Coupled Parallel Flow through Porous Layers of Variable Thicknesses

Mohammad Hamdan
University of New Brunswick, Canada
hamdan@unb.ca

Abstract:
We consider the coupled, parallel flow of an incompressible, viscous fluid through two porous layers of variable thicknesses, shown in Fig. 1. The flow in each layer is governed by the dimensionless equations in Fig. 1, where in for each layer $\mathrm{i}=1,2, v_{i}$ is the velocity, ϑ_{i} is the ratio of effective viscosity to base fluid viscosity, and Da is the Darcy number. Governing equations are to be solved subject to no slip on the solid walls, and velocity and shear stress continuity at the interface, namely: $v_{1}=v_{2}$ and $\frac{d v_{1}}{d Y}=\frac{d v_{2}}{d Y}$ at $Y=\alpha$.
Letting $\quad Y^{*}=\frac{Y}{\sqrt[3]{\vartheta_{1} \operatorname{Da\alpha }}}$ and $V_{1}=V_{1}\left(Y^{*}\right)=v_{1}(Y)$, we express the equation of the lower layer as:
$\frac{d^{2} V_{1}}{d Y^{*}}-V_{1} Y^{*}+\sqrt[3]{\frac{(\alpha D a)^{2}}{\vartheta_{1}}}=0 ; 0 \leq Y^{*} \leq\left(\sqrt[3]{\vartheta_{1} \operatorname{Da\alpha }}\right) \alpha$, which is
Airy's inhomogeneous differential equation. General solutions to the governing equations are:

$$
v_{1}=a A_{i}\left(\gamma_{1} Y\right)+b B_{i}\left(\gamma_{1} Y\right)+\gamma_{4} N_{i}\left(\frac{\gamma_{3} Y}{\alpha}\right)
$$

and $v_{2}=c \operatorname{Exp}\left(\frac{Y}{\gamma_{2}}\right)+d \operatorname{Exp}\left(\frac{-Y}{\gamma_{2}}\right)+D a$, where:
$\gamma_{1}=\sqrt{\vartheta_{1} D a}, \quad \gamma_{2}=\sqrt{\vartheta_{2} D a}, \gamma_{3}=\frac{\alpha}{\sqrt[3]{\vartheta_{1} D a \alpha}} \cdot \gamma_{4}=\sqrt[3]{\frac{\alpha^{2} D a^{2} \pi^{3}}{\vartheta_{1}}}, \quad \mathrm{Ai}$ and Bi are the homogeneous Airy's functions, and $N_{i}\left(Y^{*}\right)=A_{i}\left(Y^{*}\right) \int_{0}^{Y^{*}} B_{i}(t) d t-B_{i}\left(Y^{*}\right) \int_{0}^{Y^{*}} A_{i}(t) d t$.
We then obtain the solution satisfying the boundary and matching conditions, and use asymptotic and ascending series representations to evaluate the functions Ai, Bi and Ni . Velocity and shear stress at the interface are then computed.

Y $\uparrow \quad$ Solid Wall: $\mathrm{Y}=1$

$$
\frac{d^{2} v_{2}}{d Y^{2}}-\frac{v_{2}}{\vartheta_{2} D a}+\frac{1}{\vartheta_{2}}=0
$$

Porous Layer 2

$$
\begin{array}{r}
\frac{d^{2} v_{1}}{d Y^{2}}-\frac{v_{1}}{\vartheta_{1} D a} \frac{Y}{\alpha}+\frac{1}{\vartheta_{1}}=0 \\
\text { Porous Layer } 1
\end{array}
$$

Porous Interface ($\mathrm{y}=\alpha$)

Solid Wall: Y=0

