5.2.1.2	Test of pipe ages means	52	
5.2.1.3	Test of chlorine concentrations means	53	
5.2.1.4	Test of BOD concentrations means	56	
5.2.1.5	Test of incubation periods means	58	
5.3	Non linear modeling	59	
5.4	Discussion	62	
5.4.1	Field samples	62	
5.4.2	Pipe experiment samples	63	
5.4.2.1	The effect of pipe material on the formation of DBP	63	
5.4.2.2	The effect of pipe age on the formation of DBP	64	
5.4.2.3	The effect of chlorine concentration on the formation of DBP	64	
5.4.2.4	The effect of BOD concentration on the formation of DBP	65	
5.4.2.5	The effect of incubation periods on the formation of DBP	67	
5.4.3	Non linear modeling	68	
Chapter six	: Conclusion and Recommendations	70	
6.1	Conclusion	71	
6.2	Recommendations	72	
References		73	
Appendix 1: Water chemical analysis results for samples collected from utilized wells and springs all over Nablus City			
Appendix 2: Bacteriological analysis results of Nablus water system			
Appendix 3: Pumping days and periods for all water service zones8in the months of January and August 2010(WWSD,2010)8			
Appendix 4: Test of pipe materials means			
Appendix 5	Appendix 5: Test of pipe ages means		

IX	
Content	Page
Appendix 6: Test of chlorine concentrations means	96
Appendix7: Linear regression using SPSS- TTHM trend under the variable values of chlorine concentration	98
Appendix 8: Test of BOD concentrations means	100
Appendix9: Linear regression using SPSS- TTHM trend under the variable values of BOD concentration	102
Appendix 10: Test of incubation periods means	104
الملخص	Ļ

X LIST OF FIGURES

No.	Figure	Page
Figure 2.1	Risks and benefits of water chlorination	10
Figure 2.2	Generalized curve obtained during breakpoint	12
	chlorination	
Figure 3.1	Palestine map showing the location of Nablus City	23
Figure 3.2	Nablus water supply system schematic diagram	25
Figure 3.3	Pipe materials of Nablus City water network	28
Figure 3.4	Pipe ages of Nablus City water network	28
Figure 3.5	Nablus City boundary, main water sources (wells	29
	and springs) and served villages	
Figure 4.1	Methodology chart	33
Figure 4.2	Experimental setup of pipes	37
Figure 5.1	TTHM values of Nablus City water system and	47
	MCL values according to PSI and USEPA are	
	shown for reference	
Figure 5.2	The effect of pipe material on the formation of	52
	TTHM	
Figure 5.3	The effect of pipe age on the formation of TTHM	53
Figure 5.4	TTHM values versus BOD at different chlorine	54
	concentration	
Figure 5.5	The effect of Cl2 on the formation of TTHM	55
Figure 5.6	TTHM values versus Chlorine concentration at	56
	different BOD concentration	
Figure 5.7	The effect of BOD on the formation of TTHM	57
Figure 5.8	The effect of incubation period on the formation of	59
	TTHM	
Figure 5.9	The relation between measured and predicted	60
	TTHM	
Figure 5.10	The effect of chlorine concentration on TTHM	61
	using the predictive model	
Figure 5.11	The effect of BOD concentration on TTHM using 61	
	the predictive model	
Figure 5.12	The effect of incubation period on TTHM using the	62
	predictive model	

XI LIST OF TABLES

No	Table	Page
Table 2.1	some of the major tradeoffs associated with various disinfection technologies	8
Table 2.2	Halomethanes	13
Table 2.3	The maximum contaminant level (MCL) of TTHM	14
Table 2.4	The maximum contaminant level (MCL) of THM, according to PSI (2005)	15
Table 2.5	Comparison of the PSI with USEPA, WHO, JISM, and EOSQ standards	15
Table 3.1	The water sources of Nablus and its capacity	24
Table 3.2	Storage facilities and pumping stations in Nablus City	26
Table 3.3	Number of peoples served by Nablus water system	29
Table 3.4	Housing and consumers categories	30
Table 4.1	Field survey sampling locations	
Table 4.2	Experiment samples description	
Table 4.3	The calibration curves correlation coefficients of compounds determined by the SPME-GC/MS method44	
Table 5.1	Field survey sample locations and results	
Table 5.2	Case one of experiment results	48
Table 5.3	Case two experiment results	
Table 5.4	Case three of experiment results	
Table 5.5	Case four of experiment results	
Table 5.6	Case five of experiment results	
Table 5.7	Case six of experiment results	
Table 5.8	the SPSS output of comparing Pipe materials 51 means by one way ANOVA.	
Table 5.9	the SPSS output of comparing pipe ages means by one way ANOVA.	52

XII		
No	Table	Page
Table 5.10	the SPSS output of comparing chlorine concentrations means by one way ANOVA.	54
Table 5.11	the SPSS output of comparing BOD concentrations means by one way ANOVA.	57
Table 5.12	the SPSS output of comparing incubation periods means by one way ANOVA.	58
Table 5.13	The variables and which had a statistically significant effect on TTHM concentrations.	68

XIII LIST OF ABBREVIATIONS

Symbols	Definition
ANOVA	Analysis of Variance
BOD	Biological Oxygen Demand
CBDA	Chemical, Biological and Drugs Analysis Center at An-
	Najah National University
DBP	Disinfection By – Products
DBPR	Disinfectants/Disinfection By-Products Rule
EOSQ	Egyptian Organization for Standardization and Quality
GC-MS	Gas Chromatograph- Mass Spectrometer
HDPE	High Density Poly Ethylene
JISM	Jordan Institution for standards and Metrology
MCL	Maximum Contaminant Levels
NOM	Natural Organic Matter
PCBS	Palestinian Central Bureau of Statistics
PP	Polypropylene Pipe
PPb	Part Per Billions
PSI	Palestinian Standards Institution
SPME	Solid-Phase Microextraction
TOC	Total Organic Carbon
TTHM	Total trihalomethanes
UFW	Unaccounted for Water
USEPA	United States Environmental Protection Agency
UV	Ultra Violet light
WESI	Water and Environmental Studies Institute at An-Najah
	National University
WHO	World Health Organization

XIV The Effects of Pipe Material and Age on the Formation of Disinfection By – Products (DBP) In Nablus Water Network By Nabeel Abdullah Jameel Omar Supervisors Prof. Dr. Marwan Haddad Dr. Laurie McNeill

Abstract

In the City of Nablus which is located in the northern West Bank-Palestinian Territory, a water system network serves about 177,000 people in Nablus and some of the surrounding localities, consist of, five wells, five springs, 13 operating storage tanks,13 pump stations, distribution network consists of about 304 km of water pipes of different diameter, material and ages. The treatment process used for disinfecting drinking water is chlorination, using sodium hypochlorite, the Unaccounted for Water (UFW) is 29 % in the year of 2010, and the supply is intermittent due to water shortages, so contaminants can intrude into the pipe network and the rooftop storage tanks and react with chlorine to form disinfection by – products (DBPs), which may cause cancer and some other diseases.

In this research, samples representing Nablus water system in coordination with Nablus Water Supply and Sanitation Department were taken and analyzed for content of DBPs as THM. Results show all TTHM values of the field survey samples were less than PSI MCL (250 ppb) and the USEPA MCL (80 ppb), except one value from Al Qwareen Springtrading centre at 153 ppb, which is more than the MCL set by the USEPA. This mean it is very necessary to monitor continuously TTHM in this supply node and the water system and ensure not to exceed the MCL value.

Pipe segments of different materials and ages were installed at the WESI laboratory and filled with water obtained from the taps at WESI, different chlorine doses, contamination loads and different incubation periods were applied to the different segments. Samples from the entire water volume incubated in the pipe segments were analyzed for their content of TTHM. Results were statistically analyzed using SPSS statistical package. Results show that TTHM values increased with increasing chlorine dose, BOD loading, and incubation time. TTHM concentration for new steel pipe samples was more than that in Polypropylene pipe samples, and increased with increasing age of pipe, but the different is not significant.

Based on the results obtained, it was found that:

- There is presence of TTHM in Nablus water supply system.
- There are clear relationships between TTHM in water supply system with chlorine dose and residual concentration, BOD concentration and incubation period.
- Old steel pipes need to be replaced.
- Incubation period need to be reduced by increasing water availability and pumping durations.
- Chlorine dose and residual need to be more closely monitored.
- UFW must be reduced to reduce biological contamination of water.

CHAPTER ONE INTRODUCTION

1.1 Background

The City of Nablus, located in the West Bank - Palestinian Territory, has at present a water network composed of pipes of different ages and materials (steel, polypropylene (PP), ductile, and high density polyethylene (HDPE)). The water network serves about 177,000 people in Nablus and some of the surrounding localities using multiple ground water sources of varying quality. The Unaccounted for Water (UFW) reported by Nablus municipality is 29 % in the year of 2010, and the supply is intermittent due to water shortages. Thus contaminants can intrude into the pipe network and the rooftop storage tanks.

The treatment process used for disinfecting drinking water in Nablus City is chlorination, which is used to inactivate (or kill) pathogens (i.e., disease causing organisms) that may be found in the water supply (i.e., reservoir, ground water aquifer, or water from springs). Disinfection reduces the risk of waterborne disease and protects the public against disease.

<u>But</u>, the use of chlorine creates new potential risks, because compounds known as <u>disinfection by-products (DBPs</u>) can be formed during the disinfection process by the reaction of disinfectants used in a water treatment with bromide and/or natural organic matter (i.e., decaying vegetation or wastewater contamination) present in the water.

Several epidemiological studies reported the association between the ingestion of chlorinated drinking water with risk of bladder and rectal cancer followed by mortality (IARC, 1991). There is an association

between bladder cancers, reproductive disorders and trihalomethane (THM) occurrence (Bielmeier et. al., 2001). Cancer of the colon, rectum, and urinary bladder was linked with water sources containing an elevated level of chlorine by-products. In addition, several other cancer sites namely stomach, brain, pancreas, lung and liver were also found to be linked with chlorinated byproducts. There is some epidemiological evidence of a relationship between the exposure to DBPs and adverse reproductive outcomes in human beings and animal studies (Keegar et. al., 2001, Morris et. al., 1992). Studies have reported an increased incidence of decreased birth weight, prematurity, intrauterine growth retardation, and neural tube defects with chlorinated water and, in some cases, trihalomethanes (U.S. Environmental Protection Agency, 1994, 1998a, 1998b).

Knowing that:

- there are currently no data available on DBPs in the Nablus system,
- the location and extent of DBPs in the Nablus system problem is not identified and/or quantified,
- the effects of pipe material and age on the formation of DBPs was not evaluated,
- There are no clear references for decision makers to:
 - a) Understand DBPs and reduce their occurrence while ensuring the public health benefits afforded by disinfection of drinking water.
 - b) Monitor DBP levels and report the level of DBPs in drinking water each year.
 - c) Ensure that DBP levels meet regulations.

- d) If there is an effect of pipe material on the formation of DBPs, then consider using the type of material which has less DBP formation.
- e) If there is an effect of the pipe age on the formation of DBP, and the effect is fewer DBPs produced by new pipes, the recommendation is to replace the old pipes with new ones.

It is our intention in this study to discuss, investigate, evaluate and address the above concerns.

1.2 Research question

The key research questions of this study are: do DBPs occur in Nablus water supply system? to what extent? and what factors influence this occurrence?

1.3 Research objectives

The following are the research objectives:

- 1. To check the occurrence of DBPs in the water of Nablus City.
- 2. To identify the effects of pipe material on the formation of DBPs.
- 3. To identify the effects of pipe age on the formation of DBPs.
- 4. To identify the effects of soluble organic matter concentrations on the formation of DBPs.
- 5. To identify the effects of chlorine dose concentrations on the formation of DBPs.
- 6. To identify the effects of incubation period of the water in pipes due to intermittent pumping on the formation of DBPs.
- To give the decision maker some recommendations regarding the disinfection process followed.

1.4 Motivations

The following are the research motivations:

- 1. Water quality affects the health of about 177,000 people served by the water system in Nablus City, so it is a vital issue.
- 2. There is no similar study done in Palestine in the past.
- 3. Poor sanitation leads to biological contamination of water, so disinfection is very important. However, disinfection must be balanced by minimizing DBP formation.
- 4. Using plastic pipes instead of iron pipes is controversial among engineers and people of concern and needs field as well as lab experiments to justify its usage and water quality.
- 5. Because of poverty, resources shortage, and occupation conditions, many pipes are very old (installed since 1950, 1960, 1970, and 1980), so we need to study the relation between pipe age and formation of DBP.
- 6. The high UFW (Unaccounted for Water) rate, which is the difference between the water production and water sold to consumers, gives an indication that there's leakage in the network. Leaking pipes may be subject to wastewater intrusion, which provides a source of organic material for DBP formation.

1.5 Thesis outline

The general structure of the thesis goes as follows. Chapter one is background about the study, research question, research objectives and motivations. Chapter two furnishes related literature review. Chapter three provides the description of the study area. Chapter four shows the research methodology. Chapter five presents the research results and discussion. The conclusions and recommendations are furnished in chapter six.

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction

Disinfection through inactivation usually involves the use of disinfectants such as chlorine, ozone, chlorine dioxide, or a combination of chlorine and ammonia (chloramines) which can render many pathogenic organisms harmless. Other materials that can act as disinfectants include potassium permanganate, iodine, bromine, ferrate, silver, hydrogen peroxide, and ultraviolet (UV) light (Cohn et. al., 1999)

The Table 2.1 below lists some of the major tradeoffs associated with various disinfection technologies (ACC, 2010)

Disinfectant	Advantages	Limitations
Chlorine Gas	 Highly effective against most pathogens Provides "residual" protection required for drinking water Operationally the most reliable Generally the most cost- effective option 	 Byproduct formation (THMs, HAAs¹) Special operator training needed Additional regulatory requirements (EPA's Risk Management Program) Not effective against Cryptosporidium
Sodium hypochlorite	 Same efficacy and residual protection as chlorine gas Fewer training requirements than chlorine gas Fewer regulations than chlorine gas 	 Limited shelf-life Same byproducts as chlorine gas, plus bromate and chlorate Higher chemical costs than chlorine gas Corrosive; requires special handling
Calcium hypochlorite	 Same efficacy and residual protection as gas Much more stable than sodium hypochlorite, allowing long-term 	 Same byproducts as chlorine gas Higher chemical costs than chlorine gas Fire or explosive hazard

	storage - Fewer Safety Regulations	if handled improperly
Chloramines	 Reduced formation of THMs, HAAs More stable residual than chlorine Excellent secondary disinfectant 	 Weaker disinfectant than chlorine Requires shipments and use of ammonia gas or compounds Toxic for kidney dialysis patients and tropical fish
Ozone	 Produces no chlorinated THMs, Haas Fewer safety regulations Effective against Cryptosporidium Provides better taste and odor control than chlorination 	 More complicated than chlorine or UV systems No residual protection for drinking water Hazardous gas requires special handling Byproduct formation (bromate, brominated organics and ketones) Generally higher cost than chlorine
UV	 No chemical generation, storage, or handling Effective against Cryptosporidium No known byproducts at levels of concern 	 No residual protection for drinking water Less effective in turbid water No taste and odor control Generally higher cost than chlorine
Chlorine dioxide	 Effective against Cryptosporidium No formation of THMs, Haas Provides better taste and odor control than chlorination 	 Byproduct Formation (chlorite, chlorate) Requires on-site generation equipment and handling of chemicals Generally higher cost than chlorine
¹ Trihalomethanes (THMs), Haloacetic Acids (Haas)		

The application of disinfection agents to drinking water reduces the microbial risk but poses chemical risk in the form of their by-products. A semi-quantitative presentation of risks associated with disinfection was first attempted by (Morris, 1978) and is given in Figure 2.1. The figure shows that the microbiological risk is very high when no chlorination is used, and drops sharply to a low value when even minimal levels of chlorination are maintained. As the level of chlorination is increased the risk continues to drop slightly, but never quite reaches zero, for no system is perfect. At very high levels of chlorine, the microbial risk increases as taste and odor may cause the use of unsafe supplies (Gorchev, 1998).

The chemical risk decreases initially because destruction of chemicals by oxidation more than compensates for the formation of new chemicals at low levels of chlorination. Because of the formation of by-products, the chemical risk increases with increasing level of chlorination (Gorchev, 1998).

The benefits of water chlorination(see Figure 2.1), are laying in keeping chlorination dose within the limits of microbial risk avoidance.

Figure 2.1: Risks and benefits of water chlorination (Morris, 1978)

2.2 Chlorination

It is a chemical disinfection process by which chlorine is added to water; the two most common compounds of chlorine used are calcium hypochlorite ($Ca(ClO)_2$) and sodium hypochlorite (NaOCl).

When chorine is added to water containing reducing agents and ammonia, residuals develop which yield the curve in Figure 2.2.

Chlorine first reacts with reducing agents present in water and develops no appreciable residual (0-A in Fig. 2.2). The dose at point A is therefore that required to meet the demand exerted by reducing agents. These include nitrites, ferrous ions, and hydrogen sulfide. Chloramines are formed when chlorine is added in excess at point A. Mono and dichloramines are considered together since there is little control over which is formed. When all the ammonia has been reacted, free available chlorine begins to develop (point B).

 $HOCl + NH_3 \rightarrow H_2O + NH_2Cl$ (monochloramine)

 $HOCl + NH_2Cl \rightarrow H_2O + NHCl_2$ (dichloramine)

 $HOCl + NHCl_2 \rightarrow H_2O + NCl_3$ (trichloramine)

As free available chlorine residual increases, the previously produced chloramines are oxidized. This results in the creation of oxidized nitrogen compounds such as nitrous oxide, nitrogen and nitrogen trichloride, which in turn reduce the chlorine residuals as seen on the curve from point B to the breakpoint.

 $2NH_3+3Cl_2 \rightarrow N_2+6HCl$

When all chloramines are oxidized, additional chlorine added creates an unequal residual known as the breakpoint (that limit beyond which all residual is free available chlorine) (Alley, 2007).

Figure 2.2 Generalized curve obtained during breakpoint chlorination (Alley, 2007)

2.3Disinfection By-Product(DBP)

2.3.1 Introduction

The DBPs are formed when the disinfectant reacts with natural organic matter (NOM) and/or inorganic substances present in water. More than 250 different types of DBPs have already been identified (Sadiq and Rodriguez, 2004).

In 1974, chloroform, a product of the reaction of chlorine and naturally occurring organic matter, was identified in disinfected drinking water (Bellar et. al., 1974; Rook 1974; Symons et. al., 1975, 1981). Since that time, a number of other chlorinated DBPs have been identified, including trihalomethanes, haloacetic acids, bromate, and chlorite; in this research only trihalomethanes will be considered and focused on.

2.3.1.1 Halomethanes

Halomethanes are chemical compounds in which a number of hydrogen atoms of methane (CH₄) are replaced by halogen atoms (fluorine (F), chlorine (Cl), bromine (Br) or iodine (I)).

Trihalomethanes (THMs) are trisubstituted halomethanes in which three of the four hydrogen atoms of CH_4 are replaced by halogen atoms.

Table 2.1 shows the different types of halomethanes classified according to number of the four hydrogen atoms of methane replaced by halogen atoms.

No	Group Name	Group Compounds
1	Monosubstituted	CH ₃ F, CH ₃ Cl, CH ₃ Br, CH ₃ I
2	Disubstituted	CH_2F_2 , CH_2CIF , CH_2BrF , CH_2FI , CH_2Cl_2 ,
		CH ₂ BrCl, CH ₂ ClI, CH ₂ Br ₂ , CH ₂ BrI, CH ₂ I ₂
3	Trisubstituted	CHF_3 , $CHClF_2$, $CHBrF_2$, CHF_2I , $CHCl_2F$,
		C*HBrClF, C*HClFI, CHBr ₂ F, C*HBrFI, CHFI ₂ ,
		CHCl ₃ , CHBrCl ₂ , CHCl ₂ I, CHBr ₂ Cl, C*HBrClI,
		CHClI ₂ , CHBr ₃ , CHBr ₂ I, CHBrI ₂ , CHI ₃
4	Tetrasubstituted	CF_4 , $CClF_3$, $CBrF_3$, CF_3I , CCl_2F_2 , $CBrClF_2$,
		$CClF_2I$, CBr_2F_2 , $CBrF_2I$, CF_2I_2 , CCl_3F , $CBrCl_2F$,
		CCl_2FI , CBr_2ClF , $C*BrClFI$, $CClFI_2$, CBr_3F ,
		CBr_2FI , $CBrFI_2$, CFI_3 , CCl_4 , $CBrCl_3$, CCl_3I ,
		CBr_2Cl_2 , $CBrCl_2I$, CCl_2I_2 , CBr_3Cl , CBr_2ClI ,
		CBrClI ₂ , CClI ₃ , CBr ₄ , CBr ₃ I, CBr ₂ I ₂ , CBrI ₃ , CI ₄
	* Chiral compound	

Table 2.2 Halomethanes(Wikipedia, 2010)

Chiral compound is a type of molecule that lacks an internal plane of symmetry and has a non-superposable mirror image. The feature that is most often the cause of chirality in molecules is the presence of an asymmetric carbon atom.

Many trihalomethanes find uses in industry as solvents or refrigerants. THMs are also environmental pollutants, and many are considered carcinogenic. Trihalomethanes with all the same halogen atoms are called haloforms (Wikipedia, 2010)

2.3.2 Regulations

It is impossible to talk about controlling any chemicals in drinking water or in general ensuring drinking water quality without the existence of certain regulations which are needed to address the required issues.

For this reason, regulations such as Maximum Contaminant Levels (MCL) are enacted. An MCL is the maximum allowable concentration of a contaminant in drinking water, as established by the country regulations.

The Stage 1 Disinfectants/Disinfection By-products rule (Stage 1 DBPR) was published by United States Environmental Protection Agency (USEPA) in December 1998 (USEPA 1998c). Its purpose was to reduce

the formation of DBP and to meet the standard summarized in Table 2.2. Table 2.3 The maximum contaminant level (MCL) of TTHM (USEPA 1998c)

DBP	MCL
total trihalomethanes (TTHM) (measured as the sum	
concentration of chloroform (CHCl ₃), bromoform	80 parts per
(CHBr ₃), bromodichloromethane (CHBrCl ₂), and	billion (ppb)
dibromochloromethane (CHBr ₂ Cl))	

The Stage 2 Disinfection Byproducts Rule (Stage 2 DBPR) supplements Stage 1 Rule by requiring water utilities a) to identify monitoring sites where DBP levels are most likely to be high, and b) to meet MCL requirements at those sites. Its purpose is to reduce potential cancer and reproductive and developmental health risks resulting from exposure to DBPs in drinking water.

The last Palestinian standard for drinking water was published by Palestinian Standards Institution (PSI) in 2005. Table 2.3 shows the MCL of THM, which is much higher than that of the USEPA standards.

Table 2.4 Palestinian standard of THM, (PSI, 2005)

DBP	MCL
THM	0.25 mg/L
	= 250 parts per billion (ppb)

Table 2.5 Comparison of the PSI standards with United States Environmental Protection Agency World (USEPA), Health Institution **Organization(WHO)**, Jordan for standards and Metrology(JISM), and Egyptian Organization for Standardization and Quality (EOSQ)

	Regulation					
	PSI,	USEPA,	WHO,	JISM,	EOSQ	
	2005	1998c	2006	2008	, 1995	
TTHM	0.25	0.08	<1	0.15	0.10	
MCL (mg/L)						

2.3.3 Factors affecting the formation of DBP in drinking water

The type and amount of DBPs formed are a function of many factors including chlorine dose and residual concentration, concentration and characteristics of precursors, water temperature, water chemistry (including pH, bromide ion concentration, organic nitrogen concentration, and presence of other reducing agents such as iron and manganese), contact time, pipe material, and pipe age.

2.3.3.1 Chlorine dose and residual concentration

Halogenated byproducts are formed when free chlorine reacts with natural organic matter. In addition, brominated byproducts are formed when source water containing bromide is chlorinated.

Chlorine reacts with natural organic matter in the water to form THMs.

As the concentration of chlorine or chloramines increases, the production of DBPs increases. Formation reactions continue as long as precursors and disinfectant are present (Krasner, 1999 and references therein).

2.3.3.2 Concentration and characteristics of precursors

Total organic carbon (TOC), dissolved organic carbon (DOC) and UV absorption at 254 nm [UV254] are often used as surrogate parameters for monitoring precursor levels. In general, greater DBP levels are formed in waters with higher concentrations of precursors (EPA, 2006).

2.3.3.3 Temperature

DBP concentrations tend to increase and to form more rapidly with increasing temperature (Clark et. al., 2001). The disinfectant residuals deplete rapidly when the water temperature is high. Also, microbial activity within distribution systems is higher in warm than in cold waters (Sadiq and Rodriguez, 2004). Temperature increases within the distribution system would tend to accelerate THM formation (Brereton and Mavinic, 2002).

2.3.3.4 Water chemistry

Aqueous bromine reactions with NOM are much faster than aqueous chlorine, so the speciation and concentrations of DBP formation in chlorination processes are mainly dominated by the ratio of bromide to reactive NOM as well as the ratio of bromide to chlorine concentrations. (Westerhoff et. al., 2004)

The rate of THM formation increases with the pH (Stevens et. al., 1976).

2.3.3.5 Time dependency of DBP formation

The longer the contact time between disinfectant/oxidant and precursors, the greater the amount of DBPs that can be formed. High THM levels usually occur where the water age is the oldest.

2.3.3.6 Pipe material

The occurrence of DBPs at consumers' taps may be influenced by pipe material; there is an interaction between residual disinfectant and the internal pipe material. One study found that the increased chlorine demand of unlined cast-iron results in lower levels of trihalomethanes than those dictated by testing the finished water alone (Brereton and Mavinic, 2002). In contrast, other studies have found that DBPs are increased in iron pipes.

Tuovinen et. al., (1984) demonstrated the potential of iron tubercles, common to unlined cast-iron distribution pipes, for chloroform formation when exposed to chlorinated water. The presence of organic material, associated with ubiquitous biofilms and resulting from the interaction of aqueous humic substances with iron corrosion products, is well documented (Adams and Kingsbury, 1937; Allen et. al., 1980; Ridgway and Olson, 1981; Ahmadi 1981).

Goethite, which is the predominant iron oxide of pipe deposits, affects both chlorine decay and DBP formation and should be always taken into consideration. Chlorine consumption always increased in the presence of goethite and is attributed to an increase in the reactivity and/or modification of adsorbed NOM which led to an overall increase in TTHM (Hassan et. al., 2006).

2.3.4 Models used to predict the occurrence of DBPs in drinking water

In order to predict the occurrence of DBPs in drinking water, a lot of models have been developed. These DBP models can be useful to estimate the occurrence of DBPs in drinking water, for exposure assessment in epidemiological studies and health risk assessment, and for estimating the benefits and impacts of DBP regulations.

Various models and approaches have been used for predicting DBPs' occurrence in drinking water. Some researchers used an entirely empirical

approach and some introduced kinetics into the modeling process. Multiple linear and non-linear regression techniques are found to be the most common in developing DBP predictive models. Other methods like ridge, logistic regression and artificial neural networks have also been employed. Most of the predictive models are based on laboratory-scale studies, but some models have been proposed based on actual water distribution sampling as well (Sadiq and Rodriguez, 2004).

One mathematical model expresses total trihalomethane (TTHM) concentration in terms of initial chlorine concentration, total organic carbon, bromide ion concentration, contact time, pH, temperature, and water age. A lot of factors affect the reaction rates of chlorine such as source water characteristics, treatment type (which can affect the amount and type of reactive material available for reaction), contact time (both in the treatment plant and distribution system), and the characteristics of the distribution system (e.g. pipe material, pipe age)

The model is of the following form:

TTHM = $4.527 t^{0.127} [Cl_2]^{0.595} [TOC]^{0.596} [Br]^{0.103} [pH]^{0.66}$,

Where:

TTHM is total trihalomethane concentration in μ g/l,

t is contact time inminutes,

Cl₂ is chlorine concentration in mg/l,

TOC is total organic carbon in mg/l,

Br is bromide ion concentration in mg/l. (Al-Omari et. al., 2004)

TTHM formation was accurately simulated by a chlorine demand model that predicted an average TTHM as a function of Cl_2 consumed (weight of TTHM / weight of Cl_2 consumed) for both raw surface water and water subjected to alum coagulation. Alum treatment reduced chlorine demand by removing organic matter (Gang et. al., 2002).

Another model predicts both TTHMs and chlorine residuals based on the consumption of chlorine. The parameters of the model are functions of total organic carbon, pH, temperature, and initial chlorine residual level. Based on the analysis, it has been shown that the formation of TTHMs is a direct result of the consumption of chlorine (Clark and Sivaganesan, 1998).

Finally, a model that can be used to predict the formation of chlorinated, brominated, and mixed species compounds based on initial chlorine concentration, chlorine consumption, bromide ion concentration, and pH was developed. The model clearly showed that higher levels of bromide in the water favor the formation of brominated compounds. Brominated compounds also formed faster than chlorinated compounds. The model:

TTHM =
$$D\left[C_{A_0} - \left(\frac{C_{A_0}(1-K)}{1-Ke^{-ut}}\right)\right]$$

Where:

D = ratio of TTHM formed (mg/L) to chlorine consumed (mg/L).

 C_A = concentration of free chlorine

K = dimensionless constant

 C_{A0} = initial concentration of chlorine (mg/L) at time = 0

u = rate constant (min21)

t = time (min). (Clark et. al., 2001).

CHAPTER THREE DESCRIPTION OF THE STUDY AREA
3.1 Location

Nablus is a Palestinian city in the northern West Bank, approximately 63 kilometers (39 mi) north of Jerusalem. Located in a strategic position between Mount Ebal and Mount Gerizim, it is the capital of the Nablus Governorate and a Palestinian commercial and cultural center (Wikipedia, 2010).

Nablus is located at the crossroads of the Jerusalem-Jenin road running north to south and Tulkarem – Jordan Valley running east to west (Fig 3.1). This location gives the city a significant position in any future development. Most of the Nablus area is built-up areas with multistory buildings.

Nablus lies in synclinal area extending west to east with an altitude varying from 440 m above sea level in the bottom of the valley to about 900 m above sea level in the hills. The north Ebal Mountain is 940 m high and the south Gerizim Mountain is 881 m high. Nablus is located at the northern latitude earth grid 32°13 13″ and east longitude earth grid 35°16 44″. It has hot, dry summers and a moderate, rainy winter. The total area of Nablus is 30.58 km².

Figure 3.1:- Palestine map showing the location of Nablus City (PCBS, 2008).

3.2 Water supply system

The hydraulic details of the Nablus water supply system are shown in Fig 3.2

3.2.1 Water sources

The water sources of Nablus are five ground aquifer wells: (Deir

Sharaf, Al-Badan, Al Far'a and Sabastia well), and five springs (Ein Beit

El Ma, Al-Qaryon, Ras Al-Ein, Ein Al-Assal and Ein Dafna).

The capacities of the four wells and the five springs are given in the Table 3.1.

No	Source	Average yield (m ³ /day)
1	Audala well	5,280
2	Al-Badan well	4,800
3	Al Far'a well	4,320
4	Deir Sharaf well	4,320
5	Sabastia well	8,160
6	Ein Beit El Ma spring	1,574
7	Al-Qaryon spring	1,447
8	Ras Al-Ein spring	1,169
9	Ein Al-Assal spring	457
10	Ein Dafna spring	340
	Total (m3/day)	31,867

Table 3.1: The water sources of Nablus and its capacity (WWSD, 2010)

Fig 3.2 Nablus water supply system schematic diagram(WWSD, 2008)

25

3.2.2 Storage facilities and pumping stations

Nablus is divided into nine individual service zones, but some interconnections exist between these zones. In the lower situated parts of service areas, the pressure in the distribution network reaches extremely high values due to the differences in altitude within the supply zone. Also houses located near the pumping stations that receive water directly are subjected to problems with high pressure.

The Municipality supplies the zones intermittently by opining and closing various valves during a number of hours. Due to this intermittent supply system, most of the houses are equipped with roof storage tanks up to several cubic meters capacity. Tables shows the pumping days and period in the months of January, and August in the year of 2010 (see Appendix 3).

There are 13 operating storage tanks, and 13 pump stations located inside Nablus. Reservoirs, capacity, year of construction and pumping stations are given in Table 3.2.

	(()),2010)			
No	Reservoir name	Capacity	Year of	Pumping station
		(m^3)	construction	
1	Ein Dafna	5000	1979	3 booster pumps
2	New reservoir	3500	1997	2 booster pumps
3	Northern	500	1958	2 pumps
4	Southern	500	1956	2 pumps
5	Ras Al Ein	500	1953	2 pumps
6	Ein Al Assal	50	1952	1 pump
7	Qaryon	500	1935	2 pump +1 pump
				standby

Table 3.2: Storage facilities and pumping stations in NablusCity(WWSD 2010)

27					
No	Reservoir name	Capacity	Year of	Pumping station	
		(m^{3})	construction		
8	Juneid	500	2000	1 pump +1 pump	
				standby	
9	Ein Beit Elma	250	1960	5 booster pumps	
10	Al-Worash	2000	2006	By gravity	
	reservoir				
11	Kamal Junblat	800	2007	By gravity	
	Reservoir				
12	Ta'ta Reservoir	900	2007	By gravity	
13	Al-Fara'	300	1977	1pump +3 booster	
	Reservoir well			pumps	
14	Al-Badan well	Without	1977	1pump +3 booster	
		reservoir		pumps	
15	Deir Sharaf well	Without	1994	1pump +4 booster	
		reservoir		pumps	
16	Al Somara	pumping s	station	1 pump +1 pump	
				standby	

3.2.3 Water distribution network

The distribution network consists of about 304 km of water pipes ranging in diameter from 2 to 12 inches. The existing system consists of a variety of pipe types: steel, polypropylene (PP), ductile, and high density polyethylene (HDPE) pipes, and there is a variety in pipe ages. Figure 3.3 and Figure 3.4 show pipe material and pipe age of Nablus City water network.

Figure 3.3:- Pipe materials of Nablus City water network(WWSD, 2010)

Figure 3.4:- Pipe ages of Nablus City water network (WWSD, 2010)

3.3 People served and water consumption

Figure 3.5 shows Nablus City boundary, water sources and served villages.

Figure 3.5:- Nablus City boundary, main water sources (wells and springs) and served villages (Water and Environmental Studies Institute at An-Najah National University, 2007).

The water system in Nablus serves the city itself and some of the

surrounding localities. Table 3.3 shows served areas and number of people.

Table 3.3:- Number of peoples served by Nablus water system. (PCBS,2008).

Number	Locality name	Number of people
1	Nablus	126,132
2	Asira ash Shamaliya	7,556
3	Zawata	1,875
4	Ein Beit el Ma Camp	3,979
5	Askar Camp	11,607
6	Balata Camp	15,247
7	Kafr Qallil	2,451
8	Deir Sharaf	2,460
9	Al Badhan	2,485
10	Talluza	2,375
11	Ijnisinya	505
Total peop	ple served	176,672

WWSD categories the land use and consumers of water as follows:

Name of category	Description
А	2 story buildings/ villas
В	Up to 7 story buildings
С	Up to 4 story buildings
D	7-10 floors, commercial areas
Е	Industrial areas
F	Old City
G	Camps, Villages

 Table 3.4: Housing and consumers categories

As a next step the population densities have been estimated for each individual area, the area of each category multiplied by the density gives the population.

The average water consumption in the year of 2010 is 72 l/c/d(WWSD, 2010).

Non domestic includes: hospitals, schools, public buildings/banks, recreation centers/ social centers, work chop/retailers, hotels (business and tourism), industries/commercial.

3.4 Water quality

The treatment process used for disinfecting drinking water in Nablus City is chlorination, by using sodium hypochlorite, which is manufactured as bleach under the brand name Clorox. Sodium hypochlorite reacts in water as follows as a disinfectant:

 $NaOCl + H_2O \rightarrow HOCl + NaOH$

Sodium hypochlorite is produced in a clear liquid form and is completely soluble in water. The municipality obtains this disinfectant from a sub-contractor. It comes in 250 kg containers, with a concentration of 12 percent by weight. The dose used is 1 kg of chlorine per 200 m³ of water (personal communication, Ali Qarqash, responsible for the disinfection process in Nablus Water Supply and Sanitation Department, 2009).

The Water and Environmental Studies Institute (WESI) at An-Najah National University performs periodic water quality tests on behalf of Nablus Municipality. Samples are taken randomly from points in the water distribution network and at house connections. In addition, periodic chemical water tests are performed on the wells and springs. The results of water chemical analysis for samples collected from utilized wells and springs all over Nablus City in the year 2009 showed that all measured parameters are within the acceptable Palestinian standard level. However, the amount of organic matter in the water is unknown. There are occasional detections of total and fecal coliforms in the pipe network, which could indicate contamination.

Results of water chemical analysis for samples collected from utilized wells and springs all over Nablus City, (see Appendix 1), and bacteriological analysis in the months of January and July in the year of 2009 were tabulated (see Appendix 2).

CHAPTER FOUR RESEARCH METHODOLOGY

Methodology:

To fulfill the objectives of this study and answer the research questions set, two experimental activities were conducted: a field survey and a laboratory pipe experiment. The following chart (Figure 4.1) illustrates the research methodology.

Figure 4.1:- Methodology chart

4.1 Field survey

4.1.1 Field survey plan

The field survey is aimed at evaluating the occurrence of DBPs in the Nablus water supply system. The field survey consisted of the following steps:

- Defining preliminary sampling locations in coordination with Nablus Water Supply and Sanitation Department
- Samples cover different water sources, roof tanks and water pipe networks with different materials and ages
- Collected samples were analyzed for content of DBPs as THM. Samples were prepared and analysis was conducted in the Chemical, Biological and Drugs Analysis Center (CBDAC) at An-Najah National University according to Standard Methods for the Examination of Water and Wastewater (1996) or by methods accepted by USEPA.
- For measurement of THM, samples were analyzed by a Perkin Elmer Clarus 500 Gas Chromatograph with a Perkin Elmer Clarus 560D Mass Spectrometer (GC-MS), using USEPA Method 524.2 (USEPA, 1995).

4.1.2 Sampling locations

To cover the water system of Nablus City, and in coordination with Nablus Water Supply and Sanitation Department the following locations were defined (Table 4.1)

Sample no	Sample location
1	Alhaj Nimer reservoir
2	Al Watani Hospital- network
3	Amman Street- network
4	Dafna spring
5	Ein Dafna old reservoir
6	Ein Beit Elma new reservoir
7	Ein El Asal spring reservoir
8	Ras El Ein spring reservoir
9	Ein Beit Elma old reservoir
10	Qaryon spring reservoir
11	Askar Camp- plastic roof tank
12	Askar Camp-steel roof tank
13	Old City- network
14	Old City- plastic roof tank
15	Rafidia Al Balad- plastic network
16	Rafidia Al Balad- plastic roof tanks
17	Sayel Fuel Station- Alquds street –steel network
18	Sayel Fuel Station- Alquds street –plastic roof tank
19	AlQatoni Taxi- Almaajeen- steel network
20	AlQatoni Taxi- Almaajeen- plastic roof tank
21	Al Qwareen spring-trading centre

Table (4.1) Field survey sampling locations

4.1.3 Sampling procedure

The following steps were done:

- 1) Sampling vials (glass bottles of 1 liter volume) were obtained.
- Each sample vial was labeled including sample ID, Sample location, Sample date and time.
- 3) The water tap which represents the sampling location (water network, water tank, reservoir, and source) was opened about 3-5 minutes and the system allowed to flush until the water temperature

has stabilized to ensure the sample does not represent stagnant water that has set for a long time in the water line or reservoir.

- Bottles were rinsed with water from the sampling location before sampling.
- 5) Slowly, the sample vial was filled to the mark of 1L.
- Samples were capped and taken to the lab and preserved in a refrigerator at 4°C until analysis.

4.2 Laboratory experiment

4.2.1 Laboratory pipe experiment

The laboratory pipe experiment is aimed at studying the impact of pipe material, pipe age, pollution load, and chlorine dose on the formation of DBPs. The laboratory pipe experiment consists of the following steps:

- Pipe segments of different materials used in Nablus water supply system were installed at the WESI laboratory.
- Pipes were filled with water obtained from the taps at WESI which was analyzed before use for pH and chlorine residual concentration.
- Polypropylene new pipe, new steel pipe and old steel pipe were used.
- Different chlorine doses with different contamination loads (soluble organic matter concentrations) were applied to the different segments.
- The pipes with the water, chlorine dose and pollution load were incubated for 72 hours and 120 hours (the periods used in Nablus water supply system for intermittent pumping)
- The experiment was kept at a constant temperature value (26°C).

Samples from the entire water volume were taken out of the pipe and immediately placed in the refrigerator for THM analysis.

- THM concentrations were measured for each case.
- Results were statistically analyzed using SPSS statistical package.

4.2.2 Experiment setting and description

The following Fig 4.2 shows the experiment setup of the pipes, which were installed by Nablus Municipality water systems technicians.

- Three pipes were obtained in coordination with the Nablus Water and Wastewater Sanitation Department from their stores; new steel and new plastic pipe were purchased and stored to be used when needed, and old steel pipe was taken out of the network and replaced by new one.
- Three pipes were installed: new steel pipe of 3 m length and 2 inch diameter, old steel pipe of the same length and diameter, and polypropylene new pipe of 63 mm diameter and 3 m length.

- A slope in pipes was made maximum of 3% in order to facilitate sample withdrawal.
- Three chlorine concentrations were used to represent the range of chlorine doses typically encountered in the Nablus network: 0.3 mg/l, 0.6 mg/l and 0.9 mg/l.

First the residual chlorine of the tap water was measured, and then chlorine was added as required to achieve the required dose; the residual chlorine was measured again after chlorine addition to ensure the value needed.

• Three soluble organic concentrations represented as BOD concentrations were used: 0 mg/l, 10 mg/l and 30 mg/l.

For BOD preparation, solid waste was obtained from a chicken farm in Nablus City, dried by sunlight and ground to the size of a sesame seed (approximately 1 mm). One gram of waste was soaked in one liter of water for two days; the BOD measured after five days was 100 mg/L.

In order to confirm the dilution, a tenfold amount of waste was soaked in the same amount of water (10 gm of waste from the same source in 1 L of water for two days), and then 0.25 L of the solution was added to 25L of water. After five days, the sample measured 10 mg/L BOD, the same value calculated by using the dilution formula:

1 g/L gives 100 mg/L BOD (measured)

10 g/L expected to give 1000 mg/L BOD

C1xV1=C2xV2

Where:

C1: initial concentration in milligrams/liter (mg/l)

V1: initial volume in liter (L)

C2: final concentration in milligrams/liter (mg/l)

V2: final volume in liter (L)

1000 mg/Lx0.25 L= C2x25L

C2= 10 mg/L (calculated)

So we have 250 mL of pollutant when added to 25 L water sample, gives 10 mg/L BOD.

The same method was used to prepare BOD of 30 mg/L. To prepare 0.5 L of pollutant to give 25 L of water sample with 30 mg/L BOD:

x mg/Lx0.5 L= 30 mg/Lx25 L

x=1500 mg/L achieved when 15 g of waste from the same source was soaked in 1 L of water for two days, and then 0.5 L of the solution was added to 25 L of water to give 30 mg/L BOD.

- Two incubation periods were used, 72 hours and 120 hours (the periods used in Nablus water supply system for intermittent pumping).
- Constant temperature in the lab was controlled at 26 ° C (a preset for the lab).
- pH is started at 7 and we assumed it remained constant.

The following Table 4.2 shows all samples which have been collected and sample descriptions.

40	
----	--

Table 4.2: Experiment samples description

No	Sample no	Pipe material	Pipe age	Cl ₂ concentration (mg/l)	BOD (mg/l)	Incubation period (hr)
1	OS1/1	Steel	Old	0.3	0	72
2	OS3/1	Steel	Old	0.6	0	72
3	OS2/1	Steel	Old	0.9	0	72
4	OS1/3	Steel	Old	0.3	10	72
5	OS3/3	Steel	Old	0.6	10	72
6	OS2/3	Steel	Old	0.9	10	72
7	OS1/5	Steel	Old	0.3	30	72
8	OS3/5	Steel	Old	0.6	30	72
9	OS2/5	Steel	Old	0.9	30	72
10	OS1/2	Steel	Old	0.3	0	120
11	OS3/2	Steel	Old	0.6	0	120
12	OS2/2	Steel	Old	0.9	0	120
13	OS1/4	Steel	Old	0.3	10	120
14	OS3/4	Steel	Old	0.6	10	120
15	OS2/4	Steel	Old	0.9	10	120
16	OS1/6	Steel	Old	0.3	30	120
17	OS3/6	Steel	Old	0.6	30	120
18	OS2/6	Steel	Old	0.9	30	120
19	NS 1/1	Steel	New	0.3	0	72
20	NS 3/1	Steel	New	0.6	0	72
21	NS 2/1	Steel	New	0.9	0	72
22	NS 1/3	Steel	New	0.3	10	72
23	NS 3/3	Steel	New	0.6	10	72
24	NS 2/3	Steel	New	0.9	10	72
25	NS 1/5	Steel	New	0.3	30	72
26	NS 3/5	Steel	New	0.6	30	72
27	NS 2/5	Steel	New	0.9	30	72
28	NS 1/2	Steel	New	0.3	0	120
29	NS 3/2	Steel	New	0.6	0	120
30	NS 2/2	Steel	New	0.9	0	120
31	NS 1/4	Steel	New	0.3	10	120
32	NS 3/4	Steel	New	0.6	10	120
33	NS 2/4	Steel	New	0.9	10	120
34	NS 1/6	Steel	New	0.3	30	120
35	NS 3/6	Steel	New	0.6	30	120

	41					
No	Sample no	Pipe material	Pipe age	Cl ₂ concentration (mg/l)	BOD (mg/l)	Incubation period (hr)
36	NS 2/6	Steel	New	0.9	30	120
37	P 1/1	РР	New	0.3	0	72
38	P 3/1	РР	New	0.6	0	72
39	P 2/1	РР	New	0.9	0	72
40	P 1/3	РР	New	0.3	10	72
41	P 3/3	PP	New	0.6	10	72
42	P 2/3	PP	New	0.9	10	72
43	P 1/5	РР	New	0.3	30	72
44	P 3/5	PP	New	0.6	30	72
45	P 2/5	PP	New	0.9	30	72
46	P 1/2	PP	New	0.3	0	120
47	P 3/2	PP	New	0.6	0	120
48	P 2/2	PP	New	0.9	0	120
49	P 1/4	PP	New	0.3	10	120
50	P 3/4	PP	New	0.6	10	120
51	P 2/4	PP	New	0.9	10	120
52	P 1/6	PP	New	0.3	30	120
53	P 3/6	PP	New	0.6	30	120
54	P 2/6	РР	New	0.9	30	120

Note: PP means polypropylene pipe

4.2.3 Experiment sampling

- 1) Sampling vials (glass bottles of 1 liter volume) were obtained.
- Each sample vial was labeled including Sample ID, Sample location, Sample date and time.
- 3) Slowly, the sample vial was filled by opening the water tap at the end of each pipe to the mark of 1 L.
- 4) Samples were capped and taken to the lab and preserved in a refrigerator at 4 °C until analysis.

4.3 Sample analysis

4.3.1 Sample collection

Finished drinking water samples (1000 cm^3) were collected for analysis from both 21 field survey samples and 54 pipe experiment samples, (see Tables 4.1 and 4.2). The samples were taken in a standard way after running a few liters of water from the tap for the field samples (but not the pipe experiment samples). 0.1 g of sodium thiosulfate (Na₂S₂O₃ • 5H₂O analytical grade POCH SA, Gliwice) was added to each sample to quench any remaining chlorine residual and stop formation of THMs. The containers had teflon-lined screw caps. The water samples were kept no longer than three days at + 4°C.

Materials standards of chloroform (CHC1₃), bromodichloromethane (CHBrCl₂), dibromochloromethane (CHBr₂Cl), bromoform (CHBr₃) (each 5000 μ g/mL in MeOH, J.T. Baker) were used. The suitable solutions of the standards were prepared in methanol (Suprasolv, Merck) by dilution in volumetric flasks.

4.3.2 Solid-Phase Microextraction (SPME)

The compounds were separated from the water samples by SPME technique (Luks-Betlej and Bodzek, 2000). During extraction the fiber was directly immersed in the aqueous solution. The extraction was carried out in 3 ml screw cap vials fitted with silicone/PTFE septa, (Supelco Corp.), to which the sample was being poured underneath the seal. The microextractor fibers coated with 100 μ m film of poly(dimethylsiloxane) PDMS (Supelco Corp.) phase were introduced into the vessel with the

sample of water and during the fiber exposure the sample was stirred with a magnetic stirrer. Micro extraction conditions were selected experimentally, based on previous studies (Luks-Betlej and Bodzek, 2000). A micro extraction time of 8 min and mixing the sample at 400 rpm achieved equilibrium conditions. After the set time of the micro extraction the fibers were immediately inserted into the injector of GC/MS of Perkin Elmer Clarus 500 Gas Chromatograph-Mass Spectrometer, where the desorption took place within 2 min at 170°C. The time of thermal desorption was verified by fiber purity control by blank test; moreover, the fibers were cleaned at 250°C, before each extraction. 200 extractions were performed with the PDMS fibers.

4.3.3 Quantitative analysis

GC/MS analysis was performed in the gas chromatograph of Perkin Elmer Claurus 500 type. The chromatograph was equipped with 560D MS detector, and a column of Elite 5MS with poly(dimethylsiloxane) phase (30 m x 0.25 mm x 0.25 μ m film thickness) dimensions. The parameters of chromatographic analysis were as follows:

Temperatures: split/splitless injector 170°C, detector 250°C; programme: 30°C (5 min), 30-120°C (9°C min,), 120°C (10 min). Carrier gas He: 20 cm s-1; desorption time from the fibers: 2 min.

To make calibration curves, aliquots dissolved in methanol with concentration of 5000 μ g/mL of all standards were applied. The solutions were kept refrigerated in amber-coloured vials. The basic aliquots were

dissolved with methanol in order to prepare spiked water solutions for making calibration curves.

Calibration curves for chloroform were made for the concentration range 5-30 μ g/L, for bromodichloromethane 0.25-4 μ g/L, dibromochloromethane 0.5-5 μ g/L, bromoform 0.05-0.1 μ g/L, respectively. Calibration curves details are shown in Table 4.3.

Table 4.3. The calibration curves correlation coefficients of compounds determined by the SPME-GC/MS method at a range of concentrations: Bromodichloromethane (CHBrCl₂) 0.25-4.0 μg/L, Dibromochloromethane (CHBr₂Cl) 0.5-5.0 μg/L, Bromoform (CHBr₃) 0.05-0.5 μg/L, Chloroform

(CHC1	(3)5	-30	$\mu g/L$
101101		20	mp -

Compound	b*	a*	r ²	R.S.D	Detection
				%	limit ppb
CHBrCl ₂	145.7	1212.3	0.998	6-10	2.1
CHBr ₂ Cl	414.7	1220.8	1	3-5	3.1
CHBr ₃	-10.36	782.4	0.999	3-12	3.2
CHC1 ₃	-22.82	308.9	0.999	3-10	2.5

* = Linear regression y=ax+b

n = number of determinations (5-7)

4.4 Statistical analysis

Data were statistically analyzed using the SPSS statistical software program (SPSS Inc, Chicago Illinois).

Significance of effects of pipe material, pipe age, chlorine concentration, pollution load, and incubation period on the formation of DBP were analyzed with the help of the analysis of variance (ANOVA), which is a well-known statistical technique. Because only single data points were collected for each condition, data were pooled for ANOVA tests.

CHAPTER FIVE RESULTS AND DISCUSSION

5.1 Results

The results were measured separately for each single compound, and then added together as a total THM.

5.1.1 Field survey results

The following Table (5.1) shows the field survey sample locations and TTHM results.

Sample	Samula la sation		TTHM
no		Sample location	(ppb)
1	Reservoir	Alhaj Nimer reservoir	14
2	Network	Al Watani hospital	26
3	Network	Amman street	27
4	Source	Dafna spring	6
5	Reservoir	Ein Dafna old reservoir	8
6	Reservoir	Ein Beit Elma new reservoir	34
7	Reservoir	Ein El Asal spring reservoir	13
8	Reservoir	Ras El Ein spring reservoir	14
9	Reservoir	Ein Beit Elma old reservoir	18
10	Reservoir	Qaryon spring reservoir	31
11	Roof	Askar Camp- plastic roof tank	52
	tanks		
12	Roof	Askar Camp-steel roof tank	41
	tanks		
13	Network	Old City	53
14	Roof	Old City- plastic roof tank	48
	tanks		
15	Network	Rafidia Al Balad- plastic	38
16	Roof	Rafidia Al Balad- plastic	29
	Tanks		
17	Network	Sayel Fuel Station- Alquds street –steel	37
18	Roof tank	Sayel Fuel Station- Alquds street -	28
		plastic	
19	Network	AlQatoni Taxi- Almaajeen- steel	23
20	Roof tank	AlQatoni Taxi- Almaajeen- plastic	37
21	Source	Al Qwareen spring-trading centre	153

Table (5.1) Field survey sample locations and results

Fig 5.1 TTHM values of Nablus City water system and MCL values according to PSI and USEPA are shown for reference.

47

5.1.2 Pipe experiment results

5.1.2.1 Case one

Description: Zero BOD, seventy two hours incubation period, different pipe material and age, different chlorine concentration.

The following Table (5.2) shows case one sample and results.

Sample no	Pipe material	Pipe age	Cl ₂ concentration	TTHM
Sumptene	r ipe materiai	r ipe uge	(mg/l)	(ppb)
OS1/1	Steel	Old	0.3	111
OS3/1	Steel	Old	0.6	118
OS2/1	Steel	Old	0.9	123
NS1/1	Steel	New	0.3	88
NS3/1	Steel	New	0.6	89
NS2/1	Steel	New	0.9	94
P1/1	Plastic	New	0.3	63
P3/1	Plastic	New	0.6	81
P2/1	Plastic	New	0.9	72

Table 5.2 Case one of experiment results

5.1.2.2 Case two

Description: Zero BOD, one hundred and twenty hours incubation period, different pipe material and age, different chlorine concentration.

period, different pipe material and age, different chlorine concentration

The following Table (5.3) shows case two samples and results.

 Table 5.3: Case two experiment results

Sample no	Pipe material	Pipe age	Cl ₂ concentration (mg/l)	TTHM (ppb)
OS1/2	Steel	Old	0.3	131
OS3/2	Steel	Old	0.6	211
OS2/2	Steel	Old	0.9	169
NS1/2	Steel	New	0.3	92
NS3/2	Steel	New	0.6	187
NS2/2	Steel	New	0.9	114
P1/2	Plastic	New	0.3	74
P3/2	Plastic	New	0.6	163
P2/2	Plastic	New	0.9	89

5.1.2.3 Case three

Description: 10 mg/L BOD, seventy two hours incubation period, different pipe material and age, different chlorine concentration.

The following Table (5.4) shows case three samples and results.

Sample no	Pipe	Pipe age	Cl ₂ concentration	TTHM
Sumptente	material	i ipe uge	(mg/l)	(ppb)
OS1/3	Steel	Old	0.3	121
OS3/3	Steel	Old	0.6	160
OS2/3	Steel	Old	0.9	188
NS1/3	Steel	New	0.3	93
NS3/3	Steel	New	0.6	151
NS2/3	Steel	New	0.9	162
P1/3	Plastic	New	0.3	74
P3/3	Plastic	New	0.6	138
P2/3	Plastic	New	0.9	157

Table 5.4: Case three of experiment results

5.1.2.4 Case four

Description: 10 mg/L BOD, one hundred and twenty hours incubation period, different pipe material and age, different chlorine concentration.

The following Table (5.5) shows case four samples and results.

 Table 5.5: Case four of experiment results

	to to the of the pr			
Sample no	Pipe material	Pipe age	Cl ₂ concentration (mg/l)	TTHM (ppb)
OS1/4	Steel	Old	0.3	148
OS3/4	Steel	Old	0.6	215
OS2/4	Steel	Old	0.9	298
NS1/4	Steel	New	0.3	136
NS3/4	Steel	New	0.6	201
NS2/4	Steel	New	0.9	276
P1/4	Plastic	New	0.3	111
P3/4	Plastic	New	0.6	193
P2/4	Plastic	New	0.9	259

5.1.2.5 Case five

Description: 30 mg/L BOD, seventy two hours incubation period, different pipe material and age, different chlorine concentration.

The following Table (5.6) shows case five samples and results.

Sample no	Pipe material	Pipe age	Cl_2 concentration	TTHM
1	1	1 0	(mg/l)	(ppb)
OS1/5	Steel	Old	0.3	176
OS3/5	Steel	Old	0.6	288
OS2/5	Steel	Old	0.9	326
NS1/5	Steel	New	0.3	156
NS3/5	Steel	New	0.6	262
NS2/5	Steel	New	0.9	302
P1/5	Plastic	New	0.3	141
P3/5	Plastic	New	0.6	238
P2/5	Plastic	New	0.9	287

Table 5.6: Case five of experiment results

5.1.2.6 Case six

Description: 30 mg/L BOD, one hundred and twenty hours incubation period, different pipe material and age, different chlorine concentration.

The following Table (5.7) shows case six samples and results.

 Table 5.7: Case six of experiment results

Sampla no	Dina matarial	Pipe	Cl ₂ concentration	TTHM
Sample no	r ipe materiai	age	(mg/l)	(ppb)
OS1/6	Steel	Old	0.3	193
OS3/6	Steel	Old	0.6	298
OS2/6	Steel	Old	0.9	357
NS1/6	Steel	New	0.3	171
NS3/6	Steel	New	0.6	281
NS2/6	Steel	New	0.9	319
P1/6	Plastic	New	0.3	159
P3/6	Plastic	New	0.6	273
P2/6	Plastic	New	0.9	307

5.2 Statistical analysis

5.2.1 Analysis of Variance (ANOVA)

In its simplest form, the ANOVA can be viewed as a hypothesis test of group means by applying six steps.

5.2.1.1 Test of pipe materials means

To check the effect of pipe material on the formation of DBP, data of new steel and poly propylene pipe were analyzed using ANOVA (see Appendix 4).

The following Table 5.8 shows the SPSS output of comparing means by

one way AN	IOVA.
------------	-------

Report								
ТТНМ								
PipeMaterial	Ν	lean		N	Std. De	viation		
1.00		76.3333		18		79.76510		
2.00		59.9444		18		81.87973		
Total		68.1389		36	80.09857			
ΑΝΟΥΑ								
	Sum of Squares	df		Mean Square	F	Sig.		
Between Groups	2417.361		1	2417.361	.370	.547		
Within Groups	222134.9	34	4	6533.381				
Total	224552.3	3	5					

Fig 5.2 The effect of pipe material on the formation of TTHM

5.2.1.2 Test of pipe ages means

To check the effect of pipe age on the formation of DBP data of new steel and old steel pipe were analyzed using ANOVA (see Appendix 5).

The following Table 5.9 shows the SPSS output of comparing means by

Report								
ТТНМ								
PipeMaterial	Me	ean	Ν	Std. De	viation			
1.00	1	76.3333	18		79.76510			
2.00	2	01.7222	18		78.73246			
Total	1	89.0278	36	79.16402				
ΑΝΟΥΑ ΤΤΗΜ								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	5801.361	1	5801.361	.924	.343			
Within Groups	213541.6	34	6280.636					
Total	219343.0	35						

one way ANOVA.

Fig 5.3 The effect of pipe age on the formation of TTHM

5.2.1.3 Test of chlorine concentrations means

To check the effect of chlorine concentration on the formation of DBP data of TTHM under the application of 0.3, 0.6, or 0.9 mg/L of Cl_2 were analyzed using ANOVA (see Appendix 6).

The following chart (Fig 5.4) shows the effect of chlorine concentration.

Fig 5.4 TTHM values versus BOD at different chlorine concentration.

The following Table 5.10 shows the SPSS output of comparing means by one way ANOVA.

ANOVA										
ТТНМ										
			S	um of						
			Sc	uares		df		Mean Square	F	Sig.
Between G	Groups		85	5116.778		2		42558.389	8.401	.001
Within Gro	oups		2	258349.2		51		5065.671		
Total			3	343466.0		53				
					м	ltinla Com		iaana		
					wu	itiple com	pai	ISONS		
Dependen	nt Variable	: TTł	НМ							
				Mear	n					
				Differen	ice				95% Confid	lence Interval
	(I) CL	(J)	CL	(I-J)		Std. Erro	r	Sig.	Lower Bound	Upper Bound
Scheffe	1.00	2.0	00	-72.72	2222*	23.7245	51	.013	-132.5419	-12.9026
		3.0	00	-92.27	778*	23.7245	51	.001	-152.0974	-32.4581
	2.00	1.0	00	72.72	222*	23.7245	51	.013	12.9026	132.5419
		3.0	00	-19.55556		23.7245	51	.714	-79.3752	40.2641
	3.00	1.0	00	92.27	92.27778*		51	.001	32.4581	152.0974
		2.0	00	19.55	5556	23.7245	51	.714	-40.2641	79.3752
* The	mean diff	erenc	ce is si	gnificant a	t the .	05 level.				

54

Fig 5.5 The effect of Cl₂ on the formation of TTHM

Linear regression:

When applying linear regression using SPSS to see the TTHM trend under the variable values of chlorine concentration the following results obtained

Linear regression equation

TTHM= 46.139X CL₂ + 87.056R²= 0.223

Sig < 0.05

Scatter shape is linear

The results of linear regression (see Appendix 7)

5.2.1.4 Test of BOD concentrations Means

To check the effect of BOD concentration on the formation of DBP data of TTHM under the application of 0, 10, or 30 mg/L BOD were analyzed using ANOVA (see Appendix 8).

The following chart (Fig 5.6) shows the effect of BOD loading.

Fig 5.6 TTHM values versus chlorine concentration at different BOD concentration.

The following Table 5.11 shows the SPSS output of comparing means by one way ANOVA.

ANOVA										
TTHM										
		Sum	n of				_			
		Squa	ires	C	lf	Me	ean Square	F	Sig.	
Between	Groups	170	584.8		2		85292.389	25.161	.000	
Within G	roups	172	381.2		51		3389.828			
Total		3434	466.0		53					
Depende	Multiple Comparisons									
			Mean							
			Differ	ence				95% Confide	nce Interval	
	(I) BOD	(J) BOD	(-,	J)	Std. Er	ror	Sig.	Lower Bound	Upper Bound	
Scheffe	1.00	2.00	-56.2	2222*	19.407	'41	.021	-105.1566	-7.2878	
		3.00	-136.9	4444*	19.407	'41	.000	-185.8788	-88.0101	
	2.00	1.00	56.2	2222*	19.407	'41	.021	7.2878	105.1566	
		3.00	-80.7	2222*	19.407	'41	.001	-129.6566	-31.7878	
	3.00	1.00	136.9	4444*	19.407	'41	.000	88.0101	185.8788	
		2.00	80.7	2222*	19.407	'41	.001	31.7878	129.6566	
*. The	mean diffe	erence is s	ignifica	int at th	ne .05 le	vel.				

Fig 5.7 The effect of BOD on the formation of TTHM
Linear regression

When applying linear regression using SPSS to see the TTHM trend under the variable values of BOD concentration the following results obtained

- Linear regression equation

TTHM= 68.472X BOD + 42.389

- $R^2 = 0.491$
- Sig < 0.05
- Scatter shape is linear

The results of linear regression (see Appendix 9)

5.2.1.5 Test of incubation periods Means

To check the effect of incubation period on the formation of DBP,

data of TTHM after 72 and 120 hours were analyzed (see Appendix 10).

The following Table 5.12 shows the SPSS output of comparing means by one way ANOVA.

Report									
ТТНМ									
PipeMaterial	Me	ean	Ν	Std. De	viation				
1.00	1	157.7407	27		77.33374				
2.00	2	200.9259	27		79.12888				
Total	1	179.3333	54		80.50149				
	Sum of								
	Squares	df	Mean Square	F	Sig.				
Between Groups	25176.963	1	25176.963	4.113	.048				
Within Groups	318289.0	52	6120.943						
Total	343466.0	53							

Fig 5.8 The effect of incubation period on the formation of TTHM

5.3 Non linear modeling

In order to predict the occurrence of DBPs in drinking water, nonlinear regression techniques used in developing DBP predictive model. The model expresses Total Trihalomethane (TTHM) concentration in terms of BOD, Cl₂ concentrations and incubation time.

The proposed model is:

$TTHM=K\times BOD^{x1}\times Cl_2^{x2}\times t^{x3}$

After making simulation on results by SPSS

TTHM=24.758×BOD^{0.3292}×Cl₂^{0.5579}×t^{0.3386}

Where:

TTHM: trihalomethane in mg/l

BOD: Biological Oxygen Demand in mg/l

Cl₂: chlorine concentration in mg/l

t: incubation period in hours

The following figure 5.9 shows the relation between measured and

Fig 5.9 Relation between measured and predicted TTHM

To check the effect of chlorine, BOD concentrations and incubation period on the formation of DBP data of TTHM by using the predictive model, the following figures 5.10, 5.11 and 5.12 respectively shows the results

Fig 5.10 Chlorine concentration versus TTHM using the predictive model

Fig 5.11 BOD concentration on TTHM using the predictive model

Fig 5.12 The effect of incubation period on TTHM using the predictive model

From the above charts, Predicted TTHM reaches PSI MCL (80 ppb) at the following:

- $Cl_2 = 0.16 \text{ mg/l}$ at BOD= 10 mg/l, t=72 hours.
- BOD = 1 mg/l at $Cl_2 = 0.6$ mg/l, t=72 hours.
- t=8 hours at $Cl_2=0.6$ mg/l, BOD= 10 mg/l.

From the above charts, Predicted TTHM reaches the USEPA MCL

(250 ppb) at the following:

- Cl₂= 1.21 mg/l at BOD= 10 mg/l, t=72 hours.
- BOD = 33 mg/l at Cl_2 = 0.6 mg/l, t=72 hours.
- t= 228 hours at $Cl_2= 0.6$ mg/l, BOD= 10 mg/l.

5.4 Discussion

5.4.1 Field samples

The results show detectable levels of TTHM in all 21 samples. The TTHM concentrations in 20 samples were below the USEPA and PSI MCL (80 ppb and 250 ppb, respectively). Sample 21 (Al Qwareen Spring-trading centre) measured 153 ppb, which is above the USEPA MCL but

still less than the MCL according to PSI. This high level of TTHM was expected by the Nablus water and wastewater department. In fact, they don't use this water directly, but instead they dilute it with water from other sources.

Field results indicate that TTHM PSI standard level (250ppb) is not appropriate since some of the TTHM in samples for the field survey were approaching the EPA standard of 80 ppb. It is important that PSI to revise the TTHM level set and modifies it or justify why it should be over 80 ppb. This is of importance because, in Egypt this limit was set to 100 ppb (see table 2.5)

5.4.2 Pipe experiment samples

5.4.2.1 The effect of pipe material on the formation of DBP

Results of TTHM for the new steel pipe were compared with TTHM for new plastic pipe, and analyzed using ANOVA (see Appendix 4), the results of comparison and analysis were:

- At the same chlorine dose concentration, BOD loading, and incubation period, the TTHM concentrations in steel pipes were greater than concentrations in plastic pipes.
- Applying ANOVA shows that TTHM means of steel and plastic pipe were significantly not different because, the significant is 0.547 which is more than the level of 0.05 at which the mean difference is significant.

5.4.2.2 The effect of pipe age on the formation of DBP

Results of TTHM for the new steel pipe were compared with TTHM for old steel pipe, and analyzed using ANOVA (see Appendix 5), the results of comparison and analysis were:

- At the same chlorine dose concentration, BOD loading, and incubation period, the TTHM concentrations in old steel pipes were greater than concentrations in new steel pipes.
- Applying ANOVA shows that TTHM means of new steel and old steel pipe were significantly not different, because, the significant is 0.343 which is more than the level of 0.05 at which the mean difference is significant.

5.4.2.3 The effect of chlorine concentration on the formation of DBP

Results of TTHM for different pipe materials and ages (old steel, new steel and new plastic pipe) under the application of 0.3 mg/l chlorine concentration were compared with TTHM at the application of 0.6 mg/l and 0.9 mg/l chlorine concentration, and analyzed using ANOVA (see Appendix 6), the results of comparison and analysis were:

- At the same pipe material, pipe age, BOD loading, and incubation period, TTHM concentrations increased with increasing chlorine dose.
- TTHM at 0.9 mg/l CL₂ > TTHM at 0.6 mg/l > TTHM at 0.3 mg/l.

- Applying linear trend on the graph of TTHM versus Cl₂ concentration, the slope is positive, which means that the trend is increasing TTHM with increasing Cl₂.
- Applying ANOVA shows that:
- Comparing TTHM at 0.3 mg/l Cl₂ with TTHM at 0.6 mg/l Cl₂, TTHM means were significantly not different, because, the significant is 0.013 which is less than the level of 0.05 at which the mean difference is significant.
- Comparing TTHM at 0.3 mg/l Cl₂ with TTHM at 0.9 mg/l Cl₂, TTHM means were significantly different, because, the significant is 0.001 which is less than the level of 0.05 at which the mean difference is significant.
- Comparing TTHM at 0.6 mg/l Cl₂ with TTHM at 0.9 mg/l Cl₂, TTHM means were significantly not different, because, the significant is 0.714 which is more than the level of 0.05 at which the mean difference is significant.
 - Applying linear regression using SPSS (see Appendix 7) shows that:
- The coefficient of determination (R^2) is 0.223 which means low correlation between the outcomes and their predicted values.
- The significance of the equation is less than 0.05.

5.4.2.4 The effect of BOD concentration on the formation of DBP

Results of TTHM for different pipe materials and ages (old steel, new steel and new plastic pipe) under the application of 0 mg/l BOD concentration were compared with TTHM at the application of 10 mg/l and 30 mg/l BOD concentration, and analyzed using ANOVA (see Appendix 8), the results of comparison and analysis were:

- At the same pipe material, pipe age, chlorine concentration, and incubation period, TTHM concentrations increased with increasing BOD concentration.
- TTHM at 30 mg/l BOD > TTHM at 10 mg/l > TTHM at 0 mg/l.
- Applying linear trend on the graph of TTHM versus BOD concentration, the slope is positive, which means that the trend is increasing TTHM with increasing BOD.
- Applying ANOVA shows that:
- Comparing TTHM at 0 mg/l BOD with TTHM at 10 mg/l BOD, TTHM means were significantly different, because, the significant is 0.021 which is less than the level of 0.05 at which the mean difference is significant.
- Comparing TTHM at 0 mg/l BOD with TTHM at 30 mg/l BOD, TTHM means were significantly different, because, the significant is 0.000 which is less than the level of 0.05 at which the mean difference is significant.
- Comparing TTHM at 10 mg/l BOD with TTHM at 30 mg/l BOD, TTHM means were significantly different, because, the significant is 0.001 which is less than the level of 0.05 at which the mean difference is significant.

- Applying linear regression using SPSS (see Appendix 9) shows that:
- The coefficient of determination (R^2) is 0.491 which means low correlation between the outcomes and their predicted values.
- The significance of the equation is less than 0.05.

5.4.2.5 The effect of incubation periods on the formation of DBP

Results of TTHM for different pipe materials and ages (old steel, new steel and new plastic pipe) under the condition of 72 hours incubation period, were compared with TTHM under the condition of 120 hours incubation period, and analyzed using ANOVA (see Appendix 10), the results of comparison and analysis were:

- At the same pipe material, pipe age, chlorine concentration, and BOD concentration, the TTHM concentrations at 120 hours incubation period were greater than concentrations at 72 hours incubation period.
- Applying ANOVA shows that TTHM means were significantly different, because, the significant is 0.048 which is less than the level of 0.05 at which the mean difference is significant.
- TTHM means of 72 hours and 120 hours incubation period were significantly different.(TTHM at 120 hours > TTHM at 72 hours)

The following Table (Table 5.13) shows the variables and which had a statistically significant effect on TTHM concentrations.

Var	iables	TTHM	means
First	Second	Significantly different	Significantly not
			different
Old steel	New steel		
New steel	Plastic pipe		
$Cl_2=0.3$	Cl ₂ =0.6		
$Cl_2=0.3$	$Cl_2=0.9$		
Cl ₂ =0.6	Cl ₂ =0.9		
BOD=0	BOD=10		
BOD=0	BOD=30		
BOD=10	BOD=30		
t=72	t=120		

5.4.3 Non linear modeling

Because the pipe material and pipe age as a factor were not significant, a model for the TTHM formation was build as a factor of chlorine dose concentration, BOD concentration and incubation time these factor have significant effect on TTHM formation.

The coefficient of determination (R^2) is 0.841 which means high correlation between the measured and their predicted values.

The DBP predictive model indicates:

- BOD and t, have equal effect on predicted TTHM (the power of BOD is 0.3 and the power of t is 0.3) while the chlorine concentration has higher impact (the power of Cl_2 is 0.5).
- The high constant value which is 25 indicates the important of the three factors together.

- BOD, Cl2 and incubation period are directly proportional to the formation of DBP as TTHM.

The benefit of this model, that we can predict the concentration of TTHM.

By using the model, TTHM concentration based on the three factors can be predicted; this enables decision makers in the field of water in Nablus City to ensure TTHM not to increase more than MCL.

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

Based on the results obtained and their discussion, the following concluding remarks were reached:

- There is presence of TTHM in Nablus water supply system.
- TTHM PSI standard level (250ppb) is not appropriate.
- At the same chlorine dose concentration, BOD loading, and incubation period, the TTHM concentrations in steel pipes were greater than concentrations in plastic pipes.
- At the same chlorine dose concentration, BOD loading, and incubation period, the TTHM concentrations in old steel pipes were greater than concentrations in new steel pipes.
- At the same pipe material, pipe age, BOD loading, and incubation period, TTHM concentrations increased with increasing chlorine dose.
- At the same pipe material, pipe age, chlorine concentration, and incubation period, TTHM concentrations increased with increasing BOD concentration.
- At the same pipe material, pipe age, chlorine concentration, and BOD concentration, the TTHM concentrations at 120 hours incubation period were greater than concentrations at 72 hours incubation period.
- Model for the TTHM formation was build as a factor of chlorine dose concentration, BOD concentration and incubation time these factor have significant effect on TTHM formation.

6.2 Recommendations

- It is very necessary to monitor continuously the value of TTHM in the water system and ensure not to exceed the MCL value.
- Old steel pipes need to be replaced.
- Incubation period need to be reduced by increasing water availability and pumping durations.
- Chlorine dose and residual need to be more closely monitored.
- UFW must be reduced to reduce biological contamination of water.

Recommendations for further research

It is recommended to:

- Repeat the experiment with different segments of pipes to cover different ages.
- Repeat the experiment with different pipe material.
- Studying the feasibility of declining Cl₂ as disinfectant and using other alternatives.
- Studying the effects of other water quality parameters on the formation of TTHM.

- Adams, G.O., and Kingsbury, F.H.: "Experiences with chlorinating new water mains", Journal of the New England Water Works Association, 51,1937/60–68.
- Ahmadi, A.B.: Effects of water quality parameters on corrosion of mild steel, copper, and zinc(Ph.D. thesis). University of Florida. Miami. Fla. 1981.
- Allen, M.J., Taylor, R.H., and Geldreich, E.E.: "The occurrence of microorganisms in water main encrustations", Journal of the American Water Works Association, 72,1980/614–625.
- Al-Omari, A., Fayyad, M. and Qader, A.: "Modeling trihalomethane formation for Jabal Amman water supply in Jordan", Environmental Modeling and Assessment, 9,2004/245–252.
- American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF).: Standard Methods for the Examination of Water and Wastewater. 1996
- American Chemistry Council(ACC).: Water Disinfection: Evaluating Alternative Methods In Light of Heightened Security Concerns,2010
- Bielmeier, S.R., Best, D.S., Guidici, D.L., Narotsky, M.G.: "Pregnancy loss in the rat caused by bromodichloromethane", Toxicol. Sci, 59,2001/309–315.
- Brereton, J.A. and Mavinic, D.S: "Field and material-specific simulated distribution system testing as aids to understanding

trihalomethane formation in distribution systems", Can. J. Civ. Eng., 29,2002/17–26.

- Clark, R.M. and Sivaganesan, M.: "*Predicting Chlorine Residuals and Formation of TTHMs in Drinking Water*", Journal of Environmental Engineering, 124,December, 1998/1203–1210.
- Clark, R.M., Thurnau, R.C., Sivaganesan, M. and Ringhand, P.: "Predicting the Formation of Chlorinated and Brominated By-Products", Journal of Environmental Engineering, 127, June, 2001/493-501.
- Cohn, P. D, Cox, M. and Berger, P. S., "Health and Aesthetic Aspects of Water Quality, In: Water Quality and Treatment", Ed. American Water Works Association, McGraw-Hill, Inc, 1999/2.1-2.86.
- Egyptian Organization for Standardization and Quality (EOSQ). Drinking Water Regulation.Egypt.26, February 1995.
- EPA.: Initial Distribution System Evaluation Guidance Manual for the Final Stage 2 Disinfection Byproducts Rule, Appendix A, EPA 815-B-06-002, January 2006
- E. Roberts Alley, P.E.: Water Quality Control Handbook, Mc Graw Hill Companies, Second edition, 2007.
- Gang, D.D., Segar Jr, R.L., Clevenger, T.E. and Banerji, S.K.: "Using chlorine demand to predict TTHM and HAA9 formation", Journal Am. Water Works Assn., 94,2002/76-86.
- Gorchev, H.G.: Disinfection of Drinking Water and By-products of Health Concern, World Health Organization, December, 1998.
- Hassan, K.Z.A.; Bower, K.C. and Miller, C.M.: "Iron Oxide Enhanced Chlorine Decay and Disinfection By-Product Formation Journal

of Environmental Engineering", Journal of Environmental Engineering, 132,2006 / 1609–1616.

- Hua, G. and Reckhow, D.A.: "Comparison of disinfection byproduct formation from chlorine and alternative disinfectants", Water Research, 41,2007/1667 – 1678.
- IARC: Monograph on the Evaluation of Carcinogenic Risk to Humans: Chlorinated Drinking Water, Chlorination Byproducts, Some Other Halogenated Compounds; Cobalt and Cobalt Compounds, 52 Lyon IARC, 1991.
- Jordan Institution for standards and Metrology(JISM):**Technical Regulation, water-drinking water**,23 January, 2008
- Krasner S. W.: Chemistry of disinfection by-product formation. In Formation and Control of Disinfection By-products in Drinking Water. Singer, P.C. (editor). American Water Works Association, Denver, CO, 1999.
- Keegar, T., Whitaker, H., Nieuwenhuijsen, M.J., Toledano, M.B. Elliott, P.,Fawell, J., Wilkinson, M., Best, N.: "Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes", Occup. Environ. Med., 58,2001/447–452.
- K Bodzek D.: Luks-Betlej and "Determination of Tri,-**Tetrachloromethanes** and *Trichloroethane* Using by Microextraction with GC-ECD Detection", Chem. Anal. (Warsaw) 45, 2000.
- Morris, R.D., Audet, A.M., Angelillo, I.F., Chalmers, T.C., Mosteller, F.: "Chlorination, Chlorination By-products, and Cancer—a meta analysis", Am. J. Public Health, 82,1992/955–963.

Morris J.C.: Conference summary. In: Water chlorination environmental impact and health effects. Volume 2. Jolley RL, Gorchev H., Hamilton D.H. eds., Ann Arbor Science, Ann Arbor, Michigan, 1978.

Palestinian Standards Institution: Drinking Water, 2005.

- Palestinian Central Bureau of Statistics, Census 2007, Census final results in the west bank-summary (population and housing), 2008
- Ridgway, H.F., and Olson, B.H.: "Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system", Applied Environmental Microbiology, 41,1981/ 274– 287.
- Sadiq, R. and Rodriguez, M.J.: "Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review", Science of the Total Environment, 321,2004/21–46.
- Stevens AA, Slocum CJ, Seeger DR, & Robeck GG.: Chlorination of organics in drinking water. J Am Water Works Assoc, 1976.
- Tuovinen, O.H., Mair, D.M., and Banovic, J.: "Chlorine demand and trihalomethane formation by tubercles from cast-iron water mains", Environmental Technology Letters, 5,1984/97–108.
- U.S. Environmental Protection Agency: Draft Drinking Water Health Criteria Document for Chloramines, Washington, D.C:Office of Science and Technology, Office of Water, 1994.
- U.S. Environmental Protection Agency: EPA Panel Report and Recommendation for conducting Epidemiological Research on Possible Reproductive and Developmental Effects of Exposure

to Disinfected Drinking Water, Washington, D. C: Office of Research and Development, 1998a.

- U.S. Environmental Protection Agency: Integrated Risk Information
 System. Cincinnati, OH: Office of Research and Development,
 Office of Health and Environmental Assessment, 1998b.
- U. S. Environmental Protection Agency (USEPA): The Stage 1 Disinfectants/Disinfection Byproducts (Stage 1 DBPR), December 1998c.
- Water and Environmental Studies Institute at An-Najah National University: Map of Nablus City boundary, main water sources (wells and springs) and served villages, 2007.
- Westerhoff, P., Chao, P. and Mash, H.: "Reactivity of natural organic matter with aqueous chlorine and bromine", Water Research, 38,2004/1502–1513.
- World Health Organization.: Guidelines for drinking-water quality, 3rd ed, 2006.

78 Appendix 1

Water Chemical Analysis results for Samples collected from Utilized wells and springs all over Nablus City,(WESI, 2009)

Sample	Description	Sampling	pH Unit	Turbidty (NTU)	NO3 (mg/l)	SO4 (mg/l)	PO4 (mg/l)	Cl (mg/l)	Total Alkalinity	Total Hard	TDS (mg/l)
110.		Date	Umt		(mg/1)	(mg/1)	(111g/1)	(ing/i)	(mg/l)	mg/l	(iiig/i)
										CaCo3	
1	Odala well	22/6/2009	7.1	0.24	17	7.5	0.0	55	230	239	356
2	Alfar'a well	22/6/2009	7.3	0.21	14	7.8	0.0	80	290	299	435
3	Al-Badan	22/6/2009	7.4	0.2	16.8	9.5	0.0	70	230	252	377
	well										
4	Alqaryoon	22/6/2009	7.1	0.26	21	7	0.0	50	210	216	307
	spring										
5	Ein Defna	22/6/2009	7.3	0.19	35.8	9	0.0	65	207	232	370
6	Ein Al-Asal	22/6/2009	7.35	0.23	18	9	0.0	50	170	188	264
7	Ras Al Ein	22/6/2009	7.4	0.19	17	8	0.0	40	190	186	270
	spring										
Stan	dard level		6.5-	<1	50	200	6	250	NGL	500	1000
			8.5								
Method of determination			I	Meter	Spectrop	Spectrophotometer Titrarion			Gravime		
											tric

Continue...

Sample	Description	Sampling	Ca	Mg	Na	k	Fe	Zn	Pb	Cr	Cd	Cu
No.		Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1	Odala well	22/6/2009	63	20	20	1.6	0.12	0.21	0.0	0.0	0.0	0.0
2	Alfar'a well	22/6/2009	82	23	32	1.5	0.11	0.18	0.0	0.0	0.0	0.0
3	Al-Badan	22/6/2009	68	20	26	1.7	0.12	0.2	0.0	0.0	0.0	0.0
	well											
4	Alqaryoon	22/6/2009	62	15	23	1.6	0.09	0.19	0.0	0.0	0.0	0.0
	spring											
5	Ein Defna	22/6/2009	65	17	30	1.4	0.08	0.19	0.0	0.0	0.0	0.0
6	Ein Al-Asal	22/6/2009	49	16	20	1.1	0.1	0.15	0.0	0.0	0.0	0.0
7	Ras Al Ein	22/6/2009	53	13	21	1.5	0.08	0.18	0.0	0.0	0.0	0.0
	spring											
Stand	lard level		100	50	200	10	0.300	5	0.01	0.05	0.005	1
Method of			Flame Atomic Abs.									
determination												

- All measured parameters are within the acceptable Palestinian standard levels.

⁸⁰ Appendix 2

Bacteriological Analysis results of Nablus water system(WESI, 2009).

							Bacteriol	logical Analysis
Date of Sampling	Sample #	Time	Sample Point	Location	Exact Location	Res. Cl2 mg/l	T.coliform cfu/100ml	F.coliform cfu/100ml
4/1/2009	209	09:20	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	210	09:30	House tap	Ad-Dawwar	Abaza Sweets	0.2	Nil	Nil
	211	09:35	House tap	Ad-Dawwar	Basuni Restaurant	0.4	Nil	Nil
	212	09:50	House Tap	Masakin	Zakat Dairy Factory	0.3	Nil	Nil
	213	10:00	Well	Audalah	line at dafnah	UNCL	Nil	Nil
	214	10:10	Well	Deir Sharaf	Line at Beit Al Ma'	0.5	Nil	Nil
5/1/2009	215	08:30	Spring	Qaryoun	Before Chlorination	UNCL	360	250
6/1/2009	216	07:20	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	217	08:20	House Tap	Khallet Al Amoud	House	0.4	Nil	Nil
	218	09:05	Reservoir	Beit Al Ma'	Тар	0.5	Nil	Nil
	219	09:10	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
	220	08:00	Reservoir	Ain Dafnah	Тар	0.4	Nil	Nil
	221	08:10	Spring	Ain Dafnah	Before Chlorination	UNCL	5	3
7/1/2009	222	09:45	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	223	09:50	Reservoir	Qawareen	Тар	0.4	Nil	Nil
	224	10:00	Reservoir	Beit Al Ma'	Тар	0.5	Nil	Nil
	225	10:10	P.station	Ras Al Ain	Тар	0.6	Nil	Nil

				81	1			
	226	10:20	P.station	Ain Al Asal	Тар	0.4	Nil	Nil
	227	10:30	Reservoir	Ain Dafnah	Тар	0.5	Nil	Nil
11/1/2009	228	09:45	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	229	10:00	House Tap	Masakin	Zakat Dairy Factory	0.5	Nil	Nil
	230	10:10	Reservoir	Ain Dafnah	Тар	0.5	Nil	Nil
	231	10:25	Reservoir	Jabal Janoubi	Тар	0.5	Nil	Nil
	232	10:30	House Tap	Ta'awon street	shop	0.4	Nil	Nil
	233	10:40	P.station	As-Sumara	Тар	0.3	Nil	Nil
12/1/2009	234	08:30	Spring	Qaryoun	After chlorination	1.0	Nil	Nil
	235	08:40	Spring	Qaryoun	Before Chlorination	UNCL	Nil	Nil
13/1/2009	236	07:20	Reservoir	New Fire Station	Тар	0.3	Nil	Nil
	237	07:40	Reservoir	Beit Al Ma'	Тар	0.6	Nil	Nil
	238	07:50	Spring	beit Al Ma'	Before Chlorination	UNCL	7	3
	239	07:55	House Tap	Al Ain camp	Butcher	0.6	Nil	Nil
	240	08:05	House Tap	Al Basha street	shop	0.5	Nil	Nil
	241	08:15	House Tap	Qawareen	Restaurant	0.5	Nil	Nil
	242	08:45	House Tap	Rafidia	Restaurant	0.3	Nil	Nil
	243	10:45	House Tap	Al Basha street	Okasha house	0.4	Nil	Nil
	244	11:00	P.station	Qaryoun	Тар	0.5	Nil	Nil
14/1/2009	245	09:40	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	246	09:50	House Tap	Khallet Al Amoud	House	0.4	Nil	Nil
	247	10:00	House Tap	Maa'jeen	House	0.4	Nil	Nil
	248	10:05	House Tap	Tulkarm street	Azzouni Gas station	0.5	Nil	Nil
	249	10:10	Reservoir	Beit Al Ma'	Тар	0.6	Nil	Nil
	250	10:15	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil

				82	2			
18/1/2009	251	08:30	Spring	Beit Al Ma'	After chlorination	0.6	Nil	Nil
	252	08:40	Spring	Beit Al Ma'	Before Chlorination	UNCL	30	20
	253	09:00	Spring	Qaryoun	After chlorination	0.8	Nil	Nil
	254	09:10	Spring	Qaryoun	Before Chlorination	UNCL	40	26
	255	09:45	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	256	10:00	House Tap	Masakin	Zakat Dairy Factory	0.3	Nil	Nil
	257	10:05	House tap	Ad-Dahia	Garage	0.2	Nil	Nil
	258	10:10	Well	Audalah	line at dafnah	UNCL	Nil	Nil
	259	10:15	Reservoir	Ain Dafnah	Тар	0.5	Nil	Nil
20/1/2009	260	07:30	Reservoir	New Fire Station	Тар	0.5	Nil	Nil
	261	07:50	House tap	Balata camp	House	0.4	Nil	Nil
	262	08:40	Spring	beit Al Ma'	After chlorination	0.5	Nil	Nil
	263	08:50	House Tap	Aseera street	Al Faris Taxi office	0.3	Nil	Nil
21/1/2009	264	09:15	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	265	09:30	House Tap	Amman street	Butcher	0.3	Nil	Nil
	266	09:45	Reservoir	beit Al Ma'	New reservoir	0.5	Nil	Nil
	267	09:50	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
	268	10:00	Spring	Qaryoun	After chlorination	0.6	Nil	Nil
	269	10:20	Spring	Qaryoun	Water entering the reservoir	UNCL	900	500
	270	10:30	Spring	Qaryoun	Spring itself	UNCL	900	600
25/1/2009	271	09:25	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	272	09:40	House Tap	Masakin	Zakat Dairy Factory	0.4	Nil	Nil
	273	09:50	House Tap	Amman street	Butcher	0.4	Nil	Nil
	274	09:55	House Tap	Al Quds street	Sayel Gas station	0.3	Nil	Nil

				8.	3			
	275	10:05	Well	Audalah	line at dafnah	UNCL	Nil	Nil
	276	10:10	Reservoir	Ain Dafnah	Тар	0.4	Nil	Nil
	277	08:40	Roof tank	Habs Ad-Dam	Arafat house	0.4	Nil	Nil
	278	11:00	Spring	Qaryoun	After chlorination	0.6	Nil	Nil
	279	11:10	Spring	Qaryoun	Water entering the reservoir	UNCL	400	270
	280	11:20	Spring	Qaryoun	Spring itself	UNCL	440	270
27/1/2009	281	07:25	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	282	07:40	House Tap	Khallet El Eman	Al Eman Taxi office	0.4	Nil	Nil
	283	08:15	P.station	Qaryoun	Тар	0.8	Nil	Nil
	284	08:20	House Tap	Street #15	Old People's Home	0.5	Nil	Nil
	285	08:30	House Tap	Imraij street	Restaurant	0.4	Nil	Nil
	286	08:55	House Tap	Rafidia	Restaurant	0.4	Nil	Nil
28/1/2009	287	09:40	Reservoir	New Fire Station	Тар	0.6	Nil	Nil
	288	09:45	House Tap	Faisal street	Restaurant	0.4	Nil	Nil
	289	09:50	House Tap	Maa'jeen	Qatouni Taxi office	0.5	Nil	Nil
	290	10:00	House Tap	Tulkarm street	Azzouni Gas station	0.4	Nil	Nil
	291	10:05	Reservoir	Beit Al Ma'	Old reservoir	0.7	Nil	Nil
	292	10:10	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
1/7/2009	728	09:25	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	729	09:35	House Tap	Saladin street	Restaurant	0.4	Nil	Nil
	730	09:40	House Tap	Khallet Al Amoud	House	0.4	Nil	Nil
	731	09:50	House Tap	Faisal street	Restaurant	0.4	Nil	Nil
	732	09:55	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil

				8	4			
	733	10:00	Spring	Beit Al Ma'	After chlorination	0.4	Nil	Nil
	734	10:05	Spring	Beit Al Ma'	Before Chlorination	UNCL	14	8
5/7/2009	735	09:20	Reservoir	New Fire Station	Тар	0.5	Nil	Nil
	736	09:35	Spring	Ain Al Asal	After chlorination	0.4	Nil	Nil
	737	09:40	Spring	Ain Al Asal	Before Chlorination	UNCL	12	7
	738	09:50	House Tap	Amman street	Butcher	0.4	Nil	Nil
	739	10:00	Well	Audalah	Line at Dafnah	UNCL	Nil	Nil
	740	10:10	Reservoir	Ain Dafnah	Тар	0.4	Nil	Nil
	741	10:15	Well	Badan	Line at Dafnah	0.3	Nil	Nil
7/7/2009	742	07:30	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	743	07:45	House Tap	Balata camp	House	0.4	Nil	Nil
	744	08:00	Spring	Ras Al Ain	After chlorination	0.5	Nil	Nil
	745	08:05	Spring	Ras Al Ain	Before Chlorination	UNCL	Nil	Nil
	746	08:20	House Tap	Old City	Sabeel an-Nasir	0.4	Nil	Nil
	747	08:35	House Tap	Aseera street	Al Faris Taxi office	0.3	Nil	Nil
8/7/2009	748	08:30	Spring	Ain Dafnah	After chlorination	0.4	Nil	Nil
	749	08:35	Spring	Ain Dafnah	Before Chlorination	UNCL	5	3
	750	09:00	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	751	09:30	House Tap	Jabal Shamali	Restaurant	0.4	Nil	Nil
	752	09:40	Reservoir	Beit Al Ma'	Тар	0.4	Nil	Nil
	753	09:45	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
	754	09:50	House Tap	Tunis street	Shop	0.4	Nil	Nil
12/7/2009	755	07:45	Spring	Beit Al Ma'	Before Chlorination	UNCL	>800	>800
	756	07:50	Reservoir	Beit Al Ma'	Old reservoir	0.2	15	10
	757	07:55	Reservoir	Beit Al Ma'	New reservoir	0.4	Nil	Nil

				8	5			
	758	09:25	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	759	09:35	House Tap	Iraq At-Tayeh	Garage	0.4	Nil	Nil
	760	09:50	House Tap	Masakin	Zakat Dairy Factory	0.3	Nil	Nil
	761	10:00	House Tap	Asker Old camp	Butcher	0.4	Nil	Nil
	762	10:10	Reservoir	Ain Dafnah	Тар	0.4	Nil	Nil
13/7/2009	763	08:20	Spring	Beit Al Ma'	before Chlorination	UNCL	220	160
14/7/2009	764	07:25	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	765	07:40	Spring	Beit Al Ma'	Before Chlorination	UNCL	250	150
	766	07:55	Spring	Beit Al Ma'	After chlorination	0.5	Nil	Nil
	767	08:20	Spring	Qaryoun	Before Chlorination	UNCL	20	12
	768	08:35	Spring	Qaryoun	After chlorination	0.6	Nil	Nil
	769	08:45	House Tap	Jnaid	Jnaid prison	0.3	Nil	Nil
	770	08:55	Reservoir	Jnaid	Тар	0.3	Nil	Nil
15/7/2009	771	08:55	House Tap	Ad-Dawwar	Abu Salha sweets	0.3	Nil	Nil
	772	09:20	Reservoir	Ad-Dawwar	Commercial Complex (upper reservoir)	0.2	Nil	Nil
	773	09:40	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	774	09:50	House Tap	Aseera street	Al Faris Taxi office	0.3	Nil	Nil
	775	09:55	Spring	Beit Al Ma'	Before Chlorination	UNCL	80	50
	776	10:00	Reservoir	Beit Al Ma'	Old reservoir	0.6	Nil	Nil
	777	10:05	Reservoir	Beit Al Ma'	New reservoir	0.4	Nil	Nil
	778	10:10	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
21/7/2009	779	07:15	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	780	07:40	House Tap	Qawareen	Restaurant	0.4	Nil	Nil

				8	6			
	781	07:55	House Tap	Ad-Dawwar	Juice shop	0.4	Nil	Nil
	782	08:05	House Tap	Old City	As-Salahi Sabeel	0.4	Nil	Nil
	783	08:30	Spring	Ain Al Asal	After chlorination	0.5	Nil	Nil
	784	08:40	Spring	Ain Al Asal	Before Chlorination	UNCL	190	120
	785	08:50	House Tap	Maa'jeen	Qatouni Taxi office	0.4	Nil	Nil
22/7/2009	786	09:45	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	787	10:00	Well	Deir Sharaf	Line at Beit Al Ma'	UNCL	Nil	Nil
	788	10:05	House Tap	Al Ain camp	Butcher	0.4	Nil	Nil
	789	10:10	House Tap	Tulkarm street	Hawwash Wood Stores	0.4	Nil	Nil
	790	10:20	House Tap	Jnaid	Jnaid prison	0.4	Nil	Nil
	791	10:30	Reservoir	Jnaid	Тар	0.4	Nil	Nil
	792	10:40	House Tap	Street # 15	Old People's Home	0.4	Nil	Nil
	793	09:30	House Tap	Makhfiya	H. Istaitiyyeh house	<0.1	>800	>800
	794	10:00	House Tap	Makhfiya	M.Yadak house	<0.1	>800	>800
	795	10:30	House Tap	Makhfiya	A.Al Ghanamih	<0.1	>800	>800
26/7/2009	796	09:40	Reservoir	New Fire Station	Тар	0.4	Nil	Nil
	797	10:00	House Tap	Masakin	Zakat Dairy Factory	0.3	Nil	Nil
	798	10:15	House Tap	Ad-Dahia	Garage	0.4	Nil	Nil
	799	10:20	Well	Audalah	Line at Dafnah	UNCL	Nil	Nil
	800	10:25	Reservoir	Ain Dafnah	Тар	0.4	Nil	Nil
	801	10:30	Well	Badan	Line at Dafnah	UNCL	Nil	Nil
	802	10:40	House Tap	Jnaid	Jnaid prison	0.3	Nil	Nil
28/7/2009	803	07:45	Spring	Ain Dafnah	Before Chlorination	UNCL	Nil	Nil
	804	08:00	Spring	Ain Dafnah	After chlorination	0.4	Nil	Nil

				8	7			
	805	08:15	Spring	Ain Al Asal	Before Chlorination	UNCL	46	25
	806	08:20	Spring	Ain Al Asal	After chlorination	0.5	Nil	Nil
	807	08:35	Spring	Qaryoun	Before Chlorination	UNCL	Nil	Nil
	808	08:40	Spring	Qaryoun	After chlorination	0.4	Nil	Nil
	809	08:50	Spring	Beit Al Ma'	Before Chlorination	UNCL	72	34
	810	09:00	Spring	Beit Al Ma'	After chlorination	0.5	Nil	Nil
	811	10:45	Seepage	Faisal street	Hamama House		260	120
29/7/2009	812	08:30	House Tap	Makhfiya	H. Istaitiyyeh house	0.2	420	240
	813	08:35	House Tap	Makhfiya	A.Al Ghanamih	0.2	Nil	Nil
	814	08:40	House Tap	Makhfiya	M.Yadak house	0.2	740	380
	815	09:05	House Tap	Makhfiya	GH.mraish house	0.3	Nil	Nil
	816	09:20	House Tap	Al-seka Street	Mustafa Dula	0.1	Nil	Nil

88 Appendix 3

r umping uays and perio	Jus 10		maix			LUII	C 5 III	une	moi	11115	01 01	muu	i y ai	IG IL	"Su	<i>su</i> , <i>a</i>	10(,	010)
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Aseera-Al-Namsawi						18			10					11				11		
Al-Mraij						15		12				15				14				15
Rafedia (W0)	12							12				14				12				14
Old Junblat				12				76					10			75				12

Pumping days and periods for all water service zones in the months of January and August. 2010(WWSD.2010)

Aseera-Al-Namsawi						18			10					11				11		
Al-Mraij						15		12				15				14				15
Rafedia (W0)	12							12				14				12				14
Old Junblat				12				7.6					10			7.5				12
Ein Beit Elma Camp		8.8		9.3			8.8			5.3			6	11		8.5			8.4	
Aseera	10	15								12				13				11		
Zawata					12				16				13				13			
Al-Ma'ajeen					13				16				13				13			
Haifa Str.	10				11				8					11				12		
Al-Junaid		7.6				7.6				8.2				8.3				8		
New Junblat			8			8.8					18				9.8				9	
Ras Al-Ein				8.3				7.4				7.8				7				7.9
Al-Basha					7.4			7.4				7.4				7				7.9
Abu Obaida			6.5				8.5				7.9				8.8				8.3	
Al-Ta'awon		6.2				7				7.5				7				8.7		
New Nablus		8.2				9				7.5				8.3				8.7		
Till Str.		13					18				16				14				14	

		_						89												
Fatayer+Kshaikeh			7.7								9				9				9.8	
New Fatayer			9.3					8	10			9.5				11				10
Al-Quds Str			12				9.5					15			11				12	
Amman Str.							13					14			13				12	
Iraq Al-Tayeh						12	19							20				21		
Khalet Al-Amoud		9.5				12				11				9.5				11		
Salah Al-Deen Str.		9.5				12				11				12				11		
Al-Dahyeh				14				17					20			16			12	
Balata Camp				9.5				11				9.5				12			10	
Askar Camp		12				14				11				12				11		
Lower Khalet Al-Eman	10				10				8				19				9.2			
Al-Makhfiya				12					15				13				13			
15 St.		15				12				12				12				12		
Imad Al-Deen			11					16				15		16						13
Upper Khalet Al-Eman		13									9				12				16	
Old City		3.7				12	12			12				12				15		
Al-Sikeh Str	10			11				12				12					15			15
Al-Qaruon		4			11	6		12	4		4	5	5.5	2	1.2	3	2			11

January, 2010

August, 2010

	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10
Aseera-Al-Namsawi		14			12				11				11.3				12.3				12
Al-Mraij		4.4		13			15	15			13				14.5				2		
Rafedia (W0)		4.3		12			14	15			12				16				13		
Old Junblat		2		12								12				8				8.5	
Ein Beit Elma Camp					9	14								8			8			9.5	
Aseera		13							12					5.5				9			6.3
Zawata	12				10			9.5					16.5			14.5					14.17
Al-Ma'ajeen	12				10			9.5					16.5			14.5					14.2
Haifa Str.		12											12.5				10.5				6
Al-Junaid		9.3				7				11				10.3				11.17			
New Junblat		10				11				7					21				10		
Ras Al-Ein				6.5				7.9							7.17			7			7
Al-Basha				6.5				7.9							7.17			7			7
Abu Obaida														6.5				8.5			
Al-Ta'awon		9.9				7.8				6			6.2				7				7.5
New Nablus		9.9				7.8				6			8.2				9				7.5
Till Str.		15				15				15			13					18			

Fatayer+Kshaikeh			10				9				5			7.7							
New Fatayer			10				9.3				11			9.3					8	10	
Al-Quds Str			6				9				12			12				9.5			
Amman Str.			6				9				17							13			
Iraq Al-Tayeh	13				17				2.5	12							12	19			
Khalet Al-Amoud		9.5				12				10			9.5				12				11
Salah Al-Deen Str.		9.5				12				10			9.5				12				11
Al-Dahyeh			15					12							14				17		
Balata Camp			10					12							9.5				11		
Askar Camp	12				12					12			12				14				11
Lower Khalet Al- Eman	9				9.5							10				10				8	
Al-Makhfiya	13			15					15						12					15	
15 St.	13				11				12				15				12				12
Imad Al-Deen				14			15							11					16		
Upper Khalet Al- Eman			14				15				17		13								
Old City		16			12				15				3.7				12	12			12
Al-Sikeh Str				14				12				10			11				12		
Al-Qaruon	2	1.5		4		6.7	11	5	4	7.5			4			11	6		12	4	

92	
	August, 2010

	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Aseera-Al-Namsawi	10.5			10								9		12.9				9			11.3
Al-Mraij		15				14.3					6.3		4.3	21.3				4			4
Rafedia (W0)		4.5				3.7					6.3			5				5.3			13.17
Old Junblat			9				11					8			10				10.3		
Ein Beit Elma Camp		4			14			8.5				8.17		8			7.17			7.7	
Aseera				2				1.3					4			3				12	
Zawata				4.5			6.5					8				4			10.7		
Al-Ma'ajeen				4.5			6.5					8				4			10.7		
Haifa Str.				2				13								4.3				9	
Al-Junaid					13.5				3				13.5				12.7			10	
New Junblat						13.17					14.7		3.5	3.5				11.17			12
Ras Al-Ein			7.3			8.7			4.5						3.5			6.3			6
Al-Basha			7.3			8.7			4.5						3.5			6.3			6
Abu Obaida	7.9				8.8				8.3												
Al-Ta'awon				7				8.7				9.9				7.8				6	
New Nablus				8.3				8.7				9.9				7.8				6	
Till Str.	16				14				14			15				15				15	

									, , ,												
Fatayer+Kshaikeh	9				9				9.8				10				9				5
New Fatayer		9.5				11				10			10				9.3				11
Al-Quds Str		15			11				12				6				9				12
Amman Str.		14			13				12				6				9				17
Iraq Al-Tayeh				20				21			13				17				2.5	12	
Khalet Al-Amoud				9.5				11				9.5				12				10	
Salah Al-Deen Str.				12				11				9.5				12				10	
Al-Dahyeh			20			16			12				15					12			
Balata Camp		9.5				12			10				10					12			
Askar Camp				12				11			12				12					12	
Lower Khalet Al- Eman			19				9.2				9				9.5						
Al-Makhfiya			13				13				13			15					15		
15 St.				12				12			13				11				12		
Imad Al-Deen		15		16						13				14			15				
Upper Khalet Al- Eman	9				12				16				14				15				17
Old City				12				15				16			12				15		
Al-Sikeh Str		12					15			15				14				12			
Al-Qaruon	4	5	5.5	2	1.2	3	2			11	2	1.5		4		6.7	11	5	4	7.5	
Test of Pipe materials Means

To check the effect of pipe material on the formation of DBP the following data were analyzed:

	New steel pipe		Polypropylene	
NO	Sample No	TTHM (ppb)	Sample No	TTHM (ppb)
1	NS1/1	88	P1/1	63
2	NS1/2	92	P1/2	74
3	NS1/3	93	P1/3	74
4	NS1/4	136	P1/4	111
5	NS1/5	156	P1/5	141
6	NS1/6	171	P1/6	159
7	NS2/1	94	P2/1	72
8	NS2/2	114	P2/2	89
9	NS2/3	162	P2/3	157
10	NS2/4	276	P2/4	259
11	NS2/5	302	P2/5	287
12	NS2/6	319	P2/6	307
13	NS3/1	89	P3/1	81
14	NS3/2	187	P3/2	163
15	NS3/3	151	P3/3	138
16	NS3/4	201	P3/4	193
17	NS3/5	262	P3/5	238
18	NS3/6	281	P3/6	273

Step 1: Formulation of hypotheses

Ho: $\mu 1 = \mu 2$

HA: at least one pair of group means are not equal

Step 2: Define the test statistic and its distribution

F=MSb/MSw

Step 3: specify the level of significance = 5%

Step4: collect data and compute test statistic

Parameter	μ1	μ2	К	Ν
Value	176.3	159.9	2	36
Parameter	Nj	μt	SSb	SSw
Value	18	168.1	2417.4	222134.9

Source of	Sum of squares		Degrees of freedom	Mean square
variation				
Between	2417.4		1	2417.4
Within	222134.9		34	6533.4
Total	224552.3		35	
Step 5: Determ	ination the critical value	e of the	e test statistic from F d	listribution tables
F		F crit	tical	
0.37		4.13		

Step 6: Make a decision-

F is less than F critical; the null hypothesis should be accepted

Test of Pipe ages Means

To check the effect of pipe age on the formation of DBP the following data were analyzed:

	New steel pipe		Old steel pipe	
NO	Sample No	TTHM (ppb)	Sample No	TTHM (ppb)
1	NS1/1	88	OS1/1	111
2	NS1/2	92	OS1/2	131
3	NS1/3	93	OS1/3	121
4	NS1/4	136	OS1/4	148
5	NS1/5	156	OS1/5	176
6	NS1/6	171	OS1/6	193
7	NS2/1	94	OS2/1	123
8	NS2/2	114	OS2/2	169
9	NS2/3	162	OS2/3	188
10	NS2/4	276	OS2/4	298
11	NS2/5	302	OS2/5	326
12	NS2/6	319	OS2/6	357
13	NS3/1	89	OS3/1	118
14	NS3/2	187	OS3/2	211
15	NS3/3	151	OS3/3	160
16	NS3/4	201	OS3/4	215
17	NS3/5	262	OS3/5	288
18	NS3/6	281	OS3/6	298

Step 1: Formulation of hypotheses

Ho: μ1=μ2

HA: at least one pair of group means are not equal

Step 2: Define the test statistic and its distribution

F=MSb/MSw

Step 3: specify the level of significance = 5%

Step4: collect data and compute test statistic

Parameter	μ1	μ2	К	Ν
Value	176.3	201.7	2	36
Parameter	Nj	μt	SSb	SSw
Value	18	189	5801.4	213542

Source of	Sum of squares		Degrees of freedom	Mean square
variation				
Between	5801.4		1	5801.4
Within	213541.6		34	6280.6
Total	219343.0		35	
Step 5: Determ	nination the critical value	of th	e test statistic from F d	listribution tables
F		F cr	itical	
0.92		4.13		

Step 6: Make a decision-

F is less than F critical; the null hypothesis should be accepted

96 APPENDIX 6 Test of chlorine concentrations Means

	C11 = 0.3 mg/l		Cl2 = 0.6 mg/	1	C13 = 0.9 mg/l	
NO	Sample No	TTHM	Sample No	TTHM	Sample No	TTHM
	Sample No	(ppb)	Sample No	(ppb)	Sample No	(ppb)
1	OS1/1	111	OS3/1	118	OS2/1	123
2	OS1/2	131	OS3/2	211	OS2/2	169
3	OS1/3	121	OS3/3	160	OS2/3	188
4	OS1/4	148	OS3/4	215	OS2/4	298
5	OS1/5	176	OS3/5	288	OS2/5	326
6	OS1/6	193	OS3/6	298	OS2/6	357
7	NS1/1	88	NS3/1	89	NS2/1	94
8	NS1/2	92	NS3/2	187	NS2/2	114
9	NS1/3	93	NS3/3	151	NS2/3	162
10	NS1/4	136	NS3/4	201	NS2/4	276
11	NS1/5	156	NS3/5	262	NS2/5	302
12	NS1/6	171	NS3/6	281	NS2/6	319
13	P1/1	63	P3/1	81	P2/1	72
14	P1/2	74	P3/2	163	P2/2	89
15	P1/3	74	P3/3	138	P2/3	157
16	P1/4	111	P3/4	193	P2/4	259
17	P1/5	141	P3/5	238	P2/5	287
18	P1/6	159	P3/6	273	P2/6	307

To check the effect of chlorine concentration on the formation of DBP the following data were analyzed:

Step 1: Formulation of hypotheses

Ho: μ1=μ2

HA: at least one pair of group means are not equal

Step 2: Define the test statistic and its distribution

F=MSb/MSw

Step 3: specify the level of significance = 5% Step 4: collect data and compute test statistic

Parameter	μ1	μ2	μ3	Κ	Ν
Value	124.3	197.1	216.6	3	54
Parameter	Nj	μt	SSb	SSw	
Value	18	179.3	85116.8	258349	

Source of	Sum of squares	Degrees of freedom	Mean square	
variation	_	_	_	
Between	85116.8	2	42558.4	
Within	258349.2	51	5065.7	
Total	343466.0	53		
Step 5: Deterr	mination the critical value of	the test statistic from F	distribution tables	
F	I	F critical		
8.40		3.18		

Step 6: Make a decision-F is greater than F critical; the null hypothesis should be rejected Multiple comparisons in the ANOVA test using Duncan Multiple Range Test Ho: μi=μj Rm=SX(rm) SX=(MSw /nj)0.5

SX	rm	Rm
16.78	2.85	47.81

Groups i,j	μί	μj	Range	decision
1,2	124.3	197.1	72.7	reject Ho
1,3	124.3	216.6	92.3	reject Ho
2,3	197.1	216.6	19.6	Accept Ho

The means pair of 1,2 groups are significantly different The means pair of 1,3 groups are significantly different

The means pair of 2,3 groups are not significantly different

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
TTHM	179.3333	80.50149	54
CL	2.0000	.82416	54

Correlations

		TTHM	CL
Pearson Correlation	TTHM	1.000	.472
	CL	.472	1.000
Sig. (1-tailed)	TTHM		.000
	CL	.000	
Ν	TTHM	54	54
	CL	54	54

Variables Entered/Removed

	Variables	Variables	
Model	Entered	Removed	Method
1	CL ^a	-	Enter

a. All requested variables entered.

b. Dependent Variable: TTHM

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.472 ^a	.223	.208	71.63332

a. Predictors: (Constant), CL

b. Dependent Variable: TTHM

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	76636.694	1	76636.694	14.935	.000 ^a
	Residual	266829.3	52	5131.333		
	Total	343466.0	53			

a. Predictors: (Constant), CL

b. Dependent Variable: TTHM

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	87.056	25.791		3.375	.001
	CL	46.139	11.939	.472	3.865	.000

a. Dependent Variable: TTHM

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	133.1944	225.4722	179.3333	38.02598	54
Residual	-153.472	131.52777	.00000	70.95432	54
Std. Predicted Value	-1.213	1.213	.000	1.000	54
Std. Residual	-2.142	1.836	.000	.991	54

a. Dependent Variable: TTHM

Scatterplot

Dependent Variable: TTHM

Test of BOD concentrations Means

To check the effect of BOD concentration on the formation of DBP the following data were analyzed:

	BOD1=0 m	g/l	BOD2=10	mg/l	BOD3= 30 n	ng/l
NO	Sampla No.	TTHM	Sample	TTHM	Sample No	TTHM
	Sample No	(ppb)	No	(ppb)	Sample No	(ppb)
1	OS1/1	111	OS1/3	121	OS1/5	176
2	OS3/1	118	OS3/3	160	OS3/5	288
3	OS2/1	123	OS2/3	188	OS2/5	326
4	OS1/2	131	OS1/4	148	OS1/6	193
5	OS3/2	211	OS3/4	215	OS3/6	298
6	OS2/2	169	OS2/4	298	OS2/6	357
7	NS1/1	88	NS1/3	93	NS1/5	156
8	NS 3/1	89	NS 3/3	151	NS 3/5	262
9	NS 2/1	94	NS 2/3	162	NS 2/5	302
10	NS 1/2	92	NS 1/4	136	NS 1/6	171
11	NS 3/2	187	NS 3/4	201	NS 3/6	281
12	NS 2/2	114	NS 2/4	276	NS 2/6	319
13	P1/1	63	P1/3	74	P1/5	141
14	P 3/1	81	P 3/3	138	P 3/5	238
15	P 2/1	72	P 2/3	157	P 2/5	287
16	P 1/2	74	P 1/4	111	P 1/6	159
17	P 3/2	163	P 3/4	193	P 3/6	273
18	P 2/2	89	P 2/4	259	P 2/6	307

Step 1: Formulation of hypotheses

Ho: μ1=μ2

HA: at least one pair of group means are not equal Step 2: Define the test statistic and its distribution

F=MSb/MSw

Step 3: specify the level of significance = 5% Step4: collect data and compute test statistic

Parameter	μ1	μ2	μ3	К	Ν
Value	114.9	171.2	251.9	3	54
Parameter	Nj	μt	SSb	SSw	
Value	18	179.3	170584.8	172881	

Source of variation	Sum of squares		Degrees of freedom	Mean square
Between	170584.8		2	85292.4
Within	172881.2		51	3389.8
Total	343466.0		53	
Step 5: Determ	ination the critical value	of th	e test statistic from F d	istribution tables
F		F cr	itical	
25.16		3.18		

Step 6: Make a decision-F is greater than F critical; the null hypothesis should be rejected Multiple comparisons in the ANOVA test using Duncan Multiple Range Test Ho: μi=μj Rm=SX(rm) SX=(MSw /nj)0.5

SX	rm	Rm
13.72	2.85	39.11

Groups i,j	μi	μj	Range	decision
1,2	114.9	171.2	56.2	reject Ho
1,3	114.9	251.9	136.9	reject Ho
2,3	171.2	251.9	80.7	reject Ho

The means pair of 1,2 groups are significantly different The means pair of 1,3 groups are significantly different The means pair of 2,3 groups are significantly different

102 APPENDIX 9 Regression

Descriptive Statistics

	Mean	Std. Deviation	N
TTHM	179.3333	80.50149	54
BOD	2.0000	.82416	54

Correlations

		TTHM	BOD
Pearson Correlation	TTHM	1.000	.701
	BOD	.701	1.000
Sig. (1-tailed)	TTHM		.000
	BOD	.000	
Ν	TTHM	54	54
	BOD	54	54

Variables Entered/Removed[®]

	Variables	Variables	
Model	Entered	Removed	Method
1	BOD ^a		Enter

a. All requested variables entered.

b. Dependent Variable: TTHM

Model Summary^b

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.701 ^a	.491	.482	57.95920

a. Predictors: (Constant), BOD

b. Dependent Variable: TTHM

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	168784.0	1	168784.028	50.244	.000 ^a
	Residual	174682.0	52	3359.269		
	Total	343466.0	53			

a. Predictors: (Constant), BOD

b. Dependent Variable: TTHM

103

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	42.389	20.868		2.031	.047
	BOD	68.472	9.660	.701	7.088	.000

a. Dependent Variable: TTHM

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	110.8611	247.8056	179.3333	56.43230	54
Residual	-106.806	118.66666	.00000	57.40981	54
Std. Predicted Value	-1.213	1.213	.000	1.000	54
Std. Residual	-1.843	2.047	.000	.991	54

a. Dependent Variable: TTHM

Scatterplot

Dependent Variable: TTHM

Test of incubation periods means

To check the effect of incubation period on the formation of DBP the following data were analyzed:

	t1=72 hr		t2= 120 hr	
NO	Sample No	TTHM (ppb)	Sample No	TTHM (ppb)
1	OS1/1	111	OS1/2	131
2	OS1/3	121	OS1/4	148
3	OS1/5	176	OS1/6	193
4	OS2/1	123	OS2/2	169
5	OS2/3	188	OS2/4	298
6	OS2/5	326	OS2/6	357
7	OS3/1	118	OS3/2	211
8	OS3/3	160	OS3/4	215
9	OS3/5	288	OS3/6	298
10	NS1/1	88	NS1/2	92
11	NS 1/3	93	NS 1/4	136
12	NS 1/5	156	NS 1/6	171
13	NS 2/1	94	NS 2/2	114
14	NS 2/3	162	NS 2/4	276
15	NS 2/5	302	NS 2/6	319
16	NS 3/1	89	NS 3/2	187
17	NS 3/3	151	NS 3/4	201
18	NS 3/5	262	NS 3/6	281
19	P1/1	63	P1/2	74
20	P 1/3	74	P 1/4	111
21	P 1/5	141	P 1/6	159
22	P 2/1	72	P 2/2	89
23	P 2/3	157	P 2/4	259
24	P 2/5	287	P 2/6	307
25	P 3/1	81	P 3/2	163
26	P 3/3	138	P 3/4	193
27	P 3/5	238	P 3/6	273

Step 1: Formulation of hypotheses

Ho: $\mu 1 = \mu 2$

HA: at least one pair of group means are not equal Step 2: Define the test statistic and its distribution F=MSb/MSw Step 3: specify the level of significance = 5% Step4: collect data and compute test statistic

Parameter	μ1	μ2	Κ	Ν
Value	157.7	200.9	2	54
Parameter	Nj	μt	SSb	SSw
Value	27	179.3	25177.0	318289

Source of variation	Sum of squares	Degrees of freedom	Mean square
Between	25177.0	1	25177.0
Within	318289.0	52	6120.9
Total	343466.0	53	

Step 5: Determination the critical value of the test statistic from F distribution tables

F	F critical
4.11	4.03

Step 6: Make a decision-

F is greater than F critical; the null hypothesis should be rejected

105

جامعة النجاح الوطنية كلية الدراسات العليا

تأثير نوع وعمر الأنبوب على تشكل النواتج الثانوية فى شبكة مياه نابلس

إعداد نبيل عبد الله جميل عمر

> إشراف أ.د. مروان حداد د. لوري مکنيل

قدمت هذه الأطروحة استكمالاً لمتطلبات درجة الماجستير في هندسة المياه والبيئة بكلية الدراسات العاليا في جامعة النجاح الوطنية في نابلس، فلسطين. تأثير نوع وعمر الأنبوب على تشكل النواتج الثانوية في شبكة مياه نابلس

إعداد نبيل عبد الله جميل عمر إشراف أ.د. مروان حداد د. لوري مكنيل

الملخص

في مدينة نابلس الواقعة شمال الضفة الغربية المحتلة نظاما مائيا يخدم حوالي 177000 نسمة من مدينة نابلس وبعض التجمعات المحيطة بها، ويتألف من خمسة آبار وخمسة ينابيع وثلاثة عشر خزانا وثلاثة عشر محطة ضخ وشبكة مياه بطول304 كم تقريبا من مواسير مختلفة الأقطار والأنواع والأعمار، يتم تعقيم المياه من خلال الكلورة باستخدام هيبوكلوريت الصوديوم، ومن الملاحظ ان نسبة الفاقد في 2010 بلغت 29%، مما يشير إلى وجود تسرب من الشبكة وان أي تلوث محيط بخطوط الماء التالفة يمكن أن يؤدي إلى دخول الملوثات إلى الشبكة وتلويث المياه، وان وجود الكلور وتفاعله مع الملوثات يؤدي إلى تشكل النواتج الثانوية لاستخدام الكلور في تعقيم المياه والتي أثبتت الدراسات أن وجودها في مياه الشرب يؤدي إلى الألوبة بعدد من الأمراض منها السرطان.

تم من خلال هذا البحث إجراء دراسة مسحية بأخذ عينات ممثلة للنظام المائي في نابلس بالتنسيق مع دائرة المياه والصرف الصحي التابعة لبلدية نابلس وفحص نسبة النواتج الثانوية على شكل ترايهالوميثان الكلي وتبين أن كل العينات تحتوي على الترايهالوميثان الكلي ولكن بنسب ضمن المسموح به باستثناء عينة واحدة، مما يعني ضرورة أن يتم اخذ عينات بشكل دوري من النظام لمراقبة وضبط هذا المصدر بالذات وكذلك النظام المائي. كما تم دراسة عدد من العوامل التي تؤثر على نسبة النواتج خاصة الأوكسجين المستهلك حيويا ونسبة الكلور وفترة الحضانة، حيث تم تثبيت مجموعة من المواسير في المختبر بأنواع وأعمار مختلفة ومن ثم إضافة نسب مختلفة من الكلور والملوث ولفترات حضانة مختلفة ومن ثم إجراء فحص لنسبة الترايهالوميثان وإجراء تحليلات إحصائية لاستخلاص النتائج.

حيث أثبتت الدراسة أن العلاقة بين تشكل النواتج الثانوية لاستخدام الكلور وكل من تركيز جرعة الكلور والاكسجين المستهلك حيويا وفترة الحضانة (مكوث المياه في الخزانات أو الشبكة) وعمر الماسورة هي علاقة طردية أي أنها تزداد بزيادة أي منها.

كما لوحظ أن نسبة الترايهالوميثان في مواسير الحديد هي أكبر منها في مواسير البلاستيك وكذلك في المواسير القديمة أكبر منها في المواسير الجديدة، ولكن نتائج تحليل البيانات إحصائيا أظهرت أن الفروقات هي ليست كبيرة، مما يجعل هذين العاملين (نوع الماسورة وعمرها) إحصائيا غير مؤثرين على زيادة أو نقصان تشكل النواتج الثانوية لاستخدام الكلور.

مما سبق، وبناءا على النتائج التي تم الوصول اليها، فانه وجد ما يلي:

- يوجد نواتج ثانوية على شكل ترايهالوميثان في النظام المائي في نابلس.
- يوجد علاقة واضحة بين تشكل النواتج الثانوية في النظام المائي في نابلس وكل من تركيز جرعة الكلور والاكسجين المستهلك حيويا وفترة الحضانة.
 - يجب ان يتم العمل على استبدال خطوط المياه القديمة وخاصة التالف والمتآكل منها.
- ضرورة السعي الحثيث والمتواصل لإيجاد مصادر مياه إضافية، لحل مشكلة شح المياه
 وبالتالي ضمان تقليل فترة مكوث المياه في الخزانات والشبكات وتجددها بشكل
 متواصل.
- يجب أن يتم مراقبة وضبط تركيز جرعة الكلور االمستخدمة لتعقيم المياه وان يتم تحديدها بدقة.
- العمل على تقليل نسبة الفاقد في المياه، وضمان عدم تسرب الملوثات إلى داخل الشبكة.