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Abstract
Many of the physical, chemical and engineering applications lead to a
system of differential equations or partial differential equations. Some of
those applications involve a high order system. In this work, we will
present some important analytical and numerical results concerning linear
dynamical systems and their applications. We consider the case of unstable
linear dynamical systems and our goal is to reduce the order of this system
with minimal error bound with zero initial condition. First, we present the
stable system and study two approaches to reduced order of stable system,
balanced truncation method and singular perturbation approximation
method. Then we study the Lo 77ing NOrm to reduce the order of unstable
system. Next, to show the efficiency of these approaches we use MATLAB
software to solve an example of stable system by balanced truncation

method and another example of unstable system by Lo 17ing NOrm.



Introduction

The field of control systems has a long history which began with the early
desire of humans to take advantage of the materials and forces of nature. A
control system is a system, which provides the desired response by

controlling the output.

A more formal analysis of the field began with dynamic analysis of the
centrifugal governor, conducted by the physicist James Clerk Maxwell in
1868, entitled On Governors. A centrifugal governor was already used to
regulate the velocity of windmills [19]. Maxwell's work leads to generate a
flurry of interest in the topic, during Maxwell's classmate, Edward John
Routh, abstracted Maxwell's results for the general class of linear systems
[23]. Independently, Adolf Hurwitz analyzed system stability using
differential equations in 1877, resulting in what is now known as the
Routh—Hurwitz theorem [22]. A notable application of dynamic control
was in the area of manned flight. The Wright brothers made their first
successful test flights on December 17, 1903 and were distinguished by
their ability to control their flights for substantial periods. Continuous
reliable control of the airplane was necessary for flights lasting longer than

a few seconds.

During World War 11, control theory was becoming an important area of
research. Irmgard Flugge-Lotz developed the theory of discontinuous
automatic control systems, and applied the bang-bang principle to the

development of automatic flight control equipment for aircraft. Other areas
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of application for discontinuous controls included fire-control systems,
guidance systems and electronics. Sometimes, mechanical methods are

used to improve the stability of systems; for example, ship stabilizers.

Modeling of chemical, physical or biological phenomena often leads to
high-dimensional systems of differential equations, resulting from semi-

discretized partial differential equations [15].

This leads to a well-known representation called linear time invariant (LTI)

system:
X = Ax + Bu y=Cx+Du (1)

x(to) = X

Where € R™" | B € R™™, C € RP*", and D € RP*™ . The order n of the
system ranges from a few tens to several hundred as in control problems for

large flexible space structures [9].

A linear system is a mathematical model of a system based on the use of a
linear operator. Linear systems typically exhibit features and properties that
are much simpler than the nonlinear case. As a mathematical abstraction or
idealization, linear systems find important applications in automatic control

theory, signal processing and telecommunications.

Linear systems have been under study for long time because of their
important applications in physics and engineering. Furthermore, there is no

doubt that linear systems will continue to be important subject to study for
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long time. Finite dimensional linear system was studied prior to 1930s. All
this work was for single-input, single-output systems. In the late 1950s,
linear systems were extended to multi-input, multi-output systems that
become important in many physics and engineering applications. This led
to a special work by Bellman and Kellman. This approach has led to a more
important details of the structure of finite-dimensional linear systems and
to questions of redundancy, minimality, controllability, observability, etc

[20, 5, 2].

Linear large-scale systems arise in many practical applications, for
instance, in circuit simulations and in control problems where the
underlying physical process is modeled by partial differential equations.
Model reduction or model order reduction is a mathematical process to find
a low-dimensional approximation for a system of equations. The main idea
is that a high-dimensional state vector actually belongs to a low-

dimensional subspace [1, 3, 4].

In this thesis, our main focus is to reduce the order of unstable system with
a minimal error. First we study stable system and reduce its order. In
Chapter 1, we discus some definitions and preliminary results. In Chapter
2, we introduce the stable system and study two methods to reduce its
order. In Chapter 3, we discuss the unstable system and study a method to
reduce its order (this work depends on stable systems). Finally, we show
the efficiency of this work by introducing numerical examples and solveing

them using MATLAB software.
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Chapter One
Preliminaries

In this chapter, we will study some of the theoretical notations of control
systems, and then discuss the state-space and the output equation for the
dynamical system. We introduce the Laplace transform and some of its
properties and discuss the description of the system in terms of its transfer
function and the transition matrix. We introduce the basic concepts of
controllability, observability and stabilization. Then we present the

Lyapunov equations.
1.1 State space equation

To study the linear dynamical system one must introduce first the state

space equation which is a combination of first order differential equations,

given as:
X = Ax + Bu, (1.2)
such that,
. dx
T

denotes the derivation of x with respect to time t.

The following equation

x(t) = [x,(1), x,(t), e e, x (0)]T € R
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is called the state vector of the system, and
u=u(t) e R™
the input function.
The initial condition of the system is denoted by:
X(ty) = xo .
A and B are constant matrices such that A € R™*™ and B € R™*™ [1].

A state vector of the system gives a relationship between the input and the
state variables. Now we will illustrate the output equation of a dynamical

system.
The output equation for a linear dynamical system is:
y = Cx + Du, (1.2)

where y is the output function, € and D are constant matrices such that
C € RP*™ and D € RP*™, C is called here as the output map and it is
depicting the react between the system and the outside world [1]. D is a
matrix that describe the weight of the system input. In our work, we
consider the continuous linear time invariant system. Time invariant system

means that A4, B, C and D are independent with time (constant matrices).

The following two equations with constant coefficients characterize a finite

dimensional linear time invariant (FDLTI) dynamical system:
X = Ax + Bu (1.3)

y = Cx + Du, (1.4)
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such that, x(t) € R™ representing the state of the system, x(¢t,) initial
condition, the input of the system is u(t) € R™ and the output is y(t) €

RP . The dimension of this system is n [32].
If the matrix D = 0, so the linear system can be described as:
x =Ax + Bu (1.5)
y = Cx, (1.6)

such that x € R™,u € R™, A € R B € R™™, C € RP*™ and the initial

condition is x(t,) = x,.

The dynamical system given by equations (1.3) and (1.4) can be written in

a general form using the symbol Z;.

Definition 1.1.1 . [1] A linear system described by state space equation is a

quadruple linear maps (matrices):

2= 9) an

The dimension of the system is defined as the dimension of correlating

state space; that is:
Dim(Z,) = n. (1.8)
In case where D = 0, we write the system as:

ne=(4 9). (1.9)

In this work D is considered to be equal to 0.



Definition 1.1.2 . [32] Let
_ (A B
2s = (c o)
be linear continuous dynamical system. Then Z; is called a single input

single output (SISO) system if it has single input (im = 1) and single output

(p = 1). Otherwise it is called multi input multi output (MIMO) system.
1.2  Stability of continuous time system

In this section we will study the concept of stability of continuous time
linear dynamical systems, and we discus some definitions associated to

stability.

Definition 1.2.1. [10] A matrix N is said to be stable matrix if all

eigenvalues of N have negative real parts (i.e. R{1;(N)} < 0).
A continuous time linear system:

x =Ax + Bu

y=Cx+Du

is called bounded input bounded output (BIBO) stable if we get bounded

output of any bounded input [4].



Definition 1.2.1. [9] The system
_ (A B
2s = (c o)
Is said to be asymptotically stable if the real parts of eigenvalues of the
matrix A are strictly negative (i.e. R{1;(A)} < 0), and it's called stable if

R{1;(A)} < 0, where A; denote the eigenvalues of A. Otherwise the system

is called unstable system.
1.3 The Laplace transformation

In this section | will discuss Laplace transform. It is very useful

transformation making the calculation easier.

Definition 1.3.1. [6, 11] Let ¢(t) be a real-valued function defined on
t = 0, then the Laplace transformation of ¢(t) denoted by ®(s) is given

as:
Lip@®] = [; e()e~sdt = d(s), (1.10)
where s = o + if, o and B are real variables.

The inverse Laplace transformation of a function ®(s) is the unique

function ¢ (t) that is continuous on [0, o) and satisfies:

L@ ()] = o(0). (1.11)
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The following properties are used for computing the Laplace

transformation:
Let & be a constant and d(s) = L[¢(t)], then:
1. (Linearity) [ap(t)] = ad(s) .
2. (super position) L[g; () + @, ()] = ®1(s) + P (s).

where @, (s) = L[, (t)] and ®,(s) = L[p,()].
3. (Translation in time) If @ > 0, then L{u()@(t — a)] = e~ d(s).
4. (Translation in the domain) Lle®p(t)] = ®(s — a).

5. (Real differentiation) Let ¢(t) be the first derivative of ¢(t), then

Llp®)] = s®(s) — ¢(0).

Note that: this property can be generalized to the nt" derivation:

Lp"(®)] = 5" ®(s) — s"1(0) — s"2(0) — -+ — 5 @=2)(0)
— 9 1(0)

6. (Real integration) L [ fot(p(r)dr] = 26)

N

7. (Convolution) L{e(t) * h(t)] = L[ (t)]L[h(t)]
= ®(s)H(s)
where the convolution operation is defined as:

(p xh)(t) = fot @ (7)h(t — 7)dt. For more details see [11, 31, 6].
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1.4 Matrix derivation, integral and exponential

In this section our consideration is look to the derivative and integral of a
matrix and studies its properties, then we define the exponential matrix and

its impersonation and give the rules for its calculation.

Definition 1.4.1. [9, 6] Let M(¢) = [my, (t)] be a square matrix

where its entries are functions of time t. Then:

1. The derivative of M(t) denoted by %M(t) IS:

SM(E) = M(8) = (5 (myy (1)) (1.13)
2. The integral of M(t) is:

SM(@®)dt = (f my, (t)dt). (1.14)

The derivative or integral of any matrix can be calculated by differentiating
or integrating each entry of the matrix. Depending on this definition we

have the following rules [6]:
Let a, B, a and b are constant, M and N be matrices. Then:
o i(ocM) =aiM=aM.

dat dat
o L(aM+pPN)=aiM+LIN=aM+pN

ac ¥ B T 'Bdt -« BN.
. ff aMdt = a ff Mdt, a and b are real numbers.

b b b

o [ (aM+pBN)dt =a [ Mdt+f [ Ndt.

d d d . .
e —(MN)=M_N+N=M=MN+MN.
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d d
e —M"#nM"1—-M,
dt dt

Definition 1.4.2.[9] Given a square matrix M € R™*™ and t € R. Then the
matrix exponential of M is denoted by eM! and it's a square matrix of the
same order as M given as:

M2t2  M3¢t3
+
2! 3!

Mt =4+ 4 + o (1.15)

If M and N are two matrices, a and 8 are two constants, then the following
rules hold for the matrix exponential [9].

o MO

e Ma — [eMa]—l_
o eM(atp) — pMa Mg

o eM+Nja — MapNa gnly\when MN = NM.

d
. EeMt = MeMt = Mt

. foaeM“da =M 1[eM* —]] = [eM* — [IM1,
1.5 State transition matrix

In this section we study the concept of state transition matrix and we

present some of its properties.
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Definition 1.5.1.[11] For a dynamical system, a state transition matrix is a

matrix function denoted by K(t) and defined as:
K(t) = eMt, (1.16)
where M is a matrix.

State transition matrix has the following properties:

K(t, — t1)K(t; — to) = K(t; — to), Vo, t1, t3.

K()K()K(t) --- K(t) = K"(t), n is positive integer.

K~1(t) = K(-t).

K(0) = I, unity matrix.

K(t) is nonsingular for all finite value of ¢.
For more details see [11].
1.6 Solution of the state and output equation

In this section a study of the solution of the state and output equations of

the linear dynamical continuous systems is presented.

To obtain the solution of the state space equation, we consider the

following steps:
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Multiply both sides of equation (1.5) by e ¢ giving:
ey =e 4 Ax+ e 4'Bu
e Aty — e A Ax = e~ 4'Bu
% [e 4 x(t)] = e 'Bu

[i = le~x(D)]dr = J; e 4 Bu(r)dr
e x(t) — e Mox(ty) = f} e 4 Bu(r)dr (1.17)

e Atx(t) — e Atox, = ftto e ' Bu(t)dr

x(t) = eAlt=to)x, + ftto eAt=DBy(t)dr, vVt > t,.

This equation describes the change of state with respect to the input vector

u(t) and the initial condition x(t,).

Suppose y(t) = Cx(t) given in equation (1.6). Then, from the solution of

the state equation x(t), the solution of the output equation of the system is:

y(t) = CeAt=t)y, + C ftto eAt=DBy(7)dr. (1.18)
In case when t, = 0, the solution of the dynamical system becomes:
x(t) = efxy + [ AP Bu(r)dr, (1.19)

y(t) = Ceftxy+ C foteA(t‘T)Bu(T)dr. (1.20)
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Consider the system given by equations (1.3) and (1.4), it follows that, the

solution of the output equation with D # 0 is given as:

y(t) = Cettxy + C [] eACDBu(t)dr + Du(t). (1.21)
Equation (1.21) called the convolution equation and the general form of the
solution of the system can be represented by this equation.

The system time response is determined by the state x(t), the output y(t),

the control input u(t) and the initial condition x, for t = 0.

For zero input control and from equation (1.20), we obtain the response of

the system as:
y(t) = Ce4tx,. (1.22)

For zero initial condition, the forced response of the dynamical system is

determined by the following equation:

y(®) = C [ eACDBu(r)dr + Du(t). (1.23)

Finally, we have the following case known as the impulse response and in
this case we set x, = 0 and define the input control as:

0, t+0
oo, t=20

u(t) = 8(t) = {

where §(t) is the unit impulse (the Dirac delta) function satisfying the

dirac distribution:

[2 f®)8(t - t)dt = £(7),
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where f is a continuous function att = 7.
Now, the impulse response is given as:
y(t) = [} (Ce*CDB +D8(t — 1)) u(r)dr.  (1.24)
The impulse response matrix of the dynamical system is defined as:
g(t) = Ce*B + DS(t).

The relationship between the input and the output with zero initial

condition can be described by the convolution equation [32, 10].

y(©) = (g *w)(t) = j g(t — Du(@)dr

= [* gt —Du(r)dr. (1.25)
1.7 Transfer function of the dynamical system

In this section, we will study the concept of transfer function of dynamical

linear system. It's very important property of dynamical system [9, 10, 31].

Let

Zs = (/C1 g) (1.26)

be a linear continuous time dynamical system. Using Laplace
transformation for the state and output equations of the system (1.5) and

(1.6), we obtain:

L[x] = L[Ax] + L[Bu]
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this gives
sX(s) — x(0) = AX(s) + BU(s)
50
sX(s) — AX(s) = BU(s) + x(0) (1.27)
gives
(sI — A)X(s) = BU(s) + x(0)
50, obtain

X(s) = (sl —A) IBU(s) + (sI — A)~1x(0).
and
Lly] = L[Cx],
SO
Y(s) = CX(s). (1.28)
We call the matrix (sI — A)~? the function matrix or the transition matrix.
From equations (1.27) and (1.28), we obtain:
Y(s) =C(sI —A)™1BU(s) + C(sI — A)~1x(0). (1.29)
If we consider zero initial condition, means x(0) = 0, then (1.29) becomes:

Y(s) = C(sl — A)~"'BU(s). (1.30)
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Definition 1.7.1.[1, 10] The function matrix or transition matrix H(s) from

u to y with zero initial condition is given as:

Y(s) = H(s)U(s). (1.31)
We define H(s) as:
H(s) = % (1.32)

If A is stable matrix, then H(s) takes the form:[9]
H(s) = (sl —A)™'B (1.33)
1.8 Lyapunov equations

In this section, a combination of important equations in control theory

named Lyapunov equations is presented.
Definition 1.8.1.[1]The matrix equations
ZA+ATZ = —F (1.34)
and
AZ + ZAT = —F (1.35)
are called the Lyapunov equations.
where

F € R,
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Theorem 1.8.2. [1, 10](Lyapunov stability theorem)

The system
_ (A B
2s = (c o)
Is asymptotically stable if and only if we have a unique symmetric positive

definite matrix Z for any symmetric positive definite matrix F, satisfying

the equations:

ZA+ATZ = —F
and

AZ + ZAT = —F
Proof: (=) Define the matrix Z by:

sz eATtFoAt gt
0

Want to prove that when the system is asymptotic stable, then Z is a unique

symmetric positive definite solution of equation (1.34).

If we substitute Z in equation (1.34), then we obtain:

ZA +ATZ=f

eATtFeAtAdt+J ATeATtFoAt gt
0

0

1) d o
=.[0 a(eATtFeAt)dt = [eATtFeAt]O
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Suppose A4 is stable, then e4't — 0 as t — oo. Thus ZA + ATZ = —F .
So, Z satisfies equation (1.34).

To prove that Z is positive definite, we must show u”Zu > 0 for any non-

Zero vector u
(0)e)
T
ulZu =j uTed tFeftydt
0

since e4"t and e4t are both non-singular and F is positive definite, then we

have u” Zu > 0.

Finally we must prove that, Z is unique. Assume we have two solutions Z;

and Z, of equation (1.34), then:
AT(Z,—Z))+(Z,—Z,)A=0
which implies:
eAt(AT(Z, — Z,) + (Zy — Z,)A)eAt = 0
or

%[eATt(Zl - Zz)eAt] = O

hence, eATt(Z1 — Z,)e?t is constant matrix for all values of t. Calculating

att =0andt = oo, we get (Z; — Z,) = 0, hence Z is unique solution.

(&) Conversely, show that, if Z is symmetric positive definite solution of

equation (1.34), then A is stable matrix.
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Let 2 and A be an eigenvalue, v and v* be an eigenvector of matrix A.

Multiplying (1.34) from left by v* and from right by v, we obtain:
v ZAv + v ATZv = W Zv + W Zv = (A + A)v*Zv = —v*Fu

Suppose F and Z are both symmetric positive definite, we get 1 + 1 < 0,

or Re(1) < 0.
Since A was arbitrary, so A is stable. m
Solution of Lyapunov equations:

Let A be stable and let F be symmetric positive definite or semi definite,

then:
1. The unique solution of Lyapunov equation:
ZA+ATZ = —F
is defined as:
Z=["edtFedtdt. (1.36)
2. The unique solution of Lyapunov equation:
AZ + ZAT = —F
is defined as:
Z=["eMFed tdt. (1.37)

For more details see [10].
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1.9 Controllability and Observability

In this section we will focus on the concepts of controllability and
observability, both are important notation in the study of continuous time

linear dynamical systems.

Definition 1.9.1.[9, 10] The system
_ (A B
2s = (c o)
or the pair (4, B) is called controllable, if for any initial state x(0) = x,

,the system can be driven to any final state x; by using a piecewise

continuous input u(t), such that x(t,) = x; where t; > 0.
Definition 1.9.2.[1, 10] The matrix
K (A,B) = (B AB A*B A3B --- A" 'B) (1.38)
is called the controllability matrix, where n is a positive integer.
Definition 1.9.3.[1, 9, 10] The system
%=(¢ o)
or the pair (C,A) is called observable if, for any t; > 0, the initial state

x(0) can be uniquely found from the time history of the input u(t) and the

output y(t) for all t belongs to the interval [0, t,].
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Definition 1.9.4.[1, 10] The matrix
C

[

CA? |

I

E(C,A) = | CA3
CA*

\ i/

is called the observability matrix, where n is a positive integer.

(1.39)

Now, we consider two important matrices regarding to the linear dynamical
system, the controllability and the observability Gramians. And we will

study some theorems related to these matrices.

Definition 1.9.5.[1,10] The matrix

W, = ["eAtBBTeA tdt (1.40)
Is called the controllability Gramian.

Definition 1.9.6.[1, 10] The matrix

W, = [~ ed tCTCetdt (1.41)

is called the observability Gramian.

The two matrices W, and W, are both solutions of the Lyapunov equation,

so we have:
AW, + W.AT + BBT =0 (1.42)

W,A+ AW, + CTC = 0 (1.43)
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Proposition 1.9.7. [10] Let
_ (A B
2s = (c o)
be a stable system and let W, and W, be the controllability and

observability Gramians of the system X,. Then W, and W, satisfy the

continuous time Lyapunov equations:
AW, + W,AT + BBT =0
W,A+ATW, + CTC =0
Proof: Suppose Z; is stable, then:
o AW, +WAT = [*(Ae4*BBTe4't + ¢4 BBTe4 tAT)dt
= j T4 (eA*tBBTeA t)dt
o dt
_ [eAtBBTeATt]OO
0

= —BBT.
So,
AW, + W,AT + BBT =0
o W,A+ATW, = ["(e" tet A+ ATed tCT Cet)dt
00 d r
— . A tcTC At dt
jo I (e e’")
_ [eATtCTCeAt]OO
0

= —CTc.
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Finally,
W,A+ATW, +CTC =0 m

The controllability Gramian satisfies the following property on continuous

time dynamical system [1]:
W.(t) =W, (t) =0,vt>0 (1.44)
Theorem 1.9.8.[1] (Controllability Conditions)
The following statements are equivalent:
1. The pair (4,B),A € R™", B € R™™ is controllable.
2. The controllable matrix has a full rank (i:e rank K (4, B) = n).
3. The controllablility Gramian W, is positive definite, W,-(t) > 0,vt > 0.
Theorem 1.9.9.[1] (Observability Conditions)
The following statements are equivalent:
1. The pair (C,A),C € RP*™ A € R™ " is observable.
2. The observable matrix has a full rank (i:e rank E(C,A) = n).
3. The observability Gramian W, is positive definite, W, (t) > 0,Vt > 0.
1.10 Norms

In this section we will introduce the notation of the norm and introduce

some important types of norm.
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Definition 1.10.1.[17] Let Q be a vector space over a field F. A norm on Q

IS a nonnegative function |||
I'll: Q = R
q = llqll

suchthat vV g,p € Q and VA € F, then:

1. |lqll = 0,and ||q|| = 0 ifand only if g = 0.

2. |lAqll = |lllqll-

3. llg +pll < liqll + llpll-

llql| is called the norm of q.
Definition 1.10.2.[17] Euclidean norm

let the vector Q = (q4, 92, - .- ,qn) € R™, then the Euclidean norm of Q,

lQ|l, is given as:

QI = ai + a3+ + a3 (1.45)
Definition 1.10.3.[17] Taxicab norm

let Q = (91,92, - - ,qn) € R™ be a vector, then the Taxicab norm of Q is

defined as:

el = Xizala:l- (1.46)
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Definition 1.10.4.[17] Maximum norm

let Q = (91,95, - - ,dn) € R™ be a vector. The maximum norm or infinite

norm of Q is define as:

@1l = max{lqyl,1qz2l, ..., 1qnl}- (1.47)
If A isan X m matrix, then:
|Allce = max; i<y Zjn;1|aij|- (1.48)
Definition 1.10.5.[17] p-norm

let p = 1 be a real number, the p-norm (L,-norm) of vector

Q = (q1,92, - - ,qn) € R™ isgiven as:
lell, = Eizila:P)r. (1.49)

Let A be n X m matrix, then:

1
lAll, = (S Zfalay 7). (150)
If p =1 then p-norm becomes the Taxicab norm, for p = 2, p-norm is
Euclidean norm and if p approaches oo then p-norm approaches infinite

norm.
1.11 The amount of energy for controlling and observing state

In this section we discuss an important property of a dynamical system, that
Is important construction in model reduction to classify states according to

their degree of controllability and observability.
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Consider the stable, controllable and observable linear system
w9
x(0) = x,
The controllability and observability functions of x, are defined as follows:
Definition 1.11.1.[9, 7] The controllability function is defined as:
Le(xo) = min- [° |lu(o)l?de,  (151)
where u € L,(—0,0),x(—) = 0,x(0) = x,
Definition 1.11.2.[9, 7] The observability function is defined as:
Lo(x0) =3 J Ily(®)IIdt, (1.52)
where x(0) = x,,u(t) = 0,0 <t < oo,

The value of L.(x,) is the minimum amount of control energy desired to
approach the state x, . And the value of L,(x,) is the amount of output

energy produced by the state x, [9].

Theorem 1.11.3.[27] Let
W, = j eAtBBTeA tdt
0
and

w, = fooo e tCTCetdt,
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be the controllability and observability Gramains, such that W, and W, are
the unique positive definite solutions of the Lyapunov equations. Then

L.(xy) and L,(x,) can be written in terms of W, and W, to get:
Le(xo) = ;2§ W xg (1.53)
and
Lo (o) = ;%3 Wyxg (1.54)

Lemma 1.11.4.[1] Let W, and W, be the controllability and observability

Gramians of a stable dynamical system Z, then:

1. The lower amount of energy wanted to drive the state of the system

from 0 to x, is given by L.(x,).

2. The greater energy generated by observing the output of the system

whose initial state is x, is given by L, (x,).
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Chapter Two
Model Reduction for Stable Systems

In this chapter we will study the model order reduction for stable systems,
we focus on the balanced truncation method and in chapter 4 a review of a

numerical example is presented to show the efficiency of this method.
2.1 State space realization

In this section we define a property of realization for dynamical systems

with a transfer function H(s).

Definition 2.1.1.[32] Assume that H(s) is a real-rational transfer function
which is proper, then the state space model (4, B, C, 0) defined as:

L= 1)

is a realization of H(s).

Definition 2.1.2.[32] A state space realization (A4, B, C,0) of H(s) is called
minimal realization of H(s) if the matrix A has the smallest possible

dimension.
The following theorem gives a description of the minimal realization.

Theorem 2.1.3.[32] A state space realization (4, B, C,0) of H(s) is said to

be minimal if and only if (4, B) is controllable, and (C, A) is observable.

The next property of minimal realization can also be verified.
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Theorem 2.1.4.[32] Let (44, B4, C;,0) and (4,, By, C,,0) Dbe two minimal
realizations of a real-rational transfer function H(s), and let K,, K, E;, and
E, be the corresponding controllability and observability matrix

respectively, then there exists a unique non-singular matrix T such that:
A, =TA,;T™Y,B, =TB,;,C, = ;T L.
Furthermore, T can be specified as:
T = (E;E;) "E; E; = K K; (K,K; )"
2.2 Balancing for linear system

In this section we introduce one of the most important methods used to
obtain a reduce order model from the original dynamical system. This is

called the Balanced Truncation method [14].
Suppose the linear time invariant (LTI) continuous system:
x =Ax + Bu
y=Cx
with initial condition x(0) = x,.

The concept of the Balanced Truncation method depends on the
controllability and observability Gramians W, and W, [9, 26], which are
symmetric positive definite solutions of the Lyapunov equations. See
[Proposition 1.9.7].

AW, + W.AT + BBT = 0.

ATW, + W,A+ CTC = 0.
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To obtain a reduced order model, we balance the system then we omit the
states that are hard to control (i.e need large amount of control energy) and
hard to observe (i.e produce small amount of energy), these states are not

important so they may not influence on the transfer function [9, 21, 15].

Now we introduce the concept of Hankel Singular Values (HSVs) of the
dynamical system.

A B

Definition 2.2.1.[1, 9] Let 5 = (c 0

) be an n-dimensional controllable,
observable and stable continuous time system.Then, the Hankel Singular

Values

0'120-220-3>"'20-n20

of X, are defined as the square roots of the eigenvalues of the product W,

and W, and denoted:

0;(Zs) = VAW W,). (2.1)

Let X denotes the diagonal matrix of the (HSVs):

2= (%1 ZE‘)2) (22)



32

Definition 2.2.2.[1, 24] The controllable, observable and stable system

_ (A BY.. . .
I = (C 0) is said to be balanced if

W, =W, =%X=diag(oy =0y, 203 =20, =0).

In the following theorem we show the method of balancing the system by

find a coordinate transformation w such that:
X =w1x (2.3)

in which the controllability and observability Gramians turn out diagonal

and equal.

Theorem 2.2.3.[9] There exists a state space transformation ¥ = w™=1x for

the system
X =Ax + Bu
y =Cx
such that, the transformed system
x = AX + Bu
y=Cx (2.4)

is balanced and A = wAw™1,B = wB and C = Cw™1. For more details see

[7, 15].
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Let H be the transfer function of the balanced system (2.4), then:
=_ (A E) wAw™! B
H=1_ = 2.5
(C 0 ( Cw™? 0 ) (25)

Lemma 2.2.4.[32] Let H(s) = C(sI — A)™'B and H(s) = C(sI — A)™'B
be the transfer function of the (LTI) system and balanced system

respectively, then:
H(s) = H(s)

Proof.

H(s)=C(sl —A)™'B
= Cw(s] — wAw ) *wB
= Co Y (w(s] — Ao ) twB
= Co Y (w(sl — A) o HwB
= C(sI—A)'B
—H(s) m

Let W, and W, be the controllability and observability Gramians of the

balance system (2.4). Then we have:
W, = 0 W (0™’ (2.6)

and

S
I

o' W,w. (2.7)
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Suppose the two Gramians W, and W, of balanced system are equal, then:
— = o (¥ 0
such that

0'120-220-32"'20-7120.

The controllability and observability Gramians W, and W, in equation (2.8)

satisfy the Lyapunov equations:
AZ+Z(AT+BB)T =0
(ADTE+ZA+(O)TC=0

Suppose the two Gramians W, and W, are positive definite (or semi-

definite), then one can decompose them as:
W, =uuT
W, = LLT (2.9)

where L and U are lower triangular matrix with real and positive diagonal

entries, and LT and UT denotes the transpose of L and U respectively.

If we do a singular value decomposition of the matrix LT U, we obtain:

YT
LTU =X3YT = (X, X3) (%1 20) (Y2T> (2.10)
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such that

Yy = 0ppq 2 Opyp 2+ 2 Op.
The other matrices satisfy

X{X, =YY = Ly
and

XzTXz = YZTYZ = I1xq
with l = n — r [15].

Lemma 2.2.5.[1] (Balancing transformation) Given the controllable,

4 B) and it's Gramians W, and W,.

observable and stable system Xs = ( c o0

Then a balancing transformation is define as:
1
[=uUys, (2.11)
1
r-1=x72x7IT. (2.12)

Definition 2.2.6.[9] The controllability and observability functions of the

transformed system (2.4) are given as:
L.(%,) =-xlx71x, (2.13)

- - 1_ _
LO (xO) = EngxO (214)
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The value of L.(x,) is the minimum amount of control energy desired to
approach the state x,. And the value of L,(x,) is the amount of output
energy produced by the state x,. If o; > 0;,, for i = 1,2,---,n, then we
need a large amount of control energy to reach the state x, for small values
of g;, and we have small amount of output energy at X, for large values of

0;.

To decrease the number of state components of the system, we remove the

state components from x; ., to x,, for g; > 0;,;.

Now, by the following procedure we can obtain balance realization for a

minimal realization system X = (‘é g) [32, 9]:

1. Compute W, and W, the controllability and observability gramians for

the system.

2. Find matrix U, such that W, = UTR.
3. Diagonalize UTW, U to get W, = RTW,R = LX2LT

1
4. Letw ! =UTLY?

Then
1
w1 =UTLE 20W,w"
— (U)_l)TVVO(D_l

=7
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and

is balanced.

2.3 Error bounds for linear dynamical systems using balanced

truncation

In this section we study an advantageous property of balanced
truncation method, it has a prior error bounds that is close to the lower

bound achievable by any reduced-order model.
Consider a (LTI) continuous system:
x = Ax + Bu

y =Cx (2.15)

and the transfer function:

H(s) = C(sI — A)~B

Assumption 2.3.1.[28] A system (A

D 0) Is asymptotically stable, (4, B)

is controllable and (C, A) is observable.

The controllabilty and observability Gramians (W, and W,) are positive

semi-definite and satisfy the Lyapunov equations.

By theorem (2.2.3), we have the next balanced system:



38

=l
Il
=l
_|_
ool
I~

y=Cx (2.16)
suchthat A = wAw™},B=wBandC = Cw™ L.
Let us partition the balance system (4, B, C) and the Gramian . as:
a=(i 42 F=(g)c=@ wz=(g 1)

where A;; and A,, are matrices of dimension r Xxr and n—rxXn—r
respectively, and the other matrices has dimension correspond to the

original system.

Assuming the Hankel Singular Values are satisfies o, > 0,,4, then we
delete all the states related to the small Hankel Singular Values (o,,; =
Op4p =+ =0, = 0) to obtain the reduced order model acquired by

Balance Truncation method is given by:
X, = A11x, + Bju
Vr = C1Xy (2.17)
with transfer function:
H,(s) = C;(sI — A1) "B, (2.18)

The subsystem (A;;,B4,C;) is a good approximation of the balanced

system (4, B, C).
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Lemma2.3.2.[18] The subsystems (4;;, B;,C;) and (i = 1,2) are balance

with Gramians £; and Z,.

Lemma2.3.3.[18] The matrices A;; (i = 1,2) are asymptotically stable (i.e.
The real parts of eigenvalues A, of 4;; (i = 1,2) are less than or equal zero,
R(A(4;) <0),i =1,2,Vk) if £; and X, do not have common entries in
the diagonal. Furthermore the subsystem (4;;,B;,C;), (i =1,2) is

controllable and observable.
Now, we consider a very important concept in control theory.

We compute the infinite norm (||.||) of the transfer function of the
original model and compare the difference with the norm of the transfer

function of our reduced order model obtained by Balanced Truncation.

Let H(s) be the transfer function of the balanced system (4,B,C) and
H,(s) be the transfer function of the reduced system (4,4, B;, C;) then the
upper bound for the approximation error is given in the following lemma

[28, 18].
Lemma 2.3.4. We have

IH — Hrlloo < 2 %0141 0; (2.19)
such that o,.,, is the first neglected (HSV) of H(s).

Lemma 2.3.5.[9, 28] Let y and y, be the output of the original and reduced

system respectively. Then the ||.[|; = .|, bound of the approximation

error between y and y,. is given by:
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ly — yr”Lz < 2110 ||u||1,2 (2.20)
where u is the input vector.
2.4  Reciprocal system of a linear dynamical system

In this section we will discuss some results and properties of reciprocal

system of the balanced realization for the infinite dimensional system.
Consider a linear time-invariant continuous system:
X = Ax + Bu
y =Cx + Du.
Assume the system is balanced with Gramian . Then we have:
AX+3AT + BBT =0
ATT+3A+CTC=0.
Let
H(s) = C(sI — A)™'B + D.

be the transfer function of the balanced system (4,B,C,D). Then, the

reciprocal system (4, B, C, D) of the system (4, B, C, D) is defined as:

X = A% + Bu



Such that
A=A"1
B=A"1B
C=—-CA? (2.21)
D=D-CA'B

Remark 2.4.1. If we compute H(0) we get:
H(0)=—-CA'B+D =D

Remark 2.4.2.[9] If the matrix A is given as:

A A
A — ( 11 12)

A21 AZZ
Then
A"l =
< (All - ‘41214521‘421)_1 _(AZZ - A21AI11A12)_1A12AI11>

_(All - A12A£21A21)_1A21AI11 (AZZ - A21AI11A12)_1

also
A—l —

< (A1 — A A3 A1) —A7{ A1, (Ayy — A21AI11A12)_1>
—A73 A5 (A1 — A A3 A1)t (Ayy — Ay ATT A1)
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The transfer function H(s) of the reciprocal system (4,B,C,D) is given

as:
~ ~ ~N—1 ~ ~
H(s)=C(si—4) B+D. (2.22)
The relation between H(s) and H(s) is given as [3]:
H(s)=C(sI—A)™*B+D
=C(sI—A)1AA'B+D
_ (a7t
=c:(a-3) B+D
-1
=—C(;-A"+aY)(;-aY) ATB+D

-1
= —CAT'B—CA™ (3 - A—l) AT'B+D (2.23)

=—cA (5 - A‘l)_lA‘lB +D—CA™'B

Lemma 2.4.3.[9, 18, 25] Let (4, B, C,D) be balanced minimal realization
of a (LTI) system with Gramian . Then the reciprocal system (4, 5,C,D)

is also balanced with the same Gramian Z.
Proof. Since X is solution of the Lyapunove equations:
AL +3AT + BBT =0

ATY4+3A+CTC =0
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multiply the first equation by A= from the left and by A=1" from the right,

we get:
A1 ADAY + A471@ANA Y + A71(BBTAY =0,
SO

A + A7l 4+ (A71B)(AB) =0
by equation (2.21), we obtain:
AT + 2AT + BBT = 0.

Multiplying the second equation by A=1" from the left and by A~ from the

right, we get:

AT ATHA T+ AT @A+ AT (CTO)A = 0,

then

AL+ A + (cATHT(CA™Y) = 0.

By equation (2.21), we have:

ATY +3A+ CTC = 0.

So, the reciprocal system (4, B, €, D) is balanced with Gramian X.m

Let us partition the system (4, B, C, D) and it's Gramian £ as:

- (A A\ 5 (Bl A A A (21 0)
A= . - ,B=|."]|,C=(, C)ZX= ) 2.24
<A21 Ay, B, ( ! 2) 0 2 ( )
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Lemma 2.4.4.[18] Suppose the hypothesis of lemma (2.4.3), and the

reciprocal system (4, B,C,D) be partitioned as above. Then the subsystem
(43, B;,C;, D), (i = 1,2) is also internally balanced with Gramian Z;, (i =
1,2).

Lemma 2.4.5.[18] Consider the hypothesis of lemma (2.4.4), then the
matrices A4;;, (i = 1,2) are asymptotically stable (i.e. The real parts of
eigenvalues 2, of 4;; (i = 1,2) are less than or equal zero, R(A,(4;) <
0),i = 1,2,Vk) if £; and £, do not have common entries in the diagonal.
Furthermore the subsystem (4, B;,C;,D), (i = 1,2) is controllable and

observable.

Applying balanced truncation method on the reciprocal system (4, B, C, D),
obtain the balance r x r reduced system (4,4, B,,C,,D),given by the

following state space equation:
)LC == Allf + glﬁ
y =C,% + Du (2.25)

By equation (2.22) and remark (2.4.2) we can find the values of 4,4, B;, C;

and D as:
Ay = (A — A Az Ap) ™t
§1 = (A11 — A12A521A21)_1(B1 - A12A52132)
C~1 = —(C1 — C3A33451)(A1y — A2 A3 A5) 71 (2.26)

D=D-CA™'B
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The transfer function of reduced system (4,4, B,, C;, D) is given as:
HT(S) == C~1(SI - All)_lél + 5 (227)
Now, the error bound is given in the next lemma.

Lemma 2.4.6.[18] We have that
|7 = A, =2Ers1 0 (2.28)
Where g; is the (HSVs) of the system.

2.5 Singular perturbation approximation method

In previous sections we studied a balanced truncation schema to reduce the
order of the system, and acquired an error bound. Then we introduce
reciprocal system and extend the error bound to reduce order of reciprocal

system.

In this section we introduce another method to reduce the original system
which is called the singular perturbation approximation method (SPAM).
Balanced truncation method and singular perturbation approximation
method give us the same error bounds. For the balanced truncation method
the error is small at high frequencies and large at low frequencies, but for
the singular perturbation approximation we have large error at high
frequencies and small error at low frequencies. Our goal is to find the error
bound for the reduced order model using the singular perturbation

approximation. To obtain this error bound, we discuss the relationship
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between the reduced model of the reciprocal system and the reduced model

when we use the singular perturbation method.
Consider the system:
x = Ax + Bu
y = Cx. (2.29)

The controlabillity and observability Gramians W, and W, are both positive

semi-definite and can write as:
w.=uuT
W, =LL.
The balanced Gramian X is partition as:
2 - (2(:)1 Z02)
¥, and X, represent the important singular values that we are interested in

and the unimportant singular values which we want to neglected [26, 24].

Also, the balanced transformation w satisfies the equation:

1

w=UYY 2

w = Z_%XTLT.
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Suppose g, > o,,,. And HSVs are coordinate invariant (i.e. which
remains unchanged, after operations for transformations of a certain type
are applied to the objects), since 6,,; > 0,4, > - > 0, > 0. Then we can

obtain a reduced order system with small parameter [15].

To check where the small parameters Z, enter the equation, replacing £, by

€X,. The small HSVs are named uniformly according to equation:
(41, Ors2,*, On) = €(Opy1, Oppz, 00, 0n), € > 0.
We change the coordinate using balanced transformation w(e) such that:
x = w(e)x

Let w™1(g) = Q(¢). Then partition the balance matrices as:

W11

w(e) = ve (2.30)
W21 \/_50)22
and
() 041 P 531
= 1 1 . .
¢ 75921 TEQZZ (2:31)

which give rise to the balanced coefficients and they are given as:

A(e) = Q(e)Aw(e)

N T e I

\/5921 ﬁﬂzz Az1 Az W21 7z W2



1 4
Apy \/—gAlz
1 1 A
74 [An
B(¢e) = Q(e)B
Q41 Q2 \ /B
:(LQ 1, )(Bl) (2.33)
Ve 21 NG 22 2
== 1 ~» .
=5
And
C(e) = Cw(e)
w L
11 =W12
=(C1 C) vE (2.34)
W21 ﬁwzz
A 1 A
= (G )

Set ¢ = 1 In equation (2.32), then 4 = Q(1)Aw(1) represent the balanced

matrix A.
The balancing transformation can given as:
['(e) = l(e)w(1)

Q(e) = Q(DI(e),
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such that I(¢) denotes the diagonal matrix:
) <I 0 >
I(e) = 1.

0 %

In the next steps we omit the tilde from the balanced matrices, in order to

have the following matrices:

1
Ay =4Ap By
A= Vel B=|1 ,C=(C1 icz).
14 14 —=B; Ve
N B> Ve

Let's define the new variable z = (z,,2,) which can be balanced by

balance transformation (&) and written in balance form as:
z = Q(e)x.

Now, our dynamical linear system described in equation (2.29) turns in to

the singular perturbed system of equations:

1

7 Apy —=A11\ B,
()=(in Tan )@+ (an)e oo
y= (e %e)()

Equations (2.35) can written as:

Zl = A1121 + \/_EAlzzz + Blu
. 1 1
Zz ES ﬁAZlZl + ;AzzZz + Bzu (236)

1
y = C1Z1 + \/_ECZZZ'
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The variable z, is scaled as:
Z, = ez,
equations (2.36) become:
zZy = A1z, + A2, + Biju
£Zy = Ay12, + iAzzzz + B,u (2.37)
y = C1z, + Cy2,.
In matrix form:
; A A B
()= (Ca fan) )+ (2g)n o0
y=(C G) (2),

where the sub-matrices A,,,A,,, -+ are in balanced form [15]. The scalar &

exemplifies all the small parameters to be neglected [16].

To reduce the order of the system and obtain a reduced order model, set the

singular perturbation £ = 0.

The linear dynamical system has a multi-time behavior caused by the
singular perturbation and this yields the slow and fast variable of the

system [16].
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Assumption 2.5.1.[16] The block matrix A,, is invertible and stable, i.e.
Re{2;(4;2) < 0}
Assumption 2.5.2.[16] The equation
€Zy = Ay 21 + Aypzy, + Bou (2.39)
has distinct roots when ¢ = 0.

According to the assumptions (2.5.1) and (2.5.2) and equation (2.37), set

€ = 0 then the roots of equation (2.39) denoted by Z, given as:

Z, = —A3 4517 — A3; Bou (2.40)

If we substitute the value of z, in the first part of equation (2.37), we obtain

the reduced order model represented by the following state-space

equations:
z; = Az, + Bu
y =Cz, +Du (2.41)
z1(0) = z,(0).
where

A= A — A12A521A21
E = Bl _— A12A521B2 (242)
C= C, — C2A521A21

5 - _C2A521B2
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Denote by H the transfer function of the reduced system describe in

equation (2.41), then:
H(s) =C(sI —A)"'B + D. (2.43)

From the definition of the reduced reciprocal system (2.25) and the two

equations (2.26) and (2.42), we obtain the following:
A= (A — A Az Ap) 71
= (A"
By = (A1; — A12453451) 7' (By — A1,A7, B,)
= (A)"'B (2.44)
€1 = —(Cy — CoA33A5,) (B — A1 A53B) ™!
=C(A)™1
D=D-C(A)B.
The relation between H(s) and H,(s) is given as [9]:
H(s)=C(sI—A)™'B+D

=c()(1-1a)"B+D

N

I

~c()(@r -y rm e

I

= (- +A) (- @) @B +D
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= —C(AB) - C (- (,4)—1)‘1 (A)'B+D (2.45)

—c (L= @) @B +D - CAB

¢(L-4u) B +D

) m

Theorem 2.5.3.[25] The reduced order model (4,B,C,D) obtained by

!

Singular Perturbation Approximation Method (SPAM) is balanced with

Gramian X; and its asymptotically stable.

Proof. By lemma (2.4.4) the reduced system (4,4, B;,C;, D) is balanced

with Gramian X; that satisfy:
Allzl + 2114”{1 + 31§I = 0
A"{lzl + 21A11 + C~iTC~1 = 0

multiplying the first equation by A7} from left and by (/T[ll)T from right,
and multiplying the second equation by (A;f)T from left and by A7 from

right yields:
ATt(Anz) (AT + ATt (24T, (ATY)" + ATt (BB (AT =0

z"1(1‘1511)T + Affz1 + (AI11§1)(/II11§1)T =0
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by equation (2.45), we obtain:
AX, + 2, AT+ BBT =0
and
(4D (AT,3,) A5t + (A1) (314w )4zt + (A7) (CTC)AE =0
5145} + (A1) 5 + (GA) (G =0
In the same way, by equation (2.45), we obtain:
AT, + 2, A+CTC=0
which implies that (4, B, C, D) is balanced with gramian Z,.

Suppose 4,4 is asymptotically stable. Since A = A7}, then the eigenvalues
of AisA; = /13 where 1; is the eigenvalue of A, fori = 1,2,---,n.

We conclude that R{A;(4)} < 0, which means the reduced order model by

singular perturbation approximation is asymptotically stable.m

In the following theorem we show the characterization of the error bound

of reduced model obtained by singular perturbation approximation method.

Theorem 2.5.4.[25] Let H(s) and H,(s) be the transfer functions of the
original system and rt* order system obtained by singular perturbation

approximation method respectively, then:

IH() —H(S)llow < 22X} 11 04 (2.46)
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Proof. By equations (2.23) and (2.45) and lemma (2.4.6), using the triangle

inequality we obtain:

IH(s) = H(S)le . ) . "
= ‘ H(s) _H<§) +H(—) — f, (—) + H, (;) — H(s)

S S
<u@=AOI,+17C) - Ol + 17-C) -

[00)

+

0]

<[ ¢)-C)

n
<2 Zi=r+1 o m
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Chapter Three
Model Reduction for Unstable Systems

In this chapter we study an order reduction model for unstable finite
dimensional linear system. And we will generate the error bound of
reduced order unstable system. Our main focus in this chapter to study
reduced order model for unstable system by using £,[0, T]-induced norm

approach [30].
3.1 Notations and preliminary results

In this section we introduce some basic notations and definitions related to

the £,[0, T]-induced norm of a finite dimensional LTI system.

Let £,[0,T] denote the space of vectors valued real functions essentially

bounded in the interval [0, T], equipped with the norm:
112,100y = J, 7 (D) f(B)at. (3.1)

Let £ represent the space of LTI system regarding to bounded factor in
L,[0,T].
Definition 3.1.1.[30] The induced norm of an operator E € L, is given by:

IEull 10,7
E oo = SUP ——2—— 3.2
” ”LZ[O,T],lTLd p ||u||L2[O,T] ( )

such that ||ul| ;o7 # O.
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Indeed, the £,[0, o)-induced norm of LTI stable factor H agrees with the

top value of its frequency response, i.e.:
IHl,[0,0),ina = [1Hlco- (3.3)

Lemma 3.1.2.[30, 13] (Bounded Real) Suppose a finite dimensional,

strictly proper LTI stable system with state space realization is given as:
%=(c o)
Then, the following are equivalent:
1. The £,[0, T]-induced earning is bounded by § > 0.
WH |l z,[0,77,ina < 6

2. The next linear matrix inequality recognize a positive definite solution
X > 0:
ATX + XA+ CTC XB
(4T ’ 521) <0. (3.4)

For the proof of this lemma see [13].

Lemma 3.1.2.[30] (Bounded Real lemma, Differential Version) Consider a
strictly proper, finite dimensional, not necessarily stable LTI system X

with state space realization given as:

%=(C o)
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Assume that, the following differential matrix inequality admits a positive

definite solution X (¢t) forall t € [0, T]:

T Y T
(A X+XAT+X+C C Xlz >< 0. (3.5)
BTX —62]

Let u € £,[0, T] denote an arbitrary input and y the corresponding output.

Then the following holds:
T T 2 (T T
JoyTydt<8% [ uTudt (3.6)
Corollary 3.1.4.[30] If the inequality (3.6) is satisfied, then:
WHI ¢, [0,r1,ina < 6
3.2 Model reduction by £,[0, T]-induced norm

In this section we study the bound on the £, [0, T']-induced norm by simply
computation of infinite norm (||. ||,) of a shifted system obtained from the
system under consideration. Then we utilize this bound to solve the

problem of model order reduction for unstable system over finite horizon.

Officially, the £,[0, T]-induced norm of a given LTI factor H is tantamount
to the £,[0,)-induced norm of a time-varying system with convolution

kernel:

H(t,t) =V({t)H(t — 1). (3.7)
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where V(+) is the step window function given as:

1,0<5t<T
0,otherwise’

V(o) ={ (3.8)

However, there are no active computations for implement this calculation.
So, one can represents the step window by the exponential window defined

as e "%t where the time constant a is satisfy that e %t «< 1 fort > T.

The advantage of this approach is that, the resulting kernel e **H(t) can
be related with the new LTI factor whose frequency response is a shifted

version of the frequency response of the original system. If a is chosen

such that this new LTI operator is stable, computing its L£;[o .)-induced

norm (its infinite norm ||. || ) is now a standard problem.

Theorem 3.2.1.[30] Suppose a finite dimensional, strictly proper LTI not

necessarily stable system with state space realization is given as:
_ (A B
2o = (C o)
If there exist a satisfying

Zsa _ (A —Cal g)

is stable with ||H, || < &, then the following holds:

IH |z, 10,7)ina < 6€%T (3.9)



60
Proof. By hypothesis |[e?TH, ||l < §e?T, by lemma (3.1.2) there exist
X, > 0 such that:

(Agxa + X A, + e CTCedT X,B

1
BTX, —52e2aT1) <0 (310)

where A, = A —al.

Let we define for t € [0,T], X(t) = e~2%tX,. Multiply (3.11) by e~24¢, we
obtain:

0> (Agxae—m +e 21X, A, +e2?TDCTC 72X B )

BTXae—Zat —62€2a(T_t)I
_ (ATX + XA+ X +e2¢T-0¢TC XB )
BTX _5262a(T—t)I

> (ATX+XA+X+C"C  XB
B BTX —5%e?9T]

such that, the last inequality holds whena > 0andt < T.

The proof can be completed depending on lemma (3.1.3) and corollary

(3.1.4).m

Now, consider an unstable system, we want to obtain approximations in the

L,-induced norm on a finite time interval.
This can be done using the following simple algorithm [30].

1. As input, take a state space realization H(s) = C(sI — A)"'B + D and a

constant a € R* suchthat H(s + a) € ||. || -
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_ A, B
2. Find a stable reduced order system X = (Cr Dr
)] T Tr

Z‘.Sa=(A-EaI g)

) to the system

A, +al B,

. Dr> as an approximation to the

3. Use the system X =<
original system in [0, T7.

Remark 3.2.2.[30] Suppose the system X is stable, then its reduced

version X can be obtained using standard model reduction techniques,

for example, using balanced truncations, which gives the error bound:

”Ha - Hr,a”oo <2 Z?=r+1 Oiq) (3-11)
where g; , denotes the Hankel singular values for X .

By theorem (3.2.1) we get:

”H - Hr”LZ[O,T],ind = ZeaT ?=r+10-i,a- (3-12)
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Chapter Four
Numerical examples

In this chapter we study two numerical examples of a low order model, first
one is example of stable system and the second example is example of
unstable system, and using MATLAB software we compute the error

bound of reduced system.
4.1 Mass-spring damping system

In this section we consider an example of stable system and we apply
balanced truncation method to reduce the order of this system. As an
application of engineering system, we study the mass-spring damping

system.

Suppose m;,i = 1,2,---,n are masses characterized by figure (4.1)

x(t)
‘-

k
AN

| L
|

d O O

Fri — U

Figure 4.1: Multi mass-spring damping system

such that x; are the position of the mass m; respectively, and k; and d; are

constants describing the stiffness and damping of the springs.



63
By applying Newton's second law on the masses m; we obtain the

following differential equation:

m¥; — dixi—g + (d; + dip )% — dipqXiog — Kixig + kg1 (4 — %) = bu
(4.1)

1,i=n

suchthati = 1,2,---,n,and b = {0 i %

, While x, =0 fori =1and

xn+1 = kn+1 - dn+1 = 0 fOI’l =n.

Equation (4.1) can be expressed in matrix form as:

Mi + Dx + Kx = Ju (4.2)
Such that
(e, O 0 0
o m, O ... 0
O o -. 0 0
M =] . .

0 0

. 0 0 0 o ... m,)

is called the mass matrix of the system.

d+d, —d, 0 . 0

-d, dy+d;, —-d, 0 0

Do 0 —d, d3.+rf4 0
0 0 . 0
: : : —d,

0 0 0 —d d

" L MXH
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IS the damping matrix.

And
k+k, —k, 0 0
— I, ke, + Iy — Iy 0 0
| ° “k o Kkt k, 0
0 0 - 0
: : —k,
0 0 0 -k k

" H nxn

is the stiffness matrix.

The vector

'{O\]

"-]'Jnxl

describes the number of controllers acting on masses.
To find the state space representation of this system, let
xX=q

and
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Suppose M1 exists, then by these equations and equation (4.2), we have:
x=q
g=-M"1Kx—M"1Dqg+ M Ju. (4.3)
In matrix representation

@ = Uik —aeip) (@) (_ e ]) u (44

Let

be of size (2n X 2n) and

5= (_yy)

of size (2n X 1). Then the state space representation for this system is

X = AX + Bu. (4.5)

where X = (x

q) is the state vector of dimension(2n x 1).

Now, we consider a mass-spring damping system of five masses.

First, we calculate the Hankel singular values of the system. Figure (4.2)
represents the Hankel singular values of mass-spring damping system of

size (N=20).



66

The graph of hankel singular value

e 4 HSVs

The hankel singular values (HSVs)

The size of the svstem

Figure 4.2: Graph of HSVs

Now, by applying the balanced truncation method for this system with zero
initial condition obtained a reduce order system, and compute ||. || bound

of the approximation error given in section (2.3).

We take a system of size N = 20 and reduce its order to obtain reduced

order system of size r = 2.

Figure (4.3) represents the maximum singular value decomposition
(MSVD) of (H — H,.) and the error bound 2 Y?°, ., 0;. We see obviously
that the balanced truncation method yields a reduced order model with

smaller error at high frequencies and larger error at low frequencies.
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Table (4.1) shows the value of ||H—-H,||,, and the error bound

20
2 =110

The maximum singular value decomposition and error bound
- -

Error bound
— MSWVD of (H-Hr)

The maximum singular value decomposition and error bound

o! 10 10
Frequency (rad/s)

Figure 4.3: The MSVD and the error bound

Table 4.1: |H — H, ||, and the error bound

r ”H_Hr”oo 2 1'22r+10-i

2 |0.254 0.5668

4 10.0303 0.0762

6 |0.0012 0.0152

8 |2.1264x 10~* 0.0078

10 | 3.2416x 107> 0.0046

12 | 4.0012x 107> 0.0022

14 | 6.3145x 10~° 3.806x 107*

Next, in figure (4.4), we show the plot of the outputs y and y, of the
original and reduced systems respectively and their differences (y — y,.)
and error bound by applying balanced truncation method on the numerical

example.

And in table (4.2) we show the ||.]|,, bound of the approximation error

between the output y and y, of the original and reduced systems

respectively and the error bound.



The outputs y , yr and {y-yr)
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The outputs and their differences

ra i
! ¥
fi ¥r
¥y
W T
.................... ;"F"\\.\ T
\ ; i -
'.I'1I
1 .'I-'.I
II" .4';
\
0 10 20 30 40 50 60 70 80 90 100

Time(t) (seconds)

Figure 4.4: The outputs using balanced truncation.

Table 4.2: The L, of y — y, and the error bound.

r “y - Yr”LZ 22?£r+1 Ji [[2ell
2 0.0266 0.6801
4 0.0043 0.0917
6 0.00022 0.0182
8 7.6992x 10~7 0.0093
10 | 5.213x 1078 0.0055
12 | 2.015x 10713 0.0026
14 | 3.412x 10715 4.5672x 10™4

4.2 RC-Circuit

In this section we discuss an example of unstable dynamical system. We

will study an RC-filter, RC-network and resistor—capacitor circuit (RC-

circuit). The RC-circuit shown in figure (4.5) is a collection of resistors and

capacitors



Figure 4.5: Simple RC-circuit

driven by a voltage or current exporter. RC-circuits may be used to filter a

signal by blocking confirmed frequencies and passing others.

Suppose we denote by i, and v, the current and voltage through the

capacitor C,, let U denote the voltage source in the circuit and I (the output

of the system) is the current across a resistor n,p = 1,2, -, n.

. d
Let l, = Cp avp(t)

U—Ul 2]

-V d v1-U V-V
R, dt

C1Ry C1R;

81: +l1+

1

V2—1q
Ry

V33—V, V1=V |, Vp—V3

. d
62. +l2 + - O - Evz(t) - C2R2 + C2R3

Un—1—"Un

. Un—VUn—1 . d _
en.R—-l-ln—O—)EUn(t)— —
n ntn

] = Un—Un-1
R,
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This system can be written in state space representation as:

V =AV + BU
[=CV,
where:
! + _1 | 0 0 0
CR, CR C,R,
! ! + _1 _ 0 0
CERE CERI (' ‘2R3 ( 2 R:‘
0 L ! + Lo 0 0
C,R, C,R, CR,  C.R,
A= 0 0 _1 0 0
(‘4R4
0 0 0
0 0 0 0 0 L
CR, CR,)
1 ™y
C\ R,
0
B — :
A 0 A axl
and
_ 1 1

1xn
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We consider an RC-circuit of size (N = 20) such that the input is the

voltage source and the output is the current across the resistor number 20.

Suppose the system X. describe the RC-circuit is unstable dynamical linear

system, we use the L;[q 171nq NOrm approach that described in section (3.2).

Let X, be the shifted system from the original system X such that X _ is

stable system.

Firstly, show the (HSVs) of the shifted system X _, figure (4.6).

The graph of hankel singular values of the shifted system

O

os | 1

Hankel singular values (HSVs)

0.1 FoE o % o= -

" ' ' ' s ' . + + 4+
o 2 = 6 8 10 12 14 16 18 20
The size of the system

Figure 4.6: Plot of HSVs of the shifted system

Now by applying balanced truncation method on the system X  we obtain

a reduced system X of order r = 2, shift back X by a to obtain X

as an approximation to the original system in the interval [0, T].

In figure (4.7) we show the plot of the maximum singular value

decomposition of (H — H,.) and the error bound.
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Table (4.3) contains the value of ||H —Hrllﬁz[mmd and value of error

T 310
bound 2e%" };Z, 11 04

The maximum singular value decomposition and the error bound
T T T

X Error bound
20| A \ - MSVD of (H-Hr) =

The maximum singular value decomposition (MSVD) of (H-Hr)

103 1072 107" 10° 10" 102
Frequency (rad/s)

Figure 4.7: The MSVD and the error bound.

Table 4.3: ||H — Hrlle[OT] .., and the error bound.

r | H = Hellgyo gima 29T 20 .1 04,
2 | 0.1509 1.5862
4 |0.0167 1.0748
6 | 0.0059 0.7099
8 | 0.00021 0.4298
10 | 4.2112x 10~* 0.2542
12 | 2.5404x 107> 0.0434

Next, we want to calculate approximation error by L, between the outputs

y and y, of the original and the reduced systems respectively.

Figure (4.8) shows the outputs, y,. and y — y,., and table(4.4) contains the

value of ||y — y,|[,, and the error bound.
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The outputs and their differences
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Figure 4.8: The outputs and their difference.

Time (t) (seconds)

Table 4.2: The L, of y — y,. and the error bound.

r ”y - yr”Lz 2e4T legr+1 Oai [[ul|
2 2.9012x 104 1.7452

4 3.5415x 107° 11822

6 7.2115% 1077 0.7809

8 4.1245x% 10~° 0.4728

10 | 6.1452x 10~11 0.2796

12 | 4.2348x 10715 0.0478
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