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IV 

 والتقديرالشكر 

الحمد لله رب العالمين والصلاة والسلام عمى سيد الخمق أجمعين سيدنا محمد عميو أفضل الصلاة 
 وأتم التسميم، وبعد...

فأني أشكر الله سبحانو وتعالي عمى فضمو حيث أتاح لي إنجاز ىذا العمل بفضمو، فمو الحمد أولًا 
 وآخراً.

ثم أشكر أولائك الأخيار الذين مدوا لي يد المساعدة خلال ىذه الفترة وفي مقدمتيم أساتذتي 
المشرفين عمى ىذه الأطروحو الذين غمروني بكرميم ولم يبخموا بوقت أو جيد الدكتور الفضلاء 

 عدنان دراغمة والاستاذ الدكتور ناجي قطناني.

تور عبد القادر مصطفى / جامعة فمسطين التقنية كما اشكر أعضاء لجنة المناقشة المحترمين الدك
 .امعة النجاح الوطنية/ ج والدكتور ىادي حمد

ويميد والدي العزيز الذي ما برح يذلل لي كل الصعاب أن أشكر  الإعتراف بالفضل ويوجب عمي  
 .لي كل الدروب حتى بموغ الغاية

وكل من ساعدني وأعانني عمى  والزملاءلعائمتي وكل الأىل والأصدقاء  ري الجزيلشكوأتقدم ب
 إنجاز ىذا البحث، فميم في النفس منزلة فيم أىل الفضل والخير والشكر.
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Abstract 

Many of the physical, chemical and engineering applications lead to a 

system of differential equations or partial differential equations. Some of 

those applications involve a high order system. In this work, we will 

present some important analytical and numerical results concerning linear 

dynamical systems and their applications. We consider the case of unstable 

linear dynamical systems and our goal is to reduce the order of this system 

with minimal error bound with zero initial condition. First, we present the 

stable system and study two approaches to reduced order of stable system, 

balanced truncation method and singular perturbation approximation 

method. Then we study the   ,   -     norm to reduce the order of unstable 

system. Next, to show the efficiency of these approaches we use MATLAB 

software to solve an example of stable system by balanced truncation 

method and another example of unstable system by   ,   -     norm. 



1 

Introduction 

The field of control systems has a long history which began with the early 

desire of humans to take advantage of the materials and forces of nature. A 

control system is a system, which provides the desired response by 

controlling the output. 

A more formal analysis of the field began with dynamic analysis of the 

centrifugal governor, conducted by the physicist James Clerk Maxwell in 

1868, entitled On Governors. A centrifugal governor was already used to 

regulate the velocity of windmills [19]. Maxwell's work leads to generate a 

flurry of interest in the topic, during Maxwell's classmate, Edward John 

Routh, abstracted Maxwell's results for the general class of linear systems 

[23]. Independently, Adolf Hurwitz analyzed system stability using 

differential equations in 1877, resulting in what is now known as the 

Routh–Hurwitz theorem [22]. A notable application of dynamic control 

was in the area of manned flight. The Wright brothers made their first 

successful test flights on December 17, 1903 and were distinguished by 

their ability to control their flights for substantial periods. Continuous 

reliable control of the airplane was necessary for flights lasting longer than 

a few seconds. 

During World War II, control theory was becoming an important area of 

research. Irmgard Flügge-Lotz developed the theory of discontinuous 

automatic control systems, and applied the bang-bang principle to the 

development of automatic flight control equipment for aircraft. Other areas 
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of application for discontinuous controls included fire-control systems, 

guidance systems and electronics. Sometimes, mechanical methods are 

used to improve the stability of systems; for example, ship stabilizers. 

Modeling of chemical, physical or biological phenomena often leads to 

high-dimensional systems of differential equations, resulting from semi-

discretized partial differential equations [15]. 

This leads to a well-known representation called linear time invariant (LTI) 

system: 

 ̇                                                                                      (1) 

 (  )     

Where       ,       ,       , and         . The order n of the 

system ranges from a few tens to several hundred as in control problems for 

large flexible space structures [9]. 

 A linear system is a mathematical model of a system based on the use of a 

linear operator. Linear systems typically exhibit features and properties that 

are much simpler than the nonlinear case. As a mathematical abstraction or 

idealization, linear systems find important applications in automatic control 

theory, signal processing and telecommunications.  

Linear systems have been under study for long time because of their 

important applications in physics and engineering. Furthermore, there is no 

doubt that linear systems will continue to be important subject to study for 
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long time. Finite dimensional linear system was studied prior to 1930s. All 

this work was for single-input, single-output systems. In the late 1950s, 

linear systems were extended to multi-input, multi-output systems that 

become important in many physics and engineering applications. This led 

to a special work by Bellman and Kellman. This approach has led to a more 

important details of the structure of finite-dimensional linear systems and 

to questions of redundancy, minimality, controllability, observability, etc 

[20, 5, 2]. 

Linear large-scale systems arise in many practical applications, for 

instance, in circuit simulations and in control problems where the 

underlying physical process is modeled by partial differential equations. 

Model reduction or model order reduction is a mathematical process to find 

a low-dimensional approximation for a system of equations. The main idea 

is that a high-dimensional state vector actually belongs to a low-

dimensional subspace [1, 3, 4]. 

In this thesis, our main focus is to reduce the order of unstable system with 

a minimal error. First we study stable system and reduce its order. In 

Chapter 1, we discus some definitions and preliminary results. In Chapter 

2, we introduce the stable system and study two methods to reduce its 

order. In Chapter 3, we discuss the unstable system and study a method to 

reduce its order (this work depends on stable systems). Finally, we show 

the efficiency of this work by introducing numerical examples and solveing 

them using MATLAB software. 
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Chapter One 

Preliminaries 

In this chapter, we will study some of the theoretical notations of control 

systems, and then discuss the state-space and the output equation for the 

dynamical system. We introduce the Laplace transform and some of its 

properties and discuss the description of the system in terms of its transfer 

function and the transition matrix. We introduce the basic concepts of 

controllability, observability and stabilization. Then we present the 

Lyapunov equations. 

1.1 State space equation 

To study the linear dynamical system one must introduce first the state 

space equation which is a combination of first order differential equations, 

given as: 

                                                     ̇       ,                                      (1.1)  

such that,  

 ̇  
  

  
 

denotes the derivation of   with respect to time  . 

The following equation 

 ( )  ,  ( )   ( )       ( )-
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is called the state vector of the system, and  

   ( )     

the input function.  

The initial condition of the system is denoted by: 

 (  )     . 

  and   are constant matrices such that        and        [1]. 

A state vector of the system gives a relationship between the input and the 

state variables. Now we will illustrate the output equation of a dynamical 

system. 

The output equation for a linear dynamical system is: 

                                                            ,                                     (1.2) 

where   is the output function,   and   are constant matrices such that 

       and       .   is called here as the output map and it is 

depicting the react between the system and the outside world [1].   is a 

matrix that describe the weight of  the system input. In our work, we 

consider the continuous linear time invariant system. Time invariant system 

means that       and   are independent with time (constant matrices). 

The following two equations with constant coefficients characterize a finite 

dimensional linear time invariant (FDLTI) dynamical system: 

                                                  ̇                                                 (1.3) 

                                                        ,                                         (1.4) 
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such that,  ( )     representing the state of the system,  (  ) initial 

condition, the input of the system is  ( )      and the output is  ( )  

   . The dimension of this system is   [32]. 

If the matrix    , so the linear system can be described as: 

                                                  ̇                                                    (1.5) 

                                                    ,                                                    (1.6) 

such that                                 and the initial 

condition is  (  )    . 

The dynamical system given by equations (1.3) and (1.4) can be written in 

a general form using the symbol   . 

Definition 1.1.1 . [1] A linear system described by state space equation is a 

quadruple linear maps (matrices): 

                                                       .
  
  

/.                                      (1.7) 

The dimension of the system is defined as the dimension of correlating 

state space; that is: 

                                                      (  )   .                                       (1.8) 

In case where    , we write the system as: 

                                                           .
  
  
/.                                  (1.9) 

In this work   is considered to be equal to  . 
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Definition 1.1.2 . [32] Let 

   .
  
  
/ 

be linear continuous dynamical system. Then    is called a single input 

single output (SISO) system if it has single input (   ) and single output 

(   ). Otherwise it is called multi input multi output (MIMO) system. 

1.2 Stability of continuous time system 

In this section we will study the concept of stability of continuous time 

linear dynamical systems, and we discus some definitions associated to 

stability. 

Definition 1.2.1. [10] A matrix    is said to be stable matrix if all 

eigenvalues of   have negative real parts (i.e.  *  ( )+   ). 

A continuous time linear system: 

 ̇        

        

is called bounded input bounded output (BIBO) stable if we get bounded 

output of any bounded input [4]. 
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Definition 1.2.1. [9] The system 

   .
  
  
/ 

Is said to be asymptotically stable if the real parts of eigenvalues of the 

matrix   are strictly negative (i.e.  *  ( )+   ), and it's called stable if 

 *  ( )+   , where    denote the eigenvalues of  . Otherwise the system 

is called unstable system. 

1.3 The Laplace transformation 

In this section I will discuss Laplace transform. It is very useful 

transformation making the calculation easier. 

Definition 1.3.1. [6, 11] Let  ( ) be a real-valued function defined on 

   , then the Laplace transformation of  ( ) denoted by  ( ) is given 

as: 

                                       , ( )-  ∫  ( )      
 

 
  ( ),               (1.10) 

where        ,   and   are real variables. 

The inverse Laplace transformation of a function  ( )  is the unique 

function  ( ) that is continuous on ,   ) and satisfies: 

                                                 , ( )-   ( ).                                 (1.11) 
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The following properties are used for computing the Laplace 

transformation: 

Let   be a constant and  ( )   , ( )-, then: 

1. (Linearity) ,  ( )-    ( )  . 

2. (super position)  ,  ( )    ( )-    ( )    ( ). 

where   ( )   ,  ( )- and   ( )   ,  ( )-. 

3. (Translation in time) If    , then  , ( ) (   )-       ( ). 

4. (Translation in the domain)  ,    ( )-   (   ). 

5. (Real differentiation) Let  ̀( ) be the first derivative of  ( ), then 

 , ̀( )-    ( )   ( ). 

Note that: this property can be generalized to the     derivation: 

 ,  ( )-     ( )       ( )       ̀( )      (   )( )

  (   )( ) 

6. (Real integration)  0∫  ( )  
 

 
1  
 ( )

 
. 

7. (Convolution)  , ( )   ( )-   , ( )- , ( )- 

                                                           ( ) ( ) 

where the convolution operation is defined as: 

(   )( )  ∫  ( ) (   )  
 

 
. For more details see [11, 31, 6]. 
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1.4 Matrix derivation, integral and exponential 

In this section our consideration is look to the derivative and integral of a 

matrix and studies its properties, then we define the exponential matrix and 

its impersonation and give the rules for its calculation. 

Definition 1.4.1. [9, 6] Let  ( )  ,   ( )- be a square matrix            

where its entries are functions of time  . Then: 

1. The derivative of  ( ) denoted by 
 

  
 ( ) is: 

                            
 

  
 ( )   ̇( )  .

 

  
(   ( ))/.                  (1.13) 

2. The integral of  ( ) is: 

                           ∫ ( )   (∫   ( )  ).                              (1.14) 

The derivative or integral of any matrix can be calculated by differentiating 

or integrating each entry of the matrix. Depending on this definition we 

have the following rules [6]: 

Let  ,  ,   and   are constant,   and   be matrices. Then: 

 
 

  
(  )   

 

  
    ̇. 

 
 

  
(     )   

 

  
   

 

  
    ̇    ̇. 

 ∫       ∫    
 

 

 

 
,   and   are real numbers. 

 ∫ (     )  
 

 
  ∫  

 

 
    ∫  

 

 
  . 

 
 

  
(  )   

 

  
   

 

  
    ̇   ̇ . 
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     . 

 
 

  
        

 

  
 . 

Definition 1.4.2.[9] Given a square matrix        and    . Then the 

matrix exponential of   is denoted by     and it's a square matrix of the 

same order as   given as: 

                                           
 

  
 
   

  
 
    

  
 
    

  
                   (1.15) 

If   and   are two matrices,   and   are two constants, then the following 

rules hold for the matrix exponential [9]. 

      . 

      ,   -  . 

   (   )        . 

  (   )        , only when      . 

 
 

  
             . 

 ∫      
 

 
    ,     -  ,     -   . 

1.5 State transition matrix 

 In this section we study the concept of state transition matrix and we 

present some of its properties. 
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Definition 1.5.1.[11] For a dynamical system, a state transition matrix is a 

matrix function denoted by  ( ) and defined as: 

                                                               ( )     ,                             (1.16) 

where   is a matrix. 

State transition matrix has the following properties: 

  (     ) (     )   (     )          . 

  ( ) ( ) ( )  ( )    ( ),   is positive integer. 

    ( )   (  ). 

  ( )   , unity matrix. 

  ( ) is nonsingular for all finite value of  . 

For more details see [11]. 

1.6  Solution of the state and output equation 

In this section a study of the solution of the state and output equations of 

the linear dynamical continuous systems is presented. 

To obtain the solution of the state space equation, we consider the 

following steps: 
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Multiply both sides of equation (1.5) by      giving: 

              ̇                   

                ̇                

                 
 

  
,     ( )-         

        ∫
 

  
,     ( )-  

 

  
 ∫       ( )  
 

  
           

                ( )        (  )  ∫  
     ( )  

 

  
                              (1.17) 

           ( )          ∫  
     ( )  

 

  
 

          ( )    (    )   ∫  
 (   )  ( )  

 

  
      . 

This equation describes the change of state with respect to the input vector 

 ( ) and the initial condition  (  ). 

Suppose  ( )    ( ) given in equation (1.6). Then, from the solution of 

the state equation  ( ), the solution of the output equation of the system is: 

               ( )     (    )    ∫  
 (   )  ( )  

 

  
.                    (1.18) 

In case when     , the solution of the dynamical system becomes: 

             ( )        ∫  
 (   )  ( )  

 

 
,                                (1.19) 

               ( )          ∫  
 (   )  ( )  

 

 
.                         (1.20) 
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Consider the system given by equations (1.3) and (1.4), it follows that, the 

solution of the output equation with     is given as: 

       ( )          ∫  
 (   )  ( )  

 

 
   ( ).                       (1.21) 

Equation (1.21) called the convolution equation and the general form of the 

solution of the system can be represented by this equation. 

The system time response is determined by the state  ( ), the output  ( ), 

the control input  ( ) and the initial condition    for    . 

For zero input control and from equation (1.20), we obtain the response of 

the system as: 

                           ( )        .                                                 (1.22) 

For zero initial condition, the forced response of the dynamical system is 

determined by the following equation: 

                              ( )   ∫   (   )  ( )  
 

 
   ( ).                    (1.23) 

Finally, we have the following case known as the impulse response and in 

this case we set      and define the input control as: 

 ( )   ( )  2
                 
      

 

where  ( ) is the unit impulse (the Dirac delta) function satisfying the 

dirac distribution: 

                                               ∫  ( ) (   )  
 

  
  ( ), 
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where   is a continuous function at    . 

Now, the impulse response is given as: 

                               ( )  ∫ .   (   )    (   )/  ( )  
 

 
.       (1.24) 

The impulse response matrix of the dynamical system is defined as: 

                                                      ( )          ( ). 

The relationship between the input and the output with zero initial 

condition can be described by the convolution equation [32, 10]. 

 ( )  (   )( )  ∫  (   ) ( )  
 

  

 

                                                                     ∫  (   ) ( )  
 

  
.     (1.25) 

1.7  Transfer function of the dynamical system 

In this section, we will study the concept of transfer function of dynamical 

linear system. It's very important property of dynamical system [9, 10, 31]. 

Let  

                                       .
  
  

/                                                  (1.26) 

be a linear continuous time dynamical system. Using Laplace 

transformation for the state and output equations of the system (1.5) and 

(1.6), we obtain: 

                                                  , ̇-   ,  -   ,  -   
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this gives  

                               ( )   ( )    ( )    ( ) 

so 

                                ( )    ( )    ( )   ( )                         (1.27) 

gives   

                                  (    ) ( )    ( )   ( ) 

so, obtain                          

                  ( )  (    )    ( )  (    )   ( ).                     

and  

                                                         , -   ,  -, 

 so 

                                                           ( )    ( ).                          (1.28) 

We call the matrix (    )   the function matrix or the transition matrix. 

From equations (1.27) and (1.28), we obtain: 

                                ( )   (    )    ( )   (    )   ( ).  (1.29) 

If we consider zero initial condition, means  ( )   , then (1.29) becomes: 

                                        ( )   (    )    ( ).                           (1.30) 
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Definition 1.7.1.[1, 10] The function matrix or transition matrix  ( ) from 

  to   with zero initial condition is given as: 

                                                    ( )   ( ) ( ).                              (1.31) 

We define   ( ) as: 

                                                             ( )  
 ( )

 ( )
.                               (1.32) 

If    is stable matrix, then   ( ) takes the form:[9] 

                                                         ( )  (    )                        (1.33) 

1.8  Lyapunov equations 

In this section, a combination of important equations in control theory 

named Lyapunov equations is presented. 

Definition 1.8.1.[1]The matrix equations 

                                                                                             (1.34) 

and 

                                                                                             (1.35) 

 are called the Lyapunov equations. 

where  

                                                                      . 
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Theorem 1.8.2. [1, 10](Lyapunov stability theorem)  

The system 

   .
  
  
/ 

is asymptotically stable if and only if we have a unique symmetric positive 

definite matrix   for any symmetric positive definite matrix  , satisfying 

the equations: 

           

and 

           

Proof: ( ) Define the matrix   by: 

  ∫   
        

 

 

 

Want to prove that when the system is asymptotic stable, then   is a unique 

symmetric positive definite solution of equation (1.34). 

If we substitute   in equation (1.34), then we obtain: 

       ∫   
         

 

 

 ∫     
        

 

 

  

 ∫
 

  

 

 

(  
      )   [  

      ]
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Suppose   is stable, then   
     as    . Thus           . 

So,   satisfies equation (1.34). 

To prove that   is positive definite, we must show        for any non-

zero vector   

     ∫     
         

 

 

  

since   
   and     are both non-singular and   is positive definite, then we 

have       . 

Finally we must prove that,   is unique. Assume we have two solutions    

and    of equation (1.34), then: 

  (     )  (     )    

which implies: 

  
  (  (     )  (     ) ) 

     

or 

 

  
[  

  (     ) 
  ]    

hence,   
  (     ) 

   is constant matrix for all values of  . Calculating 

at     and    , we get (     )   , hence   is unique solution.  

( ) Conversely, show that, if   is symmetric positive definite solution of 

equation (1.34), then   is stable matrix. 
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Let   and  ̅ be an eigenvalue,   and    be an eigenvector of matrix  . 

Multiplying (1.34) from left by    and from right by  , we obtain: 

                    ̅     (   ̅)           

Suppose   and   are both symmetric positive definite, we get    ̅   , 

or   ( )   . 

Since   was arbitrary, so   is stable.   

Solution of Lyapunov equations: 

Let   be stable and let   be symmetric positive definite or semi definite, 

then: 

1. The unique solution of Lyapunov equation: 

           

is defined as: 

                                  ∫   
        

 

 
.                              (1.36) 

2. The unique solution of Lyapunov equation: 

           

is defined as: 

                                    ∫       
    

 

 
.                            (1.37) 

For more details see [10]. 
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1.9  Controllability and Observability 

In this section we will focus on the concepts of controllability and 

observability,  both are important notation in the study of continuous time 

linear dynamical systems. 

Definition 1.9.1.[9, 10] The system 

   .
  
  
/ 

or the pair (   ) is called controllable, if for any initial state  ( )     

,the system can be driven to any final state    by using a  piecewise 

continuous input  ( ), such that  (  )     where     . 

Definition 1.9.2.[1, 10] The matrix 

                                   (   )  (                    )              (1.38) 

is called the controllability matrix, where   is a positive integer. 

Definition 1.9.3.[1, 9, 10] The system  

   .
  
  
/ 

or the pair (   ) is called observable if, for any      , the initial state 

 ( ) can be uniquely found from the time history of the input  ( ) and the 

output  ( ) for all   belongs to the interval ,    -. 
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Definition 1.9.4.[1, 10] The matrix 

 (   )  

(

 
 
 
 

 
  
   

   

   

 
     )

 
 
 
 

                                            (1.39) 

is called the observability matrix, where   is a positive integer. 

Now, we consider two important matrices regarding to the linear dynamical 

system, the controllability and the observability Gramians. And we will 

study some theorems related to these matrices. 

Definition 1.9.5.[1,10] The matrix 

                                                 ∫  
       

    
 

 
                         (1.40) 

 is called the controllability Gramian. 

Definition 1.9.6.[1, 10] The matrix 

                                                 ∫  
           

 

 
                         (1.41) 

is called the observability Gramian. 

The two matrices    and    are both solutions of the Lyapunov equation, 

so we have: 

                                                   
                                  (1.42) 

                                                 
     

                              (1.43) 
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Proposition 1.9.7. [10] Let  

   .
  
  
/ 

be a stable system and let    and    be the controllability and 

observability Gramians of the system   . Then    and    satisfy the 

continuous time Lyapunov equations: 

                                                     
            

                                                   
     

        

Proof: Suppose    is stable, then: 

        
  ∫ (         

           
    )  

 

 
 

   ∫
 

  

 

 

(        
  )   

                                                  [        
  ]
 

 
 

                                                     . 

So, 

                                 
            

      
    ∫ ( 

            
        )  

 

 
 

      ∫
 

  

 

 

(  
        )   

                                                   [  
        ]

 

 
 

                                                      . 
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Finally, 

                                     
     

              

The controllability Gramian satisfies the following property on continuous 

time dynamical system [1]: 

                                                ( )    
 ( )                          (1.44) 

Theorem 1.9.8.[1] (Controllability Conditions)  

The following statements are equivalent: 

1. The pair (   )               is controllable. 

2. The controllable matrix has a full rank (i:e rank  (   )   ). 

3. The controllablility Gramian    is positive definite,   ( )        . 

Theorem 1.9.9.[1] (Observability Conditions)  

 The following statements are equivalent: 

1. The pair (   )               is observable. 

2. The observable matrix has a full rank (i:e rank  (   )   ). 

3. The observability Gramian    is positive definite,   ( )        . 

1.10 Norms 

In this section we will introduce the notation of the norm and introduce 

some important types of norm. 
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Definition 1.10.1.[17] Let   be a vector space over a field  . A norm on   

is a nonnegative function ‖ ‖ 

                                                      ‖ ‖       

  ‖ ‖ 

such that         and     , then: 

1. ‖ ‖     and ‖ ‖    if and only if    . 

2. ‖  ‖  | |‖ ‖. 

3. ‖   ‖  ‖ ‖  ‖ ‖. 

 ‖ ‖ is called the norm of  . 

Definition 1.10.2.[17] Euclidean norm  

let the vector   (           )   
 , then the Euclidean norm of  , 

‖ ‖, is given as: 

                                                ‖ ‖  √  
    

      
                 (1.45)  

Definition 1.10.3.[17] Taxicab norm  

let   (           )   
  be a vector, then the Taxicab norm of   is 

defined as: 

                                                            ‖ ‖  ∑ |  |
 
   .                       (1.46)  
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Definition 1.10.4.[17] Maximum norm  

let   (           )   
  be a vector. The maximum norm or infinite 

norm of   is define as: 

                                         ‖ ‖      *|  | |  |   |  |+.                (1.47) 

If   is a     matrix, then: 

                                           ‖ ‖          ∑ |   |
 
   .                       (1.48)         

Definition 1.10.5.[17]  -norm 

 let     be a real number, the  -norm (  -norm) of vector 

   (           )   
   is given as: 

                                                           ‖ ‖  (∑ |  |
  

   )
 

 .                (1.49) 

Let   be     matrix, then: 

                                                          ‖ ‖  (∑ ∑ |   |
  

   
 
   )

 

 .       (1.50)                

If      then  -norm becomes the Taxicab norm, for    ,  -norm is 

Euclidean norm and if   approaches   then  -norm approaches infinite 

norm. 

1.11 The amount of energy for controlling and observing state 

In this section we discuss an important property of a dynamical system, that 

is important construction in model reduction to classify states according to 

their degree of controllability and observability. 
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Consider the stable, controllable and observable linear system 

   .
  
  
/ 

                                                    ( )     

The controllability and observability functions of    are defined as follows: 

Definition 1.11.1.[9, 7] The controllability function is defined as: 

                                             (  )     
 

 
∫ ‖ ( )‖   
 

  
,           (1.51) 

where     (    )  (  )     ( )     

Definition 1.11.2.[9, 7] The observability function is defined as: 

                                                   (  )  
 

 
∫ ‖ ( )‖   
 

 
,              (1.52) 

where  ( )      ( )         . 

The value of   (  ) is the minimum amount of control energy desired to         

approach the state    . And the value of   (  ) is the amount of output 

energy produced by the state    [9]. 

Theorem 1.11.3.[27] Let  

   ∫  
       

    
 

 

 

and 

   ∫  
           

 

 
. 
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be the controllability and observability Gramains, such that    and    are 

the unique positive definite solutions of the Lyapunov equations. Then 

  (  ) and   (  ) can be written in terms of    and    to get: 

                                                       (  )  
 

 
  
   
                            (1.53) 

and 

                                                 (  )  
 

 
  
                                     (1.54) 

Lemma 1.11.4.[1] Let    and    be the controllability and observability 

Gramians of a stable dynamical system   , then: 

1. The lower amount of energy wanted to drive the state of the system 

from   to    is given by   (  ). 

2. The greater energy generated by observing the output of the system 

whose initial state is    is given by   (  ). 
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Chapter Two 

Model Reduction for Stable Systems 

In this chapter we will study the model order reduction for stable systems, 

we focus on the balanced truncation method and in chapter 4 a review of a 

numerical example is presented to show the efficiency of this method. 

2.1 State space realization  

In this section we define a property of realization for dynamical systems 

with a transfer function  ( ). 

Definition 2.1.1.[32] Assume that  ( ) is a real-rational transfer function 

which is proper, then the state space model (       ) defined as: 

  ( )  .
  
  
/ 

is a realization of  ( ). 

Definition 2.1.2.[32] A state space realization (       ) of  ( ) is called 

minimal realization of  ( ) if the matrix   has the smallest possible 

dimension. 

The following theorem gives a description of the minimal realization. 

Theorem 2.1.3.[32] A state space realization (       ) of  ( ) is said to 

be minimal if and only if (   ) is controllable, and (   ) is observable. 

The next property of minimal realization can also be verified. 
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Theorem 2.1.4.[32] Let (          ) and (          )  be two minimal 

realizations of a real-rational transfer function  ( ), and let         , and 

   be the corresponding controllability and observability matrix 

respectively, then there exists a unique non-singular matrix   such that: 

                                         
                

  .  

Furthermore,   can be specified as: 

                                    (  
   )

    
        

 (    
 )  . 

2.2   Balancing for linear system 

In this section we introduce one of the most important methods used to 

obtain a reduce order model from the original dynamical system. This is 

called the Balanced Truncation method [14]. 

Suppose the linear time invariant (LTI) continuous system: 

 ̇        

                                                             

with initial condition  ( )    . 

The concept of the Balanced Truncation method depends on the 

controllability and observability Gramians    and    [9, 26], which are 

symmetric positive definite solutions of the Lyapunov equations. See 

[Proposition 1.9.7]. 

       
       . 

          
    . 
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To obtain a reduced order model, we balance the system then we omit the 

states that are hard to control (i.e need large amount of control energy) and 

hard to observe (i.e produce small amount of energy), these states are not 

important so they may not influence on the transfer function [9, 21, 15]. 

Now we introduce the concept of Hankel Singular Values (HSVs) of the 

dynamical system. 

Definition 2.2.1.[1, 9] Let    .
  
  
/ be an  -dimensional controllable, 

observable and stable continuous time system.Then, the Hankel Singular 

Values  

                

of    are defined as the square roots of the eigenvalues of the product    

and    and denoted: 

                                                        (  )  √  (    ).                      (2.1) 

Let   denotes the diagonal matrix of the (HSVs): 

                                                                (
   
   

).                           (2.2) 

where 

               . 
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Definition 2.2.2.[1, 24] The controllable, observable and stable system 

   .
  
  
/ is said to be balanced if  

            (               ). 

In the following theorem we show the method of balancing the system by 

find a coordinate transformation   such that: 

                                                                ̅                                        (2.3) 

 in which the controllability and observability Gramians turn out diagonal 

and equal. 

Theorem 2.2.3.[9] There exists a state space transformation  ̅       for 

the system 

 ̇        

                                                               

such that, the transformed system 

 ̇̅   ̅ ̅   ̅  

                                                            ̅   ̅ ̅                                          (2.4) 

is balanced and  ̅         ̅     and  ̅      . For more details see 

[7, 15]. 
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Let  ̅ be the transfer function of the balanced system (2.4), then: 

                                              ̅  ( ̅  ̅
 ̅  
)  .   

    
     

/               (2.5) 

Lemma 2.2.4.[32] Let  ( )   (    )    and  ̅( )   ̅(    ̅)   ̅  

be the transfer function of the (LTI) system and balanced system 

respectively, then: 

 ̅( )   ( ) 

Proof.  

 ̅( )   ̅(    ̅)   ̅ 

                                                                  (        )     

                                                                  ( (    )   )     

                                                                  ( (    )     )   

                                                               (    )    

                                                               ( )    

Let  ̅  and  ̅  be the controllability and observability Gramians of the 

balance system (2.4). Then we have: 

                                                        ̅   
    ( 

  )                          (2.6) 

and  

                                                        ̅   
    .                                  (2.7) 
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Suppose the two Gramians  ̅  and  ̅  of balanced system are equal, then: 

                                                     ̅   ̅    (
   
   

),                 (2.8) 

such that 

                                                                . 

The controllability and observability Gramians  ̅  and  ̅  in equation (2.8) 

satisfy the Lyapunov equations: 

 ̅   ( ̅)   ̅( ̅)    

( ̅)     ̅  ( ̅)  ̅    

Suppose the two Gramians    and    are positive definite (or semi-

definite), then one can decompose them as: 

     
  

                                                                   
                                    (2.9) 

where   and   are lower triangular matrix with real and positive diagonal 

entries, and    and    denotes the transpose of   and   respectively. 

If we do a singular value decomposition of the matrix    , we obtain: 

                                     (    ) (
   
   

) (
  
 

  
 )               (2.10) 
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such that 

             , 

and 

                 . 

The other matrices satisfy  

  
      

         

and  

  
      

         

with       [15]. 

Lemma 2.2.5.[1] (Balancing transformation) Given the controllable, 

observable and stable system    .
  
  
/  and it's Gramians    and   . 

Then a balancing transformation is define as: 

                                                             
 

 .                                     (2.11) 

                                                        
 

     .                                  (2.12) 

Definition 2.2.6.[9] The controllability and observability functions of the 

transformed system (2.4) are given as: 

                                                     ̅ ( ̅ )  
 

 
 ̅ 
     ̅                           (2.13) 

                                                     ̅ ( ̅ )  
 

 
 ̅ 
   ̅                               (2.14) 
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The value of  ̅ ( ̅ ) is the minimum amount of control energy desired to         

approach the state  ̅ . And the value of  ̅ ( ̅ ) is the amount of output 

energy produced by the state  ̅ . If         for          , then we 

need a large amount of control energy to reach the state  ̅  for small values 

of   , and we have small amount of output energy at  ̅  for large values of 

  .  

To decrease the number of state components of the system, we remove the 

state components from      to    for        . 

Now, by the following procedure we can obtain balance realization for a 

minimal realization system     .
  
  
/, [32, 9]: 

1. Compute    and    the controllability and observability gramians for 

the system. 

2. Find matrix  , such that     
  . 

3. Diagonalize       to get     
       

     

4. Let         
 

  

  Then  

                                                               
 

     
  

                                                               (   )    
   

                                                                , 
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and  

                                                           .   
    

     
/        

  is balanced. 

2.3 Error bounds for linear dynamical systems using balanced 

truncation 

 In this section we study an advantageous property of balanced 

truncation method, it has a prior error bounds that is close to the lower 

bound achievable by any reduced-order model. 

Consider a (LTI) continuous system: 

 ̇        

                                                                                                 (2.15) 

                                                  ( )     

and the transfer function: 

 ( )   (    )    

Assumption 2.3.1.[28] A system .
  
  

/  is asymptotically stable, (   ) 

is controllable and (   ) is observable. 

The controllabilty and observability Gramians (   and   ) are positive 

semi-definite and satisfy the Lyapunov equations. 

By theorem (2.2.3), we have the next balanced system: 
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  ̇̅   ̅ ̅   ̅    

                                                             ̅   ̅ ̅                                       (2.16) 

such that    ̅         ̅     and  ̅      . 

Let us partition the balance system ( ̅  ̅  ̅) and the Gramian   as: 

 ̅  (
      
      

)   ̅  (
  
  
)   ̅  (    )   (

   
   

) 

where     and     are matrices of dimension     and         

respectively, and the other matrices has dimension correspond to the 

original system. 

Assuming the Hankel Singular Values are satisfies        , then we 

delete all the states related to the small Hankel Singular Values (     

           ) to obtain the reduced order model acquired by 

Balance Truncation method is given by: 

 ̇            

                                                                                                      (2.17) 

with transfer function:   

                                                  ( )    (      )
                       (2.18) 

The subsystem (         ) is a good approximation of the balanced 

system ( ̅  ̅  ̅). 
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Lemma2.3.2.[18] The subsystems (         ) and (     ) are balance 

with Gramians    and   . 

Lemma2.3.3.[18] The matrices     (     ) are asymptotically stable (i.e. 

The real parts of eigenvalues    of     (     ) are less than or equal zero,  

 (  (   )   )         ) if    and    do not have common entries in 

the diagonal. Furthermore the subsystem (         ) (     ) is 

controllable and observable. 

Now, we consider a very important concept in control theory. 

We compute the infinite norm (‖ ‖ ) of the transfer function of the 

original model and compare the difference with the norm of the transfer 

function of our reduced order model obtained by Balanced Truncation. 

Let  ( ) be the transfer function of the balanced system ( ̅  ̅  ̅) and 

  ( ) be the transfer function of the reduced system (         ) then the 

upper bound for the approximation error is given in the following lemma 

[28, 18]. 

Lemma 2.3.4. We have 

                                                     ‖    ‖   ∑   
 
                     (2.19) 

such that      is the first neglected (HSV) of  ( ). 

Lemma 2.3.5.[9, 28] Let   and    be the output of the original and reduced 

system respectively. Then the ‖ ‖  ‖ ‖   bound of the approximation 

error between   and    is given by: 
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                                        ‖    ‖    ∑   
 
     ‖ ‖                     (2.20) 

where   is the input vector. 

2.4 Reciprocal system of a linear dynamical system 

In this section we will discuss some results and properties of reciprocal 

system of the balanced realization for the infinite dimensional system. 

Consider a linear time-invariant continuous system: 

 ̇        

        . 

Assume the system is balanced with Gramian  . Then we have: 

             

                                                             . 

Let 

 ( )   (    )     . 

be the transfer function of the balanced system (       ). Then, the 

reciprocal system ( ̃  ̃  ̃  ̃) of the system (       ) is defined as: 

 ̇̃   ̃ ̃   ̃  

  ̃   ̃ ̃   ̃ . 
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Such that 

 ̃      

                                                                ̃       

                                                                ̃                                    (2.21) 

                                                                ̃          

Remark 2.4.1. If we compute  ( ) we get: 

 ( )            ̃ 

Remark 2.4.2.[9] If the matrix   is given as: 

  (
      
      

) 

Then  

    

(
(          

     )
   (          

     )
        

  

 (          
     )

        
  (          

     )
  ). 

also 

    

(
(          

     )
      

     (          
     )

  

    
     (          

     )
  (          

     )
  ). 
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The transfer function  ̃( )  of the reciprocal system ( ̃  ̃  ̃  ̃) is given 

as: 

                                              ̃( )   ̃(    ̃)
  
 ̃   ̃.                     (2.22) 

The relation between  ( ) and  ̃( ) is given as [3]: 

                         ( )   (    )      

                                     (    )          

            
 

 
.    

 

 
/
  
                                                                                          

               .
 

 
        / .

 

 
    /

  
       

                                               .
 

 
    /

  
           (2.23) 

                                         .
 

 
    /

  
             

                                     ̃ .
 

 
  ̃/

  
 ̃   ̃ 

                                     ̃ .
 

 
/    

Lemma 2.4.3.[9, 18, 25] Let (       ) be balanced minimal realization 

of a (LTI) system with Gramian  . Then the reciprocal system ( ̃  ̃  ̃  ̃) 

is also balanced with the same Gramian  . 

Proof. Since   is solution of the Lyapunove equations: 
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multiply the first equation by     from the left and by    
 
 from the right, 

we get: 

   (  )   
 
    (   )   

 
    (   )   

 
  , 

so  

     
 
      (    )(    )    

by equation (2.21), we obtain: 

 ̃    ̃   ̃ ̃   . 

Multiplying the second equation by    
 
 from the left and by     from the 

right, we get: 

   
 
(   )       

 
(  )       

 
(   )     , 

then 

         
 
  (    ) (    )   . 

By equation (2.21), we have: 

 ̃     ̃   ̃  ̃   . 

So, the reciprocal system ( ̃  ̃  ̃  ̃) is balanced with Gramian  .  

Let us partition the system ( ̃  ̃  ̃  ̃) and it's Gramian   as: 

    ̃  (
 ̃   ̃  
 ̃   ̃  

)   ̃  (
 ̃ 
 ̃ 
)   ̃  ( ̃  ̃ )   (

   
   

).         ( 2.24) 
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Lemma 2.4.4.[18] Suppose the hypothesis of lemma (2.4.3), and the 

reciprocal system ( ̃  ̃  ̃  ̃)  be partitioned as above. Then the subsystem 

( ̃    ̃   ̃   ̃) (     ) is also internally balanced with Gramian    (  

   ). 

Lemma 2.4.5.[18] Consider the hypothesis of lemma (2.4.4), then the 

matrices  ̃    (     ) are asymptotically stable (i.e. The real parts of 

eigenvalues    of  ̃   (     ) are less than or equal zero,   (  ( ̃  )  

 )         ) if    and    do not have common entries in the diagonal. 

Furthermore the subsystem ( ̃    ̃   ̃   ̃) (     ) is controllable and 

observable. 

Applying balanced truncation method on the reciprocal system ( ̃  ̃  ̃  ̃), 

obtain the balance     reduced system ( ̃    ̃   ̃   ̃)  given by the 

following state space equation: 

                                                           ̇̃   ̃   ̃   ̃  ̃ 

                                                           ̃   ̃  ̃   ̃                               (2.25) 

By equation (2.22) and remark (2.4.2) we can find the values of  ̃    ̃   ̃  

and  ̃  as: 

                        ̃   (          
     )

   

                          ̃  (          
     )

  (         
    ) 

                          ̃   (        
     )(          

     )
            (2.26) 

                           ̃          
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The transfer function of reduced system ( ̃    ̃   ̃   ̃) is given as: 

                                              ̃ ( )   ̃ (    ̃  )
  
 ̃   ̃              (2.27) 

Now, the error bound is given in the next lemma. 

Lemma 2.4.6.[18] We have that 

                                                      ‖ ̃   ̃ ‖   
∑   
 
                    (2.28) 

Where    is the (HSVs) of the system. 

2.5 Singular perturbation approximation method 

In previous sections we studied a balanced truncation schema to reduce the 

order of the system, and acquired an error bound. Then we introduce 

reciprocal system and extend the error bound to reduce order of reciprocal 

system.  

In this section we introduce another method to reduce the original system 

which is called the singular perturbation approximation method (SPAM). 

Balanced truncation method and singular perturbation approximation 

method give us the same error bounds. For the balanced truncation method 

the error is small at high frequencies and large at low frequencies, but for 

the singular perturbation approximation we have large error at high 

frequencies and small error at low frequencies. Our goal is to find the error 

bound for the reduced order model using the singular perturbation 

approximation. To obtain this error bound, we discuss the relationship 
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between the reduced model of the reciprocal system and the reduced model 

when we use the singular perturbation method. 

Consider the system: 

 ̇        

                                                             .                                       (2.29) 

The controlabillity and observability Gramians    and    are both positive 

semi-definite and can write as: 

     
  

                                                                 
 . 

The balanced Gramian   is partition as: 

  (
   
   

). 

   and    represent the important singular values that we are interested in 

and the unimportant singular values which we want to neglected [26, 24]. 

Also, the balanced transformation   satisfies the equation: 

      
 
  

                                                            
 

     . 
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Suppose        . And HSVs are coordinate invariant (i.e. which 

remains unchanged, after operations for transformations of a certain type 

are applied to the objects), since                 . Then we can 

obtain a reduced order system with small parameter [15]. 

To check where the small parameters    enter the equation, replacing    by 

   . The small HSVs are named uniformly according to equation: 

(              )   (              )    . 

We change the coordinate using balanced transformation  ( ) such that: 

   ( )  

Let    ( )   ( ). Then partition the balance matrices as: 

                                                      ( )  (
   

 

√ 
   

   
 

√ 
   
)                (2.30) 

and 

                                                   ( )  (
      
 

√ 
   

 

√ 
   
).               (2.31) 

which give rise to the balanced coefficients and they are given as: 

              ̂( )   ( )  ( ) 

                       (
      
 

√ 
   

 

√ 
   
) (
      
      

)(
   

 

√ 
   

   
 

√ 
   
)      (2.32) 
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                        (
 ̂  

 

√ 
 ̂  

 

√ 
 ̂  

 

 
 ̂  
).  

                  ̂( )   ( )  

                         (
      
 

√ 
   

 

√ 
   
) (
  
  
)                                           (2.33)                          

                            (
 ̂ 
 

√ 
 ̂ 
).  

And    

                  ̂( )    ( ) 

                            (    ) (
   

 

√ 
   

   
 

√ 
   
)                                      (2.34) 

                              . ̂ 
 

√ 
 ̂ /.   

Set     In equation (2.32), then  ̂   ( )  ( ) represent the balanced 

matrix  . 

The balancing transformation can given as: 

 ( )   ( ) ( ) 

                                                        ( )   ( ) ( ), 
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such that  ( ) denotes the diagonal matrix: 

 ( )  (
  

 
 

√ 
 ). 

In the next steps we omit the tilde from the balanced matrices, in order to 

have the following matrices: 

                         (
   

 

√ 
   

 

√ 
   

 

 
   
)    (

  
 

√ 
  
)    .  

 

√ 
  /.   

Let's define the new variable   (     ) which can be balanced by 

balance transformation  ( ) and written in balance form as: 

   ( ) . 

Now, our dynamical linear system described in equation (2.29) turns in to 

the singular perturbed system of equations: 

                             (
 ̇ 
 ̇ 
)  (

   
 

√ 
   

 

√ 
   

 

 
   
).
  
  
/  (

  
 

√ 
  
)            (2.35) 

                                     .  
 

√ 
  / .
  
  
/.  

 Equations (2.35) can written as: 

 ̇        
 

√ 
          

                                            ̇  
 

√ 
      

 

 
                           (2.36) 

                                                  
 

√ 
    . 
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The variable    is scaled as: 

   √    

equations (2.36) become: 

 ̇                  

                                               ̇        
 

 
                           (2.37) 

                                                           . 

In matrix form: 

                                     (
 ̇ 
 ̇ 
)  (

      
 

 
   

 

 
   
) .
  
  
/  (

  
 

 
  
)          (2.38) 

                                             (    ) .
  
  
/,  

where the sub-matrices            are in balanced form [15]. The scalar   

exemplifies all the small parameters to be neglected [16]. 

To reduce the order of the system and obtain a reduced order model, set the 

singular perturbation    . 

The linear dynamical system has a multi-time behavior caused by the 

singular perturbation and this yields the slow and fast variable of the 

system [16]. 
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Assumption 2.5.1.[16] The block matrix     is invertible and stable,  i.e. 

  *  (   )   + 

Assumption 2.5.2.[16] The equation 

                                           ̇                                         (2.39) 

 has distinct roots when    . 

According to the assumptions (2.5.1) and (2.5.2) and equation (2.37), set 

    then the roots of equation (2.39) denoted by   ̅ given as: 

                                               ̅      
       ̅     

     .                    (2.40) 

If we substitute the value of   ̅ in the first part of equation (2.37), we obtain 

the reduced order model represented by the following state-space 

equations: 

 ̅ ̇   ̅  ̅   ̅  

                                                            ̅   ̅  ̅   ̅                              (2.41) 

                                                     ̅( )    ( ). 

where  

                                                      ̅            
      

                                                      ̅           
                             (2.42) 

 ̅          
      

                                                      ̅        
    . 
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Denote by  ̅ the transfer function of the reduced system describe in 

equation (2.41), then: 

                                                 ̅( )   ̅(    ̅)   ̅   ̅.                 (2.43) 

From the definition of the reduced reciprocal system (2.25) and the two 

equations (2.26) and (2.42), we obtain the following: 

                                     ̃  (          
     )

   

                                         ( ̅)   

                                   ̃  (          
     )

  (         
    ) 

                                         ( ̅)   ̅                                                       (2.44) 

                                   ̃   (        
     )(         

    )
   

                                         ̅( ̅)   

                                    ̃   ̅   ̅( ̅)   ̅. 

The relation between  ̅( ) and  ̃ ( ) is given as [9]: 

                         ̅( )   ̅(    ̅)   ̅   ̅ 

                                     ̅ .
 

 
/ .  

 

 
 ̅/
  
 ̅   ̅ 

                                     ̅ .
 

 
/ .( ̅)   ̅  

 

 
 ̅/
  
 ̅   ̅   

                                     ̅ .
 

 
/ .( ̅)   

 

 
/
  
( ̅)   ̅   ̅                                             

                      ̅ .
 

 
 ( ̅)    ̅/ .

 

 
 ( ̅)  /

  
( ̅)   ̅   ̅ 
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                              ̅( ̅)  ( ̅)   ̅ .
 

 
 ( ̅)  /

  
( ̅)   ̅   ̅     (2.45) 

                                      ̅( ̅)  .
 

 
 ( ̅)  /

  
( ̅)   ̅   ̅   ̅( ̅)   ̅ 

                                     ̃ .
 

 
  ̃  /

  
 ̃   ̃ 

                                     ̃ .
 

 
/    

Theorem 2.5.3.[25] The reduced order model ( ̅  ̅  ̅  ̅) obtained by 

Singular Perturbation Approximation Method (SPAM) is balanced with 

Gramian    and its asymptotically stable. 

Proof. By lemma (2.4.4) the reduced system ( ̃    ̃   ̃   ̃) is balanced 

with Gramian    that satisfy: 

 ̃        ̃  
   ̃  ̃ 

    

 ̃  
       ̃    ̃ 

  ̃    

multiplying the first equation by  ̃  
   from left and by ( ̃  

  )
 
 from right, 

and multiplying the second equation by ( ̃  
  )
 
  from left and by  ̃  

   from 

right yields: 

 ̃  
  ( ̃    )( ̃  

  )
 
  ̃  
  (   ̃  

 )( ̃  
  )
 
  ̃  
  ( ̃  ̃ 

 )( ̃  
  )
 
   

   ( ̃  
  )
 
  ̃  
     ( ̃  

   ̃ )( ̃  
   ̃ )
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by equation (2.45), we obtain: 

 ̅      ̅
   ̅ ̅    

and 

 ( ̃  
  )
 
( ̃  
   ) ̃  

   ( ̃  
  )
 
(   ̃  ) ̃  

   ( ̃  
  )
 
( ̃ 
  ̃ ) ̃  

     

    ̃  
   ( ̃  

  )
 
   ( ̃  ̃  

  )
 
( ̃  ̃  

  )    

In the same way, by equation (2.45), we obtain: 

 ̅       ̅   ̅
  ̅    

which implies that ( ̅  ̅  ̅  ̅) is balanced with gramian   . 

Suppose  ̃   is asymptotically stable. Since  ̅   ̃  
  , then the eigenvalues 

of  ̅ is  ̅  
 

  
, where    is the eigenvalue of  ̃   for          .  

We conclude that  * ̅ ( ̅)+   , which means the reduced order model by 

singular perturbation approximation is asymptotically stable.  

In the following theorem we show the characterization of the error bound 

of reduced model obtained by singular perturbation approximation method. 

Theorem 2.5.4.[25] Let  ( ) and  ̅ ( ) be the transfer functions of the 

original system and     order system obtained by singular perturbation 

approximation method respectively, then: 

                                       ‖ ( )   ̅( )‖   ∑   
 
                          (2.46) 
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Proof. By equations (2.23) and (2.45) and lemma (2.4.6), using the triangle 

inequality we obtain: 

‖ ( )   ̅( )‖ 

 ‖ ( )   ̃ (
 

 
)   ̃ (

 

 
)   ̃ (

 

 
)   ̃ (

 

 
)   ̅( )‖

 
 

                     ‖ ( )   ̃ .
 

 
/‖
 
 ‖ ̃ .

 

 
/   ̃ .

 

 
/‖
 
  ‖ ̃ .

 

 
/  

 ̅( )‖
 

 

                     ‖ ̃ .
 

 
/   ̃ .

 

 
/‖
 

 

                      ∑   
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Chapter Three 

Model Reduction for Unstable Systems 

In this chapter we study an order reduction model for unstable finite 

dimensional linear system. And we will generate the error bound of 

reduced order unstable system. Our main focus in this chapter to study 

reduced order model for unstable system by using   ,   --induced norm 

approach [30]. 

3.1   Notations and preliminary results 

In this section we introduce some basic notations and definitions related to 

the   ,   --induced norm of a finite dimensional LTI system. 

Let   ,   - denote the space of vectors valued real functions essentially 

bounded in the interval ,   -, equipped with the norm: 

                                              ‖ ‖  ,   -
  ∫   ( )

 

 
 ( )  .                   (3.1) 

Let   represent the space of LTI system regarding to bounded factor in 

  ,   -. 

 Definition 3.1.1.[30] The induced norm of an operator    , is given by: 

                                              ‖ ‖  ,   -        
‖  ‖  ,   -

‖ ‖  ,   -
,                  (3.2) 

such that ‖ ‖  ,   -   .  

 



57 

Indeed, the   ,   )-induced norm of LTI stable factor   agrees with the 

top value of its frequency response, i.e.: 

                                               ‖ ‖  ,   )     ‖ ‖ .                           (3.3) 

Lemma 3.1.2.[30, 13] (Bounded Real) Suppose a finite dimensional, 

strictly proper LTI stable system with state space realization is given as: 

   .
  
  
/. 

Then, the following are equivalent: 

1. The   ,   --induced earning is bounded by    . 

‖ ‖  ,   -       

2. The next linear matrix inequality recognize a positive definite solution 

   : 

                                  . 
           
       

/   .               (3.4) 

For the proof of this lemma see [13]. 

Lemma 3.1.2.[30] (Bounded Real lemma, Differential Version) Consider a 

strictly proper, finite dimensional, not necessarily stable LTI system    

with state space realization given as: 

   .
  
  
/. 
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Assume that, the following differential matrix inequality admits a positive 

definite solution  ( ) for all   ,   -: 

                            ( 
       ̇       

       
)   .             (3.5) 

Let     ,   - denote an arbitrary input and   the corresponding output. 

Then the following holds: 

                                             ∫    
 

 
     ∫   

 

 
                             (3.6) 

Corollary 3.1.4.[30] If the inequality (3.6) is satisfied, then: 

‖ ‖  ,   -       

3.2   Model reduction by   ,   --induced norm 

In this section we study the bound on the   ,   --induced norm by simply 

computation of infinite norm (‖ ‖ ) of a shifted system obtained from the 

system under consideration. Then we utilize this bound to solve the 

problem of model order reduction for unstable system over finite horizon. 

Officially, the   ,   --induced norm of a given LTI factor   is tantamount 

to the   ,   )-induced norm of a time-varying system with convolution 

kernel: 

                                         (   )   ( ) (   ).                          (3.7) 
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where  ( ) is the step window function given as: 

                                                     ( )  2
        
            

.                 (3.8) 

However, there are no active computations for implement this calculation. 

So, one can represents the step window by the exponential window defined 

as     , where the time constant   is satisfy that        for    . 

The advantage of this approach is that, the resulting kernel      ( ) can 

be related with the new LTI factor whose frequency response is a shifted 

version of the frequency response of the original system. If   is chosen 

such that this new LTI operator is stable, computing its   ,   )-induced 

norm (its infinite norm ‖ ‖  ) is now a standard problem. 

Theorem 3.2.1.[30] Suppose a finite dimensional, strictly proper LTI not 

necessarily stable system with state space realization is given as: 

   .
  
  
/ 

If there exist   satisfying 

                                                             .
     
  

/  

is stable with ‖  ‖   , then the following holds: 

                                                       ‖ ‖  ,   -       
                         (3.9) 
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Proof. By hypothesis ‖     ‖    
  , by lemma (3.1.2) there exist 

     such that: 

                            (
  
          

           

            
)   ,    (3.10) 

where        . 

Let we define for   ,   -,  ( )         . Multiply (3.11) by      , we 

obtain: 

  (
  
    

                
  (   )           

     
          (   ) 

) 

                 ( 
       ̇     (   )     

         (   ) 
)  

                  ( 
       ̇       

           
)  

such that, the last inequality holds when     and    . 

The proof can be completed depending on lemma (3.1.3) and corollary 

(3.1.4).  

Now, consider an unstable system, we want to obtain approximations in the 

  -induced norm on a finite time interval. 

This can be done using the following simple algorithm [30]. 

1. As input, take a state space realization  ( )   (    )      and a 

constant      such that  (   )  ‖ ‖ . 
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2. Find a stable reduced order system       (
    
    

)  to the system 

    .
     
  

/ . 

3. Use the system     (
       
    

) as an approximation to the 

original system in ,   -. 

Remark 3.2.2.[30] Suppose the system     is stable, then its reduced 

version       can be obtained using standard model reduction techniques, 

for example, using balanced truncations, which gives the error bound: 

                                             ‖       ‖   
∑     
 
     ,                (3.11) 

where      denotes the Hankel singular values for    . 

By theorem (3.2.1) we get: 

                                     ‖    ‖  ,   -       
  ∑     

 
     .          (3.12) 
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Chapter Four 

Numerical examples 

In this chapter we study two numerical examples of a low order model, first  

one is example of  stable system and the second example is example of 

unstable system, and using MATLAB software we compute the error 

bound of reduced system. 

4.1 Mass-spring damping system 

In this section we consider an example of stable system and we apply 

balanced truncation method to reduce the order of this system. As an 

application of engineering system, we study the mass-spring damping 

system. 

Suppose              are masses characterized by figure (4.1) 

 

 

Figure 4.1: Multi mass-spring damping system 

such that    are the position of the mass    respectively, and    and    are 

constants describing the stiffness and damping of the springs. 
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By applying Newton's second law on the masses     we obtain the 

following differential equation: 

   ̈     ̇    (       ) ̇       ̇               (       )      

(4.1) 

such that            and   2
       
      

 , while      for     and   

                  for    . 

Equation (4.1) can be expressed in matrix form as: 

                                                               ̈    ̇                          (4.2) 

Such that 

 

is called the mass matrix of the system. 
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is the damping matrix. 

And 

 

is the stiffness matrix. 

The vector  

 

describes the number of controllers acting on masses. 

To find the state space representation of this system, let 

 ̇    

and 

                                                         ̈   ̇. 
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Suppose     exists, then by these equations and equation (4.2), we have: 

                                     ̇    

                                         ̇                    .              (4.3) 

In matrix representation 

                              (
 ̇
 ̇
)  .

  
          

/.
 
 /  (

 
     

)  .      (4.4) 

Let 

  .
  

          
/ 

be of size (     ) and 

  (
 

     
) 

of size (    ). Then the state space representation for this system is 

                                                             ̇       .                             (4.5) 

where   .
 
 / is the state vector of dimension(    ). 

 Now, we consider a mass-spring damping system of five masses. 

First, we calculate the Hankel singular values of the system. Figure (4.2) 

represents the Hankel singular values of mass-spring damping system of 

size (N=20). 
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Figure 4.2: Graph of HSVs  

Now, by applying the balanced truncation method for this system with zero 

initial condition obtained a reduce order system, and compute ‖ ‖  bound 

of the approximation error given in section (2.3). 

We take a system of size      and reduce its order to obtain reduced 

order system of size    . 

Figure (4.3) represents the maximum singular value decomposition 

(MSVD) of (    ) and the error bound  ∑   
  
     . We see obviously 

that the balanced truncation method yields a reduced order model with 

smaller error at high frequencies and larger error at low frequencies. 
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Table (4.1) shows the value of ‖    ‖  and the error bound 

 ∑   
  
     .             

 

Figure 4.3: The MSVD and the error bound        

Table 4.1: ‖    ‖  and the error bound        

r ‖    ‖  2∑   
  
      

2  0.254 0.5668 

4 0.0303 0.0762 

6 0.0012 0.0152 

 8     2.1264      0.0078 

10 3.2416      0.0046 

12 4.0012      0.0022 

14 6.3145      3.806      

Next, in figure (4.4), we show the plot of the outputs   and    of the 

original and reduced systems respectively and their differences (    ) 

and error bound by applying balanced truncation method on the numerical 

example. 

And in table (4.2) we show the ‖ ‖   bound of the approximation error 

between the output   and     of the original and reduced systems 

respectively and the error bound. 
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Figure 4.4: The outputs using balanced truncation. 

Table 4.2: The    of      and the error bound. 

r ‖    ‖   2∑   
  
     ‖ ‖ 

2 0.0266 0.6801 

4 0.0043 0.0917 

6 0.00022 0.0182 

8 7.6992      0.0093 

10 5.213                  0.0055 

12 2.015       0.0026 

14 3.412       4.5672      

4.2 RC-Circuit 

In this section we discuss an example of unstable dynamical system. We 

will study an RC-filter, RC-network and resistor–capacitor circuit (RC-

circuit). The RC-circuit shown in figure (4.5) is a collection of resistors and 

capacitors 
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Figure 4.5: Simple RC-circuit 

driven by a voltage or current exporter. RC-circuits may be used to filter a 

signal by blocking confirmed frequencies and passing others. 

Suppose we denote by    and    the current and voltage through the 

capacitor   , let   denote the voltage source in the circuit and   (the output 

of the system) is the current across a resistor            .   

Let      
 

  
  ( ) 

    
    

  
    

     

  
     

 

  
  ( )  

    

    
 
     

    
  

    
     

  
    

     

  
     

 

  
  ( )  
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. 



70 

This system can be written in state space representation as: 

 ̇        

                                                               , 

where: 

 

 

and 
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We consider an RC-circuit of size (    ) such that the input is the 

voltage source and the output is the current across the resistor number 20.  

Suppose the system    describe the RC-circuit is unstable dynamical linear 

system, we use the   ,   -     norm approach that described in section (3.2). 

Let     be the shifted system from the original system    such that     is 

stable system. 

Firstly, show the (HSVs) of the shifted system    , figure (4.6). 

 

Figure 4.6: Plot of HSVs of the shifted system 

Now by applying balanced truncation method on the system     we obtain 

a reduced system       of order    , shift back       by   to obtain     

as an approximation to the original system in the interval ,   -. 

In figure (4.7) we show the plot of the maximum singular value 

decomposition of (    ) and the error bound. 
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Table (4.3) contains the value of ‖    ‖  ,   -     and value of error 

bound     ∑     
  
     . 

 

Figure 4.7: The MSVD and the error bound. 

Table 4.3: ‖    ‖  ,   -     and the error bound. 

r ‖    ‖  ,   -     2   ∑     
  
      

2  0.1509 1.5862 

4 0.0167 1.0748 

6 0.0059 0.7099 

8 0.00021 0.4298 

10 4.2112      0.2542 

12 2.5404      0.0434 

Next, we want to calculate approximation error by    between the outputs 

  and    of the original and the reduced systems respectively. 

Figure (4.8) shows the outputs,    and     , and table(4.4) contains the 

value of ‖    ‖   and the error bound.  
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Figure 4.8: The outputs and their difference. 

Table 4.2: The    of      and the error bound. 

r ‖    ‖   2   ∑     
  
     ‖ ‖ 

2 2.9012      1.7452 

4 3.5415      11822 

6 7.2115      0.7809 

8 4.1245                   0.4728 

10 6.1452       0.2796 

12 4.2348       0.0478 
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  ب

 لنظام ديناميكي خطي غير ثابت تقدير حدود الخطأ العددي
 إعداد

 سند قاسم توفيق حج محمد
 إشراف

 عدنان دراغمة .د
 ناجي قطناني .د.أ

 الممخص

من المواضيع القديمة التي ظيرت مع بداية حياة الإنسان ورغبتو في إدارة تعتبر نظرية التحكم  إن
ما حولو واستغلال موارد الطبيعة، إن دراسة التطبيقات اليندسية والفيزيائية والكيميائية وغيرىا يقودنا 

 .ةعالي ذات رتبة والتي تكون في الغالبية ئالجز  العادية وإلى أنظمة من المعادلات التفاضمية 

 مخرجاتالممكنة والحصول عمى أفضل  ع ىكذا أنظمة ولتشغيميا بأقل تكمفةسييل التعامل ملت
 ل عمى نظام جديد ذو رتبةو حصبحيث نستثني منيا المتغيرات الأقل تأثيرا لم نحتاج إلى تقميل رتبتيا

 بأقل خطأ ممكن. ةصغير 

في ىذا البحث ركزنا عمى  حيث إننا ديد من الأبحاث والدراسات القيمةوقد ظير في ىذا المجال الع
حالة النظام الديناميكي الخطي الغير ثابت وحاولنا تخفيض رتبتو والحصول عمى النظام الجديد 

 بأقل خطأ.

ولتخفيض رتبتو استخدمنا طريقة الاقتطاع الثابت  -أو المستقر -في البداية درسنا النظام الثابت 
و قمنا بدراسة النظام الغير ثابت ودرسنا احد الطرق وبالاعتماد عميوطريقة الاضطراب المفرد 

والتي تقوم عمى تحويمو الى نظام مستقر واستخدام أحد  الفعالة لتخفيض رتبة النظام الغير مستقر
، ولتوضيح فعالية ىذه الطرق قمنا بدراسة أمثمة عددية من واقع التطبيقات الحياتية الطرق السابقة

 .تيا سابقا وقد أظيرت النتائج جدوى استخدام ىذه الطرقا بدراسوطبقنا عمييا الطرق التي قمن


