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The Optical Polaron in Spherical Quantum Dot Confinement
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Abstract

The problem of a polaron in quantum dot is retrieved using a
modified LLP approach. The modification is intended to interpolate
between the strong- and the weak-coupling limits of the problem. The
polaronic effect is found to be more important for small dot sizes.
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1. Introduction

Due to the recent progress achieved in microfabrication, it has
become possible to fabricate low dimensional semiconductor structures.
Special interest is being devoted to the quasi zero dimensional structures,
usually referred to as quantum dots [1-9]. The effect of the electron-
phonon interaction on the energy levels and their variations versus the
size of the dots is studied using different approaches. Using the LLP-H
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approach Satyabrata Sahoo [10, 11], has calculated the energy of the
ground state and the first two excited states. He concluded that the
polaronic correction is more pronounced as the size of the quantum dot is
decreased. The problem of a bound polaron in a quantum dot is studied
separately by H. J. Xie and C.Y. Chen [12] and Li Zhang et al [13]. They
showed that the phonon contribution to the binding energy is dependent
on the size of the quantum dot as well as the position of the impurity in
the quantum dot.

In this report we propose a modification to the mixed coupling
method used by Senger and Ercelebi [1]. Using this modified LLP theory
the binding energy of the polaron in a quantum dot is calculated. The
modification is intended to cover all the values of the coupling constant.
A comparison to well-known limits of the problem is made.

2. Theory

The usual Frohlich polaron Hamiltonian describing an electron
confined in a symmetric dot and interacting with the bulk optical phonon
with a parabolic potential ¥ (77} is [14]

H =H,+ Hy, + Iy Volage®™ +ale™97] (1)
where H, represents the electronic Hamiltonian which is written as

ﬁa=F”+fw9T” ’ (2)

where .7 represent the momentum and the position of the electron
respectively, and w represents the strength of the quantum dot potential
that serves for the measure of the degree of confinement of the electrons,
which is given by

@ = (kfmafy ),

in which k denotes the force constant, and (Zm = &k, = 1] [in Frohlich
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units], where m is the effective mass of the electron, w@wyg is the
frequency of the longitudinal optical phonons (LO).

M. represents the phonon Hamiltonian which is written as

ity = g Gy 3)

mg[g;@j are the creation (and annihilation) operators for (LO) phonons of

wave vector & = (g.q_), and Vg is the amplitude of the electron-phonon
interaction which is given as [15, 16]

— _prliEg. Anenagn- B G144
F".? - ;E e -’E ¥ j EEr.r.n.lEg:I ! (4)
figiy o is the energy of the phonons, V' is the volume of the crystal which
is taken as a unit and ¢ is the standard dimensionless coupling constant
of the electron-phonon interaction which is given as [15, 16]
] & i N
Eﬂei.-\ll'ﬂ.n.r;g [‘az_. )y . ®)

an

o =

where a4, (a;) is the high frequency (static) dielectric constant of the
medium.

For the mixed-coupling approximation to be adopted for such a
problem we propose a modification to the first LLP-transformation. Our
proposed U; is

U, = exp[(F - T).B7] | (6)

where U, is the unitary transformation which is related to the electron
operators, P is the total-momentum operator of the polaron, and is given
by

B

F=p+E, ala, | (7)
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il represents the momentum of phonon

=X, Qugug , (®

The modification we made is by inserting another variational
parameter b in equation (6). This parameter is supposed to trace the
problem from the strong-coupling limit (& = €) to the weak-coupling
limit (b = 1).

r denote to the position of electron, this transformation eliminates the
electron operators from the electron-phonon Hamiltonian part.

The second transformation is of the form:

U, = @“P[EQ T‘Q(‘% - ﬁe)] : ©)

The wug is treated as a variational function. The unitary

transformation U; is called the displaced-oscillator which is related to the
phonon operators via equation (9). The phonon wave function is [15]

P = UgOprt (10)

where the ket |@} is the phonon vacuum state, simply because at low

temperature (KT =+ Fasq ), there will be no effective phonons, (K is
Boltzmann's constant and T the absolute temperature) [16, 17].

The ground-state energy of the polaron can be obtained as
By = (Ourl(0 | U U HU Uy 0 H 00 (11)
= WWHWJH:TLH}H:|E’a}|%h} :

where

IF = urtiny,
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and |Z.} is the electron state [15].

Applying the first LLP transformation to each part of the
Hamiltonian, we get [1]

H'= u By, (12)
= B (P—T)* +p° + 2bp(F = ) +20r® + L, aha,
+Z, Vq[%iéii—b}@.ﬁ"-_l_ ﬁQg—éil—b}@n’-]

From equation (12) it is clear that when & = 1, the terms e TEF will
be eliminated, leading to the weak-coupling approach [14].

Now applying the second LLP-transformation &; of equation (9), the
Hamiltonian of equation (12) transforms as [1]

Bl = U;]'H}Uz (13)
=p*+ %r—v‘r‘ +B(P—)* + BN+ Xy agag

+ I, ug + (MW - 2mn + 264 (P - 10 4+ 267000 - 257P0C0
— I, Vot [@f 07 4 g=i-E00F 4 2bp(p — 4+ Y — 109

+ I, [Voe'™ ™ —uplan + I, [Vpe 88—y, n‘; :
where I is given in equation (8), and
M=%, Quglal +ag) | (14)

The ground-state energy can be obtained as
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E, = {0,|p%|0,} + (0, ?r?|0,) + B2PY — 2pPPI'E (16)
+BAMPP 4+ Ty wd (1 4+ 55Q%) 4 (0,100, 28p (P — 14 T - )0, 4]0,}
— I, Vougll, e 0% |0y — T Vo uyd0, e84 g )

Expressing the coordinates and momenta of the electron as [18]

B, = ,1;(.::“ +al) . (17)
x, = ;;,1:'_5(% - . (18)
Pz =AEE¢IE+'=&D . (19)
s= it - oD | (20)

where the index g refers to the x and ¥ directions, «4,4; are variational
parameters, and «T, (&) are the creation (and annihilation) operators for
electron, and after performing straightforward calculations we obtain the
ground-state energy of the polaron as

=A@ AL e L ap3 o prlE

By =ttt tE RS -gF 1)
+B M9 + By wdh(1+5°@%) — 2Z, VougS, |

where

S,= {0, [« Z0E30F 0y (22)

which is found to be
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So=6" (=B 20y g=(1-00"q2 28y (23)

Minimizing equation (21) with respect to the variational function
we get

[1+5°@%ug — Vy5,=0 . (24)
So we can write Uy as

vg 5y
Ug = 145808 (25)

The momentum ‘¥ differs from the total momentum by a scalar
factor as

A=y . (26)
In which the unknown scalar, 7 is determined by the equation
o=y o gjn% )

= Qus

nE = [L1Gegs]s 27)

Substituting back in equation (21), we obtain the following result:

A, & 4 a® S 2 Iml
%=?+E+¢+E—E@m—jr§¢+k (1—-m)"P . (28)

But E; may be well represented by the first two terms of a power
series expansion in P as [17]

B, = B (U) + fP*/ 24 . O (P ) Huu (29)
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The effective mass of the polaron is then ™.

By comparing equation (28) and equation (29) we get the expression
for the ground-state energy of the polaron as

_ A Ay _ Wy
Eﬁftﬂj_T—l-E—l-_ __EQ Terige] (30)

and the mass of the polaron is

- 1
T D

Using the expression for &4 in equation (23), the ground-state of the
energy becomes

g BER Ay~ - B A Ay

. (32

2 4, q [1e&=o]

This last equation gives the general formula for the ground-state
energy of the confined polaron. This formula enables us to find the
binding energy of the 3D polaron in both weak- and strong-coupling
range.

3. Results and Discussions

First, let us test our theory for some limiting cases. In the limit
b — 0, the ground-state energy gives the adiabatic (strong) limit as

= @t A Wt 3 o= a%hy g —aifA
&= 2+2.i,_+_-;i+-;.ii Lo Vge™@ MeeTi (33)
Projecting out the @-summation in equation (33) we obtain

Eg-—-+—+—t+——i e P ] (34)
&y VTl dg-i, NN '
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and for the polaron binding energy, we have

3w=§r::;—ﬁ'ﬁr . (35)

and

g8 _ &
¥ g

(36)

which is the strong-coupling result obtained from our modified method
and agreed with the result obtained in [18] using strong-coupling theory.

Also, in the limit & = 1, the ground-state energy describes the case
of weak-coupling as

¥

P
Es g +2‘lr_ t P t I 2'5‘ [1-+5%] G7)
For e = @, we obtain 4; = 4; = I, and
(G2} _
g =a . (38)

This is the result obtained from our modified method and agreed with
the result obtained in [19] using perturbation theory.

For @« &+ 1 we expect that our formula of equation (32) can
describe the ground state energy of the problem for the whole range of
the coupling constant ().

To compare our results with that of the strong-coupling, and the
weak-coupling theories, we, in Figure (1), display the binding energy as a
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function of (&) for @ = U together with the results of the two theories.
As it is clear from the graph we have a good matching to those
approaches in the extreme values of (e ].

To study the effect of the confinement length of the quantum dot

[ = (h/ma)® [20] in the binding energy we plot, in Figure (2) the
binding energy versus = for two different values of the length of the
quantum dot ([}. As expected, the binding energy increases with
increasing «. Furthermore, for small values of [ the effect of the
polaronic effect becomes more important. This is because by decreasing I
the problem becomes more confined and this increases the effect of the
electron-phonon interaction.

To show the effect of the confinement length on the polaronic aspect
we display, in Figure (3) the polaronic correction to the ground state
energy as a function of (£}.

The Figure again shows that the correction is large for small value of
(L}. It decreases exponentially with increasing the dot size. As £ = @, the
result approaches the 3D result as expected.

4. Conclusion

A modification in the LLP approach is proposed by imposing a
further variational parameter intended to interpolate between the strong-
and the weak-coupling aspects of the polaron problem in a quantum dot.

The polaronic correction in the ground state energy is found to be
more pronounced for small values of the size of the dot.
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Fig. (1): The binding energy &, versus the coupling constant () in unites

of (Bar). The solid lines, from the left, and the right are for the weak and
the strong coupling limits.
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(ho )

Binding Eneregy

Fig. (2): The binding energy (s,) versus the coupling constant (&) at
confinement length (I = €.2,0.5) in unites of (Acw).
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{hin )

polaronic energy correction

confinement length (1)

Fig. (3): The polaronic energy correction (—4E) versus confinement
length () in unites of {fas).
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