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Clean Like Semi-ring Notions and Trivial Semi-ring Extension 

by 

Sondos Osama Hussain Jamal 

Supervisor 

Dr. Khalid Adarbeh 

Abstract 

Suppose that S is a commutative semiring with unity different than zero and 

M an S-semimodule. In this thesis, we study the algebraic and the ideal 

theoretic properties of S𝛼M, where S𝛼M denotes the trivial semiring 

extension (or the expectation of S), providing an analog results to the proved 

ones in the ring situation. In this thesis, different elements like units, zero 

divisors and other elements of S𝛼M as well as the special ideals like 

subtractive ideals, prime ideals and other types of ideals of S𝛼M will be 

identified. The generalization of some of the clean like notions into the 

semiring situation will be investigated; this thesis also examines some of 

their properties and the transfer of these notions in the trivial semiring 

extension. This thesis also provides an application of semirings in 

classification system which is considered an important technique in data 

mining which used to assign every element to specific groups based on the 

similarities between the referred to elements.
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Introduction

In 1934, H.S Vandiver [22] formally defined semirings, which are rings,

but without requiring the existence of the additive inverse for each ele-

ment. The algebraic structure of semirings have lots of practical impli-

cations in both math and computer science sectors [10]. They also have

implications in data minig sector especially in the classification system

[1].

A typical example of a semiring which is not a ring is the set of

all non negative integers i.e. natural numbers under the usual addition

and multiplication of integers. Another example, which is not trivial,

is the set of all the ideals of a given ring under the usual addition and

multiplication of ideals. It forms a semiring which is not a ring, since

one can add or multiply two ideals but cannot subtract them. There are

lots of previous studies providing examples of important sets that have

the structure of semirings but do not have the ring structure [22].

Nagata [4] in 1962 introduced the idealization of R-module M over a

ring R in order to facilitate interaction between rings and their modules

and also to provide families of examples of commutative rings contain-

ing zero-divisors (reduced elements). A generalization of idealization

from rings to semirings is possible in a very identical way; that is to

say if S is a semiring and M is an S-semimodule; then, the set SαM
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where the underlying group is S ×M and the multiplication is defined

by (a,m)(b, f) = (ab, af + bm) for a, b ∈ S and m, f ∈ M forms a new

semiring that extends S; it is called the trivial semiring extension of S

over M [9].

In 1977, Nicholson [21] introduced the notion of the clean rings; he

defined a ring to be clean if all its elements are clean, where an element

is called clean if it can be written as a sum of a unit and an idempotent.

In 2013, Alexander J. Diesl [8] introduced another ring notion called the

nil clean ring; he defined a ring to be nil clean if all its elements are nil

clean, where the nil clean element is the one that can be written as a sum

of a nilpotent and an idempotent. He proves in the same article that the

class of nil clean rings is contained in the class of clean rings. Previous

studies examines many of the related notions to the clean notion such as

weakly clean, strongly clean, etc. Check for example [8, 21].

The concept of incidence semiring is a generalization of the concept

of incidence ring [15], which can be cosidered as sets of polynomials over

a graph, where the edges are the unknowns and the coefficients are taken

from a semiring. The construction of incidence rings has many useful

practical implications in different areas such as data mining.

In this thesis, all semirings are assumed to be commutative with unity

1 6= 0, where S denotes a semiring, M denotes an S-semimodule, SαM

denotes the trivial semiring extension of S by M , G denotes a directed

graph and IG(S) denotes the incidence semiring of G over S.
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Chapter one introduces some basic definitions, examples and the-

orems in semirings, semimodule, trivial ring extension and clean like

notions in ring case which will be transformed to semiring case.

Chapter two studies some of the algebraic and the ideal theoretic

properties of the trivial semiring extension SαM ; some special elements

and ideals of SαM are identified; local trivial semiring extension is stud-

ied. The main idea highlighted in this chapter is how the referred to

properties of SαM are related to similar ones of S.

Chapter three presents how to generalize some of the clean like notions

into the semiring situation; some of their properties, especially the ones

that have an analog in the ring situation are studied; the transfer of these

notions in the trivial semiring extension is also examined.

Finally, the incidence semiring and the set of centroids with largest

weight which are valuable in the design of centroid based classifiers, that

are considered as one of the most common techniques used in data mining

models, are studied.
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Chapter 1

Preliminaries

This chapter presents basic information on semirings and the ideals

associated with them. It also provides a summary on clean rings and

some related ring theoretic notions.

1.1 Introduction to Semirings

In this section, major definitions and theorems in semiring theory are

provided. The main references are [4, 8].

1.1.1 Definitions and Examples

Definition 1.1 (Semiring). A semiring is an algebraic structure, consist-

ing of a non empty set S and two binary operations, addition (+) and

multiplication (.) such that the following axioms hold:

1. (S,+) is associative and commutative that is a+(b+c) = (a+b)+c

and a+ b = b+ a. Also, there exist an identity element 0 such that

a+ 0 = 0 + a = a for all a, b, c ∈ S.

2. (S, .) is associative that is a(bc) = (ab)c and there is an identity

element, denoted by 1 such that a1 = a, for all a, b, c ∈ S.

3. To avoid the trivial case, we assume that 0 6= 1.
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4. The multiplication is distributive over addition from both sides that

is a(b+ c) = (ab) + (ac) and (a+ b)c = (ac) + (bc).

5. For any x ∈ S, 0x = x0 = 0.

In other words, semirings are rings, but without requiring the exis-

tence of the additive inverse for each element. Semirings were formally

defined by H.S Vandiver in 1934 [22], and they have many practical im-

plications in both mathematical and computer science sectors. See for

example [10,1].

Definition 1.2. A semiring S is said to be commutative if the multipli-

cation is commutative (i.e ab = ba, for a, b ∈ S).

Example 1.3. The set of natural numbers N under the usual addition

and multiplication of integers is a commutative semiring. Also, the set

of n× n matrices with non negative entries Mn(N) form a semiring.

It should be pointed out that all rings are semirings, but the converse

is not true as in the case of naturals N.

Definition 1.4 (Division semiring). Let S be a semiring. Then S is said

to be a division semiring if every non zero element in S has a multiplica-

tive inverse (i.e. for all 0 6= x ∈ S, there exist 0 6= y ∈ S such that

xy = 1).

Definition 1.5 (Semidomain). A semiring S is called a semidomain if

ab = ac implies b = c for all b, c ∈ S and all nonzero a ∈ S which means

that there is no zero-divisors in S.
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Definition 1.6 (Semifield). A semiring S is said to be semifield if it is

a commutative division semiring. A good example is Q+ ∪ {0}.

Next we introduce the definition of a semimodule.

Definition 1.7 (semimodule). Let S be a semiring. An S-semimodule is

a non empty set M on which one have two operations addition and scalar

multiplication by elements of S where the following axioms are satisfied:

• The addition is associative, commutative, and has an identity ele-

ment, denoted 0M .

• For all a, b ∈ S and m,n ∈M :

1. (ab)m = a(bm)

2. (a+ b)m = am+ bm

3. a(m+ n) = am+ an

4. 1m = m and 0m = 0M = a0M

Example 1.8. Let M be the set of all functions between a set A and

a semiring S where the addition is the usual addition of functions and

the scalar multiplication is given by (a.f)(x) = f(a)f(x), for any a ∈ A,

x ∈ A and f ∈M .

1.1.2 Elements and Ideals

In this section, definitions of special elements and sets of a semiring

S are presented.
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Definition 1.9. Let x be an element of a semiring S.

1. x is called unit if it has a multiplicative inverse (i.e. there exist

0 6= y ∈ S such that xy = 1). Any non zero element in R is a unit.

2. x is called nilpotent if xn = 0, for some positive integer n which is

called the nilpotency degree. In Z4, 22 = 0 is nilpotent.

3. x is called additively idempotent if x + x = x. An example is 0 in

Z2.

4. x is called multiplicatively idempotent if x2 = x. An example is 1

in Z2.

5. x is called zero divisor if there is 0 6= y ∈ S such that xy = 0. In

Z6, 3 is a zero divisor since 3.2 = 0.

6. x is called additively regular if there is x′ ∈ S such that x+x+x′ =

x. In Z5, 2 + 2 + 3 = 2.

7. x is called multiplicatively regular if there is x′ ∈ S such that

x2x′ = x. In Z6, 32.1 = 3.

Similar to the ring situation, the ideals play a fundamental role in

the theory of semirings. The definition of subtractive, prime, maximal,

primary and nilpotent ideals is presented next. Recall that a subset I of

a ring R is called an ideal if it is closed under subtraction (i.e. a− b ∈ I,

for all a, b ∈ I) and absorbs the elements of R (i.e. ra ∈ I, for all

r ∈ R, a ∈ I).
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Definition 1.10 (Ideal). Let I be a subset of a semiring S. Then I is

called an ideal of S if it is closed under addition (i.e. x + y ∈ I, for all

x, y ∈ I) and absorbs the elements of S (i.e sx ∈ I for any s ∈ S and

x ∈ I). I is called proper ideal if I 6= S.

Recall that for two given ideals I and J in S. The addition of I+J =

{a+ b : a ∈ I, b ∈ J} and the multiplication of I.J = {ab : a ∈ I, b ∈ J}.

Remark 1.11. The set of all the ideals of a given ring under the usual

addition and multiplication of ideals forms a semiring which is not a ring,

since one can add or multiply two ideals but can not subtract them.

Let I denotes an ideal in a semiring S. Below some definitions of

special ideals.

Definition 1.12. 1. I is called subtractive if whenever x ∈ I and

x + y ∈ I, then y ∈ I. Let S be the semiring of natural numbers

with usual addition and multiplication. Then I = 3N is subtractive

ideal.

2. I is called prime if I ( S and if xy ∈ I , then either x ∈ I or y ∈ I.

An example of prime ideal is 2N.

3. I is called maximal if I ( S and if I ⊆ J , either J = S or J = I.

An example is 2N.

4. I is called primary if xy ∈ I implies x ∈ I or ym ∈ I where m ∈ Z+.
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5. I is called nilpotent if Ik = 0 for some k ∈ Z+. The smallest k such

that Ik = 0 is called the nilpotency degree of a nilpotent ideal I

and it is denoted by n.deg(I).

6. I is called nil if all its elements are nilpotent.

The following is the definition of the radical of an ideal I.

Definition 1.13. Let I be an ideal of a semiring S, the radical of I is

the set of all x ∈ S such that xn ∈ I, for some n > 0 and it is denoted

by
√
I. So,

√
I = {x ∈ S : xn ∈ I, n ∈ N}. I is called radical if

√
I = I.

Example 1.14. Let S be the semiring of natural numbers. Then
√

4N =

2N and
√

5N = 5N.

Next is the definintion of subtractive and semisubtractive semiring.

Definition 1.15 (Subtractive Semiring). A semiring S is called subtrac-

tive if every ideal of S is subtractive. An example is M3(R) [14].

Definition 1.16 (Semisubtractive Semiring). A semiring S is called

semisubtractive if for any a 6= b ∈ S there is always some x ∈ S such

that b+x = a or some y ∈ S such that a+y = b. An example is N∪{0}.

Next the definition of quotient semiring is introduced.

Definition 1.17 (Quotient semiring). Let I be an ideal of a commutative

semiring S. Then the quotient semiring of S by I is S /I = {s+I : s ∈ S}

where the addition and multiplication are defined as follows:
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• (s1 + I) + (s2 + I) = (s1 + s2) + I.

• (s1 + I).(s2 + I) = (s1s2) + I.

1.1.3 Sets and Ideals

Recall that a nonempty subset C of S is called multiplicatively closed

set if 1 ∈ C and if c1, c2 ∈ C, then c1c2 ∈ C.

Definition 1.18. A multiplicatively closed set C of S is called saturated

if c1c2 ∈ C means that both c1, c2 ∈ C for all c1, c2 ∈ S.

Similar to the ring situation, the following result satisfied.

Proposition 1.19. [19, 11] Let C be multiplicatively closed set of S and

I be an ideal of S that is maximal with respect to I ∩ C = φ. Then I is

prime ideal of S.

Proof. Suppose, in the contrary, that I is not prime. So, there is ab ∈ I

such that a /∈ I and b /∈ I. Clearly, I + Sa is a semiideal (because it

is sum of two ideals), and hence I ( I + Sa implies I + Sa ∩ C 6= φ.

Therefore, there is c1 ∈ C such that c1 = i1 + xa for i1 ∈ I, x ∈ S.

Similarly, there is c2 ∈ C such that c2 = i2 + yb for i2 ∈ I, y ∈ S.

Now, c1c2 = i1i2 + i1yb + i2xa + xyab, and hence c1c2 ∈ I. But C

being multiplicatively closed set and c1, c2 ∈ C implies c1c2 ∈ C. Thus,

I ∩ C 6= φ which is a contradiction. Hence, I is prime ideal of S.

Proposition 1.20. [20] C is a saturated multiplicatively closed set of S

if and only if its complement is a union of prime ideals of S.
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Proof. Let C be saturated multiplicatively closed set of S and s ∈ C{.

Then (s) ∩ C = φ. Hence, by proposition 1.19, if (s) is prime, then

we are done. Otherwise, (s) is a subset of a prime ideal which is also

disjoint from C. Thus, every element in C{ is a subset of prime ideal of

S such that it is disjoint from C. Therefore, C{ = ∪Pi where Pi is prime

ideal in S and i = 1, 2, ..... Conversely, let C{ = ∪Pi where Pi is prime

ideal in S and i ∈ I. Indeed, let x, y ∈ C and assume that xy /∈ C.

Then xy ∈ ∪Pi, so xy ∈ Pj for some j ∈ I. Therefore, either x ∈ Pj

or y ∈ Pj. Implies, either x /∈ C or y /∈ C, and hence a contradiction.

Now, suppose that xy ∈ C and x, y /∈ C. Then x or y in Pj, and hence

xy ∈ Pj. Thus, xy /∈ C which is a contradiction. Therefore, C is a

saturated multiplicatively closed set of S.

Corollary 1.21. [18] The set of zero-divisors Z(M) of M is a union of

prime ideals of S.

Proof. Let C = S −Z(M). Now, we want to show that C is a saturated

multiplicatively closed set of S. Indeed, let a, b ∈ C where a, b ∈ S

implies a /∈ Z(M) and b /∈ Z(M). Suppose, in the contrary, that ab /∈ C

which means that ab ∈ Z(M). Therefore, there is 0 6= m such that

(ab)m = 0. So, a(bm) = 0 implies that either bm = 0, and hence

b ∈ Z(M) or bm 6= 0, and hence a ∈ Z(M). In both cases we get

a contradiction which implies that ab ∈ C. Conversely, suppose that

ab ∈ C. Then ab /∈ Z(M) and so both a /∈ Z(M) and b /∈ Z(M).

Now, in the contrary, suppose that a ∈ Z(M) implies am = 0 for some
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m 6= 0. Hence, (ab)m = 0 for some m 6= 0. Thus, ab ∈ Z(M) which is a

contradiction. Therefore, C is a saturated multiplicatively closed set of

S. Thus, by proposition 1.20, Z(M) is a union of prime ideals of S.

1.2 Trivial ring extension

This section explains the trivial ring extension which is a construction

utilized often in previous studies to solve open questions, conjectures and

to provide examples [4].

Definition 1.22 (Trivial ring extension). Let R be a ring and M be an

R-module. The trivial ring extension of R by M is the ring RαM where

the underlying group is R ×M under the componentwise addition and

the multiplication is defined by (a,m)(b, f) = (ab, af + bm).

The ring RαM is also called the idealization of M over R. RαM contains

a subring Rα(0) which is isomorphic to R. It also contains a nilpotent

ideal (0)αM with nilpotency degree 2 which is isomorphic to M .

The trivial ring extension was first introduced in 1962 by Nagata [4] in

order to facilitate interaction between rings and their modules and also

to provide families of examples and counter examples of commutative

rings containing zero-divisors (reduced elements).

Proposition 1.23. [20, 19] Let R be a commutative ring, I an ideal of

R, M an R-module and N a submodule of M . Then the following are

satisfied:
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1. IαN is an ideal of RαM if and only if IM ⊆ N .

2. The maximal ideal of RαM can be written as mαM , where m is a

maximal ideal of R.

3. The prime ideals of RαM have the form pαM , where p is prime

ideal of R.

4. Radical ideals of RαM can be written as IαM , where I is radical

ideal of R.

5.
√
IαN =

√
IαM . Hence, Nil(RαM) = Nil(R)αM .

Next, we will see the form of some special elements in RαM .

Proposition 1.24. [18, 21] Let R be commutative ring and M an R-

module. Then:

1. The set of zero-divisors of RαM , denoted by Z(RαM), is given by

Z(RαM) = {(r,m) : r ∈ Z(R) ∪ Z(M),m ∈M}.

2. The set of units of RαM , denoted by U(RαM), is given by U(RαM) =

U(R)αM .

3. The set of idempotent elements of RαM , denoted by Id(RαM), is

given by Id(R)α0.

Theorem 1.25. [3] Let R1 and R2 be commutative rings, and let Mi be an

Ri-module, i = 1, 2. Then (R1×R2)α(M1×M2) ∼= (R1αM1)× (R2αM2).
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Proof. It is easily to show that the map φ defined by φ((r1, r2), (m1,m2)) =

((r1,m1), (r2,m2)) is an isomorphism.

Next is the definition of finitely generated module M and a Noethe-

rian ring R.

Definition 1.26. An R-module M is said to be finitely generated if there

exist a1, a2, .., an ∈M such that for any m ∈M we have r1, r2, .., rn ∈ R

with m = r1a1 + r2a2 + ..+ rnan.

Definition 1.27. A ring R is a Noetherian ring if it satisfies the as-

cending chain condition on ideals that is, given an increasing sequence

of ideals I1 ⊆ ... ⊆ Ik ⊆ ... there exist a natural number n such that

In = In+k, for k ≥ 0.

Theorem 1.28. The trivial ring extention RαM is Noetherian if and

only if R is Noetherian and M is finitely generated.

1.3 Clean Like Ring Notions

Here we recall some of the clean like ring notions and some relations

among them.

Definition 1.29. Let R be a ring and r ∈ R.

1. r is called clean if there exist a unit u and an idempotent element

e such that r = u+ e.
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2. r is called nil clean if there exist a nilpotent element n and an

idempotent element e such that r = n+ e.

Now, we introduce the definitions of clean and nil clean rings.

Definition 1.30. A ring R is called clean if all of its elements are clean.

R is clean ring.

Definition 1.31. A ring R is called nil clean if all of its elements are nil

clean. Z2 is nil clean ring.

Proposition 1.32. If b is nilpotent element of R. Then 1− ab is a unit

for all a ∈ R. In particular, if b is nilpotent, then 1 + b is a unit.

Proof. Let bn = 0, for positive integer n. Now, (1− ab)(1 + ab+ (ab)2 +

.... + (ab)n−1) = 1. Thus, (1 − ab) is a unit for all a ∈ R. Now take

a = −1, we have 1 + b is a unit.

Proposition 1.33. Every nil clean ring is clean. But the converse is not

always true.

Proof. Let R be nil clean ring and let r ∈ R, r − 1 ∈ R and r − 1 =

b + e where bn = 0, for some positive integer n and e2 = e. Implies

r = e+ (b+ 1) is clean since (b+ 1) is a unit by the previous proposition.

Thus, R is clean.

Proposition 1.34. Let R be a ring and I be a nil ideal of R. Then R

is nil clean if and only if R /I is nil clean.

Proposition 1.35. Any finite product of nil clean rings is nil clean.
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Chapter 2

PROPERTIES OF TRIVIAL SEMIRING

EXTENSION
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Chapter 2

Properties of Trivial Semiring Extension

This chapter focuses on the algebraic and ideal properties of the trivial

semiring extension.

Most of the results provided in this chapter are either a generalization or

an enhancement of the results obtained by Peyman Nasehpour in [18].

2.1 Definition and Example

The following proposition includes the definition of the trivial semir-

ing extension.

Proposition 2.1. Let S be a semiring and M an S-semimodule. Then

the set SαM with the componentwise addition and the multiplication:

(s1,m1).(s2,m2) = (s1s2, s1m2 + s2m1)

is a semiring.

The semiring SαM in the previous proposition is called the trivial

semiring extension of S by M . It is very clear that this semiring extension

generates the trivial ring extension mentioned in the introduction.

Proposition 2.2. Let SαM be the trivial semiring extension of S by M .

Then:
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1. SαM contains a subsemiring Sα(0) that is isomorphic to S.

2. SαM contains a nilpotent ideal (0)αM with nilpotency degree 2

that is isomorphic to M .

3. SαM
(0)αM

∼= S. (Proof: Let Φ : SαM → S defined by: Φ((s,m)) = s.

Then Ker(Φ) = (0)αM and so SαM
(0)αM

∼= S).

The following example provides a matrix analog for the trivial semir-

ing extension, as it is the case in the trivial ring extension.

Example 2.3. Let S be a semiring and M an S-semimodule. Then the

set of all matrices of the form E =

s m

0 s

 where s ∈ S, m ∈M under

the usual addition and multiplication of matrices is a semiring which is

isomorphic to SαM .

Proof. Let Φ : E → SαM be defined by: φ

s m

0 s

 = (s,m) so

Φ

s1 m1

0 s1

 .

s2 m2

0 s2

 = Φ

s1 m1

0 s1

Φ

s2 m2

0 s2

 which

means that Φ is homomorphisim. It is easy to show that Φ is one to one

and onto so it is an isomorphisim.

2.2 Ideal Properties of Trivial Semiring Extension

This section will introduce some ideal properties of the semiring

SαM . From now on, S denotes a semiring and M denotes an S-semimodule.
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The following theorem generalizes the proposition 1.23.

Theorem 2.4. [18] Let I be an ideal of S and N an S-subsemimodule of

M. Then the following are satisfied:

1. IαN is an ideal of SαM if and only if IM ⊆ N .

2. If IM ⊆ N . Then
√
IαN =

√
IαM .

3. Nil(SαM) = Nil(S)αM .

4. Let J be an ideal of SαM and define L and Q as: L={s ∈ S :

∃ m ∈ M | (s,m) ∈ J} and Q={q ∈ M : ∃ s ∈ S | (s, q) ∈ J}.

Then:

(a) L is an ideal of S.

(b) Q is an S-subsemimodule of M.

(c) LM ⊆ Q.

(d) J ⊆ LαQ.

5. 0αM is a subset of any prime ideal of SαM .

6. If J in (4) is a subtractive prime ideal of SαM . Then L is subtrac-

tive prime ideal of S with J= LαM .

Proof. :

(1) Suppose that IαN is an ideal of SαM . We want to show that IM

⊆ N . Indeed, let x ∈ IM . Then x = am for some a ∈ I,m ∈

M . Now, a ∈ I and N is a subset of M implies that (a, 0) ∈
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IαN . But IαN being an ideal of SαM implies that (0,m)(a, 0) =

(0, am) ∈ IαN . Thus, am = x ∈ N . Conversely, assume that IM

⊆ N . We want to show that IαN is an ideal of SαM . (i) Let

(a1, n1), (a2, n2) ∈ IαN . Then (a1 + a2, n1 + n2) ∈ IαN . (ii) Let

(s,m) ∈ SαM. Then (s,m)(a, n) = (sa, sn+am). But sa ∈ I, sn ∈

N and am ∈ N (since IM ⊆ N). So, (sa, sn+ am) ∈ IαN . Thus,

IαN is an ideal of SαM .

(2) First, let us show that (s,m)n = (sn, nsn−1m) by induction. So,

(s,m)1 = (s,m), (s,m)2 = (s2, 2sm). Now, suppose that it is true

for n-1, (s,m)n−1 = (sn−1, (n− 1)sn−1−1m). Then for n we have:

(s,m)n = (s,m)n−1.(s,m)

(s,m)n = (sn−1, (n− 1)sn−1−1m).(s,m)

(s,m)n = (sn, sn−1m+ (n− 1)ssn−1−1m)

(s,m)n = (sn, nsn−1m)

Now, we start the proof of the equality
√
IαN =

√
IαM by showing

first that
√
IαN ⊆

√
IαM . For that, let (s,m) ∈

√
IαN . Then

there is n ∈ IN such that (s,m)n = (sn, nsn−1m) ∈ IαN which

implies that sn ∈ I, and hence s ∈
√
I. Thus, (s,m) ∈

√
IαM .

Oppositely, take (s,m) ∈
√
IαM . Then there is n ∈ IN such that

sn ∈ I. Now, (s,m)n+1 = (sn+1, (n+ 1)snm). Since I is an ideal of

S, s.sn = sn+1 ∈ I. Also, IM ⊆ N implies that (n + 1)snm ∈ N .

Thus, (s,m)n+1 ∈ IαN , and hence (s,m) ∈
√
IαN .
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(3) Nil(SαM) =
√

0α0 =
√

0αM = Nil(S)αM .

(4) (a) Let s1, s2 ∈ L. Then there is m1,m2 ∈ M such that (s1,m1),

(s2,m2) ∈ J . But J being an ideal of SαM implies that (s1,m1) +

(s2,m2) = (s1 + s2,m1 +m2) ∈ J , and hence s1 + s2 ∈ L. Now, let

s ∈ S and s1 ∈ L. Then there is m ∈ M such that (s1,m) ∈ J .

But J is an ideal of SαM which implies that (s,m1).(s1,m) =

(ss1, sm+ s1m1) ∈ J , and hence ss1 ∈ L. Thus, L is an ideal of S.

(b) The addition similar to (a). For the scalar multiplication, let q

∈ Q. Then there is s ∈ S such that (s,q) ∈ J. Take s = 0, then (0, q)

∈ J . Since J is an ideal of SαM , we have (s,m)(0, q) ∈ J implies

that (0, sq) ∈ J , and hence sq ∈ Q where Q is an S-subsemimodule

of M.

(c) We want to show that LM ⊆ Q. Indeed, Let y ∈ LM . Then

y = lm1 for some l ∈ L and m1 ∈ M . Since J is an ideal of SαM ,

then (0,m1)(l,m) = (0, lm1) ∈ J implies that lm1 ∈ Q.

(d) Since J is an ideal of SαM , then J ⊆ LαQ.

(5) By (3)
√

0αM = Nil(SαM) implies that (0)αM ⊆ Nil(SαM) =

∩ P , where P is a prime ideal in SαM.

(6) We want to show that L is subtractive ideal of S. Indeed, let

s1, s1 + s2 ∈ L. Then there is m1,m2 ∈M such that (s1,m1), (s1 +

s2,m2) ∈ J . Since J is subtractive prime ideal containing 0αM ,

then (s1 + s2,m2) + (0,m1) = (s1,m1) + (s2,m2) ∈ J implies that
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(s2,m2) ∈ J , and hence s2 ∈ L. Moreover, L is prime ideal of

S. To prove that, let s1s2 ∈ L. Then there is m ∈ M such that

(s1s2,m) ∈ J . Now, (s1s2,m) = (s1s2, 0) + (0,m) and J being

subtractive ideal implies that (s1s2, 0) ∈ J . Since J is prime ideal

and (s1s2, 0) = (s1, 0)(s2, 0), then either (s1, 0) ∈ J implies s1 ∈ L

or (s2, 0) ∈ J implies s2 ∈ L. By (d) in (4) J ⊆ LαM . Conversely,

let (l,m1) ∈ LαM . Then, there is m ∈ M such that (l,m) ∈ J.

But J being subtractive prime ideal implies that (l,m) + (0,m1) =

(l,m+m1) = (l,m1) + (0,m) ∈ J , and hence (l,m1) ∈ J .

Recall that an ideal I of a ring R is called nil if all the elements of

I are nilpotents. It is called nilpotent ideal if there is a positive integer

n such that In = 0. The nilpotency degree of a nilpotent ideal I is

denoted by n.deg(I) and defined to be the smallest positive integer k

such that Ik = 0. The same definitions adapted to the semiring situation

and deduce the following corollary from parts 2 and 3 in the previous

theorem.

Corollary 2.5. Let I be an ideal of S and N be a subsemimodule of M .

Then the following are satisfied:

1. IαN is radical ideal of SαM if and only if I is radical ideal of S.

2. SαM is nil semiring if and only if S is nil semiring.
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Proof. :

(1) IαN is radical ideal if and only if
√
IαN = IαN if and only if

√
IαN =

√
IαM (by 2 in theorem 2.4) if and only if

√
I = I if and

only if I is radical ideal of S.

(2) SαM is nil if and only ifNil(SαM) = SαM if and only ifNil(S)αM

= SαM if and only if Nil(S) = S if and only if S is nil.

The following fact provides the transfer of the nilpotent notion to the

trivial semiring extension.

Proposition 2.6. Let I be an ideal of S and N be a subsemimodule of

M . Then the following are satisfied:

1. IαN is a nilpotent ideal of SαM if and only if I is a nilpotent ideal

of S. Moreover, if n.deg(I) = m, then m ≤ n.deg(IαN) ≤ m+ 1.

2. Particularly, SαM is nilpotent semiring if and only if S is nilpotent

and if n.deg(S) = m, then m ≤ n.deg(SαM) ≤ m+ 1.

Proof. :

(1) Let (x, e) ∈ SαM . Then (x, e)k = (xk, kxk−1e). Assume that I is a

nilpotent ideal with n.deg(I) = m. Then (x, e)m+1 = (xm+1, (m +

1)xme) = (0, 0) for any (x, e) ∈ IαN , and hence IαN is nilpo-

tent with nilpotency degree at most m + 1. From another side,
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if n.deg(IαN) is k, then (x, 0)k = 0 for any x ∈ I, and hence

k ≥ n.deg(I) which forces to have m ≤ n.deg(IαN) ≤ m+1. Con-

versely, IαN is nilpotent imply that (IαN)k = (0, 0) for some k

and particularly (x, 0)k = (0, 0) for all x ∈ I imply I is nilpotent.

(2) It is direct consequence of (1), just take I = S and N = M .

The following example shows that if n.deg(I) = m, then n.deg(IαN)

can take both of the values m and m+ 1 according to N .

Example 2.7. 2Z8αZ8 is a nilpotent ring (hence) semiring of nilpotency

degree 4, while 2Z8α2Z8 ideal of Z8αZ8 with nilpotency degree 3.

Proposition 2.8. Let SαM be the trivial semiring extension. Then the

following are satisfied:

1. If U is a maximal ideal of SαM of the form U = UαM , then U is

a maximal ideal of S.

2. If P is an ideal of SαM of the form P = PαM , then P is prime

ideal of SαM if and only if P is prime ideal of S.

Proof. :

(1) Let U = UαM be a maximal ideal of SαM and suppose contrarily

that U is not maximal ideal of S. Then there is a maximal ideal U′

of S such that U ⊆ U′ ⊆ S, and hence there is an ideal U′αM with

U ⊆ U′αM ⊆ SαM which gives a contradiction.
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(2) Let P = PαM be prime ideal of SαM . Now let xy ∈ P. Then

(xy, 0) = (x, 0)(y, 0) ∈ PαM . But P being prime ideal of SαM

implies that either (x, 0) ∈ PαM or (y, 0) ∈ PαM . Thus, either

x ∈ P or y ∈ P, and hence P is prime ideal of S. On the other side,

let P be prime ideal of S and let (x,m)(y, n) = (xy, xn+ ym) ∈ P .

Since P is prime ideal of S, then either x ∈ P or y ∈ P. Therefore,

either (x,m) ∈ P or (y, n) ∈ P . Thus, P is prime ideal of SαM .

Although the form of the prime ideals and the maximal ideals of

SαM is not fully determined in the previous theorem. Still in some

classes of semirings such as weak Gaussian semiring is possible. Below

is the definition of the weak Gaussian semirings followed by the form of

the prime (maximal) ideals of SαM .

Definition 2.9. S is called a weak Gaussian semiring if each prime ideal

of a semiring S is subtractive.

The following is a corollary from proposition 2.8 and the proof is the

same.

Corollary 2.10. [18] If SαM is a weak Gaussian semiring. Then the

following statements hold:

1. Every prime ideal of the semiring SαM is of the form P = PαM ,

where P is a subtractive prime ideal of S.
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2. Every maximal ideal of the semiring SαM is of the form U = UαM ,

where U is a subtractive maximal ideal of S.

Recall that an ideal I of a semiring S is called subtractive, if x, x+y ∈

I implies y ∈ I. A semiring S is subtractive if every proper ideal is

subtractive.

Proposition 2.11. Let S be a semiring. Then S is subtractive if and

only if each proper ideal that is generated by 2 elements is subtractive.

Proof. It is easy to show that if S is subtractive semiring, then every

proper ideal is subtractive. Conversely, let I be any proper ideal of S

and let x, x+ y ∈ I, we want to show that y ∈ I. Assume that I0 is the

ideal generated by x, x + y. Then by the hypothesis, I0 is subtractive

and y ∈ I0. Now, I0 is a subset of I implies that y ∈ I. Therefore, I is

subtractive, and hence S is subtractive.

Theorem 2.12. [18] If SαM is a subtractive semiring, then both S and

M are subtractive.

Proof. SαM being subtractive semiring implies that Iα0 ∼= I, 0αN ∼= N

are subtractive ideals of SαM , where I is any ideal of S and N is any

S-subsemimodule of M.

Question If S and M are subtractive. Does that mean that SαM is

a subtractive semiring ?

Definition 2.13. A semiring S is called Noetherian if it satisfies the

ascending chain condition.
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Theorem 2.14. [18] Let SαM be subtractive. Then SαM is a Noethe-

rian semiring if and only if S is a Noetherian semiring and M is a finitely

generated S-semimodule.

Proof. Suppose that the left hand side is satisfied. Let I1 ⊆ I2... ⊆

Ik ⊆ ... be ascending chain of ideals of S. Then I1α0 ⊆ I2α0... ⊆

Ikα0 ⊆ ... is also ascending chain of ideals of SαM . But SαM being

Noetherian implies that there is n ∈ IN such that Inα0 = In+kα0 where

k ≥ 0, and hence In = In+k which implies that S is a Noetherian semir-

ing. Now, 0αM being ideal of a Noetherian semiring SαM implies that

0αM is finitely generated by (0,m1), (0,m2), .., (0,mn). Indeed, (0,m) =

(s1,m
′
1)(0,m1) + ...+ (sn,m

′
n)(0,mn) where m ∈M and (si,m

′
i) ∈ SαM

, i = 1, 2, .., n. Therefore, (0,m) = (0, s1m1) + ...+ (0, snmn), and hence

m = s1m1 + s2m2 + ... + snmn. Thus, M is a finitely generated S-

semimodule. Conversely, let P be prime ideal of the subtractive semiring

SαM . Then P = PαM where P is prime ideal of S. But S being Noethe-

rian implies that every prime ideal P in S is finitely generated. But M

is also finitely generated. Thus, P = PαM is finitely generated. Since

P is arbitrary, SαM is a Noetherian semiring by Cohen’s theorem.

Definition 2.15. The annihilator of M denoted by ann(M) = {a ∈ S :

am = 0,m ∈M}.

Recall that an ideal I of S is called weakly prime if ab ∈ I implies

that either a ∈ I or b ∈ I.
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The following proposition determines the form of the weakly prime ideals

of SαM .

Proposition 2.16. [18] For I being a proper ideal of S. IαM is a weakly

pime ideal of SαM if and only if I is weakly prime ideal of S and ab = 0

implies that a, b ∈ ann(M) where 0 6= a, b ∈ S.

Proof. Suppose that IαM is a weakly prime ideal of SαM and 0 6=

a1a2 ∈ I. Then (a1a2, 0) ∈ IαM . Now, (a1a2, 0) = (a1, 0)(a2, 0) ∈ IαM

and since IαM is a weakly prime ideal of SαM , either (a1, 0) ∈ IαM or

(a2, 0) ∈ IαM . Thus, either a1 ∈ I or a2 ∈ I, and hence I is a weakly

prime ideal of S. Now, in contrary, suppose that a /∈ ann(M). Then there

is m ∈ M such that am 6= 0. Since ab = 0, (ab, am) ∈ IαM . Therefore,

(ab, am) = (a, 0)(b,m) ∈ IαM . But (a, 0) /∈ IαM and (b,m) /∈ IαM ,

and hence a cotradiction. The same argument shows that b ∈ ann(M).

Conversely, let (a1,m1)(a2,m2) ∈ IαM where a1, a2 ∈ I and m1,m2 ∈

M . Since I is a weakly prime ideal of S and if a1a2 6= 0, implies that

either a1 or a2 ∈ I, and hence either (a1,m) or (a2,m) ∈ IαM for any

m ∈M . Now, if a1a2 = 0 and neither a1 nor a2 = 0. Then by assumption

a1, a2 ∈ ann(M), and hence (a1,m1)(a2,m2) = (0, 0). Thus, IαM is a

weakly pime ideal of SαM .

Definition 2.17. [18] Let N be S-subsemimodule of M. Then:

1. The residual of M by N is the subset {s ∈ S : sM ⊆ N} of S and

it is denoted by [N : M ].
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2. The radical of N in M , denoted by
√
N , is the subset

√
[N : M ]

of S.

3. N is called primary if N 6= M and sm ∈ N where m /∈ N for all

s ∈ S and m ∈ M imply that snM ⊆ N for some positive integer

n.

The following fact insure that [N : M ] has the ideal structure.

Proposition 2.18. [18] Let N be S-subsemimodule of M and I an ideal

of S. Then the following are satisfied:

1. [N : M ] is an ideal of S. In addition, if N is subtractive, then

[N : M ] is subtractive.

2. If N is primary, then
√
N is a prime ideal of S.

Proof. :

(1) First, let s1, s2 ∈ [N : M ]. Then s1M, s2M ⊆ N which implies that

s1M + s2M ⊆ N , and hence (s1 + s2)M ⊆ N implies (s1 + s2) ∈

[N : M ]. Second, let s1 ∈ [N : M ]. Then s(s1M) ⊆ N for any

s ∈ S, and hence (ss1)M ⊆ N implies ss1 ∈ [N : M ]. Therefore,

[N : M ] is an ideal of S. Now, let s1, s1 + s2 ∈ [N : M ]. Then

s1M ⊆ N and (s1 + s2)M ⊆ N . Take y ∈ s2M , then y = s2m for

some m ∈ M . But s1m ∈ N and (s1 + s2)m = s1m + s2m ∈ N .

Since N is subtractive, y = s2m ∈ N . Thus, s2M ⊆ N , and hence

s2 ∈ [N : M ].
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(2) Since N is primary, N 6= M implies that 1 /∈
√
N , and hence

√
N is

a proper ideal of S. Now, let nn′ ∈
√
N . Then there is k ∈ IN such

that (nn′)kM ⊆ N implies nkn′kM ⊆ N . Suppose that n /∈
√
N .

Then there is m ∈ M such that nkm /∈ N implies n′knkm ∈ N .

But N being primary and nkm /∈ N implies that there is a natural

number L such that (n′k)LM ⊆ N , and hence n′ ∈
√
N . Thus,

√
N

is a prime ideal of S.

The following theorem describes the primary ideals of SαM .

Theorem 2.19. [18] Let I be an ideal of S and N 6= M be a subtractive

S-subsemimodule of M . Then:

1. I is primary ideal of S if and only if IαM is a primary ideal of

SαM .

2. IαN is primary ideal of SαM if and only if N is a primary S-

subsemimodule of M , IM ⊆ N and
√
I =
√
N .

Proof. :

(1) Suppose that I is a primary ideal of S, we want to show that IαM

is a primary ideal of SαM . Indeed, let (a1,m1)(a2,m2) ∈ IαM

such that (a2,m2) /∈ IαM . Then a1a2 ∈ I such that a2 /∈ I for

m2 ∈M . Therefore, there is a natural number n such that an1 ∈ I,

and hence (a1,m1)
n ∈ IαM . Thus, IαM is a primary ideal of
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SαM . Conversely, suppose that IαM is a primary ideal of SαM .

Now, let a1a2 ∈ I such that a2 /∈ I. Then (a1, 0)(a2, 0) ∈ IαM

where (a2, 0) /∈ IαM which implies that there is a natural number

n such that (a1, 0)n ∈ IαM , and hence an1 ∈ I. Thus, I is a primary

ideal of S.

(2) Suppose that IαN is primary ideal of SαM . Indeed, let sx ∈ N

where x /∈ N . Then (s, 0)(0, x) ∈ IαN such that (0, x) /∈ IαN

which implies that there is a natural number n such that (s, 0)n ∈

IαN , and hence sn ∈ I. Therefore, I is a primary ideal of S. Now,

by (4) in theorem 2.4, IM ⊆ N , and hence snM ⊆ N . Thus, N

is primary S-subsemimodule of M . Next, we want to show that
√
I =

√
N . Indeed, let x ∈

√
I. Then there is n ∈ IN such that

xnM ⊆ N which implies that x ∈
√
N . On the other hand, let

x ∈
√
N . Then there is n ∈ IN such that xnM ⊆ N . Now, let

m ∈ M − N , then (xn, 0)(0,m) ∈ IαN such that (0,m) /∈ IαN .

But IαN being primary implies that there is k ∈ IN such that

(xn, 0)k ∈ IαN , and hence xnk ∈ I implies x ∈
√
I. Thus,

√
I =

√
N . Conversely, we want to show that IαN is primary ideal of

SαM . Indeed, let (a1, n1)(a2, n2) ∈ IαN such that (a2, n2) /∈ IαN

implies a1a2 ∈ I such that a2 /∈ I for n2 ∈ N . But I being primary

ideal of S implies that there is a natural number k such that ak1 ∈ I.

Since IM ⊆ N , then (a1, n1)
k+1 = (ak+1

1 , (k + 1)ak1n1) ∈ IαN , and

hence IαN is primary ideal of SαM . If a2 ∈ I, then n2 /∈ N . But
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N being subtractive and since a2n1 ∈ N implies that a1n2 ∈ N .

Therefore, there is k ∈ IN such that ak1M ⊆ N . Now, following the

previous argument, (a1, n1)
k+1 ∈ IαN implies that IαN is primary

ideal of SαM .

Example 2.20. Since 4N is primary ideal of N. By the previous theorem

4NαN is a primary ideal of NαN.

2.3 Special Elements of Trivial Semiring Extension

In this section some special elements of the trivial semiring exten-

sion SαM like units, idempotents, zero-divisors and regular elements are

studied.

Notation 2.21. Let U(S) be the set of all units of S, V (M) the set of all

elements of M having additive inverse, Z(S) the set of all zero-divisors

of S and Z(M) the set of all zero divisors of M .

The following theorem provides some special elements of SαM such

as units, zero-divisors, idempotents and regular elements.

Theorem 2.22. [18] Let SαM be the trivial semiring extension of S by

M . Then the following are satisfied:

1. The set of all units of SαM ; U(SαM), is the set U(S)αV (M) (i.e.

U(SαM) = U(S)αV (M)).
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2. The set of all zero-divisors of SαM , denoted by Z(SαM), is the

set {(s,m) : s ∈ Z(S) ∪ Z(M),m ∈M}.

3. (s,m) ∈ SαM is an additively idempotent if and only if s and m

are additively idempotent elements in S and M respectively.

4. (s,m) ∈ SαM is a multiplicatively idempotent if and only if s is

multiplicatively idempotent in S and sm+ sm = m.

5. (s,m) ∈ SαM is additively regular if and only if s and m are

additively regular elements of S and M respectively.

6. If (s,m) ∈ SαM is multiplicatively regular, then s is multiplica-

tively regular element of S and sm is additively regular element of

M .

Proof. :

(1) Let (s,m) be a unit in SαM . Then there is (s′,m′) ∈ SαM such

that (s,m)(s′,m′) = (1, 0) implies (ss′, sm′ + s′m) = (1, 0), and

hence ss′ = 1 and (sm′ + s′m) = 0. Now, s(sm′ + s′m) = s2m′ +

ss′m = 0. But ss′ = 1 implies s2m′ + m = 0. Thus, s ∈ U(S) and

m ∈ V (M), and hence (s,m) ∈ U(S)αV (M). On the other hand,

let (s,m) ∈ U(S)αV (M). Then (s,m)(s−1, s−2(−m)) = (1, 0), and

hence (s,m) is a unit in SαM .

(2) Let (s,m) ∈ Z(SαM). Then there is (0, 0) 6= (s′,m′) ∈ SαM

such that (s,m)(s′,m′) = (0, 0) implies (ss′, sm′ + s′m) = (0, 0).
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If s′ 6= 0, then s ∈ Z(S) implies s ∈ Z(S) ∪ Z(M). Otherwise, if

s′ = 0, then m′ 6= 0 and sm′ + 0 = 0 implies sm′ = 0, and hence

s ∈ Z(M) implies s ∈ Z(S) ∪ Z(M). Conversely, let s ∈ Z(S).

Then there is 0 6= s′ ∈ S where ss′ = 0 implies (s, 0)(s′, 0) = (0, 0),

and hence (s, 0) ∈ Z(SαM). On the other hand, if s ∈ Z(M), then

there is 0 6= m ∈M such that sm = 0 implies (s, 0)(0,m) = (0, 0),

and hence (s, 0) ∈ Z(SαM). Thus, if s ∈ Z(S) ∪ Z(M), then

(s, 0) ∈ Z(SαM). Now, since (0,m)2 = (0, 0) for any m ∈ M

is contained in any prime ideal and (s, 0) ∈ Z(SαM). Then, by

corollary 1.21, (s, 0) is contained in some prime ideal of SαM .

Therefore, (s,m) = (s, 0) + (0,m) ∈ Z(SαM).

(3) Let (s,m) be an additively idempotent element in SαM . Then

(s,m)+(s,m) = (s,m) ∈ SαM . Therefore, (s+s,m+m) = (s,m)

which implies that s is additively idempotent element of S and m

is additively idempotent element of M .

(4) Let (s,m) be a multiplicatively idempotent element in SαM . Then

(s,m)2 = (s,m) ∈ SαM . But (s,m)2 = (s2, sm + sm) = (s,m),

and hence s is multiplicatively idempotent element in S and sm+

sm = m.

(5) If (s,m) is additively regular element in SαM , then there is (s′,m′) ∈

SαM such that (s,m) + (s,m) + (s′,m′) = (s,m) implies that

s + s + s′ = s and m + m + m′ = m, and hence s is additively
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regular element of S and m is additively regular element of M .

Conversely, let s and m be additively regular elements of S and M

respectively. Then s + s + s′ = s and m + m + m′ = m for s′ ∈ S

and m′ ∈ M , and hence (s,m) + (s,m) + (s′,m′) = (s,m) which

implies that (s,m) is additively regular element in SαM .

(6) Let (s,m) be multiplicatively regular element of SαM . Then there

is (s′,m′) ∈ SαM such that (s,m)2(s′,m′) = (s,m) implies (s2s′,

s2m′ + ss′m+ ss′m) = (s,m), and hence s2s′ = s implies that s is

multiplicatively regular element of S. Also, s2m′+ss′m+ss′m = m

implies ss2m′ + s2s′m + s2s′m = sm. Now, s2s′ = s, and hence

ss2m′+sm+sm = sm. Therefore, sm is additively regular element

of M .

Example 2.23. 1. U(NαN) = {(1, 0)}.

2. Z(Z6αZ4) = {(s,m) : s = {2, 3, 4},m ∈ Z4}.

3. (0, 0) is an additively idempotent element in NαZ2.

4. The set of multiplicatively idempotents in Z6αZ5 is equal to

{(0, 0), (1, 0), (4, 0), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)}.

5. The set of additively regular elements in Z3αZ2 is {(s,m) : s ∈

Z3,m ∈ Z2}.
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6. In Z3αZ3, the set of multiplicatively regular elements is {(s,m) :

s,m ∈ Z3}.

The following corollary handles the conditions under which SαM is

a semifield or a semidomain, and other results of the trivial semiring

extension.

Corollary 2.24. Let SαM be the trivial semiring extension. Then the

following are satisfied:

1. SαM is a semidomain if and only if S is a semidomain and M = 0.

Similarly, SαM is a semifield if and only if S is a semifield and

M = 0.

2. If 0 is the only additively idempotent element of M , then the mul-

tiplicatively idempotent elements of SαM will be of the form (s, 0)

where s is a multiplicatively idempotent element of S.

3. SαM is additively regular if and only if both S and M are additively

regular.

4. If SαM is multiplicatively regular, then S is multiplicatively regular

and M is additively regular.

Proof. :

(1) SαM is a semidomain implies that there is no zero-divisors of SαM .

But Z(SαM) = {(s,m) : s ∈ Z(S) ∪ Z(M),m ∈M} which means
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that there is no s ∈ Z(S) ∪ Z(M), and hence S is a semidomain.

Suppose, in the contrary, that M 6= 0. So, there is 0 6= m ∈ M

such that (0,m)(0,m) = (0, 0) implies that (0,m) is a zero divisor

in SαM . Thus, a cotradiction. Hence, M = 0. Now, SαM is a

semifield implies that U(SαM) = U(S)αV (M) = SαM . Hence, S

is a semifield and since every semifield is a semidomain then M = 0.

(2) sm + sm = s2m + s2m = s(sm + sm). But sm + sm = m implies

sm + sm = sm. If the only additive idempotent element of M

is 0, then sm = 0, and hence m = 0. Thus, the multiplicatively

idempotent elements of SαM are of the form (s, 0) where s is a

multiplicatively idempotent element of S.

(3) The proof is straightforward by taking arbitrary elements and com-

plete the arugument as was done in the previous theorem.

(4) Suppose that SαM is multiplicatively regular and let (s,m) be

arbitrary element in SαM . Then, by the previous theorem, s is

multiplicatively regular element in S. Therefore, S is multiplica-

tively regular. Also, sm is an additively regular element in M .

But 1.m = m is an additively regular element in M . Thus, M is

additively regular.

Since the only additively idempotent element of N is the zero, then
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by the previous corollary the multiplicatively idempotents of NαN[x] are

only (0, 0) and (1, 0).

2.4 Local Trivial Semiring Extension

This section is devoted to answer the question; when SαM is local

semiring. As it is the case of the rings, local semirings are semirings with

one maximal ideal. The following theorem insures that SαM is local

when S is.

Theorem 2.25. If S is a local semiring and M is an S-semimodule, then

E = SαM is a local semiring.

Proof. We want to show that E − U(E) is an ideal of E. For addition,

let (s1,m1), (s2,m2) ∈ E − U(E). Since U(E) = U(S)αV (M), either

both s1, s2 /∈ U(S) or at least one of them not in U(S). If s1, s2 /∈ U(S)

and since S is local semiring, S − U(S) is an ideal of S, and hence

s1+s2 /∈ U(S). Therefore, (s1,m1)+(s2,m2) ∈ E−U(E). Now, if s1 or s2

in U(S), then either m1 or m2 not in V (M). Take for example s1 ∈ U(S).

Then m1 /∈ V (M). Now, suppose that m1+m2 ∈ V (M). Indeed, there is

a ∈M such that (m1+m2)+a = 0. Therefore, m1+(m2+a) = 0 implies

that m1 ∈ V (M) which is a contradiction. Hence, m1 + m2 /∈ V (M).

Thus, (s1,m1) + (s2,m2) ∈ E − U(E). For multiplication, let (s,m) ∈

E − U(E). Then either s /∈ U(S) or m /∈ V (M). So, if s /∈ U(S),

then for (s′,m′)(s,m) = (s′s, s′m + sm′), s′s /∈ U(S). Now, suppose
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that s′s ∈ U(S). Then there is 0 6= a ∈ S such that (ss′)a = 1, and

hence s(s′a) = 1. Thus, s ∈ U(S) which is a contradiction. Therefore,

(s′s, s′m + sm′) /∈ U(E), and hence (s′,m′)(s,m) ∈ E − U(E). Now, if

s ∈ U(S), then m /∈ V (M). Now, (s′,m′)(s,m) = (s′s, s′m + sm′). So,

either s′ /∈ U(S) implies ss′ /∈ U(S) or s′ ∈ U(S), and hence s′m /∈ V (M).

Suppose, in the contrary, that s′m ∈ V (M). Then, there is a ∈ M such

that s′m + a = 0. Implies m + s′−1a = 0 which means m ∈ V (M), and

hence a contradiction. Thus, s′m /∈ V (M). Also, s′m + sm′ /∈ V (M).

Therefore, (s′,m′)(s,m) ∈ E − U(E). Thus, E − U(E) is an ideal of E

which implies that E = SαM is a local semiring.

Corollary 2.26. [18] Let F be a semifield and M be F-semimodule. Then

B = FαM is a local semiring.

Proof. Since F is a semifield, it is local semiring. By the previous theorem

B = FαM is local semiring.
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Chapter 3

Clean Like Semiring Notions and their

Transfer in the Trivial Semiring Extension

This chapter generalizes some of the clean like ring theoritic notions

into the semiring situation and study some of their properties and then

transfer these notions in the trivial semiring extension.

3.1 Clean Like Semiring Notions

The following definitions are a generalization of the clean ring notions

to the semirings.

Definition 3.1. A semiring S is called clean if every element s ∈ S,

s = u+ e , for some unit u and an idempotent e.

Next is the definitions of some clean semiring notions.

Definition 3.2. Let S be a semiring. Then:

1. S is weakly clean if for each s ∈ S either s = u + e or u = s + e,

for some unit u and an idempotent e.

2. S is almost clean if every element of the semiring can be written

as the sum of a non-zero-divisor and an idempotent.
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3. S is nil clean if for each s ∈ S, s = n+e, for some nilpotent element

n and an idempotent e.

4. S is said to be weakly nil clean if for each s ∈ S either s = m + e

or m = s+ e, for some nilpotent element m and an idempotent e.

Remark 3.3. Let R be a ring. Then:

1. Clean semiring generalizes the clean ring.

2. Nil clean semiring generalizes the nil clean ring.

Proof. The proof is straightforward.

Now, some propositions that study the relations among the men-

tioned rings will be proved. First, we recall that a semiring S is called

semisubtractive if for any a 6= b ∈ S there is always some x ∈ S such

that b+ x = a or some y ∈ S such that a+ y = b.

Remark 3.4. [10] Every subtractive subset of a semiring S is semisub-

tractive.

Proposition 3.5. Every subtractive nil clean semiring is clean.

Proof. Let S be subtractive nil clean semiring and let s ∈ S. Since

subtractive implies semisubtractive. Then there is y ∈ S such that 1+y =

s. Now, y = e + m where e is an idempotent element in S and m is

nilpotent element. So, 1 + y = s = e + m + 1. To show that s is clean,

we want to show that m+ 1 is a unit. Suppose that m+ 1 is not a unit,
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then there exist prime ideal p of S such that m + 1 ∈ p. But mn = 0

for some positive integer n, and hence m ∈ p. But since p is subtractive,

then 1 ∈ p which is a cotradiction. Thus, m + 1 is a unit. Therefore, s

is clean. Thus, S is clean.

Question Does every nil clean imply clean semiring ?

Proposition 3.6. Let S be a semiring and I be a nil ideal of S. Then

S is nil clean if and only if S /I is nil clean.

Proof. Define s+I ∈ S /I . Then, (a+e)+I ∈ S /I implies (a+I)+(e+

I) ∈ S /I . Now, (a+I)n = 0+I = I and (e+I)2 = e2+I = e+I. Thus,

(a+I) is nilpotent and (e+I) is idempotent, and hence S /I is nil clean.

Conversely, let S /I be nil clean and take s ∈ S. Then s+ I ∈ S /I , and

so s+ I = (s1 + I) + (s2 + I) where s1 + I is nilpotent for some positive

integer n and s2 + I is idempotent. Now, (s1 + I)n = sn1 + I = I. Thus,

sn1 = 0, and hence s1 ∈ S is nilpotent element. Also, (s2 + I)2 = s22 + I =

s2 + I. Hence, s2 ∈ S is an idempotent element. Therefore, s = s1 + s2

is nil clean element in S, and hence S is nil clean.

Proposition 3.7. Any finite direct product of nil clean semirings is nil

clean.

Proof. Let E = S1 × S2 × S3 × .....× Sn be a direct product of nil clean

semirings and let s = (s1, s2, ...., sn) ∈ E. Now, s = (a1 + e1, a2 +

e2, ....., an + en) implies s = (a1, a2, ..., an) + (e1, e2, ..., en). But ai, i =

1, 2, .., n being nilpotent elements implies that am1
1 = 0, ..., amn

n = 0. Thus,
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(a1, a2, .., an)
m1m2..mn = (0, 0, .., 0) and (e1, e2, .., en)

2 = (e1, e2, .., en). There-

fore, s is nil clean element of E. Thus, E is nil clean.

Proposition 3.8. Let S be a semiring and I be a nil ideal of S Then the

following are satisfied:

1. S is weakly nil clean if and only if S /I is weakly nil clean.

2. Any finite direct product of weakly nil clean semirings is weakly nil

clean.

Proof. The proof of both statements is the same as the proof in the

previous propositions.

3.2 Transfer Clean Like Notions in the Trivial Semiring Ex-

tension

This section provides the transfer of the clean like notions in the

trivial semiring extension. Actually these results are a generalization of

the results in [8,18].

Theorem 3.9. SαM is clean if and only if S is clean and V (M) = M .

Proof. Suppose that SαM is clean and s be an arbitrary element of S.

Then (s, 0) ∈ SαM implies (s, 0) = (s1, e1) + (s2, e2) where (s1, e1) is a

unit and (s2, e2) is an idempotent. Now, (s1, e1) being a unit implies that

there is (s′1, e
′
1) ∈ SαM such that (s1, e1)(s

′
1, e
′
1) = (s1s

′
1, s1e

′
1 + s′1e1) =

(1, 0), and hence s1s
′
1 = 1. Thus, s1 is a unit in S. Next, since (s2, e2)



46

is an idempotent element of SαM , (s2, e2)
2 = (s22, 2s2e2) = (s2, e2), and

hence s22 = s2. Therefore, s2 is idempotent element of S, and hence S is

clean. Conversely, let (s,m) ∈ SαM . Since S is clean, s = u+ e where u

is a unit in S and e is an idempotent element of S. Therefore, (s,m) =

(u,m)+(e, 0). Now, u ∈ U(S) and m ∈ V (M) implies (u,m) ∈ U(SαM).

Also, (e, 0)2 = (e2, 0) = (e, 0), and hence (e, 0) is an idempotent element

of SαM . Thus, SαM is clean.

Theorem 3.10. SαM is weakly clean if and only if S is weakly clean

and V (M) = M .

Proof. Now, SαM is weakly clean means that every element (s,m) ∈

SαM can either be written as (s,m) = (u,m) + (e, n) or as (s,m) +

(e, n) = (u,m) where (u,m) is a unit in SαM and (e, n) is an idempotent

element in SαM . Now, in both cases, the proof will be the same as the

proof in the previous theorem.

Theorem 3.11. SαM is almost clean if and only if S is almost clean.

Proof. Let SαM be almost clean and s ∈ S. Then (s, 0) ∈ SαM . But

SαM being almost clean implies (s, 0) = (t, x) + (e, n) where (t, x) /∈

Z(SαM) implies that t /∈ Z(S) ∪ Z(M) and (e, n) is an idempotent

element of SαM . Thus, (e, n)2 = (e2, 2en) = (e, n) and so e2 = e.

Therefore, e is an idemotent element of S. Thus, S is almost clean.

Conversely, let S be almost clean, s ∈ S and m ∈ M . Then s = t + e

such that t /∈ Z(S) ∪ Z(M) and e is an idemotent element of S. So,
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(s,m) = (t,m) + (e, 0). Now, (t,m) is a non-zero-divisor and (e, 0) is an

idempotent element of SαM . Thus, SαM is almost clean.

Theorem 3.12. SαM is nil clean if and only if S is nil clean.

Proof. Let (x, 0) ∈ SαM for some x ∈ S. Since SαM is nil clean,

(x, 0) is the sum of nilpotent element (x1, e1) and an idempotent element

(x2, e2). Therefore, (x1, e1)
n = (0, 0) for some n ∈ IN which implies

that (xn1 , nx
n−1
1 e1) = (0, 0), and hence xn1 = 0. Thus, x1 is a nilpotent

element of S. Now, (x2, e2)
2 = (x2, e2) = (x22, 2x2e2) which implies that

x22 = x2. Therefore, x2 is an idempotent element of S, and hence x =

x1 + x2. Thus, S is nil clean. Conversely, Let (x,m) ∈ SαM be an

arbitrary element. Then (x,m) = (x1, 0) + (0,m) + (x2, 0). But 0αM

being a nilpotent ideal of SαM implies that (0,m) is a nilpotent element

of SαM . Now, x ∈ S and S is nil clean. Then x = x1 +x2 where x1 is an

idempotent element of S and x2 is a nilpotent element of S which implies

that (x1, 0) is an idempotent and (x2, 0) is a nilpotent elements of S.

Since both (x2, 0), (0,m) are nilpotent elements of S, then (x2, 0)+(0,m)

is nilpotent, and hence SαM is nil clean.
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Chapter 4

Incidence Semirings and An Application of

them in Data Mining

This chapter presents the incidence semirings, which are polynomials

over a graph. It also suggests a practical implication for them in one of

the data mining techniques, which is the classification system. Indeed, a

vauluable set of centroids with largest weight which regarded as ideals in

incidence semirings will be examined. These sets are used in the design

of centroid-based classifiers, as well as for the design of multiple classifers

which compines several individual classifiers.

4.1 An Application of Incidence Semirings in Data Mining

Definition 4.1. Data mining is a process of finding useful patterns from

large amount of data. It contains several techniques, algorithms and it

can be adapted in several organizations to improve their businesses and

reach excellent results based on data [6].

One of the data mining techniques is classification, which is defined

as follows:

Definition 4.2. Classification is one of the most commonly applied data

mining techniques; it assigns items in a collection to several categories
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or classes. The goal of classification is to accurately predict the class for

each item in the data.

Each classification process starts with feature extraction and repre-

sentation of data in a standared vector space Sn, where S can be semi-

field. Each centriod-based classifier selects special elements called cen-

troids, denoted by c1, c2, ..., ck ∈ Sn and every ci defines its class N(ci)

which contains every vector v where ci is the nearest centroid of v. Ex-

amples of this method can be found in [7,24]. Multiple classifiers are used

to combine individual initial classifiers. One of the methods used to de-

sign multiple classifiers is to design several simpler initial classifiers, and

then combining them into one multiple classification model with several

classes which has the ability of correcting errors for individual classifiers.

Examples of this method can be found in [25,23].

Example 4.3. An example of classification model is credit risk which

can be used in the banking sector to identify which customers are at high

risk and shouldn’t be qualified to get loans.

Concepts that determines when we consider a classifier with centroid

set C to be efficient are introduced next.

Definition 4.4. Let C be a class of centroid set in Sn. Then:

1. The weight wt(v) of v ∈ Sn is the number of non-zero components

of v.
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2. The weight of the set C ⊆ Sn is the minimum weight of non-zero

elements in C.

3. For a finite semiring S. The information rate of a class set C ∈ Sm

defined by log|S|
|C|
m which reflects the proportion of output of the

individual initial classifiers which used to produce the outcomes of

the multiple classification.

The following definition highlights conditions that makes the classifier

with class set C efficient.

Definition 4.5. For a classifier with a class set C to be efficient, C must

satisfy:

1. C must have large weight.

2. The information rate of C must be large.

3. C has a small number of generators.

4. The classes of centroid set for each initial classifier should be dif-

ferent.

Addition research related to these properties can be found in [17,16].

So, the aim is to form sets of centroids with large weights and small

number of generators.
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4.2 Incidence Semiring and the set of centroids with largest

weight

This section presents the concept of incidence semiring and its relation

with semiring. Also, the form of the set of centroid in the incidence

semiring will be introduced. Furthermore, Concepts from graph theory

will be utilized and reflected to incidence semirings.

Definition 4.6. Directed graph G, denoted by, G = (V,E) is the set of

vertices and edges, without multiple edges but possibly with loops.

The following is the definition of incidence semiring.

Definition 4.7. [1] The incidence semiring of G over S, denoted by

IG(S), is the set consisting of zero and all finite sums
∑n

i=1 si(ui, vi),

such that n ≥ 1, si ∈ S, (ui, vi) ∈ E, where the addition is the standard

addition and the multiplication satisfied the distributive law and the rule

that for all (u1, v1), (u2, v2) ∈ E, we have:

1. (u1, v1) · (u2, v2) =

 (u1, v2) if v1 = u2 and (u1, v2) ∈ E,

0 otherwise

In particular, we have:

2.
∑

e∈E see+
∑

e∈E s
′
ee =

∑
e∈E(se + s′e)e

3. (
∑

e∈E see)(
∑

g∈E s
′
gg) =

∑
e,g∈E(ses

′
g)eg

Remark 4.8. The concept of incidence semiring is a generalization of

the concept of incidence ring, see [15].
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The definition of balanced graph is introduced next.

Definition 4.9. Let v1, v2, v3, v4 ∈ V such that (v1, v2), (v2, v3), (v3, v4),

(v1, v4) ∈ E. Then, the graph G is balanced if we have, (v1, v3) ∈ E if

and only if (v2, v4) ∈ E.

The following proposition will lead to the relation between incidence

semirings and semirings.

Proposition 4.10. The multiplication is associative in the incidence

semiring IG(S) if and only if G is balanced graph.

Proof. Suppose that G is balanced graph. Now, since the distributive

law holds for the incidence semiring IG(S) it is sufficies to show that for

elements a, b, c ∈ IG(S) of the form a = (v1, v2), b = (v2, v3), c = (v3, v4),

where v1, v2, v3, v4 ∈ V (because an arbitrary element s =
∑n

i=1 si(ui, vi) ∈

IG(S) can be written as s = s1(v1, v2) + s2(v2, v3) + s3(v3, v4) ). Now, if

(v1, v4) /∈ E, then a(bc) = 0 = (ab)c, and hence multiplication is as-

sociative. On the other hand, if (v1, v4) ∈ E and if (v1, v3) ∈ E, then

(v2, v4) ∈ E, since G is balanced. Thus, a(bc) = (v1, v4) = (ab)c. Now,

if (v1, v3) /∈ E, then (v2, v4) /∈ E and so a(bc) = (ab)c = 0. Therefore,

multiplication is associative. Conversely, suppose that the multiplication

is associative and suppose, on the contrary, that G is not balanced graph.

Indeed, let v1, v2, v3, v4 ∈ V and (v1, v2), (v2, v3), (v3, v4), (v1, v4) ∈ E such

that (v1, v3) ∈ E but (v2, v4) /∈ E. Hence, a(bc) = 0 but (ab)c = (v1, v4)

which contradicts the associative property. Thus, G is balanced.
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Corollary 4.11. If G is balanced graph. Then incidence semiring IG(S)

is a semiring.

The form of the set of centroids in the incidence semiring IG(S) will

be introduced next, but first we have the following proposition:

Proposition 4.12. The additive semigroup of IG(S) is isomporphic to

Sn, n = |E| (where |E| denotes the number of edges of a graph G).

Proof. The proof is easy by taking the map Φ : IG(S)→ Sn defined by:

Φ(
∑n

i=1 si(ui, vi)) = (s1, s2, .., sn). Clearly, Φ is homomorphisim, one to

one and onto. Thus, (IG(S),+) ∼= Sn.

Thus, multiplication can be identified on Sn as in IG(S) and the set

of centroids is identified as subset generated in IG(S).

Definition 4.13. Every set of elements c1, ..., ck ∈ IG(S) generates the

centroid set C(c1, ..., ck) = {
∑m

j=1 l1,jc1r1,j+ ...+
∑m

j=1 lk,jckrk,j | li,j, ri,j ∈

IG(S) ∪ {1}}. The centroid set C(c1, .., ck) is called the ideal generated

by c1, ..., ck.

Next, some concepts related to graph theory will be recalled.

Definition 4.14. Let G be a directed graph. Then:

1. Ein = {(u, v) ∈ E | ∃ w ∈ V | (w, u), (w, v) ∈ E}.

2. Eout = {(u, v) ∈ E | ∃ w ∈ V | (u,w), (v, w) ∈ E}.
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3. Gin = G(V,E \ Ein) is the subgraph of G = (V,E) with the same

set of vertices and the set E \ Ein of edges.

4. Gout = G(V,E \Eout) is the subgraph of G = (V,E) with the same

set of vertices and the set E \ Eout of edges.

5. WZ = |E \ (Ein ∪ Eout)|.

6. For every vertex v ∈ V , In(v) = {w ∈ V | (w, v) ∈ E}.

7. For every vertex v ∈ V , Out(v) = {w ∈ V | (v, w) ∈ E}.

Two special sets of edges are introduced next.

Definition 4.15. [1] Pk is the set of all pairs (F, v), where v ∈ V ,

F ⊆ In(v) such that |F | = k and (u, v) /∈ Ein for all u ∈ F . Also,

Out(v) ∩ Out(u1) = Out(v) ∩ Out(u2) for all u1, u2 ∈ F . We denote WL

as the largest positive integer such that PWL
is not empty or zero.

Similarly to the definition of Pk, we have:

Definition 4.16. [1] Qk is the set of all pairs (v, F ), where v ∈ V ,

F ⊆ Out(v) such that |F | = k and (v, u) /∈ Eout for all u ∈ F . Also,

In(v)∩ In(u1) = In(v)∩ In(u2) for all u1, u2 ∈ F . We denote WR as the

largest positive integer such that QWR
is not empty or zero.

Now, we will identify three sets of elements from IG(S).

Definition 4.17. Let IG(S) be the incidence semiring of a graph G over

a semiring S. Then:
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1. gZ is the set of all elements x =
∑
su,v(u, v) ∈ IG(S) such that

su,v 6= 0 ∈ S and (u, v) ∈ E \ (Ein ∪ Eout).

2. gL is the set of all elements x =
∑

u∈F su(u, v) ∈ IGin
(S) for all

pairs (F, v) ∈ PWL
and 0 6= su ∈ S for all u ∈ F .

3. gR is the set of all elements x =
∑

u∈F su(v, u) ∈ IGout
(S) for all

pairs (v, F ) ∈ QWR
and 0 6= su ∈ S for all u ∈ F .

Next is the left and right annihilator of a semiring S.

Definition 4.18. For any semiring S, we have:

1. The left annihilator of S is the set Annl(S) = {x ∈ S | xS = 0}.

2. The right annihilator of S is the set Annr(S) = {x ∈ S | Sx = 0}.

Lemma 4.19. [1] Let S be a semidomain and G be balanced graph.

Then the following are satisfied:

1. Annr(IG(S)) = IGin
(S).

2. Annl(IG(S)) = IGout
(S).

The first one only will be proved since the same process can be fol-

lowed to prove the second one.

Proof. Let x ∈ IGin
(S). Then x =

∑m
i=1 si(ui, vi), where si ∈ S and

(ui, vi) ∈ E \ Ein. Now, we want to show that IG(S)x = 0. In-

deed, let (a, b) ∈ E and suppose, on the contrary, (a, b)x 6= 0. Then,
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1(a, b)(ui, vi) 6= 0 for some i. Thus, b = ui and (a, vi) ∈ E. Hence,

(ui, vi) ∈ Ein which is a contradiction. Thus, x ∈ Annr(IG(S)). Con-

versely, let x ∈ Annr(IG(S)). Then, x =
∑m

i=1 si(ui, vi), where si ∈ S,

(ui, vi) ∈ E. Now, suppose that (ui, vi) ∈ Ein. Then, there exist

w ∈ V such that (w, ui), (w, vi) ∈ E. Hence, 1(w, ui)(ui, vi) = (w, vi) 6=

0 ∈ E. But x ∈ Annr(IG(S)) implies (w, ui)x = 0 for any multi-

ple in x. Thus, (ui, vi) /∈ Ein, and hence x ∈ IGin
(S). Therefore,

Annr(IG(S)) = IGin
(S).

Remark 4.20. Every semiring possesses a finitely generated ideal with

the largest weight among all ideals.

The next theorem is the description of the centroid set C(c1, .., ck)

with the largest weight in IG(S).

Theorem 4.21. [1] Let S be a semidomain, G is balanced graph and let

C = C(c1, .., ck) be an ideal with the largest weight in IG(S). Then the

following conditions hold:

1. wt(C(x)) = wt(x) = WZ, for all x ∈ gZ.

2. wt(C(x)) = wt(x) = WL, for all x ∈ gL.

3. wt(C(x)) = wt(x) = WR, for all x ∈ gR.

4. C contains an element x in the union of gZ , gL, gR such that wt(x) =

wt(C).

5. wt(C) = max{1,WZ ,WL,WR}.
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Proof. :

(1) Let x ∈ gZ . Then, x =
∑
su,v(ui, vi) ∈ IG(S), where (ui, vi) ∈ E \

(Ein∪Eout) and 0 6= su,v ∈ S. Obviously, wt(x) = |E\(Ein∪Eout)| =

WZ . Next, we want to show that wt(C(x)) = wt(x). Indeed, let

0 6= y ∈ C(x). Then y =
∑k

j=1 ljxrj, where lj, rj ∈ IG(S). Since

E \ (Ein ∪ Eout) = (E \ Ein) ∩ (E \ Eout), then by the previous

lemma all sums of the form ljxrj where lj ∈ IG(S) or rj ∈ IG(S)

is equal to zero. Thus, we will assume that lj = rj = 1, and hence

C(x) = Nx. Now, S is a semidomain, implies that for every n ∈ N

such that nx 6= 0, we have that wt(nx) = wt(x) (otherwise, we will

have a non-zero element n1 ∈ S such that n1 is a zero divisor which

contradicts that S is a semidomain). Now, since n is arbitrary, then

wt(C(x)) = wt(x) = WZ , where x ∈ gZ .

(2) Let x ∈ gL. Then, x =
∑

f∈F sf(f, v) ∈ IGin
(S), where (F, v) ∈

PWL
, 0 6= sf ∈ S for all f ∈ F . Since S is a semidomain and

by the definition of PWL
, we have wt(x) = |F | = WL. Next, we

want to show that wt(C(x)) = wt(x). Indeed, let 0 6= y ∈ C(x),

we want to show that wt(y) ≥ wt(x). Now, y =
∑k

j=1 ljxrj, where

lj, rj ∈ IG(S). By the previous lemma, all sums of the form ljx

is equal to zero for all lj ∈ IG(S). Hence, we will assume that all

lj = 1. Now, IG(S) =
∑

(u,w)∈E S(u,w), applying the distributive

law. Then every 1 6= rj ∈ ∪(u,w)∈ES(u,w). Also, since xrj 6= 0

then rj ∈ ∪(v,w)∈ES(v, w). Now, the definition of PWL
implies
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Out(v) ∩ Out(f) is the same set T for all f ∈ F . Since xrj 6= 0,

then all rj ∈ ∪w∈TS(v, w) (otherwise, suppose that (v, w) ∈ E such

that w /∈ Out(f) implies (f, w) /∈ E, and hence xrj = 0, which is a

contradiction). Now, since S is semidomain, then wt(xrj) = wt(x)

for each rj ∈ ∪w∈TS(v, w). This and the distributive law implies

that wt(y) ≥ wt(x). Therefore,wt(C(x)) = wt(x) = WL, where

x ∈ gL.

(3) The proof is the same as the previous one.

(4) Let wt(C) > 1 and let 0 6= x ∈ C with minimal weight in C. Now,

suppose that x /∈ Annr(IG(S)) ∪ Annl(IG(S)). Then, by lemma,

x /∈ IGin
(S) ∪ IGout

(S). Indeed, there exist (a, b), (c, d) ∈ E such

that (a, b)x 6= 0 and x(c, d) 6= 0. Hence, (a, b)x(c, d) 6= 0, implies

wt((a, b)x(c, d)) = 1. But (a, b)x(c, d) being an element in C, im-

plies by (1) that wt(C) = 1 which contradicts the assumption that

wt(C) > 1. Thus, this case is not a possible case. Next, suppose

that x ∈ Annr(IG(S)) \Annl(IG(S)). Then, there exist (v, w) ∈ E

such that x(v, w) 6= 0. Clearly, wt(x(v, w)) ≤ wt(x). But by the

minimality of x and since x(v, w) ∈ C we have wt(x(v, w)) = wt(x).

Hence, there exist a subset F ⊆ In(v) such that x =
∑

f∈F sf(f, v),

where 0 6= sf ∈ S. Now, |F | = wt(x). Furthermore, from

lamma, x ∈ IGin
(S) implies (f, v) /∈ Ein for all f ∈ F . Now,

Out(v) ∩ Out(f1) = Out(v) ∩ Out(f2) (otherwise, suppose that
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there is w ∈ V such that (f1, v)(v, w) 6= 0 but (f2, v)(v, w) = 0

implies (f2, w) /∈ E, and hence wt(x(v, w)) < wt(x) which contra-

dicts the minimality of weight of x). Thus, (F, v) ∈ P|F |. Now,

by the minimality of weight of x we have wt(C) = wt(x) = |F |.

Condition (2) shows that wt(x) ≥ WL. But, by the definition of

WL, wt(x) = WL. Thus, |F | = WL, (F, v) ∈ PWL
and (2) implies

x ∈ gL. Therefore, in this case we have x ∈ ∪(gZ , gL, gR) such that

wt(x) = wt(C). For the case that x ∈ Annl(IG(S)) \Annr(IG(S)),

the proof is the same of the previous case. Finally, suppose that

x ∈ Annr(IG(S))∩Annl(IG(S)). By lemma, x ∈ IGin
(S)∩IGout

(S).

Now, the maximality of weight of C and condition (1) implies that

wt(C) = WZ . Thus, x ∈ gZ . Since wt(C) = wt(x), then there exist

x ∈ ∪(gZ , gL, gR) such that wt(x) = wt(C).

(5) By (4) we have wt(C) ≤ max{1,WZ ,WL,WR}. But because of

the maximality of weight of C and the previous conditions we have

wt(C) = max{1,WZ ,WL,WR}.

To sum up, a full description implemented to the set of centroids with

largest weight which plays an important role in the design of centroid-

based classification system that can be considered as one of the main

functions of data mining techniques.
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والتوسعة شبه الحلقية  للنظيفة أشباه الحلقات المماثلة
 البدهية

 

 
 إعداد

 لسامة حسين جمسندس أ
 

 
 إشراف

 ةداربعخالد د. 
 
 

، بكلية الرياضياتقدمت هذه الأطروحة استكمالا لمتطلبات الحصول على درجة الماجستير في 
 فلسطين.الدراسات العليا، في جامعة النجاح الوطنية، نابلس، 
2020 



 ب
 

 والتوسعة شبه الحلقية البدهية أشباه الحلقات المماثلة للنظيفة
 إعداد

 سندس أسامة حسين جمل
 إشراف

 خالد عداربةد. 
 

 الملخص
و والخصائص النظرية للمثاليات للتوسعة ة يناقش الجزء الأول من الأطروحة الخواص الجبري

 لتلك المثبتة في التوسعة الحلقية البدهية.شبه الحلقية البدهية التي توفر نتائج تناظرية 

تم تحديد العناصر المختلفة مثل الوحدات، قواسم الصفر وغيرها من العناصر بالإضافة الى 
 .دراسة مثاليات الطرح والمثاليات الأولية للتوسعة شبه الحلقية البدهية

لنظيفة لحالة أشباه الجزء الثاني يدرس تعميم بعض المفاهيم المتعلقة بالحلقات المماثلة ل
 الحلقات ودراسة بعض خصائصها ثم تعميم هذه المفاهيم على التوسعة شبه الحلقية البدهية.

تصنيف الذي يتم يقدم الجزء الأخير تطبيقا حيويا لتوظيف أشباه الحلقات البدهية في نظام ال
لهذه العناصر من العناصر على عدة مجموعات بناءا على الصفات المشتركة مجموعة فيه توزيع 

 والذي يعتبر من أكثر التقنيات المستخدمة في التنقيب عن البيانات.
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