

An-Najah National University Faculty of Engineering & Information Technology Energy Engineering and Environment Department

"Developing Practical PV-Energy Storage Solutions For Tulkarm City"

Prepared by:

Khaled Melhem & Mohammad Kmail

Supervisor :

Dr. Mohammad Al-sayed

Presented in partial fulfillment of the requirements for Bachelor degree in Energy and environment engineering

December- 2021

Abstract

In this report, the problem of the electricity sector in Tulkarm city and the ways to solve it in a new and effective way was presented, as Tulkarm city suffers from the problem of power outages for two main reasons:

1) Existence of an over load on the transformers as the transformers are loaded with very large loads (loads up to 115% of the transformer)

2) The decrease in the amount of electricity coming from the Israeli occupation, which does not cover the needs of citizens, especially during peak times.

Therefore, a new solution was presented to summarize these two problems by studying the case of transformers in Tulkarm city. The loads on the transformers were divided into six types (large morning loads, normal morning loads, medical morning loads, evening large loads, normal evening loads and evening medical loads),where each type was studied separately and appropriate solutions were proposed using solar panels to contribute to solving the two main problems that the city suffers from. A new structure was designed to put solar panels on it so that it has an economical, attractive and cheaper price compared to the normal chassis.

Al-Murabba transformer was taken as a case and an example for the rest of the city transformers, where the transformer was checked and the loads were known, divided and a load profile was made for them.

Where it was found that the maximum value of the loads are as follows:

High morning loads (20%) equal 142 kW.

Normal morning loads (70%) equal 496 kW.

Medical morning loads (10%) equal to 70 kW.

High evening loads (35%) equal to 244 kW.

Normal evening loads (50%) equal 349 kW.

Medical evening loads (15%) equal to 104 kW.

In this report, solutions have been developed for each problem that may exist in any of the loads depending on the type in which they are placed. A solar energy system with net metering system was proposed to solve the problem of high and normal morning loads, and a hybrid system (solar panels and municipal electricity) was also proposed. The municipality and batteries will be the solution in case there is a problem with the transformer due to the morning medical loads. For high evening loads, solar batteries have been proposed as a solution by designing an off-grid system, storing solar energy in the batteries during the day and supplying it to the evening loads in two ways:

1) Converting all night loads (for example, a commercial store) to solar electricity by (converting the electric energy in the batteries into alternating electricity by the inverter) and this solution is expensive.

2) Converting the lighting in the shops to direct dependence on the batteries, as the percentage of lighting consumption in most residential buildings is about 30% of the total energy consumed and reaches more than 30% in the shops, which is the least expensive solution.

For evening medical loads, a hybrid system (diesel generator, municipal electricity, batteries) was proposed.

In this report, the cost of the new structure was calculated, then a comparison was made between the new structure and the traditional structure, and the result was that the cost of designing a complete system using the new structure equals 47,000 NIS, while the cost of designing the complete traditional system with the same capacity is 142,000 NIS, which means that the system which is designed with the new structure is less expensive, better and greatly saves space, which helps people who do not have enough space to install solar panels on their rooftops.

An electronic survey was conducted for the people of Tulkarm and their opinions about solar energy, the extent of their knowledge and belief in it, and the problems that prevent them from installing it. The following was found: that a small percentage of people have solar energy systems (about 10%), about 95% of people believe in solar energy as a solution to the problem of the current shortage in the city, about 100% of people support the use of solar energy in the residential area in which they live, the population's knowledge of solar energy is almost average and one of the most important problems that prevent them from installing it is its high price and the lack of sufficient space.

In the end, the overload on the transformer was eliminated, the transformer was returned to its normal state, and the electricity coming from the Israeli occupation was reduced through the use of solar panels. The streets were used to install solar panels, thus saving a lot of land. Thus, the problem of the electricity sector in Tulkarm city is solved.

The following software was used in the design process: pvsyst, Sketchup, AutoCAD, ETABS. The following sites were also used: mstkshf dot com, Global Solar Atlas, meteoblue.

contents

Abstract	i
List of Figures	v
List of Tables :	vi
Acknowledgments	. vii
1.Chapter one : Introduction	1
1.1 Overview	1
1.20bjectives	1
1.3Statement of the problem	2
1.4 Methodology	2
2.Chapter two: Literature Review	3
3. Chapter three : Results and Data Analysis	5
3.1 Electricity problems in Tulkarm city:	5
3.1.1) Over load on transformers	5
3.1.2:) Electricity coming from the occupation side:	6
3.2 The loads on the transformers	7
3.2.1) Daytime loads: These loads are divided into three types:	7
3.2.2) Night loads: These loads are divided into three types:	8
3.3) The Solutions to the electricity problem of Tulkarm city	9
3.3.1) Daytime load problem:	9
3.3.2) Night load problem:	. 10
3.4) The structure design :	. 11
3.5) Calculations:	. 20
3.6 Questionnaire:	. 20
3.7) Single line diagram(SLD) of the systems after design :	. 25
4.Chapter four : Discussion	. 26
5. Chapter five: Conclusions	. 29
References	. 30
Appendices:	. 31
1)PV Panels Selection:	. 31
2) inverter :	. 33
3) Map of Palestine :	. 35
4) A map showing the amount of radiation in the city of Tulkarm:	. 36
5)Tulkarm Monthly Climate Averages	. 37

A)Monthly Average Temperature and Rainfall in Tulkarm city :	. 37
B) The number of cloudy and sunny days in the city of Tulkarm:	. 37
c)Monthly Average Maximum temperatures in Tulkarm city:	. 38
d)Max and Average Wind Speed in Tulkarmcity:	. 38
6) PVSYST software reports for the two systems (on-grid and off- grid)	. 39
A) On-grid report :	. 39
B) Off-grid report :	. 45
6) bus line of Tulkarm :	. 50

List of Figures

Figure 1: The hourly load on Murabba transformer in 03/08/2021	5
Figure 2:SLD of the electricity coming from Israeli side	6
Figure 3: The load profile on Murabba transformer in five different days in August(8) W	Vith
respect to the transformer ratin	7
	0
Figure 4: Imposed daily electrical loads in Tulkarm city	8
Figure 5:: Imposed night electrical loads in Tulkarm city	8
Figure 6:Suggested solution for daytime electrical loads	9
Figure 7:Suggested solution for night electrical loads	10
Figure 8: The shape of the structure	11
Figure 9:Aesthetic illustration shape of the structure	12
Figure 10:Dimensions of the structure	12
Figure 11: The final shape of the street after placing the structure	14
Figure 12:South East (SE) 3D view of the structure	15
Figure 13:South West (SW) 3D view of the structure	16
Figure 14:the Elevation view with struts of the structure	16
Figure 15:3D view of the modules on the structure	17
Figure 16:3D close-up view of the modules on the structure	17
Figure 17:3D view of the deflection resulting from the dead load	18
Figure 18: 3D view of the deflection resulting from the wind load	18
Figure 19: 3D view of the steel dimensions needed in the structure	19
Figure 20:3D front view of the steel dimensions needed in the structure (struts)	19
Figure 21:another 3D view of the steel dimensions needed in the structure	20
Figure 22:Questionnaire1	21
Figure 23: Questionnaire2	22
Figure 24: Questionnaire3	22
Figure 25:Questionnaire4	23
Figure 26: Questionnaire5	23
Figure 27:Questionnaire6	24
Figure 28:Questionnaire7	24
Figure 29:SLD of on-grid system	25
Figure 30:SLD of off-grid system	25
Figure 31: Detailed solution of the problem	26
Figure 32:Nameplate of PV modules[Trina solar, TSM-DE18M-500W]	32
Figure 33:Solar inverter datasheet	34
Figure 34:Map of whole Palestine	35
Figure 35:A map showing the amount of radiation in the city of Tulkarm	36
Figure 36: Map of Tulkarm Governorate and it s surrounding villages	36
Figure 37: Monthly Average Temperature and Painfall in Tulkarm city	27
Figure 38. The number of cloudy and sunny days in the city of Tulkarm	57 27
Figure 30. Monthly Average Maximum temperatures in Tulkarm sity	57
Figure 40: May and Average Wind Speed in Tulkarm sity	30 20
Figure 40.191ax and Average wind Speed in Furkarin city	30

Figure 41:On-grid report	. 44
Figure 42:Off-grid report	. 49
Figure 43:bus line of Tulkarm	. 50

List of Tables :

Table 1 : the components of structure with economic value	13
Table 2: The Characteristics of Poles hold the modules	14
Table 3: Calculation of the cost of the new structure	27
Table 4: Calculation of the cost of the traditional structure	27

Acknowledgments:

To everyone who helped us reach this stage, to everyone who gave us so much and so much, to our families, our fathers, our mothers, our generous family, our teachers, our friends, our colleagues and our loved ones. Thank you, we thank you very much.

We will not forget these unknown soldiers who went through different stages and study stations and helped us with a word in dealing with fractures and overcoming the most difficult and difficult stages that affect our future, to everyone who met us. A smile every morning of every college day, to those far away...you have all the love. and active.

We cannot mention many names, but we would like to mention the project supervisor, Dr. Mohammad Al-Sayed, and the municipality of Tulkarm for their effective follow-up and communication to accomplish this work..

1.Chapter one : Introduction

1.1 Overview

Tulkarm city is located in the northwest of the West Bank at longitude and latitude $(32.31325^{\circ}, 035.033966^{\circ})$ and is considered an area with high humidity due to its proximity to the Mediterranean Sea, and as for the radiation intensity in the city, it is equal to about $2090 \text{ kWh} / \text{m}^2$, and for the best tilt angle of inclination for solar panels, angle 28 is the ideal tilt angle for the solar panels. For information on humidity, wind, temperature, rain, and number of cloudy days, the diagrams are found in the appendices.

The lands of Tulkarm form a divider between the Palestinian National Authority and the Palestinian territories occupied by Israel since 1948. It is 15 kilometers from the Mediterranean coast and at an altitude of 65-125 meters above sea level. Tulkarm includes several neighborhoods within its plan, such as Al-Shweika neighborhood, Ektba neighborhood, Al-Thanbeh neighborhood, Rashid neighborhood, Azab neighborhood, Al-Kafa neighborhood, Ertah neighborhood, New Mohandessin neighborhood, Staff housing neighborhood, and others in addition to camps such as Tulkarm camp and Nour Shams camp. The population of the city is estimated at 44 thousand people, and the capacity of the electric power needed by the city is 45 MVA, while the electrical capacity of the occupying authority is 32 MVA distributed over two lines distributed on 134 transformers.

Tulkarm city suffers from the problem of electricity shortage, which has become the leading news of all the newspapers and local media, so that the city suffers greatly from a large interruption, especially in the summer months (the month of 7, 8 and 9) in most days and over large hours.

1.2Objectives

- Studying the situation of electrical energy in Tulkarm city and identifying the electricity problem that the city suffers from, its causes and ways to solve it.
- Develop a plan to help solve the electricity problem through the (hybrid system), which contributes to alleviating electrical loads during the peak period.
- Studying the design of a new type of structures for solar panels and using the streets to place panels on them instead of land (which may not be available, especially in city centers) or rooftops (which may not be sufficient to design a cell system to meet all the needs of residential apartments in the building) with Pay attention to cost and aesthetics.

1.3Statement of the problem

- There is an overload on the transformer, which makes it difficult to choose solutions.
- Designing a new shape to put panels on it, which needs to take into account the height of buildings and trees in the streets to avoid the shadows.

1.4 Methodology

- The official authority responsible for Tulkarm city (Tulkarm municipality) was approached and the necessary information was collected, such as the load profile, electrical transformers, etc.
- The information and plans were studied and the reports related to the problem were reviewed. The files related to the electricity sector in Tulkarm city were studied. Radiation intensity, number of rainy and cloudy days for the city and average temperature are studied to help in the solar panel design process, as solar panels are affected by all the combined factors.
- New ways have been found to solve the problem, as reliance on traditional methods has become an old and expensive solution, and the trend to solve new problems must be based on new ideas and methods to solve the problem, as the idea of designing a solar energy system in a new way has been directed to solve the problem of energy shortage.
- Contacts have been made with the relevant responsible authorities to obtain information and inquiries when all developments occur. Several times have been contacted with the engineers of Tulkarm Municipality to verify several important matters.
- Contacts have been made with companies, institutions and people related to the Palestinian market (Local Market) to get the real prices of all materials, tools and devices needed to get the final price and compare the new solution with the traditional solution.

2.Chapter two: Literature Review

Various studies have been completed, which discussed different subjects that are to be merged in this project, Developing Practical PV-Energy Storage Solutions For Tulkarm City. This section discusses the reviews and researches based on and builds up this project.

Salah, W.A. and Abuhelwa, M discussed the main energy problem in Tulkarm city due to its rapid population growth and the problem of interruptions in electricity, especially in the summer. They presented the reality of energy consumption, climate and weather in Palestine and the reasons that make Tulkarm a large area for energy resources. They have suggested several solutions to address this problem. The first solution, i.e. scheduling the delivery of energy to neighborhoods on the basis of relevance, has already been adopted. As a second solution, they suggested the use of diesel generators. The last solution was the use of renewable energy, especially solar energy, which is the most effective one. They have done a survey to study people's awareness of the daily use of electricity. It turns out that people's awareness of the use of electricity may be the best possible way to overcome frequent blackouts.[1]

Nassar, Y. and Alsadi, S demonstrated the importance of achieving energy security in light of the electricity crisis in Gaza. Energy security includes maintaining energy supply and reliability to meet demand at all times and at good prices, while avoiding impacts on human health and the environment. They analyzed the current energy situation in the Gaza Stripand suggested four scenarios to get out of this impasse. They carried out an economic and environmental assessment in order to find out which scenario would generate higher revenues. This competition was won by renewable energy plants. The study set a timetable for the complete transition of the electricity industry from conventional energy to renewable energy. Unfortunately, however, providing a sustainable and renewable energy source to the Gaza Strip has not been a priority for any of the donors or successive Palestinian governments. The duty of international communities and national bodies remains to defend the property of the Palestinian people, especially at the level of infrastructure, against the repeated attacks of the Israeli army on the Gaza Strip, otherwise there is no value for any attempt to advance the Palestinian people.[2]

González, P et al implemented the measures on the grid, which showed the effect of the photovoltaic system on the power quality of the distribution network, the insertion of the photovoltaic power plant causes changes in the measured quality parameters and operational characteristics that do not seriously affect the operation of the grid due to the power limit of twenty of the power grid short-circuit For the generating stations specified in the report. They summarized measurements of power quality (PQ) parameters made in a radial distribution network at two time periods, before and after the PV power plant was connected to the grid. It also presents the same parameters measured at the PCC (point of

common coupling) of the grid and the PV plant to discuss how the grid impedance and the ratio between the injected power and the power required by the load affect changes in the power quality of the distribution system. They evaluates the impact of photovoltaic power generation on the distribution system and important issues such as reverse power flow and harmonic distortion are analyzed. [3]

Canova, A et al presented the problem of energy penetration for PV systems in urban networks. After describing the qualitative problem, two different environments for PV systems were analyzed: rural and urban networks. For the rural grid, a single line was simulated in order to evaluate the relationship between the number of PV systems installed along the line and the maximum installable PV capacity. In the second part of the paper, potential problems due to energy penetration were examined regarding the cluster PV system to be installed in Turin (Italy) during the EU project.[4]

DEMIDOV, I et al studied and designed an off-grid solar system connected to batteries in Namibia in Africa, and the focus was on the technical and economic analysis of the configuration of a low voltage (LV) distribution network based on off-grid solutions based on photovoltaic energy and energy storage in rural African areas. The components of offgrid solar energy have been studied and costs compared with the system connected to the grid, and the advantages of the off-grid system and the disadvantages of the system connected to the grid have been shown.[5]

El-houar, H et al studied the energy situation in the village of Tazota in Morocco, where a rural house was targeted to design an off-grid solar energy system and real monthly electrical requirements and hourly climatic conditions were used. In addition to making the economic feasibility of the system and studying the prices in real terms.[6]

Said, Z et al explained the vision of solar systems in the United Arab Emirates, as the UAE seeks to reach 44% of its energy by solar energy by 2050, and here in this paper a comprehensive technical, economic and environmental assessment of the solar photovoltaic system is presented. So that 6 different locations were selected in the Emirates and the installation of solar systems in them and a comparison between the six regions. In addition, different cell technologies (single-crystal, polycrystalline and thin-film) were analyzed to conclude the optimal selection, in addition to studying the atmospheric factors affecting the solar system. The effect of reducing the battery bank size from 24 hours to 12 hours standby has also been demonstrated.[7]

The existing literature gives a very broad overview of modeling approaches, technologies, and feasibility for Developing Practical PV-Energy Storage Solutions For Tulkarm City. The detailed discussion is highly dependent on theses researches and builds this project upon it, and its results have to be discussed and taken into consideration for optimum outputs of this project.

3. Chapter three : Results and Data Analysis

3.1 Electricity problems in Tulkarm city:

3.1.1) Over load on transformers

Many transformers in the city of Tulkarm suffer from overloads, as the percentage in the summer reaches about 115%, which causes many problems in the transformers, but in normal months the loads on the transformers are approximately 95%[8], which is also considered a large load on the transformer. The suitable load for the transformer is approximately 70%.[9]

Electricity is cut off for several hours in Tulkarm city, due to the overloading on the transformer rating value , and the figures below show this.

Figure(1) below shows the hourly load and the percentage of loads on Al-Murabba transformer during only one day in 03/08/2021. And figure(2) below shows the hourly load on Murabba transformer in five different days in August(8) with respect to the transformer rating, which is 630 kVA.

المحول : المربعة	date	time	Power(p)		reactive (d	(p)^2	(Q)^2	S (kVA)	rated pow	situation	s	percent	
المحول: KVA 630	8/3/2021	0	704.32 1	17.44kvar	117.44	496067	13792.2	714.044	630	not_Ok	84.044	113.34	
		0.5	692.8 1	14.88kvar	114.88	479972	13197.4	702.26	630	not_Ok	72.2601	111.47	
		1	683.52 1	13.28kvar	113.28	467200	12832.4	692.843	630	not_Ok	62.8434	109.975	
		1.5	672 1	12.00kvar	112.00	451584	12544	681.269	630	not_Ok	51.2694	108.138	
		2	645.44 1	11.68kvar	111.68	416593	12472.4	655.031	630	not_Ok	25.0307	103.973	
		2.5	641.28 1	13.60kvar	113.60	411240	12905	651.264	630	not_Ok	21.2642	103.375	
		3	624.64 1	13.60kvar	113.60	390175	12905	634.886	630	not_Ok	4.88589	100.776	
		3.5	611.84 1	11.04kvar	111.04	374348	12329.9	621.834	630	Ok	-8.1656	98.7039	
		4	606.72 1	13.92kvar	113.92	368109	12977.8	617.322	630	Ok	-12.678	97.9877	
		4.5	607.68 1	16.48kvar	116.48	369275	13567.6	618.743	630	Ok	-11.257	98.2131	
		5	602.88 1	19.36kvar	119.36	363464	14246.8	614.582	630	Ok	-15.418	97.5527	
		5.5	580.8 1	18.40kvar	118.40	337329	14018.6	592.745	630	Ok	-37.255	94.0866	
		6	563.84 1	18.72kvar	118.72	317916	14094.4	576.203	630	Ok	-53.797	91.4608	
		6.5	557.76 1	22.88kvar	122.88	311096	15099.5	571.135	630	Ok	-58.865	90.6564	
		7	553.6 1	21.28kvar	121.28	306473	14708.8	566.729	630	Ok	-63.271	89.957	
		7.5	566.72 1	19.68kvar	119.68	321172	14323.3	579.219	630	Ok	-50.781	91.9396	
		8	566.4 1	16.48kvar	116.48	320809	13567.6	578.253	630	Ok	-51.747	91.7862	
		8.5	576.32 1	17.12kvar	117.12	332145	13717.1	588.1	630	Ok	-41.9	93.3492	
		9	586.56 1	21.60kvar	121.60	344053	14786.6	599.032	630	Ok	-30.968	95.0844	
		9.5	591.68 1	20.64kvar	120.64	350085	14554	603.854	630	Ok	-26.146	95.8498	
		10	607.04 1	21.92kvar	121.92	368498	14864.5	619.162	630	Ok	-10.838	98.2797	
		10.5	614.08 1	22.24kvar	122.24	377094	14942.6	626.128	630	Ok	-3.8715	99.3855	
		11	630.08 1	25.12kvar	125.12	397001	15655	642.383	630	not_Ok	12.3829	101.966	
		11.5	627.2 1	27.36kvar	127.36	393380	16220.6	640	630	not_Ok	10.0003	101.587	
		12	635.52 1	27.04kvar	127.04	403886	16139.2	648.093	630	not_Ok	18.0932	102.872	
		12.5	652.16 1	26.40kvar	126.40	425313	15977	664.296	630	not_Ok	34.2963	105.444	
		13	658.88 1	27.04kvar	127.04	434123	16139.2	671.016	630	not_Ok	41.0157	106.51	
		13.5	658.88 1	25.44kvar	125.44	434123	15735.2	670.715	630	not_Ok	40.7146	106.463	
		14	662.72 1	22.24kvar	122.24	439198	14942.6	673.899	630	not_Ok	43.8994	106.968	
		14.5	676.48 1	25.12kvar	125.12	457625	15655	687.954	630	not_Ok	57.9536	109.199	
		15	698.88 1	26.40kvar	126.40	488433	15977	710.218	630	not_Ok	80.2184	112.733	
		15.5	717.12 1	24.80kvar	124.80	514261	15575	727.898	630	not_Ok	97.8984	115.539	
		16	704 1	23.20kvar	123.20	495616	15178.2	714.699	630	not_Ok	84.6987	113.444	
		16.5	728.96 1	27.04kvar	127.04	531383	16139.2	739.947	630	not_Ok	109.947	117.452	
		17	722.56 1	26.72kvar	126.72	522093	16058	733.588	630	not_Ok	103.588	116.442	
		17.5	703.36 1	24.80kvar	124.80	494715	15575	714.346	630	not_Ok	84.3461	113.388	
		18	704.96 1	27.36kvar	127.36	496969	16220.6	716.372	630	not_Ok	86.3722	113.71	
		18.5	692.48 1	28.64kvar	128.64	479529	16548.2	704.327	630	not_Ok	74.3272	111.798	
		19	673.6 1	26.40kvar	126.40	453737	15977	685.357	630	not_Ok	55.3568	108.787	
		19.5	697.92 1	31.52kvar	131.52	487092	17297.5	710.204	630	not_Ok	80.2041	112.731	
		20	695.36 1	26.08kvar	126.08	483526	15896.2	706.698	630	not_Ok	76.6977	112.174	
		20.5	710.72 1	26.08kvar	126.08	505123	15896.2	721.817	630	not_Ok	91.8165	114.574	
		21	706.56 1	24.16kvar	124.16	499227	15415.7	717.386	630	not_Ok	87.386	113.871	
		21.5	699.2 1	22.56kvar	122.56	488881	15021	709.86	630	not_Ok	79.8603	112.676	
		22	716.48 1	25.12kvar	125.12	513344	15655	727.323	630	not_Ok	97.3229	115.448	
		22.5	704 1	22.24kvar	122.24	495616	14942.6	714.534	630	not_Ok	84.5338	113.418	
		23	710.72 1	17.76kvar	117.76	505123	13867.4	720.41	630	not_Ok	90.4098	114.351	
		23.5	711.36 1	16.80kvar	116.80	506033	13642.2	720.885	630	not_Ok	90.8851	114.426	

Figure 1: The hourly load on Murabba transformer in 03/08/2021

3.1.2:) Electricity coming from the occupation side:

Tulkarm city obtains its own electricity from the Israeli occupation, which supplies the city with a limited amount of electricity with a capacity of (32 MVA), divided into two lines and distributed among 134 transformers in the city, while the amount of electricity that Tulkarm needs is currently estimated at (45 MVA), which causes a power outage in many areas, especially in the summer.

Figure(2) below shows the single lines of electricity coming from the occupation side and their distribution to the city's transformers.

Figure 2:SLD of the electricity coming from Israeli side

3.2 The loads on the transformers

In this report, only one transformer load (Murabba transformer) was taken, which will be considered as a general case and an example for the rest of the transformers in the city.

The loads on the transformer were classified into two types (day loads and night loads).

Figure 3: The load profile on Murabba transformer in five different days in August(8) With respect to the transformer rating

3.2.1) Daytime loads: These loads are divided into three types:

- High daytime loads: such as schools, government institutions and factories (20% of the transformer).

- Normal daytime loads: homes and shops with normal consumption (70% of the transformer).

- Medical day loads: such as hospitals, health centers and clinics (10% of the transformer).

Figure 4:Imposed daily electrical loads in Tulkarm city

3.2.2) Night loads: These loads are divided into three types:

- High night loads: such as street lighting, commercial malls, large cafes and wedding halls (35% of the transformer)

- Normal night loads: homes and shops with normal consumption (50% of the transformer)

- Medical night loads: such as hospitals, health centers and clinics (15% of the transformer)

Figure 5:: Imposed night electrical loads in Tulkarm city

As these ratios were assumed because there are no real ratios and detailed readings clarify this by the municipality

3.3) The Solutions to the electricity problem of Tulkarm city

Appropriate solutions to the problem are arrived at in terms of understanding the problem and finding solutions by thinking outside the box.

The problem of over loads on the transformer and the shortage of electricity in the city has been solved as follows, as the solution was adopted based on the classifications that were set in the previous part (3.2), where:

3.3.1) Daytime load problem:

Figure 6:Suggested solution for daytime electrical loads

-Normal and High daytime loads: the work of a solar cell system connected to the network, but with a net-measuring system (self consumption), whereby this solution will be supplied to the loads by electricity coming from the solar panels directly. In the event of excess energy, it is pumped to the network, and thus these loads are disposed of and removed from the transformer, thus returning the transformer to its normal ratio. While in the event of a shortage, this shortage is taken from the municipality (the design is based on the absence of a shortage of electricity).

- Medical day loads: in the event that the ratio of these loads is large and the solution stops there, a hybrid system is made (solar panels + municipal electricity + batteries), but in most cases this part is not important because the largest percentage in most transformers is on the previous two types.

3.3.2) Night load problem:

Figure 7:Suggested solution for night electrical loads

- Normal and high night loads: This problem is solved by designing an (off-grid) system so that the necessary energy is stored in batteries and supplied to the night loads.

Here, two plans of action have been developed, which are as follows:

1) Converting all night loads (e.g. commercial store) to solar electricity by converting the electrical energy in the batteries into alternating electricity by an inverter, which is an expensive solution.

2) Converting lighting in shops to direct dependence on batteries, where the percentage of lighting consumption in most residential buildings is approximately 30% of the total energy consumed and reaches more than 30% in shops, which is the least expensive solution.[9]

- Medical night loads: In the event that the percentage of these loads is large and the solution stops there, a hybrid system is made (diesel generator + municipal electricity + batteries), but often this part is not important because the largest percentage in most transformers is on the previous two types.

3.4) The structure design :

Several software have been used in designing the structure of the solar cells, which are the SketchUp and ETABS software.

SketchUp Software :

Here in this report, a structure has been designed in a new way, figure(8) below shows the structure, which will be presented for the first time, and it is considered a major and essential part of solving this problem, not just an ordinary structure on which solar panels are placed.

Figure 8: The shape of the structure

✤ Installation and details:

The new structure consists of 3 poles with a diameter of 0.5 m for each pole and a distance of 10 m (20 m in total distance) between each pole. The street solar system is designed with a height of 12 meters (the height of each column) to avoid shading.

As described in the ETABS design, in the next section, an approved engineering study plan for winds with a wind speed of 120 km/h has been developed. The chassis is also designed to withstand the weight produced by 40 units of approximately 1 ton (1,000 kg).

Figure 9:Aesthetic illustration shape of the structure

Figure 10:Dimensions of the structure

✤ The Components:

	Dimensions	Quantity	Unit	The cost	Total cost
			price(NIS)		(NIS)
Pole	12 m*0.5m	3	1200	3600	3 600
Main parts of galvanized	20m*(150*100*3 mm)	5	1 m = 30	3000	6 600
iron (Profila)			NIS		
Galvanized iron straight	1m* (100*100*3 mm)	44	1m = 25	1100	7 700
pieces (Profila)			NIS		
Straight metal parts	1m* (100*100*3 mm)	16	1m = 25	400	8 100
(stents)			NIS		

Table 1 : the components of structure with economic value

✤ Features (Pros) of the new structure:

1) This new structure has been designed to exploit the islands located in the streets or in the middle of the streets in the absence of an island.

2) Through this structure, the problem of using agricultural lands to put solar panels on them can be eliminated (especially in the case of large stations).

3) An aesthetic view that indicates the progress of the city.

4) It can be used as rain umbrellas that people passing in the streets can hide under.

5) In residential buildings, the roof of the building is not enough to install a solar system on it that covers all the apartments inside, so the new structure will solve this problem by installing solar panels on the new structure in the same street or area that contains the residential architecture.

6) Savings in the price of land, as one structure is designed to produce a capacity of 20 kilowatts, which is equivalent to an area of 200 square meters of land.[10]

7) The possibility of placing the new structure within the cities (Areas A) saves the citizens, investors, municipalities and Palestinian electricity companies from building high-capacity stations in the outskirts of the city or in the villages, thus reducing the amount of loss during the period of the energy transfer process.

8) The possibility of designing the structure at different heights according to the heights of the influential buildings located on that street to avoid shadows.

9) The possibility of using the new structure in the place of the existing lighting poles, where the structure can be designed with the possibility of placing street lighting on it.

Figure 11: The final shape of the street after placing the structure

ETABS software :

This program was used to determine the dimensions of length, width, height and thickness necessary for the structure to bear the weight produced by the 40 modules, which is approximately 1 ton (1000 kilograms).

After examining on the ETABS program, it was found that three Poles were needed, and their characteristics were monitored in table (1) below :

The two figures below show the 3D view of the structure from two sides: the first side is the southeast side shown in figure(12), and the second is the southwest side shown in figure (13).

Figure 12: South East (SE) 3D view of the structure

Figure 13:South West (SW) 3D view of the structure

The figure(14) below shows the elevation view from the front side and the necessary struts of the structure.

Figure 14:the Elevation view with struts of the structure

The number of cells on the structure listed in the pictures below is 40 cells distributed on two sides, each side contains 20 cells as shown in figure (15) and figure (16).

Figure 15:3D view of the modules on the structure

Figure 16:3D close-up view of the modules on the structure

The following figure (17) shows the acceptable deflection resulting from the dead load (Dead loads are structural loads of a constant magnitude over time. They include the self-weight of structural members. Dead loads also include the loads of fixtures that are permanently attached to the structure).

Figure 17:: 3D view of the deflection resulting from the dead load

The following figure (18) shows the acceptable deflection resulting from the wind load after applying a speed of 120 km/h, which is equivalent to a force of 0.77 kN.

Figure18:3D view of the deflection resulting from the wind load

The steel dimensions needed to be placed under the modules was determined in numbers shown in the figures (19), (20), (21) below.

Figure 19:3D view of the steel dimensions needed in the structure

Figure 20:: 3D front view of the steel dimensions needed in the structure (struts)

Figure 21:another 3D view of the steel dimensions needed in the structure

3.5) Calculations:

The structure is designed to produce 20 kW, and when calculating the maximum power that must be supplied to Al-Murabba transformer, it is 91.4 kW AC during the day and 80 kW AC at night.

It equates to 164.52 kW DC during the day and 239.37 kW DC for batteries to supply high night loads. This means we need 403.89 kW DC, which means we need about 20 new chassis to cover this load.

But if we assume that the construction will be designed on a plot of land using the traditional structure, it will require 4000 square meters (where one kilo needs 10 square meters).

As for the wires, we need 6mm² DC DC wires and 6 mm² AC wires.

3.6 Questionnaire:

The result was good, I made a copy of the performance of the business, and to see what people think of that activity and the results were as follows:

- 95.2% support the use of solar cells in their homes.
- 9.5% have solar energy in their homes.
- 95.2% believe in solar energy as a solution to the problem of lack of current in the city.
- 100% support the use of solar energy in the residential area in which they live.
- 95.2% prefer solar cells over diesel generators.
- 100% prefer to use solar energy in their shops.
- 90.5% support using batteries in their stores at night.

- As for the reasons that prevent citizens from installing solar energy, most of the answers centered around the high price of solar systems, the lack of adequate money to install solar systems, the absence of a law regulating the relationship between citizens and municipalities, in addition to the high costs, lack of experience in the market, Lack of knowledge about costs, the location of the shop and the lack of a good space for installing solar cells.

Figure 22:Questionnaire 1

• ما مدى معر فتك بالخلايا الشمسية ؟

Figure 23:Questionnaire2

Figure 24:Questionnaire3

اذا كنت صاحب محل تجاري/مؤسسة هل توافق على تحويل كهرباء المحل الخاص بك/مؤسستك الى الطاقة الشمسية بدلا من الكهرباء البلدية ؟

Figure 25: Questionnaire4

اذا كنت صاحب محل تجاري/مؤسسة هل توافق على استعمال البطاريات (بطاريات الطاقة الشمسية) في المحل الخاص بك/مؤسستك ؟

Figure 26:Questionnaire5

اذا كنت تفضل استخدام الخلايا الشمسية ، ما هي الاسباب التي تمنعك من استعمالها في منز لك /المحل الخاص بك/مؤسستك؟

لانها بدون بطاريات تخزين والبطاريات سعر ها باهض

عدم توفر المال

لا اعرف

عدم وجود قانون منظم للعلاقة بين المواطنين والبلديات بالإصافة إلى التكاليف الباهصة

التكلفة العالية و عدم الاستفادة منها في فصل الشتاء

افضل استخدامها بدون اي مانع

نظام مكلف

السعر

عدم توفر الوقت لاستشارة المختصين ومباشرة العمل

Figure 27: Questionnaire6

اذا كنت تفضل استخدام الخلايا الشمسية ، ما هي الإسباب التي تمنعك من استعمالها في منز لك /المحل الخاص بك/مؤسستك؟

اسعار ها الباهصة تتكلفه عاليه، ويمكن تغرب الوضع المادي لا يسمع عذم الالمام بالتكاليف موقع المحل موقع المحل التكلفة العالية عذم توفر مساحة جيده لتركيب الخلايا الشمسية تتكلفتها العالية

Figure 28: Questionnaire7

3.7) Single line diagram(SLD) of the systems after design :

The figures (22), (23) below show SLD for each of the two systems, connected to the grid and off-grid, respectively.

Figure 29: SLD od on -grid system

Figure 30: SLD of off-grid system

4.Chapter four : Discussion

In this project, the electrical situation of the city of Tulkarm was studied, and according to the results that appeared in the previous chapter, it was concluded that there is a shortage of electric current in the city, in addition to the presence of excessive loads on the transformers.

Accordingly, a plan was developed to solve the problem, taking into account the square transformer as a case and example for the rest of the city's transformers, and the loads on the transformers were divided and classified into daytime loads (high, normal, medical) and night loads (high, normal, medical). The condition of the transformer was then studied and the amount of overloads per hour throughout the year, as well as the amount of electrical current needed by the transformer.

The morning period (9 hours) was considered from 8 am to 5 pm, and the evening period (15 hours) from 5 pm to 8 am.

Accordingly, a plan was developed as follows:

Converting high and normal morning loads to a solar energy system that depends on the net metering system (self-consumption), and proposing the work of a hybrid system (solar cells, batteries and municipal electricity) for morning medical loads, Thus, the loads on the transformer were reduced, in addition to self-reliance in producing electricity from the sun, and not resorting to Israeli electricity.

In the case of high night loads, a storage system consisting of solar panels feeding the batteries and supplying high and normal night loads was undertaken, and a hybrid system (generator, municipal electricity and batteries) was proposed to supply medical loads.

		المحول حاليا (في حالة اهاندا ال maximum)			
	الترة الاحدل المسانية(كم	kw/day/mounth (س-8		الدرة الاحمال الصباحية (8ص-5م) kw/dayimounth	
مال سنائية طبية(سنتشيات) (15%)	احمال مسالية عادية(مدارل) (50%)	احدال مسالية شالية(صالات مول، طاهي) (35%)	احدال سباحية طبية(مستدفيات) (10%)	احدال صباحية تدلية(مدارل) (70%)	احدال صباحية عالية(عدارس خوسسات) (20%من المحول)
104.742	349.1413333	244.3989333	70.99733333	496.9813333	141.9946667
	فلللة الاحمال المسالية الأحم	kwhidav/mounth (, wi		kwh/dav/mounth (a5., sell) (assing) (Jassi) (3.)	
ىل سانية شية(سلدهيت) (15%)	المثل سائية عدية(سرد ل) (560)	الممال مسائلية عالية(مسالات مول، مقاهر) (35%)	الممال مساحية شية(استشقيات) (10%)	المال مساهية عاتية(مدول) (70%)	الممال مساهية حالية(عدار بررعارسيات) (20%من المحول)
1571.13	5237.12	3665.984	638.976	4472.832	1277.952
		المعرل في العالة التثانية (في حالة إهاننا ال maximum)	Г		
التره الأح	حمال السانية(5بـ8ص) kw/day/mounth الم	الية صنعا لكون الترة السول 630kva أي 100% ال load	الترة الأحمال	، المياحية (8ص-5م) kw/day/mounth الثالية عندما تكون الترة المحول و	630kva أي 100 (J % Load)
ال سائية طبية(استشفيات) (15%)	احمال مسالية عادية(مدارل) (50%)	الحمال مسائية عالية(مسالات مول:عقاهي) (35%)	احمال سباحية طبية(مىتشقيات) (10%)	احدال سباحية عادية(مدارل) (70%)	احمال صباحية عالية(مدارس،«رُسسات) (20%»ن المحول)
92.186090	307.2869695	215.1008786	61.45739389	430.2017572	122.9147878
	مالة الإحداء المرابية الا	kwhitesimunth (, a		فالة الأحدار (مداحة (العد مكر) having internation	
ال سائلة طبية (ستدهات) (1615)	الحمار مسائلة ماتية(مد ()) ((5650)	الجمار، سبانية عالية(مبالات، بو المقافر) (1635)	المدار، مساحية طيبة (ستخفرات) (10/10)	اجدار، مساحية عاتية(بدر: () (٩٤٦٥)	اجدار، مساحدة عالية(بدر، بر رمارسيات) (620)، البحوار)
1382.7913	4609.304542	3226.513179	553.116545	3871.815815	1106.23309
		الترق بين المعول حاليا والمعول في الحالة التثالية (في حالة احتدا ال maximum)			
قدرة الاحمال المسائية(5يـ8ص)	kw/day/mounth کیة (ےpower الحزمة تح	بنها من الحلايا التمسية لكل درع من الاحمال (الاحمال الخزم تحريلها في حلايا شمسية)	انرة الاحمال المباحية (8من-5ء) t	kw/day/mounl كلية لpower الخرمة تخيتها من العانيا التمسية لكل س	ع من الاحمال (الاحمال اللازم تحريلها في هلايا شمسية)
ال مسانية طبية(مستدعيات) (15%)	احمال سنائية عادية(سازل) (50%)	الحمال مسالية عالية(مسالات مول،مقاهي) (35%)	الحمال سباحية طبية(مستشفيات) (10%)	احدال سباحية عادية(مدارل) (70%)	احمال مساحية عالية(مدارس، فأسسات) (20%من المحول)
12.556309	41.85436387	29.29805471	9.539939441	66.77957609	19.07987888
	and a call and a section.	back Maximum Br. 7 - 4		hash Mandamanath (
(9(15) (c) at all bid at a	(9(E0) (1) (1) (1) (1) (1)	(BC2E) (Allan Jan 200 allan Jan Jan Jan	(9010) (c) 45 (c) 5 (c) and (c)	(9070) (Jawie and Antonio (90-040)	المراجع مراجع مراقب المراجع المراجع المراجع المراجع
(1013) (0.00000) (0.0000)	627 8154581	(1855) (21410) (2140) (214	85 85045407	(1870) (0)470 404 004 004 004 004 004 004 004 004	171 7180000
100.34403	627.0104001	439.4706207	00.00940497	001.0101040	1/1./109099

Figure 31: Detailed solution of the problem

In addition, the case of the solar panels and their installation method was studied, as a new structure was proposed to install the solar panels in a way that takes advantage of the islands in the streets and undeveloped areas to install the panels on them, to generate electric power and save large areas. Where the new structure takes into account all the heights of the buildings, which can cause and avoid shadows on the panels, in addition to the fact that the system in its new form is less expensive than the existing system in the traditional form, where the price of the new system is estimated at (47000NIS) and the price of the traditional system (142000 NIS). Table (3),(4) below show the comparison between the two systems.

A Canadian solar inverter with a capacity of 20 kilowatts and a Trina solar panel with a capacity of 500 watts has been selected, where the panels can be used with a greater capacity to compensate the shortage that results from directing the panels to the east, west or north according to the direction of the structure, which depends on the direction of the street. In addition to the use of 12-volt and 200 Ah batteries.

Weather maps and global locations were used to determine the amount of solar radiation, the number of sunny, rainy and cloudy days, and wind speed, which affects the design, it is included in the appendix.

	Quantity	Unit price(NIS)	The cost(NIS)	Total cost (NIS)
The new structure	1	8 100	8 100	8 100
Modules(500w)	40	640	25 600	33 700
Inverter (20 kw)	1	10 000	10 000	43 700
Circuit Breakers(DC)	6	200	1200	44 900
Circuit Breakers(AC)	3	50	150	45 050
Fuses	1	15	15	45 065
Surge Arrestors(DC)	2	170	340	45 405
Surge Arrestors(AC)	1	140	140	45 545
Dc Cables	10 m	4	40	45 585
Ac Cables	15 m	3	45	45 630
Earth cable	15 m	5	75	45 705
Earth leakage	1	115	115	45 820
Junction Box	2	160	320	46 140
Electrode + busbar	3	210	630	46 770
Anchors and connections	1	50	50	46 820

Table 3: Calculation of the cost of the new structure

Table 4: Calculation of the cost of the traditional structure

	Quantity	Unit price(NIS)	The cost(NIS)	Total cost (NIS)
traditional structure	1	3 000	3 000	3 000
Modules(500w)	40	640	25 600	28 600
Inverter (20 kw)	1	10 000	10 000	38 600
Circuit Breakers(DC)	6	200	1200	39 800
Circuit Breakers(AC)	3	50	150	39 950
Fuses	1	15	15	39 965
Surge Arrestors(DC)	2	170	340	40 305
Surge Arrestors(AC)	1	140	140	40 445
Dc Cables	10 m	4	40	40 485
Ac Cables	15 m	3	45	40 530
Earth cable	15 m	5	75	40 605
Earth leakage	1	115	115	40 720
Junction Box	3	160	480	41 200
Electrode + busbar	3	210	630	41 830
Anchors and connections	1	50	50	41 880
Theland	200 m ²	500	100 000	141 880

The total cost of the system by the new structure = $46\ 820\ \text{nis} = 47\ 000\ \text{nis}$ The total cost of the system by the traditional structure = $141\ 880\ \text{nis} = 142\ 000\ \text{nis}$

Here, the price difference between the two systems (the new and the traditional) was noticed, as the price of the new system (20 kilowatts) is only 47,000 NIS, while the traditional system costs 142,000 NIS. This means that designing a solar energy system using the new structure is better in terms of price than designing a solar energy system Solar energy using the traditional structure.

In addition, a questionnaire (opinion poll) was conducted to determine the extent to which the residents of Tulkarm are aware of solar energy and their opinion of solar energy and whether they consider it a solution and believe in it or not. They were asked to mention the reasons that prevent them from installing it, as the results showed that the majority support solar energy, but a large percentage did not install these systems because of their high cost, but with that it was concluded that many believe that it is the solution to get rid of the electricity problems that the city suffers from.

5. Chapter five: Conclusions

- The problem of Tulkarm city in the electricity sector has been explained, which suffers from two main problems, namely the lack of current reaching the city and the overload of transformers.
- The climatic conditions in Tulkarm city and the conditions related to the climate in the city have been established.
- One transformer (the square transformer) was taken as a case and example for the rest of the city transformers, where the transformer needs a DC 165 kW system to cover the shortfall in the morning loads and a 240 kW DC system to supply the batteries to cover the shortfall in the night loads.
- The loads on the transformer were divided and a solution was proposed for each load problem that might fall within the existing loads.
- ♣ A new structure has been proposed in a new shape and style that takes advantage of the islands and the middle of the streets to install solar panels.
- A questionnaire was conducted to find out the opinion of people in Tulkarm city with solar energy and how much they believe in it as a solution to save them from the electricity problem that Tulkarm city suffers from.

References :

- W. A. Salah and M. Abuhelwa, "Energy status and practices for efficient energy management to reduce power interruptions: a case study on Tulkarm district in Palestine," *https://doi.org/10.1080/14786451.2020.1748630*, vol. 39, no. 7, pp. 685–699, Aug. 2020, doi: 10.1080/14786451.2020.1748630.
- Y. F. Nassar and S. Alsadi, "Economical and Environmental Feasibility of the Renewable Energy as a Sustainable Solution for the Electricity Crisis in the Gaza Strip," *Int. J. Eng. Res.*, vol. 12, no. 3, pp. 35–44, 2016, Accessed: Dec. 22, 2021.
 [Online]. Available: www.ijerd.com.
- [3] P. González, E. Romero-Cadaval, E. González, and M. A. Guerrero, "Impact of Grid Connected Photovoltaic System in the Power Quality of a Distribution Network," *IFIP Adv. Inf. Commun. Technol.*, vol. 349 AICT, pp. 466–473, 2011, doi: 10.1007/978-3-642-19170-1_51.
- [4] A. Canova, L. Giaccone, F. Spertino, and M. Tartaglia, "Electrical impact of photovoltaic plant in distributed network," *IEEE Trans. Ind. Appl.*, vol. 45, no. 1, pp. 341–347, 2009, doi: 10.1109/TIA.2009.2009726.
- [5] "Techno-economic analysis of network configuration of PV based off-grid distribution system." https://www.cired-repository.org/handle/20.500.12455/621 (accessed Dec. 22, 2021).
- [6] H. El-Houari *et al.*, "Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification," *Energies*, vol. 12, no. 24, p. 4735, Dec. 2019, doi: 10.3390/EN12244735.
- [7] Z. Said, A. Mehmood, A. Waqas, A. Amine Hachicha, and R. Loni, "Central versus off-grid photovoltaic system, the optimum option for the domestic sector based on techno-economic-environmental assessment for United Arab Emirates," *Sustain. Energy Technol. Assessments*, vol. 43, p. 100944, Feb. 2021, doi: 10.1016/J.SETA.2020.100944.
- [8] "بلدية طولكرم" https://kstna.com/business/tulkarm-municipality (accessed Dec. 22, 2021).
- [9] شركة كهرباء منطقة طوباس" https://tdeco.ps/ (accessed Dec. 22, 2021).
- [10] شركة توزيع كهرباء الشمال" Posts | Facebook." https://www.facebook.com/pg/ps.nedco/posts/ (accessed Dec. 22, 2021).
- "World Weather Forecasts | World Weather Online."
 https://www.worldweatheronline.com/country.aspx (accessed Dec. 22, 2021).

Appendices:

1)PV Panels Selection:

Figure 32:Nameplate of PV modules[Trina solar, TSM-DE18M-500W]

2) inverter :

St CanadianSolar

THREE PHASE STRING INVERTER 20-30 KW CSI-20KTL-GI-FL | CSI-25KTL-GI-FL CSI-30KTL-GI-FL

Canadian Solar's grid-tied, transformer-less string inverters help to accelerate the use of three-phase string architecture for commercial rooftop and small ground-mount applications. An NRTL approved, cost-effective alternative to central inverters, these inverters are modular design building blocks that provide high yield and enable significant BoS cost savings. They provide up to 98.6% conversion efficiency, a wide operating range of 200-800 Vdc, and four MPPTs for maximum energy harvest.

KEY FEATURES

- Maximum efficiency up to 98.6%, Maximum CEC efficiency up to 98.3%
- 4 MPPTs to achieve higher system efficiency
- Transformerless design
- High switching frequency and ultra fast MPPT (<5 sec.) for maximum efficiency over a wide load range

EFFICIENCY CURVE

CSI-30KTL-GI-FL@380 Vac

*For detailed information, please refer to the Installation Manual.

CANADIAN SOLAR INC.

545 Speedvale Avenue West, Guelph, Ontario N1K 1E6, Canada | www.canadiansolar.com

HIGH RELIABILITY

5

₩ CanadianSolar

Advanced thermal design and convection cooling

Standard warranty, extension up to 20 years

- · Built in over-voltage and over-current protection
- DC reverse polarity and AC short circuit protection

BROAD ADAPTIBILITY

- IP65 rated for outdoor application
- Utility interactive controls: Active power derating, reactive power control and over frequency derating
- Integrated DC load rated disconnect
- Wide MPPT range for flexible string sizing
- 90 degree installation angle
- Supports up to 8 DC string inputs (2 per MPPT)

CANADIAN SOLAR INC. is committed to providing high quality solar products, solar system solutions and services to customers around the world. As a leading PV project developer and manufacturer of solar modules with over 33 GW deployed around the world since 2001, Canadian Solar Inc. is one of the most bankable solar companies worldwide.

SYSTEM/TECHNICAL DATA								
MODEL NAME	CSI-20KTL-GI-FL	CSI-25KTL-GI-FL	CSI-30KTL-GI-FL					
DC INPUT								
Max. PV Power	23 kW (13.5 kW/MPPT)	28 kW (13.5 kW/MPPT)	34 kW (13.5 kW/MPPT)					
Max. DC Input Voltage	1000 V _{er}							
Operating DC Input Voltage Range	200-800 V _{oc}							
Start-up DC Input Voltage/Power	350V							
Number of MPP Trackers	4							
MPPT Full Power Voltage Range	278-800 V _{pc}	347-800 V _{pc}	417-800 V _{pc}					
Operating Current (Imp)		72 A (18 A per MPPT)						
Max. Input Current (Isc)		93.6 A (23.4 A per MPPT)						
Number of DC Imputs		8 (2 per MPPT)						
DC Disconnection Type		Load rated DC switch						
AC OUTPUT								
Rated AC Output Power	20 kW	25 kW	30 kW					
Max. AC Output Power	22 kW	27.5 kW	33 kW					
Rated Output Voltage		380/400 V _{AC}						
Output Voltage Range*		304-460 V _{AC}						
Grid Connection Type		3 Φ/PE						
Nominal AC Output Current @480 Vac	30.3/28.7 A	37.9/36.1 A	45.5/43.3 A					
Rated Output Frequency		50/60 Hz						
Output Frequency Range*		47-52/57-62 Hz						
Power Factor	1 default (±0.8 adjustable)							
Current THD	<3%							
SYSTEM	•							
Topology		Transformerless						
Max. Efficiency		98.6 %						
CEC Efficiency		98.3 %						
Night Consumption		< 1 W						
ENVIRONMENT								
Protection Degree		IP65						
Cooling		Natural Convection Cooling						
Operating Temperature Range		-25 * C to +60 * C						
Storage Temperature Range		-40 F to + 158 ° F / -40 ° C to +70 ° C						
Operating Humidity		0 - 100 %						
Operating Altitude		4000 m						
Audible Noise		<30 dBA @ 1 m						
DISPLAY AND COMMUNICATION								
Display		LCD + LED						
Communication		Standard: RS485 (Modbus)						
MECHANICAL DATA								
Dimensions (W / H / D)		530 x 700 x 356.5 mm						
Weight		58.2 kg						
Installation Angle		90 degrees from horizontal						
DC Inputs	MC4							
SAFETY								
Safety	IEC62109-1/-2							
Grid Standard	A54777, NR5097							
Smart-Grid Features	Voltage-Ride Thru, Fr	equency-Ride Thru, Soft-Start, Volt-Var, Freq	uency-Watt, Volt-Watt					

*The "Output Voltage Range" and "Output Frequency Range" may differ according to specific grid standard.

* The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. Canadian Solar Inc. reserves the right to make necessary adjustment to the information described herein at any time without further notice.

CANADIAN SOLAR INC.

April 2019 | All rights reserved | Inverter Product Datasheet V3.4_GL

Figure 33: Solar inverter datasheet

3) Map of Palestine :

Figure 34:Map of whole Palestine

4) A map showing the amount of radiation in the city of Tulkarm:

	Noliza Versité CENTIZEA, EMPRICATION Distan	Abitation and a second and a se	طواكرم 32.303965*,035.036415* - umamed road, بحب Palestinian Ter Time zone: UTC+02, Asia/Hebron [EE] Open detail Bookmark	ritory .T] , Daylight savir Share	ng time not c E Reports	considered
Tel Aviv Y		Reference bole part of the second sec	SITE INFO Map data			A Per year -
	Servision AL State	At-Describe Orderer Greekensel	Specific photovoltaic power output	PVOUT specific	1740.1	kWh/kWp *
	DEDARAMEN (AND	Direct normal irradiation	DNI	2090.0	kWh/m ² *
	BETHLENEM		Global horizontal irradiation	GHI	1991.9	kWh/m ² *
	Alterin	MADABA	Diffuse horizontal irradiation	DIF	656.9	kWh/m ² *
Gaza Gaza DEID AL RAM AM	AL IDIALIL POERSON	Theology Theology Theology	Global tilted irradiation at optimum angle	GTI opta	2205.9	kWh/m ² *
IN THIS BULLAN		Al-Queer	Optimum tilt of PV modules	OPTA	28 / 180	*
A REAL VIELONS	ALL DE DE DE LA	and the second	Air temperature	TEMP	21.0	°C *
تنشيط Windows	ALC: NO	ver Al-Bunaselige	Terrain elevation	ELE	105	m *

Figure 35: A map showing the amount of radiation in the city of Tulkarm

Figure 36:Map of Tulkarm Governorate and its surrounding villages

5)Tulkarm Monthly Climate Averages

World Weather Online is used to obtain this Figures in the bottom.[11]

A)Monthly Average Temperature and Rainfall in Tulkarm city :

Figure 37: Monthly Average Temperature and Rainfall in Tulkarm city using World Weather Online

B) The number of cloudy and sunny days in the city of Tulkarm:

Figure 38: The number of cloudy and sunny days in the city of Tulkarm

c)Monthly Average Maximum temperatures in Tulkarm city:

Figure 39:Monthly Average Maximum temperatures in Tulkarm city

d)Max and Average Wind Speed in Tulkarmcity:

Figure 40:Max and Average Wind Speed in Tulkarm city

6) PVSYST software reports for the two systems (on-grid and off- grid)

A) On-grid report :

0, Simulation date: 2/21 00:18 v7.2.8				
	Proj	ect summary —		
Geographical Site Tülkarm Palestine, State Of	Situation Latitude Longitude	32.31 °N 35.03 °E	Project settings Albedo	0.20
	Time zone	UTC+2		
Meteo data Tülkarm	0.1.1			
Meteonorm 8.0 (1991-2010), Sat=100%	- Synthetic			
	Syst	tem summary —		
Grid-Connected System	Tables on a	building		
PV Field Orientation Fixed planes 2 orientations Tilts/azimuths 26 / 0 ° 26 / -180 °	Near Shading Linear shading	gs s	User's needs Unlimited load (grid))
System information				
PV Array Nb. of modules	40 units	Inverters Nb. of units		1 Unit
Pnom total	20.00 kWp	Pnom total Pnom ratio		20.00 kWac 1.000
	Res	ults summary —		
Produced Energy 29.10 MWh/	year Specific produc	tion 1455 kWh/kWp	year Perf. Ratio PR	84.17 %
	Tabl	e of contents —		
Project and results summary				

PVsyst V7.2.8 VC0, Simulation date: 17/12/21 00:18 with v7.2.8

Project: graduation project 2 one inverter

Variant: New simulation variant

	Genera	l parameters —		
Grid-Connected System	Tables on a bu	ilding		
PV Field Orientation				
Orientation	Sheds configura	tion	Models used	
Fixed planes 2 orientation	ns Nb. of sheds	40 units	Transposition	Perez
Tilts/azimuths 26	/0° Sizes		Diffuse Per	rez, Meteonorm
26 / -1	80 ° Sheds spacing	1.03 m	Circumsolar	separate
	Collector width	1.10 m		
	Ground Cov. Rati	o (GCR) 106.4 %		
	Shading limit an	gle		
	Limit profile angle	84.7 °		
Horizon	Near Shadings	1	User's needs	
Free Horizon	Linear shadings		Unlimited load (gr	id)
		O L		
	PV Array	Characteristics –		
PV module		Inverter		
Manufacturer	Trina Solar	Manufacturer		Canadian Solar Inc.
Model	TSM-DE18M-(II)-500	Model		CSI-20KTL-GI-FL
(Original PVsyst database)	(Original PVsyst da	atabase)	
Unit Nom. Power	500 Wp	Unit Nom. Power		20.0 kWac
Number of PV modules	40 units	Number of inverters	4 * MPP	T 25% 1 unit
Nominal (STC)	20.00 kWp	Total power		20.0 kWac
Modules	4 Strings x 10 In series	Operating voltage		200-800 V
At operating cond. (50°C)		Pnom ratio (DC:AC)		1.00

Module area	95.6 m²	Pnom ratio	1.00
Total	40 modules	Nb. of inverters	1 Unit
Nominal (STC)	20 kWp	Total power	20 kWac
Total PV power		Total inverter power	
I mpp	47 A		
U mpp	390 V		
Pmpp	18.21 kWp		

				Array loss	es			
Thermal Los Module tempe	ss factor rature according	to irradiance	DC wiring Global array	losses res.	138 mΩ	Module C Loss Fract	Quality Loss	-0.8 %
Uc (const) Uv (wind)	20 0	.0 W/m²K .0 W/m²K/m/s	Loss Fraction	n	1.5 % at STC			
Module miss Loss Fraction	match losses 2	.0 % at MPP	Strings Mis Loss Fraction	match loss	0.1 %			
AM loss fac	t or ct (IAM): Fresnel	AR coating, n(g	lass)=1.526, n(A	R)=1.290				
0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

17/12/21

PVsyst Licensed to

Page 3/7

17/12/21

PVsyst Licensed to

Page 4/7

PVsyst V

Project: graduation project 2 one inverter

Variant: New simulation variant

_

PVsyst V7.2.8 VC0, Simulation date: 17/12/21 00:18 with v7.2.8

System Production

Main results

roduced Energy	29.10 MW	h/year	Specific p Performar	roductio nce Rat	on lio P
Normalized productio	ns (per installed kV	Vp)	1.2 =		1
Lc: Collection Loss (PV-an	ay losses) 0.65 KWh/kW	Vp/day .	1.1	PR	Parto
B Ls: System Loss (inverter) 0.1 kWh/kW	p/day	1.0		
Yt: Produced useful energy	(inverter output) 3.99 kWh/k/	Mp/day	0.9		_
		1	X 0.8		
°F		- 1	2 0.7		
		1	0.6		
4-		. 1	0.5		
		I I	2 D.4		
2			0.3		
			0.2		
			0.1		
lan Esh Mar Arr May	un lui Aun Seo Oct	New Dec	0.0	Eab	Mar

Balances and main results

		GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
		kWh/m ²	kWh/m ²	*C	kWh/m ²	kWh/m ^a	MWh	MWh	ratio
January		89.9	33.93	12.76	84.8	80.4	1.499	1.458	0.859
February		99.1	47.48	13.97	92.9	88.6	1.650	1.609	0.866
March		147.6	71.05	16.74	138.3	133.2	2.448	2.389	0.864
April		174.7	81.97	19.38	163.7	159.1	2.880	2.814	0.859
May		212.0	90.33	22.95	198.3	193.5	3.439	3.362	0.848
June		233.2	70.59	25.57	217.6	212.7	3.712	3.629	0.834
July		221.6	74.45	28.09	206.6	201.6	3.494	3.414	0.826
August		200.7	77.70	28.58	187.8	182.8	3.172	3.099	0.825
September	r	167.0	60.47	26.61	156.0	150.5	2.641	2.580	0.827
October		127.8	54.52	23.99	119.9	114.4	2.038	1.988	0.829
November		92.8	36.27	19.10	87.0	82.5	1.496	1.456	0.836
December		79.6	37.05	14.92	75.5	71.8	1.336	1.300	0.860
Year		1846.0	735.82	21.10	1728.5	1671.3	29.804	29.097	0.842
Legends GlobHor DiffHor T_Amb GlobInc ClobEff	Global I Horizon Ambien Global i	horizontal irradi tal diffuse irradi t Temperature incident in coll. j	ation iation plane or IAM and sha	finne	EArray E_Grik PR	y Effective d Energy in Performa	energy at the or jected into grid nce Ratio	utput of the array	y
CHUNCH!	LINGULW	e oronal, con. I	or treat and sha	anga					

17/12/21

PVsyst Licensed to

Page 5/7

Project: graduation project 2 one inverter

Loss diagram

Variant: New simulation variant

PVsyst V7.2.8 VC0, Simulation date: 17/12/21 00:18 with v7.2.8

1846 kWh/m²

1671 kWh/m2 * 96 m2 coll.

efficiency at STC = 20.94%

33.45 MWh

29.80 MWh

29.10 MWh

29.10 MWh

Global horizontal irradiation -6.37% 1-0.01% Global incident in coll. plane Near Shadings: irradiance loss 3.30% IAM factor on global Effective irradiation on collectors PV conversion Array nominal energy (at STC effic.) 9-0.73% PV loss due to irradiance level 3-8.11% PV loss due to temperature +0.75% Module quality loss 4-2.10% Mismatch loss, modules and strings -0.97% Ohmic wiring loss 0.00% Mixed orientation mismatch loss Array virtual energy at MPP -2.36% Inverter Loss during operation (efficiency) + 0.00% Inverter Loss over nominal inv. power 9 0.00% Inverter Loss due to max. input current 90.00% Inverter Loss over nominal inv. voltage 9-0.01% Inverter Loss due to power threshold + 0.00% Inverter Loss due to voltage threshold Available Energy at Inverter Output Energy injected into grid

17/12/21

PVsyst Licensed to

Page 6/7

Figure 41:On-grid report

B) Off-grid report :

PVSYST V6.81			21/12/21 Page 1/5
	Stand alone system:	Simulation parameters	
Project :	New Project		
Geographical Site	Tulkarm	Count	y Palestine, State Of
Situation	Latitude	32.31° N Longitud	ie 35.03° E
Time defined as	Legal Time	Time zone UT+2 Altitud	ie 125 m
Meteo data:	Albedo	0.20 Meteonorm 7.2 (1990-2004), Sat-	=100% - Synthetic
		<u>, , , , , , , , , , , , , , , , , , , </u>	,
Simulation variant :	varient 1		
	Simulation date	21/12/21 23h52	
Simulation parameters	System type	Stand alone system with batter	ries
Collector Plane Orienta	tion Tit	26° Azimut	th 0°
Models used	Transposition	Perez Diffus	e Perez, Meteonorm
User's needs :	Daily household consumers average	Constant over the year 825 kWh/Day	
PV Array Characteristics PV module Original PVsyst databas Number of PV modules Total number of PV modul Array global power Array operating characteris Total area System Parameter Battery Battery Pack Characteris Controller	uCSi-aSi:H Model se Manufacturer In series No. modules Nominal (STC) stics (50°C) U mpp Module area System type Model Manufacturer Voltage Discharging min. SOC Temperature Model	EST-500 ENN Solar Energy 21 modules In paralli 504 Unit Nom. Powe 252 kWp At operating cond 4173 V Imp 2883 m ³ Stand alone system AcmeG 12V 200 Narada 20 in series x 40 in parallel 240 V Nominal Capaci 20.0 % Stored energ Fixed (20°C) Universal controller with MPPT co	el 24 strings er 500 Wp d. 234 kWp (50°C) p 56 A ty 8000 Ah ty 1583.2 kWh
Converter	Technology Maxi and EURO efficiencies	MPPT converter Temp coel 97.0 / 95.0 %	ff5.0 mV/°C/elem.
Battery Management cont	rol Threshold commands as	SOC calculation	000 0 1050 111
	Discharging	SOC = 0.9070.75 Le. appro SOC = 0.2070.45 i.e. appro	x. 236.2/245.7 V
PV Array loss factors			
Thermal Loss factor	Uc (const)	20.0 W/m ² K Uv (wind	d) 0.0 W/m²K / m/s
Wiring Ohmic Loss	Global array res.	1305 mOhm Loss Fraction	n 1.5 % at STC
Serie Diode Loss	Voltage Drop	0.7 V Loss Fractio	n 0.0 % at STC
Module Mismatch Losses		Loss Fractio	n 0.8 % at MPP
Strings Mismatch loss		Loss Fractio	on 0.10 %
Incidence effect, ASHRAE	parametrization IAM =	1 - bo (1/cos i - 1) bo Paran	n. 0.05

PVSYST V6.81			21	/12/21	Page 2/5
	Stand alone system:	Detailed User'	s needs		
Project :	New Project				
Simulation variant :	varient 1				
Main system parameters	System type	Stand alone syste	m with batteries		
PV Field Orientation	tilt	26*	azimuth	0°	
PV modules	Model	EST-500	Pnom	500 Wp	
PV Array	Nb. of modules	504	Pnom total	252 kW	р
Battery	Model	AcmeG 12V 200	Technology	Lead-ac	id, sealed, Gel
-					
Battery Pack	Nb. of units	800 Vo	Itage / Capacity	240 V /	8000 Ah
Battery Pack User's needs Daily household consum	Nb. of units Daily household consumers ers. Constant over the year, a	800 Vo Constant over the y	ltage / Capacity ear Global	240 V / 301 MW	8000 Ah /h/year
Battery Pack User's needs Daily household consum	Nb. of units Daily household consumers ers, Constant over the year, a Annua	800 Vo Constant over the y verage = 825 kWh/c Il values	Itage / Capacity ear Global	301 MW	8000 Ah /h/year
Battery Pack User's needs Daily household consum	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number	800 Vol Constant over the y verage = 825 kWh/d Il values	Itage / Capacity ear Global day Use	240 V / 301 MW	8000 Ah /h/year Energy
Battery Pack User's needs Daily household consum	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number	800 Vol Constant over the y verage = 825 kWh/c al values Power 27000 W/app	Itage / Capacity ear Global day Use 15 h/da	240 V / 301 MW	Energy 5000 Wh/day
Battery Pack User's needs Daily household consum Shopping mall market	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number 1 3	800 Vo Constant over the y verage = 825 kWh/o I values Power 27000 W/app 7000 W/app	Itage / Capacity ear Global Iay Use 15 h/da 15 h/da	240 V / 3 301 MW	Energy 5000 Wh/day 5000 Wh/day
Battery Pack User's needs Daily household consum Shopping mall market cafe	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number 1 3 1	800 Vo Constant over the y verage = 825 kWh/o I values Power 27000 W/app 7000 W/app 7000 W tot	Itage / Capacity ear Global Iay Use 15 h/da 15 h/da 15 h/da	240 V / 3 301 MW y 405 y 315 y 105	8000 Ah /h/year Energy 5000 Wh/day 5000 Wh/day 5000 Wh/day
Battery Pack User's needs Daily household consum Shopping mall market cafe Stand-by consumers	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number 1 3 1	800 Vo Constant over the y verage = 825 kWh/o I values Power 27000 W/app 7000 W/app 7000 W tot	Itage / Capacity ear Global Iay Use 15 h/da 15 h/da 15 h/da 24 h/da	240 V / 3 301 MW y 405 y 315 y 105	Energy 5000 Wh/day 5000 Wh/day 5000 Wh/day 5000 Wh/day 5000 Wh/day
Battery Pack User's needs Daily household consum Shopping mall market cafe Stand-by consumers Total daily energy	Nb. of units Daily household consumers ers, Constant over the year, a Annua Number 1 3 1 1	800 Vo Constant over the y verage = 825 kWh/o I values Power 27000 W/app 7000 W/app 7000 W tot	Itage / Capacity ear Global Iay Use 15 h/da 15 h/da 24 h/da	240 V / 301 MW	Energy 5000 Wh/day 5000 Wh/day 5000 Wh/day 5000 Wh/day 24 Wh/day 5024 Wh/day

Hourly profile

PVSYST V6.8	81								21/12/21	Page 3/5
		S	Stand a	lone sy	stem:	Main re	sults			
Proiect :		New Pro	piect							
Simulation v	ariant ·	variont	1							
Simulation	anant .	varient	•							
Main system PV Field Orien PV modules PV Array Battery Battery Pack User's needs	parametor tation	ers Daily h	S Nb. nousehold	ystem type til Mode of modules Mode Nb. of units consumers	e Stand It 26° EST-5 s 504 El Acme s 800 s Const	I alone sy 500 G 12V 200 ant over th	Pno Pno D Tech Voltage / Ca ie year	batterio zimuth Pnom m total nology apacity Global	es 0° 500 Wp 252 kW Lead-ac 240 V / 301 MV	p iid, sealed, Gel 8000 Ah /h/year
Main simulati	on resul	ts								
System Produ Loss of Load Battery ageing	(State of	F Wear)	Availat U Performand Tir Cy Batt	ble Energy sed Energy ce Ratio PF me Fraction ycles SOW tery lifetime	y 44076 y 29746 R 53.54 n 1.4 % V 87.1% e 7.8 ye	3 kWh/ye 4 kWh/yea % ears	ar Specifi arExcess (u Solar Fract Missing I Static	c prod. nused) tion SF Energy c SOW	1749 k) 129641 98.78 % 3670 k) 91.7%	Wh/kWp/year kWh/year wh/year
Normalized prod	luctions (pe	r installed kWp):	Nominal pov	ver 252 kWp		Perfe	ormance Ratio I	PR and	Solar Fraction	n SF
[oppdayway] a b c c c c c c c c c c c c c c c c c c	Unused energy (Unused energy Collection Loss System losses a Energy supplied	Network of the second s	.41 kWh/kWplday .03 kWh/kWplday .27 kWh/kWplday .2.2 kWh/kWplday	Nev Dec	rient 1	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Performance Ratio (Y Solar Fraction (ESol / Mar Apr May	Jun J	ul Aug Sep	Oct Nov Dec
Г		GlobHor	GlobEff	E_Avail	EUnused	E_Miss	E_User	E_Load	SolFrac	ן ר
		kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh		_
	January	89.0	123.5	25685	450	1282	24294	25576	0.950	
	February	106.2	133.3	28116	3802	445	22655	23101	0.981	
	March	154.9	176.4	37112	10313	0	25576	25576	1.000	
	April	186.4	191.0	40009	14066	0	24751	24751	1.000	
	Мау	229.7	214.6	44512	17719	0	25576	25576	1.000	
-	June	239.3	213.8	43884	17960	0	24751	24751	1.000	
-	July	242.7	221.4	44913	18123	0	25576	25576	1.000	
	August	224.6	223.0	44951	18146	0	25576	25576	1.000	
I	September	184.5	204.5	41346	15402	0	24/51	24751	1.000	
	October	146.9	183.3	37060	10260	0	25576	25576	1.000	
	November	102.6	140.6	28663	2821	0	24/51	24/51	1.000	
	December	83.4	119.0	24514	578	1943	23633	25576	0.924	-
	Year	1990.3	2144.4	440763	129641	3670	297464	301134	0.988	
L.	egends: Gl	obHor Horizor	ntal global irra	diation		E_Miss	Missing energy			
_	GI	obEff Effectiv	e Global, corr	. for IAM and	shadings	E_User	Energy supplied	d to the u	ser	
	E_	_Avail Availab	le Solar Ener	rgy	-	E_Load	Energy need of	the user	(Load)	
	EL	Jnused Unused	l energy (batt	ery full)		SolFrac	Solar fraction (I	EUsed / E	Load)	

Figure 42:Off-grid report

6) bus line of Tulkarm :

Bus210	لعلقنا	0.4	0.403	100.75
Bus211	السلطة	0.4	0.409	102.25
Bus212	192	0.4	0.408	102
Bus213	التام ٢	0.4	0.407	101.75
Bus214	لوحيب	0.4	0.412	103
Bus215	c ^{al}	0.4	0.413	103.25
Bus216	الامن الوطني	0.4	0.414	103.5
Bus217	دعيلن	0.4	0.412	103
Bus218	يو ل	0.4	0.412	103
Bus219	المثنقي ٢	0.4	0.408	102
Bus220	الستنقى ا	0.4	0.408	102
Bus221	بناد فلحلين	0.4	0.409	102.25
Bus222	البنة العربى	0.4	0.409	102.25
Bus223	لعب	0.4	0.399	99.75
Bus224	بڭ القاهرة عمان	0.4	0.409	102.25
Bus225	نوار شوېکه	0.4	0.413	103.25

Bus80	أبو پونس	0.4	0.411	102.75
Bus108	مول الهوجي	0.4	0.412	103
Bus110	عقى البرِّن	0.4	0.409	102.25
Bus126	بال أبر منالح	0.4	0.415	103.75
Bus137	إحكان الرحمة	0.4	0.410	102.5
Bus168	بار أو ربحي	0.4	0.411	102.75
Bus174	مغدر الدوز	0.4	0.409	102.25
Bus178	سجد الكروري	0.4	0.412	103
Bus188	مقرق الجعرون	0.4	0.411	102.75
Bus198	متجره الجعرون	0.4	0.402	100.5
Bus199	نكان أبر منائح	0.4	0.409	102.25
Bus200	بقر ملعب ثويكة	0.4	0.412	103
Bus201	بش أبو متهل	0.4	0.413	103.25
Bus202	ظهره إغباريه	0.4	0.410	102.5
Bus203	البرق الجدد	0.4	0.414	103.5
Bus204	البرق القبع	0.4	0.410	102.5
Bus205	حى المهداري	0.4	0.411	102.75
Bus206	المساري ١	0.4	0.414	103.5
Bus207	المساري ۲	0.4	0.409	102.25
Bus208	جعبة شريكة	0.4	0.406	101.5
Bus209	بقر وادي الشلم	0.4	0.408	102

4					
	BUS	Transformers number	KV	Terminal Voltage (KV)	Operating Percentage (%)
	Bus02	سج القبى	0.4	0.409	102.25
	Bus10	ńч	0.4	0.406	101.5
	Bus14	بتر المدة	0.4	0.414	103.5
	Bus17	الكايا التربيه	0.4	0.410	102.5
	Bus29	نور شعن	0.4	0.405	101.25
	Bus32	الإسلامية	0.4	0.416	104
	Bus36	بقر البجاع	0.4	0.410	102.5
	Bus38	مر تنبيلا النور	0.4	0.420	105
	Bus50	الإنتصيا	0.4	0.409	102.25
	Bus65	المدكم	0.4	0.416	104
	Bus66	زڊ برم	0.4	0.414	103.5
	Bus69	بئر الزمار	0.4	0.409	102.25
	Bus72	الاسكان	0.4	0.411	102.75
	Bus73	جامة الكس أمترحة	0.4	0.405	101.25
	Bus74	KFC1	0.4	0.407	101.75
	Bus75	KFC 2	0.4	0.403	100.75
	Bus76	سج الررمنة	0.4	0.411	102.75
	Bus77	بھ التس	0.4	0.412	103
	Bus78	مجمع الأثقر	0.4	0.414	103.5
	Bus79	بر رام ۲	0.4	0.409	102.25

Bus265	الواز مول	0.4	0.408	102
Bus266	المسلح	0.4	0.406	101.5
Bus267	اصنعب ان عابي	0.4	0.403	100.75
Bus268	المفايرات	0.4	0.399	99.75
Bus269	عزية المراد	0.4	0.405	101.25
Bus270	انقراح ألنتو	0.4	0.399	99.75
Bus271	أبرمغية	0.4	0.402	100.5
Bus272	الباترنة	0.4	0.398	99.5
Bus273	الفرتوس	0.4	0.393	98.25
Bus274	القان	0.4	0.396	99
Bus275	rals _j	0.4	0.395	98.75
Bus276	rais	0.4	0.395	98.75
Bus277	بئر رقم ہ	0.4	0.399	99.75
Bus278	أبوبناهن	0.4	0.398	99.5
Bus279	الحربلوي	0.4	0.401	100.25
Bus280	щ _и	0.4	0.402	100.5
Bus281	الترعب	0.4	0.401	100.25
Bus282	سان موريس	0.4	0.402	100.5
Bus283	2 21	0.4	0.402	100.5
Bus284	دائرة السبى	0.4	0.399	99.75
Bus285	متشار نور	0.4	0.403	100.75

Bus244	دوار المغنى	0.4	0.409	102.25
Bus245	الصباح	0.4	0.408	102
Bus246	ليت لي	0.4	0.414	103.5
Bus247	الليوم	0.4	0.408	102
Bus248	ستتفى الزكة	0.4	0.413	103.25
Bus249	العطة	0.4	0.408	102
Bus250	ىفرق الأربية	0.4	0.410	102.5
Bus251	نيوان الجلاد	0.4	0.411	102.75
Bus252	المغبز الفرنسي	0.4	0.403	100.75
Bus253	دوار السلام	0.4	0.407	101.75
Bus254	ممقع التمتر	0.4	0.409	102.25
Bus255	أيودرنة	0.4	0.411	102.75
Bus256	١ď	0.4	0.410	102.5
Bus257	مزية تولة	0.4	0.404	101
Bus258	مغرق فرحون	0.4	0.405	101.5
Bus259	بأر عطير	0.4	0.410	102.5
Bus260	التربكي	0.4	0.409	102.25
Bus261	عزية نامس	0.4	0.405	101.5
Bus262	مفيز البرغولى	0.4	0.408	102
Bus263	بلر عرب	0.4	0.408	102
Bus264	بلر سقط	0.4	0.401	100.25

BUS	Transformers number	KV	Terminal Voltage	Operating Percentage
			(KV)	(%)
Bus226	خترري ا	0.4	0.417	104.25
Bus227	نوار خضوري	0.4	0.414	103.5
Bus228	نظرري ¹	0.4	0.414	103.5
Bus229	بلو رقم ا	0.4	0.417	104.25
Bus230	درار جار عد لتمرع	0.4	0.414	103.5
Bus231	درار جال عد لتصر ا	0.4	0.414	103.5
Bus232	بلو رقع۲	0.4	0.413	103.25
Bus233	العناوين	0.4	0.415	103.75
Bus234	هواش	0.4	0.418	104.5
Bus235	تصارة الرابي	0.4	0.417	104.25
Bus236	ارتاح لغربي	0.4	0.415	103.75
Bus237	العاصنى	0.4	0.417	104.25
Bus238	برك المجاري	0.4	0.416	104
Bus239	العنفية المذاعية	0.4	0.417	104.25
Bus240	بار أبو حنَّيْن	0.4	0.414	103.5
Bus241	ورثة العكائي	0.4	0.411	102.75
Bus242	البرحى	0.4	0.410	102.5
Bus243	عمارة المباثري	0.4	0.412	103

Figure 43: bus line of Tulkarm