
An-Najah National University 

 Faculty of Graduate studies 

 

 
Mathematical Principles and Practices 

for Internet of Things Data Analysis 

using Machine Learning Approach 

 

By 

Batoul Smeer Salameh Sulaiman 

 

Supervisor 

Dr. Mohammad Sharaf 

Prof. Dr. Naji Qatanani 

 
This Thesis is Submitted in Partial Fulfillment of the Requirements for 

the Degree of Master of Computational Mathematics, Faculty of 

Graduate Studies, An-Najah National University, Nablus, Palestine. 

2019 



II  

 
Mathematical Principles and Practices 

for Internet of Things Data Analysis 

using Machine Learning Approach 

 

By 

Batoul Sameer Salameh Sulaiman 

 

This Thesis was defended successfully on 20/10/2019 and Approved by 

Defense Committee Member                                                        Signature 

Dr. Mohammad Sharaf /Supervisor                                           ................. 

Prof. Dr. Naji Qatanani /Co-Supervisor                                     ................. 

Dr. Suhail Odeh /External Examine                                           ................. 

Dr. Amajad Hawash /Internal Examiner                                   ............... 



III  

Dedication 

 الإهداء

 

 لشاكر فقصرت مغلوباً وإني...  سعيت ابتغاء الشكر فيما صنعت لي

 

 إلى صاحب الفضل و الكرم والقوة و الصدق والإخلاص و الذوق..

 ..إلى الثقة العميقة

 إلى اللطف الكبير..

  إلى قدوتي حضرة الإنسان الدكتور عماد النتشة

 اهديك تعبك على هيئة إنجاز

 

 "شكراً من كل قلبي"

 

()الإهداء مقدم مني ومن عائلتي



IV 

Acknowledgments 

Foremost, I thank almighty Allah for giving me the ability to finish 

this thesis. After that, I would like to thank my supervisors Dr. Mohammad 

Sharaf and Prof. Dr. Naji Qatanani for their support, and their belief in my 

ability to work on this topic. In addition to the great encouragement and 

motivation that I got from them to work on this thesis. 

  Finally, I would like to express my sincere gratitude to Dr. Emad 

Natsheh for his patience, motivation, immense knowledge and continuous 

support and I want to express my great appreciation because of the great 

help that I got from him which gave me the ability to finish my thesis. 

  



V 

 الاقرار

:التي تحمل العنوان ةموقع أدناه مقدم الرسالال ناأ  

Mathematical Principles and Practices 

for Internet of Things Data Analysis 

using Machine Learning Approach 

 تمت ام باستثناء الخاص جهدي نتاج من هو نماإ الرسالة هذه عليه اشتملت ما بأن أقر

 أو درجه أي للني يقدم لم منها جزء أي او ككل، الرسالة هذه وأن ورد، حيثما ليهإ شارةلإا

 أخرى. بحثيه او تعليميه مؤسسه أيه لدى بحثي أو علمي لقب

Declaration 

The work provided in this thesis, unless otherwise referenced, is the 

researcher's own work, and has not been submitted elsewhere for any other 

degree or qualification. 

  :Student's name                                                 :ةالطالب اسم

  :Signature                      : التوقيع

  :Date                                                   :التاريخ

 

 

 



VI 

Table of Contents 

Page Subject No. 

iii Dedication  

iv Acknowledgments  

vi Declaration  

vi Table of Contents  

ix Abstract  

1 Chapter One: Introduction  

2 Motivation 1.1 

6 Sensor node localization in WSNs 1.2 

7 Problem Statements 1.3 

8 Proposed solutions 1.4 

10 Chapter Two: Background 2 

11 Internet of Things (IoT) 2.1 

11 Wireless sensor Networks (WSNs) 2.2 

14 Artificial Neural Networks (ANNs) 2.3 

15 Chapter Three: Related Works 3 

18 Chapter Four: Localization algorithms for WSNs 

based on Internet of Things. 

4 

19 Wireless Sensor Networks and Internet of Things 4.1 

20 Integration Approaches 4.2 

22 Localization process in Wireless Sensor Networks 4.3 

24 Centroid Localization algorithm 4.4 



VII 

26 Weighted Centroid Localization algorithm 4.5 

34 Chapter Five: Artificial Neural Network 5 

35 Introduction 5.1 

36 Feedforward Neural Network (FFNN) 5.2 

39 Feedforward (single layer) Neural Networks 5.2.1 

40 Deep Feedforward (multilayers) Neural Networks 5.2.2 

41 Activation Functions 5.3 

48 Back-propagation algorithm 5.4 

58 Training algorithms.   5.5 

59 Gradient descent 5.5.1 

65 Levenberg-Marquardt algorithm (LM) 5.5.2 

74 Chapter Six: Simulation and Results 6 

75 Weighted centroid algorithm based on RSSI 6.1 

80 Feedforward Neural Network 6.2 

80 Data Collection 6.2.1 

81 Artificial Neural Network Structures 6.2.2 

83 Evaluation of the proposed neural network models 6.2.3 

89 Results and discussion 6.3 

99 Conclusion  

101 References  

 

 

 



VIII 

Mathematical Principles and Practices for Internet of Things Data 

Analysis using Machine Learning Approach 

By 

Batoul Smeer Salameh Sulaiman 

Supervisors 

Dr. Mohammad Sharaf 

Prof. Dr. Najai Qatanai 

Abstract 

 Internet of Things (IoT) environment generates the data 

continuously, these data need to be collected, analyzed in order to trigger 

an action. For many IoT applications, the locations information for the 

collected data is considered very important information, so a lot of 

localization techniques in wireless sensor networks (WSNs) are used for 

obtaining such information. In this work, we propose an artificial Feed-

Forward Neural Network (FFNN) for the IoT sensor node localization. The 

proposed method was performed in many heterogeneous WSNs in which 

the anchor nodes distributed uniformly. Matlab software was used to 

implement this network which has a single hidden layer with 20 neurons. 

Two different training algorithms were used to evaluate this network which 

are the Levenberg-Marquardt algorithm and Gradient descent algorithm. 

The estimated locations for the sensor nodes obtained from the proposed 

FFNN (single layer) was compared with the results obtained from another 

structure for the network which is the Deep feed-forward (multilayer) 

neural network. Also, a comparison with a known localization algorithm 

'Weighted centroid algorithm based on RSSI' was performed. Our results 

showed that the feedforward (single layer) neural network is a good 



IX 

localization approach which gives us the most accurate estimated locations 

for the sensor node in WSNs. 

   

 



1 

 

 

 

 

 

 

 

 

 

 

 

Chapter One 

Introduction 



2

Rapid development in communication technologies have allowed the

emergence of the Internet-connected devices. The term ’IoT’ was in-

troduced in 1982 by Peter T. Lewis at U. S. Federal communication

s-commission (FCC). Internet of Things became a known idea in 1999 in

a presentation to Proctor & Gamble introduced by Kevin Ashton. IoT is

a huge network of interconnected physical objects based on a combina-

tion of the emerging technologies and the Internet. It can be considered

as the future evaluation of the Internet and it provides the connectiv-

ity for everyone and everything to exchange the data over the Internet.

In the recent years, IoT is increasingly spread, so the number of con-

nected devices is increasing dramatically. IoT helps to mitigate latency

in information because the information is collected automatically and it

introduces a different kind of data using various types of sensors.

There exist many application domains in the IoT, like transportation, en-

vironment and telecommunication...,etc. Figure 1.1 shows different IoT

application domains.

Data science provides an important contribution to make IoT appli-

cations more intelligent, and one of the most important parts of data

science is Machine Learning, which include a broad range of algorithms

applicable in different domains.

Machine learning plays an essential role in IoT aspects, that handle

the huge amount of date generated by the connected devices. Its idea

is to enable computers to learn from examples and experiences without



3

Figure 1.1: IoT application domains

being explicitly programmed.

One of the important topics use the machine learning in IoT environ-

ment is The sensor node localization process in wireless sensor networks

(WSNs).

1.1 Motivation

A Systematic Literature Review (SLR) has been conducted about the

application of machine learning methods in the IoT environment. We

collect all the papers related to the IoT with Machine Learning. We get

a lot of papers research that talks about these two topics together then we

follow a three-stage research method consisting of planning, conducting

and reporting.

At the first phase, planing, we investigated some questions in all the



4

selected articles, these research questions are:

1. What are the goals that achieved by applying the machine learning

algorithms in the IoT environment?

2. Which is the machine learning algorithm used to achieve the desired

goals?

3. Which are the empirical methods used in the selected studies?

The search strategy includes a manual search in google scholar for col-

lecting pilot studies, and an automatic search with a specific search string

on one of the most important scientific database, which is IEEE Xplore

Digital Library. Some exclusion and inclusion criteria were applied for

filtering the selected studies.

Inclusion and exclusion criteria:

These criteria made us able to select the studies to be considered in

our research. A study was selected if it meets all the inclusion criteria,

and it was removed from the collected studies if any of the exclusion

criteria had been met.

Inclusion criteria:

• Studies proposing a machine learning algorithm using to solve a

specific problem in IoT environment.

• Studies subject to peer review ( e.g., paper published as a part of

conference proceedings, journal papers).



5

• Studies published after or in 2010.

Exclusion criteria:

• Studies whose language is not English.

• Secondary studies (e.g., survey, SLR, etc.).

After that, we began the data extraction from these studies to answer

the previously mentioned research questions. During the data extraction,

we excluded some of the studies that it is not meet with our inclusion

criteria.

At the second phase, conducting, we put the previously mentioned

protocol in practice, so we got a 12 pilot studies related to the IoT and

Machine learning topic from the manual search, and 1333 studies from

the automatic search, then after filtering the selected studies through

applying some exclusion and inclusion criteria we got 77 studies. Dur-

ing the data extraction, we exclude some studies that do not meet the

inclusion criteria to get lastly 48 studies.

In the last phase, reporting, data extracted from the selected primary

studies were collected in a spreadsheet.

Figure 1.2 shows our search strategy and the number of studies that

are selected or removed during the subsequent stages.

After we do a comprehensive search and apply our protocol to collect

these research papers, we noticed that one of the most frequent goals

in research papers achieved by the machine learning algorithms is the



6

prediction goal. The most used machine learning algorithm applied in

IoT environment is the Artificial Neural Network. In addition, most of

the primary studies used the experiment and simulations for evaluation.

Figure 1.2: Multi-staged search and selection process

These results were taken into consideration to decide a suitable topic

for this thesis. Therefore we searched for a topic about the Artificial

neural network (ANN) for the prediction aim, and we observed that one

of the most important topics used the artificial neural network for the

prediction aim is the sensor node Localization in IoT.



7

1.2 Sensor node localiztion in WSNs

Wireless sensor network (WSN) is a subpart and key component of IoT.

It consists of a large number of nodes that are connected wirelessly. WSN

is considered a promising tool for data gathering to be used it in many

domains like industrial fields, smart buildings, health care ..etc. Big

challenges face WSN are energy consumption and memory storage. Due

to this, the sensor node localization issue has been given a great atten-

tion, especially in data aggregation algorithms and geographic routing,

in which the data are meaningless if there is no location information.

Traditional location techniques like GPS is a high-cost technique since

it requires developed equipment and high energy consumption. In WSNs

energy conservation is considered as the fundamental issue, so the costs

and the number of nodes must be as small as possible. To solve this

issue, a lot of localization algorithms that don’t use GPS or employ it as

an assist in some situations were developed.

In IoT applications, data collecting is done through the wireless sensor

networks, so the localization issue can be referred to WSNs. Most of the

localization algorithms were classified into two categories. The range-

based algorithms [24, 25] that use some ranging methods like Time of

Arrival (TOA) [20], Angle of Arrival (AOA) [37], and the Range-free

algorithms [38, 17] that considered simple and low costs techniques in

comparison with range-based ones since they require no special hardware,



8

so they are the widely used algorithms. Examples of these types of

algorithms are DV-hop algorithm [40] and Centroid algorithm [8].

In this thesis, we are proposing to use a new approach for the sensor

node localization, which is the Artificial neural network (ANNs), which is

a collection of artificial neurons that are designed to recognize patterns

in a set of data. In 1943 McCulloch and Pitts [31] created the first

mathematical model for an artificial neuron.

ANNs are capable to predict the desired purpose through detecting

the relationship between the inputs and the outputs. An optimization

procedure is done for the network to get more accurate predicted location

for the sensor nodes. The best results were observed by choosing the best

structure for the neural network.

1.3 Problem statements

The main topics introduce by this thesis are:

• How to integrate WSNs with IoT.

• What are the used algorithms for the localization process in WSNs.

• How to employ the Neural network to Localize the sensor nodes in

WSNs.

• What is the best structure for the ANN used for the localization

process.



9

1.4 Proposed solutions

The solutions used to handle the localization process are:

• Weighted centroid localization algorithm (WCL) based on the Re-

ceived Signal Strength (RSSI).

• Artificial Neural Networks (ANN)

Thesis structure

This thesis consists of 7 chapters, which is divided into a set of sections

to describe this research. Basically, after the introduction, this thesis

contains five chapters and the conclusion

In the second chapter, a background of the main topics will be intro-

duced. The related Works were introduced in the third chapter. In the

fourth chapter, we introduced the integration approaches between the

IoT and WSNs. In addition to introduce on of the common used local-

ization algorithms, which is the WCL algorithm, and we explain RSSI

measurement method using the basic measure term path loss model. The

last thing is the pseudo-code for the WCL applied in WSNs using Matlab

software was discussed. In the fifth chapter, detailed sections were in-

troduced about different types of the artificial neural networks (ANNs),

the used activation functions, the training algorithms we derived, and

clarification the advantages and disadvantages for each one. In addition,

the pseudo-code for each algorithm is also clarified. In the sixth chapter,



10

simulation and results were introduced and our trials to build the best

neural network structure were detailed, as well as a comparison between

them. lastly, the results of our simulation were discussed.



11 

 

 

 

 

 

 

 

 

 

 

 

Chapter Two 

Background 

 

 

 

 

 

 

 

 

 



12

2.1 Internet of Things (IoT)

Nowadays, all people use smartphones and a lot of other electronic de-

vices. So basically, IoT is the interconnection between these smart de-

vices on the Internet for sending and receiving data.

IoT can connect anything with anything else in the whole world like

simple sensors, smartphones and wearable devices. It is very important

for business communication transportation and many enterprises [28].

The Internet of Things (IoT) is also denoted as the Internet of Every-

thing (IoE), or CyberPhysical Systems (CPS). Nowadays, over 9 billion

‘Things’ (physical objects) are connected to the Internet. In the near

future, this number is expected to rise to approximately 20 billion, in

which emphasize the importance of IoT.

2.2 wireless sensor networks (WSNs)

Recently, the development of wireless sensor networks have become an

important research area. These networks consisting of a huge number of

sensor nodes that are distributed in the target area, and have the ability

to communicate wirelessly. The basic function for the wireless sensor

network is to monitor the target areas for a long periods of time.

WSNs consist of many different types of sensors, like visual, magnetic,

acoustic and radar. As a result, different types of sensors result in various

kinds of applications as identified by Akyıldız and W.Su (2001) [1]. A lot



13

Figure 2.1: Wireless Sensor Network applications

of ambient conditions can be monitored by these sensors, such as humid-

ity, temperature, movement and pressure. Hence, WSNs applications can

be categorised into health, military, environment, home and commercial

areas. In addition, It is also possible to extend this classification with

more categories as summarised in figure 2.1

The sensor nodes (WSN) have many characteristics which are de-

scribes as follow:

(1) a small physical size.

(2) low power consumption.

(3) limited processing power.

(4) short-range communications.

(5) a small amount of memory storage.

Wireless sensor nodes (WSn) are used in many aspects of life, and



14

there are many reasons for this use which are presented as follows [7]:

• WSn are relatively cheap to use and very cost-effective.

• WSn have the ability to resist the environmental changing factors

so they can be deployed anywhere.

• Due to the small sizes of WSNs, they consider robust and easy to

apply.

• WSNs can have a huge number of sensor nodes, so they can cover

a large indoors and outdoors areas.

• Due to quickly and efficiently deployment of WSNs in the areas of

interest, a quick data collection can be achieved.

The sensor nodes can form different types of wireless networks which

facilitate the life for humans. For example, patients in a hospital can be

equipped with a vital sign sensor nodes which are able to measure the

heart rate and blood oxygenation for the patients [29].

As shown in figure 2.2, through the WSNs organized by these nodes in

easy way, the doctors can monitor the status of patients through smart-

phones or computers.



15

Figure 2.2: WSN for Hospital Monitoring

2.3 Artificial Neural network (ANN)

A biological neural network is an important part of the human brain.

It is a complex system that has the ability to process huge amounts of

data simultaneously. Biological network outperforms all modern high-

end computers, also it has the ability to recognise and process different

visual inputs in a fast way.

The similarity between the artificial neural networks with a biological

neural network is that they get knowledge through learning that can be

stored within connection strengths known as synaptic weights.

An ANN consists of a number of simple, small and interconnected

processors, which are called neurons, and these neurons are arranged in

consecutive layers. Chapter 4 introduces a detailed explanation of ANN.



16 

 

 

 

 

 

 

 

 

 

 

 

Chapter Three 

Related Works 



17

Over the last years, a lot of researches have been carried out related

to the localization process in the WSNs. Commonly, it is known that

GPS [18] is not an efficient way for the sensor node localization in WSNs

due to the high cost and energy consumption for the GPS dependent

devices [5].

Therefore, for a robust, flexible, practical and inexpensive localiza-

tion in WSNs, many researchers investigate innovative ideas for the lo-

calization process. Many survey on the localization schemes are available

[22, 19, 51].

The localization schemes for WSNs are commonly divided into range-

based and range-free. For example for range free schemes, the works

presented in [58] and [16] focus on Centroid Localization Algorithm. In

[12] Convex position estimation (CPE) algorithm was introduced, its ba-

sic principle is to define an estimative rectangle (ER) which bounds the

overlapping region and regards the centre of this rectangle as the esti-

mative location of the unlocalized node. Niculescu proposed the DV-hop

algorithm [36], which is improved by many researchers, like, Hongyang

Chen [9] in which it is considered more complicated than Centroid and

CPE.

For the range based localiztion algorithms, the locations of sensor nodes

can be estimated by geographical calculations such as triangulation [2, 13]

and trilateration [44, 34].

A new approach is proposed to use the Artificial neural network for



18

the localization process by many researchers like, Kumar et al, [26] pro-

posed to use implement a feedforward neural network with three hidden

layers 12-12-2 for the node localization in the WSNs. In [14] the finger-

print method of indoor localization using feedforward neural network is

presented. In addition, Battiti et al [4], proposed a method based on neu-

ral networks for reducing the errors in determining the location of mobile

node. An artificial synaptic network (ASN) which is a novel multilayer

neural network was proposed in [48]. The distance between the nodes

was estimated through the TOA method. In addition, a comparison with

the radial basis function neural network model (RBF) is considered. the

results found that the ASN is better in term of the number of iterations

and Root Mean Square Error (RMSE).

In the field of WSNs, the area and the topology of the network is

an important factor affects the localization process. Because of that, we

need to explore an ANN model to be able to predict the sensor nodes

locations in different WSNs areas with trying to take into consideration

different criteria. From these criteria, we can point out, finding a simple

neural network topology to achieve an accurate, low-cost localization

process with supporting different areas for a specific WSNs topology. In

this work, an artificial FFNN model for different square-based topology

areas is proposed based on the WCL algorithm, such that we obtain a

neural network model able to predict the sensor node locations in various

squared areas with more accurate results.



19 

 

 

 

 

 

 

 

 

 

 

 

Chapter Four 

Localization algorithms for WSNs based on Internet of 

Things.  

 

 

 

 

 

 

 

 

 

 



20

4.1 Wireless Sensor Networks and Internet of Things

For communication between the nodes in WSNs, it is very necessary to

have a centralized system. The necessity of this system leads to develop

the notion of the internet of things (IoT). As a result, in parallel to

WSNs, the idea of IoT is developed.

IoT is considered at a higher level than WSNs, which means that,

WSNs are often technologies used within IoT systems. A large number

of sensors can be used for gathering the data individually and then send

these data through a router to the internet in IoT systems.

IoT provides interaction between people and environment as shown

in Fig 4.1

Figure 4.1: Internet of Things

In IoT systems, all the used sensor nodes send their information di-

rectly to the internet. contrariwise, in WSNs, there is no direct connec-

tion to the internet. Instead, the different sensors connected to several

kinds of (sinks) central node or router.



21

4.2 Integration Approaches

Figure 4.2: Integration of IoT with WSNs

A very important point is to know the integration approaches which

can be applied to integrate WSNs in IoT systems 4.2. Three main ap-

proaches are discussed here for connecting WSNs to the Internet, taking

into account the WSN integration degree into the Internet structure [10].

In the first approach, the connecting between the independent WSN and

the Internet is through a single gateway as shown in fig 4.3

Figure 4.3: Independent network

It is obvious that this approach presents a single point of failure because

of the gateway uniqueness. Therefore if a gateway dysfunction exists

then the connection between the WSNs and the internet would break

down.



22

The second approach showed an increasing integration degree, this

approach forms a hybrid network which is composed of independent net-

works structure where some of dual sensor nodes have the ability to access

the internet as shown in fig 4.4

Figure 4.4: Hybrid network

In the third approach illustrated by fig 4.5, multiple sensor nodes can

connect to the Internet in one hop.

Figure 4.5: Access point network

Now, with several gateways and access points as in the second and third

approaches, they will not present such weakness, so to ensure the net-

work’s robustness, the last two approaches would be preferred.



23

4.3 Localization process in Wireless Sensor Networks

Knowing the location of the sensor node in the network is a very critical

issue for many applications, that is because the users usually need to

know not only what happens but where interesting events take effect

too.

For example, in the hospital, the knowledge about where the patient is

will help the doctors to arrive at the right place as fast as possible in

the urgent cases [29]. In a disaster relief operation the WSN is using

to locate survivors in the collapsed building. It is very critical for the

sensors to report the information location [53].

There are alot of localization techniques used to provide location in-

formation for each of the deployed sensor node in a wireless sensor net-

work. Global Positioning System (GPS), is one of the famous ways to

identify the location of the nodes but GPS does not work efficiently as

the line of sight between satellite and receiver is not always available due

to the high buildings and the dense tree areas. In addition, the GPS has

some limitations such as large cost and power consumption.

Internet of Things (IoT) combines many technologies [15], such as

Internet, Wi-Fi, Bluetooth, 3G, etc to provide location based service

that enables different ways to get the location information of various

objects. Recently IoT is considered a popular and upcoming topic in

wireless sensor networks and the knowledge of sensors location is a very



24

important issue, so it is extremely useful to propose a proficient procedure

for sensor localization.

Therefore many localization estimating methods to estimate the lo-

cation of nodes in WSNs are proposed, these methods classified into two

categories according to the mechanism used for the location estimating

[46], such as:

1. Range-based position algorithms

Range-based approach determine the absolute distance estimate or an-

gle estimate between nodes based on range information such as Received

Signal Strength Indicator (RSSI), Time of Arrival (TOA), Time Differ-

ence of Arrival (TDOA), and Angle of Arrival (AOA), then the desired

position of the nodes is estimated with the help of triangulation or tri-

lateration techniques. This scheme has some drawbacks such as, an ad-

ditional range devices are needed, which results to increase the cost and

to consume more energy.

2. Range-free position algorithms

Range-free scheme is a cost-effective alternative method since there is

no need for additional range hardware, so it is more popular among all

other range-free localization algorithms due to its simplicity. This scheme

applies distance approximation algorithms to determine the node’s loca-

tion. In range-free localization schemes, the sensor nodes knowing their

positions are called Anchor nodes, while the others are called Normal or

Unknown nodes. In this scheme, unlike the range-based scheme, the con-



25

nectivity information is used, and it is indicate how two nodes are closing

together, these information can be the hop count between the two nodes.

The Unknown nodes gather the connectivity information and the posi-

tion of anchors, after that they calculate their own positions through a

specific localization algorithm.

The two main range free localization algorithms are the Centroid and

Distance Vector-hop(DV-Hop).

In DV-Hop algorithm, the position of the Unknown nodes is calculated

depending on hop count. So to localize a node, multi-hops calculations

are performed. The multi-hopping between the nodes consumes large

energy, so the main focus will be on energy efficient algorithm which

is Centroid algorithm where the distance between the nodes and the

centroid is calculated as it will be described in the follows sections.

4.4 Centroid Localization algorithm

Centroid algorithm [52] is a range-free localization algorithm, it is put

forward by professor Bulusu at the University of California. Its principle

is that when the unknown node exists within the range of anchor nodes,

the un-localized nodes locate it self as the centroid of all the received

beacon’s positions. Centroid algorithm is simple and easy to implement.

Many cases were demonstrated as in Figure 4.6

In Figure 4.6 (a), when the unknown node is within the scope of

the anchor node communication. Figure 4.6 (b) shows that when the



26

Figure 4.6: The principle diagram of the centroid localization algorithm

unknown node exists in the second anchor node scope. In the same way,

when unknown nodes exist in the third anchor node communication range

as shown in Figure 4.6 (c). As shown in Figure 4.6 (d), the unknown

node coordinates in the case of multiple anchor nodes in vertices of a

polygon are the centre of this polygon, so in the case of six anchor nodes

with coordinates of (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6),

depending on the centroid localization algorithm the estimated location

of the unknown node coordinates (X, Y) is:


x = x1+x2+x3+x4+x5+x6

6 ,

y = y1+y2+y3+y4+y5+y6
6

(4.1)



27

from these mathematical expressions, it is noticed that the six anchors

nodes location information has exactly the same effect in the process of

the unknown node localization. Therefore, this estimation method in

the process of actual position is not reasonable, since the nearer anchor

node has a greater effect to the estimated location of the unknown node

so its location will be closer to the nearer anchor node. As a result an

improvement is introduced to this algorithm in the next section

4.5 Weighted Centroid Localization algorithm

Due to the low accuracy in location estimation of the centroid localization

method, the development of a weighted centroid localization (WCL) algo-

rithm based on RSSI [52] was stimulated. The basic idea of the weighted

centroid algorithm is to take the anchor nodes that located within the

communication range into consideration and give more influence to those

anchors which are nearer to the unknown node and use the data received

from them for the localization process. WCL introduces the weights of

the beacons depending on their received signal strength indicator (RSSI)

towards the unknown node. RSSI can reflect the distance between the

two nodes.

Assume that we have n anchor nodes in wireless sensor network, their

coordinates (x1, y1), (x2, y2), (x3, y3), (x4, y4), ...,(xn, yn), respectively.

Also let w1, w2, ..., wn are the weights of the RSSI of the anchor nodes

By the weighted centroid algorithm the estimated coordinates computed



28

through the follwing formula:


Xest = w1x1+w2x2+...+wnxn

w1+w2+...+wn
,

Yest = w1y1+w2y2+...+wnyn
w1+w2+...+wn

,

wi = RSSIi
RSSI1+RSSI2+...+RSSIn

.

(4.2)

Where, Xest and Yest are the unknown sensor node coordinates, wi is

the anchor node weight.

So we can conclude that from equation 4.2 that the signal transmis-

sion distance is the important factor in the localization process, such that

the grater distance the smaller received signal strength, so the value of

RSSI reflect the distance between the nodes.

RSSI Parameter Calculation in WSN

RSSI (Received Signal Strength Indicator) is a more common name for

the signal value. It is the strength that one device is receiving from

another device and it is a measurement of the power that present in the

received radio signal measured in decibels.

RSSI measurement calculates the signal loss in the dissemination pro-

cess with the theory of signal propagation model, there are some measure

terms which have an important role in RSSI measurement as follows:

1. Path Loss Model

Wireless signal propagation path loss influence the positioning preci-



29

sion of the localization algorithm in a great way, it is a measure of how

much signal power loses by the device over a given distance. Using the

theoretical models of the wireless signal transmission, we have the ability

to locate by the signal strength. The most common models to estimate

the distance based on the attenuation are the free space propagation

model and the log-distance path loss model

In the free space, the signal strength attenuates logarithmically with

respect to the distance between the transmitters and receivers. The

assumption in the free space model is the ideal communication envi-

ronment, that has an only one unobstructed straight path. H.T Friis

[50] proposed to use equation 4.3 to calculate the received signal ability

strength in the free space when the distance to the transmitter is d :

Pr =
PtGtGrλ

2

(4πd)2
(4.3)

where, Pt is Received signal power in Watts between the transmitter

receiver, Gt is Gain of the Transmitter, Gr is the Gain of the Receiver,

λ = c
f is Wavelength of transmission in meters, where c = 3 ∗ 108 is the

velocity of the electromagnetic and f is the frequency of transmission in

Hertz.

In the real environments, the obstacles interference, diffraction and

multipath and other factors, cause difference between the radio propaga-



30

tion path loss in comparison with the theoretical value, so the shadowing

distribution model would be more realistic environment.

Log-Normal shadowing model [57] is a general extension to the free space

model. If the environment contains some objects like trees and buildings,

there is some part of the transmitted signal gets affected by reflection,

absorption, scattering and diffraction. This effect is called shadowing.

Log Normal Shadowing path loss model [49] is formally expressed as:

PL(d) = PL(d0) + 10nlog
d

d0
+Xσ (4.4)

Where, PL(d) is the path loss after distance d, n is the path loss expo-

nent which measures the rate at which the RSSI decrease with distance,

the value of n depends on the specific propagation environment, Xσ is a

zero mean Gaussian distributed random variable whose mean value is 0

and it reflects the change of the received signal power in certain distance.

This variable is used only when there is a shadowing effect. If there is

no shadowing effect, then this variable is zero, d0 is reference distance

and usually equals 1 meter, PL(d0) is a known reference power value at

a reference distance d0 from the transmitter.

2. Received Signal Power at Reference distance.

Assume that A is the received signal power in the distance d0 between



31

the transmitter and the receiver, the formula 4.5 can be generated.

A = Pt − PL(d0) (4.5)

Pt: is power of transmitter

PL(d0): is a known reference power value from the transmitter to refer-

ence at a distance d0. The reference path loss PL(d0), it is the power

value at reference point and it can be obtained using Friis equation 4.6

[6, 50] or by field measurements at d0.

Pr0 =
PtGtGrλ

2

(4πd0)2
(4.6)

where, Pt is Received signal power in Watts between the transmitter

receiver, Gt is Gain of the Transmitter, Gr is the Gain of the Receiver,

λ = c
f is Wavelength of transmission in meters, where c = 3 ∗ 108 is the

velocity of the electromagnetic and f is the frequency of transmission in

Hertz.

3. Received Signal strength RSSI.

RSSI can be calculated from the following equation [33]:

RSSI = Pt − PL(d) (4.7)



32

then the RSSI will be

RSSI = A− 10nlog
d

d0
+Xσ (4.8)

Through these measure terms the value of RSSI between the anchor node

and the unknown node was obtained

Weighted Centroid Localization Algorithm Steps:

suppose that there are n anchor nodes in a wireless sensor network,

and (X,Y) is the unknown sensor node coordinates, then the location

estimation steps based on the weighted centroid localization algorithm

are defined as follows:

1. The anchor nodes send their information, including their own position

coordinates information to the surrounding nodes.

2. Unknown node receives the broadcast information from the anchor

nodes and calculate the average received signal strength from anchors.

3. While the unknown nodes receive anchor node information, formulas

for the anchor node coordinates = x1, x2, x3, ...,xn and the received signal

strength RSSI = RSSI1, RSSI2, RSSIn are established.

4. Using formula 4.2 we can calculate the coordinates (Xest, Yest) of the

node under test.

5. For evaluating of the precision of result, a definition of localization



33

error E for n anchor nodes, CR Communication Range, (Xest,Yest) the

estimated position by WCL and (X,Y) actual positions, since the error

is impacted by communication radius, the error is given by [55, 23] :

E =

∑n
i

1
CR

√
(Xest−X)2 + (Y est− Y )2

n



34

pseudo-code for WCL
Require: Anchors Locations (xi,yi) with respective RSSI values.

1: Divide the area into k number of grid.

2: Let in each grid have the anchor node (anch).

3: Distribute the Unknown nodes (unk) randomly in the desired area.

4: IF

The distance between unk & anch ≤ CR

5: THEN

Compute the value of RSSI for each anchor within the communication range

through using Log Normal Shadowing path loss model.

PL(d) = PL(d0) + 10nlog d
d0

+Xσ

6: For each anchor, Compute the weight depending on RSSI.

wi =
RSSIi

RSSI1 +RSSI2 + ...+RSSIn
.

7: Calculate the estimated Xest,Yest coordinate of the node under test.

Xest =
w1 ∗ x1 + w2 ∗ x2 + ...+ wn ∗ xn

w1 + w2 + ...+ wn
,

Yest =
w1 ∗ y1 + w2 ∗ y2 + ...+ wn ∗ yn

w1 + w2 + ...+ wn
.

8: Calculate the estimated error position between the actual position (X,Y) and

the estimated positions (Xest, Yest.)

E =

∑n
i

1
CR

√
(Xest−X)2 + (Y est− Y )2

n

9: END IF



35 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Five 

Artificial Neural Network 

 

 

 

 

 

 



36

5.1 Introduction

Neural networks are considered from the most robust and widely used

machine learning algorithms and they designed to recognize patterns and

predictions. These patterns are numerical contained in vectors, which all

the real-world data have to be translated for it, like images, sound, text

... etc. These networks interpret the data through a kind of machine

perception, labelling or clustering the raw input data.

An artificial neural network consists of a number of simple, small and

interconnected processors called neurons. These neurons are connected

through weighted links, each of which has a numerical weight associated

with it, in which signals passing through them from one neuron to an-

other, then a number of input signals are received by each one of the

neurons through its connections and it is produce just an output signal.

The artificial neural network is made up of many layers, and the

artificial neurons in the network are arranged along these layers. The

weights of the links are modified to make the input/output behaviour of

the network is suitable with the target environment.

Choosing the structure of the artificial neural network is considered

the most important issue. The number of neurons and hidden layers

is changed. In addition to choose the activation function and training

algorithm to be used

Basically, the neural network consists of three different layers:



37

1. Input Layer (All the inputs are fed in the model through this layer).

2. Hidden Layers ( These layers are used for processing the received

inputs from the input layers, there is a possibility to be more than one

hidden layer. ).

3. Output Layer (The data after processing is called the ’outputs’ and

they are available in the output layer).

There exist different types of artificial neural networks, like, feedfor-

ward neural network (FFNN), convolutional neural network, recurrent

neural network... etc. These types of the neural network can be super-

vised or unsupervised, in our case we have the input and the desired

output so we rely on the supervised types. Therefore in our study, we

used the feedforward neural network and deep feedforward neural net-

work (DNN).

In this chapter we will introduce the concepts for the feedforward neu-

ral network and its types, and then we explain the effect of each type of

the activation functions and the training algorithms on the performance

of the network, and explain the stages of back propagation learning al-

gorithm.

5.2 Feedforward Neural Network (FFNN)

Feedforward neural network is a multilayer perceptron with one or more

hidden layers. The neural network type depends on the arrangement

and number of the composing neurons. The network architecture can be



38

represented as a directed graph, where each node represent a neuron and

the edges represent connectives between theses neurons.

The neuron is the basic building element of an ANN. The first thing

is that a neuron receives some signals from its input links, and then it

computes a new activation level and passes it as an output signal through

the output links.

The forms of the inputs can be raw data or outputs of other neurons.

Also, the outputs can be either a final solution to the problem or input

to other neurons. Figure 5.1 shows a typical neuron.

Figure 5.1: Diagram of a neuron

There are three types of neurons contained in feedforward Neural

Network:

1. Input neurons: these types of neurons take input vector and they

don’t do any type of computation, they just pass the input vector to the

next neurons.

2. Output neurons: those neurons receive signals from the previous

neurons and then transform it using the net weighted formula with ap-



39

Figure 5.2: Left: single layer perceptron; Right: Multi-layer perceptron.

propriate activation function. These values represent the output values

of the whole neural network.

3. Hidden neurons: are considered as the basis of the neural network,

they receive the signals from the input neurons or previously hidden

neurons and handled them through the net weighted formula and the

appropriate activation function then pass the result signals to the next

hidden or output neurons. In Feed Forward Neural Network, neurons are

distributed into different layers.

Input and output neurons are distributed in separated layers which are

the input layer and output layer, respectivly. Hidden neurons form the

hidden layers which can be one or more than a hidden layer. Every neuron

in feedforward neural network (except the input neurons) is connected

through synapses with all neurons of the previous layer as illustrated in

figure 5.2

There are a lot of different learning algorithms that multilayer neu-

ral networks used to learn but the most common used method is back-



40

propagation which was derived by many of researchers in the early 60’s,

and the researchers who help in proposing this algorithm are Arthur

E. Bryson and Yu-Chi Ho in 1969. Paul Werbos was first to propose

that back propagation could be used for neural networks after analyzing

his 1974 PhD Thesis [41], section 5.4 has a detailed explanation about

back-propagation.

5.2.1 Feedforward (single layer) Neural Networks

This type is consider the first and simplest type of FFNN. In this network

the information moves only from the input layer directly through the

single hidden layers to the output layer. This network consist of just one

hidden layer as shown in figure 5.3.

Figure 5.3: Feed Forward (single layer) neural network

FFNN in general is a supervised learning system consisting of a large

number of neurons, each neuron makes simple decisions and then intro-

duces these decisions to another neuron which are organized in intercon-



41

nected layers.

In FFNN with just one hidden layer, any continuous function of the

inputs can be represented. In figure 5.4 a feedforward (single layer) neural

network is shown, and the result is represent a continuous function.

Figure 5.4: FFNN represent a continuous function of the input signals

The number of neurons in the hidden layer can be changed to choose

the best structure of the network in addition to choose the suitable acti-

vation function and training algorithm.

5.2.2 Deep Feedforward (multilayers) Neural Networks

Deep neural networks differ from the feedforward (single layer) neural

networks by their depth i.e, the number of layers the data must pass

through in a multistep process of pattern recognition.

Deep Neural Networks (DNNs) used to solve complex problems that

need a lot of effort to get good results, and it is composed of the input

and output layer and two or more hidden layers.

In feedforward (single layer) neural network any continuous function

of the inputs can be represented, while in Deep feedforward (multilayers)



42

Figure 5.5: Deep neural network with two hidden layer

neural network, even discontinuous functions can be represented.

A more complicated function can be represented through the deep

neural network because of the increased number of the hidden layer.

Figure 5.6 represents deep neural network with three hidden layers that

have the ability to classify the input features through the prediction of a

discontinuous function.

Figure 5.6: Deep neural network represent a discontinuous function of the
input signals



43

In DNN when an additional layer is added, the computational burden

will increases.

5.3 Activation Functions

Activation functions are the processing that taks place after the input is

passed into the neuron, they are mathematical equations used to deter-

mine the output of the ANN. This function is attached for each neuron in

the network and they also help in normalizing the output of each neuron

in the range between -1 and 1 or between 0 and 1.

There are many practical activation functions. Four common and

useful activiation functions are: 1. the step, 2. sign, 3. linear, 4. sigmoid,

and 5. hyperbolic tangent function (tanh).

The activation function f defines the output Y from the neuron in

terms of its net input X. There exists common activation functions [11]

[42], such that, step function, linear function and the sigmoid function.

• STEP ACTIVATION FUNCTION

Step function in equation 5.1 is the hard-limit transfer function

shown in fig 5.7, this function limits the output of the neuron to

either 0, if the net input X is less than 0; or 1, if X is greater than



44

Figure 5.7: Step activation functions of a neuron

or equal to 0.

Y =


1 if X ≥ 0,

0 if X < 0

(5.1)

The problem with the step function is, there is no possibility for

a multi-value output, that means, for example, that there is no

possibility for classifying the inputs into one of several categories.

The sign activation function is shown in equation 5.2, also called

hard limit function.

Y =


1 if X ≥ 0,

−1 if X < 0

(5.2)



45

• LINEAR ACTIVATION FUNCTION

In linear activation function given in equation 5.4, the inputs were

taken and then multiplied by the weights of each neuron as in

equation 5.3 and then using the linear activation function an output

is created proportional to the net weighted input. That’s mean, the

linear activation function is better than the step activation function

because it allows multiple outputs, unlike the step function that is

allowing just yes and no. fig 5.8 shows the linear activation function

X =
∑

xiwi (5.3)

Where, xi is the input values and wi is the corresponding weights

Y = X (5.4)

Thus, the output signal of a neuron with linear activation function

is equal to the neuron weighted input. The activation derivative

for the linear function is given by:

Y ′ = 1 (5.5)

and the second derivative is:

Y ′′(X) = 0 (5.6)



46

Figure 5.8: Linear activation function

A major problem of the linear activation function is that there is

no possibility to use backpropagation ”gradient descent” to train

the network since the derivative of the linear function is a constant

so it has no relation to the input X. Consequently, there is no

possibility to go back and realise the weights in the input neurons

that can provide a better prediction.

• SIGMOID FUNCTION

The sigmoid function [21] given by equation 5.7 transforms the

input that could have any value between ±∞, into a reasonable

value between 0 and 1. This function can be used in the back-

propagation networks.

Y =
1

1 + e−X
(5.7)

Sigmoid is the most used activation function when we construct



47

Figure 5.9: Sigmoid activation function

neural networks. This function is monotonic, it gives good balance

between a linear and non-linear behaviour.

The hyperbolic tangent function defined by the equation 5.8 [3]

and showed in fig 5.10 is an important example of a sigmoid func-

tion (s - shaped) but it’s output range is from (-1 to 1). Thus

strongly negative inputs in tanh function are mapped to negative

outputs. Also, only zero-valued inputs are mapped to near-zero

outputs which make the network less likely to get “stuck” during

training in contrast with the sigmoid function which has the fact

that if a strongly-negative input is provided to the logistic sigmoid,

it output values will be very close to zero, which can cause a neural

network to get “stuck” during training.

Y = tanh(X) or Y =
2

1 + e−2X
− 1 (5.8)



48

This looks very similar to sigmoid function

tanh(X) = 2simoid(2X)− 1

Its activation derivative is given by

Y ′ = 1− tanh2(X)

The second derivative of this activation function is:

Y ′′ = −2tanh(X)(1− tanh2(X))

Figure 5.10: Hyperbolic tangent Activation Function



49

5.4 Back-propagation algorithm

The main principle for the back propagation approach is modelling a

given function by modifying the weights of input signals for producing

an expected output signal. The network is trained through a supervised

learning method, where the error between the actual network’s output

and a known expected output is presented to the network and used for

modifying its internal state.

Technically, the back propagation algorithm is a method used for training

the synaptic weights in a multilayer feedforward neural network. As such,

this algorithm requires a network structure with one or more layer where

each layer is fully connected to the next layer.

Back-propagation algorithm searches for the weight values which min-

imize the total error of the network over a set of training data.

In back propagation algorithm the training input values are intro-

duced to the input layer, after that the network propagates the input

values from layer to layer until the activations of output are generated

through the output layer it then backward propagates the output activa-

tions. Then the error is calculated, which means the difference between

the desired and the actual output, and this error propagated backwards

through the network from the output layer to the hidden layers until we

reach to the input layer and the weight for each synaptic is modified as

the error is propagated.



50

Back-propagation process is determined by, the network’s architecture

(the connections between neurons), the activation function used by the

neurons in the network and the learning law that is used to determine

and adjust the weights.

The following basic steps provide the foundation to implement the

back propagation algorithm and to apply it to our own predictive mod-

eling problem.

1. Initialize Network.

Consider a neural network with a three layers as shown in Figure

5.11, and assume that i, j and k are the indices refer to neurons in the

input, hidden and output layers, respectively. And assume that x1, x2,

. . ., xn are the input signals which are propagated from left to right

through the neural network, and the error signals, e1, e2, . . ., en, from

right to left. The weight between the neurons in the input layer and the

neurons in the hidden layer is denoted by wij, and the weight between

the neurons in the hidden layer and the neurons in the output layer is

denoted by wjk.

The first thing we should start with is the creation of a network to be

ready for training, so the data preparation is the first important thing

we should start with, so for having an efficient Neural network there are

some preprocessing steps on the inputs and the desired outputs in the

neural network. The network’s inputs have to be transformed into better

form to be used. This can be done through the Normalization process



51

Figure 5.11: Three layer back-propagation neural network

which is a process for rescaling the data from the original range into the

range between -1 and 1.

If we have unscaled input values, it will result in a slow or unsta-

ble learning process. Since the neural network is tasked to learn how to

combine the inputs values through a series of linear combinations and

nonlinear activations, the parameters associated with each of these in-

puts will also exist on different scales which will lead to the slowness or

instability in the learning process.

There exist different normalization techniques used for increasing the

reliability of the training in neural networks since through normalizing

all of the inputs to a standard scale, this will allow the network to learn

the optimal parameters for each input node more quickly.



52

A common used normalization method is Min-Max Normalization

[43] this method rescales the input features or outputs from a specific

range of values to another new range. Usually, the features are rescaled

to be in the range from 0 to 1 or from -1 to 1. This can be done using

formula 5.9.

IN = (I − Imin)[
Nmax −Nmin

Imax − Imin
] +Nmin (5.9)

where,

I: the non-normalized input value for the training process.

IN : the normalized input value.

Imin: the minimum value of the input vector.

Imax: the maximum value for the input vector.

After the training process is done and the output predicting results

are observed, the normalized values must denormalized values as shown

in equation 5.10

O = (ON −Omin)[
Omax −Omin

Nmax −Nmin
] +Omin (5.10)

where,

O: the non-normalized output value for the training process.

ON : the normalized input value.

Omin: the minimum value of the output vector.

Omax: the maximum value for the output vector.



53

In the neural network there is one weight for each input connection.

In general, good initializing weights for the networks is a small random

number. In our case, will we use random numbers which are uniformly

distributed in the range of (−2.4
Fi
,+2.4

Fi
), where Fi represent the number

of inputs to neuron i in the network for the initial weights w1,w2,..., wn

and threshold t [35].

2. Forward Propagate

the output of a neural network can be computed by propagating the

input signal through each layer until reaching the output layer to get the

outputs values.

This is called a forward-propagation which is a technique need for gen-

erating the predictions during training that usually needs to be modified

and it also will need after the network is trained to make predictions

based on new data.

In similar way to the perceptron, at first, computes the weighted sum

of the inputs as before:

X =
n∑
i

Wixi − t

such that n is the number of inputs and t is the threshold applied to the

neuron.

we will used the hyperbolic tangent activation function given by the

following:

Ytanh = tanh(X) (5.11)



54

or

Ytanh =
2

1 + e−2X
− 1

It is possible to compute the derivative of this function and it is guaran-

teed that the output of the neuron is bounded between -1 and 1.

Y ′tanh = 1− tanh2(x) (5.12)

or

Y ′tanh =
4e−2x

(e−2x + 1)2

In a multilayer neural network, the output neurons have different inputs

from the inputs for the neurons in the hidden layer. The output yj of

the neurons in the hidden layer is considered as the inputs for the output

layer instead of initial input xi.

At first, compute the actual outputs for the neurons in the hidden

layer:

yj(p) = tanh[
n∑
i=1

xi(p)×Wij(p)− tj];

where,

n: is the number of the inputs for neuron j in the hidden layer, and tanh

is the hyperbolic tangent activation function.



55

Then, Calculate the actual outputs for the output neurons,

yk(p) = tanh[
m∑
j=1

xjk(p)×Wjk(p)− tk];

where m denoted the number of inputs for the output neuron k.

Define the error signal at the output neuron k at iteration p with the

formula 5.13

ek(p) = yd,k − yk(p) (5.13)

yd,k(p): the desired output of the neuron k at iteration p.

3. Back Propagate Error

Error is the difference between the desired and the actual outputs

for the network. These errors are propagated backwards through the

network from the output layer to the hidden layer and updating weights

as they go.

The error gradient for neuron k in the output layer is:

δk(p) =
∂yk(p)

∂Xk(p)
× ek(p), (5.14)

such that yk(p) represent the output of the neuron k at itration p, and

Xk(p) denote the weighted sum of the input to neuron k at the same

iteration.



56

The hyperbolic tangent activation function shown in equation 5.15:

δk(p) =
∂( 2

1+e−2X − 1)

∂Xk(p)
× ek(p),

So,

δk(p) = (1− y2k(p))× ek(p) (5.15)

such that,

δk(p) =
2

1 + e−2X
− 1

In the hidden layer, a little more complicated than output layer, The

error signal for the hidden neurons is calculated as weighted error for

each output neuron, as illustrated in the following equation 5.16

δj(p) = (1− y2j (p))×
l∑

k=1

δk(p)Wjk (5.16)

where l represents the number of neurons in output layer.

Yj(p) =
2

1 + e−2Xj(p)
− 1 ;

Xj(p) =
n∑
i=1

xi(p)×Wij(p)− tj;

such that n represent the number of the neurons in the input layer.

A more detailed information is introduced in section 5.5.1 about Gradient

descent algorithm.



57

4. Train Network

This part is described in two steps:

a. Update Weights.

b. Train Network.

4(a). Updating the Weights.

Once the errors are calculated for all the neuron in the network through

the back propagation method as mentioned before, these errors can be

used for updating the weights.

For updating the weights for neuron k at the output layer which is

provided with the desired output, the formula 5.24 is used,

Wjk(p+ 1) = Wjk(p) + ∆Wjk(p) (5.17)

∆Wjk(p): the weight correction which can defined as follow

∆Wjk(p) = αyj(p)δk(p) (5.18)

such that α is the learning rate which is a hyperparameter that controls

how much we are modifying the weights in the network to correct the

error and δk(p) is the error gradient for the neuron k in the output layer.

The same steps for the updating weights for the neuron j in the hidden

layer,

Wij(p+ 1) = Wij(p) + ∆Wij(p) (5.19)



58

∆Wij(p): the weight correction which can defined as follow

∆Wij(p) = αxi(p)δj(p) (5.20)

where δk(p) is the error gradient for the neuron j in the hidden layer.

4(b). Train Network.

The network is trained using many training algorithms, such that,

gradient descent algorithm, Newton’s method, Quasi-Newton method,

Levenberg-Marquardt algorithm The training involves many iterations

to explore a relationship between the data.

The training function implements the training for an initialized neu-

ral network with a given training dataset, learning rate (α), fixed number

of epochs and an expected number of output values.

The sum squared error between the desired output and the actual net-

work output is accumulated each epoch. This is very helpful for us to

know about how much the network is learning and improving each epoch.

Once a network is trained, it is used to make predictions.

5. Predict

Making predictions with a trained neural network is the goal for all

process. As described previously about how to forward-propagate inputs

to get the outputs, make a prediction to be the same. We just need

to provide the network with new input data and the network dicrectly

through the forward-propagate will make a prediction and give good



59

Figure 5.12: Train neural network

outputs.

5.5 Training algorithms

The learning problem in a neural network is formed mainly to search for

the weight w at which the loss function takes its minimum value.

In general, the loss function is considered a non-linear function. There-

fore, it is very hard to find a closed training algorithm for the minimum,

so we should search for neural network parameters in consecutive steps.

At each step, the loss decreases by modifying the parameters in the net-

work.

Therefore, for training the neural network, the user has to provide

initial random values for the weights. Then, a sequence of parameters

will be generated, and the loss will change between each step, and this

change is called the loss decrement.

The training process stops when a specific stopping criterion is sat-

isfied [27]. This criterion is a specific value for the error or a specific

number of epochs which are should be predefined.



60

Two of the most common training algorithms for the neural network

are Gradient descent, Levenberg-Marquardt algorithm.

5.5.1 Gradient descent

Gradient descent is an iterative optimization algorithm used to find the

minimum for the loss function. As mentioned previously, Backpropaga-

tion algorithm is used for updating the weights for the neural network

when it is not able to make the correct predictions with the old weights.

Gradient descent is one of the used training algorithms to update the

network weights.

For starting the minimization process, initialize the weights for mak-

ing the first output prediction,

The pattern error is the sum of squared errors of the output neurons:

E(x,w) =
1

2

I∑
i=1

K∑
k=1

e2k (5.21)

where, i is the index of patterns, from 1 to I, and I is the number of

patterns, k is the index of outputs, from 1 to K, and K is the total

number of outputs, x is the input vector, w is the weight vector, e is the

training error at output k when applying pattern p and it is defined as

ep,k = y(desired)p,k − y(actual)p,k (5.22)



61

Where, y(desired)p,k is the desired output and y(actual)p,k is the actual out-

put.

The gradient descent is a first-order algorithm, it uses the first-order

derivative of the total error function to find the minimum error. Gradient

g is defined as the first order derivative of total error function 5.23:

g =
∂E(x,w)

∂w
=
(
∂E
∂w1

∂E
∂w2
· · · ∂E

∂wN

)T
(5.23)

So, after measure the output error, if we got large value, we need to

minimize it, so the question is How to minimize the error?

In neural network the loss function should be minimized. The used

equations in section 5.4 are mentioned again,

The weight update rule as mentioned in equation 5.24 is,

Wjk(p+ 1) = Wjk(p) + ∆Wjk(p) (5.24)

∆Wjk(p) = −α ∂E

∂Wkj
(5.25)

Input of neuron k is:

X =
n∑
i

Wjkyj (5.26)

using the chain role,

∂E

∂Wkj
=

∂E

∂Xkj
× ∂X

∂Wkj
(5.27)



62

So,

∆Wjk(p) = −α× ∂E

∂Xkj
× ∂X

∂Wkj
(5.28)

Let δk the error signal of neuron k:

δk = − ∂E

∂Xk
(5.29)

and

∂X

∂Wkj
= yj (5.30)

So,

∆Wkj = αδkyj (5.31)

In order to compute the weight change ∆Wkj and the error signal δk of

neuron k, there are two cases, depending on whether neuron is in the

output layer or in the hidden layer.

In the case of that k is an output neuron then by using the chain rule

we obtain that:

δk = − ∂E

∂Xk
=
∂E

∂yk
× ∂yk
∂Xk

(5.32)

∂E

∂yk
=
∂E

∂ek
× ∂ek
∂yk

(5.33)



63

= ej(−1)φ′ (5.34)

such that φ is the used activiation function.

becuase ek = yd,k − yk and yk = φ(Xk)

So, the weight wjk from the output neuron k to the hidden neuron j is

updated as:

∆Wjk = αeφ′(Xk)yj (5.35)

However, In the case of k=j is hidden neuron, also the chain rule is

used the same as the output neuron.

δj = − ∂E

∂Xj
=
∂E

∂yj
× ∂yj
∂Xj

(5.36)

∂E

∂yj
=
∑ ∂E

∂xk
× ∂Xk

∂yk

(5.37)

Then,

δj = −
K∑
k=1

δkwjk ∗ φ′(Xj) (5.38)

So, the weight wij from the hidden neuron j to the input neuron i is



64

updated as:

∆Wij = αxiφ
′(Xj)×

K∑
k=1

δkwjk (5.39)

Summary : The delta rule,

δj =


φ′(Xj)e, If j in output layer

φ′(Xj)
K∑
k=1

δkwjk, If j in hidden layer
(5.40)



65

pseudo-code for Gradient descent

1. Give a random Initial values for the weights and thresholds

in the interval (−2.4Fi
, +2.4
Fi

).

2. Calculate the Mean squared errors (MSE) over all the in-

puts.

3. Compute ∆W = −α ∂E
∂W .

4. Update the network weights w using W = W + ∆W

5. Recompute the Mean Squared Errors MSE using the up-

dated weights.

IF

MSE > stopping criteria

THEN

Go back to step 2

ELSE

Print the lowest value of the weights

END IF



66

5.5.2 Levenberg-Marquardt algorithm (LM)

Levenberg Marquardt [30] is an a standard procedure used for solving

nonlinear least squares problems.

Levenberg Marquardt method is an iterative technique used to reduce

the sum of squares errors between the function and the measured data

points using succession steps for updating the values of the weights. It

works with the gradient vector and the Jacobian matrix [32].

LM locates the minimum of the loss function which is the sum squared

error, it finds only a local minimum, which is not necessarily the global

minimum. It is considered the most efficient training algorithm for arti-

ficial neural network with median size.

The gradient component g1, g2, · · ·, gN is assumed to be functions of

weights as equation 5.41



g1 = F1(w1, w2 · · · wN)

g2 = F2(w1, w2 · · · wN)

:

gN = FN(w1, w2 · · · wN)

(5.41)

By taking First-order approximation Taylor series, we can write each



67

gi(i=1,2,...,N) in equation 5.41 as:



g1 ≈ g1(w0) + ∂g1
∂w1

(w1 − w0) + ∂g1
∂w2

(w2 − w0) + ...+ ∂g1
∂wN

(wN − w0)

g2 ≈ g2(w0) + ∂g2
∂w1

(w1 − w0) + ∂g2
∂w2

(w2 − w0) + ...+ ∂g2
∂wN

(wN − w0)

:

gN ≈ g(w0) + ∂gN
∂w1

(w1 − w0) + ∂g1
∂w2

(w2 − w0) + ...+ ∂gN
∂wN

(wN − w0)

(5.42)

By the definition of the gradient vector g in equation 5.23, we can define:

∂gi
∂wj

=
∂( ∂E∂wi

)

∂wj
=

∂2E

∂wi∂wj
(5.43)

Now, insert equation 5.43 to equation 5.42



g1 ≈ g1,0 + ∂2E
∂w2

1
(w1 − w0) + ∂2E

∂w1∂w2
(w2 − w0) + ...+ ∂2E

∂w1∂wN
(wN − w0)

g2 ≈ g2,0 + ∂2E
∂w2∂w1

(w1 − w0) + ∂2E
∂w2

2
(w2 − w0) + ...+ ∂2E

∂w2∂wN
(wN − w0)

:

gN ≈ gN,0 + ∂2E
∂wN∂w1

(w1 − w0) + ∂2E
∂wN∂w2

(w2 − w0) + ...+ ∂2E
∂w2

N
(wN − w0)

(5.44)

Therefore, the second order derivatives of the total error function must

be computed for each component of the gradient vector. In order to min-

imize the total error function E, the gradient vector component should



68

be equal to zero.



0 ≈ g1,0 + ∂2E
∂w2

1
∆w1 + ∂2E

∂w1∂w2
∆w2 + ...+ ∂2E

∂w1∂wN
∆wN

0 ≈ g2,0 + ∂2E
∂w2∂w1

∆wN + ∂2E
∂w2

2
∆w2 + ...+ ∂2E

∂w2∂wN
∆wN

:

0 ≈ gN,0 + ∂2E
∂wN∂w1

∆w1 + ∂2E
∂wN∂w2

∆w2 + ...+ ∂2E
∂w2

N
∆wN

(5.45)

Through combining equation 5.23 with 5.45 :



− ∂E
∂w1

= −g1,0 ≈ +∂2E
∂w2

1
∆w1 + ∂2E

∂w1∂w2
∆w2 + ...+ ∂2E

∂w1∂wN
∆wN

− ∂E
∂w1

= −g2,0 ≈ + ∂2E
∂w2∂w1

∆wN + ∂2E
∂w2

2
∆w2 + ...+ ∂2E

∂w2∂wN
∆wN

:

− ∂E
∂w1

= gN,0 ≈ + ∂2E
∂wN∂w1

∆w1 + ∂2E
∂wN∂w2

∆w2 + ...+ ∂2E
∂w2

N
∆wN

(5.46)

So, all ∆wi can be computed since we have N equations for N parameters.

Through the solution the weights can be updated iteratively. we can write

equation 5.47 in matrix form



−g1

−g2

:

−gN


=



− ∂E
∂w1

− ∂E
∂w2

:

− ∂E
∂wN


=



∂2E
∂w2

1

∂2E
∂w1∂w2

... ∂2E
∂w1∂wN

∂2E
∂w2∂w1

∂2E
∂w2

2
... ∂2E

∂w2∂wN

: : : :

∂2E
∂wN∂w1

∂2E
∂wN∂w2

... ∂2E
∂w2

N


+



∆w1

∆w2

:

∆wN


(5.47)

Such that the square matrix is called Hessian matrix H, which is a ma-



69

trix of the second derivatives for the loss function with respect of all

combinations of the weights.

H =



∂2E
∂w2

1

∂2E
∂w1∂w2

... ∂2E
∂w1∂wN

∂2E
∂w2∂w1

∂2E
∂w2

2
... ∂2E

∂w2∂wN

: : : :

∂2E
∂wN∂w1

∂2E
∂wN∂w2

... ∂2E
∂w2

N


(5.48)

By equations 5.23 and 5.48, equation 5.47 can be written as,

−g = H∆w (5.49)

So,

∆w = −H−1g (5.50)

Since Hessian matrix is second order derivatives, it can estimate the

curvature of the loss function and give a good evaluation on the change

of the gradient vector. From this we can obtain the updated role for the

Newton’s method as given in equation 5.51

∆wp+1 = wp −H−1p gp (5.51)

Nowdays, most of the architectures used billions of parameters, and com-

pute a billion of second derivatives is very complicated process. In order

to simplify the calculating process, Jacobian matrix [54] J was intro-



70

duced, which is defined as :

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂e1,1
∂W1

∂e1,1
∂W2

...
∂e1,1
∂WN

∂e1,2
∂W1

∂e1,2
∂W2

...
∂e1,2
∂WN

: : ... :

∂e1,M
∂W1

∂e1,M
∂W2

...
∂e1,M
∂WN

: : ... :

∂eI,1
∂W1

∂eI,1
∂W2

...
∂eI,1
∂WN

∂eI,2
∂W1

∂eI,2
∂W2

...
∂eI,2
∂WN

: : ... :

∂eI,M
∂W1

∂eI,M
∂W2

...
∂eI,M
∂WN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By equation 5.21 and 5.23, The element of the gradient vector can be

computed as:

gi =
∂E

∂wi
=
∂(12

∑L
l=1

∑M
m=1 e

2
l,m)

∂wi
=

L∑
l=1

M∑
m=1

(
∂ei,m
∂wi

ei,m) (5.52)

So the relation between the jacobian matrix and gradient vector is:

g = JTe (5.53)



71

where e is the error vector defend as:

e =



e1,1

e1,2

...

e1,M

...

el,1

el,2

...

el,M



(5.54)

The elements of the Hessian matrix can be calculated as:

hi,j =
∂E

∂wi
=
∂2(12

∑L
l=1

∑M
m=1 e

2
l,m)

∂wi∂wj
=

L∑
l=1

M∑
m=1

∂el,m
∂wi

el,m
∂wj

+ Si,j (5.55)

where

Si,j =
L∑
l=1

M∑
m=1

∂2el,m
∂wi∂wj

el,m (5.56)

Since el,m is very small approximately zero, the summation term can

be ignored [56]. Then, The relation between the Jacobian matrix and

Hessian matrix is:

H ≈ JTJ (5.57)

So by combining the equations 5.51, 5.53 and 5.57 the updated rule will



72

be:

wp+1 = wp − (JTJ)−1JTe (5.58)

One limitation could be in this formula, is that the approximated Hessian

matrix may not be invertible, so, in order to ensure that the approxi-

mated Hessian matrix is invertible, Levenberg–Marquardt algorithm use

a modified Hessian matrix:

H ≈ JTJ + µI (5.59)

where µ: is always positive, called combination coefficient, I: is the iden-

tity matrix.

The update rule for the Levenberg–Marquardt algorithm [39] can be

defined as:

wp+1 = wp + (JTJ + µI)−1JTe (5.60)

If the combination coefficient µ result in increased the MSE, it is

multiplied by some factor β. When a step reduces the MSE, µ divided

by β.

Since Levenberg-Marquardt uses the Jacobian matrix, it needs big

memory requirements. On the other hand, it is the fastest algorithm.

If the neural networks have a huge amount of parameters then the suit-

able choice for the training is the gradient descent training algorithm to

save memory. If the neural network has just a few thousands of param-

eters, the Levenberg-Marquardt algorithm might be the best choice for



73

Figure 5.13: Training algorithms

training. In the rest of cases, Newton method will work better. figure

5.13 depicts a good comparison between the training algorithms in terms

of the computational speed and the memory requirements.



74

pseudo-code for LM

1. Give a random Initial values for the weights and thresholds

in the interval (−2.4Fi
, +2.4
Fi

) and take an appropriate value of

the parameter µ.

2. calculate the sum of the squared errors (SSE) for all the

inputs.

3. Solve ∆W = (JTJ + µI)−1 × JTe to obtain the weight cor-

rection ∆w.

4. update the network weights w using W = W + ∆W

5. Recompute the sum of squared errors E Using the updated

weights.

IF

SSE decreased

THEN

µ= 10 µ

Go back to step 2

ELSE

µ= µ
10

go back to step 4

END IF



75 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Six 

Simulation and Results 

 

 

 

 

 

 



76

6.1 Weighted centroid algorithm based on RSSI

In our experiment evaluation of the performance of weighted centroid lo-

calization algorithm (WCL) was implemented using the MATLAB R2018a

simulator. In this algorithm, we have set up the following conditions for

the simulation environment:

1. The anchor nodes are regularly distributed in a squared area of 100

x 100 m2 and the number of these anchors is set to be 100.

2. The unknown sensor nodes are deployed randomly in the experi-

ment area.

3. The communication range of sensor node (CR) is set to 20 m.

4. the estimated coordinates computed through WCL formula,


Xest = w1∗x1+w2∗x2+...+wn∗xn

w1+w2+...+wn
,

Yest = w1∗y1+w2∗y2+...+wn∗yn
w1+w2+...+wn

,

wi = RSSIi
RSSI1+RSSI2+...+RSSIn

.

(6.1)

5. Log normal Shadowing distribution model used to compute the

RSSI values.

PL(d) = PL(d0) + 10nlog
d

d0
+Xσ (6.2)



77

Where, PL(d) is the path loss after distance d, n is the path loss

exponent, Xσ is a zero mean Gaussian distributed random variable, d0 is

reference distance, PL(d0) is a known reference power value at a reference

distance d0 from the transmitter.

The network was generated using the parametres given in table 6.1

Table 6.1: Parameters for WCL algorithm

Parameters Values
Number of anchor nodes 100
Number of unknown nodes 50
Communication range 20 m
Deployment area 100 × 100
Pt 10 watt
n 2
d0 1

In figure 6.1, the black dots represent the positions of the anchor

nodes, stars represent the actual locations of the unknown nodes (un-

localized nodes), and circles represent the estimated locations of the

unknown node by the weighted centroid localization algorithm. The

displacement of the unknown nodes from their actual positions to the

estimated position represented by the red lines.

In figure 6.2, the estimated error represent for 50 unknown nodes such

that the errors are defied as the difference between the real and the esti-

mated locations, node 7 represents the maximum error as it is displayed

maximum from its real location to the estimated location. Node 12 has



78

Figure 6.1: Location estimation using WCL algoritm for 50 nodes

the minimum error, the avarege error for all 50 unknown nodes is equal

to 0.1554 m.

Figure 6.2: Error estimation for 50 nodes using WCL



79

Localization Error when number of Anchor node is varied:

In this simulation, we analyse the effect of number of anchor nodes on

the localization error.

We take different numbers of the anchor nodes described in table 6.2

Table 6.2: Varied number of anchors vs the value of the Local-
ization error obtaind by WCL

Number of Anchors Localization error
100 0.1449 m
144 0.1268 m
196 0.1088 m

Table 6.2 shows the effect of the increased number of anchors when we

use communication range 20m, and 100 unknown nodes, we notice that

the error decreases as the number of anchors increases. Anchor nodes

used to help in the unknown node localization process, the localization

improves as the number of the anchors increase, but on the other hand

the cost will increase, so we should try to locate the unknown nodes

with minimum number of anchor nodes. Figures 6.3, 6.4, 6.5 shows the

error of 100 unknown nodes distributed with 100, 144, 196 anchor nodes,

respectively.



80

Figure 6.3: Error estimation for 100 unknown nodes with 100 anchors

Figure 6.4: Error estimation for 100 unknown nodes with 144 anchors



81

Figure 6.5: Error estimation for 100 unknown nodes with 196 anchors

6.2 Feedforward Neural Network

After we study the performance of the weighted centroid algorithm, we

will introduce the use of the artificial neural network, especially the feed-

forward neural network in sensor node localization and we will compare

it’s results with WCL algorithm and DNN.

6.2.1 Data Collection

Data collection for the FFNN is a critical issue. Therefore our dataset

consists of, the input data which is the random locations for the unknown

nodes, and the desired output is the estimated locations obtained from

the WCL algorithm. The RSSI measurements used in the WCL which

was explained in chapter 4 is considered the most important factor used

to apply the WCL algorithm for helping us to collect these required data.



82

Table 6.3 shows a part of the training data used to train our FFNN model.

Table 6.3: Samples of the training data.

X Y Anchors Width Length Xest Yest

63.2421 45.9368 100 100 100 63.8928 46.1567
17.1165 44.4277 100 100 100 16.0529 43.7939
89.8132 44.511 100 100 100 84.7544 45.0956
16.7709 52.9684 225 150 150 16.0913 53.9389
124.7502 35.2376 225 150 150 125.0299 34.9931
47.2888 96.1498 225 150 150 46.0366 96.1385
68.5729 127.8781 400 200 200 67.3496 126.5028
35.1601 34.7811 400 200 200 34.9888 35.0222
28.3134 129.9582 400 200 200 27.8921 130.0209
96.1611 62.3364 625 250 250 96.1209 64.027
190.5943 4.1689 625 250 250 192.1931 9.3643
154.826 91.0939 625 250 250 155.0135 93.025
181.6974 122.3443 900 300 300 184.0838 124.0403
178.9024 131.9046 900 300 300 178.0624 131.8682
171.3831 150.7318 900 300 300 171.9142 151.989

Using Matlab to handle the data in table 6.3 and simulating the

FFNN. The First step is normalizing the data, using the method of Min-

Max Normalization [43] using formula 5.9 for the input data and 5.10

formula for the outputs.

6.2.2 Artificial Neural Network Structures

1. Feed Forward (single layer) Neural Networks

Using MATLAB R2018a, we build FFNN with different structures

to obtain which one gives the best results for the node localization,



83

the inputs and the desired outputs were fed to the network. A

series of trails were performed, The first trail is a network with 10

hidden neuron as shown in figure 6.6.

Figure 6.6: The proposed FFNN 10 hidden neurons.

The total number of input data patterns were separated into three

samples, training set, 75% of the data were used to train the net-

work. Validation set, 10% of the data were used to validate how

well the network generalised, and the rest 15% of the data was used

as testing set which provide a test of the network for data that the

network has never seen.

The next trails for the network structure is a network with 15, 20,

25 and 30 hidden neurons.

2. Deep feedforward (multilayers) Neural Networks

Another trail to estimate the sensor node locations in WSNs is to use

the deep feedforward (multilayer) neural network, the tried structures is

a networks with two hidden layers, as detailed in table 6.4.



84

Table 6.4: Summary of different deep networks structure.

Neurons in
hidden layers Training algorithm MSE error R
10, 10 LM 2.0539 0.99979
20, 20 LM 1.7592 0.99984

As we notice that the network with 20 neurons is better than the

network with 10 neurons. Figure 6.7. shows the DNN structure.

Figure 6.7: Structure of the proposed DNN

6.2.3 Evaluation of the proposed neural network models

To select the best neural network, MSE and the correlation cofficient is

the criterion to perform the selection.

MSE values for the training, validation and testing samples in the

first structure with 10 hidden neuron were illustrated in figure 6.8

As we noticed that the values of MSE for the three sets is considered

large.

In addition, the correlation coefficient R was taken into consideration



85

Figure 6.8: MSE for the FFNN data with 10 hidden neuron

to decide if the ANN is acceptable or not. The correlation coefficient

R used to give an idea about the correlation between the actual output

(predicted output) data and the desired output and to explain how good

a fit between the predicted value and the desired value.

The formula used to compute the correlation coefficient [45] is given

by equation 6.3,

R =

∑n
i=1(t− t) · (a− a)√∑n

i=1(t− t)2
√∑n

i=1(a− a)2
(6.3)

Where t is the target value, a is the actual output of the network and n

is the number of the sample data, t is the mean of the target data, a is

the mean of the actual data.

If R is zero then the relation between the predicted value and the

target value is irrelevant and when R is equal to one, there is a perfect

fit.

Figure 6.9 illustrate Correlation Coefficient for network performance.

And as we noticed that the value of R is near 1 so it is good.



86

Figure 6.9: Correlation Coefficient R for network performance (network
with 10 hidden neurons)

The second structure which is a network with 15 hidden neuron has

the values of MSE for each set of the training, validation and testing and

the values of R as shown in figure 6.10 and figure 6.11,

Figure 6.10: MSE for the FFNN data with 15 hidden neuron

As a result, we observe that the MSE is decreased and the value of R

is increase which means that this structure of the network is better than

first structure with 10 hidden neuron.

The network with 20 hidden neurons has the results for MSE and R



87

Figure 6.11: Correlation Coefficient R for network performance (network
with 15 hidden neurons)

as illustrated in figure 6.12 and 6.13, respectively.

Figure 6.12: MSE for the FFNN data with 20 hidden neuron

Table 6.5 Summarizes the results of different networks. performance.

As a result, from table 6.5 we observe that the best network structure

is a FFNN with 20 hidden neuron since the MSE has the lowest value

comparing to the other FFNN structures and with the different DNN

structurs.



88

Figure 6.13: Correlation Coefficient R for network performance (network
with 20 hidden neurons)

Table 6.5: Summary of different networks evaluated to yield
the criteria of network performance.

hidden neurons Training algorithm Training error R
10 LM 2.03107 0.99779
12 LM 2.10060 0.999771
15 LM 1.96859 0.999783
20 LM 1.44416 0.999841
25 LM 1.44641 0.999842
30 LM 1.53435 0.999833
20 GD 7.85491 9.99144
10, 10 LM 2.0539 0.99979
20, 20 LM 1.7592 0.99984

Now another important thing that we have the ability to choose it,

is the training algorithm, so we apply Levenberg-Marquardt training al-

gorithm and gradient descent.

The results of the MSE and R for the network with 20 hidden neuron



89

training with gradient descent algorithm is shown in figure 6.14

Figure 6.14: MSE for the FFNN data using Gradient descent training algo-
rithm

We notice that the MSE using Gradient descent algorithm is grater

than the network that used the LM training algorithm shown previously

in figure 6.12.

So we obtain that the best structure for the network is a FFNN with

20 hidden neuron applied the LM algorithm. This network performance

is shown in figure 6.15.

Figure 6.15: Mean square error (MSE) against epochs

the value of the MSE is 0.1544 with 360 epoch, this is consider a good

performance.



90

6.3 Results and discussion

In this study, the best structure for the neural network was decided to be

a FFNN with five input neurons, one hidden layer with 20 neurons and 2

outputs neurons since it has the minmum error and the best performance

as we explained in the previous section.

For evaluating the network and find the optimum solution, MSE value

and R-value were used. Smallest MSE value with the largest R-value

reflects the best network performance. A regression analysis between

the predicted and the desired outputs was carried out to investigate the

network performance in a detailed way and the correlation coefficient R

was computed to reflect the relation between the target and predicted

network outputs.

Levenberg Marquardt algorithm was selected to train the network

since it gives better results than the other training algorithms. In ad-

dition, Hyperbolic Tangent function (tanh) activation function for the

neuron in the hidden layer was chosen to be used.

Consequently, the network structure (5-20-2) is considered satisfac-

tory since it is the only network from all the other trained network that

is achieved the minimum value of MSE with the highest correlation be-

tween the predicted and the desired output values which implies that this

model is succeeded to predict the best location for the sensor in WSNs.

After we get the best trained neural network (FFNN), figure 6.16



91

shows the proposed FFNN with 20 hidden neurons.

Figure 6.16: Structure of the proposed FFNN

We used this network to purpose of the prediction for the location of the

unknown sensors nodes in WSNs, after we apply the weighted centroid

localization algorithm based on RSSI to get a good location for the un-

known sensor nodes with the help of the anchor node information. We

propose to use the FFNN to predict a more accurate results than the

locations obtained from the WCL.

A testing data set of 37 sensor node used to compare between the

predicted locations observed from the WCL algorithm and FFNN.

37 unknown node were distributed randomly in a WSN with 100

anchor nodes which is uniformly distributed within the area 100 × 100

m2 and the locations for the unknown nodes were determined using the

WCL as shown in figure 6.17.

The red stars represents the actual locations for the sensors and the

hollow squares represents the estimated location using the WCL algo-

rithm, and the average location error is equal to 0.1002 m.



92

Figure 6.17: Estimated positions and real positions for the testing data set
using WCL.

Bars in figure 6.18 represent the estimated error of 37 unknown nodes.

such that the error is defined as the variation between the actual and

estimated positions of the unknown nodes. Node 2 has the maximum

displacement from its actual position so it has the maximum error, also

node 22 represents the minimum error.

The case of using the FFNN, the random positions of the unknown

nodes are provided as inputs for the network and then the outputs were

achieved, such that the output is the estimated coordinate for the po-

sition of the unknown nodes. The first FFNN was generated using the

structure of 5-20-2 using gradient descent training algorithm, and the

results shows as figure 6.19 which illustrate the estimated positions of

the 37 unknown nodes.



93

Figure 6.18: Error distribution for 37 unknown nodes using WCL algorithm

Figure 6.19: Location estimation using FFNN (using GD) for 37 nodes

The actual and predicted positions for sensor nodes indicated by the

hollow triangles and squares, respectively.

In addition, error distribution for these 37 unknown nodes using

FFNN which uses gradient descent training algorithm is shown in fig-



94

Table 6.6: Simulation parameters for FFNN

Parameters Values
Number of neurons 5-20-2
Number of epochs 366
Training function LM
Performance function MSE

ure 6.22. Node 2 has the maximum error. The average estimated error

for 37 unknown nodes is to 0.1341 m.

Figure 6.20: Error distribution for 37 unknown nodes using FFNN using
GD training algorithm

we can observed that, FFNN using the GD gives a bad results com-

paring with the WCL algorithm, such that it gives a larger error for each

node, so now we apply the network used the Levenberg-Marquadet (LM)

algorithm and we get an accurate predicted location.

Table 6.7 shows the simulation parameters for the network .



95

Figure 6.19 shows the estimated positions for the unknown nodes

using FFNN with LM training algorithm

Figure 6.21: Location estimation using FFNN (using LM) for 37 nodes

In figure 6.22 the error distribution for each node were illustrated.

Node 2 has the maximum error. The average estimated error is 0.056.

So as we observed from the results for this FFNN that gives the lowest

error and the best position estimation for each node. These results are

the reasons for choosing this network structure (FFNN) insted of the

weighted centroid algorithm

The average localization error for all of the unknown sensor nodes

is used to evaluate the performance of the localization schemes. We

observed from the previous results for all the schemes that the FFNN

has a better performance than the weighted centroid algorithm, added



96

Figure 6.22: Error distribution for 37 unknown nodes using FFNN (using
LM)

to that, that the neural network eliminate the need for computing the

value of RSSI for each sensor node when we decide to localize it which

is reduce a lot of efforts and time. Therefore, implementing FFNN in

localization is a better choice to get higher localization accuracy.

Summary of performance comparison for 37 unknown nodes was shown

in table 6.7

Table 6.7: Estimated error using WCL FFNN

Method Error in meters
Weighted centroid localization algorithm 0.1002
Feed Forward Neural Network 0.056

Patterned Topologies for WSNs [47] provide a longer network lifetime

than the randomly deployed WSNs when they used the same number

of sensors, rather than this type of WSNs can efficiently save energy.



97

Therefore we built our FFNN model to be able to predict the sensor

node locations in WSNs with Square-Based Topology areas, which is one

of the important patterned topologies.

The estimated locations for the unknown nodes in different WSNs

areas with Square-Based Topology and different number of anchor nodes

can be obtained using our model with high accuracy as shown in figures

6.23, 6.24, 6.25, 6.26, in addition to the localization error for each sensor

node.

Figure 6.23: Estimated locations and localization error for 21 unknown
nodes distributed in area 150 × 150 (m)



98

Figure 6.24: Estimated locations and localization error for 21 unknown
nodes distributed in area 200 × 200 (m)

Figure 6.25: Estimated locations and localization error for 21 unknown
nodes distributed in area 250 × 250(m)



99

Figure 6.26: Estimated locations and localization error for 21 unknown
nodes distributed in area 300 × 300(m)

The red stars represents the the actual locations for the unknown

nodes and the blue squares is the estimated locations using FFNN model.

Table 6.8: Estimated localization error using FFNN in different
squared areas

Squared area Error in meters
150 × 150 0.0585
200 × 200 0.0507
250 × 250 0.0415
300 × 300 0.0369

As we obtain from the previous figures that our proposed FFNN

with 20 hidden neuron have the ability to predict the sensors locations

in different Square-Based Topology areas.



100 

Conclusion 

One of the critical issue in the Internet of Things environment is 

gathering data in an accurate and fast way. the most important thing 

helping us to guarantee this is the locations of the distributed sensors in the 

IoT environment. These sensors are the tool to gather the data in the IoT 

environment, so, when we have the ability to choose the best locations 

forthese sensors to cover all the interesting area and gather the huge 

amount of data in an accurate way. The weighted centroid localization 

algorithm based on RSSI is one of the most important localization 

algorithms for sensor node in WSNs. We applied this algorithm and got 

good result. A new and a better and accurate approach is to use machine 

learning for wireless sensor node localization process, discussed in this 

thesis. We choose one of the common used machine learning algorithms in 

the artificial neural network, and we trained it to be able to predict the 

location of any sensor nodes added to the network in a fast and accurate 

way. The proposed FFNN model with the structure of 5-20-2 that produces 

the best correlation coefficient R= 0.99984 compared to other structures. 

The value of R did not increase when the number of hidden neurons was 

more than 20. Mean square errors is equal to 1.444 for the training samples 

which is the smallest value between the other structures. Therefore, the best 

locations for the sensors node were observed using FFNN with20 neuron in 

one hidden layer.  Also, it is better than the deep learning neural network. 

These results helped us to the conclusion that the FFNN model is the best 

way to predict the sensor locations in WSNs in an accurate way. In addition 



101 

to the ability for our model to estimate the sensor node locations in 

different Square-Based topology areas which give the ability to the IoT 

environment to gather data in an accurate way. 



102 

 

References 

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. 

Wireless sensor networks: a survey. Computer networks, 38(4):393– 422, 

2002. 

[2] P. Bahl, V. N. Padmanabhan, V. Bahl, and V. Padmanabhan. Radar: 

An in-building rf-based user location and tracking system. 2000. 

[3] M. H. Bakr and M. H. Negm. Modeling and design of high-frequency 

structures using artificial neural networks and space mapping. In 

Advances in Imaging and Electron Physics, volume 174, pages 223– 

260. Elsevier, 2012. 

[4] R. Battiti, N. T. Le, and A. Villani.   Location-aware computing:    a 

neural network model for determining location in wireless lans. 

Technical report, University of Trento, 2002. 

[5] F. Benbadis, T. Friedman, M. D. De Amorim, and S. Fdida. Gps- free-

free positioning system for wireless sensor networks. In Second IFIP 

International Conference on Wireless and Optical Communi- cations 

Networks, 2005. WOCN 2005., pages 541–545. IEEE, 2005. 

[6] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann. 

Weighted centroid localization in zigbee-based sensor networks. In 

2007 IEEE international symposium on intelligent signal processing, pages 1–

6. IEEE, 2007. 



103 

 

[7] M. Bokare and A. Ralegaonkar. Wireless sensor network. Inter- 

national Journal of Computer Engineering Science (IJCES), 2(3), 2012. 

[8] N. Bulusu, J. Heidemann, D. Estrin, et al. Gps-less low-cost outdoor 

localization for very small devices. IEEE personal communications, 

7(5):28–34, 2000. 

[9] H. Chen, K. Sezaki, P. Deng, and H. C. So. An improved dv-hop 

localization algorithm with reduced node location error for wire- 

less sensor networks. IEICE Transactions on Fundamentals of Elec- 

tronics, Communications and Computer Sciences, 91(8):2232–2236, 2008. 

[10] D. Christin, A. Reinhardt, P. S. Mogre, R. Steinmetz, et al. Wireless 

sensor networks and the internet of things: selected challenges. 

Proceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose sen- 

sornetze, pages 31–34, 2009. 

[11] H. Demuth and M. Beale. Neural networks toolbox user’s guide: For 

use with matlab. The MathWorks, Inc, 2002. 

[12] L. Doherty, L. El Ghaoui, et al. Convex position estimation in wire- 

less sensor networks. In Proceedings IEEE INFOCOM 2001. Confer- ence 

on Computer Communications. Twentieth Annual Joint Con- ference of the 

IEEE Computer and Communications Society (Cat. No. 01CH37213), 

volume 3, pages 1655–1663. IEEE, 2001. 



104 

 

[13] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century 

challenges: Scalable coordination in sensor networks. In Proceedings of the 

5th annual ACM/IEEE international conference on Mobile computing and 

networking, pages 263–270. ACM, 1999. 

[14] L. Gogolak, S. Pletl, and D. Kukolj. Neural network-based indoor 

localization in wsn environments. Acta Polytechnica Hungarica, 

10(6):221–235, 2013. 

[15] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things 

(iot): A vision, architectural elements, and future directions. Future 

generation computer systems, 29(7):1645–1660, 2013. 

[16] L. Gui, A. Wei, and T. Val. A two-level range-free localization algo- 

rithm for wireless sensor networks. In 2010 6th International Con- ference 

on Wireless Communications Networking and Mobile Com- puting (WiCOM), 

pages 1–4. IEEE, 2010. 

[17] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-

free localization schemes for large scale sensor networks. In Proceedings 

of the 9th annual international conference on Mobile computing and 

networking, pages 81–95. ACM, 2003. 



105 

 

[18] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global po- 

sitioning system: theory and practice. Springer Science & Business Media, 

2012. 

[19] F. Ijaz, H. K. Yang, A. W. Ahmad, and C. Lee. Indoor positioning:  A 

review of indoor ultrasonic positioning systems. In 2013 15th 

International Conference on Advanced Communications Technology (ICACT), 

pages 1146–1150. IEEE, 2013. 

[20] T. C. Karalar and J. Rabaey. An rf tof based ranging implemen- tation 

for sensor networks. In 2006 IEEE International Conference on 

Communications, volume 7, pages 3347–3352. IEEE, 2006. 

[21] B. Karlik and A. V. Olgac. Performance analysis of various activa- tion 

functions in generalized mlp architectures of neural networks. 

International Journal of Artificial Intelligence and Expert Systems, 1(4):111–

122, 2011. 

[22] H. Khan, M. N. Hayat, and Z. U. Rehman. Wireless sensor networks free-

range base localization schemes: A comprehensive survey. In 2017 

International Conference on Communication, Computing and Digital Systems 

(C-CODE), pages 144–147. IEEE, 2017. 



106 

 

[23] Q. Kong, X. Yang, and X. Dai. Research of an improved weighted 

centroid localization algorithm and anchor distribution. In 2010 

International Conference on Cyber-Enabled Distributed Computing and 

Knowledge Discovery, pages 400–405. IEEE, 2010. 

[24] P.  Kul-akowski,  J.  Vales-Alonso,  E.  Egea-López,  W.  Ludwin,  and 

    J. Garc´ıa-Haro. Angle-of-arrival localization based on antenna    

arrays for wireless sensor networks. Computers & Electrical Engineering, 

36(6):1181–1186, 2010. 

[25] P. Kumar, L. Reddy, and S. Varma. Distance measurement and error 

estimation scheme for rssi based localization in wireless sensor networks. 

In 2009 Fifth international conference on wireless com- munication and sensor 

networks (WCSN), pages 1–4. IEEE, 2009. 

[26] S. Kumar and S.-R. Lee. Localization with rssi values for wireless sensor 

networks: An artificial neural network approach. In Interna- tional 

Electronic Conference on Sensors and Applications, volume 1. Multidisciplinary 

Digital Publishing Institute, 2014. 

[27] J. Lalis, B. Gerardo, and Y. Byun.  An  adaptive  stopping  crite- rion for 

backpropagation learning in feedforward neural network. International 

Journal of Multimedia and Ubiquitous Engineering, 9(8):149–156, 2014. 



107 

 

[28] I. Lee and K. Lee. The internet of things (iot): Applications, invest- 

ments, and challenges for enterprises. Business Horizons, 58(4):431– 440, 

2015. 

[29] Y.-D. Lee and W.-Y. Chung. Wireless sensor network based wear- able 

smart shirt for ubiquitous health and activity monitoring. Sensors and 

Actuators B: Chemical, 140(2):390–395, 2009. 

[30] H. Liu. On the levenberg-marquardt training method for feed-forward 

neural networks. In 2010 sixth international conference on natural 

computation, volume 1, pages 456–460. IEEE, 2010. 

[31] W. S. McCulloch and W. Pitts. A logical calculus of the ideas im- manent 

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 

1943. 

[32] D. Mishra, A. Yadav, S. Ray, and P. K. Kalra. Levenberg-marquardt 

learning algorithm for integrate-and-fire neuron model. Neural In- 

formation Processing-Letters and Reviews, 9(2):41–51, 2005. 

[33] S. L. Mohammed. Distance estimation based on rssi and log-normal 

shadowing models for zigbee wireless sensor network. Engineering and 

Technology Journal, 34(15 Part (A) Engineering):2950–2959, 2016. 



108 

 

[34] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network 

localization with noisy range measurements. In Proceedings of the 2nd 

international conference on Embedded networked sensor systems, pages 50–61. 

ACM, 2004. 

[35] M. Negnevitsky and A. Intelligence. A guide to intelligent systems. 

Artificial Intelligence, 2nd edition, pearson Education, 2005. 

[36] D.  Niculescu and B.  Nath.  Ad hoc positioning system (aps).  In 

GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 

01CH37270), volume 5, pages 2926–2931. IEEE, 2001. 

[37] D. Niculescu and B. Nath. Ad hoc positioning system (aps) using aoa. In 

IEEE INFOCOM 2003. Twenty-second Annual Joint Con- ference of the IEEE 

Computer and Communications Societies (IEEE Cat. No. 03CH37428), 

volume 3, pages 1734–1743. Ieee, 2003. 

[38] D. Niculescu and B. Nath. Dv based positioning in ad hoc networks. 

Telecommunication Systems, 22(1-4):267–280, 2003. 

[39] T. Pradeep, P. Srinivasu, P. Avadhani, and Y. Murthy. Comparison of 

variable learning rate and levenberg-marquardt back-propagation 

training algorithms for detecting attacks in intrusion detection systems. 

International Journal on Computer Science and Engineering, 3(11):3572, 2011. 



109 

 

[40] M. Ramazany and Z. Moussavi. Localization of nodes in wireless sensor 

networks by mdv-hop algorithm. ARPN Journal of Systems and Software, 

2(5):166–171, 2012. 

[41] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin. 

Backpropagation: The basic theory. Backpropagation: Theory, 

architectures and applications, pages 1–34, 1995. 

[42] S. Samara and E. Natsheh. Modeling the output power of heteroge- 

neous photovoltaic panels based on artificial neural networks using low 

cost microcontrollers. Heliyon, 4(11): e00972, 2018. 

[43] S. Samara and E. Natsheh. Intelligent real-time photovoltaic panel 

monitoring system using artificial neural networks. IEEE Access, 

7:50287–50299, 2019. 

[44] A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-

hop multilateration primitive for node localization problems. In 

Proceedings of the 1st ACM international workshop on Wireless sensor 

networks and applications, pages 112–121. ACM, 2002. 

[45] F. Shaker, A. H. Monadjemi, and H. YAZDANPANAH. Comparing 

artificial neural networks and linear regression model in predicting soil 

surface temperature. International Journal, 5(6):2305–1493, 2014. 



110 

 

[46] P. Singh, B. Tripathi, and N. P. Singh. Node localization in wireless sensor 

networks. International journal of computer science and information 

technologies, 2(6):2568–2572, 2011. 

[47] H. Tian, H. Shen, and T. Matsuzawa. Developing energy-efficient 

topologies and routing for wireless sensor networks. In IFIP In- 

ternational Conference on Network and Parallel Computing, pages 461–469. 

Springer, 2005. 

[48] S. Y. M. Vaghefi and R. M. Vaghefi. A novel multilayer neural network 

model for toa-based localization in wireless sensor networks. In The 2011 

International Joint Conference on Neural Networks, pages 3079–3084. IEEE, 

2011. 

[49] M. Viswanathan. Simulation of digital communication systems using 

matlab. Mathuranathan Viswanathan at Smashwords, 2013. 

[50] M. Viswanathan. Wireless communication systems in matlab. In- 

dependently published, 2018. 

[51] Q. D. Vo and P. De. A survey of fingerprint-based outdoor localization. 

IEEE Communications Surveys & Tutorials, 18(1):491–506, 2015. 

[52] Z.-M. Wang and Y. Zheng. The study of the weighted centroid local- 

ization algorithm based on rssi. In 2014 International Confere on Wireless 

Communication and Sensor Network, pages 276–279. IEEE, 2014. 



111 

 

[53] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, 

and M. Welsh. Deploying a wireless sensor network on an active 

volcano. IEEE internet computing, 10(2):18–25, 2006. 

[54] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar. Method of 

computing gradient vector and jacobean matrix in ar- bitrarily 

connected neural networks. In 2007 IEEE International Symposium on 

Industrial Electronics, pages 3298–3303. IEEE, 2007. 

[55] L. Xu, K. Wang, Y.  Jiang, F.  Yang, Y.  Du, and Q.  Li.  A study on 2d 

and 3d weighted centroid localization algorithm in wireless sensor 

networks. In 2011 3rd International Conference on Advanced Computer 

Control, pages 155–159. IEEE, 2011. 

[56] H. Yu and B. M. Wilamowski. Levenberg-marquardt training. In- 

dustrial electronics handbook, 5(12):1, 2011. 

[57] J. Zheng, Y. Liu, X. Fan, and F. Li. The study of rssi in wireless sensor 

networks. In 2016 2nd International Conference on Artificial Intelligence and 

Industrial Engineering (AIIE 2016). Atlantis Press, 2016. 

[58] D. Y. Zou, C. Li, and T. F. Han. Research of centroid localization 

algorithm based on grid distribution. In Applied Mechanics and 

Materials, volume 738, pages 401–404. Trans Tech Publ, 2015.



 جامعة النجاح الوطنية
 كليه الدراسات العليا

 
 
 
 
المبادئ والممارسات والخوارزميات الرياضية المستخدمة لتحليل 

 بيانات انترنت الأشياء باستخدام نهج التعلم الالي
 
 
 إعداد

 بتول سمير سلامة سليمان
 

 
 إشراف 

 د.محمد شرف
 ناجي قطنانيأ. د. 

 
 

لمتطلبات الحصول على درجة الماجستير في الرياضيات قدمت هذه الأطروحة استكمالا 
 فلسطين -المحوسبة بكلية الدراسات العليا في جامعة النجاح الوطنية في نابلس

2019 



 ب

 استخدامياء بالمبادئ والممارسات والخوارزميات الرياضية المستخدمة لتحليل بيانات انترنت الأش
 نهج التعلم الالي

 إعداد
 سليمانبتول سمير سلامة 
 إشراف 

 شرف حمدم د.
 ناجي قطناني أ. د.

 الملخص

وهذه البيانات تحتاج الى الجمع  ،بيئة انترنت الأشياء تقوم بإنتاج بيانات كثيرة في كل وقت
التحليل ومن ثم اتخاذ الحدث والتصرف المناسب. الكثير من تطبيقات انترنت الاشياء تعتبر مواقع و 

لذلك تعتبر دقة اختيار مواقع المستشعرات  ،معلومات غاية في الأهميةالمعلومات التي تم جمعها 
المسؤولة عن جمع البيانات قضية مهمة جدا. يوجد العديد من الطرق التقليدية لعملية التوطين 

تم اقتراح استخدام الشبكة العصبية  ،عار اللاسلكية. في هذه الأطروحةداخل شبكة الاستش
توطين المستشعرات الخاصة بجمع البيانات في بيئة انترنت الاشياء الاصطناعية الذكية لعملية 

وتم تنفيذ نموذج الشبكة العصبية الذكية المقترح على مساحات مختلفة من شبكة  ،كنهج جديد
المستشعرات اللاسلكية باستخدام برنامج الماتلاب. اخيرا تمت المقارنة بين النموذج المقترح من 

بالإضافة الى  ،ات طبقية مخفية واحدة مع الشبكية العصبية العميقةالشبكة العصبية الذكية ذ
مقارنة نتائجنا بنتائج خوارزمية توطين النقطة الوسطى الحرجة وهي نظرية تقليدية تستخدم لعملية 
التوطين عادةً في شبكة الاستشعار اللاسلكية. واظهرت النتائج ان نموذجنا المقترح يقوم بتقدير 

 .ةيرها باستخدام النظريات التقليديرات بدقة اكبر من المواقع التي تم تقدالمواقع للمستشع


	Introduction
	 Motivation
	 Sensor node localiztion in WSNs
	Problem statements
	Proposed solutions

	Background
	Internet of Things (IoT)
	wireless sensor networks (WSNs)
	Artificial Neural network (ANN)

	Related Works
	Localization algorithms for WSNs based on Internet of Things.
	Wireless Sensor Networks and Internet of Things
	Integration Approaches
	Localization process in Wireless Sensor Networks
	Centroid Localization algorithm
	Weighted Centroid Localization algorithm

	Artificial Neural Network
	Introduction
	Feedforward Neural Network (FFNN)
	Feedforward (single layer) Neural Networks 
	Deep Feedforward (multilayers) Neural Networks

	Activation Functions
	Back-propagation algorithm
	Training algorithms
	Gradient descent
	Levenberg-Marquardt algorithm (LM)


	Simulation and Results
	Weighted centroid algorithm based on RSSI
	Feedforward Neural Network
	Data Collection
	Artificial Neural Network Structures
	Evaluation of the proposed neural network models

	Results and discussion

	References
	Conclusion




