

An-Najah National University

Faculty of Engineering and Information Technology

Electrical Engineering Department

Presented in partial fulfilment of the requirements for Bachelor degree in

(Electrical Engineering)

AIEN

Artificial Intelligence Electrical Nose

Prepared by:

Ameer Abo liel (11925683)
Malath Ghazal (11923666)

Supervised by:
Dr. Khadija Mayalah

 بسم الله الرحمن الرحيم

ُ عَمَلَكُمْ وَرَسُولهُُۥ وَٱلْمُؤْمِنوُنَ ۖ "وَقلُِ ٱعْمَلوُاْ فَسَيرََى ٱللَّه

دَةِ فَينُبَ ِئكُُم بِمَا كُنتمُْ هَٰ لِمِ ٱلْغيَْبِ وَٱلشه وَسَترَُدُّونَ إِلىَٰ عَٰ

 تعَْمَلوُنَ"

 [105]التوبة :

ُ الهذِينَ آمَنوُا مِنكُمْ وَالهذِينَ أوُتوُا الْعِلْمَ دَرَجَات" "يرَْفعَِ اللَّه

 [11]المجادلة :

 صدق الله العظيم

Dedication

For Our Palestine …

 For Our University …

 For Our Teachers …

 For Our Family …

 We Present This Research …

I

Disclaimer

The following report has been authored by students from the Electrical Engineering
Department, Faculty of Engineering, An-Najah National University. The report has
undergone minimal modifications, limited to editorial corrections, and may still contain
errors in language and content. It is important to note that the opinions expressed
within the report, including any conclusions and recommendations, solely belong to
the students. An-Najah National University bears no responsibility or liability for any
consequences arising from the utilization of this report for purposes other than its
intended commission.

II

Acknowledgements

“We would like to express our heartfelt gratitude to Dr. Kadija Mayalah, our supervisor,
for her dedication and continuous support throughout our project. Her valuable
scientific guidance has been invaluable to our success. We would also like to thank
the academics in the Department of Electrical Engineering for their expertise and
assistance, as well as our friends and family for their belief in our abilities. We are
deeply grateful for their contributions, support, and belief in our capabilities.”

III

Table of contents:

DEDICATION .. 3

DISCLAIMER .. I

ACKNOWLEDGEMENTS .. II

ABSTRACT .. 1

CHAPTER ONE: INTRODUCTION... 2

1.0 GENERAL BACKGROUND .. 2
1.1 PROBLEM STATEMENT .. 2
1.2 OBJECTIVES ... 2
1.3 SCOPE OF WORK ... 2
1.4 IMPORTANCE OF THE WORK: .. 3

CHAPTER TWO: THEORETICAL BACKGROUND AND PREVIOUS WORK .. 5

CHAPTER THREE: METHODOLOGY ... 6

3.1 PROJECT COMPONENTS ... 6
3.1.1 Plastic bottle ... 6
3.1.2 MQ sensors (GAS SENSOR) .. 7

HOW DOES A GAS SENSOR WORK? .. 9
3.1.3 Arduino mega ... 11
3.1.4 Arduino Uno .. 11
3.1.5 Nextion Resistive Touch Screen ... 12
3.1.6 Lm298 Driver ... 12
3.1.7 ethanol .. 13
3.1.8 Compressor Nebulizer 230V ... 13
3.1.9 220V fan ... 14
3.1.10 DC fan (12V) ... 14
3.1.13 Power Supplies .. 15
3.1.15 Double Relay .. 15
3.1.16 Funnel ... 16
3.1.15 Outside Case ... 16

3.2 BLOCK DIAGRAM .. 17
3.3 SOFTWARE PROGRAMS AND CODES .. 18
3.4 AI SYSTEM .. 20

CHAPTER FOUR: RESULT AND DISCUSSION ... 39

4.1 IMPLEMENTATION AND RESULT ... 39
4.2 DISCUSSION .. 41
4.3 ECONOMICAL FEASIBILITY ... 42

CHAPTER FIVE: PROBLEM WE FACE ... 43

5.1 FILTRATION .. 43
5.2 INACCURATE VALUES .. 43
5.3 DATA COLLECTION ... 43
5.4 SAMPLE TAKER ... 44
5.5 HIGH CURRENT NEEDED ... 44
5.6 SIMILARITY OF VALUE ... 44
5.7 ACETONE ... 44
5.8 POWDER DAMAGE MQ SENSORS ... 44

IV

CHAPTER SIX: CONCLUSION AND FUTURE PLANS FOR AIEN ... 45

6.1 CONCLUSION .. 45
6.2 FUTURE PLANS FOR AIEN ... 46

CHAPTER SEVEN: REFERENCES .. 47

V

List of Figures:
FIGURE 0-1 PLASTIC BOTTLE -- 6
FIGURE 3-0-2 MQ SENSORS --- 7
FIGURE 3-0-3 MQ SENSOR INSIDE --- 8
FIGURE 3-0-4 SENSING ELEMENT --- 8
FIGURE 3-0-5 MQ CONTENTS --- 9
FIGURE 3-0-6 ARDUINO MEGA --- 11
FIGURE 3-0-7 ARDUINO UNO --- 11
FIGURE 3-0-8 TOUCH SCREEN --- 12
FIGURE 3-0-9 LM298 DRIVER --- 12
FIGURE 3-0-10 ETHANOL --- 13
FIGURE 3-0-11 COMPRESSOR NEBULIZER 230V -- 13
FIGURE 3-0-12 220V FAN --- 14
FIGURE 3-0-13 DC FAN (12V) -- 14
FIGURE 3-0-14 POWER SUPPLY -- 15
FIGURE 3-0-15 DOUBLE RELAY-- 15
FIGURE 3-0-16 FUNNEL --- 16
FIGURE 3-0-17 OUTSIDE CASE --- 16
FIGURE 3-0-18 E-NOSE BLOCK DIAGRAM -- 17
FIGURE 3-0-19 OLD DETECTION CODE -- 20
FIGURE 0-20 SIGMOID ACTIVATION FUNCTION -- 22
FIGURE 0-21 RELU ACTIVATION FUNCTION --- 23
FIGURE 0-22 TANH ACTIVATION FUNCTION -- 24
FIGURE 4-0-1 IMPLEMENTATION AND RESULTS -- 39
FIGURE 4-0-2 FRONT-END WINDOW -- 39
FIGURE 0-3 ALCOHOLIC SAMPLES RESULTS -- 40
FIGURE 4-4 ALL SAMPLES RESULTS --- 40
FIGURE 0-1 METAL OXIDE SENSOR --- 46
FIGURE 0-2 INFRARED SENSOR -- 46
FIGURE 0-3 ELECTROCHEMICAL SENSOR -- 46

file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521525
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521526
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521527
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521528
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521529
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521530
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521531
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521532
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521533
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521534
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521535
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521536
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521537
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521538
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521539
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521540
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521541
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521542
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521547
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521548
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521549
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521550
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521551
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521552
file:///C:/Users/Ameer/Desktop/Graduation%20project%202%20Ameer%20&%20Malath.docx%23_Toc157521553

VI

List of Tables:
TABLE 1 EACH MQ SENSOR SPECIFIC USAGE --- 10
TABLE 2 COMPONENTS COSTS --- 42

1

Abstract

Inspired by the high drug smuggling crime rates all over the world, and due to the fact that

current mechanisms of drug detection in airports cause discomfort to many travelers

worldwide, the need for new reformed detection mechanisms is constantly growing. Using

trained K9 dogs could cause many fearful scenarios that could cause trauma to innocent

patients. The new mechanism we are presenting to you shows instantaneous results about the

material detected.

This project presents an artificial intelligence electronic nose (AIEN) for detecting and

identifying various odors and substances. The AIEN utilizes MQ gas sensors and machine

learning algorithms to analyze and classify different volatile organic compounds. A filtration

system with ethanol is implemented to ensure accurate results between samples.

 The device also incorporates DC and AC fans and motors controlled by a microcontroller to

automate the sampling process. Extensive testing produced consistent characteristic odor

profiles and plots for different substances like perfumes and alcoholic beverages. The fusion

of gas sensor technology with artificial intelligence offers an innovative approach to processing

complex olfactory data.

AIEN provides a proof of concept for the capabilities of intelligent odor detection systems in

fields ranging from quality control to law enforcement

2

Chapter one: Introduction

1.0 General background

Smell is one of our five senses and is linked by the olfactory bulb to the limbic system that

controls behavior, emotion, and even memory also it could save humans' life by detecting

dangerous odors but unfortunately humans can’t detect some dangerous odors like certain

gasses and in general human can smell different odors but our brains couldn't recognize it and

because there is some material are dangerous for humans to smell or touch like drugs from

this point we create AIEN the electronic nose can detect any odor using an array of sensors that

sent all information to microcontroller and create database that have more than 1000 odor and

for sure can detect gas liquid solid materials .

1.1 Problem Statement

The main problem our team try to solve is to create a machine that could detect drugs this will

help governments around the world to detect any sus material inter country entrances

The air contains an incalculable number of volatile compounds, which can be detected only by

one sense: the smell. There are about 110,000 smells in nature. The human being perceives

only about 100-200. Over 800 chemical odors can’t be detected most of them are dangerous

for the human's body

1.2 Objectives

The main object is to replicate, or even surpass, the olfactory capabilities of humans. By

capturing and analyzing the volatile organic compounds (VOCs). We create AIEN to be easy

to use and detect dangerous odors and material that is illegal.

1.3 Scope of work

Control system: responsible for controlling the motors Can be done through a touch screen and

switches.

AI system: responsible for saving the values of MQ sensors and modifying the values, draws

plots for each sample.

3

Air filtration system: responsible for getting rid of any odor inside AIEN in order to make good

conditions for taking the next sample.

Sensing system: responsible for taking the sample's value and sending it to the microcontroller.

1.4 Importance of the work:

Here are some key points to explain the importance of electronic noses:

1. Applications in Industry: Electronic noses are essential in a number of sectors, including

the food and beverage, cosmetics, agricultural, and pharmaceutical industries. They can

promptly and precisely identify pollutants, product deterioration, or quality problems,

preserving product integrity and assuring consumer safety.

2. E-noses are essential to the processes involved in quality control. They are able to detect

minute variations in product fragrance profiles, assisting manufacturers in maintaining a

consistent level of quality and making sure that goods adhere to predetermined criteria.

3. Early Hazard Detection: In industrial settings, electronic noses can identify potentially

harmful substances or gases to workers' health. They offer a technique for early detection

of probable leaks or harmful material exposure.

4. E-noses have uses in the field of medical diagnostics, particularly in the detection of

diseases by the study of breath. They are able to recognize volatile organic chemicals in

exhaled breath that are a sign of specific illnesses like diabetes, lung cancer, or digestive

problems.

5. Environmental Monitoring: Another crucial use of electronic noses is for recognizing

contaminants and air quality monitoring. They can aid in determining the origins of

offensive emissions, monitoring indoor air quality, and determining pollution levels.

6. Waste Management: By identifying scents coming from landfills or waste treatment

facilities, e-noses can help with waste management. This aid government agencies in

addressing odor-related complaints and enhancing environmental conditions generally.

7. Security and safety: These tools can be used to detect the presence of explosives, dangerous

drugs, or illegal substances in a variety of settings, including airports and public areas.

8. Agriculture: Electronic noses are used in agriculture to monitor crop health and evaluate

the freshness of product. Based on the volatile molecules released, they may spot disease

or physiological changes in plants as well as insect infestations.

4

9. E-noses are used in the food and beverage industries to examine the fragrance profiles of

foods and drinks. This is crucial for the creation of new products, since it ensures

consistency and helps to spot any off tastes or spoilage.

10. Research and development: To analyse odor profiles and comprehend the intricate

interactions of volatile substances, researchers employ electronic noses. Innovations based

on this knowledge might impact everything from materials science to neurology.

5

Chapter two: Theoretical Background and

previous work

It has been proposed for many years to develop artificial systems that can replicate human

senses. The human olfactory system, which is extremely sensitive and capable of detecting a

wide range of aromas, served as inspiration for researchers when developing electronic noses.

Multiple businesses, including food, beverage, environmental monitoring, healthcare, quality

control, and even security, could benefit from creating a system that could imitate this skill.

Over the years, there has been a lot of research and development into electronic noses. Some

noteworthy developments and uses include:

1. Electronic noses have been used in the food and beverage industries to evaluate the quality

and freshness of food products, spot deterioration, and locate contaminants. They may

contribute to preserving consistent product quality and assuring security.

2. Environmental Monitoring: By identifying pollutants and dangerous gases, e-noses are

used to keep an eye on the quality of the air. To make sure that emission requirements are

being followed, they can be utilized in industrial settings.

3. Medical diagnosis: Based on the identification of particular volatile organic compounds

(VOCs) linked to ailments like lung cancer, diabetes, and bacterial infections, electronic

noses have showed promise in the diagnosis of several medical problems.

4. Wine industry: To aid in quality control and authenticity, e-noses are used to examine and

categorize various types of wines based on their scents and odors.

5. E-noses are useful tools in security and law enforcement since they may be used to detect

bombs, drugs, and other dangerous chemicals.

6. Biotechnology and Research: Electronic noses are used in scientific research to examine

complex combinations, monitor chemical reactions, and comprehend animal

communication by fragrance.

Researchers are always investigating new sensor technologies, data analysis methods, and uses

for electronic noses as technology develops. The objective is to develop more precise and

adaptable tools that, in some situations, can mimic and even outperform the human olfactory

system.

6

Chapter three: Methodology

3.1 Project components

3.1.1 Plastic bottle

We choose a plastic bottle with cylindrical shape this type of plastic can handle the drill force

when we make holes for MQ sensors and this material is strong enough to handle the weight

of 9 MQ sensors, and the main advantage is that because it’s cylindrical shape we can minimize

the odors that stuck inside the bottle while we are taking the data and to ensure that the last

odor will not affect the new odor after finishing the test.

Figure 0-1 plastic bottle

7

Figure 3-0-2 MQ Sensors

3.1.2 MQ sensors (GAS SENSOR)

The MQ2 sensor is one of the most widely used in the MQ sensor series. It is a MOS (Metal

Oxide Semiconductor) sensor. Metal oxide sensors are also known as Chemoreceptors because

sensing is based on the change in resistance of the sensing material when exposed to gasses.

The MQ2 gas sensor operates on 5V DC and consumes approximately 800mW. It can detect

LPG, Smoke, Alcohol, Propane, Hydrogen, Methane and Carbon Monoxide concentrations

ranging from 200 to 10000 ppm.

The MQ2 is a heater-driven sensor. It is therefore covered with two layers of fine stainless-

steel mesh known as an “anti-explosion network”. It ensures that the heater element inside the

sensor does not cause an explosion because we are sensing flammable gasses by allowing only

gaseous elements to pass through the chamber.

8

MQ from inside

As we can see in this photo the MQ sensor only has legs and sensing elements with the six

leads are in charge of heating the sensing element and are linked together by a Nickel-

Chromium coil (a well-known conductive alloy).

The remaining four signal-carrying leads (A and B) are connected with platinum wires. These

wires are connected to the body of the sensing element and convey slight variations in the

current flowing through the sensing element.

The tubular sensing element is made of Aluminum Oxide (AL2O3) based ceramic with a Tin

Dioxide coating (SnO2). Tin Dioxide is the most important material because it is sensitive to

combustible gasses. The ceramic substrate, on the other hand, improves heating efficiency and

ensures that the sensor area is continuously heated to the working temperature.

Figure 3-0-3 MQ Sensor inside

Figure 3-0-4 Sensing element

9

Figure 3-0-5 MQ Contents

 The CCT of MQ sensor basically the MQ sensor connected with comparator and potentiometer

with for sure starting led and status led (when the value exceeds threshold value)

Work?How Does a Gas Sensor

When a SnO2 semiconductor layer is heated to a high temperature, oxygen is adsorbed on the

surface. When the air is clean, electrons from the conduction band of tin dioxide are attracted

to oxygen molecules. This creates an electron depletion layer just beneath the surface of the

SnO2 particles, forming a potential barrier. As a result, the SnO2 film becomes highly resistive

and prevents electric current flow.

In the presence of reducing gasses, however, the surface density of adsorbed oxygen decreases

as it reacts with the reducing glasses, lowering the potential barrier. As a result, electrons are

released into the tin dioxide, allowing current to freely flow through the sensor

10

The MQ sensor are the most important part in the project because the MQ sensors are

responsible to take the value of the sample in this project we use 9 MQ sensor each sensor

responsible to measure specific value as shown in the table:

Table 1 Each MQ sensor specific usage

As we said MQ-sensor is the most important tool in this project so in order to make MQ sensor

read the same value every time we need to ensure that:

● Having enough time to warm up

● Stable environment

● Stability in power supply

● Sensor having good placement

MQ-2 methane, butane, smoke

MQ-3 Alcohol. ethanol

MQ-4 methane, CNG gas

MQ-5 Natural gas

MQ-6 LPG, butane gas

MQ-7 Carbon monoxide

MQ-8 hydrogen

MQ-9 Carbon monoxide, flammable gasses

MQ-135 Ammonia, air quality

11

Figure 3-0-7 Arduino Uno

3.1.3 Arduino mega

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560[1]. It

has 54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analogs

inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection,

a power jack, an ICSP header, and a reset button. It contains everything needed to

support the microcontroller. We need Arduino mega because it has more analog pins to connect

9 MQ sensor which the ordinary sensor will not provide that number of pins.

3.1.4 Arduino Uno

Arduino UNO is a microcontroller board based on the ATmega328P. It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic

resonator, a USB connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller. Simply connect it to a computer with a USB

cable or power it with an AC-to-DC adapter or battery to get started. You can tinker with your

UNO without worrying too much about doing something wrong, worst case scenario you can

replace the chip for a few dollars and start over again. Basically, we use all the pins in the

Arduino mega and there are still Touch screen need to get control with for that we use extra

Arduino Uno microcontroller to use these pins to control Touch screen, so we use Arduino Uno

for nextion resistive touch screen which need a whole Arduino to start working.

Figure 3-0-6 Arduino mega

12

Figure 3-0-8 Touch screen

Figure 3-0-9 LM298 Driver

3.1.5 Nextion Resistive Touch Screen

This type of screen, the Nextion resistive touch screen, facilitates touch interaction by applying

pressure to multiple layers. It supports input from fingers, stylus, or any object capable of

applying pressure, The Nextion board integrates a microcontroller. By utilizing a

straightforward SD Card interface, we can execute our GUI design and program it using

Arduino. This is achieved through serial communication between the Nextion device and our

microcontroller, allowing for event registration and handling. In this project we use this type

of screen in order to represent the values and the name of the odor and control some motors by

touch. This type of screen needs a fully Arduino board to work.

3.1.6 Lm298 Driver

L298N module is a high voltage, high current dual full-

bridge motor driver module for controlling DC motor and

stepper motor. It can control both the speed and rotation

direction of two DC motors.

 This module consists of an L298 dual-channel H-Bridge

motor driver IC. This module uses two techniques for the

control speed and rotation direction of the DC motors.

These are PWM – For controlling the speed and H-Bridge

– For controlling rotation direction. These modules can

control DC fan motor, so we use LM298N driver to

control the voltage applied into the DC fan motor to ensure

that its work without high voltage or current to ensure that

will not be an odor for this DC fan motor (odor of wires

over heat because of high voltage or current).

13

Figure 3-0-10 Ethanol

Figure 3-0-11 Compressor Nebulizer 230V

3.1.7 ethanol

Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply

alcohol) is an organic component. It is an alcohol with the chemical formula C2H6O. Its

formula can also be written as CH3−CH2−OH or C2H5OH (an ethyl group linked to a hydroxyl

group). Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor

and pungent, In our project, we face so many problems but the main problem was the air

filtration system after we get the sample from any perfume its smell stuck in the MQ sensor

box which will cause an error with the next sample value for solving this issue and make sure

there isn't any smell left from any perfume we need a chemical element that can get rid of any

odor the ethanol and acetone could do that but the acetone case plastic melts so we use ethanol

which is much safer for the equipment .

3.1.8 Compressor Nebulizer 230V

A Compressor Nebulizer is an electrical device that

converts liquid materiality into a fine spray, allowing

it to be easier for detected by MQ sensors. The

compressor generates pressurized air, typically at

pressures ranging from 8 to 12 pounds per square inch

(psi). This compressed air rushes through a narrow jet

outlet in the nebulizer cup. As the air rushes through

the narrow jet, its velocity increases significantly.

According to the Bernoulli principle, this increase in

velocity creates a decrease in pressure around the jet

outlet. This pressure drop creates a force that pulls the

liquid medication from the nebulizer cup into the

airstream. Compressor nebulizers are generally more

powerful and efficient than other types of nebulizers.

14

Figure 3-0-12 220V Fan

Figure 3-0-13 DC fan (12V)

3.1.9 220V fan

We use a mini 220V fan for the Air filtration system its responsible to clean the MQ sensor

box of any odor after the MQ sensors take the values of the sample the microcontroller will

send the signal to the relay to convert into a close CCT It is connected from the supply directly

to the common leg in the relay it will work for 15 SEC after that the microcontroller will send

another signal to relay to get back the original case.

3.1.10 DC fan (12V)

A DC motor working on 12 volts with fan blades connected into his shaft and fed from the

LM298 driver. As we explain recently ethanol work as chemical material that can rid of any

smell but unfortunately ethanol has a strong smell that will affect the MQ sensor's results the

good thing is we can get rid of ethanol smell by exposing it to extra air intake for this we use

an extra fan inside the box.

15

Figure 3-0-14 Power supply

Figure 3-0-15 Double Relay

3.1.13 Power Supplies

A rectifier is an electrical device that converts alternating current (AC), which periodically

reverses direction, to direct current (DC), which flows in only one direction. The reverse

operation (converting DC to AC) is performed by an inverter. In this project we use computer

power supply to get our needed of DC voltages (12V, 5V, 3.3V) with enough current that can

run the MQ sensors and the DC fan and also, we utilize the 230V input power to feed the

compressor nebulizer and the 230V fan.

3.1.15 Double Relay

A relay is an electricity operated switch. It consists of a set of

input terminals for a single or multiple control signals, and a set

of operating contact terminals. The switch may have any number

of contacts in multiple contact form, such as make contacts, break

contacts, or combinations thereof.

Relays are used where it is necessary to control a circuit by an

independent low-power signal, or where several circuits must be

controlled by one signal. Relays were first used in long-distance

telegraph circuits as signal repeaters: they refresh the signal

coming in from one circuit by transmitting it on another circuit.

Relays were used extensively in compressor nebulizer and in 230V fan to control the operation for them.

16

Figure 3-0-16 Funnel

Figure 3-0-17 Outside Case

3.1.16 Funnel

When we apply the samples, the samples goes throw the bottle and MQ sensors then we need

to get red of the odor so the 12V fan will work to push the odor onto plastic hole, then and to

ensure get the odor to outside the device and because the fan blade take a large circular shape

and the hole is small, we use the funnel to maximize the ingesting of air from the hole to

outside.

3.1.15 Outside Case

We notice another problem that we had to arrange all the element that we used in this project

in one large case and gives an electric character so we made this case that was designed to help

us present our project in beautiful shape and to let us make changes on our project whenever

we want to do that.

17

Figure 3-0-18 E-NOSE Block diagram

3.2 block diagram

Block Description:

E-nose operates when volatile organic compounds samples are placed on the odor and handling

mechanism simulating a signal carrying the characteristic of the odor. The sampling technique such as

headspace, diffusion methods, bubblers or pre-concentrators are being used to draw Theodor molecules

into the E-nose [14-15]. Odor sample particles that attracted to the sensor array will go through chemical

reactions. Incrementally-different sensors are chosen to make up the cross-reactive sensor array,

purposely to act in response to a vast range of chemical classes. The diverse mixtures of possible

analyses are then discriminated. At the signal conditioning stage, a distinct digital response pattern is

produced, using the assembled and integrated output collected from each individual sensor. In an E-

nose, the pattern recognition and data processing techniques played a very important role in the

classification module. At this point, recognition of the unique aroma identity (electronic fingerprint) of

collective sensor responses will accomplish the identification and classification of an analyzed mixture.

The unique aroma identity pattern represents the characteristic of a simple or complex mixture that can

be determined without separating the mixture into its individual components before or throughout the

analysis. Preceding the analysis of unknown, digital aroma identity reference library for known samples

must be constructed. Training is necessary for the pattern classifier with a database of known samples

prior to E-nose commercialization in order to predict the response for an unknown sample. To complete

the system, computer central processing unit (CPU) as interface, recognition library and recognition

software as brain and graphic user interface to process input data from the sensor array for succeeding

data analysis must be provided. Included in the library are the pattern recognition algorithms that search

the differences between all analyses type patterns which are used to configure the ANN through learning

process (neural net training. This ongoing process will only stop when a level of discrimination selected

earlier is met. Unknown samples then can be compared with the validated and assembled results in the

reference library. Identification of unknown can be done by comparing the similarity of the pattern

present in the library databases with the aroma attributes distribution or components that the analyses

pattern has. The system is completed by providing an interface using computer central processing unit

(CPU), recognition library and recognition software that serve as brain and graphic user interface to

process input data from the sensor array for subsequent data analysis.

18

3.3 Software programs and codes

This part analyzes the Arduino code for MQ sensors with controlled 220V fan and DC-mot fan the

system design to monitor gas level using multiple sensors the code defines 8 MQ sensors and one 220V

fan and vacuum however the code includes a section in the loop function for controlling a motor and

fan based on gas sensor readings

By use these codes we can read MQ sensors value

19

part 2: This report builds upon the previously discussed Java program designed to read data from a

serial port. The program is now extended to fulfill the requirement of reading MQ sensor values from

the Arduino serial monitor and copying them to a database using Java. However, it’s possible to take

reading from the Arduino serial monitor but 1000 values are generated every 30 seconds, it is crucial to

implement a mechanism for periodic data collection.

This code will open serial monitor and receive the values coming from Arduino

20

3.4 AI system

Artificial Intelligence, refers to the development of computer systems and machines that can

perform tasks that typically require human intelligence. AI enables machines to perceive,

reason, learn, and make decisions or take actions based on data and algorithms. It aims to mimic

certain aspects of human intelligence and problem-solving capabilities

In general, the electronic nose idea existed and has so many papers talking about it but AIEN

is the first project applying AI in electronic nose, so why do we use AI and how do we use it?

We face problem in the beginning of the project it was really hard to collect data when MQ

sensor gave the values we were write it in papers every sample take about 2 papers

After that we was manually put the values in Arduino code we built the database from the

scratch which is taking much time:

Figure 3-0-19 Old detection code

Imagen every sample we need to make it. We must write Arduino code that has the values of

each MQ sensor so in that case we need AI to work as data collection. AIEN now can make a

database that should include a wide range of odors you want the electronic nose to detect and

identify.

Also we have other problem that AI can help with it we invent AIEN to be product the MQ

sensor as we know it measure how much PPM in the sample so every time we increase the

amount of the sample the MQ sensor will increase the result value so we use AI this time to

draw plots for each sample we insert the result of MQ sensor for each amount like in the

perfumes the result of first spray of perfume and included in AI database after that we include

the value of two sprays of perfume sample and included in the database and the third etc.

21

The AI code start with importing CSV file into java application, the CSV Reader from open

CSV library first thin it gone read CSV store it in List<String[]> rows constructor read all rows

from CSV file and initialize variables as num Rown Numcols get Training Data and get Testing

Data methods return an In Out object, indicating input and output data post-processing.

Exception handling in the constructor addresses potential issues like IO errors, CSV parsing

errors, and number format errors, encapsulating them in a Run time Exception for simplicity.

package com.example.cnn_java.datapackage;

import com.example.cnn_java.datapackage.dataprocessor.Processor;

import com.opencsv.CSVReader;

import com.opencsv.exceptions.CsvException;

import lombok.Data;

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.util.List;

@Data

public class CSVData {

 private List<String[]> rows;

 private int numRows;

 private int numCols;

 public CSVData(File file) {

 try (CSVReader csvReader = new CSVReader(new FileReader(file))) {

 List<String[]> rows = csvReader.readAll();

 this.rows = rows;

 this.numRows = rows.size();

 this.numCols = rows.get(0).length;

 } catch (IOException | CsvException | NumberFormatException e) {

 throw new RuntimeException(e);

 }

 }

 public InOut getTrainingData(Processor processor) {

 return new InOut(processor.getTrainInputs(),

processor.getTrainOutputs());

 }

 public InOut getTestingData(Processor processor) {

 return new InOut(processor.getTestInputs(),

processor.getTestOutputs());

 }

}

22

Part 2 (activation function)

This code generate activation function, it include 3 different activation function

1. Sigmoid

2. RELU

3. TANH

Starting with first activation function Sigmoid (also called logistic function) take any real value

as input and output a value in the range (0,1) it is calculated as:

Sigmoid=
1

1+𝑒−𝑥′

Where x is output value of the neuron

Figure 0-20 Sigmoid activation function

When the output value is close to 1 the neuron is active and enables the flow of information

while close to 0 corresponds to an inactive neuron

package com.example.cnn_java.neuralnetworkpackage.activationfunctions;

public class Sigmoid implements Activation {

 @Override

 public float activationFunction(float in) {

 return (float) (1 / (1 + Math.exp(-in)));

 }

 @Override

 public float activationFunctionDerivative(float in) {

 float sigmoid = activationFunction(in);

 return sigmoid * (1 - sigmoid);

 }

 @Override

 public String toCpp() {

 return """

 float activationFunction(float in) {

 return (float) (1 / (1 + exp(-in)));

 }

 """;

 }

 @Override

 public String toH() {

 return """

 #include<math.h>

 float activationFunction(float);

 """;

 }

}

23

2. RELU (rectifies linear unit)

the function returns x if x is positive, and 0 otherwise. Graphically, it looks like a ramp, where

the output is zero for all negative inputs and increases linearly for positive inputs.

Where x is input neural network

Figure 0-21 RELU activation function

RELU code:

package com.example.cnn_java.neuralnetworkpackage.activationfunctions;

public class ReLU implements Activation {

 @Override

 public float activationFunction(float in) {

 return in < 0 ? -0.001f : in;

 }

 @Override

 public float activationFunctionDerivative(float in) {

 return in <= 0 ? (float) 0.01 : 1;

 }

 @Override

 public String toCpp() {

 return """

 float activationFunction(float in) {

 return in < 0 ? -0.001f : in;

 }

 """;

 }

 @Override

 public String toH() {

 return """

 float activationFunction(float);

 """;

 }

}

24

3. TANH

We can calculate TANH using

Tanh=
2

1+𝑒−2𝑥
− 1

after that we create activation function in the begging because we don’t have clear idea about

data we create RELU activation function which is the MAX (0, X) where X = the positive input

(same number)

and = 0 when its negative input value.

after we apply it we create 2 other activation function to see if it will give us better results we

use Tanh and sigmoid:

Tanh=
2

1+𝑒−2𝑥
− 1

Figure 0-22 Tanh activation function

This activation function is similar to sigmoid the deferent it gives values between 1 to -1

Tanh code:
package com.example.cnn_java.neuralnetworkpackage.activationfunctions;

public class Tanh implements Activation {

 @Override

 public float activationFunction(float in) {

 return (float) Math.tanh(in);

 }

 @Override

 public float activationFunctionDerivative(float in) {

 return (float) (1 - (Math.tanh(in) * Math.tanh(in)));

 }

 @Override

 public String toCpp() {

 return """

 float activationFunction(float in) {

 return (float) tanh(in);

 }

 """;

 }

 @Override

 public String toH() {

 return """

 #include<math.h>

 float activationFunction(float);

 """;

 }

}

25

Part 3 (neural network)

Neural network class this class initialize prediction training testing and code g create input

output hidden layers it gives list of layers generate C++ environments to send it to Arduino so

this class is important because it represent the essential operations for using the neural network

to make predictions, train on data, evaluate performance, and seamlessly integrate it into C++

systems.

package com.example.cnn_java.neuralnetworkpackage;

import com.example.cnn_java.arduino.Ciable;

import com.example.cnn_java.datapackage.InOut;

import com.example.cnn_java.datapackage.dataprocessor.ClassificationProcessor;

import com.example.cnn_java.neuralnetworkpackage.activationfunctions.Activation;

import lombok.Builder;

import lombok.Getter;

import lombok.Setter;

import lombok.Singular;

import java.util.ArrayList;

import java.util.List;

import java.util.Objects;

@Getter

@Setter

public class NeuralNetwork implements Ciable {

 private final List<NeuralNetworkLayer> layers;

 private final Activation function;

 @Builder

 public NeuralNetwork(@Singular List<Integer> layers, Activation function) {

 this.function = function;

 this.layers = new ArrayList<>();

 for (int i = 0; i < layers.size() - 1; i++) {

 NeuralNetworkLayer layer = new NeuralNetworkLayer(layers.get(i), layers.get(i + 1));

 this.layers.add(layer);

 if (i > 0) {

 layer.setPreviousLayer(this.layers.get(i - 1));

 this.layers.get(i - 1).setNextLayer(layer);

 }

 }

 }

 public float [] predict(float[] input) {

 NeuralNetworkLayer inputLayer = layers.get(0);

 return inputLayer.forward(input, function);

 }

26

public float[] train(InOut data, float learningRate, int epochs) {

 float[][] inputs = data.getInputs();

 float[][] targets = data.getOutputs();

 if (inputs.length != targets. length) {

 throw new IllegalArgumentException("Number of input samples mus t match the number of

target samples.");

 }

 float[] epochsGradiantAverageSum = new float[epochs];

 for (int epoch = 0; epoch < epochs; epoch++) {

 epochsGradiantAverageSum[epoch] = 0;

 for (int i = 0; i < inputs. length; i++) {

 float[] input = inputs[i];

 float[] target = targets[i];

 float[] predictedOutput = predict(input);

 epochsGradiantAverageSum[epoch] += backpropagate(target, predictedOutput, learningRate);

 }

 epochsGradiantAverageSum[epoch] /= inputs. length;

 }

 return epochsGradiantAverageSum;

 }

 private float backpropagate(float[] target, float[] predictedOutput, float learningRate) {

 int lastLayerIndex = layers.size() - 1;

 NeuralNetworkLayer outputLayer = layers.get(lastLayerIndex);

 float[] outputGradients = new float[target.length];

 for (int i = 0; i < target. length; i++) {

 outputGradients[i] = target[i] - predictedOutput[i];

 }

 float[] gradiantSum = { 0};

 outputLayer.backward(outputGradients, function, learningRate, gradiantSum);

 return gradiantSum[0];

 }

 public float classificationTest(InOut testingData, ClassificationProcessor classificationProcessor) {

 float[][] inputs = testingData.getInputs();

 float[][] outputs = testingData.getOutputs();

 float right = 0;

 float length = inputs. length;

 for (int i = 0; i < length; i++) {

 if (Objects.equals(classificationProcessor.classifyOutInverse(predict(inputs[i])),

27

class neuralnetworklayer represents a layer in a neural network, it includes properties for

weights, biases, inputs, outputs, and other parameters necessary for the functioning of a neural

network layer.

The initializeWeightsAndBiases method initializes the weights and biases of the layer using

random values.

The forward method performs the forward pass of the neural network layer. It calculates the

weighted sum of inputs, applies an activation function, and passes the result to the next layer

if it exists.

The backward method performs the backward pass, which is crucial for training the neural

network. It calculates gradients, updates weights and biases, and propagates gradients

backward to the previous layers

@Override

 public String toCpp() {

 StringBuilder stringBuilder = new StringBuilder("float* predict(float* in){ \n return

l").append(layers.get(0).getLayerNumber()).append("forward(in);\n}\n");

 stringBuilder.append(function.toCpp());

 for (NeuralNetworkLayer layer : layers) {

 stringBuilder.append(layer.toCpp());

 }

 return stringBuilder.toString();

 }

 @Override

 public String toH() {

 StringBuilder stringBuilder = new StringBuilder("float* predict(float*); \n");

 stringBuilder.append(function.toH());

 for (NeuralNetworkLayer layer : layers) {

 stringBuilder.append(layer.toH());

 }

 return stringBuilder.toString();

 }

}

28

package com.example.cnn_java.neuralnetworkpackage;

import com.example.cnn_java.arduino.Ciable;

import com.example.cnn_java.neuralnetworkpackage.activationfunctions.Activation;

import lombok.Builder;

import lombok.Getter;

import lombok.Setter;

import lombok.ToString;

import java.util.Random;

@ToString

public class NeuralNetworkLayer implements Ciable {

 private static int layersCount = 0;

 @Getter

 private final int layerNumber;

 private final int inputSize;

 private final int outputSize;

 private float[][] weights;

 private float[] biases;

 private float[] inputs;

 @Getter

 private float[] outputs;

 private float[] gradients;

 @Setter

 private NeuralNetworkLayer nextLayer;

 @Setter

 @ToString.Exclude

 private NeuralNetworkLayer previousLayer;

 @Builder

 public NeuralNetworkLayer(int inputSize, int outputSize) {

 this.inputSize = inputSize;

 this.outputSize = outputSize;

 layerNumber = layersCount;

 layersCount++;

 initializeWeightsAndBiases();

 }

29

private void initializeWeightsAndBiases() {

 Random random = new Random();

 weights = new float[outputSize][inputSize];

 for (int i = 0; i < outputSize; i++) {

 for (int j = 0; j < inputSize; j++) {

 weights[i][j] = (float) random.nextGaussian();

 }

 }

 biases = new float[outputSize];

 for (int i = 0; i < outputSize; i++) {

 biases[i] = (float) random.nextGaussian();

 }

 }

 public float [] forward(float[] input, Activation activation) {

 if (input.length != inputSize) {

 throw new IllegalArgumentException("Input size does not match the expected size.");

 }

 this.inputs = input;

 outputs = new float[outputSize];

 for (int i = 0; i < outputSize; i++) {

 float sum = 0;

 for (int j = 0; j < inputSize; j++) {

 sum += weights[i][j] * input[j];

 }

 outputs[i] = activation.activationFunction(sum + biases[i]);

 }

 if (nextLayer != null) {

 return nextLayer.forward(outputs, activation);

 }

 return outputs;

 }

 public void backward(float[] outputGradients, Activation activation, float learningRate, float[]

gradientSum) {

 if (outputGradients.length != outputSize) {

 throw new IllegalArgumentException("Output gradients size does not match the expected size.");

 }

30

gradients = new float[inputSize];

 float gradient = 0;

 for (int i = 0; i < outputSize; i++) {

 gradient = outputGradients[i] *

activation.activationFunctionDerivative(outputs[i]);

 for (int j = 0; j < inputSize; j++) {

 gradients[j] += gradient * weights[i][j];

 weights[i][j] += learningRate * gradient * inputs[j];

 }

 biases[i] += learningRate * gradient;

 }

 gradientSum[0] += Math.abs(gradient);

 if (previousLayer != null) {

 previousLayer.backward(gradients, activation, learningRate,

gradientSum);

 }

 }

 @Override

 public String toCpp() {

 StringBuilder stringBuilder = new StringBuilder();

 stringBuilder.append("float*

").append("l").append(layerNumber).append("forward(float* in){\n")

 .append(" float* outputs = new

float[").append(outputSize).append("];\n");

 for (int i = 0; i < outputSize; i++) {

 stringBuilder.append((i == 0) ? " float sum = 0;\n" : " sum =

0;\n");

 for (int j = 0; j < inputSize; j++) {

 stringBuilder.append(" sum +=

").append("l").append(layerNumber).append("w").append(i).append(j).append("

* in[").append(j).append("];\n");

 }

 stringBuilder.append(" outputs[").append(i).append("] =

").append("activationFunction(sum +

l").append(layerNumber).append("b").append(i).append(");\n");

 }

 stringBuilder.append(" delete[] in;\n");

 if (nextLayer != null) {

 stringBuilder.append(" return l").append(layerNumber +

1).append("forward(outputs);\n");

 } else stringBuilder.append(" return outputs;\n");

 stringBuilder.append("}\n");

 return stringBuilder.toString();

 }

 @Override

 public String toH() {

 StringBuilder stringBuilder = new StringBuilder();

 for (int i = 0; i < weights.length; i++) {

 float[] weight = weights[i];

 for (int j = 0; j < weight.length; j++) {

 float w = weight[j];

 stringBuilder.append("#define

l").append(layerNumber).append("w").append(i).append(j).append("

").append(w).append("f\n");

 }

 }

 for (int i = 0; i < biases.length; i++) {

31

part4 (frontend creation)

class CNN Application is important to create frontend Fxml describe what is in this frontend

as #of hidden layer training rate epochs etc.

package com.example.cnn_java;

import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Parent;

import javafx.scene.Scene;

import javafx.stage.Stage;

import java.io.IOException;

import java.util.Objects;

public class CNNApplication extends Application {

 @Override

 public void start(Stage primaryStage) throws IOException {

 Parent load =

FXMLLoader.load(Objects.requireNonNull (CNNApplication. class.getResource("view.fxml")));

 Scene scene = new Scene(load,1100,700);

 primaryStage.setScene(scene);

 primaryStage.setTitle("App");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch();

 }

}

32

part5 (link between back and front)

 code constitutes an application for implementing and visualizing a neural network with

classification capabilities. The program allows users to load datasets, configure neural network

parameters, and visualize the training process through JavaFX charts. It incorporates features

for training the neural network, exporting the model to C++ code, and interacting with the user

interface. While the code successfully integrates various functionalities, potential

improvements include adopting consistent naming conventions, enhancing modularity through

encapsulation, and improving code readability through comments and reduced method length.

Additionally, the user interface could be refined for a more user-friendly experience, and error

handling mechanisms could be strengthened. The overall structure and design suggest a

versatile tool for neural network experimentation, with the potential for further refinement in

terms of code organization and user interaction.

package com.example.cnn_java;

import com.example.cnn_java.datapackage.CSVData;

import com.example.cnn_java.datapackage.InOut;

import com.example.cnn_java.datapackage.dataprocessor.ClassificationProcessor;

import com.example.cnn_java.neuralnetworkpackage.NeuralNetwork;

import com.example.cnn_java.neuralnetworkpackage.activationfunctions.Activation;

import javafx.application.Platform;

import javafx.collections.FXCollections;

import javafx.collections.ObservableList;

import javafx.event.ActionEvent;

import javafx.fxml.FXML;

import javafx.scene.Node;

import javafx.scene.chart.*;

import javafx.scene.control.*;

import javafx.scene.layout.HBox;

import javafx.scene.layout.VBox;

import javafx.stage.FileChooser;

import javafx.util.StringConverter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.lang.reflect.InvocationTargetException;

import java.util.*;

import java.util.concurrent.atomic.AtomicReference;

import static com.example.cnn_java.InterfaceImplementingClassesFinder.findImplementingClasses ;

33

public class Controller {

 @FXML

 public ScatterChart testChart;

 @FXML

 public ScatterChart predictedChart;

 private static ClassificationProcessor classificationProcessor;

 private static LinkedHashMap<String, XYChart.Series> seriesList;

 private static InOut trainingData;

 private static InOut testingData;

 private static NeuralNetwork neuralNetwork;

 private static float[][] inputs;

 private static float[][] outputs;

 private static CSVData csvData;

 private static int runNumber;

 @FXML

 public ChoiceBox functionSelection;

 @FXML

 public Spinner epochsSpinner;

 @FXML

 public Spinner learningRateSpinner;

 @FXML

 public Spinner trainingDataSpinner;

 @FXML

 public AreaChart gradientGraph;

 @FXML

 public Label accuracy;

 @FXML

 public CheckBox goalCheckBox;

 @FXML

 public HBox parent;

 @FXML

 public Label loadedFileName;

 @FXML

 public Button resetButton;

 @FXML

 public Button startButton;

 @FXML

 public HBox testDataContainer;

 private boolean init = true;

 @FXML

 public Spinner hiddenNeuronsSpinner ;

 private FileChooser fileChooser;

34

items.addAll(implementedActivationFunctions);

 functionSelection.setItems(items);

 functionSelection.setValue(items.get(0));

 functionSelection.setConverter(new StringConverter() {

 @Override

 public String toString(Object o) {

 return ((Class<?>) o).getSimpleName();

 }

 @Override

 public Object fromString(String s) {

 return null ;

 }

 });

 }

 @FXML

 public void onStartButtonClick(ActionEvent actionEvent) throws NoSuchMethodException,

InvocationTargetException, InstantiationException, IllegalAccessException {

 Platform.runLater(() -> {

 if (init) {

 classificationProcessor = new ClassificationProcessor(csvData, ((Double)

trainingDataSpinner.getValue()).floatValue());

 trainingData = csvData.getTrainingData(classificationProcessor);

 testingData = csvData.getTestingData(classificationProcessor);

 try {

 neuralNetwork = NeuralNetwork.builder()

 .layer(classificationProcessor.classes.size() - 1)

 .layer((int) hiddenNeuronsSpinner.getValue())

 .layer(classificationProcessor.classes.get("class").size())

 .function((Activation) ((Class<?>)

functionSelection.getValue()).getDeclaredConstructor().newInstance())

 .build();

 } catch (InstantiationException | IllegalAccessException | InvocationTargetException |

 NoSuchMethodException e) {

 throw new RuntimeException(e);

 }

 inputs = testingData.getInputs();

 outputs = testingData.getOutputs();

 seriesList = new LinkedHashMap<>();

 runNumber = 0;

 fillGraph(testChart, inputs, outputs, "", false);

 gradientGraph.getData().add(new XYChart.Series<>());

 disableInputs();

 init = false;

 }

 Integer epochsSpinnerValue = (Integer) epochsSpinner.getValue();

35

float[] gradiantAverageSum = neuralNetwork.train(trainingData , ((Double)

learningRateSpinner.getValue()).floatValue(), goalCheckBox.isSelected() ? 1 : epochsSpinnerValue);

 List<float[]> inputs = new ArrayList<>();

 List<float[]> outputs = new ArrayList<>();

 for (int i = 0; i < Controller.inputs.length; i++) {

 float[] input = Controller.inputs[i];

 float[] predicted = neuralNetwork.predict(input);

 if (Objects.equals(classificationProcessor .classifyOutInverse(predicted),

classificationProcessor.classifyOutInverse(Controller.outputs[i]))) {

 inputs.add(input);

 outputs.add(predicted);

 }

 }

 if (outputs.size() > 0) {

 fillGraph(predictedChart, inputs.toArray(float[][]::new), outputs.toArray(float[][]::new),

"predicted", true);

 }

 float classificationTest = neuralNetwork.classificationTest(testingData,

classificationProcessor);

 accuracy.setText(String.format("%.2f %%" , classificationTest));

 XYChart.Series series = (XYChart.Series) gradientGraph.getData().get(0);

 for (int i = 0; i < gradiantAverageSum.length; i++) {

 series.getData().add(new XYChart.Data<>((runNumber + i), gradiantAverageSum[i]));

 }

 runNumber += epochsSpinnerValue;

 if (goalCheckBox.isSelected() && classificationTest >= epochsSpinnerValue) break;

 } while (goalCheckBox.isSelected());

 });

 }

);

 }

 private void fillGraph(ScatterChart scatterChart, float[][] inputs, float[][] outputs, String name,

boolean rebuild) {

 if (rebuild) {

 Set<Map.Entry<String, XYChart.Series>> entries = seriesList.entrySet();

 for (Map.Entry<String, XYChart.Series> next : entries) {

 if (next.getKey().contains(name))

 next.getValue().getData().clear();

 }

 }

 for (int i = 0; i < inputs. length; i++) {

 float color = inputs[i][1];

 StringBuilder combination = new

StringBuilder(classificationProcessor .classifyOutInverse(outputs[i])).append(color);

36

XYChart.Series<Object, Object> serieS = new XYChart.Series<>();

 serieS.getData().add(new XYChart.Data<>(inputs[i][1], inputs[i][0]));

 seriesList.put(combination + name, serieS);

 scatterChart.getData().add(serieS);

 } else

 series.getData().add(new XYChart.Data<>(inputs[i][1], inputs[i][0]));

 }

 int size = 8 - scatterChart.getData().size();

 for (int i = 0; i < size; i++) {

 scatterChart.getData().add(new XYChart.Series<>());

 }

 }

 @FXML

 public void onResetButtonClick(ActionEvent actionEvent) {

 enableInputs();

 clearGraphs();

 accuracy.setText(String.format("%.2f %%" , 0f));

 init = true;

 }

 private void disableInputs() {

 if (goalCheckBox.isSelected())

 epochsSpinner.setDisable(true);

 learningRateSpinner.setDisable(true);

 hiddenNeuronsSpinner.setDisable(true);

 trainingDataSpinner.setDisable(true);

 }

 private void enableInputs() {

 goalCheckBox.setSelected(false);

 epochsSpinner.setDisable(false);

 learningRateSpinner.setDisable(false);

 hiddenNeuronsSpinner.setDisable(false);

 trainingDataSpinner.setDisable(false);

 }

 private void clearGraphs() {

 if (!init) {

 for (XYChart.Series series : seriesList.values()) {

 series.getData().clear();

 }

 gradientGraph.getData().clear();

 }

 }

 public void onLoadFileClick(ActionEvent actionEvent) {

37

Label label = new Label();

 label.setText(csvData.getRows().get(0)[i]);

 VBox vBox = new VBox();

 vBox.getChildren()

 .addAll(label, new TextField());

 testDataContainer.getChildren().add(vBox);

 }

 Button button = new Button();

 button.setText("Predict");

 testDataContainer.getChildren().add(button);

 Label label = new Label();

 AtomicReference<TextField> textField = new AtomicReference<>();

 testDataContainer.getChildren().add(label);

 button.setOnMouseClicked(mouseEvent -> {

 label.setText("");

 List<String> inputs = new ArrayList<>();

 List<String> labels = new ArrayList<>();

 ObservableList<Node> children = testDataContainer.getChildren();

 int lastBox = children.size() - 3;

 for (int i = 0; i < children.size() - 2; i++) {

 Node outerNode = children.get(i);

 ObservableList<Node> nodes = ((VBox) outerNode).getChildren();

 for (Node node : nodes) {

 if (node instanceof TextField) {

 String text = ((TextField) node).getText();

 if (text == null || text.isBlank() && outerNode != children.g et(lastBox))

 label.setText("Wierd Input");

 if (outerNode == children.get(lastBox)) {

 textField.set((TextField) node);

 node.setDisable(true);

 } else

 inputs.add(text);

 }

 if (node instanceof Label) {

 String text = ((Label) node).getText();

 if (text == null || text.isBlank())

 label.setText("Wierd Input");

 else

 labels.add(text);

 }

 }

 }

 float[] inputsFloat = new float[inputs.size()];

 for (int i = 0; i < inputsFloat. length; i++) {

 inputsFloat[i] = classificationProcessor.classifyIn(inputs.get(i), labels.get(i));

 }

textField.get().setText(classificationProcessor .classifyOutInverse(neuralNetwork .predict(inputsFloat))

38

IOException {

 // Creating nuralNetwork.h

 String headerFileName = "nuralNetwork.h";

 FileWriter writerH = new FileWriter(headerFileName);

 writerH.write("// Header file for nuralNetwork\n#include

\"Arduino.h\"\n");

 writerH.write(classificationProcessor.toH());

 writerH.write(neuralNetwork.toH());

 writerH.close();

 // Creating nuralNetwork.cpp

 FileWriter writerCpp = new FileWriter("nuralNetwork.cpp");

 writerCpp.write("// Implementation file for nuralNetwork\n#include \""

+ headerFileName + "\"\n");

 writerCpp.write(classificationProcessor.toCpp());

 writerCpp.write(neuralNetwork.toCpp());

 writerCpp.close();

 }

}

39

Chapter four: Result and discussion

4.1 implementation and Result

first, we fill the nebulizer cup with 6 centimeters cubic (cc) of the desired sample then we run

the code so the nebulizer is run for 90s and show the result from 70-90s (steady state time).

after that we take one random line from these and apply it to the front-end window, like the

following:

Figure 4-0-1 implementation and results

Figure 4-0-2 Front-end window

40

In our project we deal with four differnt samples (two alcoholic and to nonalcoholic) that was

Bavaria, BLU, Red-label and Araq. after we take 3 samples for each for training in the back-

propagation, and then we apply the csv file to the front-end window and we got some result,

the first one is for the Red-label and Araq (alcoholic samples) and we got these result in the

graph:

 from this graph we can figure out what was done in the back-propagation operation (Tanh

method) and we can see the neural network result and how the point are separate and clear to

detect.

and here is the result after adding the BLU and Bavaria (non-alcoholic samples) and we got

these results:

Figure 0-3 Alcoholic samples results

Figure 0-4 all samples results

41

we can see from the last graph that there is a wide difference between the alcoholic and non-

alcoholic samples after we training the program on these samples.

4.2 Discussion

The results clearly demonstrate the capability of the AIEN system to reliably detect and

discriminate between different volatile organic compounds (VOCs) using the array of MQ gas

sensors. The consistent and distinct odor profile plots generated for various substances verify

the effectiveness of the integrated hardware and software components.

The filtration system using fans to clear the residual VOCs between samples was crucial to

obtaining accurate readings. Without properly cleaning the sampling chamber between tests,

residual VOCs would create overlapping sensor signals and prevent the isolation of unique

odor profiles.

The characteristic plots for the alcoholic and non-alcoholic beverages showcase the efficacy of

the backpropagation algorithm and tanh activation function in extracting distinguishing

features in the multivariate MQ sensor data. The clear separation between the two groups on

the scatter plot matrix confirms the pattern recognition capability of the AI software based on

the training data.

While the results are promising, further enhancements could improve the sensitivity,

selectivity, and accuracy of the AIEN system. Additional sensor modalities utilizing different

transduction mechanisms such as metal oxide semiconductors, infrared spectroscopy, or

electrochemical cells could provide more orthogonal VOC measurements and enhance

discrimination. Expanding the reference database with more VOC samples and concentrations

would also augment the training data for the neural network and improve pattern recognition

performance.

More complex neural network architectures beyond the simple multilayer perceptron used here

could potentially extract non-linear relationships and interactions between sensor signals.

Advanced techniques like convolutional neural networks may better uncover latent VOC

features. However, increased model complexity risks overfitting and would require more

substantial training data.

Overall, the results confirm the viability of interfacing an array of gas sensors with AI software

for intelligent identification of VOCs. With incremental improvements to the sensors, sampling

process, reference database, and machine learning approach, the performance of the AIEN

system could likely match or exceed human olfactory capabilities.

42

4.3 Economical feasibility

In this section we analyze the economical part of our project, we will put the price of each

component that we use in our project in the NIS shekel unit, and it is as the following:

component price

Plastic bottle 20 ₪

MQ sensors 250 ₪

Arduino mega 90 ₪

Arduino Uno 40 ₪

Nextion touch screen 100 ₪

Lm298 driver 20 ₪

Ethanol 20 ₪

Compressor Nebulizer 50 ₪

220V fan 20 ₪

DC fan (12V) 10 ₪

Power supply -

Double Relay 10 ₪

Funnel 5 ₪

Outside case 200 ₪

Table 2 components costs

43

Chapter five: Problem we face

In this project we face do many problems in this chapter we will talk about these problems and

how we solve it

5.1 filtration

when we start the project we face the problem that when we apply some samples to the sensor

the smell stuck in the box which will affect the result of the second sample commonly it is none

we can get rid of any smell by Expose it to the sun and air that take much time that we try one

sample and waiting for the day to apply another sample we solve this problem by making

fraternization system which we explain it in the process using methanol to clean all parts of the

system with heating element we solve this problem.

5.2 inaccurate values

 we note that the values every time changes and it never is the same or increase with the same

amount the problem that we found is the shape of the box distracting the smell inside the box

so to solve this problem we add funnel making circular shape that the smell will not distracting

also if any sensor do not take enough we add to the controlling system bridge that the pipe will

move to any sensor.

5.3 data collection

 the other problem we face is we need to take so many values for each sample in 3,6,9 SEC

with different substance concentration to put it in database this take to many times so we solve

this problem by adding AI system which help us to collect all the data we need and draw plot

for each sample.

44

5.4 sample taker

 first, we were but the perfumes using cartoons or directly to the MQ sensors this make the

result not accurate at to solve this we try hard plastic which is easy to clean

5.5 high current needed

in this project we have 9 MQ sensor and MQ sensor need good current in order to operate

correctly the microcontroller couldn't delivered the amount of current needed it could for two

MQ sensor but when we apply 4 MQ sensor the Arduino mega shut down also we have many

motors that need enough current to operate well so in order to solve this problem we connect

inverters with different voltages that can handle the amount of current needed.

5.6 similarity of value

 as we said every odor in this world has different VOCS but because we are using an MQ sensor

which is the commercial sensor for sure it won't give us accurate values for this reason there is

some smell that are really close to the values in order we see that in different type of odors to

solve this problem we start to measure other important variable that the same of VOCS this

value couldn't be the same values in the materials we are talking about mole wight we measure

mole weight using piezoelectric sensor every value will gave us different value of voltage and

we make other database for this reason.

5.7 acetone

the reason why we use ethanol instead of acetone is because of what happens in plastic pipes

every time we put acetone it interacts with plastic and burns it after so many time putting

acetones the pipes shrinks so we look for other material that could rid of smells and won’t

interact with plastic and we choose ethanol.

5.8 powder damage MQ sensors

 when we reach stage three we unfortunately change all the MQ sensors why? Because when

we apply powder in the sensors it gets stuck in the stainless steel layer so the result for the next

sample was the fault. In order to solve this problem we add gauze which helps us to prevent

any powder from reaching MQ sensors.

45

Chapter six: Conclusion and future plans for AIEN

6.1 Conclusion

In conclusion, this project successfully implemented a proof-of-concept artificial intelligence

electronic nose capable of discriminating between VOCs based on automated MQ sensor data

and neural network analysis. The results highlight the prospects for fusing gas sensor arrays

with AI techniques to electronically perceive and classify complex odors.

The consistent VOC profiles generated by the AIEN system prove the effectiveness of the

hardware and software components, including the filtration process, fan controls, sensor array,

data acquisition, and pattern recognition algorithms. Distinct separation between the various

VOC samples was achieved, verifying the system's ability to reliably detect and identify

different substances based on training data.

While the current results are promising, enhancements to the sensor technology, sampling

process, reference database, and machine learning approach could improve the sensitivity,

selectivity, and accuracy of the AIEN system. With sufficient development, such intelligent e-

nose systems could match or exceed human olfactory capabilities in many applications.

This project establishes a solid foundation and development pathway for engineering practical

artificial intelligence electronic nose implementations. With additional work, AIEN systems

could enable transformative applications in areas ranging from healthcare diagnostics to

industrial quality control, agriculture, security, and environmental monitoring. Intelligent

electronic noses promise to provide rapid, sophisticated odor detection and analysis,

augmenting human senses. This project confirms the significant potential of merging gas sensor

arrays with artificial intelligence for next-generation smart odor detection systems.

46

Figure 0-1 Metal oxide sensor Figure 0-3 Electrochemical sensor Figure 0-2 Infrared sensor

6.2 Future plans for AIEN

In this project we have so many ideas that unfortunately we couldn't do it in this chapter we

will represent all of these ideas that we hope in the future these feature AIEN will have them:

1) AIEN can figure the percentage of each VOCS in the material

AIEN can recognize the VOCS inside the material but it couldn't know exactly the

percentage of this VOCS we can do that by using specific sensor as

1. electrochemical sensors

2. metal oxide sensors

3. infrared spectroscopy

We couldn’t add these sensors because of high cost of each one of them

2) Face detection:

 as we say AIEN can detect drugs so it could be used in the airports using raspberry pi

AIEN can be connected to governments database with Criminal record holders or drug

dealers to catch them.

3) from one MQ sensor AIEN can detect the odor:

we hope in the future and after adding the three sensors above AIEN could detect the

odor by using only MQ2 sensor

47

Chapter seven: References

(n.d.). From arduino: https://www.arduino.cc/

(PDF) Detection of fruits in warehouse using Electronic nose. (n.d.). From researchgate:

researchgate.net

Harmouzi, M. (n.d.). Conception and Simulation of an Electronic Nose Prototype for

Olfactory Acquisition. From ASTES: www.astesj.com

In-Depth: How MQ2 Gas/Smoke Sensor Works? & Interfacev it with Arduino. (n.d.). From

lastminuteengineers: lastminuteengineers.com

Soh, A. C. (n.d.). Development Of Neural Network-Based Electronic Nose For Herbs

Recognition. From Sciendo: https://sciendo.com/article/10.21307/ijssis-2017-671

THE ELECTRONIC NOSE. (n.d.). From uc: uc.edu

https://web.archive.org/web/20180513090020/http://www.maskau.dk/projects/electronic-

nose

