

Production and Characterization of Membranes from Recycled Styrofoam for Wastewater Treatment

Prepared by:

Ala'a Qarqash Badryh Nasasra Raya Izzdeen Suahad Barahmeh

> Supervisor: Dr. Shadi Sawalha

- Problem definition
- Project objectives.
- Styrofoam definition and uses.
- Problems of Styrofoam.
- Waste water and the treatment process
- Membrane
- Type of membrane
- Methodology
- Result and discussion
- Conclusion

Problem Definition

- Styrofoam is a large source of hazardous waste.

Polystyrene is not usually recycled

20100 Cares

The problem of waste water.

A low a low a low a low

Project Objectives

Project Objectives

classify the produced membranes according to applied pressure.

re-use Styrofoam to manufacture membrane that is used for water treatment

Introduction

Styrofoam is an expanded polystyrene (EPS). It is made from styrene monomers. Also it is known as Plastic #6.

monomer of styrene structure

Uses of Styrofoam:

Problems of Styrofoam:

U When it is exposed to heat it lets off a fume that contains a type of

neurotoxin.

U When it is put on microwave, or when hot coffee or tea is put on a

Styrofoam cup, this poison will seep into food.

It is non degradable product so it's bad for the environment.

It is not recyclable.

Treatment Process of waste water

Activated carbon

Chlorination

Ion exchange

enochem en alibaba com

Positively charged proteins

Negatively charged beads

Negatively charged proteins

Chemical Precipitation

Suspension

Precipitate

Membrane Filtration

Membrane filtration

A membrane is a semi permeable barrier between two phases which prevents intimate contact. It restricts the movement of molecules in it in a very specific way.

Type of membranes

Methodology

Materials:

toluene

THF

solvents Styrofoam

Permeability Test

Continued

Tensile test

SinoWon device

Tensile test

mechanical properties

Result and discussion

Effect of PEG on permeability

concentration of PEG

For THF

For toluene

Effect of TiO₂ on permeability

concentration of TIO2

For Toluene

Effect of PEG with TiO₂ on permeability using toluene solvent

concentration of TIO2 and PEG

Effect of TiO₂ combining with Jojoba oil on permeability using toluene solvent

concentration of TIO2 and jojoba oil

Effect of PEG with oleic acid oil on permeability of toluene

concentration of PEG and oleic acid

Effect of PEG with n-heptane (as additive) on permeability of toluene

concentration of PEG and n-heptane

Effect of PEG with n-heptane (as additive) on permeability of THF

concentration of PEG and n-heptane

Effect n- heptane immersion on Toluene-Styrofoam film modified with PEG

n-heptane immerson

Effect of THF and PEG immersed in water on permeability

Classification of membranes:

Based on previous results and depending on applied pressure, permeable membranes are classified to:

Solvent :Toluene				
Additives	Pressure(bar)	Туре		
5%PEG	10-15	NF		
10%PEG	8-10	NF		
15%PEG	14-18	RO		
1%TiO2	45-50	RO		
2%TiO2	45-50	RO		
3%TiO2	45-50	RO		
2% TiO2 and 10% PEG	8-10	NF		
0.8 g oleic acid	40-50	RO		

Continued

0.8g Oleic acid+10%PEG	5-10	NF
2%TiO2+0.8g Jojoba oil	8-10	NF
0.8g n- heptane	40-45	RO
10% PEG immersed in n- heptane	10-15	NF
0.8g n-heptane + 10%PEG	40-45	RO

Continued

Solvent :Tetrahydrofuran				
Additives	Pressure(bar)	Type of membrane		
5%PEG	40-50	RO		
10%PEG	8-10	NF		
15%PEG	20-25	RO		
1%TiO2	35-40	RO		
2%TiO2	35-40	RO		

3%TiO2	35-40	RO
0.8g n-heptane with 10% PEG	20-25	RO
10% PEG immersed in water		MF
10% PEG immersed in n- heptanes	10-15	NF
0.8g n-heptane + 10%PEG	40-45	RO

Conclusion

In this project different membranes were successfully prepared by dissolving Styrofoam in tow solvents.

> the sample that modified by adding TiO_2 to the casted film up to 1% weight percent were observed increased permeability and then decreased when more TiO_2 added in toluene solvent.

The samples that dissolved in toluene solvent and modified by adding PEG to casted film up to 15% weight were observed of increased permeability. the permeability increased by adding either PEG or TiO₂ on samples dissolved in Tetrahydrofuran.

➤the permeability of membrane was decreased with using nheptane either as additive or media to immersion.

Macro voids structure membrane was successfully obtained by immersed THF/Styrofoam film incorporating with PEG in water. Prepared membranes could be classified into different classes regarding the applied pressure

Prepared membranes could be used in different waste water treatment applications

Thanks for listening

project graduation