

Structural Analysis and Design of An-Najah Hotel Tower in Nablus

PREPARED BY: MOHAMMED-HASAN TUBAILA HISHAM FASSED MOHAMMED AL-BADA RASHAD MABROUKEH

UNDER SUPERVISION OF: ENG. IBRAHIM ARMAN

Contents

Introduction

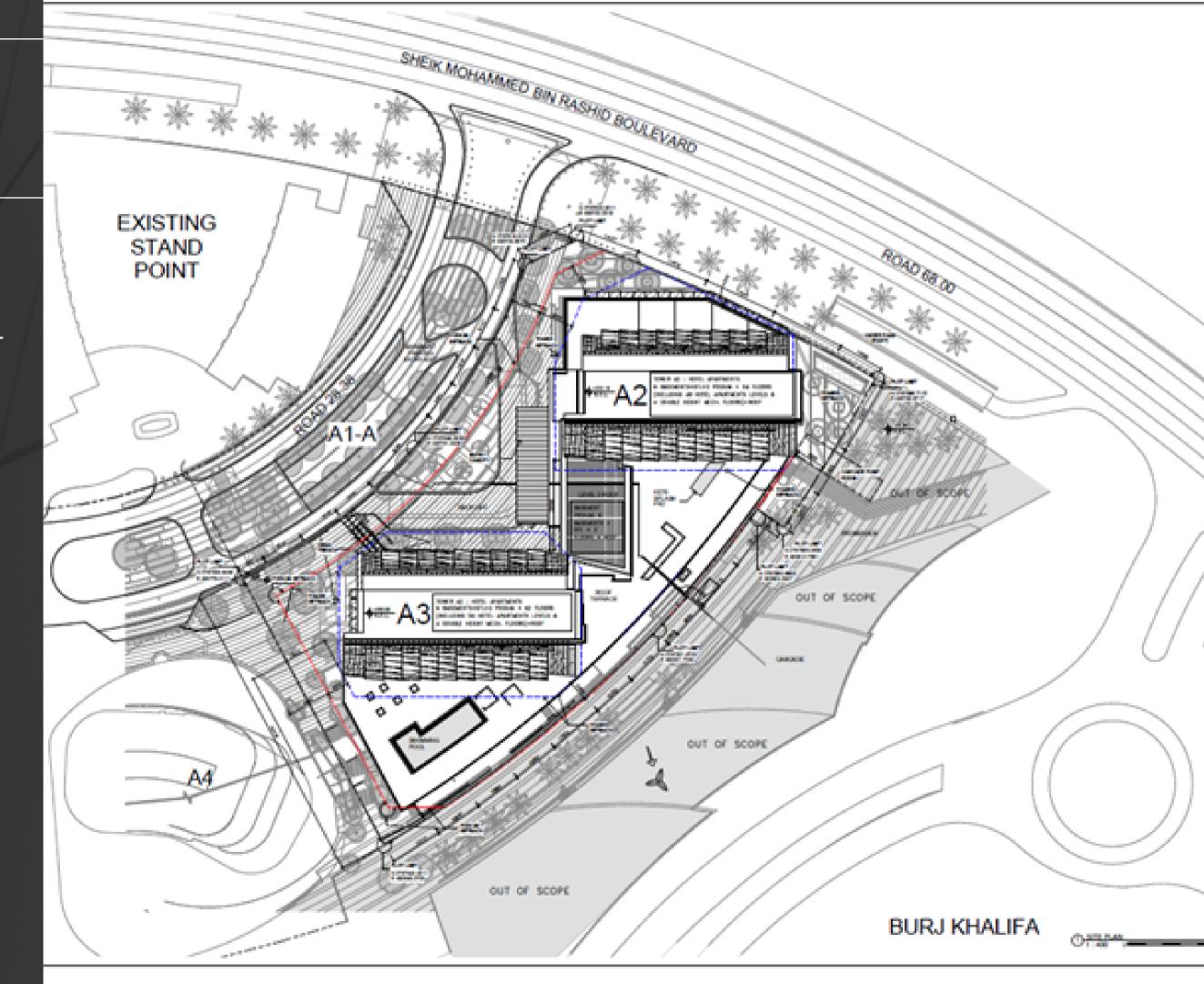
Preliminary Dimensions Three-Dimensional Modeling Design

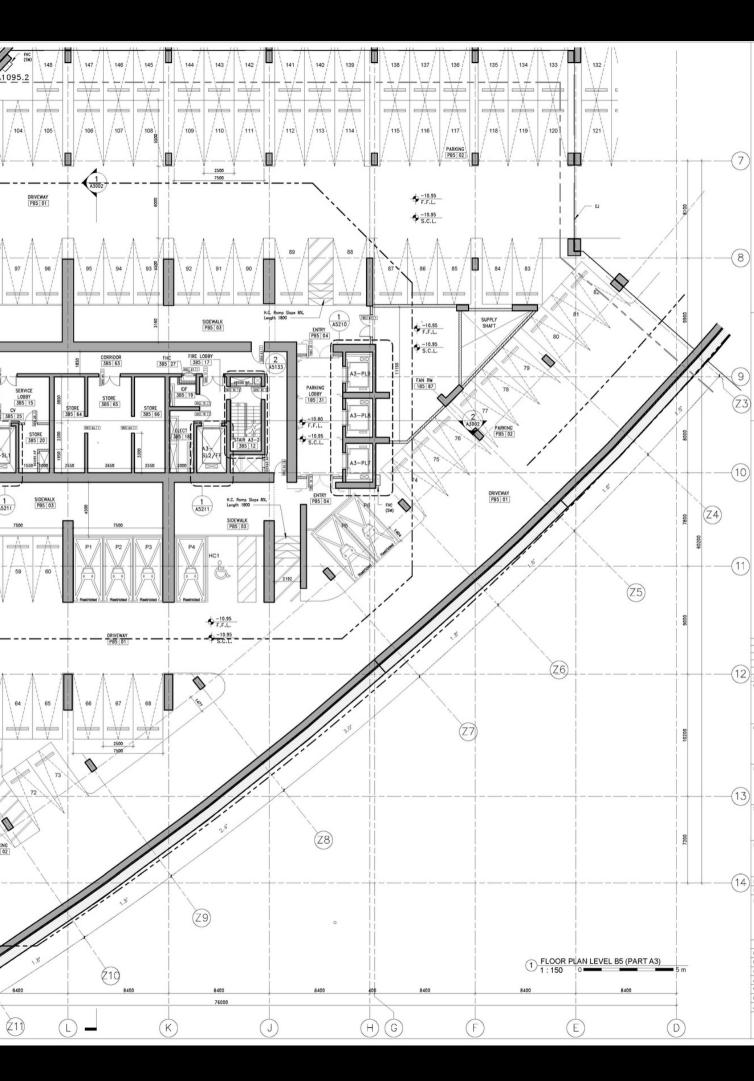
Design Philosophy

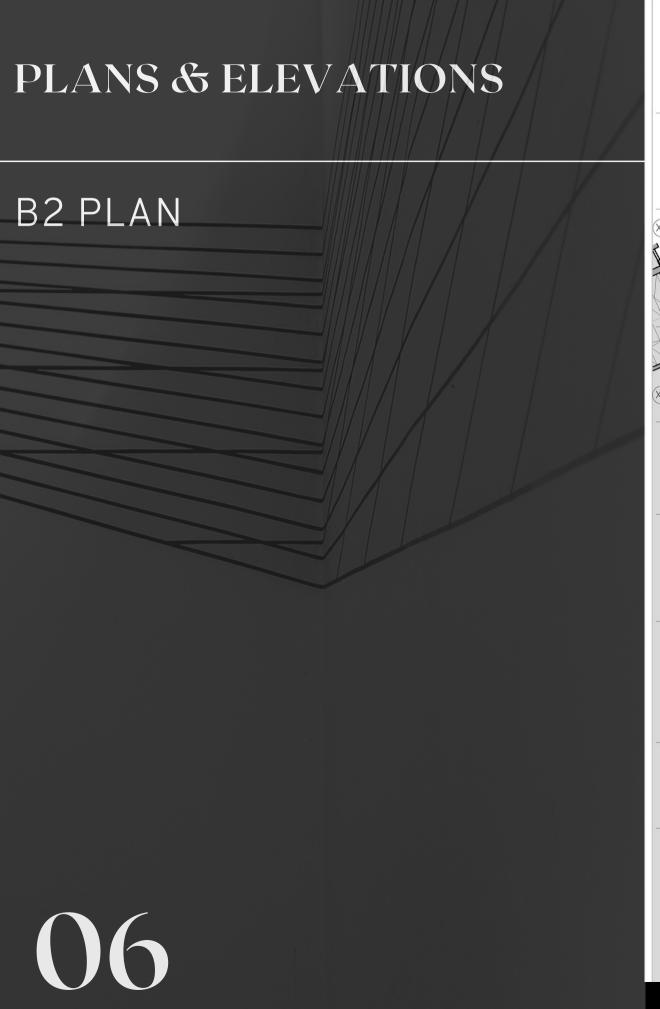
Introduction

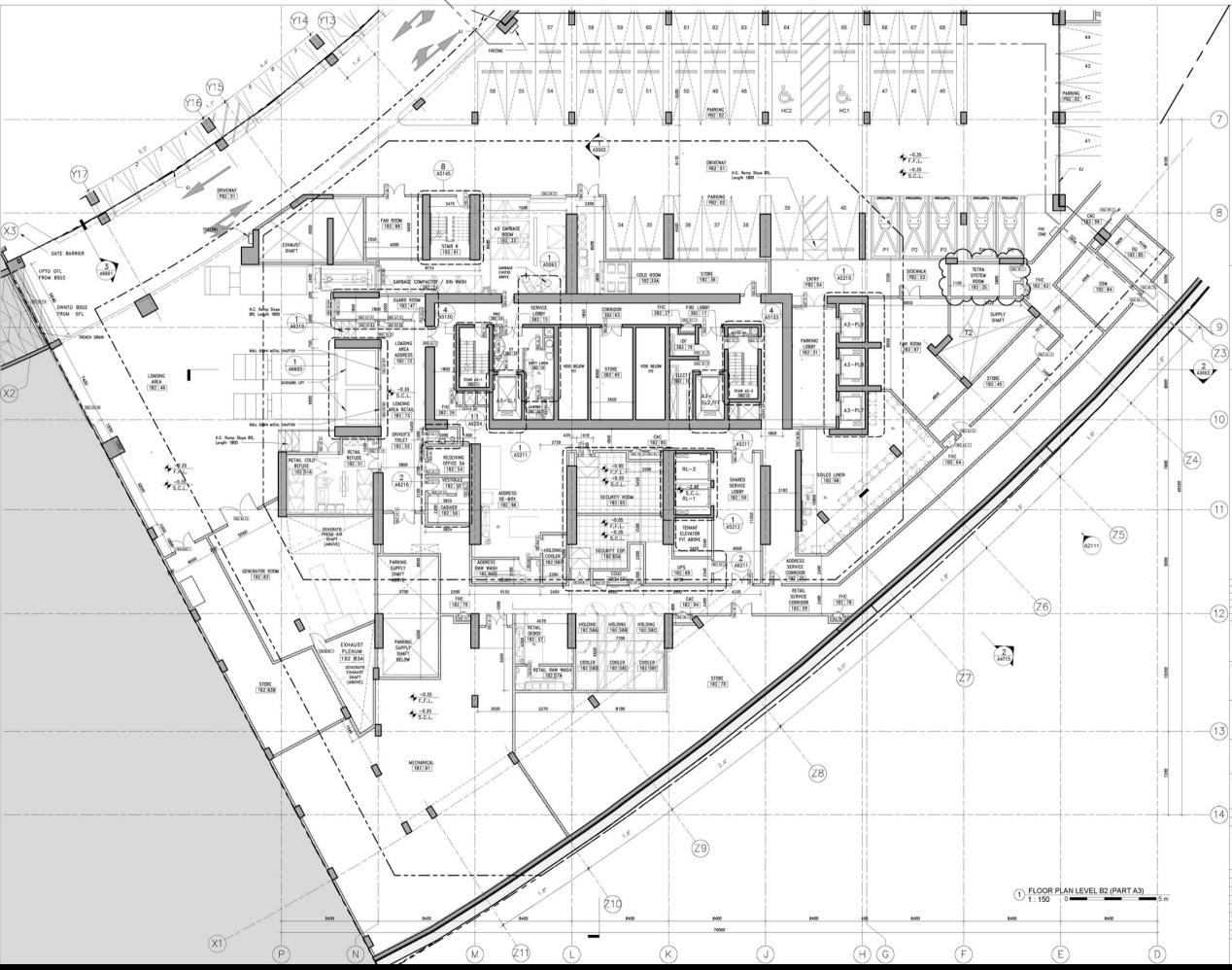
- Project Description
- Analysis & Design Principles
- Codes & Standards
- Materials

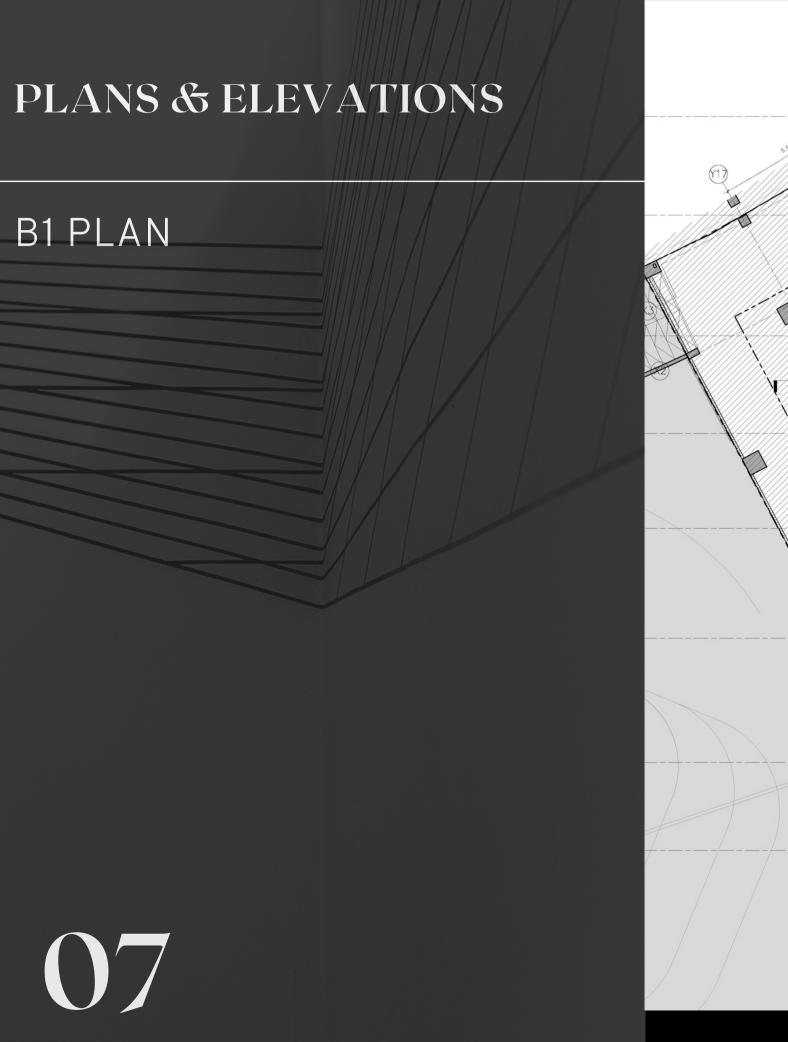
03

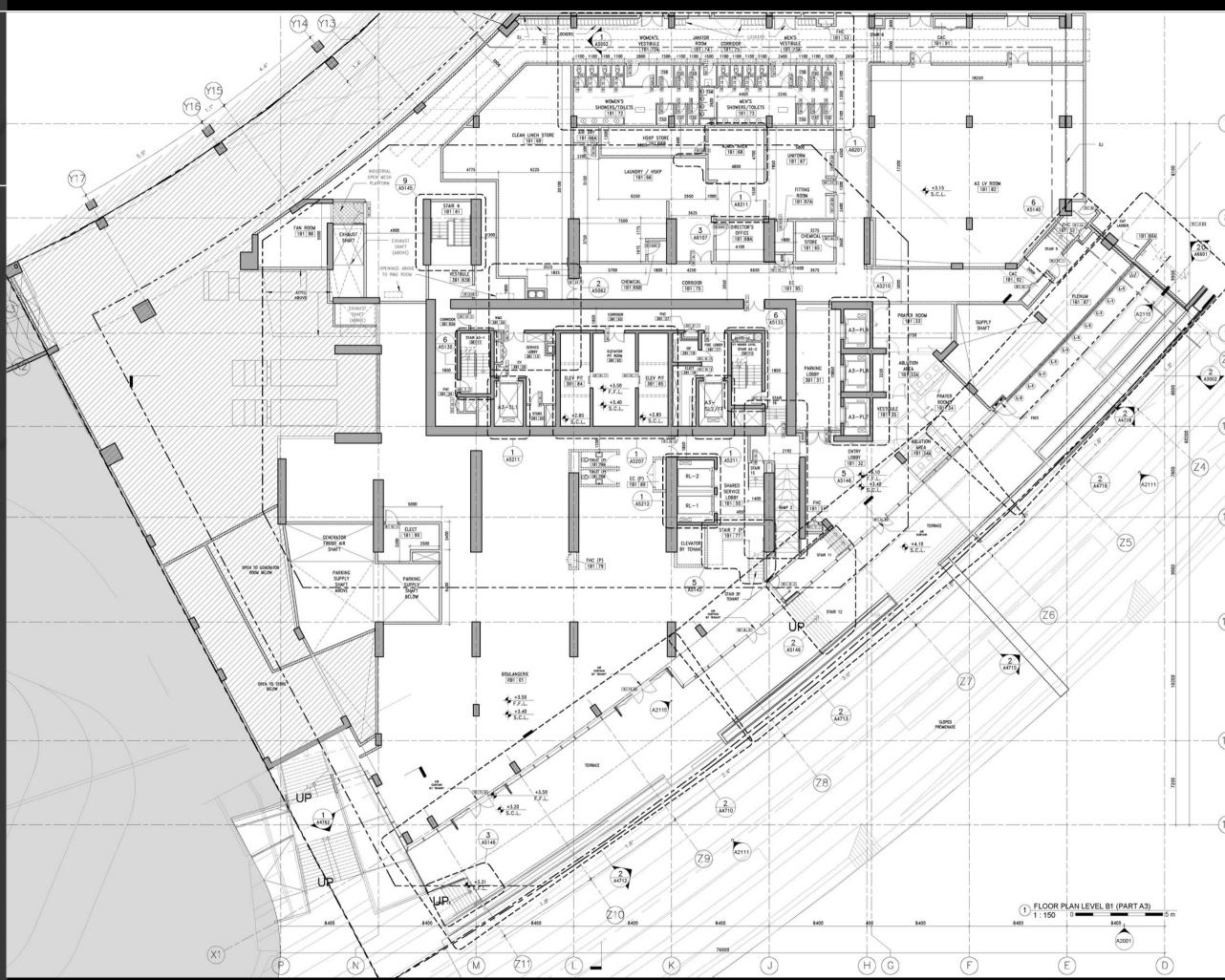

• Loads & Load Combinations

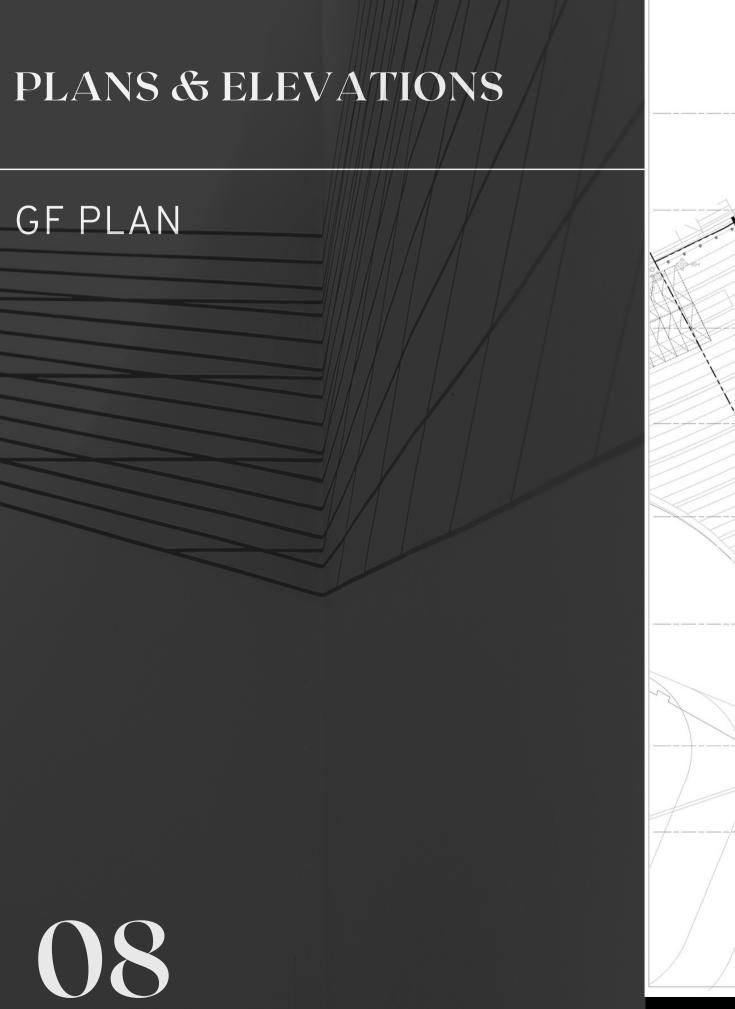

Project Description

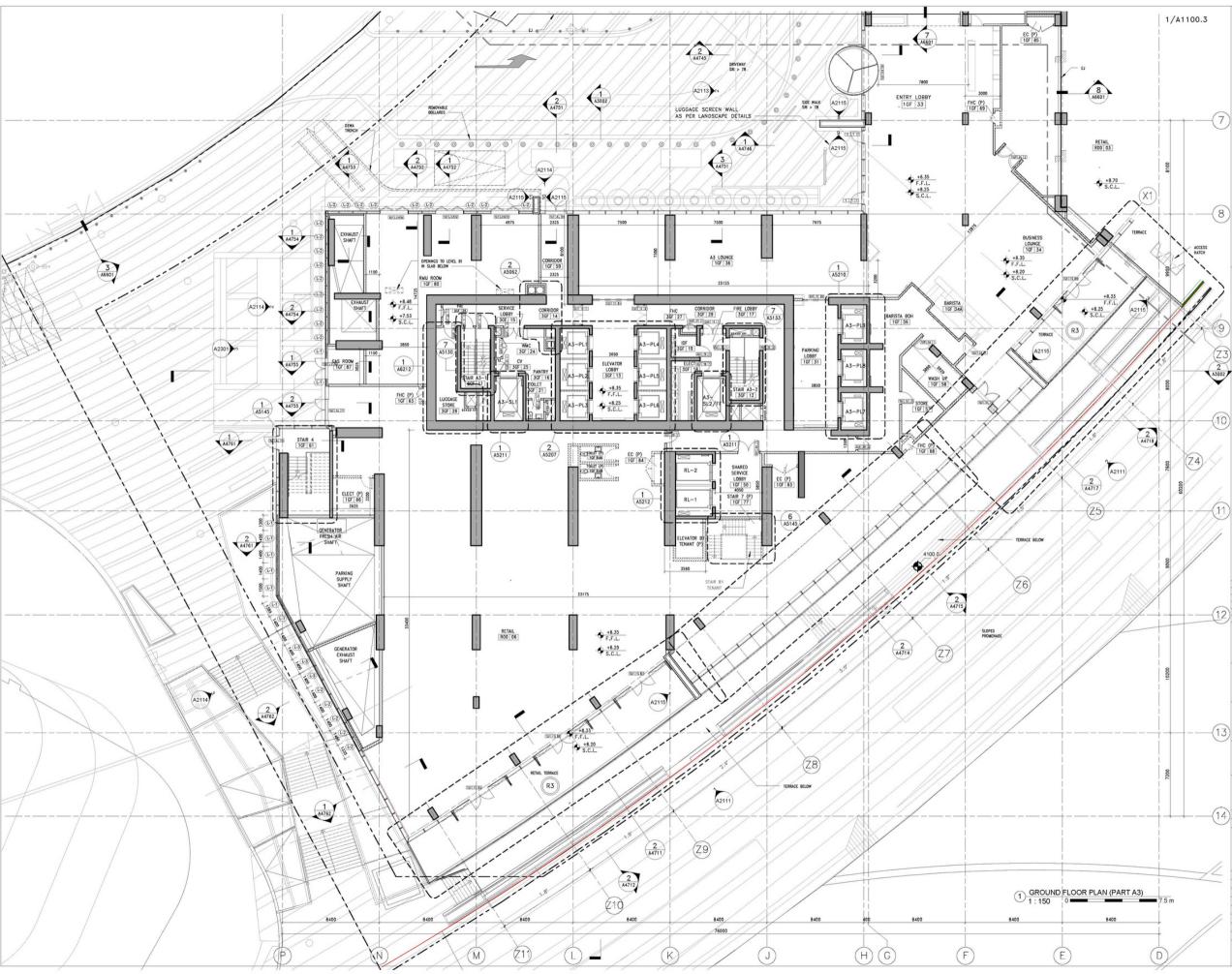

- AN-NAJAH HOTEL TOWER
- LOCATION: AN-NAJAH STREET
- AREAS & USAGE

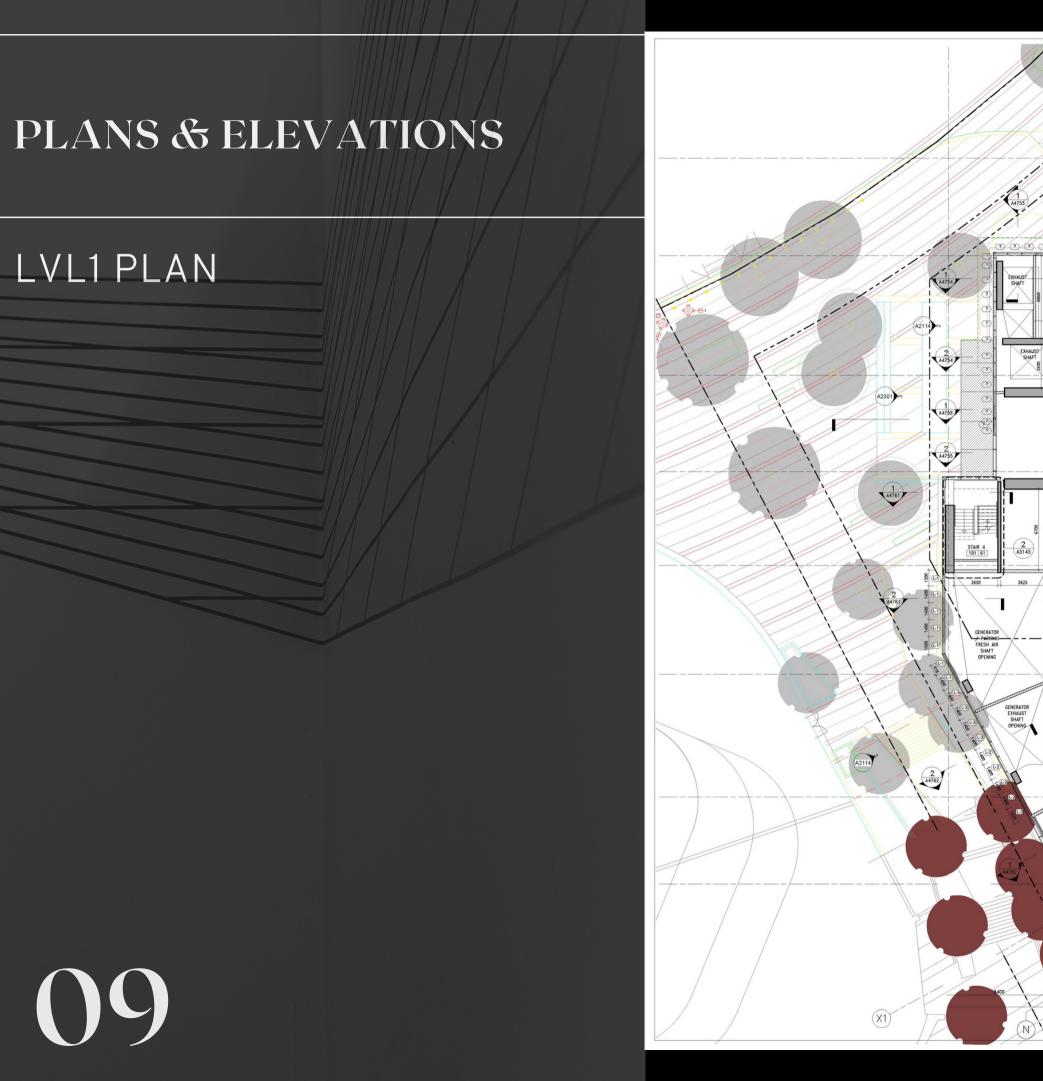

 $\mathbf{04}$

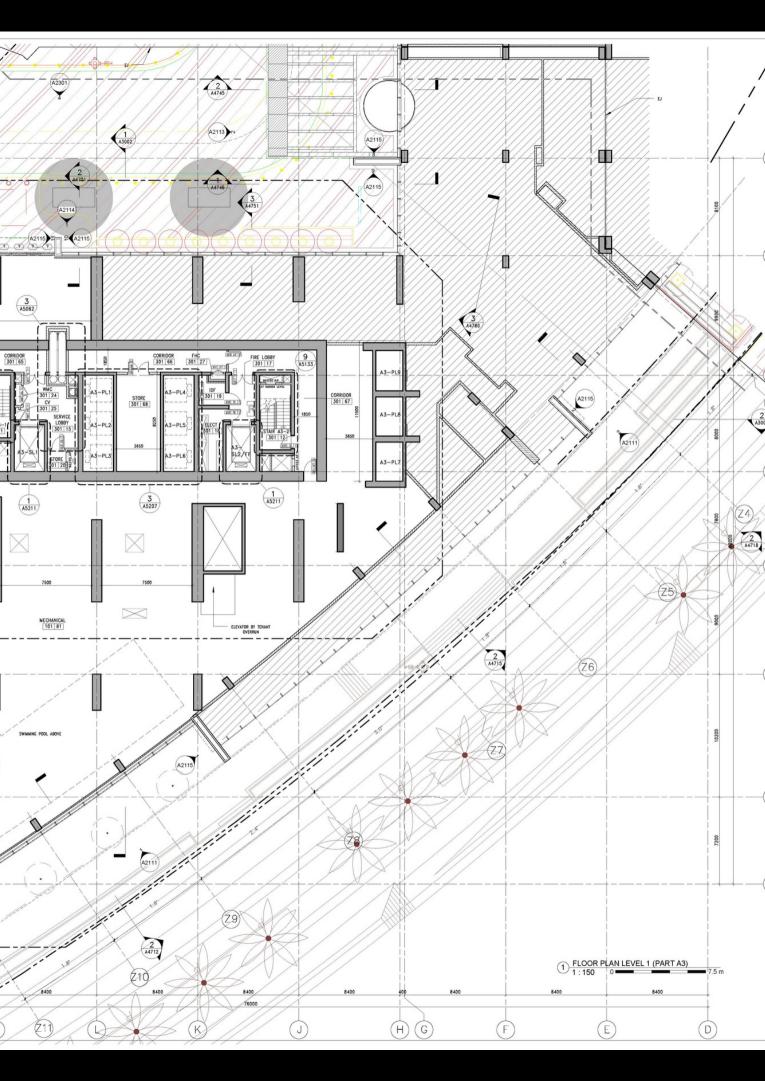


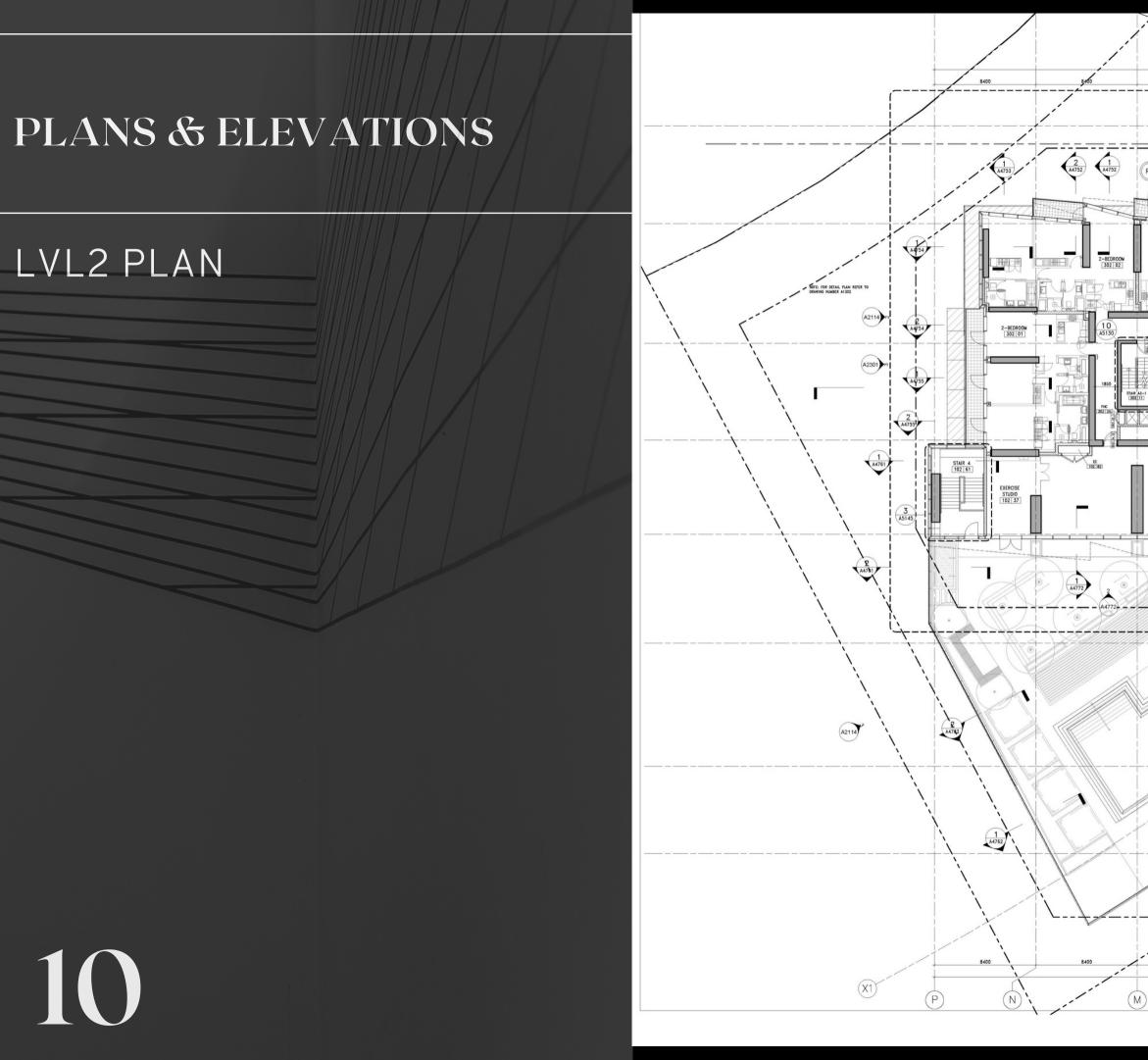


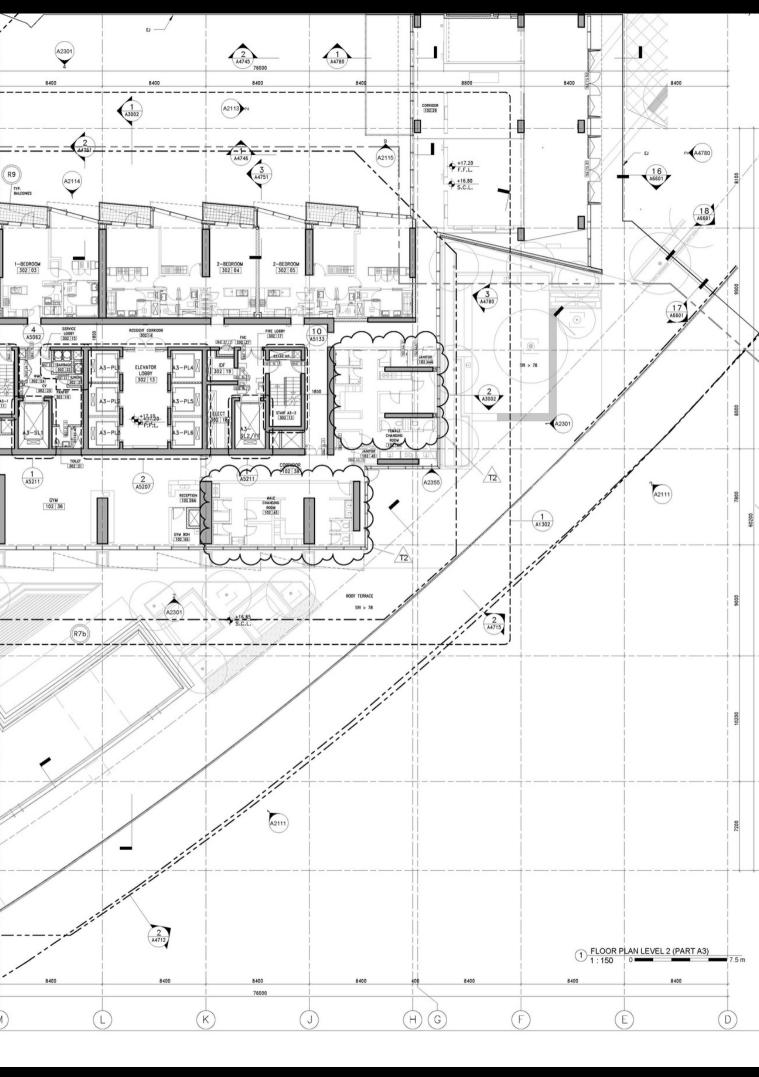






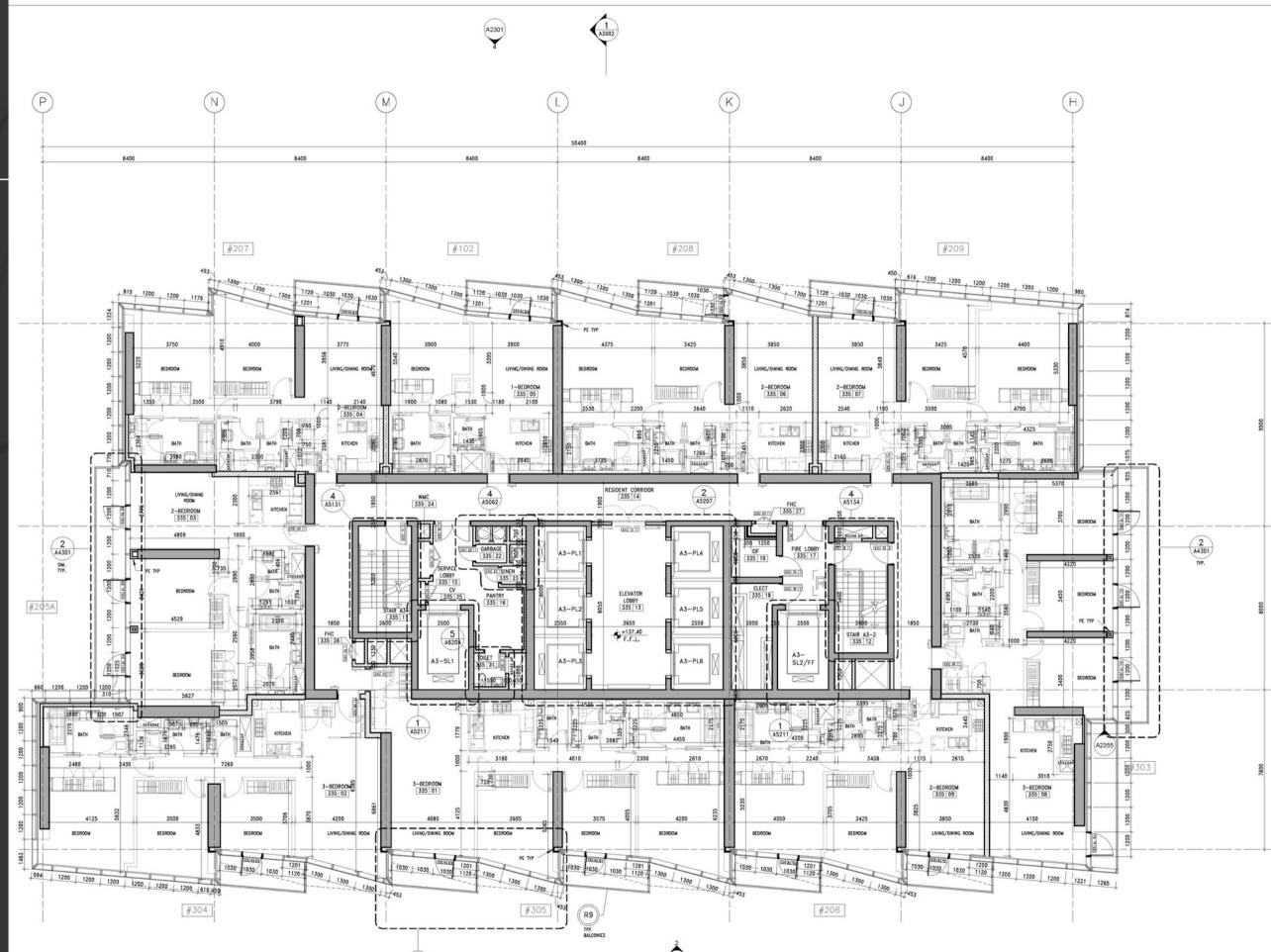



2 A4752 1 A4752


CONCRETE WATER SUPPORTS, TYP.

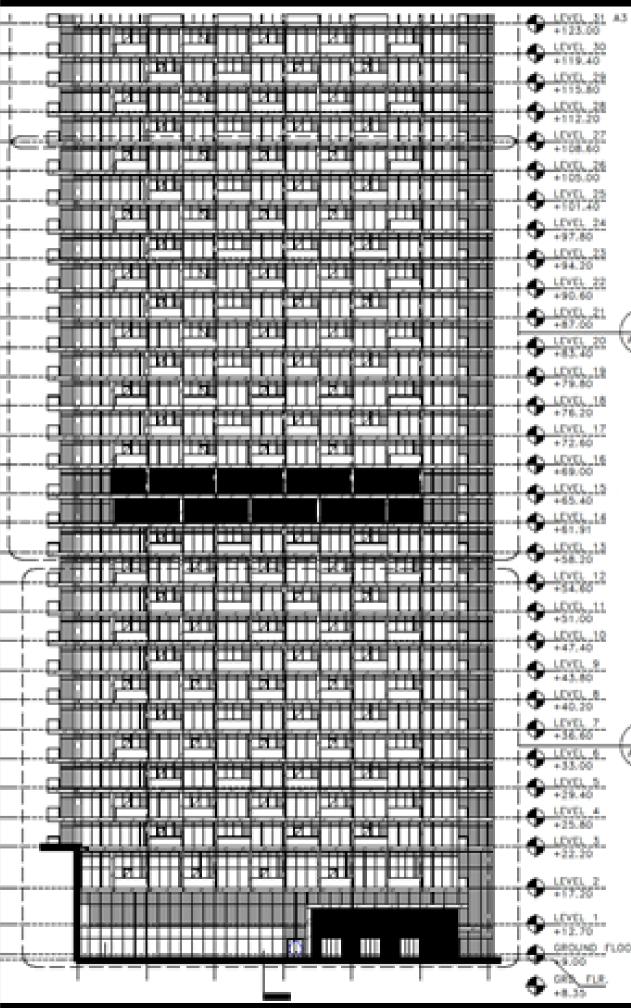
+12.70 S.C.L.

(M)


+13.20 S.C.L.

PLANS & ELEVATIONS

TYPICAL TOWER FLOOR PLAN


11

A2301

PLANS & ELEVATIONS

WEST & SOUTH ELEVATIONS

		L 000.31	45
	THE REAL PROPERTY IN THE RE	+123.00	
	160000	+119.40	
Contractor of the second s	Contraction of the		
	THU DO	LDVDL 26	
	11 4	+105.00	
		+101.40	
	110 111	+97.80	
		+94.20	
100000000000000000000000000000000000000	TRACING		
			(2)
			(1111)
1000000	111		
1911 Harris	\mathbf{n}	+76.20 UV0L_17	
		+72.60	
		- LOOL 12	
		+65.40	
75 11 11 11 11 11 11 11 11 11 11 11 11 11	ter fille fille fi		
	THE OWNER OF T		
		UX0L_12	
i li		I LEVEL 9	
	THE OWNER		
	114	+40.20	_
	1 HIIIIII	+56.60	(2) (A2312)
	112		S
	1.0		
		:	
		CROUND /	LOOR RETA
		€ 68 <u>0</u> /1.8 +8.35	
		+8.35	

LCCD. 28 +115.60 LC00.28 +112.20 LIVEL 22 +108.60 LC(0, 26 +105.00 UDTL 27 101.40 UEVEL 24 +97.80 LCC0. 23 +34.20 € LEVEL 22 +90.60 LCVEL_21 +87.66 1.14.14 LOC 18 178.60 LDX0._18 *76.20 LEVEL 17 +72.60 LOCL_16 +69.00 LCVCL_13 +45.40 LDVD. 14 +41.91 +58.20 LEVEL LEVEL 12 +54.65 LD00_1 +51.00 LC(0. 19 +47,40 LEVEL 9 +43.80 LD(0. 8. +40.20 ♦ LEVEL 7 +36.60 € 1070. €. (42313) LCCO. 2. +29.40 ← LEVEL 4
 +25.80 LD00_1 +22.20 UNIT 2 17.20 UP(R) 1 +12.70 CROUND FLOOR RETAIL 50.00

ANALYSIS AND DESIGN PRINCIPLES

Assumptions

Supports, Service Loads, and Foundation system

Design methods

Ultimate Design Method

TELET

Lateral Force Resisting System

Dual System with Special Moment Frames & Special Shear walls

Software used

CSI Etabs, CSI SAP2000, Excel & Autodesk AutoCad

Codes & Standards

- ASTM standards for materials specifications.

- and temperature.
- Israeli Seismic Maps

• Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-10) for load computations.

• Building Code Requirements for Structural Concrete (ACI 318M-14) for structural components design and detailing.

• The Jordanian National Building Code for loads of wind, snow

Materials Used in structural members

- Footings, Columns, and Walls 40 MPa
- Beams and Slabs 32 MPa

MATERIALS				
MATERIAL	UNIT WEIGHT (KN/M ³)			
CONCRETE	25.00			
SOIL	20.00			
SAND	18.00			
STONE	26.00			
MORTAR	23.00			
PORCELAIN TILES	24.00			
EPOXY RESIN	12.00			
GLASS	24.00			
ALUMINUM	27.00			
PUMICE LIGHT WEIGHT BLOCK(400X200X200 MM)	12KG/BLOCK			
PUMICE LIGHT WEIGHT BLOCK(400X200X100 MM)	10KG/BLOCK			

Materials

15

• Concrete compressive strength, Cylinder at 28 days:

• *Reinforcement Steel Grade A60, Yield strength Fy = 420 MPa*

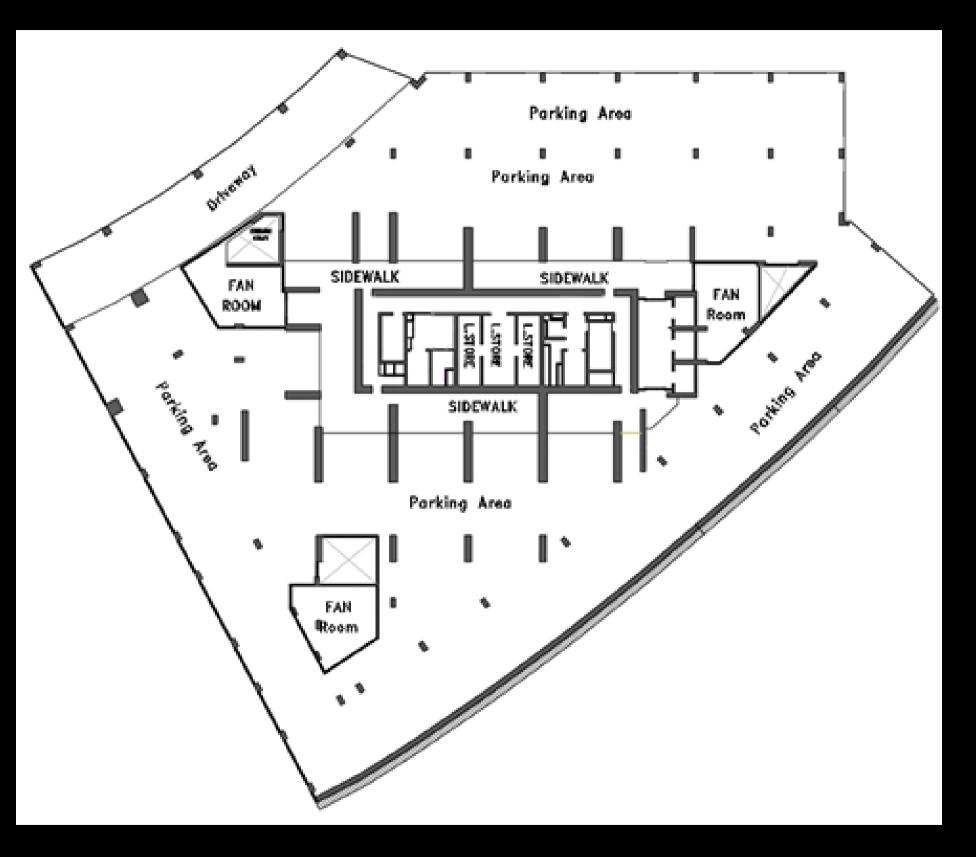
Loads

16

 Dead load Calculated by CSI ETABS 2016

 Rain load drainage

 Snow load is taken at 1m


Need not be considered, slope provides free

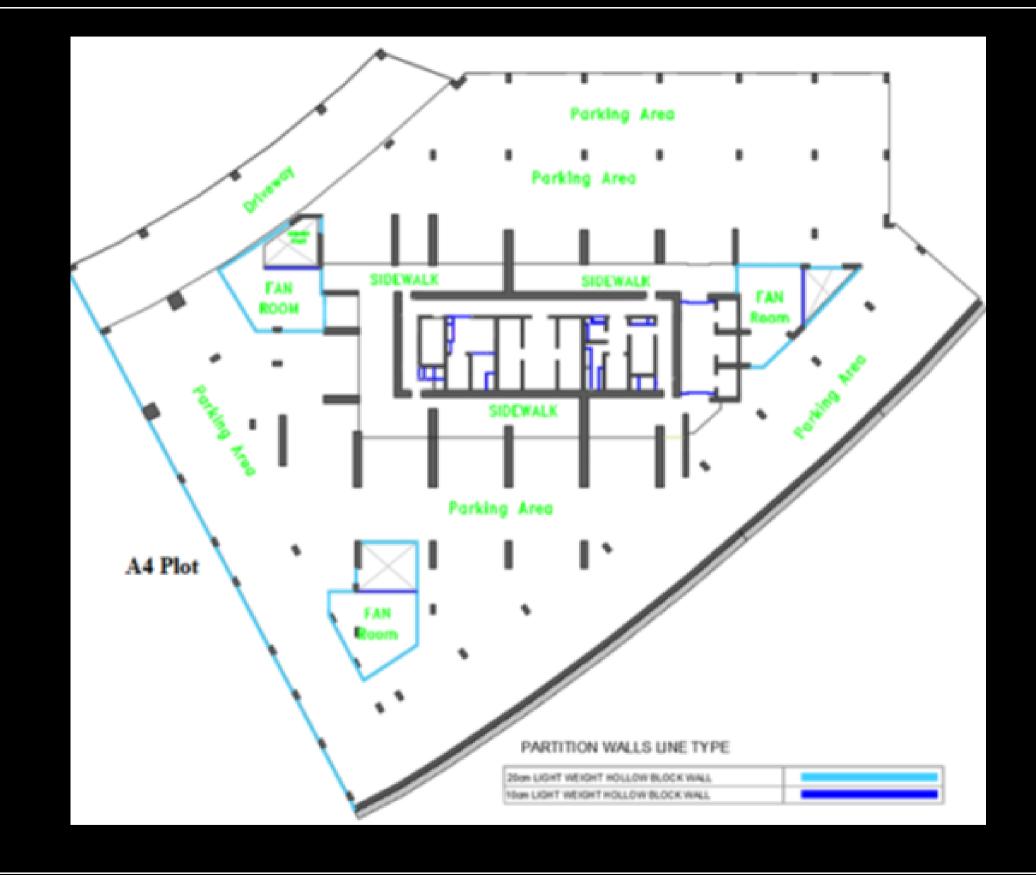
Snow unit weight = 3 kN/m³, Snow thickness

Live Loads

According To ASCE 7-10 Table 4.1 Public areas = 5 kN/m² Sidewalk = 5 kN/m² Private areas & Bedrooms = 2 kN/m² Mechanical rooms and heavy storage = 12 kN/m² Light storage = 6 kN/m² Parking area = 3 kN/m² Driveway = 5 kN/m² Loading area = 15 kN/m² Street = 15 kN/m²

Live Load Zones

SD Loads


Partition load approach

- 20 cm thickness wall (P1) with 20 mm plaster for each side
 Load = 2.42 kN/m²
- 10 cm thickness wall (P2) with 20 mm plaster for each side
 Load= 1.9 kN/m²
 - Epoxy 1 cm thickness layer (Parking areas) Load= 0.13 kN/m²
 - Bathroom wall tiles + mortar
- 2 cm mortar + 1 cm porcelainLoad= 0.7 kN/m²

Glass curtain wall Load = 0.45 kN/m^2

• Porcelain tiles

10 cm thickness (1 cm porcelain + 2 cm mortar + 7 sand) Load = 2 kN/m²

Wind Load

Wind load approach

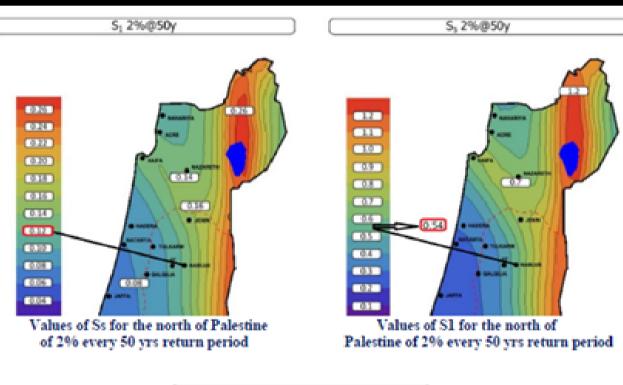
• Directional procedure qz= 0.613 Kz Kzt Kd V² P = qGCP - qi(GCpi) > 770 $V_{ASCE7-5} = 34 \text{ m/s}$ $V_{ASCE7-10} = \sqrt{load factor} * I_{w} * V_{ASCE7-05}$ $V_{ASCE7-10} = 49.45 \text{ m/s}$ $I_{w_{ASCE 7-05}} = 1.15$

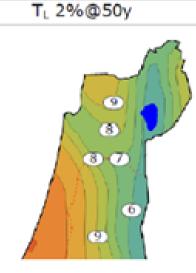
Assumptions G = 0.85 (*Rigid*) structure) Kd = 0.85Kzt = 1Exposure type C

Soil Loads

20)

Soil unit weight = 20 kN/m³ Angle of friction Ø = 30° K_o = 1- Sin 30 = 0.5 Surcharge load = 12 kN/m²


Lateral load on exterior shear wall $q = k_o * h * \gamma$ Surcharge load $= k_o * 12$



- $S_{DS} = S_{MS} = 0.639$
- $S_{D1} = S_{M1} = 0.202$
- SDC D
- Analytical Procedure : Modal Response Spectrum

Seismic Load

21

Values of TL for the north of Palestine of 2% every 50 yrs return period

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

	Risk Catego	ory
Value of S_{DS}	I or II or III	IV
$S_{DS} < 0.167$	А	А
$0.167 \le S_{DS} < 0.33$	в	С
$0.33 \le S_{DS} < 0.50$	С	D
$0.50 \leq S_{DS}$	D	D

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

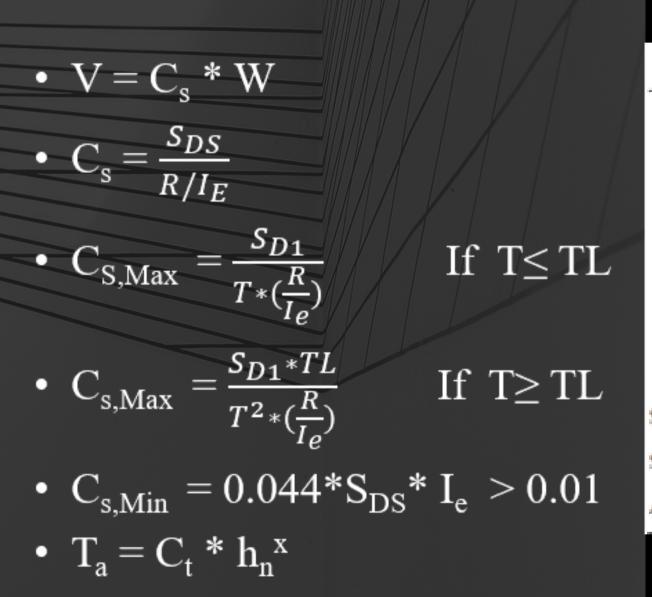
	Risk Catego	ory
Value of S_{DI}	I or II or III	IV
$S_{D1} < 0.067$	А	А
$0.067 \le S_{D1} < 0.133$	в	C
$0.133 \le S_{D1} < 0.20$	С	D
$0.20 \le S_{D1}$	D	D

		-		
Seismic Design Category	Structural Characteristics	Equivalent Lateral Force Analysis, Section 12.8 ^a	Modal Response Spectrum Analysis, Section 12.9"	Seismic Response History Procedures, Chapter 16 ^a
B, C	All structures	Р	Р	Р
D, E, F	Risk Category I or II buildings not exceeding 2 stories above the base	Р	Р	Р
	Structures of light frame construction	Р	Р	Р
	Structures with no structural irregularities and not exceeding 160 ft in structural height	Р	Р	Р
	Structures exceeding 160 ft in structural height with no structural irregularities and with $T < 3.5T_s$	Р	Р	Р
	Structures not exceeding 160 ft in structural height and having only horizontal irregularities of Type 2, 3, 4, or 5 in Table 12.3-1 or vertical irregularities of Type 4, 5a, or 5b in Table 12.3-2	Р	Р	Р
	All other structures	NP	Р	Р

Table 12.6-1 Permitted Analytical Procedures

"P: Permitted; NP: Not Permitted; $T_s = S_{D1}/S_{D5}$

- Site class C
- Risk Category III
- I_e = 1.25
- $S_1 = 0.12 \& S_s = 0.54$
- TL = 8 seconds
- $F_a = 1.184$
- F_v = 1.68
- $S_{MS} = F_a * S_S$
- $S_{M1} = F_v * S_1$


SEISMIC LOAD

LATERAL FORCES RESISTING SYSTEM: DUAL SYSTEM WITH SPECIAL MOMENT RESISTING FRAMES & SPECIAL REINFORCED CONCRETE SHEAR WALLS

	Seismic Force-Resisting System	ASCE 7 Section Where Detailing Requirements Are Specified
D.	DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES	12.2.5.1
1.	Steel eccentrically braced frames	14.1
2.	Steel special concentrically braced frames	14.1
3.	Special reinforced concrete shear walls	14.2
4.	Ordinary reinforced concrete shear walls ^t	14.2
5.	Steel and concrete composite eccentrically braced frames	14.3
6.	Steel and concrete composite special concentrically braced frames	14.3

Response Modification		Deflection	Li Stri	imitati uctural I	Heig limits	cludin ht, h _n ((ft)
Coefficient, R ^e		Amplification Factor, C _d ^b	в	С	D ^d	E4	F
8	21/2	4	NL	NL	NL	NL	NL
7	21/2	51/2	NL	NL	NL	NL	NL
7	21/2	51/2	NL	NL	NL	NL	NL
6	21/2	5	NL	NL	NP	NP	NP
8	21/2	4	NL	NL	NL	NL	NL
6	21/2	5	NL	NL	NL	NL	NL

EQUIVALENT STATIC METHOD

Structure Type

Moment-resisting frame systems in which the frames resist 100% of the required seismic force and are not enclosed or adjoined by components that are more rigid and will prevent the frames from deflecting where subjected to seismic forces:

Steel moment-resisting frames Concrete moment-resisting frames

Steel eccentrically braced frames in accordance with Ta

Steel buckling-restrained braced frames

All other structural systems

	0.028 (0.0724) ^a	0.8
	0.016 (0.0466) ^a	0.9
able 12.2-1 lines B1 or D1	0.03 (0.0731) ^a	0.75
	0.03 (0.0731) ^a	0.75
	0.02 (0.0488) ^a	0.75

Ct	х

Service Load Combinations

 \mathcal{O}

- a) D + SD
- b) D + SD + L
- c) D + SD + S
- d) D + SD + 0.75 L + 0.75 S
- e) D + SD + (0.6 W or 0.7 E)
- f) D + SD + 0.75 L + 0.75 S + 0.75(0.6 W)
- g) D + SD + 0.75 L + 0.75 S + 0.75(0.7 E)
- h) 0.6 (D + SD) + 0.6 W
- i) 0.6 (D + SD) + 0.7 E

+ 0.75(0.6 W) + 0.75(0.7 E)

Redundancy Factor (ρ) = 1.3 E = Ev + Eh Ev = 0.2*SDS*D $Eh = \rho * EQ$

25

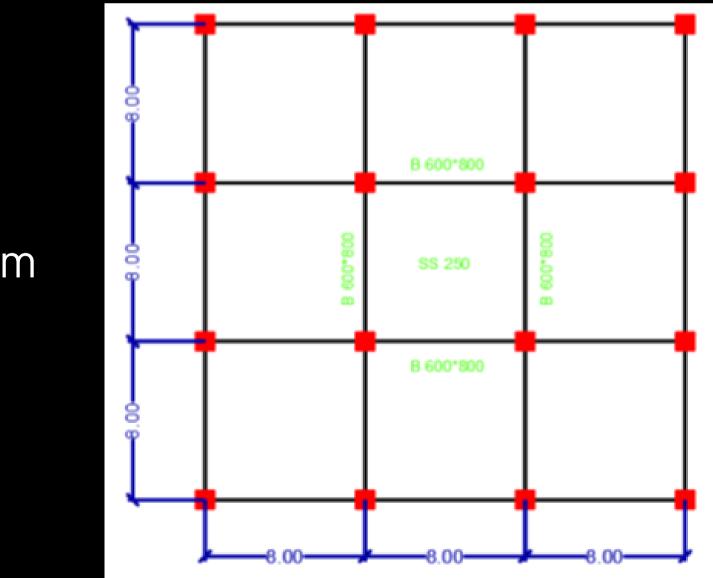
Ultimate Load Combinations

- D + SD + L + T
- D + SD + T
- 0.9 (D + SD) + 1.0 E
- 0.9 (D + SD) + 1.0 W
- 1.2 (D + SD) + 1.0 L + 0.2 S + 1.0 E
- 1.2 (D + SD) + 1.0 L + 0.5 S + 1.0 W
- 1.2 (D + SD) + 1.6 S + (L or 0.5 W)
- 1.4 (D+SD)
- 1.2 (D + SD) + 1.6 L + 0.5 S

PRELIMINARY DIMENSIONS

Beams

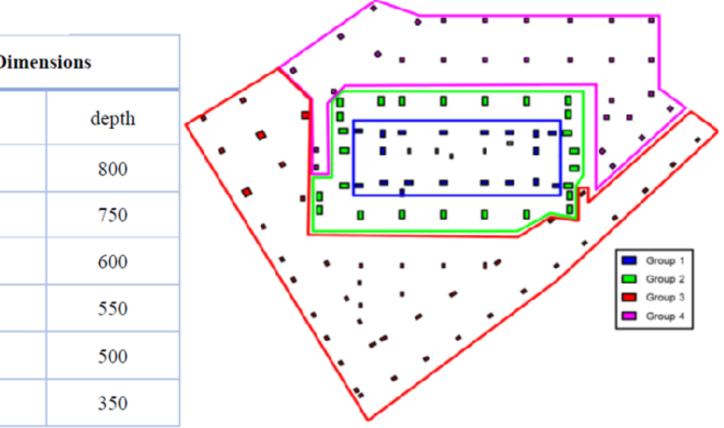
Beam width = L/20 Beam Depth: One-end continues = (L/18.5)*1.5

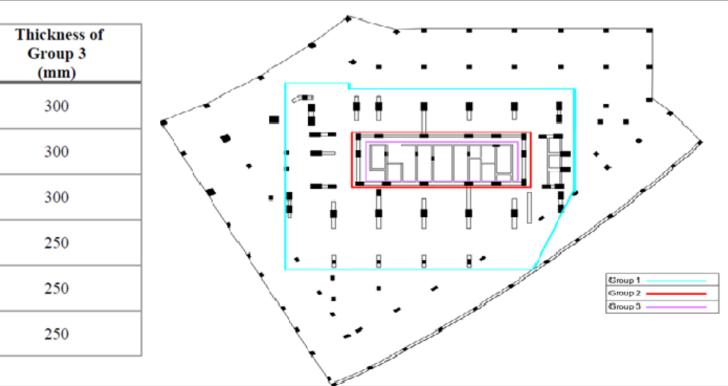

For outer beams: 600X600 For inner beams: 600X800

Slabs

Slab thickness = 250 mm

5)*****1.5 *Note: Beams sections meets special requirements


PRELIMINARY DIMENSIONS


Dimensions of group 1 columns in each floor				
Flager			Di	
Floors	Axial load (kN)	$A_g(\mathrm{m}^2)$	width	
B6 - GF	25623	1.18	1500	
Gf - lvl 6	21352.5	0.98	1300	
Lvl 6 - lvl 12	17082	0.78	1300	
Lvl 12 - lvl 18	12811.5	0.59	1200	
Lvl 18 - lvl 24	8541	0.39	800	
Lvl 24 - lvl 30	4270.5	0.196	600	

Columns

Shear Walls

Shear wall preliminary thicknesses in each floor				
floors	Thickness of Group 1 (mm)	Thickness of Group 2 (mm)		
B5 - B1	700	600		
GF – Level 6	650	600		
Level 7 – Level 12	600	500		
Level 13 – Level 18	550	500		
Level 19 – Level 24	500	400		
Level 25 – Level 30	450	350		

THREE-DIMENSIONAL MODELING

Definitions

Materials, Modifiers & Modal Cases

Load Cases

Wind Load, Response Spectrum Function, Earthquake in X & Y-Direction & Non-Uniform Soil load

Analysis checks

Compatibility Check, Equilibrium Check, Stress-Strain Check, Deflection Check, Seismic Scale Factor, Story Drift, Effect of P-Delta & Structural irregularity.

T

DEFINITIONS

MATERIALS

BEAMS AND COLUMNS MODIFIERS

29

rial Property Data	
neral Data	
Material Name	Concrete 4
Material Type	Concrete
Directional Symmetry Type	Isotropic
Material Display Color	
Material Notes	Мо
terial Weight and Mass	
Specify Weight Density	0 9
Weight per Unit Volume	
Mass per Unit Volume	
chanical Property Data	
Modulus of Basticity, E	
Poisson's Ratio, U	
Coefficient of Thermal Expansion, A	
Shear Modulus, G	
sign Property Data	
Modify/Show Ma	terial Prope
vanced Material Property Data	
Property/Stiffness Modificati	ion Facto
Property/Stiffness Modifiers fo	or Analysis
Cross section (axial) Area	
Shear Area in 2 direction	
Shear Area in 3 direction	
Torsional Constant	
Moment of Inertia about 2	axia
Moment of Inertia about 3	axis
Mass	
Weight	

Mat Mat

n de

Modifiers of all columns

OK

	88	Material Property Data	83
40 Mpa V Change odfy/Show Notes		General Data Material Name Concete 32 Mpa Material Type Concrete Directional Symmetry Type Isotropic Material Display Color Change Material Notes Modify/Show Notes Material Weight and Mass	8
25 kN/m ³ 2549.29 kg/m ³		Specify Weight Density O Specify Mass Density Weight per Unit Volume Z5 kN/m ³ Mass per Unit Volume Z549.29 kg/m ³	
29725.5 MPa 0.2 0.0000099 1/C 12385.63 MPa		Mechanical Propety Data Modulus of Elasticity, E 26587.3 Poisson's Ratio, U 0.2 Coefficient of Themal Expansion, A 0.0000099 Shear Modulus, G 11078.04 Design Property Data Modify/Show Material Property Design Data	
ors	8	Advanced Material Property Data Property/Stiffness Modification Factors Property/Stiffness Modifiers for Analysis	×
1 1 0.7 0.7		Cross-section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Torsional Constant 0.35 Moment of Inertia about 2 axis 0.35	
0.7		Moment of Inertia about 3 axis 0.35 Mass 0.6875 Weight 0.6875	
Cancel		OK Cancel	

Modifiers of beam (600x800)

DEFINITIONS

SLABS AND SHEAR WALLS MODIFIERS

MODAL CASES

30

Property/Stiffness Modifiers for Analysis Membrane f11 Direction Membrane f22 Direction Membrane f12 Direction Bending m11 Direction Bending m22 Direction Bending m12 Direction Shear v13 Direction Shear v23 Direction Weight

Mass

Modifiers of slabs

OK

Modal Cases						Click to:		
Modal Ca	Modal Case Name Modal Case Type					Add New Case		
Modal-Ritz-X	lodal-Ritz-X Modal - Ritz					Add Copy o	f Case	
Modal-Ritz-Y	dal-Ritz-Y Modal - Ritz					Modify/Sho	w Case	
Modal-Eigen	Modal - Eigen				_	Delete Case		
-		-			\$	Delete	Lase	
ra l				General				
odal Case Name	Manufactory		Design	Modal Case Na		Modal-Ritz Y		Design
odal Case SubType clude Objects in this Group	Pitz	¥	Notes	Modal Case Su		Ritz v		Notes
lass Source	Not Applicable			Exclude Object Mass Source	s in this Group	Not Applicable		
	Mass-Source			Plats Source		Mass-Source		
ta/Noninear Stiffness				P-Deta/Noninear	Stiffness			
	None	Modify/Show		Use Preset	P-Delta Settings	None	Modify/Show	
Use Nonlinear Case (Loads at End)	(Case NOT included)				ear Case (Loads at End o	of Case NOT included)		
Nonlinear Case				Nonin	ear Case			
a Applied				Loads Applied				
Load Type Load Na	ne Maximum Cycles	Target Dyn. Par. Ratio, %	0	Load Ty	pe Load Nar	ne Maximum Cycles	Target Dyn. Par. Ratio, %	0
contention UX	20	92	Add	Acceleration	UY	20	92	Add
			Delete					Delete

1	Property/Stiffness Modifiers for Analysis	
1	Membrane f11 Direction	0.7
1	Membrane f22 Direction	0.7
0.25	Membrane f12 Direction	0.7
0.25	Bending m11 Direction	0.7
0.25	Bending m22 Direction	0.7
1	Bending m12 Direction	0.7
1	Shear v 13 Direction	1
1	Shear v23 Direction	1
	Mass	1
	Weight	1
Cancel		

Modifiers of wall sections

LOAD CASES

WIND LOAD

RESPONSE SPECTRUM FUNCTION

Exposure and Pressure Coefficients Exposure from Extents of Diaphragms Exposure from Frame and Shell Objects Include Shell Objects Include Frame Objects (Open Structure) Wind Pressure Coefficients

O User Specified

Wind Load Pattern - ASCE 7-10

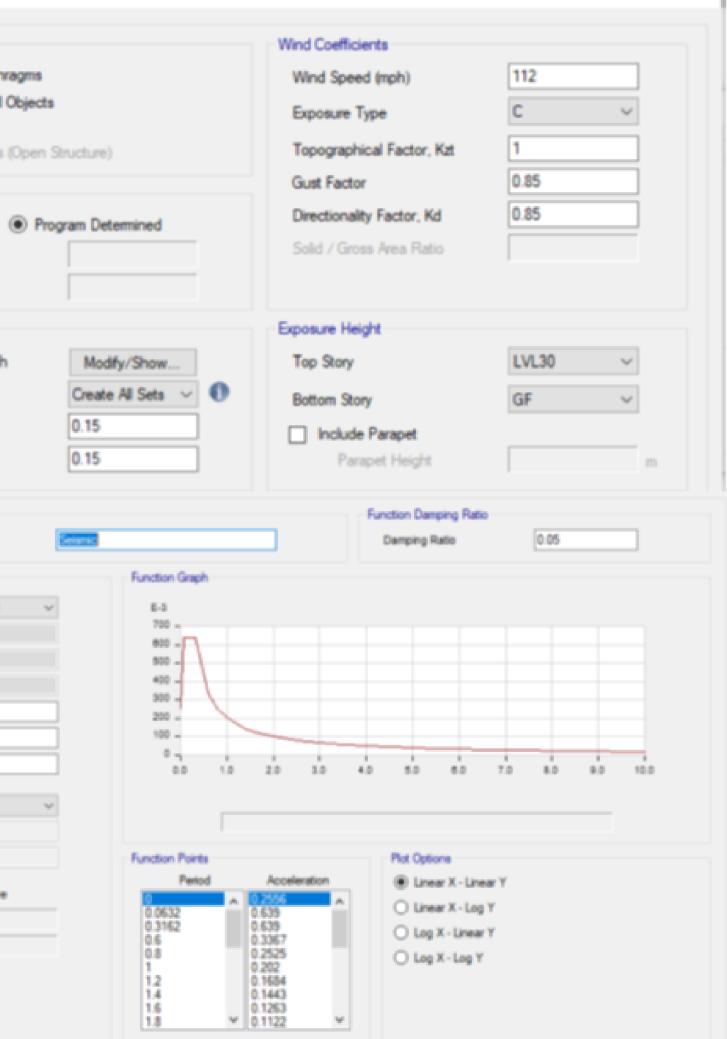
Windward Coefficient, Cpw

Leeward Coefficient, Col

Wind Exposure Parameters

Wind Direction and Exposure Width Case (ASCE 7-10 Fig. 27.4-8) e1 Ratio (ASCE 7-10 Fig. 27.4-8) e2 Ratio (ASCE 7-10 Fig. 27.4-8)

Function Name


Parameters

Ss and S1 from USGS -	User	Speci
Site Latitude (degrees)		
Site Longitude (degrees)		
Ste Zp Code (5-Digts)		
0.2 Sec Spectral Accel, Sa		0.93
1 Sec Spectral Accel, S1		0.18
Long-Period Transition Period		8
Ste Class		С
Ste Coefficient, Fa		1.02
Ste Coefficient, Fv		1.61

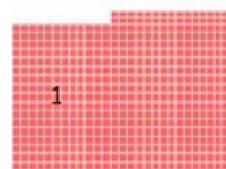
Calculated Values for Response Spectrum Curve

SD/S	 (2/3)*	Fa '	Sa	0.639
\$01	(2/3) *	Fy *	\$1	0.202

Convert to User Defined

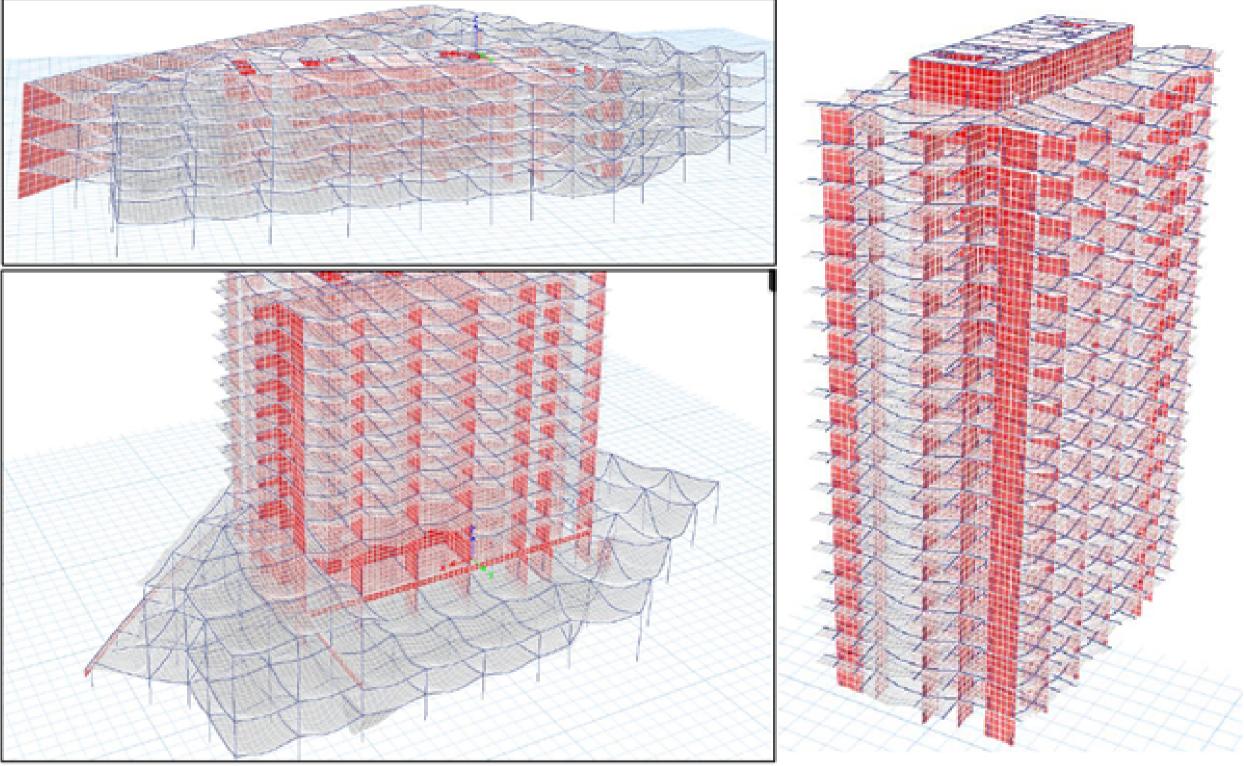
X

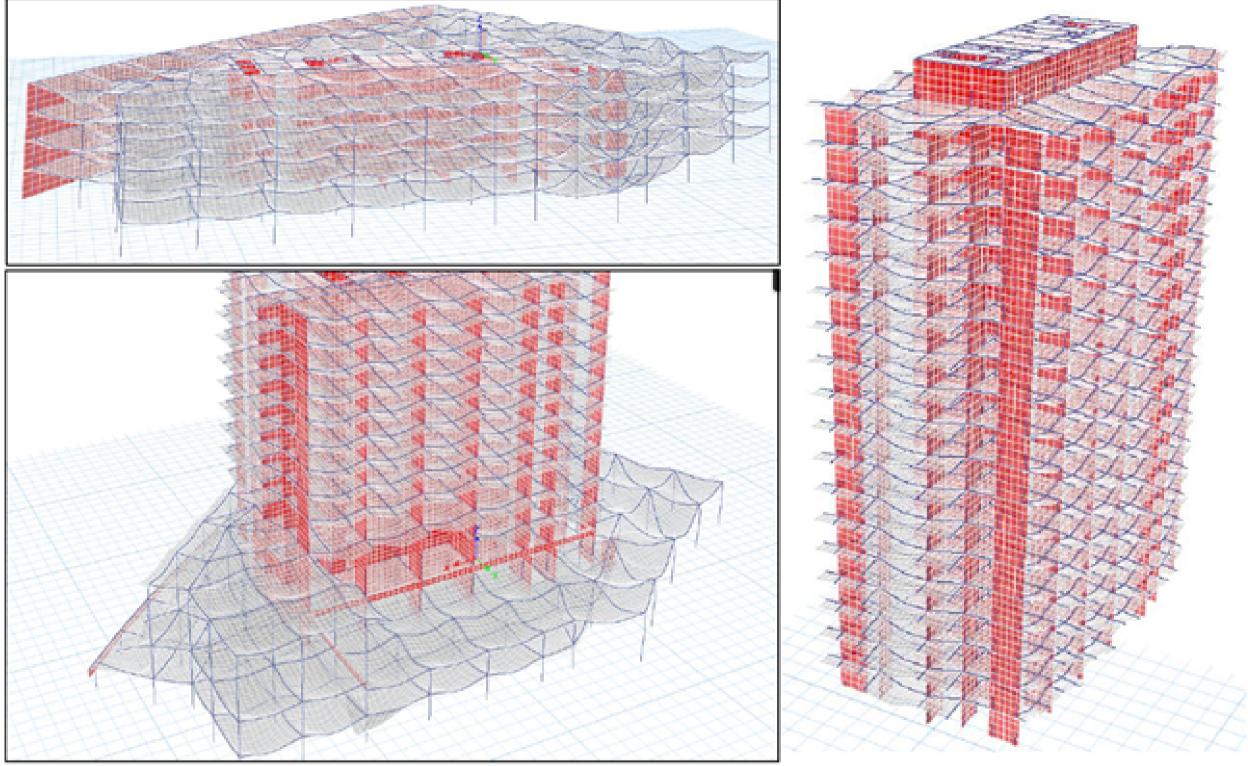
LOAD CASES


EARTHQUAKE IN X & Y-DIRECTION

NON-UNIFORM SOIL LOAD

	EQ-X		Design	Load Case Name	89 Y		Design
Load Case Type	Response Speci	tum v	Notes	Load Case Type	Response Spectre	m v	Notes
Exclude Objects in this Group	Not Applicable			Exclude Objects in this Group	Not Applicable		
Mass Source	Previous (Mass	Source)		Mass Source	Previous (Mass-S	iouros)	
ads Applied				Loods Applied			-
Load Type Load N	ame Function	Scale Factor	0	Load Type Load Nam	e Function	Scale Factor	0
Acceleration U1	Seismic	1751.78	Add	Acceleration U2	Selamic	1751.79	Add
Acceleration U2	Selamic	525.3	Delete	Acceleration U1	Selemic	525.54	Delete
			Advanced				Alvances
her Parameters				Other Parameters			
Modal Load Case	Model-Pitz-X	v		Modal Load Case	Model-Rtz-Y	v	
Modal Combination Method	CQC	¥		Modal Combination Method	COC	~	
Include Rigid Response	Rigid Frequency, f1			Include Rgid Response	Rigid Frequency, f1		
	Fligid Frequency, f2				Rigid Frequency, (2		
	Periodic + Fligid Type				Periodic + Rigid Type		
Earthquake Duration, td				Earthquake Duration, to			
Directional Combination Type	Abasiute	v		Directional Combination Type	Resolute	v	
Absolute Directional Combination	Scale Factor	1		Absolute Directional Combination S	icale Factor	1	
Model Demping Constant at	0.05	Modify/Show		Modal Damping Constant at 0	.05	Modify/Show	
Disphragm Eccentricity 0.05 for Al	Diaphragmo	Modify/Show		Diaphrage Eccentricity 0.05 for All Da	achragna	Modify/Show	
Definition	of Earthquake	load in X-diree	tion	Definition of	Earthquake loa	ad in Y-directi	on
Definition	of Earthquake	load in X-direc	tion	Definition of	Earthquake los	ad in Y-direct	on
Definition	of Earthquake	load in X-direc	tion	Definition of	Earthquake loa	ad in Y-directi	on
Definition Directon Local				Definition of	Earthquake los	Restrictions	
Direction Local		Restrictions Use All Vi	slues		510	Restrictions Use All Va	lues
Direction Local	3 ~	Restrictions Use All Vi Zero Neg	alues ative Values		010	Restrictions Use All Va Zero Neg	lues ative Values
Direction Local	3 ~	Restrictions Use All Vi	alues ative Values	Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By	→ Cz + D	Restrictions Use All Va	lues ative Values
Direction Local Non-uniform Load Load at Point(x,y,z) = Ax +	3 ~	Restrictions Use All Vi Zero Neg	alues ative Values	Direction Local-3	→ Cz + D	Restrictions Use Al Va C Zero Neg C Zero Post	lues ative Values
Direction Local Non-uniform Load Load at Point(xy z) = Ax + x, y and z are in the Globa A 0	3 v By + Cz + D I coordinate system kN/m ³	Restrictions Use All Va O Zero Neg O Zero Post	alues ative Values tive Values	Direction Local-3 Non-uniform Load Load at Point(x,y,z) = Ax + By x, y and z are in the Global co A 0	+ Cz + D pordinate system kN/m ³	Restrictions Use All Va Czero Neg Czero Post	dues ative Values tive Values
Direction Local Non-uniform Load Load at Point(x,y,z) = Ax + x, y and z are in the Globa A 0 B 0	3 V By + Cz + D I coordinate system k/N/m ³ k/N/m ³	Restrictions Use All Vi O Zero Neg O Zero Positions Options O Add to Ex	alues ative Values tive Values isting Loads	Direction Local-3 Non-uniform Load Load at Point(x,y,z) = Ax + By x, y and z are in the Global co A 0 B 0	+ Cz + D ordinate system kN/m ³ kN/m ³	Restrictions Use All Va C Zero Neg C Zero Post Options Add to Ex	ilues ative Values tive Values isting Loads
Direction Local Non-uniform Load Load at Point(x,y,z) = Ax + x, y and z are in the Global A 0 B 0 C 10	3 ~ By + Cz + D I coordinate system kN/m ³ kN/m ³	Restrictions Use All Vi Caro Neg Caro Post Options Add to Ex Replace	alues ative Values tive Values isting Loads Existing Loads	Direction Local-3 Non-uniform Load Load at Point(x,y,z) = Ax + By x, y and z are in the Global co A 0	+ Cz + D pordinate system kN/m ³	Restrictions Use Al Vi Czero Neg Czero Post Options Add to Ex Replace I	lues ative Values tive Values isting Loads Disting Loads
Direction Local Non-uniform Load Load at Point(x,y,z) = Ax + x, y and z are in the Globa A 0 B 0	3 V By + Cz + D I coordinate system k/N/m ³ k/N/m ³	Restrictions Use All Vi O Zero Neg O Zero Positions Options O Add to Ex	alues ative Values tive Values isting Loads Existing Loads	Direction Local-3 Non-uniform Load Load at Point(x,y,z) = Ax + By x, y and z are in the Global co A 0 B 0	+ Cz + D ordinate system kN/m ³ kN/m ³	Restrictions Use All Va C Zero Neg C Zero Post Options Add to Ex	lues ative Values tive Values isting Loads Disting Loads
Direction Local Non-uniform Load Load at Point(x,y,z) = Ax + x, y and z are in the Global A 0 B 0 C 10	3 v By + Cz + D I coordinate system kN/m ³ kN/m ³ kN/m ³	Restrictions Use All Vi Caro Neg Caro Post Options Add to Ex Replace	alues ative Values tive Values isting Loads Existing Loads	Direction Local-3 Non-uniform Load Load at Point(x, y, z) = Ax + By x, y and z are in the Global co A 0 B 0 C 10	+ Cz + D cordinate system kN/m ³ kN/m ³	Restrictions Use Al Vi Czero Neg Czero Post Options Add to Ex Replace I	lues ative Values tive Values isting Loads Disting Loads

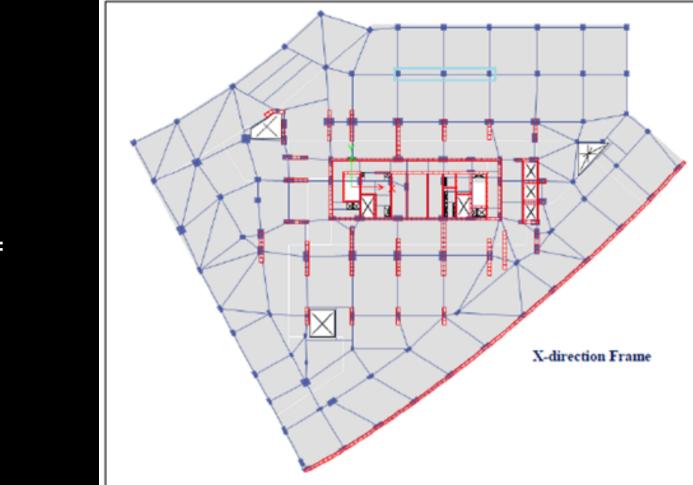

Load Case Name Load Case Type Exclude Objects in this Group Mass Source	EQ-X Response Spectru		Design	Load Case Name	2017		Design	
Exclude Objects in this Group	Response Spectru	-						
			Response Spectrum v Notes		 Notes Load Case Type 		Response Spectry	Notes
Mass Source	Not Applicable			Exclude Objects in this Group	Not Applicable	Not Applicable		
	Previous (Mass-Sc	purce)		Mass Source	Previous (Mass 5			
oads Applied				Loods Applied				
Load Type Load Name	Function	Scare Factor	0	Load Type Load Name	Function	Scale Factor	0	
Acceleration U1	Seismio	1751.78	Add	Acceleration U2	Seismic	1751.79	Add	
Acceleration U2	Seismic	525.3	Delete	Acceleration U1	Selensic	525.54	Delete	
			Advanced				Advanced	
her Parameters				Other Parameters				
Modal Load Case	Model-Fitz-X	v		Model Load Case	Modal-Rtz-Y	v		
Modal Combination Method	cac	¥		Modal Combination Method	COC	v		
Include Rigid Response	Rigid Frequency, f1			Include Rigid Response	Rigid Frequency, (1			
	Fligid Frequency, f2				Rigid Frequency, (2			
	Periodic + Fligid Type				Periodic + Rigid Type			
Earthquake Duration, td				Earthquake Duration, td		í l		
Directional Combination Type	Absolute	v		Directional Combination Type	Abeolute	v		
Absolute Directional Combination Scale	le Factor	1		Absolute Directional Combination Sc	ale Factor	1		
Model Damping Constant at 0.05		Modfy/Show		Modal Damping Constant at 0.0	5	Modify/Show_		
Modai Damping Constant at 0.05 Daphragm Eccentricity 0.05 for Al Diaphr		Modfy/Show		Model Damping Constant at 0.0 Diaphragm Eccentricity 0.05 for Al Day	-	Modity/Show Modity/Show		
Model Demping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Disphr	oK Cano	Modfy/Show	ion	Disphrage Eccentricity 0.05 for Al Day	phragma	Modify/Show	on	
Modai Damping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Diaphy	oK Cano	Modify/Show	ion	Disphrage Eccentricity 0.05 for Al Day	OK Can	Modify/Show	on	
Model Demping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Disphr	oK Cano	Modify/Show	ion	Disphrage Eccentricity 0.05 for Al Day	OK Can	Modify/Show	on	
Model Damping Constant at 0.05 Disphragm Eccentricity 0.05 for All Diaphy	oK Cano	Modfy/Show		Disphrage Eccentricity 0.05 for Al Day	OK Can	Modty/Show_		
Model Demping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Diaphy Definition of Direction Local-3	OK Caro Earthquake l	Modfy Show	es	Dephrage Eccentricity 0.05 for Al Day Definition of H Direction Local-3	okagns OK Can Earthquake los	Modty/Show orl Ad in Y-directi Restrictions () Use Al Va	lues	
Model Demping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Disphr Definition of Direction Local-3 Non-uniform Load	OK Cono Earthquake l	Modfy:Show oad in X-directions @ Use All Value O Zero Negativ	es ve Values	Dephrage Eccentricity 0.05 for AI Day Definition of H Coool 1 accent reside Detection Local-3 Non-uniform Load	ohregns OK Can Earthquake los	Nodty/Show oel Ad in Y-directions Bestrictions Use Al Va Zero Nega	lues tive Values	
Model Demping Constant at 0.05 Disphragm Recentricity 0.05 for Al Disphr Definition of Direction Local-3 Non-uniform Load Load at Point(p.y.z) = Ax + By +	ok Coro Earthquake lo	Modfy/Show oad in X-direction Restrictions (Use Al Value	es ve Values	Disphrage Eccentricity 0.05 for Al Day Definition of H Coor Factor Hand Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By	okregns OK Can Earthquake los	Modty/Show orl Ad in Y-directi Restrictions () Use Al Va	lues tive Values	
Model Demping Constant at 0.05 Disphragm Rocentricity 0.05 for Al Diaphr Definition of Direction Local-3 Non-uniform Load	ok Coro Earthquake lo	Modfy/Show al oad in X-directions (a) Use All Value (b) Zero Negative (c) Zero Positive	es ve Values	Disphrage Eccentricity 0.05 for Al Day Definition of H Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By - x, y and z are in the Global coordinates	ox Can Carthquake loa	Modty/Show oel Ad in Y-directions Bestrictions Use Al Va Zero Nega Zero Post	lues tive Values	
Nodel Demping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Diaphy Definition of Direction Local-3 Non-uniform Load Load at Point(x,y,z) = Ax + By + x, y and z are in the Global cool A 0	• Cz + D ordinate system kN/m ³	Modfy/Show oil Oad in X-directions © Use Al Value Ozero Negative Options	es ve Values e Values	Disphrage Eccentricity 0.05 for Al Day Definition of H Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By x, y and z are in the Global cool A 0	okregns OK Carr Carr Carr Carr Carr Carr Carr Carr	Modfy/Show_ ad in Y-directi Restrictions	lues tive Values ive Values	
Model Damping Constant at 0.05 Disphragm Eccentricity 0.05 for Al Disphr Definition of Direction Local-3 Non-uniform Load Local At Point(x,y,z) = Ax + By + x, y and z are in the Global coo A 0 B 0	• Cz + D ok N/m ³	Modfy/Show ol Restrictions © Use Al Value © Zero Negativ © Zero Positive Options © Add to Existin	es ve Values e Values ing Loads	Disphrage Eccentricity 0.05 for Al Day Definition of H Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By - x, y and z are in the Global coordinates	ox Can Carthquake loa	Modfy/Show ori ad in Y-directi Restrictions Use Al Va Zero Nega Zero Post Options Add to Exi	lues tive Values ive Values sting Loads	
Model Demping Constant at 0.05 Disphrages Eccentricity 0.05 for Al Diaphy Definition of Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By + x, y and z are in the Global cool A 0	• Cz + D ordinate system kN/m ³	Modfy/Show oil Oad in X-directions © Use Al Value Ozero Negative Options	es ve Values e Values ing Loads sting Loads	Disphrage Eccentricity 0.05 for Al Day Definition of H Direction Local-3 Non-uniform Load Local at Point(x,y,z) = Ax + By x, y and z are in the Global cool A 0	okregns OK Carr Carr Carr Carr Carr Carr Carr Carr	Modfy/Show_ ad in Y-directi Restrictions	lues tive Values ive Values sting Loads	


Non-uniform soil load assignment for the first part of the exterior wall

Non-uniform soil load assignment for the second part of the exterior wall

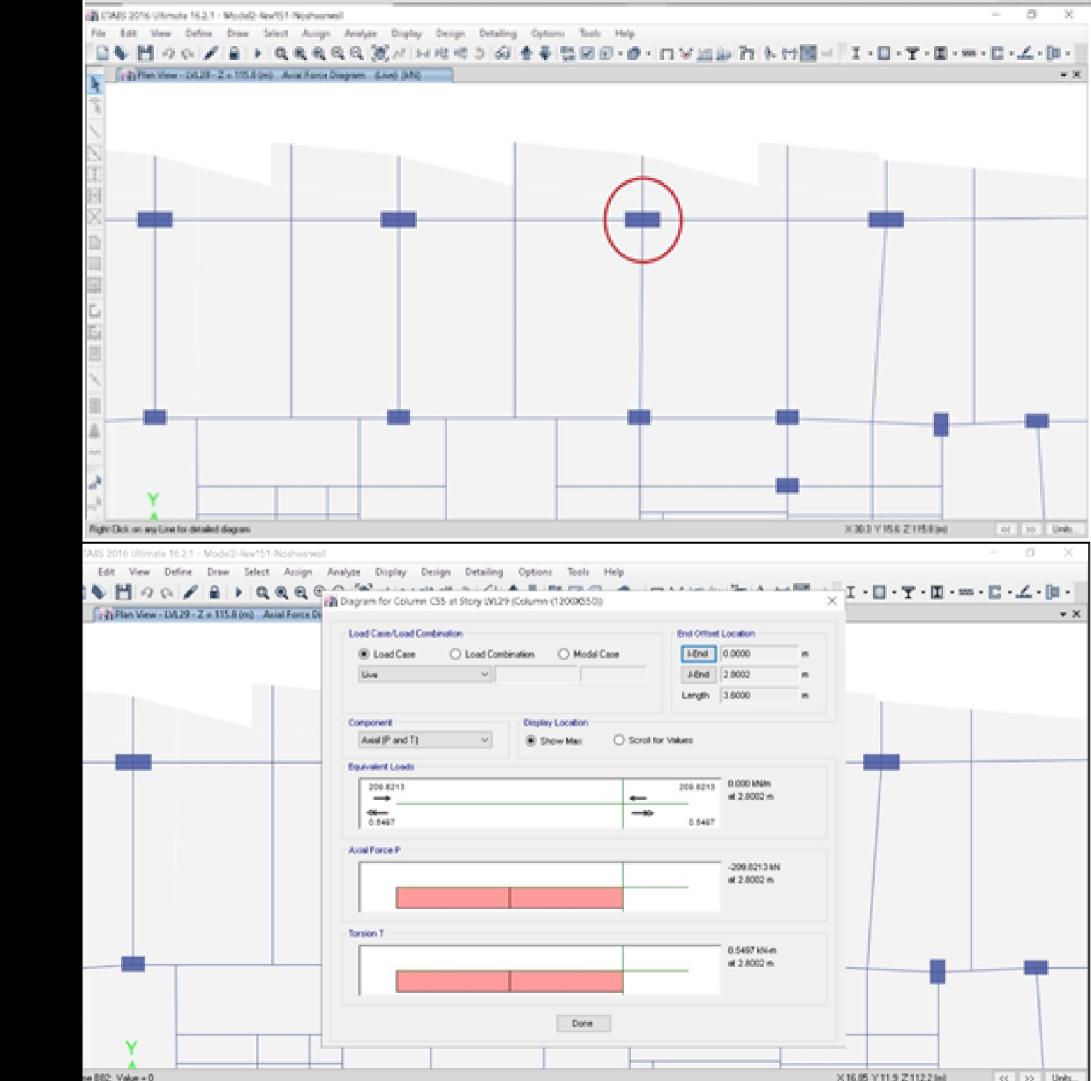
COMPATIBILITY CHECK


EQUILIBRIUM CHECK


			Table 3.6: gravity	loads for all flo	ort								
FLO	ORS	NUMBER	Live load (kN)	SD load (kN)	Dead load (kN)	Snow load (kN)]						
B5	-83	3	58,342.8	162032.50	159952.498	0							
1	ic .	1	45,798.74	54687.90	53987.898	0							
E	ki.	1	19,484.37	38198.18	37498.1847	0							
44	0+2	1	3,266.95	6937.15	6937.1471	0							
•	Ŧ	1	13,963.79	33971.08	33271.08	0							
DIFF	3+4+5	1	17,824.3	19706.48	19706.47535	0]						
LA	u	1	18,283.6	25071.59	24371.58696	0]						
LV	1.2	1	12,874.165	35134.87	34446.87	4244.55							
LV	13-6	4	16,076.6	74913.49	72113.489	0							
LVI	7.12	6	24,114.9	106999.93	102799.9335	0							
LVL	13-18	6	24,114.9	101135.53	96935.5335	0							
LVL	19-24	6	24,114.9	94929.58	90729.5835	0							
LVL	25-29	5	20,095.75	73925.11	70425.11125	0							
LV	L30	1	4,019.15	14773.02	14085.02225	3323.94]						
R	»of	1	1,607.35	5451.75	5451.7535	964.41							
60	lase Rea	ctions											. ×
H 4		of 6	Reload	Apply									
		ced	FX	FY	E	7	MC	MY	NZ		×	Y	
		/Combo	iĥ	kN	id		kN-m	kN-m	kN-m		'n	'n	
b	Dead		0.009	0.0461	1303182.0	X)74 -27	195679	-13939291	0.3964	0		0	-14.45
	Live		138201.0534	+160094.005			71056.5955	-26455300	0.59	0		0	-14.45
	SD		0.0045	-0.0225	318783.25		19677.3871	-2798243	-0.1024	0		0	-14.45
	Snow		4.9482-05	0.0003	8454.251		012.5615	-44630.2005	0.0026	0		0	-14.45
	E0X M		44097.63	19039.128	0.0012		6523.0805	2463027.3498	731934.5063	0		0	-14.45
	EQ-Y M	88	15989.2895	32505 3545	0.0007	11	90711.0234	633884.2758	655000.488	0		0	-14.45

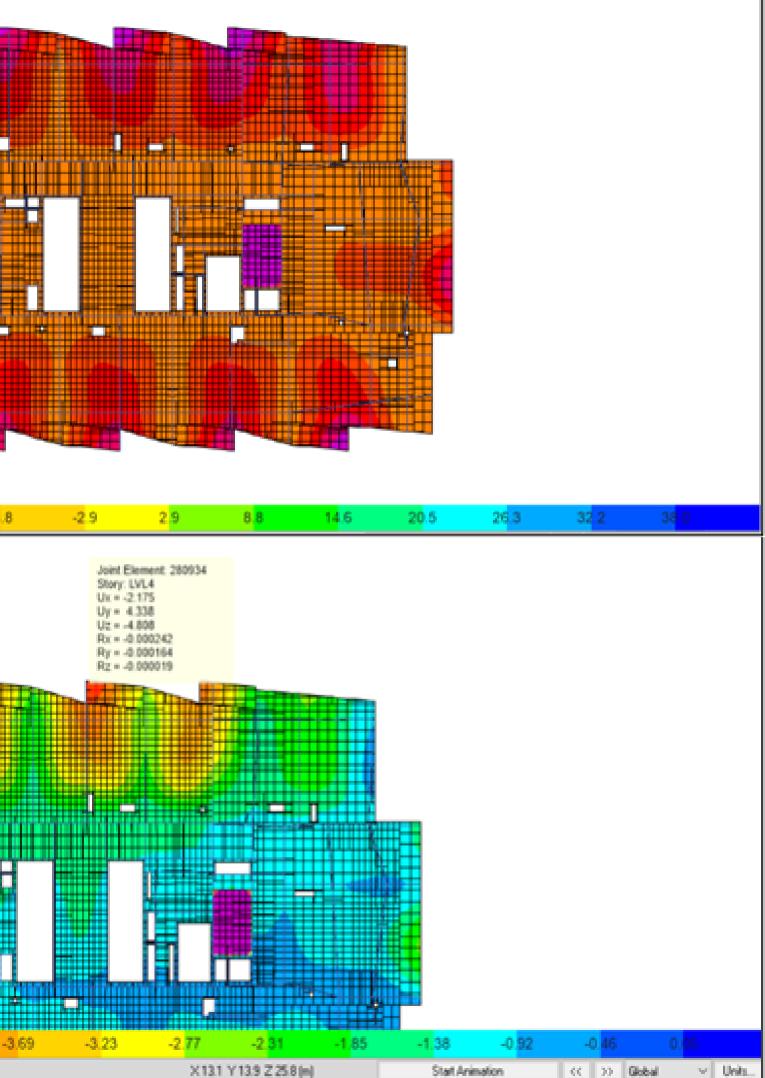
load V)
•
1.55
1.94
4.1

STRESS-STRAIN CHECK


%DIFFERENCE = ((757.5-720)/720)*100 = 5.2% < 15% OK

COLUMN AXIAL LOAD

DIFFERENCE = ((209.8 - 203.6)/203.6)*100 = 3.05% < 15% OK

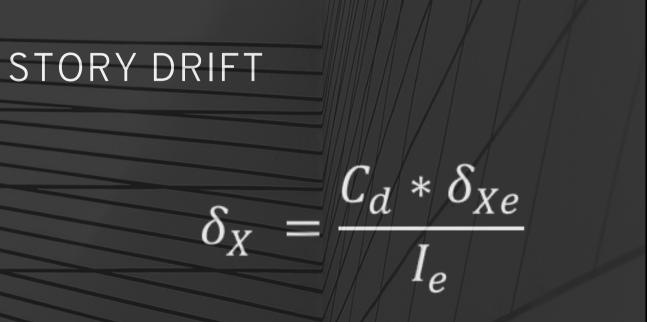

DEFLECTION CHECK

8 m -20.5 -26.3 -14.6 -8.8 **G**. # -5.08 -4.62 -4.15 -3.69

U

Г

Right Click on any Point for displacement values



SEISMIC SCALE FACTOR

\overline{V} (equivalent) Scale factor for $X \& Y - direction = \frac{g * I}{D}$ V (Response)

Load Case Data			Load Case Data				
General			General				
Load Case Name		Load Case Name			20 2		
Load Case Type	Load Case Type Response Spectrum ~		Load Case Type Exclude Objects in this Group			Response Spectrum Not Applicable	
Exclude Objects in this Group	Exclude Objects in this Group Not Applicable				хø		
Mass Source	Mass Source Previous (Mass-Source)			Mass Source		Previous (Mass-Source)	
Loads Applied			Loads Applied				
Load Type Load Name	Function So	le Factor	Load 1	Type	Load Name	Function	Scale Factor
Acceleration U1	Seismic 2518.93		Acceleration	U	2	Seisnio	3116.33
Acceleration U2 Seismic 755.68		Acceleration	U	n	Seismic	934.9	

Load Type	Load Name	Function	Scale
Acceleration	U1	Seismic	2518.93
Acceleration	02	Seismic	755.68

Structure

Structures, other than masonry shear wall structures, 4 defined in Section 11.2, with interior walls, partitions, c that have been designed to accommodate the story drift

Masonry cantilever shear wall structures^d

Other masonry shear wall structures

All other structures

EFFECT OF P-DELTA

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$

 $\theta_{max} = \frac{0.5}{\beta C_d} < 0.25$

 $\beta = 1.0$

permitted to be conservatively taken as 1.0.

	ŀ	Risk Category	,
	I or II	ш	IV
stories or less above the base as ceilings, and exterior wall systems its.	0.025 <i>h</i> _{ss} ^c	0.020 <i>h</i> _{ss}	0.015h _{sx}
	$0.010h_{xx}$	$0.010h_{sx}$	$0.010h_{sx}$
	$0.007h_{xx}$	$0.007h_{sx}$	$0.007h_{sx}$
	$0.020h_{sx}$	$0.015h_{sx}$	$0.010h_{sx}$

 $\theta_{\text{max}} = \frac{0.5}{\beta C_{\text{c}}} \le 0.25$

(12.8-17)

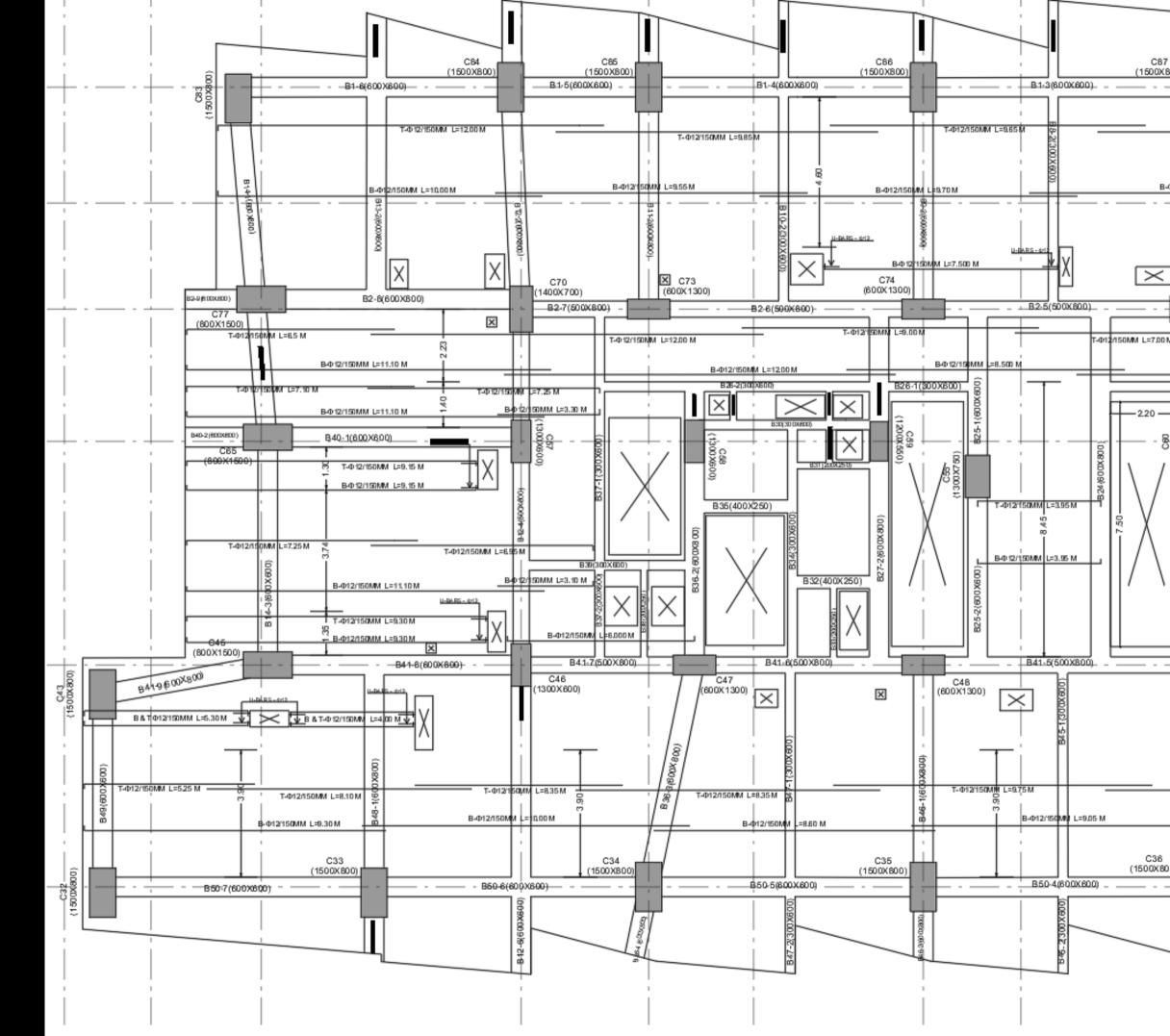
where β is the ratio of shear demand to shear capacity for the story between Levels x and x - 1. This ratio is

HORIZONTAL IRREGULARITIES

$$A_x = \left(\frac{\delta_{max}}{1.2\delta_{avg}}\right)^2$$

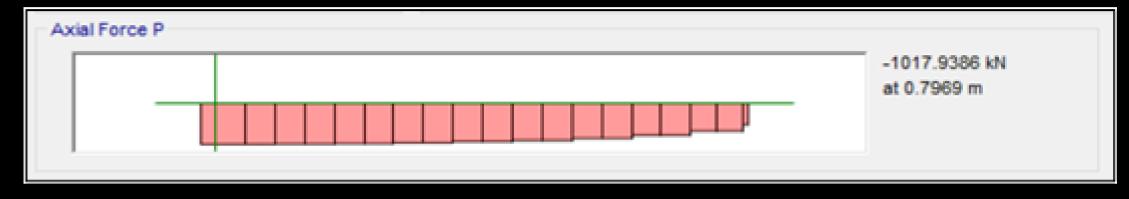
 $e_m = A_x * Floor length * e$

VERTICAL IRREGULARITIES

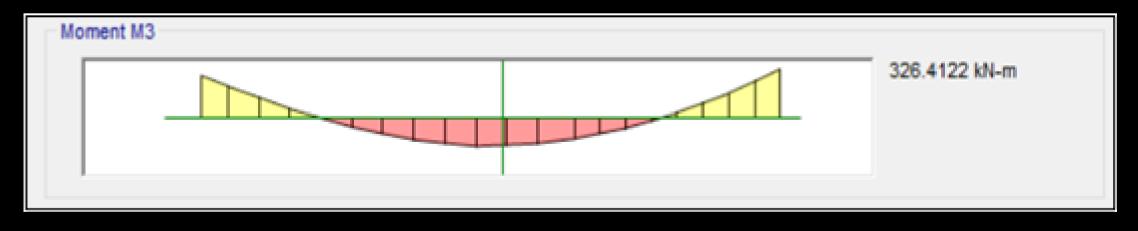

40

Type	Description	Reference Section	Seismic Design Category Application
la.	Torsional Irregularity: Torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_s = 1.0$, at one end of the structure transverse to an axis is more than 1.2 times the average of the story drifts at the two ends of the structure. Torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	D, E, and F B, C, D, E, and F C, D, E, and F C, D, E, and F D, E, and F B, C, D, E, and F
Ib.	Extreme Torsional Irregularity: Extreme torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_s = 1.0$, at one end of the structure transverse to an axis is more than 1.4 times the average of the story drifts at the two ends of the structure. Extreme torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.1 12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	E and F D B, C, and D C and D C and D D B, C, and D
2.	Reentrant Corner Irregularity: Reentrant corner irregularity is defined to exist where both plan projections of the structure beyond a reentrant corner are greater than 15% of the plan dimension of the structure in the given direction.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
3.	Diaphragm Discontinuity Irregularity: Diaphragm discontinuity irregularity is defined to exist where there is a diaphragm with an abrupt discontinuity or variation in stiffness, including one having a cutout or open area greater than 50% of the gross enclosed diaphragm area, or a change in effective diaphragm stiffness of more than 50% from one story to the next.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
4.	Out-of-Plane Offset Irregularity: Out-of-plane offset irregularity is defined to exist where there is a discontinuity in a lateral force-resistance path, such as an out-of-plane offset of at least one of the vertical elements.	12.3.3.3 12.3.3.4 12.7.3 Table 12.6-1 Section 16.2.2	B, C, D, E, and F D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F
5.	Nonparallel System Irregularity: Nonparallel system irregularity is defined to exist where vertical lateral force-resisting elements are not parallel to the major orthogonal axes of the seismic force-resisting system.	12.5.3 12.7.3 Table 12.6-1 Section 16.2.2	C, D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F

Туре	Description	Reference Section	Seismic Design Category Application
la.	Stiffness-Soft Story Irregularity: Stiffness-soft story irregularity is defined to exist where there is a story in which the lateral stiffness is less than 70% of that in the story above or less than 80% of the average stiffness of the three stories above.	Table 12.6-1	D, E, and F
1b.	Stiffness-Extreme Soft Story Irregularity: Stiffness-extreme soft story irregularity is defined to exist where there is a story in which the lateral stiffness is less than 60% of that in the story above or less than 70% of the average stiffness of the three stories above.	12.3.3.1 Table 12.6-1	E and F D, E, and F
2.	Weight (Mass) Irregularity: Weight (mass) irregularity is defined to exist where the effective mass of any story is more than 150% of the effective mass of an adjacent story. A roof that is lighter than the floor below need not be considered.	Table 12.6-1	D, E, and F
3.	Vertical Geometric Irregularity: Vertical geometric irregularity is defined to exist where the horizontal dimension of the seismic force-resisting system in any story is more than 130% of that in an adjacent story.	Table 12.6-1	D, E, and F
4.	In-Plane Discontinuity in Vertical Lateral Force-Resisting Element Irregularity: In-plane discontinuity in vertical lateral force-resisting elements irregularity is defined to exist where there is an in-plane offset of a vertical seismic force-resisting element resulting in overturning demands on a supporting beam, column, truss, or slab.	12.3.3.3 12.3.3.4 Table 12.6-1	B, C, D, E, and F D, E, and F D, E, and F
5a.	Discontinuity in Lateral Strength–Weak Story Irregularity: Discontinuity in lateral strength–weak story irregularity is defined to exist where the story lateral strength is less than 80% of that in the story above. The story lateral strength is the total lateral strength of all seismic-resisting elements sharing the story shear for the direction under consideration.	12.3.3.1 Table 12.6-1	E and F D, E, and F
5b.	Discontinuity in Lateral Strength-Extreme Weak Story Irregularity: Discontinuity in lateral strength-extreme weak story irregularity is defined to exist where the story lateral strength is less than 65% of that in the story above. The story strength is the total strength of all second second strength of the story strength of the	12.3.3.1 12.3.3.2 Table 12.6-1	D, E, and F B and C D, E, and F


above. The story strength is the total strength of all seismic-resisting elements sharing the story shear for the direction under consideration.

Design of Slabs

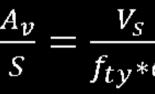


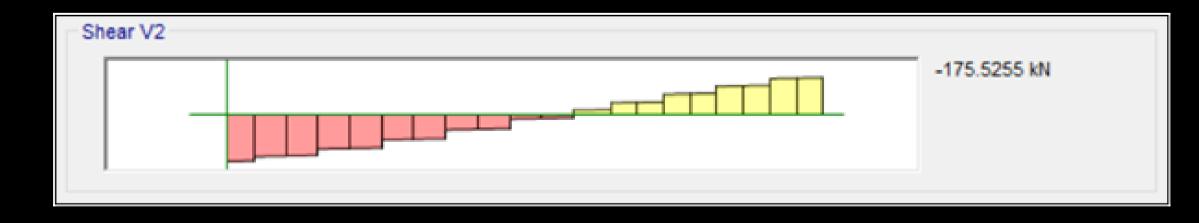
Designof Beams

Pu < 0.1*Ag * f'c (1017<1536 kN)

Sample Flexural design Mu for mid-span = $326.4 \text{ kN.m} (A_s = 2197 \text{ mm}^2)$

Design of Beams


43


Design for Shear

$$M_{I} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{I}}{2}\right) = 805kN.m$$
$$M_{j} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{J}}{2}\right) = 467 kN.m$$
$$V_{u} = \frac{M_{I} + M_{J}}{M_{I}} = \frac{805 + 467}{M_{U}} = 170 kN.m$$

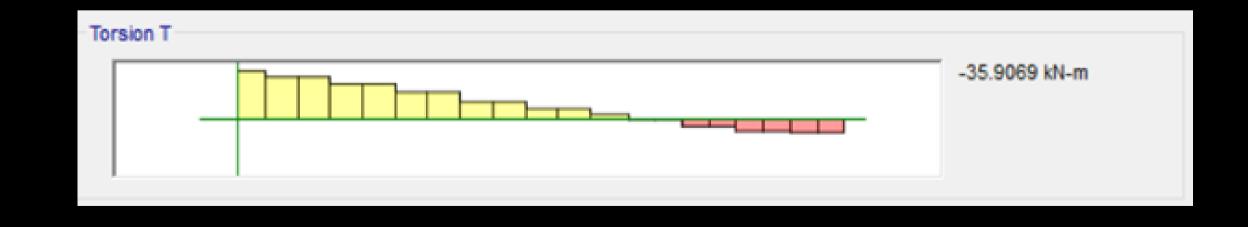
$$M_{I} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{I}}{2}\right) = 805kN.m$$
$$M_{j} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{J}}{2}\right) = 467 kN.m$$
$$V_{u} = \frac{M_{I} + M_{J}}{M_{I} + M_{J}} = \frac{805 + 467}{M_{U} + M_{U}} = 170 kN.m$$

$$M_{I} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{I}}{2}\right) = 805kN.m$$
$$M_{j} = 1.25 * f_{y} * A_{s} * \left(d - \frac{a_{J}}{2}\right) = 467 kN.m$$
$$V_{p} = \frac{M_{I} + M_{J}}{l_{n}} = \frac{805 + 467}{(8.0 - 0.5)} = 170 kN.m$$

$$\frac{1}{d} = 1376 \ mm^2/m$$

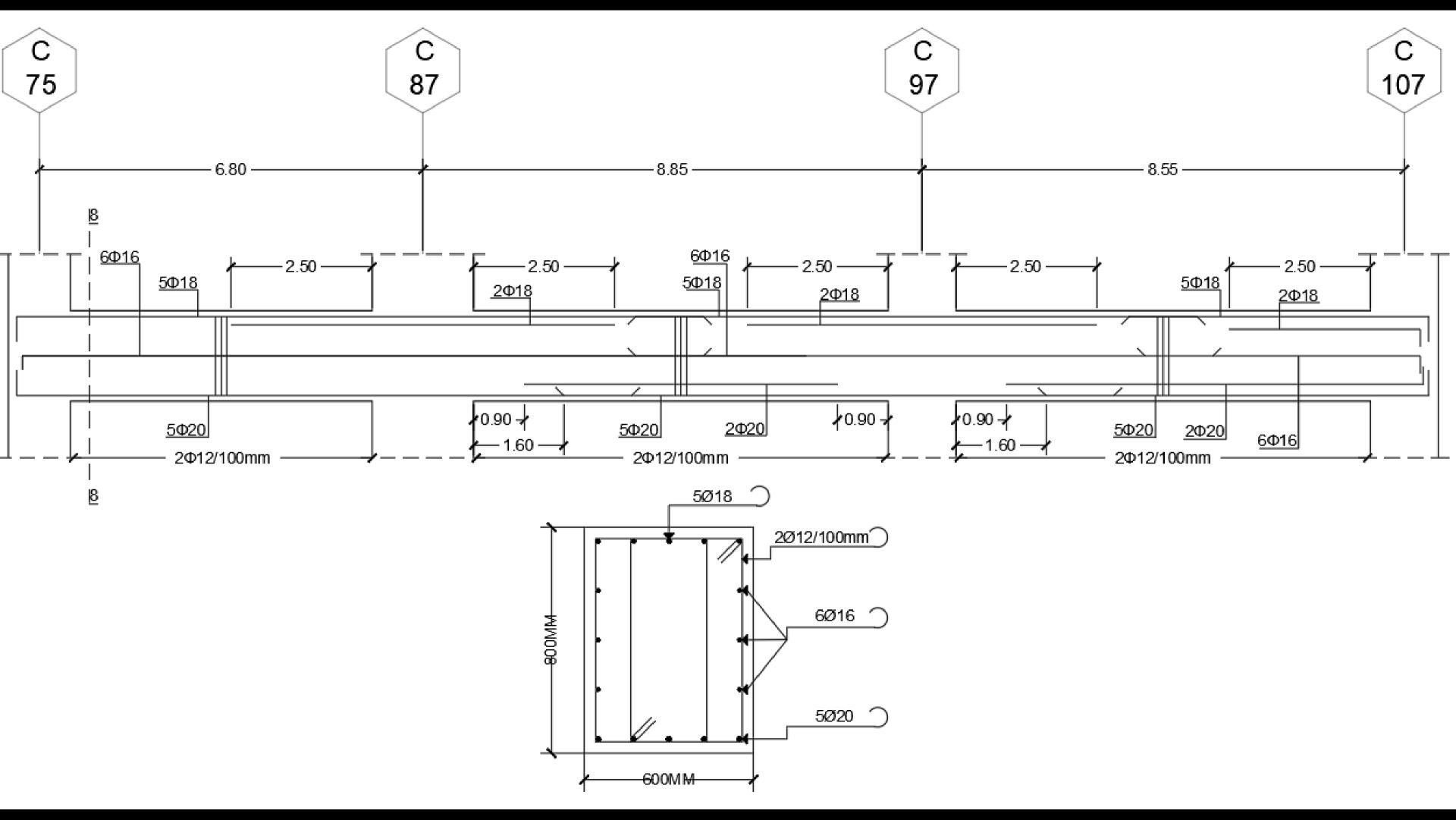
Design of Beams

Design for Torsion


•
$$T_{th} = \phi \frac{1}{12} * \sqrt{f_c'} * (\frac{A_{cb}^2}{P_{cp}}) = 29 \ kN. m$$

• T_u =35.9 kN.m

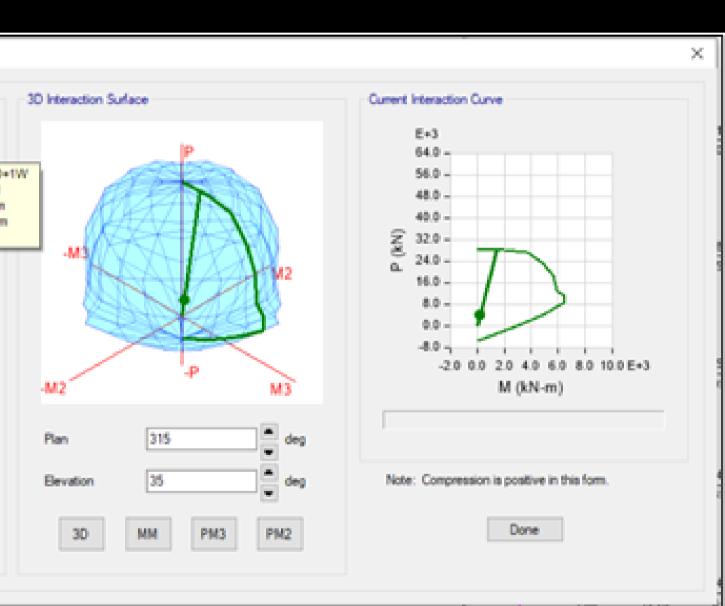
•
$$\frac{A_t}{s} = \frac{\frac{T_u}{\phi}}{2*0.85*A_{oh}*f_{yt}} = 218 \frac{\text{mm}^2}{m}$$

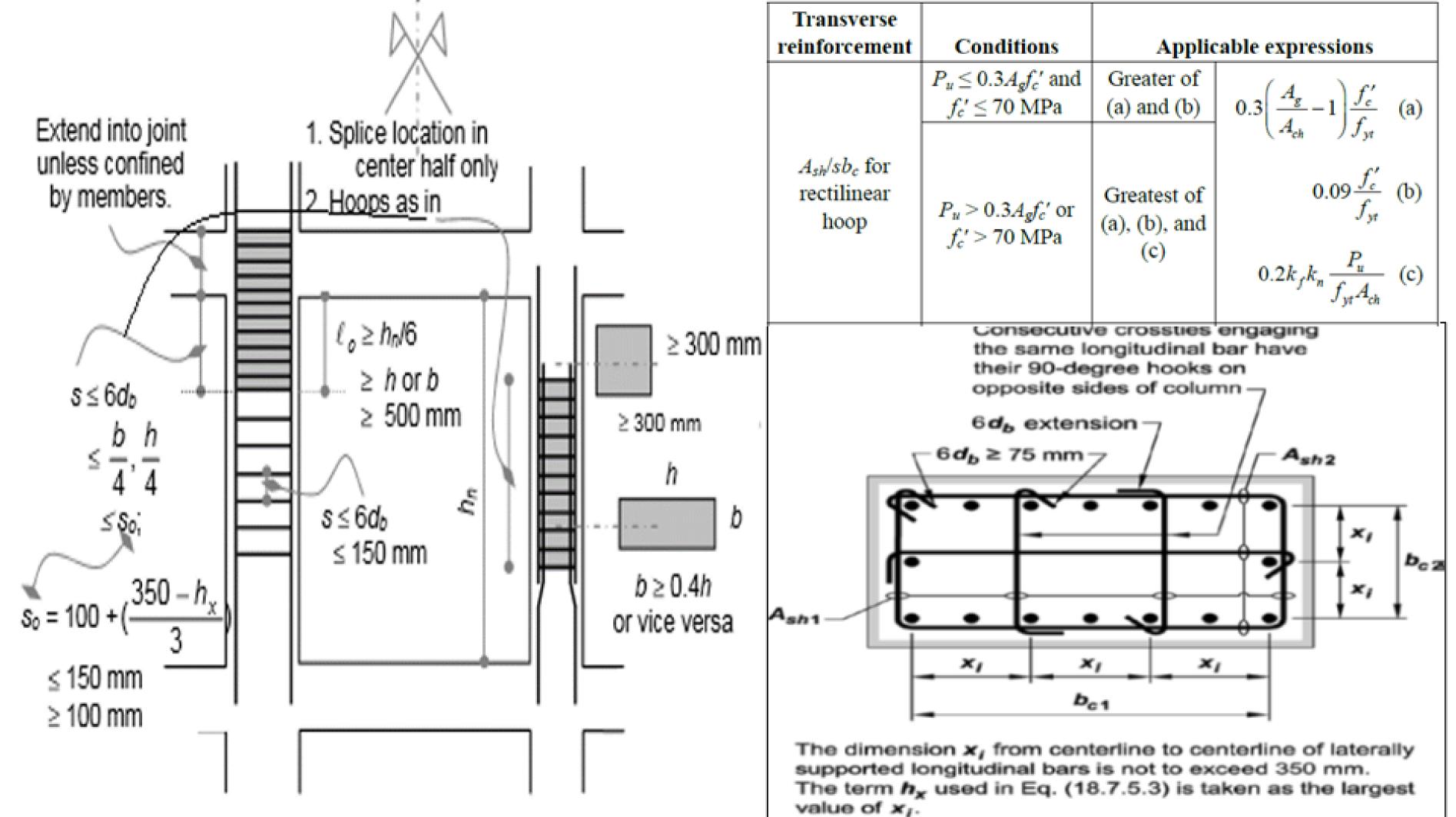

•
$$A_L = \frac{A_t}{S} * P_h * \frac{f_{yt}}{f_y}$$

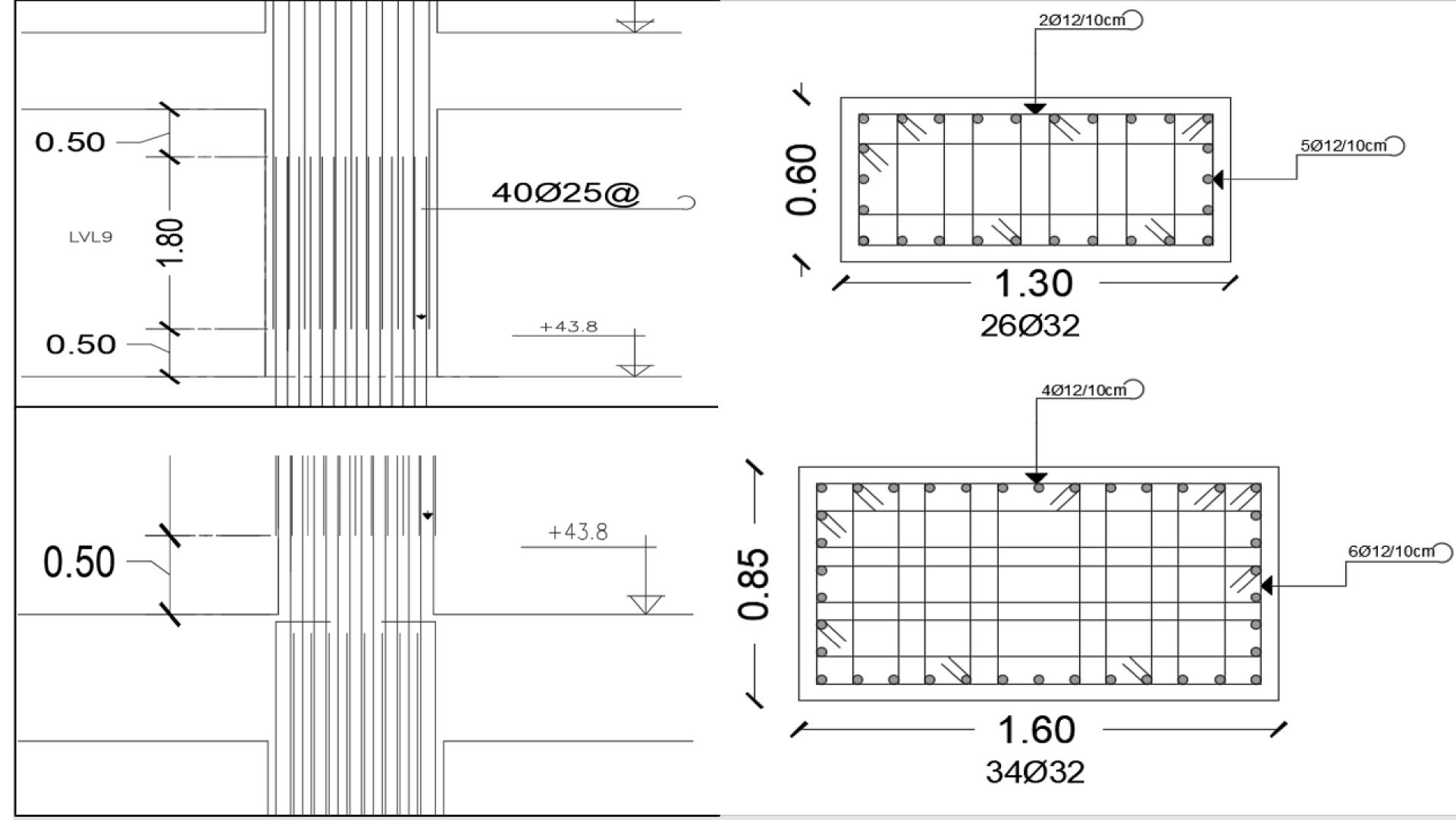
•
$$A_{l\min} = 5 * \frac{\sqrt{f_c'}}{12f_y} * A_{cp} - \frac{A_t}{S} * P_h * \frac{f_y}{f_{yt}} = 2133 \ mm^2$$

 $=488 \ mm^2$

Design of Columns

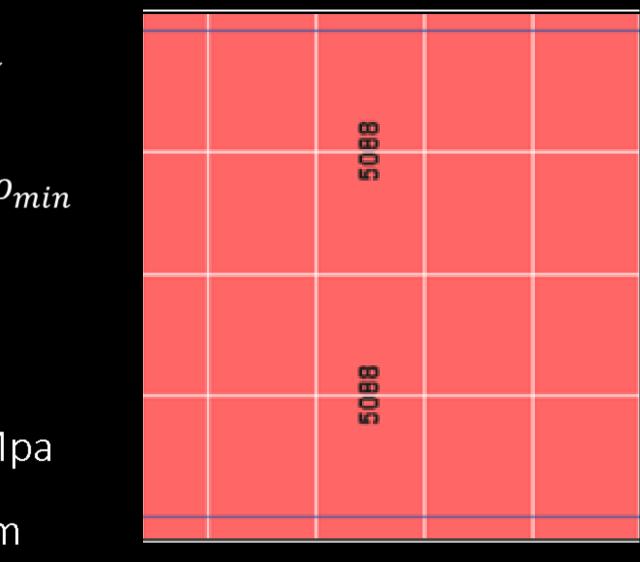

Pu = 4,188 kN M2u = 18.23 kN.m M3u = 213.5 kN.m


The Interaction Surface for Section Column-(1200X1200) (ACI 318-11) Station 2.8 m


Dap	lay Op	fions	
1.00			

	lude Phi lude Phi and Increase	Fy P: M2	
Point	P kN	M2 kNm	M3 kNm
1	28349.568	0	0
2	28349.568	-174.3329	2044.9312
3	27181.3334	-313.0882	3672.5368
4	23093.7425	-417.6342	4898.8656
5	18373.4158	-480.4638	5635.8584
6	13204.2934	-499.8404	5863.1468
7	11279.9094	-544.4271	6386.1501
8	8717.2945	-548.7219	6436.5284
9	4301.6007	-414.9792	4867.7218
10	-522,2868	-226.2795	2654.233
11	-5443.2 -5	2.2868 0	0

46

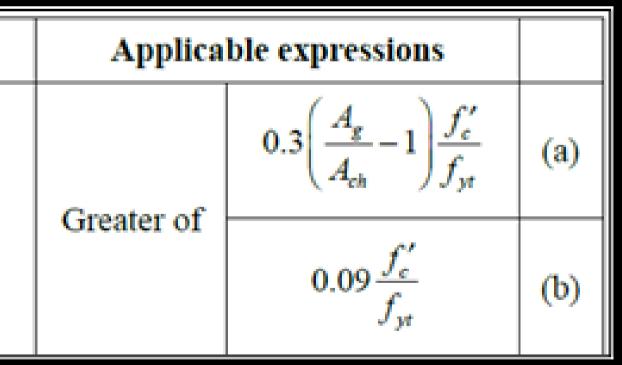


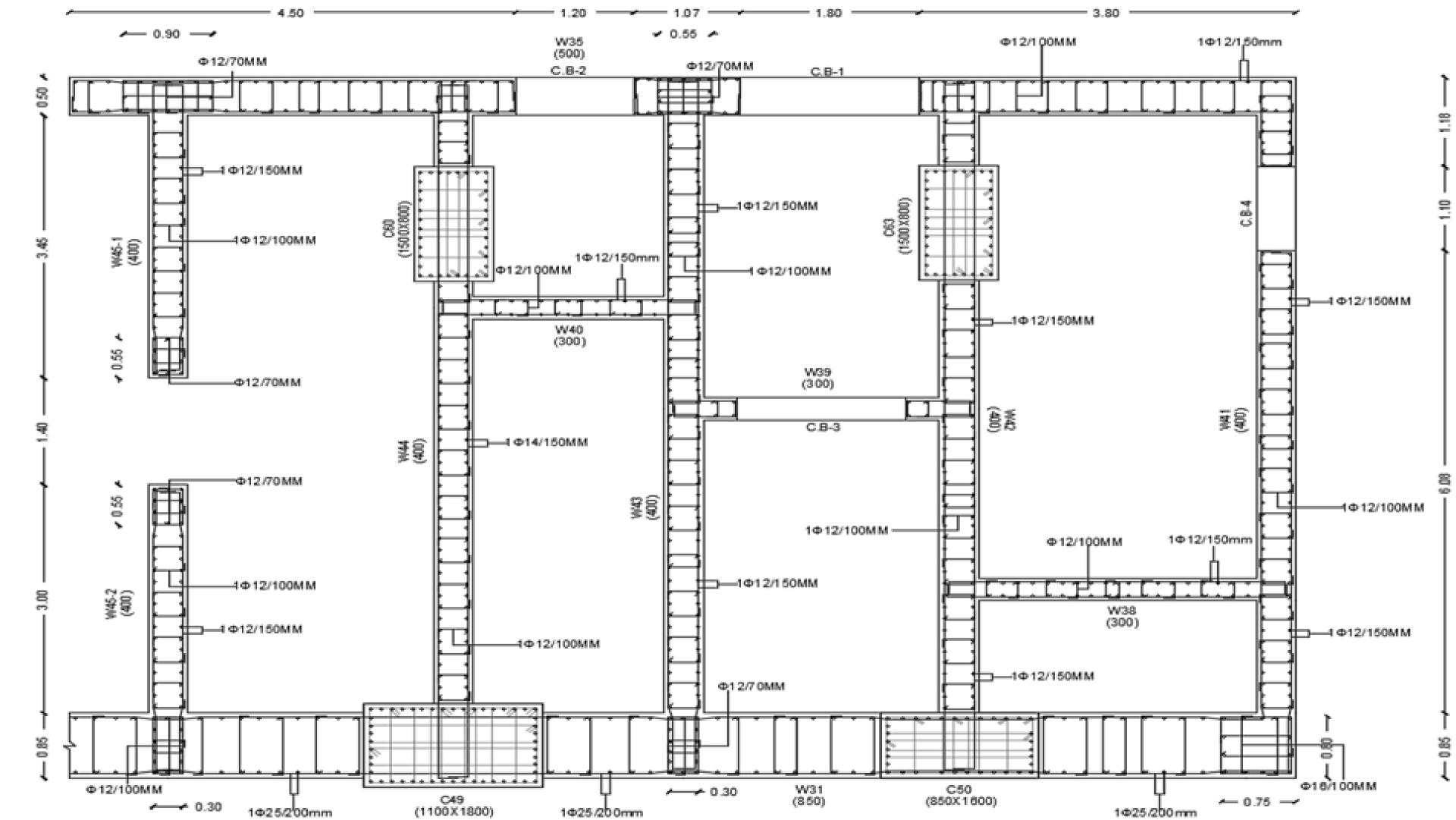
Designof Shear Walls

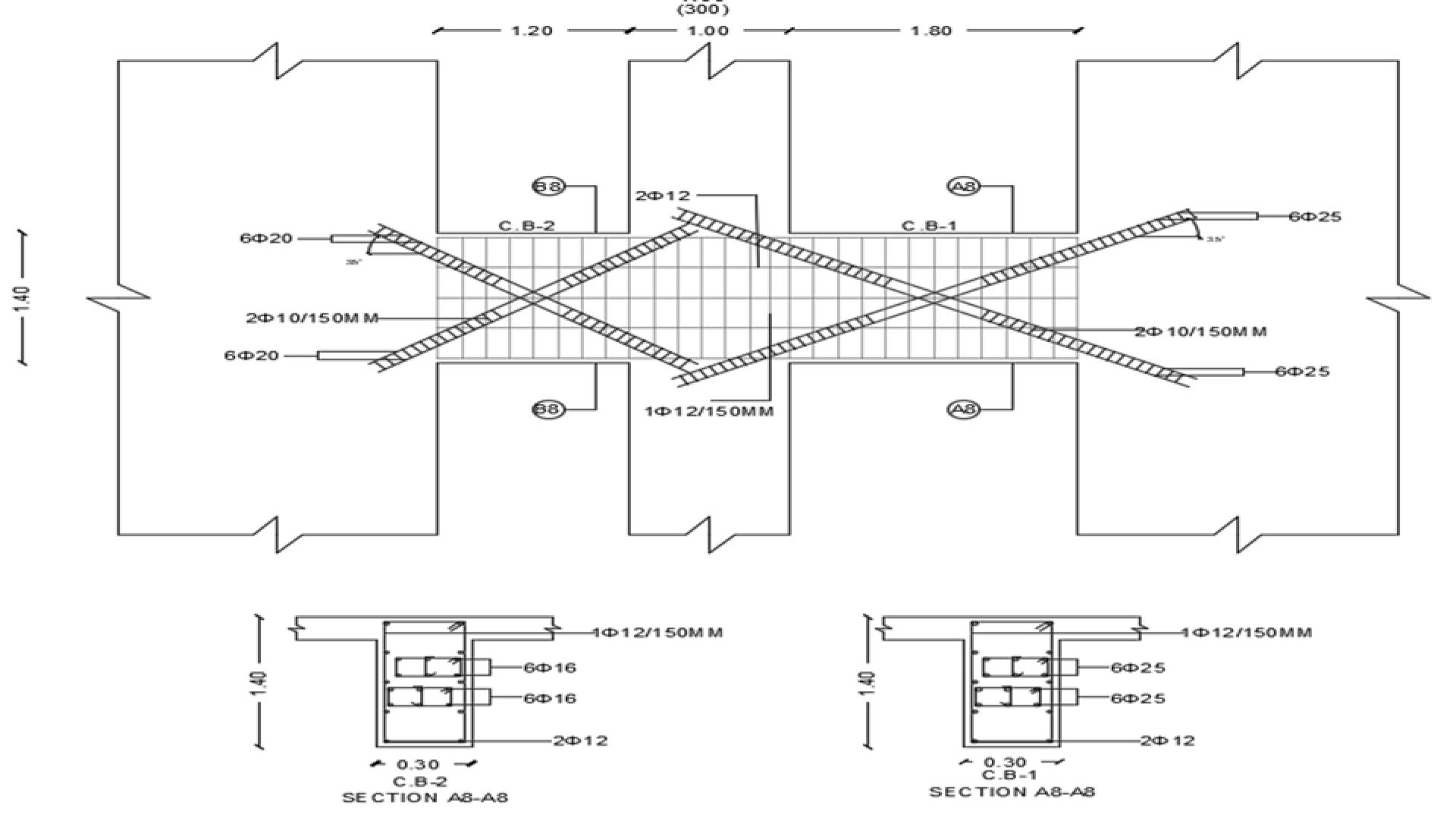
 $As = \frac{5088}{2*3.7} = 688 \, mm^2 / m$ 5088 $\rho = \frac{1}{550 * 3700} = 0.0025 = \rho_{min}$ 1Ф12@ 150 mm **Boundary Elements** Stress limit = 0.2* f'c = 8 Mpa Boundary length = 0.55 m

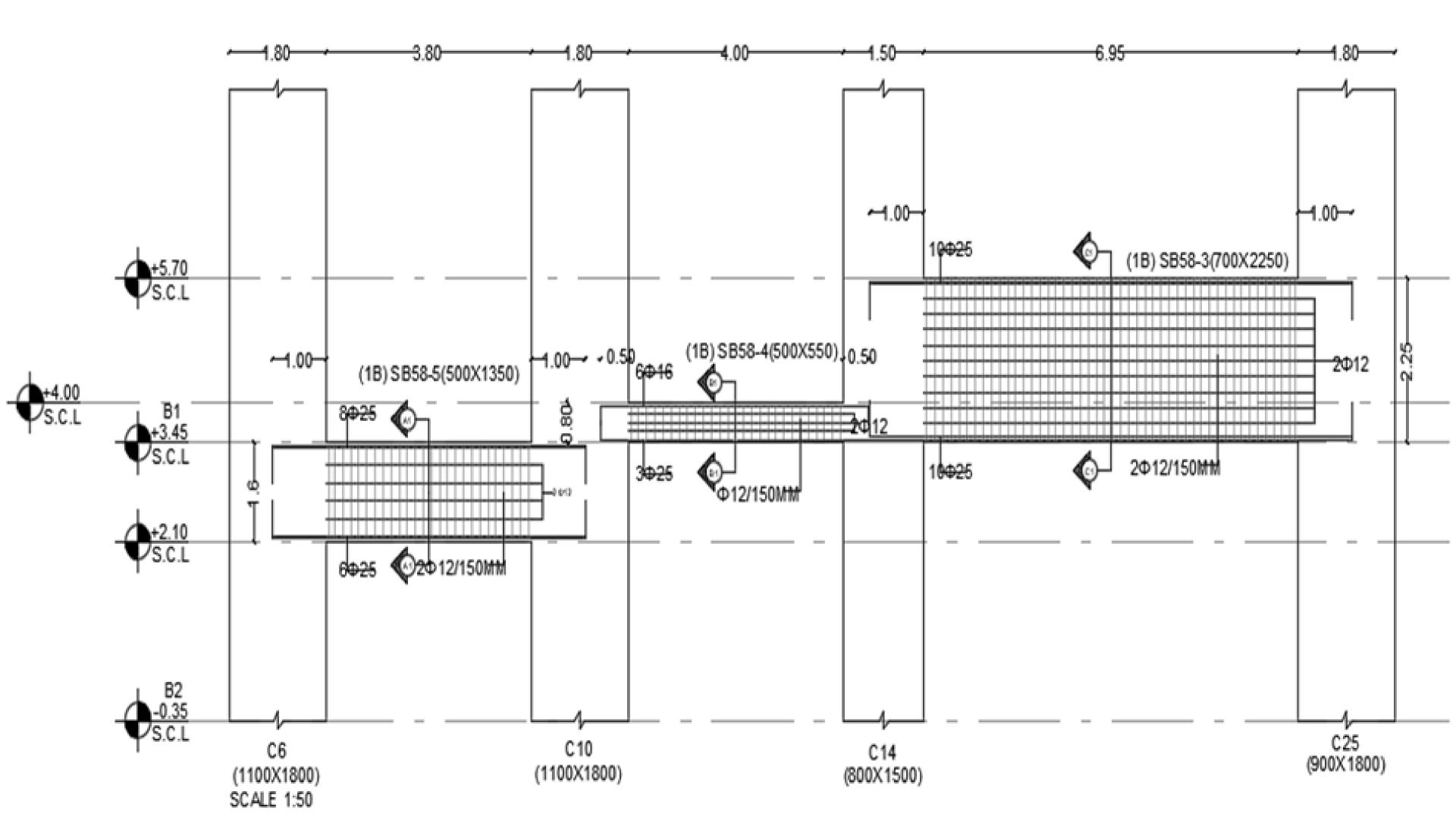
	Boundary Element Check (ACI 21.9.6.3, 21.9.6.4) (Part 1 of 2)							
Station Location	ID	Edge Length (mm)	Governing Combo	P. kN	M. kN-m	Stress Comp MPa		
Top-Left	Leg 1	455	U.1.3278D+1.3278SD+1L+0.25S1.3EQY	15979.741	-712.7588	8.42		
Top-Right	Leg 1	455	U.1.3278D+1.3278SD+1L+0.25S1.3EQY	15979.741	1231.8424	8.83		
Bottom-Left	Leg 1	455	U.1.3278D+1.3278SD+1L+0.25S1.3EQY	16012.4413	-1564.0266	9.11		
Botttom-Right	Leg 1	455	U.1.3278D+1.3278SD+1L+0.25S1.3EQY	16012.4413	1077.8833	8.73		

Designof Shear Walls


50


Transverse reinforcement


 A_{sh}/sb_c for rectilinear hoop


Boundary Element Confinement

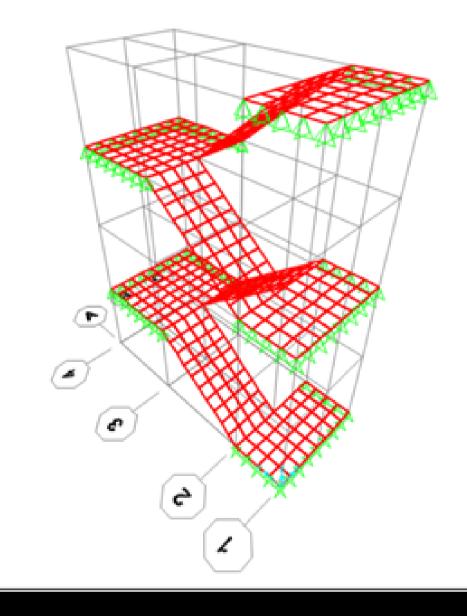
- $\frac{A_{sh}}{sb_c} = 0.0098$
- $A_{sh} = 308.7 \ mm^2$
- $\Phi_{12} \rightarrow 308.7/113 = 3 \text{ legs}$
- b_c: Length of boundary element in the transverse direction

Design of Stairs

Landing thickness = 2.4/20 = 120 mm

Use 200 mm thickness

Waist thickness = 150 mm


	Section Nar	me Stair-200			Display Color
	Section Note	00	Modify/Show		
	Type		Thickne	655	
	O Shell - T	Thin	Menti	brane	0.2
	Shell - T	Thick	Bend	sing	0.2
	O Plate - T	Dain	Materia		
	O Plate Thi	ick.			+ C-32 MPa
	 Membrar 	ne	Mate	rial Angle	0.
	O Shel - L	ayerediNonlinear		-	
		Modify/Show Layer Definit		ependent Propertie	
			on	-	s pendent Properties
	Concrete She	el Section Design Parameter	on	-	
Il Section Data	Concrete She		on	Set Time De	Temp Dependent Properties
action Name	Concrete She Mod	el Section Design Parameter dity/Show Shell Design Para	on	Set Time De	pendent Properties
ection Name	Concrete She	ell Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
action Name	Concrete She Mod Disple	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
ction Name Statut 150 ction Notes Modify Shell - Thin	Concrete She Mod Show Thickness Menbrane	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
etion Name Statut 50 ction Notes Modify e) Shell - Thin	Concrete She Mod Show Thickness Menbrane	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
ction Notes Modify	Concrete She Mod Show Thickness Menbrane	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
ection Notes Modify e) Shell - Thin) Shell - Thick	Concrete She Mod Show Thickness Mentrane Bending	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
ction Notes Modify Shell - Thin Shell - Thin Plate - Thin	Concrete She Mod Show Thickness Mentrane Bending Material Material Name + C-32 MPa	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties
tion Notes Modify Shell - Thin Shell - Thin Plate Thick Plate Thick	Concrete She Mod Show Thickness Mentarane Bending Material Material Name • C-32 MPs	Il Section Design Parameter dity/Show Shell Design Para X	on	Set Time De	Temp Dependent Properties

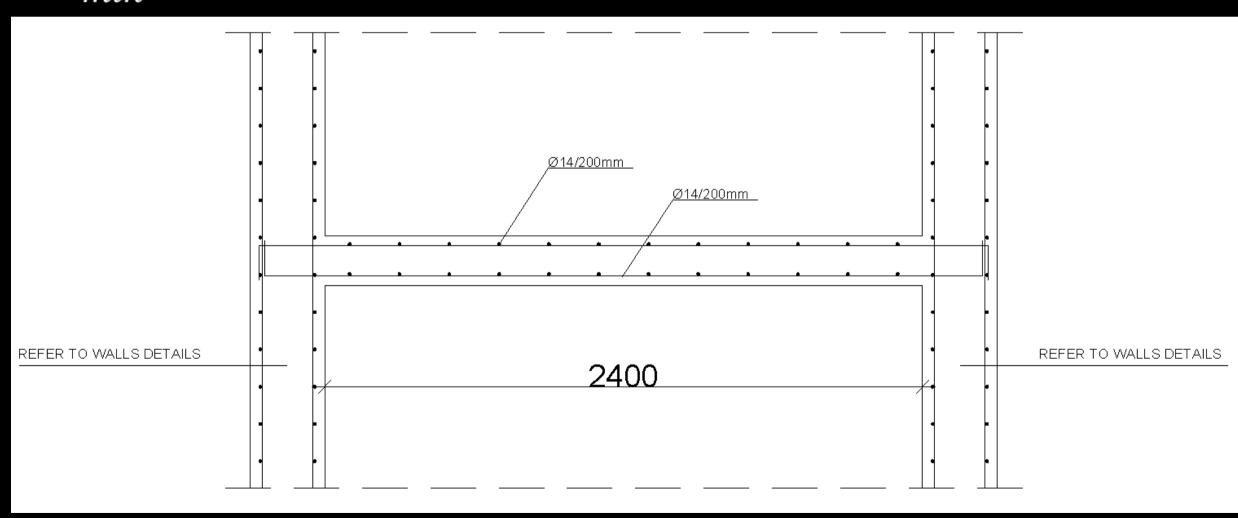
Design of Stairs

Loads on Stairs Live load = 5 kN/m^2 SD load = 2 kN/m^2

55

X Property/Stiffness Modification Factors		\times
Property/Stiffness Modifiers for Analysis		
Membrane f11 Modifier	3]
Membrane 122 Modifier	1]
Membrane f12 Modifier	1]
Bending m11 Modifier	0.25]
Bending m22 Modifier	0.01]
Bending m12 Modifier	0.01]
Shear v13 Modifier	1]
Shear v23 Modifier	1]
Mass Modifier	1]
Weight Modifier	1]
OK Cano	el	

Stair Slab Proparties


Design of Stairs

General Section in


Stairs

56

$\rho = 0.00133$ $As_{min} = 0.0018 * 1000 * 200 = 360mm^2$

1	-	14	1	14		- 14	14
14	14	1	1		1	34	1
4	1	٩.,	1	9.71	7743	-	P-
-	- 54	1	1	1	1	1	4
4	1.	1	14	1.		14	Ŀ
1.	1.		-	-	1	1.	16
1.		1.	1	16	1.	1.	16

Design of Non-Structural Walls

58

Architectural

Interior nonstructural walls and partitions^b Plain (unreinforced) masonry walls All other walls and partitions

$$F_p = \frac{0.4 * \alpha_p * S_{DS}}{\frac{R_p}{I_p}}$$
$$F_{pmax} = 1.6 * S_D$$
$$F_{pmin} = 0.3 * S_D$$
$$\rho = 0.00185$$

As = 0.00185

Use 1Ø12/200mm

Forlowerdowels

$$As = \frac{V}{\emptyset f y} =$$

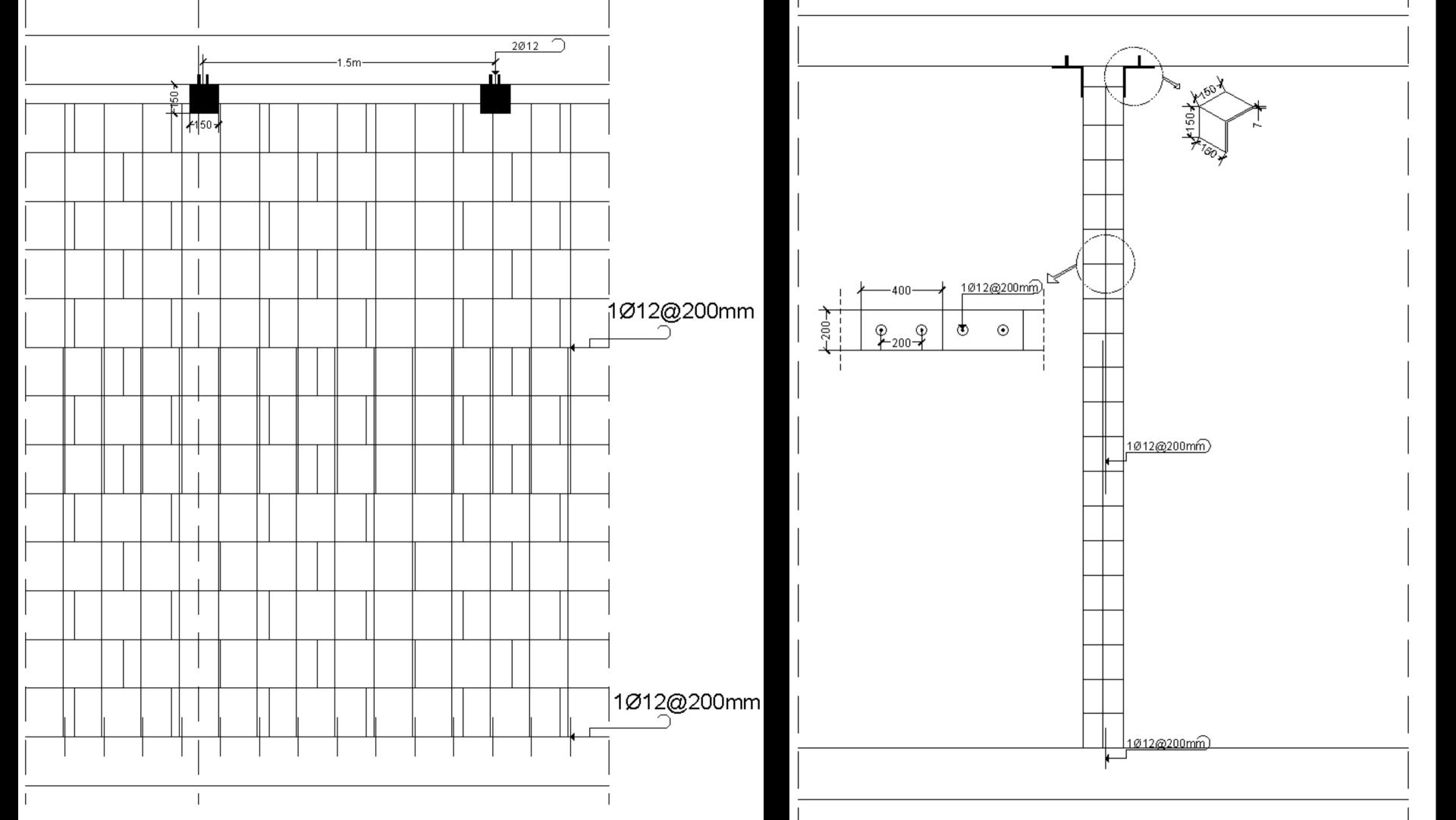
Table 13.5-1 Coefficients for Architectural Components

Component	$a_p^{\ a}$	R_p^{b}
	1.0 1.0	1.5 2.5

$$\frac{W_p}{W_p} (1 + 2\frac{z}{h}) = 0.37 \text{ kN/m}$$

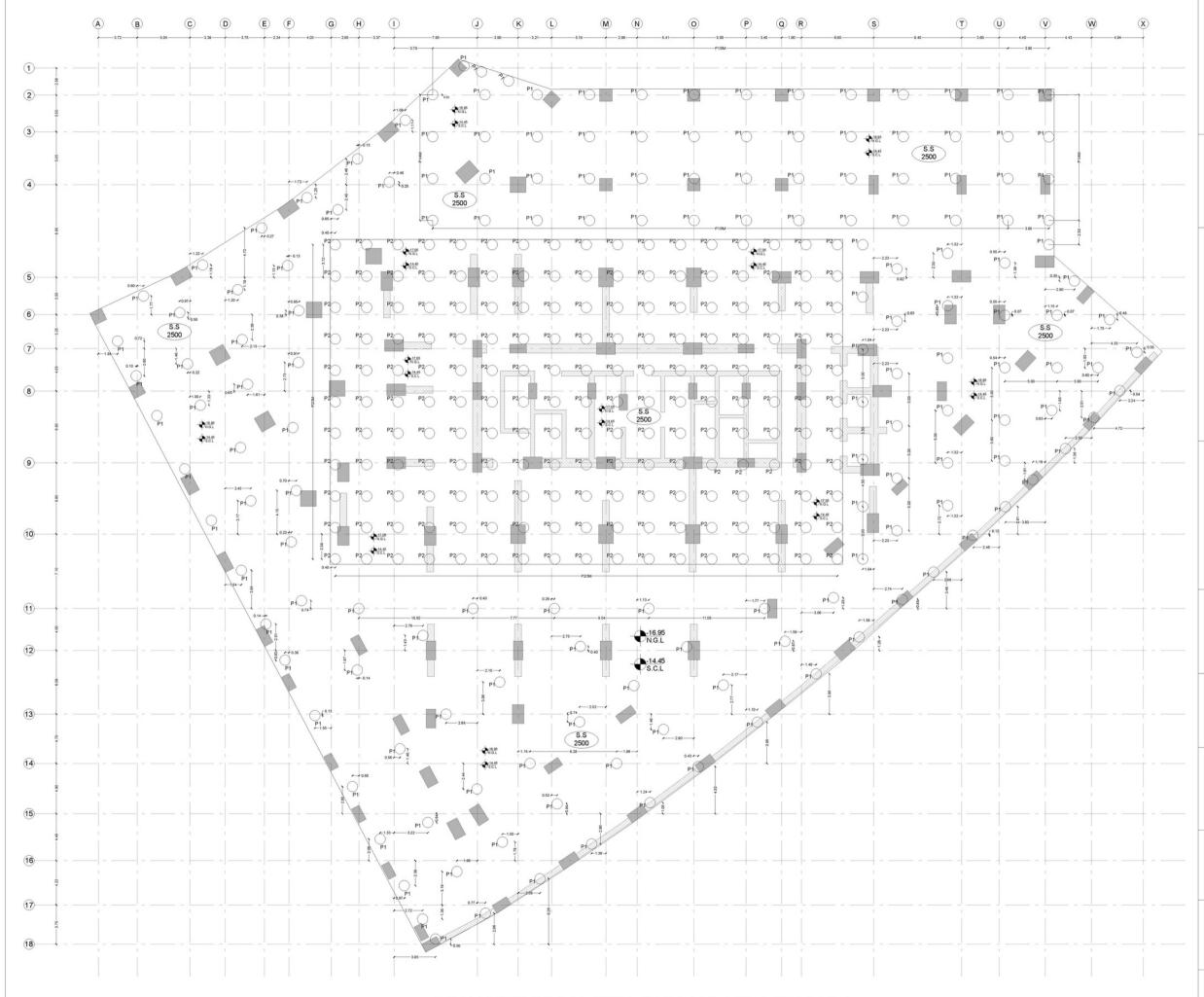
$$5 * 1000 * 50 = 92 \, mm^2$$

$$\frac{1.375 * 1000}{0.9 * 420} = 3.63 \, mm^2$$


Design of Non-Structural Walls

Design of Steel Plate

Moment Moment = Z * fy $Z = \frac{b * d^2}{6}$


= V * spacing of plates * perpendicular distance

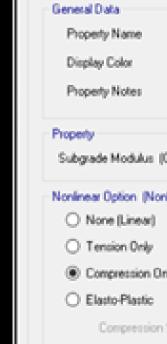
Use a steel plate of dimensions of 150*150*7 mm.

Design of Mat Foundation

Mat thickness = 2500 mm
TWO PILE ASSEMBLY
P11 M DIAMETER & 7 M DEEP
P2 1 M DIAMETER & 30 M DEEP
ELEVATED MAT IN THE CORE AREA

61

MAT FOUNDATION AND PILES LAYOUT


Design of Mat Foundation

Mat Foundation Proparties

Slab Property Data	?	×	Property/Stiffness Modification Factors		?	X
General Data Property Name Slab Material Display Color Property Notes Analysis Property Data Type Thickness	Mar.2500 C-40 MPa V Change Modily/Show Stab V 2500 mm		Property/Stiffness Modifiers for Analysis Membrane f11 Direction Membrane f22 Direction Membrane f12 Direction Bending m11 Direction Bending m22 Direction Bending m12 Direction Shear v13 Direction Shear v23 Direction Weight	1 1 0.5 0.5 1 1 1		
Thick Plate	Cancel		OK Ca	incel		

Soil Subgrade Proparties

h7

Soil Subgrade Property Data	?	\times
General Data		
Property Name \$01L-200]	
Display Color Dhange		
Property Notes Modify/Show Notes	l	
Property		
Subgrade Modulus (Compression Only) 2.8E+04	kN/m3	
Nonlinear Option (Nonlinear Cases Only)		
 None (Linear) 		
 Tension Only 		
Compression Only		
 Elasto-Plastic 		
Compression Stiffness		

Design of Piles

Pile Proparties

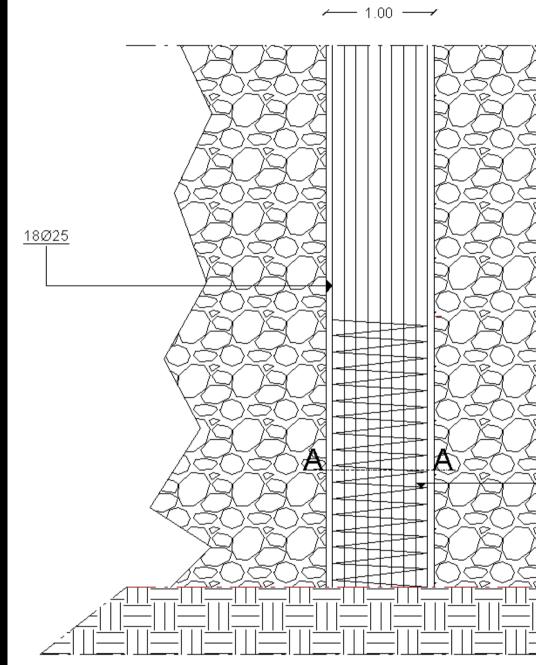
63

General Data	
Property Name	30-Pile
Display Color	Change
Property Notes	Modify/Show Notes

Spring Stiffness in Global Directions

Translation X	0	kN/mm
Translation Y	0	kN/mm
Translation Z (Compression Only)	402.41867	kN/mm
Rotation about X-Axis	0	kN-mm
Rotation about Y-Axis	0	kN-mm
Rotation about Z-Axis	0	kN-mm

Nonlinear Option (Translation Z Only) (Nonlinear Cases Only)


- O None (Linear)
- O Tension Only
- Compression Only
- O Elasto-Plastic

	Property Name	7-File	
	Display Color	Chang	b
	Property Notes	Modify/Show Notes.	-
_	Spring Stiffness in Global Direct	stions	
	Translation X	0	kN/mm
	Translation Y	0	kN/mm
	Translation Z (Compressio	n Only) 107.03333	kN/mm
d	Rotation about X-Axis	0	kN-mm/rad
d	Rotation about Y-Axis	0	kN-mm/rad
d	Rotation about Z-Axis	0	kN-mm/rad

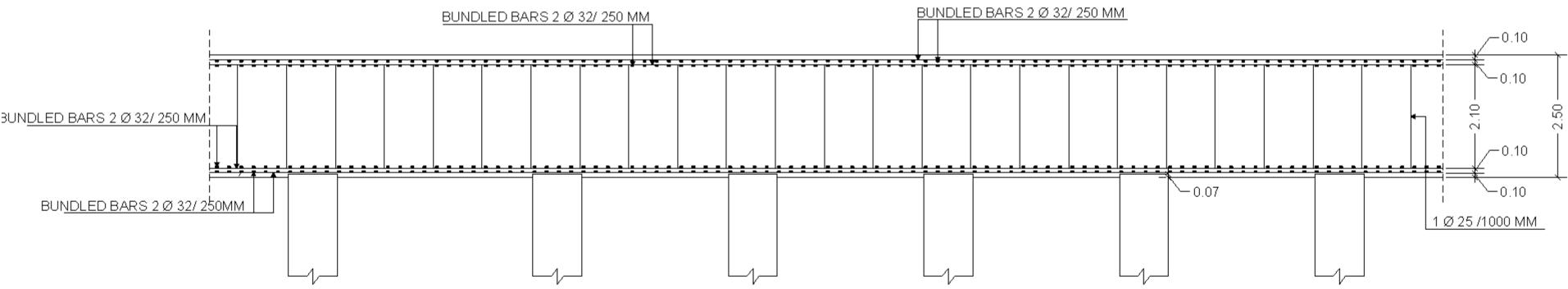
Design of Piles

General Pile Details

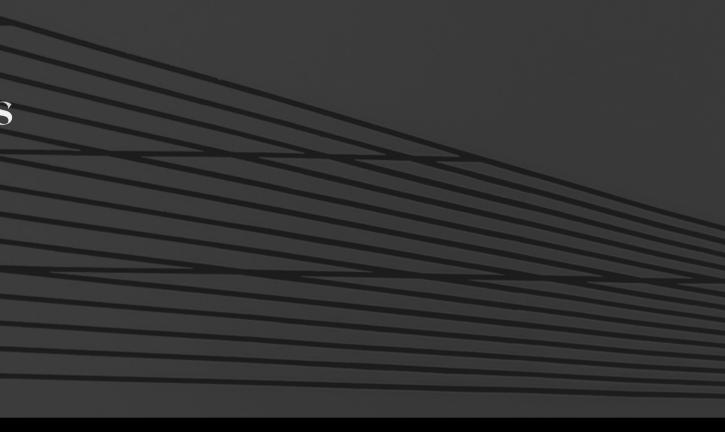
Piles were designed as Tied Circular Columns

LONGITUDINAL SECTION IN PILES

SCALE 1:20


18Ø25 🔿 1Ø12@150mm) 4000MM 1Ø12@150mm **SECTION A-A** SCALE 1:20

Design of Mat Foundation


65

General Mat Details

Two layers of two bundled bars

LONGITUDINAL SECTION IN MAT FOUNDATION

DESIGN PHILOSOPHY

DESIGN BY CODE

PERFORMANCE BASED DESIGN

SEISMIC DAMPERS

Time History Functions

Define Time History Functions	Time History Matched to Resp
Functions ALTADENA-1 ALTADENA-2 HOLLISTE-1 HOLLISTE-2 LUCERNE-1 LUCERNE-2 NEWHALL-1 NEWHALL-2 PETROLIA-1 PETROLIA-2 RampTH Seismic-TH T-H	Method to Use for Spectral Mat © Spectral Matching in F Choose Input Response Spectrum Target Response Spectrum Reference Acceleration Time Target/Matched Response Spectrum
UnifTH	- Change

 Resp. Spec. Plot Axes Options

 Image: A line of the system of th

67

ponse Spec	trum				
Time	History Function Name Seismic-TH				
atching					
Frequency D	omain O Spectral Match	hing in Time Domain			
trum and Ref	erence Time History				
	Seismic	\sim	Response Spectrum	Acceleration Units	g Units 🗸 🗸
e History	Program Default	~ ()	Time History Accele	ration Units	g Units 🛛 🗸
				handrender	with Mill for many
3	Response Spectrum Plot Options	Time History Plot (Options	Frequency-Domain	Spectral Matching
- Y Log	O Plot for Reference Time History	O Plot Referen	ce Time History	Set Mate	ching Parameters
- Y Log	O Plot for Matched Time History	O Plot Matched	-	Match	n Time History
	Plot for Both Time Histories	Plot Both Tin	ne Histories	Show Fre	equency Content
	OK Cancel			Convert	to User Defined

Shear Walls Hinges

68

Define Fibers for Hinge W1975H1 (Fiber P-M3) Control Overlay User Defined Wall on Plot Length Thickness Make All Fibers Gray Fiber Definition Data Fiber Area Coord2 Cm² mm 405.2 -343 2 810.5 -2 3 810.5 -12 4 810.5

810.5

810.5

405.2

2

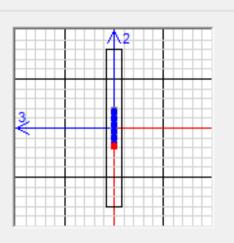
2

2

Sort by Coord2

5

6


7

8

9

10

3000	mm
300	mm
300	

Х

2	Material /// Stress Strain Curve	^
-343.8	Concrete 40 Mpa /// SSC1	
-250	Concrete 40 Mpa /// SSC1	
-125	6 Concrete 40 Mpa /// SSC1	
0	Concrete 40 Mpa /// SSC1	
125	6 Concrete 40 Mpa /// SSC1	
250	Concrete 40 Mpa /// SSC1	
343.8	Concrete 40 Mpa /// SSC1	
-312.5	6 A615Gr60 /// SSC1	
-187.5	6 A615Gr60 /// SSC1	
-62.5	A615Gr60 /// SSC1	~
	Add Fiber Dele	te Selected Fibers
	Show Properties	
ОК	Cancel	

Beam Hinges

69

📲 Hinge Property Data for B88H2 - Moment M3

Disp

Point	Moment/SF	Rotation/SF
E-	-0.2	-0.049862
D-	-0.2	-0.024966
C-	-1.1	-0.024966
B-	-1	0
Α	0	0
В	1	0
С	1.1	0.025
D	0.2	0.025
E	0.2	0.05

					Туре		
Point	Moment/SF	Rotation/SF			Moment - I	Rotation	
E-	-0.2	-0.049862			O Moment -	Curvature	
D-	-0.2	-0.024966		<u></u>	Hinge Le	ength	
C-	-1.1	-0.024966	•••••		Rela	tive Length	
B-	-1	0		+		-	
A B	1	0			Hysteresis Type	and Parameters	
C	1.1	0.025			Unitedation	In other sta	
D	0.2	0.025	Symmetric		Hysteresis	Isotropic	~
E	0.2	0.05				ameters Are Required	l For This
					Hyster	esis Type	
g for Moment	and Rotation	Positive	Negative				
-		Positive 363.442	Negative 377.7303	kN-m			
Use Yield Mo	ment Moment SF			kN-m			
Use Yield Mo	ment Moment SF ation Rotation SF	363.442	377.7303	kN-m			
	ment Moment SF ation Rotation SF	363.442 1	377.7303	kN-m			
Use Yield Mo Use Yield Rot (Steel Object ptance Criteria	ment Moment SF ation Rotation SF s Only) (Plastic Rotation/SF)	363.442 1 Positive	377.7303 1 Negative	kN-m			
Use Yield Mo Use Yield Rot (Steel Object ptance Criteria	ment Moment SF ation Rotation SF s Only)	363.442 1	377.7303	kN-m			
Use Yield Mo Use Yield Rot (Steel Object ptance Criteria	ment Moment SF ation Rotation SF s Only) (Plastic Rotation/SF) Occupancy	363.442 1 Positive	377.7303 1 Negative	kN-m			ancel
Use Yield Mo Use Yield Rot (Steel Object otance Criteria	ment Moment SF ation Rotation SF s Only) (Plastic Rotation/SF) Occupancy	363.442 1 Positive 0.01	377.7303 1 Negative -0.009966	kN-m		IK Ca	ancel

 \times

Immediate Occupa
Life Safety
Collapse Preventio

Positive								
0.01								
0.025								
0.05								

Column Hinges

70

Moment Rotation Data for C69H2 - Interacting P-M2-M3

Select Curve

Axial Force -25920

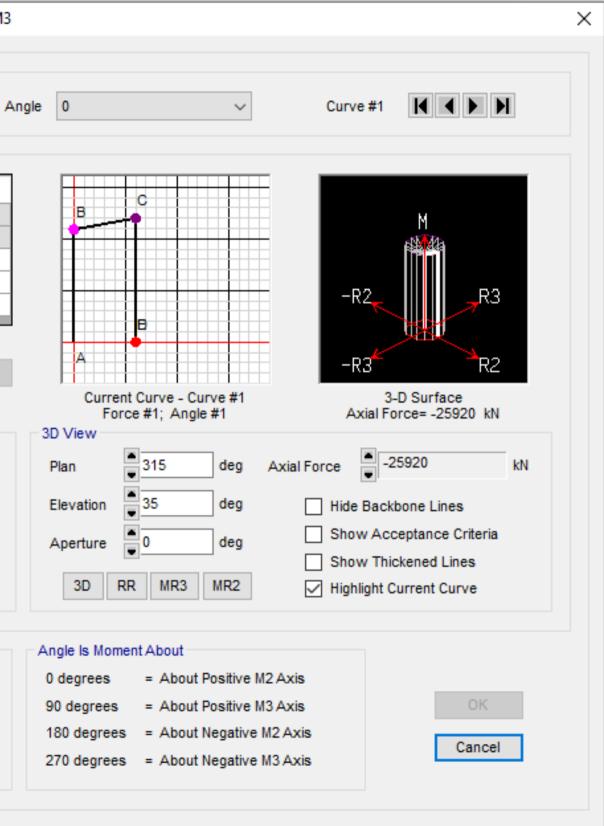
Moment Rotation Data for Selected Curve

Point	Moment/Yield Mom	Rotation/SF
А	0	0
В	1	0
С	1.1	0.004
D	0	0.004
E	0	0.004

Note: Yield moment is defined by interaction surface

Copy Curve Data

Paste Curve Data


 \sim

Acceptance Criteria (Plastic Deformation / SF) -

Immediate Occupancy	0.002								
Life Safety	0.003								
Collapse Prevention	0.004								
Show Acceptance Points on Current Curve									

Moment Rotation Information

Symmetry Condition	None
Number of Axial Force Values	2
Number of Angles	16
Total Number of Curves	32

Column Hinges

Moment Rotation Data for C69H2 - Interacting P-M2-M3

Select Curve

Axial Force -25920

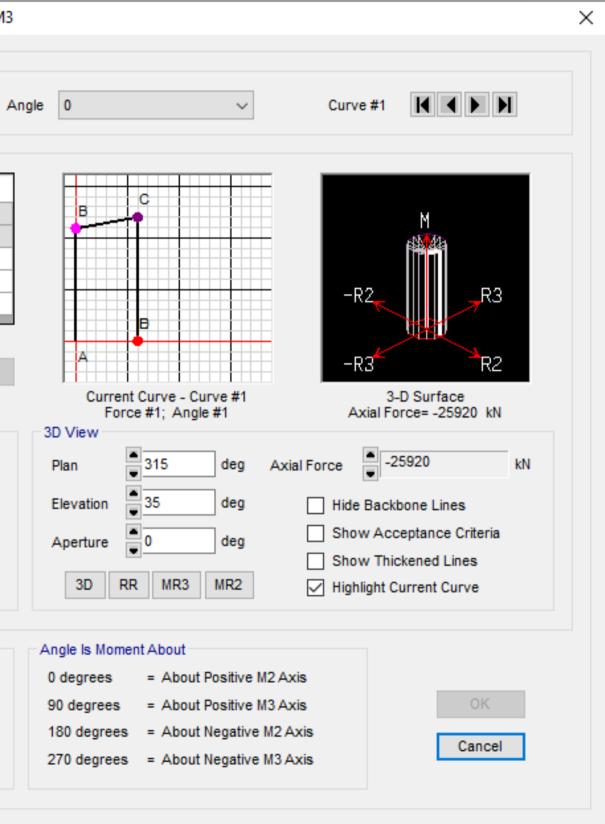
Moment Rotation Data for Selected Curve

Point	Moment/Yield Mom	Rotation/SF
А	0	0
В	1	0
С	1.1	0.004
D	0	0.004
Е	0	0.004

Note: Yield moment is defined by interaction surface

Copy Curve Data

Paste Curve Data


 \sim

Acceptance Criteria (Plastic Deformation / SF) -

Immediate Occupancy	0.002								
Life Safety	0.003								
Collapse Prevention	0.004								
Show Acceptance Points on Current Curve									

Moment Rotation Information

Symmetry Condition	None
Number of Axial Force Values	2
Number of Angles	16
Total Number of Curves	32

Shear wall Hinges

2	Story 🔻	Frame/W 🕶	🗾 Load Case/Combo 🕶	Hinge 🛛	Generated Hin 💌	Relative Distan 💌	Absolute Distan 💌	Fiber Numb 🕶	Fiber Stre	Fiber Strai 🔽 Fiber Sta 🔻	Fiber Stat 🔻	Fiber Mate
368	LVL6	W16926	ALTADENA-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	1	0.14	0.000005 A to B	A to IO	Concrete 40
375	LVL6	W16926	ALTADENA-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	8	0.94	0.000005 A to B	A to IO	A615Gr60
381	LVL6	W16926	ALTADENA-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	1	-0.27	-0.000009 A to B	A to IO	Concrete 40
388	LVL6	W16926	ALTADENA-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	8	-1.84	-0.000009 A to B	A to IO	A615Gr60
420	LVL6	W16926	NEWHALL-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	1	0.38	0.000013 A to B	A to IO	Concrete 40
427	LVL6	W16926	NEWHALL-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	8	2.58	0.000013 A to B	A to IO	A615Gr60
433	LVL6	W16926	NEWHALL-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	1	-0.37	-0.000013 A to B	A to IO	Concrete 40
440	LVL6	W16926	NEWHALL-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	8	-2.55	-0.000013 A to B	A to IO	A615Gr60
550	LVL6	W16926	PETROLIA-Y Max	Auto Fiber P-M3	W16926H1	0.5	0.35	1	0.73	0.000025 A to B	A to IO	Concrete 40
557	LVL6	W16926	PETROLIA-Y Max	Auto Fiber P-M3	W16926H1	0.5	0.35	8	5.06	0.000025 A to B	A to IO	A615Gr60
563	LVL6	W16926	PETROLIA-Y Min	Auto Fiber P-M3	W16926H1	0.5	0.35	1	-1.03	-0.000035 A to B	A to IO	Concrete 40
570	LVL6	W16926	PETROLIA-Y Min	Auto Fiber P-M3	W16926H1	0.5	0.35	8	-7.06	-0.000035 A to B	A to IO	A615Gr60
576	LVL6	W16926	SEISMIC-TH-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	1	0.55	0.000019 A to B	A to IO	Concrete 40
583	LVL6	W16926	SEISMIC-TH-X Max	Auto Fiber P-M3	W16926H1	0.5	0.35	8	3.72	0.000019 A to B	A to IO	A615Gr60
589	LVL6	W16926	SEISMIC-TH-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	1	-0.58	-0.000019 A to B	A to IO	Concrete 40
596	LVL6	W16926	SEISMIC-TH-X Min	Auto Fiber P-M3	W16926H1	0.5	0.35	8	-3.89	-0.000019 A to B	A to IO	A615Gr60
602	LVL6	W16926	SEISMIC-TH-Y Max	Auto Fiber P-M3	W16926H1	0.5	0.35	1	1.07	0.000036 A to B	A to IO	Concrete 40
609	LVL6	W16926	SEISMIC-TH-Y Max	Auto Fiber P-M3	W16926H1	0.5	0.35	8	7.36	0.000037 A to B	A to IO	A615Gr60
615	LVL6	W16926	SEISMIC-TH-Y Min	Auto Fiber P-M3	W16926H1	0.5	0.35	1	-1.04	-0.000035 A to B	A to IO	Concrete 40
622	LVL6	W16926	SEISMIC-TH-Y Min	Auto Fiber P-M3	W16926H1	0.5	0.35	8	-7.12	-0.000036 A to B	A to IO	A615Gr60

Beams Hinges

	TABLE: Hinge States			-							
2	Story 🔨 Frame/W 🕶	🚽 Load Case/Combo 🕶	Assigned Hing 💌	Generated Hin	Relative Distan 🝸	Absolute Distan 🕶	Р 🔻	M2 🔽	M3 💌	Hinge Sta 🔻	Hinge Stat 🝸
428	GF B7	HOLLISTE-X Max	Auto M3	B7H1	0	0	0	0	2.6498	A to B	A to IO
430	GF B7	HOLLISTE-X Min	Auto M3	B7H1	0	0	0	0	-4.1232	A to B	A to IO
132	GF B7	NEWHALL-X Max	Auto M3	B7H1	0	0	0	0	0.7388	A to B	A to IO
434	GF B7	NEWHALL-X Min	Auto M3	B7H1	0	0	0	0	-2.22	A to B	A to IO
436	GF B7	PETROLIA-X Max	Auto M3	B7H1	0	0	0	0	0.2932	A to B	A to IO
438	GF B7	PETROLIA-X Min	Auto M3	B7H1	0	0	0	0	-1.5751	A to B	A to IO
144	GF B7	HOLLISTE-Y Max	Auto M3	B7H1	0	0	0	0	0.81	A to B	A to IO
146	GF B7	HOLLISTE-Y Min	Auto M3	B7H1	0	0	0	0	-1.9437	A to B	A to IO
48	GF B7	NEWHALL-Y Max	Auto M3	B7H1	0	0	0	0	0.1687	A to B	A to IO
150	GF B7	NEWHALL-Y Min	Auto M3	B7H1	0	0	0	0	-1.468	A to B	A to IO
ł52	GF B7	PETROLIA-Y Max	Auto M3	B7H1	0	0	0	0	2.192	A to B	A to IO
154	GF 87	PETROLIA-Y Min	Auto M3	B7H1	0	0	0	0	-3.41	A to B	A to IO
1 56	GF B7	SEISMIC-TH-X Max	Auto M3	B7H1	0	0	0	0	1.6615	A to B	A to IO
158	GF B7	SEISMIC-TH-X Min	Auto M3	B7H1	0	0	0	0	-2.9474	A to B	A to IO
160	GF B7	SEISMIC-TH-Y Max	Auto M3	B7H1	0	0	0	0	3.1519	A to B	A to IO
16 2	GF B7	SEISMIC-TH-Y Min	Auto M3	B7H1	0	0	0	0	-3.321	A to B	A to IO
464	GF B7	LUCCERNE-X Max	Auto M3	B7H1	0	0	0	0	1.1392	A to B	A to IO
166	GF B7	LUCCERNE-X Min	Auto M3	B7H1	0	0	0	0	-1.8822	A to B	A to IO
168	GF 87	LUCCERNE-Y Max	Auto M3	B7H1	0	0	0	0	0.4441	A to B	A to IO
170	CC 07	LUCCEDNELV Min	Auto M2	0741	n	n	n	n	_1 0001	A to P	A to 10

Columns Hinges

2	Story	Frame/ W 🕶	Load Case/Combo 🕶	Assigned Hing	Generated Hin	Relative Distan	Absolute Distan 🕶	Ρ		1913	Hinge Sta	Hinge Stat	
8	LVL6	C56	ALTADENA-X Max	Auto P-M2-M3	C56H1	0	0	-76.6692	35.6769	13.3588	A to B	A to IO	
10	LVL6	C56	ALTADENA-X Min	Auto P-M2-M3	C56H1	0	0	-538.6823	-32.682	-0.774	A to B	A to IO	
12	LVL6	C56	HOLLISTE-X Max	Auto P-M2-M3	C56H1	0	0	1230.1992	87.2331	31.1582	A to B	A to IO	
14	LVL6	C56	HOLLISTE-X Min	Auto P-M2-M3	C56H1	0	0	-1705.7469	-73.4841	-19.9438	A to B	A to IO	
16	LVL6	C56	NEWHALL-X Max	Auto P-M2-M3	C56H1	0	0	313.811	61.7032	16.8653	A to B	A to IO	
18	LVL6	C56	NEWHALL-X Min	Auto P-M2-M3	C56H1	0	0	-895.1489	-42.5718	-6.2902	A to B	A to IO	
20	LVL6	C56	PETROLIA-X Max	Auto P-M2-M3	C56H1	0	0	192.6751	50.0982	14.2276	A to B	A to IO	
22	LVL6	C56	PETROLIA-X Min	Auto P-M2-M3	C56H1	0	0	-723.4486	-22.2424	-2.1982	A to B	A to IO	
24	LVL6	C56	ALTADENA-Y Max	Auto P-M2-M3	C56H1	0	0	-194.3849	18.916	12.5056	A to B	A to IO	
26	LVL6	C56	ALTADENA-Y Min	Auto P-M2-M3	C56H1	0	0	-404.6969	-6.3681	2.7214	A to B	A to IO	
28	LVL6	C56	HOLLISTE-Y Max	Auto P-M2-M3	C56H1	0	0	525.6077	24.2047	27.5399	A to B	A to IO	
30	LVL6	C56	HOLLISTE-Y Min	Auto P-M2-M3	C56H1	0	0	-1301.7735	-15.3659	-10.2675	A to B	A to IO	
32	LVL6	C56	NEWHALL-Y Max	Auto P-M2-M3	C56H1	0	0	221.7052	25.3282	18.4797	A to B	A to IO	
34	LVL6	C56	NEWHALL-Y Min	Auto P-M2-M3	C56H1	0	0	-803.2896	-11.2358	-4.488	A to B	A to IO	
36	LVL6	C56	PETROLIA-Y Max	Auto P-M2-M3	C56H1	0	0	1193.2949	70.2434	46.2071	A to B	A to IO	
38	LVL6	C56	PETROLIA-Y Min	Auto P-M2-M3	C56H1	0	0	-2064.716	-43.2431	-25.1429	A to B	A to IO	
40	LVL6	C56	SEISMIC-TH-X Max	Auto P-M2-M3	C56H1	0	0	1213.1475	93.9761	31.1915	A to B	A to IO	
42	LVL6	C56	SEISMIC-TH-X Min	Auto P-M2-M3	C56H1	0	0	-1653.2779	-68.04	-24.1153	A to B	A to IO	
44	LVL6	C56	SEISMIC-TH-Y Max	Auto P-M2-M3	C56H1	0	0	1972.0972	88.6357	52.946	A to B	A to IO	
16	1/16	C56	SEISMIC-TH-V Min	Auto D-M2-M2	C56H1	0	n	-2500 2522	-26 2002	_15 105/	A to P	A to 10	•

