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Clean Like Semi-ring Notions and Trivial Semi-ring Extension

by
Sondos Osama Hussain Jamal
Supervisor
Dr. Khalid Adarbeh

Abstract

Suppose that S is a commutative semiring with unity different than zero and
M an S-semimodule. In this thesis, we study the algebraic and the ideal
theoretic properties of SaM, where SaM denotes the trivial semiring
extension (or the expectation of S), providing an analog results to the proved
ones in the ring situation. In this thesis, different elements like units, zero
divisors and other elements of SaM as well as the special ideals like
subtractive ideals, prime ideals and other types of ideals of SaM will be
identified. The generalization of some of the clean like notions into the
semiring situation will be investigated; this thesis also examines some of
their properties and the transfer of these notions in the trivial semiring
extension. This thesis also provides an application of semirings in
classification system which is considered an important technique in data
mining which used to assign every element to specific groups based on the

similarities between the referred to elements.



Introduction

In 1934, H.S Vandiver [22] formally defined semirings, which are rings,
but without requiring the existence of the additive inverse for each ele-
ment. The algebraic structure of semirings have lots of practical impli-
cations in both math and computer science sectors [10]. They also have
implications in data minig sector especially in the classification system
[1].

A typical example of a semiring which is not a ring is the set of
all non negative integers i.e. natural numbers under the usual addition
and multiplication of integers. Another example, which is not trivial,
is the set of all the ideals of a given ring under the usual addition and
multiplication of ideals. It forms a semiring which is not a ring, since
one can add or multiply two ideals but cannot subtract them. There are
lots of previous studies providing examples of important sets that have
the structure of semirings but do not have the ring structure [22].

Nagata [4] in 1962 introduced the idealization of R-module M over a
ring R in order to facilitate interaction between rings and their modules
and also to provide families of examples of commutative rings contain-
ing zero-divisors (reduced elements). A generalization of idealization
from rings to semirings is possible in a very identical way; that is to

say if S is a semiring and M is an S-semimodule; then, the set SaM



where the underlying group is S x M and the multiplication is defined
by (a,m)(b, f) = (ab,af + bm) for a,b € S and m, f € M forms a new
semiring that extends S; it is called the trivial semiring extension of S
over M [9].

In 1977, Nicholson [21] introduced the notion of the clean rings; he
defined a ring to be clean if all its elements are clean, where an element
is called clean if it can be written as a sum of a unit and an idempotent.
In 2013, Alexander J. Diesl [8] introduced another ring notion called the
nil clean ring; he defined a ring to be nil clean if all its elements are nil
clean, where the nil clean element is the one that can be written as a sum
of a nilpotent and an idempotent. He proves in the same article that the
class of nil clean rings is contained in the class of clean rings. Previous
studies examines many of the related notions to the clean notion such as
weakly clean, strongly clean, etc. Check for example [8, 21].

The concept of incidence semiring is a generalization of the concept
of incidence ring [15], which can be cosidered as sets of polynomials over
a graph, where the edges are the unknowns and the coefficients are taken
from a semiring. The construction of incidence rings has many useful
practical implications in different areas such as data mining.

In this thesis, all semirings are assumed to be commutative with unity
1 # 0, where S denotes a semiring, M denotes an S-semimodule, SaM
denotes the trivial semiring extension of S by M, G denotes a directed

graph and I5(.S) denotes the incidence semiring of G over S.



Chapter one introduces some basic definitions, examples and the-
orems in semirings, semimodule, trivial ring extension and clean like
notions in ring case which will be transformed to semiring case.

Chapter two studies some of the algebraic and the ideal theoretic
properties of the trivial semiring extension SaM; some special elements
and ideals of SaM are identified; local trivial semiring extension is stud-
ied. The main idea highlighted in this chapter is how the referred to
properties of SaM are related to similar ones of S.

Chapter three presents how to generalize some of the clean like notions
into the semiring situation; some of their properties, especially the ones
that have an analog in the ring situation are studied; the transfer of these
notions in the trivial semiring extension is also examined.

Finally, the incidence semiring and the set of centroids with largest
weight which are valuable in the design of centroid based classifiers, that
are considered as one of the most common techniques used in data mining

models, are studied.
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Chapter 1

Preliminaries

This chapter presents basic information on semirings and the ideals
associated with them. It also provides a summary on clean rings and

some related ring theoretic notions.

1.1 Introduction to Semirings

In this section, major definitions and theorems in semiring theory are

provided. The main references are [4, §].

1.1.1 Definitions and Examples

Definition 1.1 (Semiring). A semiring is an algebraic structure, consist-
ing of a non empty set S and two binary operations, addition (4) and

multiplication (.) such that the following axioms hold:

1. (S, +) is associative and commutative that is a+ (b+c¢) = (a+0b)+c
and a+b = b+ a. Also, there exist an identity element 0 such that
a+0=04+a=aforall a,bces.

2. (5,.) is associative that is a(bc) = (ab)c and there is an identity

element, denoted by 1 such that al = a, for all a,b,c € S.

3. To avoid the trivial case, we assume that 0 # 1.



4. The multiplication is distributive over addition from both sides that

is a(b+ ¢) = (ab) + (ac) and (a + b)c = (ac) + (be).
5. For any x € S, 0x = 20 = 0.

In other words, semirings are rings, but without requiring the exis-
tence of the additive inverse for each element. Semirings were formally
defined by H.S Vandiver in 1934 [22], and they have many practical im-
plications in both mathematical and computer science sectors. See for

example [10,1].

Definition 1.2. A semiring S is said to be commutative if the multipli-

cation is commutative (i.e ab = ba, for a,b € S).

Example 1.3. The set of natural numbers N under the usual addition
and multiplication of integers is a commutative semiring. Also, the set

of n X n matrices with non negative entries M, (N) form a semiring.

It should be pointed out that all rings are semirings, but the converse

is not true as in the case of naturals N.

Definition 1.4 (Division semiring). Let S be a semiring. Then S is said
to be a division semiring if every non zero element in S has a multiplica-
tive inverse (i.e. for all 0 # x € S, there exist 0 # y € S such that
zy = 1).

Definition 1.5 (Semidomain). A semiring S is called a semidomain if

ab = ac implies b = ¢ for all b, c € S and all nonzero a € S which means

that there is no zero-divisors in S.



Definition 1.6 (Semifield). A semiring S is said to be semifield if it is

a commutative division semiring. A good example is Q" U {0}.
Next we introduce the definition of a semimodule.

Definition 1.7 (semimodule). Let S be a semiring. An S-semimodule is
a non empty set M on which one have two operations addition and scalar

multiplication by elements of S where the following axioms are satisfied:

e The addition is associative, commutative, and has an identity ele-

ment, denoted 0,;.
e Forall a,b € S and m,n € M:
1. (ab)ym = a(bm)
2. (a+b)m=am+bm
3. a(lm+n)=am+an
4. Im = m and Om = 0y = a0y,
Example 1.8. Let M be the set of all functions between a set A and
a semiring S where the addition is the usual addition of functions and

the scalar multiplication is given by (a.f)(x) = f(a)f(z), for any a € A,
reAand f € M.

1.1.2 Elements and Ideals

In this section, definitions of special elements and sets of a semiring

S are presented.



Definition 1.9. Let z be an element of a semiring S.

1. z is called unit if it has a multiplicative inverse (i.e. there exist

0 # y € S such that xy = 1). Any non zero element in R is a unit.

2. x is called nilpotent if " = 0, for some positive integer n which is

called the nilpotency degree. In Zj4, 2° = 0 is nilpotent.

3. x is called additively idempotent if z + x = x. An example is 0 in

L.

4. z is called multiplicatively idempotent if 2> = z. An example is 1

in ZQ.

5. x is called zero divisor if there is 0 # y € S such that xy = 0. In

Zg, 3 is a zero divisor since 3.2 = 0.

6. x is called additively regular if there is 2’ € S such that x+z+2a' =
. InZ5,24+2+3=2.

7. x is called multiplicatively regular if there is 2’ € S such that

2?7’ = x. In Zg, 3°.1 = 3.

Similar to the ring situation, the ideals play a fundamental role in
the theory of semirings. The definition of subtractive, prime, maximal,
primary and nilpotent ideals is presented next. Recall that a subset I of
a ring R is called an ideal if it is closed under subtraction (i.e. a —b € I,
for all a,b € I) and absorbs the elements of R (i.e. ra € I, for all

re Racl).



Definition 1.10 (Ideal). Let I be a subset of a semiring S. Then I is
called an ideal of S if it is closed under addition (i.e. = +y € I, for all

x,y € I) and absorbs the elements of S (i.e sx € I for any s € S and
x € I). I is called proper ideal if I # S.

Recall that for two given ideals I and J in .S. The addition of I +J =
{a+b:a€l,be J} and the multiplication of I.J = {ab:a € I,b € J}.

Remark 1.11. The set of all the ideals of a given ring under the usual
addition and multiplication of ideals forms a semiring which is not a ring,

since one can add or multiply two ideals but can not subtract them.

Let I denotes an ideal in a semiring S. Below some definitions of

special ideals.

Definition 1.12. 1. [ is called subtractive if whenever x € I and
x+y €I, then y € I. Let S be the semiring of natural numbers
with usual addition and multiplication. Then I = 3N is subtractive

ideal.

2. Iis called prime if I C S and if zy € [ , then eitherz € T or y € I.

An example of prime ideal is 2N.

3. I is called maximal if I C S and if I C J, either J = S or J = I.

An example is 2N.

4. I is called primary if zy € I implies z € I or y™ € I where m € Z™.
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5. 1 is called nilpotent if I* = 0 for some k € Z*. The smallest k such
that I* = 0 is called the nilpotency degree of a nilpotent ideal I

and it is denoted by n.deg(7).
6. I is called nil if all its elements are nilpotent.
The following is the definition of the radical of an ideal I.

Definition 1.13. Let [ be an ideal of a semiring S, the radical of I is
the set of all z € S such that 2™ € I, for some n > 0 and it is denoted

by VI. So, VI ={x € S:a2"cI,necN}. Iis called radical if /I = I.

Example 1.14. Let S be the semiring of natural numbers. Then v4N =
2N and v5N = 5N.

Next is the definintion of subtractive and semisubtractive semiring.

Definition 1.15 (Subtractive Semiring). A semiring S is called subtrac-

tive if every ideal of S is subtractive. An example is M3(R) [14].

Definition 1.16 (Semisubtractive Semiring). A semiring S is called
semisubtractive if for any a # b € S there is always some x € S such

that b+ 2 = a or some y € S such that a+y = b. An example is NU{0}.
Next the definition of quotient semiring is introduced.

Definition 1.17 (Quotient semiring). Let I be an ideal of a commutative
semiring S. Then the quotient semiring of S by I'isS /7 = {s+I : s € S}

where the addition and multiplication are defined as follows:
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o (s1+ 1)+ (sa+1)=(s1+s2)+ 1.

° (81+I).(82+I) = (8182)+[.

1.1.3 Sets and Ideals

Recall that a nonempty subset C' of S is called multiplicatively closed

set if 1 € C' and if ¢1,¢9 € C, then ¢y € C.

Definition 1.18. A multiplicatively closed set C of S is called saturated

if c1co € C' means that both ¢, ¢ € C for all ¢1,¢c9 € S.
Similar to the ring situation, the following result satisfied.

Proposition 1.19. [19,11] Let C' be multiplicatively closed set of S and
I be an ideal of S that is maximal with respect to I NC = ¢. Then I is

prime ideal of S.

Proof. Suppose, in the contrary, that I is not prime. So, there is ab € [
such that @« ¢ I and b ¢ I. Clearly, I + Sa is a semiideal (because it
is sum of two ideals), and hence I C I + Sa implies I + Sa N C # ¢.
Therefore, there is ¢4 € C such that ¢; = i1 + za for i1 € I, x € S.
Similarly, there is ¢y € C such that co = 19 + yb for 19 € I, y € S.
Now, cico = i1i9 + 11yb + ioxa + xyab, and hence cico € I. But C
being multiplicatively closed set and ¢, cy € C implies cico € C'. Thus,

I N C # ¢ which is a contradiction. Hence, I is prime ideal of S. ]

Proposition 1.20. [20] C' is a saturated multiplicatively closed set of S

iof and only if its complement is a union of prime ideals of S.
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Proof. Let C' be saturated multiplicatively closed set of S and s € ct.
Then (s) N C = ¢. Hence, by proposition 1.19, if (s) is prime, then
we are done. Otherwise, (s) is a subset of a prime ideal which is also
disjoint from C'. Thus, every element in CC is a subset of prime ideal of
S such that it is disjoint from C'. Therefore, Ot = UP, where P, is prime
ideal in S and 1 = 1,2, ..... Conversely, let Ct = UP, where P, is prime
ideal in S and ¢ € I. Indeed, let x,y € C and assume that zy ¢ C.
Then zy € UF;, so xy € P; for some j € I. Therefore, either x € P;
or y € P;. Implies, either ¢ C' or y ¢ C, and hence a contradiction.
Now, suppose that zy € C' and x,y ¢ C. Then x or y in P;, and hence
vy € P;. Thus, xy ¢ C which is a contradiction. Therefore, C' is a

saturated multiplicatively closed set of S. ]

Corollary 1.21. [18] The set of zero-divisors Z(M) of M is a union of

prime ideals of S.

Proof. Let C =S — Z(M). Now, we want to show that C is a saturated
multiplicatively closed set of S. Indeed, let a,b € C where a,b € S
implies a ¢ Z(M) and b ¢ Z(M). Suppose, in the contrary, that ab ¢ C
which means that ab € Z(M). Therefore, there is 0 # m such that
(ab)m = 0. So, a(bm) = 0 implies that either bm = 0, and hence
b e Z(M) or bm # 0, and hence a € Z(M). In both cases we get
a contradiction which implies that ab € C. Conversely, suppose that
ab € C. Then ab ¢ Z(M) and so both a ¢ Z(M) and b ¢ Z(M).

Now, in the contrary, suppose that a € Z(M) implies am = 0 for some
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m # 0. Hence, (ab)m = 0 for some m # 0. Thus, ab € Z(M) which is a
contradiction. Therefore, C' is a saturated multiplicatively closed set of

S. Thus, by proposition 1.20, Z(M) is a union of prime ideals of S. [J

1.2 Trivial ring extension

This section explains the trivial ring extension which is a construction
utilized often in previous studies to solve open questions, conjectures and

to provide examples [4].

Definition 1.22 (Trivial ring extension). Let R be a ring and M be an
R-module. The trivial ring extension of R by M is the ring RaM where
the underlying group is R x M under the componentwise addition and
the multiplication is defined by (a,m)(b, f) = (ab,af + bm).

The ring RaM is also called the idealization of M over R. RaM contains
a subring Ra/(0) which is isomorphic to R. It also contains a nilpotent

ideal (0)aM with nilpotency degree 2 which is isomorphic to M.

The trivial ring extension was first introduced in 1962 by Nagata [4] in
order to facilitate interaction between rings and their modules and also
to provide families of examples and counter examples of commutative

rings containing zero-divisors (reduced elements).

Proposition 1.23. [20,19] Let R be a commutative ring, I an ideal of
R, M an R-module and N a submodule of M. Then the following are

satisfied:
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1. IaN s an ideal of RaM if and only if IM C N.

2. The mazximal ideal of RaM can be written as maM, where m is a

mazximal ideal of R.

3. The prime ideals of RaM have the form paM , where p is prime
wdeal of R.

4. Radical ideals of RaM can be written as JaM , where J is radical

ideal of R.
5. VIaN = /IaM. Hence, Nil(RaM) = Nil(R)aM.
Next, we will see the form of some special elements in RaM.

Proposition 1.24. [18,21] Let R be commutative ring and M an R-

module. Then:

1. The set of zero-divisors of RaM, denoted by Z(RaM), is given by
Z(RaM)=A{(r,m):re Z(R)UZ(M),m € M}.

2. The set of units of RaM , denoted by U(RaM ), is given by U(RaM ) =
U(R)aM.

3. The set of idempotent elements of RaM, denoted by [d(RaM), is
given by Id(R)a0.

Theorem 1.25. [3] Let Ry and Ry be commutative rings, and let M; be an
Ri-module, i = 1,2. Then (Ry x Ry)a(My x M) = (RiaMy) x (ReaMy).
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Proof. 1t is easily to show that the map ¢ defined by ¢((r1, r2), (m1,mse)) =

((r1,mq), (r9,mg)) is an isomorphism. O

Next is the definition of finitely generated module M and a Noethe-

rian ring R.

Definition 1.26. An R-module M is said to be finitely generated if there
exist ay, as, ..,a, € M such that for any m € M we have r{,r9,..,7, € R

with m = riay + reas + .. + rpa,.

Definition 1.27. A ring R is a Noetherian ring if it satisfies the as-
cending chain condition on ideals that is, given an increasing sequence
of ideals I; C ... C I, C ... there exist a natural number n such that

I, =1, for k> 0.

Theorem 1.28. The trivial ring extention RaM is Noetherian if and

only if R 1s Noetherian and M 1is finitely generated.

1.3 Clean Like Ring Notions

Here we recall some of the clean like ring notions and some relations

among them.
Definition 1.29. Let R be a ring and r € R.

1. r is called clean if there exist a unit v and an idempotent element

e such that r = u + e.



16

2. r is called nil clean if there exist a nilpotent element n and an

idempotent element e such that r =n + e.
Now, we introduce the definitions of clean and nil clean rings.

Definition 1.30. A ring R is called clean if all of its elements are clean.

R is clean ring.

Definition 1.31. A ring R is called nil clean if all of its elements are nil

clean. Zj is nil clean ring.

Proposition 1.32. If b is nilpotent element of R. Then 1 — ab is a unit

for all a € R. In particular, if b is nilpotent, then 1 + b 1s a unit.

Proof. Let " = 0, for positive integer n. Now, (1 — ab)(1 + ab + (ab)? +
oo + (ab)® 1) = 1. Thus, (1 — ab) is a unit for all @ € R. Now take

a = —1, we have 1 + b is a unit. ]

Proposition 1.33. Every nil clean ring is clean. But the converse is not

always true.

Proof. Let R be nil clean ring and let r € R, r—1 € Randr —1 =
b + e where b" = 0, for some positive integer n and e?> = e. Implies
r=e+ (b+1) is clean since (b+ 1) is a unit by the previous proposition.

Thus, R is clean. ]

Proposition 1.34. Let R be a ring and I be a nil ideal of R. Then R

1s nil clean if and only z'fR/I 1 nil clean.

Proposition 1.35. Any finite product of nil clean rings is nil clean.
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Chapter 2

PROPERTIES OF TRIVIAL SEMIRING
EXTENSION
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Chapter 2

Properties of Trivial Semiring Extension

This chapter focuses on the algebraic and ideal properties of the trivial
semiring extension.
Most of the results provided in this chapter are either a generalization or

an enhancement of the results obtained by Peyman Nasehpour in [18].

2.1 Definition and Example

The following proposition includes the definition of the trivial semir-

Ing extension.

Proposition 2.1. Let S be a semiring and M an S-semimodule. Then
the set SaM with the componentwise addition and the multiplication:
(51,m1).(52, m2) = (5152, s1m2 + S21111)

1S a Semiring.

The semiring SaM in the previous proposition is called the trivial
semiring extension of S by M. It is very clear that this semiring extension

generates the trivial ring extension mentioned in the introduction.

Proposition 2.2. Let SaM be the trivial semiring extension of S by M.
Then:
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1. SaM contains a subsemiring Sa(0) that is isomorphic to S.

2. SaM contains a nilpotent ideal (0)aM with nilpotency degree 2

that is 1somorphic to M.

3. (‘g)O‘T]‘]@ = S. (Proof: Let ® : SaM — S defined by: ®((s,m)) = s.

Then Ker(®) = (0)aM and so (g)aa% =S).

The following example provides a matrix analog for the trivial semir-

ing extension, as it is the case in the trivial ring extension.

Example 2.3. Let S be a semiring and M an S-semimodule. Then the

s m
set of all matrices of the form E = where s € S, m € M under

0 s
the usual addition and multiplication of matrices is a semiring which is

isomorphic to SaM .

S m

Proof. Let ® : E — SaM be defined by: ¢ = (s,m) so
0 s
s [ AT L= [T ) Lo [T )] which
0 s 0 s 0 s 0 s9

means that ® is homomorphisim. It is easy to show that ® is one to one

and onto so it is an isomorphisim. ]

2.2 Ideal Properties of Trivial Semiring Extension

This section will introduce some ideal properties of the semiring

SaM. From now on, S denotes a semiring and M denotes an S-semimodule.
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The following theorem generalizes the proposition 1.23.

Theorem 2.4. [18] Let I be an ideal of S and N an S-subsemimodule of

M. Then the following are satisfied:
1. IaN is an ideal of SaM if and only if IM C N.
2. IfIM C N. Then VIaN = VIaMl.
3. Nil(SaM) = Nil(S)aM.

4. Let J be an ideal of SaM and define L and Q) as: L={s € S :
dme M| (s,m)e J} and Q={g e M : T s € S| (s,q) € J}.
Then:

(a) L is an ideal of S.

(b) Q is an S-subsemimodule of M.
(¢) LM C Q.

(d) J C LaQ.

5. 0aM is a subset of any prime ideal of SaM .

6. If Jin (4) is a subtractive prime ideal of SaM. Then L is subtrac-

tive prime ideal of S with J= LaM .
Proof. :

(1) Suppose that TaN is an ideal of SaM. We want to show that [ M
C N. Indeed, let x € IM. Then x = am for some a € I,m €

M. Now, a € I and N is a subset of M implies that (a,0) €
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IaN. But IaN being an ideal of SaM implies that (0,m)(a,0) =
(0,am) € IaN. Thus, am = z € N. Conversely, assume that 1M
C N. We want to show that IV is an ideal of SaM. (i) Let
(a1,m1), (ag,m2) € IaN. Then (a; + as,ny + n2) € IaN. (ii) Let
(s,m) € SaM. Then (s, m)(a,n) = (sa,sn+am). But sa € I, sn €
N and am € N (since IM C N). So, (sa,sn+am) € IaN. Thus,
IaN is an ideal of SaM.

First, let us show that (s,m)" = (s",ns""'m) by induction. So,
(s,m)t = (s,m), (s,m)* = (s?,2sm). Now, suppose that it is true

for n-1, (s,m)" ! = (s"1, (n — 1)s" lm). Then for n we have:

Now, we start the proof of the equality vIaN = v IaM by showing
first that vIaN C v/ TaM. For that, let (s,m) € VIaN. Then
there is n € IN such that (s,m)" = (s",ns""'m) € IaN which
implies that s" € I, and hence s € v/I. Thus, (s,m) € VIaM.
Oppositely, take (s,m) € v IaM. Then there is n € IN such that
s" € I. Now, (s,m)"™ = (s"* (n+ 1)s™m). Since I is an ideal of
S, s.s" = s"*t € I. Also, IM C N implies that (n + 1)s"m € N.

Thus, (s,m)"™ € IaN, and hence (s,m) € vVIaN.
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Nil(SaM) = v/0a0 = v0aM = Nil(S)aM.

(a) Let s1,s9 € L. Then there is my,my € M such that (s1,mq),
(s2,m9) € J. But J being an ideal of SaeM implies that (s1,mq) +
(82, m9) = (81 + S9,m1 +ms) € J, and hence s; + s2 € L. Now, let
s € S and s; € L. Then there is m € M such that (s;,m) € J.
But J is an ideal of SaM which implies that (s,m).(s1,m) =
(ss1,sm + symy) € J, and hence ss; € L. Thus, L is an ideal of S.
(b) The addition similar to (a). For the scalar multiplication, let ¢
€ Q. Then there is s € S such that (s,q) € J. Take s = 0, then (0, q)
€ J. Since J is an ideal of SaM, we have (s,m)(0,q) € J implies
that (0, sq) € J, and hence sq € @) where Q is an S-subsemimodule
of M.

(c) We want to show that LM C Q. Indeed, Let y € LM. Then
y = lmy for some [ € L and m; € M. Since J is an ideal of SaM,
then (0,m)(l,m) = (0,lmy) € J implies that Im; € Q.

(d) Since J is an ideal of SaeM, then J C LaQ.

By (3) VO0aM = Nil(SaM) implies that (0)aM C Nil(SaM) =

N P, where P is a prime ideal in SaM.

We want to show that L is subtractive ideal of S. Indeed, let
$1,81 + So € L. Then there is my, my € M such that (s;,mq), (s1+
So,mg) € J. Since J is subtractive prime ideal containing 0aM,

then (s1 + s2,m2) + (0,m1) = (s1,m1) + (s2,m2) € J implies that



23

(s2,m9) € J, and hence sy € L. Moreover, L is prime ideal of
S. To prove that, let s;so € L. Then there is m € M such that
(s189,m) € J. Now, (s182,m) = (8189,0) + (0,m) and J being
subtractive ideal implies that (s1s2,0) € J. Since J is prime ideal
and (s152,0) = (s1,0)(s2,0), then either (s1,0) € J implies s; € L
or (s9,0) € J implies so € L. By (d) in (4) J C LaM. Conversely,
let (I,my) € LaM. Then, there is m € M such that (1,m) € J.
But J being subtractive prime ideal implies that (I, m)+ (0,m;) =

(I,m+my) = (I,m1) + (0,m) € J, and hence (I,m;) € J.
[

Recall that an ideal I of a ring R is called nil if all the elements of
I are nilpotents. It is called nilpotent ideal if there is a positive integer
n such that " = 0. The nilpotency degree of a nilpotent ideal [ is
denoted by n.deg(l) and defined to be the smallest positive integer k
such that I* = 0. The same definitions adapted to the semiring situation
and deduce the following corollary from parts 2 and 3 in the previous

theorem.

Corollary 2.5. Let I be an ideal of S and N be a subsemimodule of M.

Then the following are satisfied:
1. IaN s radical ideal of SaM if and only if I is radical ideal of S.

2. SaM s nil semiring if and only if S 1s nil semiring.
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Proof. -

(1) IaN is radical ideal if and only if vIaN = IaN if and only if
VIaN = VIaM (by 2 in theorem 2.4) if and only if VI = I if and

only if I is radical ideal of S.

(2) SaM isnilif and only if Nil(SaM) = SaM if and only if Nil(S)aM
= SaM if and only if Nil(S) = S if and only if S is nil.

[]

The following fact provides the transfer of the nilpotent notion to the

trivial semiring extension.

Proposition 2.6. Let I be an ideal of S and N be a subsemimodule of
M. Then the following are satisfied:

1. IaN s a nilpotent ideal of SaM if and only if I is a nilpotent ideal

of S. Moreover, if n.deg(I) = m, then m < n.deg(IaN) < m+ 1.

2. Particularly, SaM is nilpotent semiring if and only if S is nilpotent

and if n.deg(S) = m, then m < n.deg(SaM) < m + 1.
Proof. :

(1) Let (z,e) € SaM. Then (z,e)* = (z* ka*"le). Assume that [ is a
nilpotent ideal with n.deg(I) = m. Then (z,e)™" = (2™, (m +
1)z™e) = (0,0) for any (z,e) € IaN, and hence IaN is nilpo-

tent with nilpotency degree at most m + 1. From another side,
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if n.deg(IaN) is k, then (z,0)f = 0 for any x € I, and hence
k > n.deg(I) which forces to have m < n.deg(IaN) < m+1. Con-
versely, JaN is nilpotent imply that (IaN)* = (0,0) for some k

and particularly (x,0)* = (0,0) for all x € I imply I is nilpotent.
(2) It is direct consequence of (1), just take I =S and N = M.

[]

The following example shows that if n.deg(I) = m, then n.deg(IaN)

can take both of the values m and m + 1 according to V.

Example 2.7. 2ZsaZs is a nilpotent ring (hence) semiring of nilpotency

degree 4, while 2Zgsa27s ideal of ZgaZg with nilpotency degree 3.

Proposition 2.8. Let SaM be the trivial semiring extension. Then the

following are satisfied:

1. If U is a mazimal ideal of SaM of the form U = UaM , then L s

a maximal ideal of S.

2. If P is an ideal of SaM of the form P = BaM, then P is prime
ideal of SaM if and only if B is prime ideal of S.
Proof. :
(1) Let U = oM be a maximal ideal of SaM and suppose contrarily
that U is not maximal ideal of S. Then there is a maximal ideal U’

of S such that & C ' C S, and hence there is an ideal WM with

U C WaM C SaM which gives a contradiction.
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(2) Let P = PaM be prime ideal of SaM. Now let zy € . Then
(xy,0) = (x,0)(y,0) € PaM. But P being prime ideal of SaM
implies that either (z,0) € PaM or (y,0) € PaM. Thus, either
xr € Pory e P, and hence P is prime ideal of S. On the other side,
let B be prime ideal of S and let (x,m)(y,n) = (xy,zn+ym) € P.
Since P is prime ideal of S, then either x € P or y € R. Therefore,

either (x,m) € P or (y,n) € P. Thus, P is prime ideal of SaM.

]

Although the form of the prime ideals and the maximal ideals of
SaM is not fully determined in the previous theorem. §Still in some
classes of semirings such as weak Gaussian semiring is possible. Below
is the definition of the weak Gaussian semirings followed by the form of

the prime (maximal) ideals of SaM.

Definition 2.9. S is called a weak Gaussian semiring if each prime ideal

of a semiring .S is subtractive.

The following is a corollary from proposition 2.8 and the proof is the

salle.

Corollary 2.10. [18] If SaM is a weak Gaussian semiring. Then the

following statements hold:

1. Every prime ideal of the semiring SaM 1is of the form P = PaM,

where P 1s a subtractive prime ideal of S.
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2. Every maximal ideal of the semiring SaM is of the form U = UaM,

where 4 1s a subtractive maximal ideal of S.

Recall that an ideal I of a semiring S is called subtractive, if x, z+y €
I implies y € I. A semiring S is subtractive if every proper ideal is

subtractive.

Proposition 2.11. Let S be a semiring. Then S is subtractive if and

only if each proper ideal that is generated by 2 elements is subtractive.

Proof. 1t is easy to show that if S is subtractive semiring, then every
proper ideal is subtractive. Conversely, let I be any proper ideal of S
and let z,x +y € I, we want to show that y € I. Assume that I is the
ideal generated by x,x + y. Then by the hypothesis, [ is subtractive
and y € Iy. Now, I is a subset of I implies that y € I. Therefore, I is

subtractive, and hence S is subtractive. ]

Theorem 2.12. [18] If SaM is a subtractive semiring, then both S and

M are subtractive.

Proof. SaM being subtractive semiring implies that 7a0 = I, 0aN = N
are subtractive ideals of SaM, where I is any ideal of S and N is any

S-subsemimodule of M. []

Question If S and M are subtractive. Does that mean that SaM is

a subtractive semiring 7

Definition 2.13. A semiring S is called Noetherian if it satisfies the

ascending chain condition.
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Theorem 2.14. [18] Let SaM be subtractive. Then SaM is a Noethe-
rian semiring if and only if S is a Noetherian semiring and M is a finitely

generated S-semimodule.

Proof. Suppose that the left hand side is satisfied. Let I; C Is...

N

I C ... be ascending chain of ideals of S. Then a0 C I,a0... C
I ;a0 C ... is also ascending chain of ideals of SaM. But SaM being
Noetherian implies that there is n € IN such that I,,a0 = I,,, a0 where
k > 0, and hence I,, = I, which implies that S is a Noetherian semir-
ing. Now, OaM being ideal of a Noetherian semiring SaM implies that
OaM is finitely generated by (0,mq), (0, ms), .., (0, m,,). Indeed, (0, m) =
(s1,m})(0,mq) + ... + (sp,m,)(0,m,) where m € M and (s;, m;) € SaM
, i =1,2,..,n. Therefore, (0,m) = (0,sym1) + ... + (0, s,m,,), and hence
m = symq + Somo + ... + s,m,. Thus, M is a finitely generated S-
semimodule. Conversely, let P be prime ideal of the subtractive semiring
SaM. Then P = PaM where B is prime ideal of S. But S being Noethe-
rian implies that every prime ideal f¥ in S is finitely generated. But M
is also finitely generated. Thus, P = PaM is finitely generated. Since

P is arbitrary, SaM is a Noetherian semiring by Cohen’s theorem. [

Definition 2.15. The annihilator of M denoted by ann(M) = {a € S :
am = 0,m € M}.

Recall that an ideal I of S is called weakly prime if ab € I implies

that either a € I or b € I.
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The following proposition determines the form of the weakly prime ideals

of SaM.

Proposition 2.16. [18] For I being a proper ideal of S. IaM is a weakly
pime ideal of SaM if and only if I is weakly prime ideal of S and ab =0

implies that a,b € ann(M) where 0 # a,b € S.

Proof. Suppose that ITaM is a weakly prime ideal of SaM and 0 #
ajas € I. Then (ayas,0) € IaM. Now, (ajas,0) = (a1,0)(az,0) € laM
and since oM is a weakly prime ideal of SaM, either (a1,0) € IaM or
(ag,0) € TaM. Thus, either a; € I or as € I, and hence I is a weakly
prime ideal of S. Now, in contrary, suppose that a ¢ ann(M). Then there
is m € M such that am # 0. Since ab = 0, (ab,am) € IaM. Therefore,
(ab,am) = (a,0)(b,m) € IaM. But (a,0) ¢ IaM and (b,m) ¢ IaM,
and hence a cotradiction. The same argument shows that b € ann(M).
Conversely, let (a1, my)(az, mg) € IaM where aj,as € I and my,ms €
M. Since [ is a weakly prime ideal of S and if ajay # 0, implies that
either a; or as € I, and hence either (a;,m) or (az, m) € IaM for any
m € M. Now, if ajas = 0 and neither a; nor as = 0. Then by assumption
ai,as € ann(M), and hence (a1, my1)(az, mo) = (0,0). Thus, IaM is a

weakly pime ideal of SaM. ]
Definition 2.17. [18] Let N be S-subsemimodule of M. Then:

1. The residual of M by N is the subset {s € S:sM C N} of S and
it is denoted by [N : M].
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2. The radical of N in M, denoted by v/N, is the subset /[N : M]
of S.

3. N is called primary if N # M and sm € N where m ¢ N for all
s € S and m € M imply that s"M C N for some positive integer

n.
The following fact insure that [NV : M| has the ideal structure.

Proposition 2.18. [18] Let N be S-subsemimodule of M and I an ideal

of S. Then the following are satisfied:

1. [N : M] is an ideal of S. In addition, if N is subtractive, then

[N : M] is subtractive.
2. If N is primary, then VN is a prime ideal of S.
Proof. :

(1) First, let sq1, 59 € [V : M]. Then s1M, seM C N which implies that
s1M 4 soM C N, and hence (s1 + so)M C N implies (s1 + s2) €
[N : M]. Second, let sy € [N : M]. Then s(syM) C N for any
s € S, and hence (ss;)M C N implies ss; € [N : M]. Therefore,
[N : M] is an ideal of S. Now, let s1,81 + s2 € [N : M]. Then
s1M C N and (s; + s9)M C N. Take y € s9M, then y = som for
some m € M. But symm € N and (s1 + so)m = sym + som € N.
Since N is subtractive, y = som € N. Thus, soM C N, and hence

SQG[NIM].
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(2) Since N is primary, N # M implies that 1 ¢ v/N, and hence v/N is
a proper ideal of S. Now, let nn' € v/N. Then there is k € IN such
that (nn')*M C N implies n*n*M C N. Suppose that n ¢ /N.
Then there is m € M such that n*m ¢ N implies n’*n*m € N.
But N being primary and n*m ¢ N implies that there is a natural
number L such that (n’k)LM C N, and hence n’ € v/N. Thus, VN

is a prime ideal of S.

The following theorem describes the primary ideals of SaM.

Theorem 2.19. [18] Let I be an ideal of S and N # M be a subtractive
S-subsemimodule of M. Then:

1. I is primary ideal of S if and only iof IaM is a primary ideal of
SaM .

2. IaN 1is primary ideal of SaM if and only if N is a primary S-
subsemimodule of M, IM C N and /I = V/N.

Proof. -

(1) Suppose that [ is a primary ideal of S, we want to show that TaM
is a primary ideal of SaM. Indeed, let (ay,m1)(az, mq) € IaM
such that (ag,mg) ¢ IaM. Then ajas € I such that as ¢ I for
my € M. Therefore, there is a natural number n such that af € I,

and hence (a;,my)" € IaM. Thus, IaM is a primary ideal of



32

SaM. Conversely, suppose that TaM is a primary ideal of SalM.
Now, let ajas € I such that ay ¢ I. Then (a1,0)(as,0) € TaM
where (as,0) ¢ IaM which implies that there is a natural number
n such that (ay,0)" € IaM, and hence a} € I. Thus, I is a primary

ideal of S.

Suppose that Ia/N is primary ideal of SaM. Indeed, let sx € N
where © ¢ N. Then (s,0)(0,z) € IaN such that (0,2) ¢ IaN
which implies that there is a natural number n such that (s,0)" €
IaN, and hence s" € I. Therefore, I is a primary ideal of S. Now,
by (4) in theorem 2.4, IM C N, and hence s"M C N. Thus, N
is primary S-subsemimodule of M. Next, we want to show that
VI = v/N. Indeed, let x € v/I. Then there is n € IN such that
"M C N which implies that z € v/N. On the other hand, let
z € V/N. Then there is n € IN such that 2"M C N. Now, let
m € M — N, then (2",0)(0,m) € IaN such that (0,m) ¢ IaN.
But IaN being primary implies that there is £ € IN such that
(z",0)% € TaN, and hence 2™ € I implies = € VI. Thus, VI =
V/N. Conversely, we want to show that JaN is primary ideal of
SaM. Indeed, let (a1,m1)(az,n2) € IaN such that (ag,ny) ¢ IaN
implies ajay € I such that ag ¢ I for ny € N. But I being primary
ideal of S implies that there is a natural number k such that af € I.
Since IM C N, then (ay,ny)*' = (af™, (k + 1)a¥n,) € IaN, and

hence IaN is primary ideal of SaM. If ay € I, then ny ¢ N. But
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N being subtractive and since asny € N implies that ains € N.
Therefore, there is k € IN such that a} M C N. Now, following the
previous argument, (ay,n;)**t € IaN implies that IaN is primary

ideal of SaM.
]

Example 2.20. Since 4N is primary ideal of N. By the previous theorem

4NaN is a primary ideal of NaN.

2.3 Special Elements of Trivial Semiring Extension

In this section some special elements of the trivial semiring exten-
sion SaM like units, idempotents, zero-divisors and regular elements are

studied.

Notation 2.21. Let U(.S) be the set of all units of S, V(M) the set of all
elements of M having additive inverse, Z(S) the set of all zero-divisors

of S and Z(M) the set of all zero divisors of M.

The following theorem provides some special elements of SaM such

as units, zero-divisors, idempotents and regular elements.

Theorem 2.22. [18] Let SaM be the trivial semiring extension of S by

M. Then the following are satisfied:

1. The set of all units of SaM; U(SaM), is the set U(S)aV (M) (i.e.
U(SaM)=U(S)aV(M)).
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The set of all zero-divisors of SaM, denoted by Z(SaM), is the
set {(s,m):se€ Z(S)UZ(M),m € M}.

(s,m) € SaM is an additively idempotent if and only if s and m

are additively idempotent elements in S and M respectively.

. (s,m) € SaM is a multiplicatively idempotent if and only if s is

multiplicatively idempotent in S and sm + sm = m.

(s,m) € SaM is additively regular if and only if s and m are

additively reqular elements of S and M respectively.

If (s,m) € SaM is multiplicatively reqular, then s is multiplica-
tively reqular element of S and sm 1s additively regular element of

M.

Proof.

(1)

Let (s,m) be a unit in SaM. Then there is (s',m') € SaM such
that (s,m)(s’,m’) = (1,0) implies (ss',sm' + s'm) = (1,0), and
hence ss’ = 1 and (sm/ + s'm) = 0. Now, s(sm’ + s'm) = s’m’ +
ss'm = 0. But ss' = 1 implies s*m’ +m = 0. Thus, s € U(S) and
m € V (M), and hence (s,m) € U(S)aV(M). On the other hand,
let (s,m) € U(S)aV(M). Then (s,m)(s™t, s 2(—m)) = (1,0), and

hence (s,m) is a unit in SaM.

Let (s,m) € Z(SaM). Then there is (0,0) # (s',m') € SaM

such that (s,m)(s’,m') = (0,0) implies (ss’,sm’ + s'm) = (0,0).
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If & # 0, then s € Z(S) implies s € Z(S) U Z(M). Otherwise, if
s =0, then m' # 0 and sm' + 0 = 0 implies sm’ = 0, and hence
s € Z(M) implies s € Z(S)U Z(M). Conversely, let s € Z(S5).
Then there is 0 # s’ € S where ss’ = 0 implies (s,0)(s’,0) = (0,0),
and hence (s,0) € Z(SaM). On the other hand, if s € Z(M), then
there is 0 # m € M such that sm = 0 implies (s,0)(0,m) = (0,0),
and hence (s,0) € Z(SaM). Thus, if s € Z(5)U Z(M), then
(5,0) € Z(SaM). Now, since (0,m)?> = (0,0) for any m € M
is contained in any prime ideal and (s,0) € Z(SaM). Then, by
corollary 1.21, (s,0) is contained in some prime ideal of SaM.

Therefore, (s,m) = (s,0) + (0,m) € Z(SaM).

Let (s,m) be an additively idempotent element in SaM. Then
(s,m)+(s,m) = (s,m) € SaM. Therefore, (s+s,m+m) = (s,m)
which implies that s is additively idempotent element of S and m

is additively idempotent element of M.

Let (s, m) be a multiplicatively idempotent element in SaM. Then
(s,m)* = (s,m) € SaM. But (s,m)*> = (s*,sm + sm) = (s,m),
and hence s is multiplicatively idempotent element in S and sm +

sm = 1m.

If (s, m) is additively regular element in SaM, then there is (s',m’) €
SaM such that (s,m) + (s,m) + (s',m’) = (s,m) implies that

s+s+s =sand m+ m+m' = m, and hence s is additively
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regular element of S and m is additively regular element of M.
Conversely, let s and m be additively regular elements of S and M
respectively. Then s +s+s =sandm+m+m' =m for s € S
and m' € M, and hence (s,m) + (s,m) + (s’,m') = (s, m) which

implies that (s, m) is additively regular element in SaM.

(6) Let (s,m) be multiplicatively regular element of SaM. Then there
is (s’,m/) € SaM such that (s,m)*(s',m') = (s,m) implies (s%,
s*m/ + ss'm + ss'm) = (s, m), and hence s?s’ = s implies that s is
multiplicatively regular element of S. Also, s?m/+ss'm+ss'm = m

2

implies ss?’m’ + s?s'm + s2s'm = sm. Now, s’s' = s, and hence

ss>m/ +sm-+sm = sm. Therefore, sm is additively regular element

of M.

Example 2.23. 1. U(NaN) ={(1,0)}.
2. Z(ZeaZy) =A{(s,m):s=1{2,3,4},m € Zy}.
3. (0,0) is an additively idempotent element in NaZ,.

4. The set of multiplicatively idempotents in ZgaZs is equal to

{(0,0),(1,0),(4,0),(3,0),(3,1),(3,2),(3,3),(3,4) }.

5. The set of additively regular elements in ZsaZs is {(s,m) : s €

Lz, m € ZQ}
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6. In ZsaZs, the set of multiplicatively regular elements is {(s,m) :

s,m € Zs}.

The following corollary handles the conditions under which SaM is
a semifield or a semidomain, and other results of the trivial semiring

extension.

Corollary 2.24. Let SaM be the trivial semiring extension. Then the

following are satisfied:

1. SaM is a semidomain if and only if S is a semidomain and M = 0.
Simalarly, SaM is a semifield if and only if S is a semifield and
M = 0.

2. If 0 1s the only additively idempotent element of M, then the mul-
tiplicatively idempotent elements of SaM will be of the form (s,0)

where s 1s a multiplicatively idempotent element of S.

3. SaM is additively reqular if and only if both S and M are additively

reqular.

4. If SaM s multiplicatively reqular, then S is multiplicatively reqular

and M is additively reqular.
Proof.

(1) SaM is a semidomain implies that there is no zero-divisors of SaM.

But Z(SaM) ={(s,m):se€ Z(S)U Z(M),m € M} which means
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that there is no s € Z(S) U Z(M), and hence S is a semidomain.
Suppose, in the contrary, that M # 0. So, there is 0 # m € M
such that (0,m)(0,m) = (0,0) implies that (0,m) is a zero divisor
in SaM. Thus, a cotradiction. Hence, M = 0. Now, SaM is a
semifield implies that U(SaM) = U(S)aV (M) = SaM. Hence, S

is a semifield and since every semifield is a semidomain then M = 0.

sm + sm = s*m + s>m = s(sm + sm). But sm + sm = m implies
sm + sm = sm. If the only additive idempotent element of M
is 0, then sm = 0, and hence m = 0. Thus, the multiplicatively
idempotent elements of SaM are of the form (s,0) where s is a

multiplicatively idempotent element of S.

The proof is straightforward by taking arbitrary elements and com-

plete the arugument as was done in the previous theorem.

Suppose that SaM is multiplicatively regular and let (s,m) be
arbitrary element in SaM. Then, by the previous theorem, s is
multiplicatively regular element in S. Therefore, S is multiplica-
tively regular. Also, sm is an additively regular element in M.
But 1.m = m is an additively regular element in M. Thus, M is

additively regular.

]

Since the only additively idempotent element of N is the zero, then
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by the previous corollary the multiplicatively idempotents of NaN|z] are

only (0,0) and (1,0).

2.4 Local Trivial Semiring Extension

This section is devoted to answer the question; when SaM is local
semiring. As it is the case of the rings, local semirings are semirings with
one maximal ideal. The following theorem insures that SaM is local

when S is.

Theorem 2.25. If S is a local semiring and M 1is an S-semimodule, then

E = SaM s a local semiring.

Proof. We want to show that £ — U(FE) is an ideal of E. For addition,
let (s1,m1),(s2,me) € E— U(E). Since U(E) = U(S)aV (M), either
both s1,s9 ¢ U(S) or at least one of them not in U(S). If s1,s9 ¢ U(S)
and since S is local semiring, S — U(S) is an ideal of S, and hence
s1+52 ¢ U(S). Therefore, (s1,m1)+(s2,mg) € E—U(E). Now, if 51 or s9
in U(S), then either my or ms not in V/(M). Take for example s; € U(.5).
Then my ¢ V(M). Now, suppose that m;+mq € V(M). Indeed, there is
a € M such that (m;+ms)+a = 0. Therefore, m; + (mg+a) = 0 implies
that m; € V(M) which is a contradiction. Hence, my + mo ¢ V(M).
Thus, (s1,m1) + (s2,mq) € E— U(F). For multiplication, let (s,m) €
E — U(FE). Then either s ¢ U(S) or m ¢ V(M). So, if s ¢ U(S),

then for (s',m')(s,m) = (s's,s'm + sm’), s's ¢ U(S). Now, suppose
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that s's € U(S). Then there is 0 # a € S such that (ss’)a = 1, and
hence s(s’a) = 1. Thus, s € U(S) which is a contradiction. Therefore,
(s's,s'm + sm') ¢ U(E), and hence (s',m')(s,m) € E — U(FE). Now, if
s € U(S), then m ¢ V(M). Now, (s',m')(s,m) = (s's,s'm + sm’). So,
either s ¢ U(S) implies ss’ ¢ U(S) or s’ € U(S), and hence s'm ¢ V (M).
Suppose, in the contrary, that s'm € V(M). Then, there is a € M such
that s'm + a = 0. Implies m + s'"'a = 0 which means m € V(M), and
hence a contradiction. Thus, s'm ¢ V(M). Also, s'm + sm’ ¢ V(M).
Therefore, (s',m')(s,m) € E— U(E). Thus, E — U(F) is an ideal of F

which implies that £ = SaM is a local semiring. ]

Corollary 2.26. [18] Let F' be a semifield and M be F-semimodule. Then

B = FaM 1is a local semiring.

Proof. Since F'is a semifield, it is local semiring. By the previous theorem

B = FaM is local semiring. ]
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Chapter 3

Clean Like Semiring Notions and their

Transfer in the Trivial Semiring Extension

This chapter generalizes some of the clean like ring theoritic notions
into the semiring situation and study some of their properties and then

transfer these notions in the trivial semiring extension.

3.1 Clean Like Semiring Notions

The following definitions are a generalization of the clean ring notions

to the semirings.

Definition 3.1. A semiring S is called clean if every element s € S,

s =u + e, for some unit u and an idempotent e.
Next is the definitions of some clean semiring notions.
Definition 3.2. Let S be a semiring. Then:

1. S is weakly clean if for each s € S either s = u+ e or u = s + e,

for some unit v and an idempotent e.

2. S is almost clean if every element of the semiring can be written

as the sum of a non-zero-divisor and an idempotent.
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3. S is nil clean if for each s € S, s = n+e, for some nilpotent element

n and an idempotent e.

4. S is said to be weakly nil clean if for each s € S either s =m + ¢

or m = s + e, for some nilpotent element m and an idempotent e.
Remark 3.3. Let R be a ring. Then:
1. Clean semiring generalizes the clean ring.
2. Nil clean semiring generalizes the nil clean ring.

Proof. The proof is straightforward. ]

Now, some propositions that study the relations among the men-
tioned rings will be proved. First, we recall that a semiring S is called
semisubtractive if for any a # b € S there is always some x € S such

that b+ x = a or some y € S such that a +y = 0.

Remark 3.4. [10] Every subtractive subset of a semiring S is semisub-

tractive.
Proposition 3.5. Fvery subtractive nil clean semiring is clean.

Proof. Let S be subtractive nil clean semiring and let s € S. Since
subtractive implies semisubtractive. Then thereis y € S such that 1+y =
s. Now, y = e + m where e is an idempotent element in S and m is
nilpotent element. So, 1 +y = s = e+ m + 1. To show that s is clean,

we want to show that m + 1 is a unit. Suppose that m + 1 is not a unit,
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then there exist prime ideal p of S such that m +1 € p. But m" =0
for some positive integer n, and hence m € p. But since p is subtractive,
then 1 € p which is a cotradiction. Thus, m + 1 is a unit. Therefore, s

is clean. Thus, S is clean. ]
Question Does every nil clean imply clean semiring ?

Proposition 3.6. Let S be a semiring and I be a nil ideal of S. Then

S is mil clean if and only z'fS/Z 1s nil clean.

Proof. Define s+1 € S /7. Then, (a+e)+1 € S /7 implies (a+1)+ (e+
1) eS /7. Now, (a+1)" =041 =1Tand (e+1)> =e*4+1 = e+1. Thus,
(a+1) is nilpotent and (e+ I) is idempotent, and hence S /7 is nil clean.
Conversely, let S /7 be nil clean and take s € S. Then s+ 1 € S /T, and
so s+ 1= (sy+ 1)+ (s9+ I) where s; + I is nilpotent for some positive
integer n and s9 4 I is idempotent. Now, (s; + )" = s¥ + I = I. Thus,
st =0, and hence s; € S is nilpotent element. Also, (sy+1)? = s3+1 =
s9 + I. Hence, sy € S is an idempotent element. Therefore, s = s1 + $9

is nil clean element in S, and hence S is nil clean. []

Proposition 3.7. Any finite direct product of nil clean semirings is nil

clean.

Proof. Let E =51 x S5 X S3 X ..... x S, be a direct product of nil clean
semirings and let s = (s1,892,.....,8,) € E. Now, s = (a1 + e1,a2 +
€9y ...y Gy + €,) implies s = (ay, as, ..., a,) + (€1, €9, ...,€,). But a;,i =

1,2, ..,n being nilpotent elements implies that a{" = 0, ..., a)" = 0. Thus,
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(ay,az, .., a,)™™m2m = (0,0,..,0) and (e, 9, .., e,)%> = (e1, €2, .., €,). There-

fore, s is nil clean element of E. Thus, F is nil clean. ]

Proposition 3.8. Let S be a semiring and I be a nil ideal of S Then the

following are satisfied:
1. S is weakly nil clean if and only if S /T is weakly nil clean.

2. Any finite direct product of weakly nil clean semirings is weakly nil

clean.

Proof. The proof of both statements is the same as the proof in the

previous propositions. []

3.2 Transfer Clean Like Notions in the Trivial Semiring Ex-

tension

This section provides the transfer of the clean like notions in the
trivial semiring extension. Actually these results are a generalization of

the results in [8,18].

Theorem 3.9. SaM is clean if and only if S is clean and V(M) = M.

Proof. Suppose that SaM is clean and s be an arbitrary element of S.
Then (s,0) € SaM implies (s,0) = (s1,€1) + (s2,€2) where (s1,e1) is a
unit and (s, €2) is an idempotent. Now, (s1, e1) being a unit implies that
there is (s],€}) € SaM such that (s1,e1)(s],€]) = (s1s], s1€] + sje1) =

(1,0), and hence s15) = 1. Thus, s; is a unit in S. Next, since (sq, 2)
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is an idempotent element of SaM, (s2,€2)* = (s3,2s9€9) = (52, €2), and
hence s3 = sy. Therefore, s; is idempotent element of S, and hence S is
clean. Conversely, let (s,m) € SaM. Since S is clean, s = u+ e where u
is a unit in S and e is an idempotent element of S. Therefore, (s,m) =
(u,m)+(e,0). Now,u € U(S) and m € V(M) implies (u, m) € U(SaM).
Also, (e,0)? = (e%,0) = (e,0), and hence (e,0) is an idempotent element

of SaM. Thus, SaM is clean. H

Theorem 3.10. SaM is weakly clean if and only if S is weakly clean
and V(M) =M.

Proof. Now, SaM is weakly clean means that every element (s,m) €
SaM can either be written as (s,m) = (u,m) + (e,n) or as (s,m) +
(e,n) = (u,m) where (u, m) is a unit in SaM and (e, n) is an idempotent
element in SaM. Now, in both cases, the proof will be the same as the

proof in the previous theorem. ]
Theorem 3.11. SaM is almost clean if and only if S is almost clean.

Proof. Let SaM be almost clean and s € S. Then (s,0) € SaM. But
SaM being almost clean implies (s,0) = (¢t,z) + (e,n) where (t,x) ¢
Z(SaM) implies that t ¢ Z(S) U Z(M) and (e,n) is an idempotent
element of SaM. Thus, (e,n)?> = (¢ 2en) = (e,n) and so €* = e.
Therefore, e is an idemotent element of S. Thus, S is almost clean.
Conversely, let S be almost clean, s € S and m € M. Then s =t +e

such that ¢t ¢ Z(S) U Z(M) and e is an idemotent element of S. So,



47

(s,m) = (t,m) + (e,0). Now, (¢,m) is a non-zero-divisor and (e, 0) is an

idempotent element of SaM. Thus, SaM is almost clean. ]
Theorem 3.12. SaM is nil clean if and only if S is nil clean.

Proof. Let (x,0) € SaM for some x € S. Since SaM is nil clean,
(x,0) is the sum of nilpotent element (x1, e;) and an idempotent element
(x9,e3). Therefore, (z1,e1)” = (0,0) for some n € IN which implies
that (z7,nz e;) = (0,0), and hence 27 = 0. Thus, z; is a nilpotent
element of S. Now, (z2,e2)? = (29,e3) = (23, 279e2) which implies that
13 = x5. Therefore, x5 is an idempotent element of S, and hence z =
x1 + xo. Thus, S is nil clean. Conversely, Let (z,m) € SaM be an
arbitrary element. Then (z,m) = (x1,0) + (0,m) + (x2,0). But 0aM
being a nilpotent ideal of SaM implies that (0,m) is a nilpotent element
of SaM. Now, x € S and S is nil clean. Then x = x; + 29 where 77 is an
idempotent element of S and x5 is a nilpotent element of S which implies
that (z1,0) is an idempotent and (x2,0) is a nilpotent elements of S.

Since both (z9,0), (0, m) are nilpotent elements of S, then (z5,0)+ (0, m)

is nilpotent, and hence SaM is nil clean. H
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Chapter 4

Incidence Semirings and An Application of

them in Data Mining

This chapter presents the incidence semirings, which are polynomials
over a graph. It also suggests a practical implication for them in one of
the data mining techniques, which is the classification system. Indeed, a
vauluable set of centroids with largest weight which regarded as ideals in
incidence semirings will be examined. These sets are used in the design
of centroid-based classifiers, as well as for the design of multiple classifers

which compines several individual classifiers.

4.1 An Application of Incidence Semirings in Data Mining

Definition 4.1. Data mining is a process of finding useful patterns from
large amount of data. It contains several techniques, algorithms and it
can be adapted in several organizations to improve their businesses and

reach excellent results based on data [6].

One of the data mining techniques is classification, which is defined

as follows:

Definition 4.2. Classification is one of the most commonly applied data

mining techniques; it assigns items in a collection to several categories
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or classes. The goal of classification is to accurately predict the class for

each item in the data.

Each classification process starts with feature extraction and repre-
sentation of data in a standared vector space S", where S can be semi-
field. Each centriod-based classifier selects special elements called cen-
troids, denoted by ¢y, co,...,cp € S™ and every ¢; defines its class N(¢;)
which contains every vector v where ¢; is the nearest centroid of v. Ex-
amples of this method can be found in [7,24]. Multiple classifiers are used
to combine individual initial classifiers. One of the methods used to de-
sign multiple classifiers is to design several simpler initial classifiers, and
then combining them into one multiple classification model with several
classes which has the ability of correcting errors for individual classifiers.

Examples of this method can be found in [25,23].

Example 4.3. An example of classification model is credit risk which
can be used in the banking sector to identify which customers are at high

risk and shouldn’t be qualified to get loans.

Concepts that determines when we consider a classifier with centroid

set C to be efficient are introduced next.
Definition 4.4. Let C be a class of centroid set in S™. Then:

1. The weight wt(v) of v € S™ is the number of non-zero components

of v.
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2. The weight of the set C' C S" is the minimum weight of non-zero

elements in C.

3. For a finite semiring S. The information rate of a class set C' € §™
€]

defined by logg .-+ which reflects the proportion of output of the

individual initial classifiers which used to produce the outcomes of

the multiple classification.

The following definition highlights conditions that makes the classifier

with class set C efficient.

Definition 4.5. For a classifier with a class set C' to be efficient, C' must

satisty:
1. C must have large weight.
2. The information rate of C' must be large.
3. C has a small number of generators.

4. The classes of centroid set for each initial classifier should be dif-

ferent.
Addition research related to these properties can be found in [17,16].

So, the aim is to form sets of centroids with large weights and small

number of generators.
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4.2 Incidence Semiring and the set of centroids with largest

weight

This section presents the concept of incidence semiring and its relation
with semiring. Also, the form of the set of centroid in the incidence
semiring will be introduced. Furthermore, Concepts from graph theory

will be utilized and reflected to incidence semirings.

Definition 4.6. Directed graph G, denoted by, G = (V, E) is the set of

vertices and edges, without multiple edges but possibly with loops.
The following is the definition of incidence semiring.

Definition 4.7. [1] The incidence semiring of G over S, denoted by
I(S), is the set consisting of zero and all finite sums Y - ; s;(u;, v;),
such that n > 1,s; € S, (u;,v;) € E, where the addition is the standard
addition and the multiplication satisfied the distributive law and the rule

that for all (u1,v1), (ug,v9) € E, we have:

(ul,vg) if v;1 = us and (ul,Ug) € E,
1. (ul,vl) . (UQ,UQ) =
0 otherwise

In particular, we have:
2. ZeEE Se€ + ZeGE S/ee = ZeGE(Se + S/e)e

3 (Leer 5e6) Xyer 549) = D e gen(5e5g)eg

Remark 4.8. The concept of incidence semiring is a generalization of

the concept of incidence ring, see [15].
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The definition of balanced graph is introduced next.

Definition 4.9. Let vy, v, v3,v4 € V such that (vy,vs), (ve, v3), (v3,v4),
(v1,v4) € E. Then, the graph G is balanced if we have, (vy,v3) € F if

and only if (vy,v4) € E.

The following proposition will lead to the relation between incidence

semirings and semirings.

Proposition 4.10. The multiplication is associative in the incidence

semiring 1(S) if and only if G is balanced graph.

Proof. Suppose that G is balanced graph. Now, since the distributive
law holds for the incidence semiring I;(S) it is sufficies to show that for
elements a,b,c € I5(S) of the form a = (vy,v9),b = (v2,v3), ¢ = (v3,vy),
where v, vg, v3,v4 € V (because an arbitrary element s = > " | s;(u;,v;) €
I5(S) can be written as s = s1(v1,v9) + S2(ve, v3) + s3(vs, vg) ). Now, if
(vi,v4) ¢ E, then a(bc) = 0 = (ab)c, and hence multiplication is as-
sociative. On the other hand, if (vy,v4) € E and if (vy,v3) € E, then
(v2,v4) € E, since G is balanced. Thus, a(bc) = (vi,v4) = (ab)e. Now,
if (v1,v3) ¢ E, then (vy,v4) ¢ E and so a(bc) = (ab)c = 0. Therefore,
multiplication is associative. Conversely, suppose that the multiplication
is associative and suppose, on the contrary, that GG is not balanced graph.
Indeed, let vy, v9,v3,v4 € V and (vy,v2), (va, v3), (3, v4), (v1,v4) € E such
that (vy,v3) € E but (ve,v4) ¢ E. Hence, a(bc) = 0 but (ab)c = (v1,vy)

which contradicts the associative property. Thus, G is balanced. ]
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Corollary 4.11. If G is balanced graph. Then incidence semiring Ig(S)

1S a Semiring.

The form of the set of centroids in the incidence semiring I5(S) will

be introduced next, but first we have the following proposition:

Proposition 4.12. The additive semigroup of 15(S) is isomporphic to

S" n = |E| (where |E| denotes the number of edges of a graph G).

Proof. The proof is easy by taking the map ® : I5(S) — S™ defined by:
D> si(ui,v;)) = (81,82, .., $n). Clearly, ® is homomorphisim, one to

one and onto. Thus, (Ig(S),+) = S™. []

Thus, multiplication can be identified on S™ as in I(S) and the set

of centroids is identified as subset generated in I (5).

Definition 4.13. Every set of elements ¢y, ..., ¢t € I(S) generates the
centroid set Ccy, ...,cx) = {D 270 ljerrj+o + 300 e jcrny | lig, mig €
I(S)U{1}}. The centroid set C(cy, .., cx) is called the ideal generated

by ¢, ..., C.

Next, some concepts related to graph theory will be recalled.
Definition 4.14. Let G be a directed graph. Then:

1. By ={(u,v) € E|TJweV | (wu),(wv) € E}.

2. Eou={(u,v) e E|FJwe V| (uw),(v,w) € E}.
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3. Gin = G(V,E\ Ej;,) is the subgraph of G = (V, E) with the same

set of vertices and the set £\ Ej, of edges.

4. Goyt = G(V, E\ Eyy) is the subgraph of G = (V, E') with the same

set of vertices and the set £\ E,,; of edges.
5. Wz = |E\ (Ein U Egu)l.
6. For every vertex v € V, In(v) ={w € V | (w,v) € E}.

7. For every vertex v € V, Out(v) = {w e V | (v,w) € E}.
Two special sets of edges are introduced next.

Definition 4.15. [1] By is the set of all pairs (F,v), where v € V,
F C In(v) such that |F| = k and (u,v) ¢ E;, for all u € F. Also,
Out(v) N Out(uy) = Out(v) N Out(usy) for all u,us € F. We denote W,

as the largest positive integer such that By, is not empty or zero.
Similarly to the definition of ‘B, we have:

Definition 4.16. [1] Qy is the set of all pairs (v, F'), where v € V|,
F C Out(v) such that |F| = k and (v,u) ¢ Eyy for all u € F. Also,
In(v)NIn(uy) = In(v) N In(uy) for all ui,uy € F. We denote W as the

largest positive integer such that Qyy, is not empty or zero.
Now, we will identify three sets of elements from I (S5).

Definition 4.17. Let I5(S) be the incidence semiring of a graph G over

a semiring S. Then:
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1. gz is the set of all elements © = > s,,(u,v) € Iz(S) such that

Supw 70 € S and (u,v) € E\ (Eipn U Eput).

2. gr is the set of all elements v = Y _psu(u,v) € Ig,, (S) for all
pairs (F,v) € By, and 0 # s, € S for all u € F.

3. gr is the set of all elements z = ) _ps.(v,u) € Ig,,(S) for all
pairs (v, F') € Qw, and 0 # s, € S for all u € F.

Next is the left and right annihilator of a semiring S.

Definition 4.18. For any semiring S, we have:
1. The left annihilator of S is the set Anny(S) ={x € S| xS = 0}.
2. The right annihilator of S is the set Ann,(S) = {x € S| Sz = 0}.

Lemma 4.19. [1] Let S be a semidomain and G be balanced graph.

Then the following are satisfied:
1. Ann,.(Ig(9)) = Ig, (5).
2. Anny(15(S)) = 1g,,,(5).

The first one only will be proved since the same process can be fol-

lowed to prove the second one.

Proof. Let € Ig, (S). Then o = Y ", si(u;,v;), where s; € S and
(uj,v;) € E\ Ei. Now, we want to show that I5(S)xr = 0. In-

deed, let (a,b) € E and suppose, on the contrary, (a,b)x # 0. Then,
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1(a,b)(u;,v;) # 0 for some i. Thus, b = u; and (a,v;) € E. Hence,
(us,v;) € Ej, which is a contradiction. Thus, x € Ann,(Ig(S)). Con-
versely, let © € Ann,(Ig(S)). Then, x = > ", s;(u;,v;), where s; € S,
(uj,v;) € E. Now, suppose that (u;,v;) € FEj. Then, there exist
w € V such that (w,w;), (w,v;) € E. Hence, 1(w,u;)(u;,v;) = (w,v;) #
0 € E. But x € Ann,.(Ig(S)) implies (w,u;)xr = 0 for any multi-
ple in z. Thus, (u;,v;) ¢ Ej, and hence x € Ig, (S). Therefore,
Ann,.(Ig(9)) = Ig, (5). O

Remark 4.20. Every semiring possesses a finitely generated ideal with

the largest weight among all ideals.

The next theorem is the description of the centroid set C(cq, .., k)

with the largest weight in I5(.5).

Theorem 4.21. [1] Let S be a semidomain, G is balanced graph and let
C = Clcy,..,c) be an ideal with the largest weight in I5(S). Then the

following conditions hold:
1. wt(C(z)) = wt(x) = Wy, for all x € gz.
2. wt(C(x)) = wt(x) = Wy, for all x € gr.
3. wt(C(x)) = wt(x) = Wk, for all x € gg.

4. C contains an element x in the union of 9z, 91, 9r such that wt(x) =

wt(C).

5. wt(C) = maz{l, Wy, W, Wgr}.
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Proof. -

(1)

Let © € gz. Then, v = > sy(u;,v;) € Ig(S), where (u;,v;) € E'\
(EinUE,,) and 0 # s, € S. Obviously, wt(z) = |E\(Ei,UE.u)| =
Wy. Next, we want to show that wt(C(x)) = wt(z). Indeed, let
0+#y € C(x). Then y = Z§:1 ljxrj, where lj,r; € Ig(S). Since
E\ (EnUEy,u) = (E\ Ein) N(E\ Eu), then by the previous
lemma all sums of the form [;xr; where [; € I(S) or r; € Ig(S)
is equal to zero. Thus, we will assume that {; = r; = 1, and hence
C(x) = Nz. Now, S is a semidomain, implies that for every n € N
such that nz # 0, we have that wt(nx) = wt(z) (otherwise, we will
have a non-zero element nl € S such that nl is a zero divisor which
contradicts that S is a semidomain). Now, since n is arbitrary, then

wt(C(z)) = wt(x) = Wy, where x € gy.

Let © € gr. Then, v = >, pss(f,v) € I, (5), where (F,v) €
PBw,, 0 # sy € S for all f € F. Since S is a semidomain and
by the definition of Py, , we have wt(z) = |F| = W. Next, we
want to show that wt(C(z)) = wt(x). Indeed, let 0 # y € C(x),
we want to show that wt(y) > wt(x). Now, y = Z?:l ljxr;, where
lj,r; € Ig(S). By the previous lemma, all sums of the form [z
is equal to zero for all [; € I5(S). Hence, we will assume that all

l; = 1. Now, Ig(S) = > S(u,w), applying the distributive

uw)eE
law. Then every 1 # r; € Uy, wepS(u, w). Also, since zr; # 0

then r; € UgpuwepS(v,w). Now, the definition of By, implies
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Out(v) N Out(f) is the same set T for all f € F. Since ar; # 0,
then all 7; € UyerS(v, w) (otherwise, suppose that (v,w) € E such
that w ¢ Out(f) implies (f,w) ¢ E, and hence zr; = 0, which is a
contradiction). Now, since S is semidomain, then wt(xr;) = wt(z)
for each r; € UyerS(v,w). This and the distributive law implies
that wt(y) > wt(x). Therefore,wt(C(z)) = wt(x) = Wi, where

T < gr.
The proof is the same as the previous one.

Let wt(C) > 1 and let 0 # x € C' with minimal weight in C. Now,
suppose that z ¢ Ann,(Ig(S)) U Anny(Ig(S)). Then, by lemma,
x ¢ Ig (S)U g, (S). Indeed, there exist (a,b),(c,d) € E such
that (a,b)z # 0 and x(c,d) # 0. Hence, (a,b)z(c,d) # 0, implies
wt((a,b)x(c,d)) = 1. But (a,b)x(c,d) being an element in C, im-
plies by (1) that wt(C') = 1 which contradicts the assumption that
wt(C') > 1. Thus, this case is not a possible case. Next, suppose
that x € Ann,(Ig(S)) \ Ann;(Ig(S)). Then, there exist (v,w) € £
such that z(v,w) # 0. Clearly, wt(x(v,w)) < wt(x). But by the
minimality of  and since x(v, w) € C' we have wt(z(v,w)) = wt(z).
Hence, there exist a subset F' C In(v) such that v =, s¢(f, v),
where 0 # s; € S. Now, |F| = wt(zx). Furthermore, from
lamma, z € Ig, (S) implies (f,v) ¢ E;, for all f € F. Now,

Out(v) N Out(f1) = Out(v) N Out(fy) (otherwise, suppose that
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there is w € V such that (f1,v)(v,w) # 0 but (fo,v)(v,w) = 0
implies (f,w) ¢ E, and hence wt(z(v,w)) < wt(x) which contra-
dicts the minimality of weight of x). Thus, (F,v) € Pp. Now,
by the minimality of weight of x we have wt(C) = wt(x) = |F]|.
Condition (2) shows that wt(z) > Wy. But, by the definition of
Wy, wt(x) = Wr. Thus, |F| = Wy, (F,v) € Pw, and (2) implies
x € gr. Therefore, in this case we have = € U(gz, 91, gr) such that
wt(x) = wt(C). For the case that x € Anny(I5(5)) \ Ann,(I(9)),
the proof is the same of the previous case. Finally, suppose that
x € Ann,(Ig(S))NAnn(I¢(S)). By lemma, z € Ig, (S)NIg,,,(5).
Now, the maximality of weight of C' and condition (1) implies that
wt(C) = Wy. Thus, x € gz. Since wt(C) = wt(z), then there exist

x € U(gz, 81, 9r) such that wt(z) = wt(C).

(5) By (4) we have wt(C) < max{l, Wz, Wr,Wg}. But because of
the maximality of weight of C' and the previous conditions we have

wt(C) = max{l, Wz, W, Wg}.
[

To sum up, a full description implemented to the set of centroids with
largest weight which plays an important role in the design of centroid-
based classification system that can be considered as one of the main

functions of data mining techniques.
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