
An-Najah National University

Faculty of Graduate Studies

Developing Wireless Sensor Network for

Traffic Monitoring

By

Mohammad Fadi Abdel-Haq

Supervisor

Dr. Adnan Salman

This Thesis is Submitted in Partial Fulfillment of the Requirements for

The Degree of Master of Advanced Computing, Faculty of Graduate

Studies, An-Najah National University - Nablus, Palestine.

2019

III

Dedication

First and foremost, I would like to give thanks and praise to the Almighty

God for His grace and blessings throughout the entire project. Without Him,

this was nothing.

This work is dedicated

“To my late father, who has taught me many lessons in life and has gave me

valuable educational opportunities, unfortunately didn't stay in this world

long enough to see the success of his son.”

“To my mother, her prayers and endless love have made me stronger to face

all the problems in this thesis.”

“To my wife, Fatoon, for all of her love and support she has given during the

thesis work, even though most of that work occurred on weekends, nights,

and all times which supposed to be for my family.”

“To my wonderful kids: Mussab, Leen, and Besan, for bearing with me and

my mood swings. I hope that one day they can read this thesis and understand

why I spent so much time in front of my Laptop.”

“To my beloved brothers and my sister who encourage and support me.”

IV

Acknowledgement

First and foremost, I offer my sincerest gratitude to my adviser Dr.

Adnan Salman for encouragement, guidance and support from the initial to

the final level. Without his guidance and persistent help this project would

not have been possible.

Special thanks to faculty members working in Computer science, and

Mathematics departments for their help and guidance.

Special thanks to Rawdah Technical Community College represented

by its Dean Mr. Saleh Abdulhadi and his deputy Mr. Zahran Hassouneh for

their support and facilities.

V

 الإقرار

 :أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان

Developing Wireless Sensor Network for Traffic Monitoring

اقر بان ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت

ان هذه الرسالة ككل أو من جزء منها لم يقدم من قبل لنيل أية الإشارة إليه حيثما ورد، و

 درجة أو بحث علمي أو بحثي لدى أية مؤسسة تعليمية أو بحثية أخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is

the researcher's own work, and has not been submitted elsewhere

for any other degree or qualification.

Student's name: اسم الطالب:

Signature: :التوقيع

Date: التاريخ:

VI

Table of Contents

 Title Page

Dedication III

Acknowledgement IV

Declaration V

Table of Contetnt VI

List of figures VIII

List of Tables X

List of Symbols and Abbreviations XI

Abstract XII

Chapter One: Introduction 1

1. Introduction 1

2. Objective 4

Chapter Two: Background and Literature Review 5

2.1 Review of Traffic Monitoring Technologies 5

2.1.1 Intrusive Technologies 6

2.1.1.a Inductive loops 6

2.1.1.b Pneumatic Tube 7

2.1.1.c Piezoelectric Sensor 8

2.1.2 Nonintrusive Technologies 8

2.1.2.a Doppler and Radar Microwave Sensors 8

2.1.2.b Passive infrared 9

2.1.2.c Video Image Processing 10

2.1.2.d Acoustic detector 10

2.1.2.e Ultrasonic system 10

2.1.2.f Magnetic Sensor 11

2.2 Comparison of Different Technologies 12

2.3 Motivations of using Wireless Sensor Network 13

2.4 Concept of Wireless Sensor Network 14

2.4.1 WSN Architecture and Components 14

2.4.1.1 Sensor Node 15

2.4.1.2 Gateway (Coordinator) 17

2.4.1.3 Base Station 18

2.4.2 WSN Communication Protocol 18

2.4.2.1 Communication protocol (ZigBee) 19

2.4.3 XBee Networking 21

2.4.3.1 XBee Communication Modes 22

2.4.3.2 XBee Operation Modes 25

2.4.3.3 XBee Module Style 26

2.5 Literature Review 29

VII

Chapter Three: System Design and Architecture 33

3.1 Sensing System 34

3.2 Wireless Sensor Network 38

3.2.1 Sensor Node 41

3.2.2 Coordinator Node 42

3.2.3 Base Station Application 44

Chapter Four: System Implementation 46

4.1 Hardware and Software to implement the Wireless

Sensor Network

47

4.1.1 Arduino UNO 47

4.1.2 Arduino XBee Shield 50

4.1.3 Arduino IDE 51

4.1.4 X-CTU 53

4.1.5 Power Source 54

4.2 Wireless Sensor Network implementation 54

4.2.1 XBee to XBee Communication Test 55

4.2.2 Arduino to Arduino Communication Test 57

4.2.3 Data Transmission 59

4.3 Program of Arduino End Device (Sensor Node) 65

4.4 Base Station Application 68

4.5 Data Base 72

4.6 Programming Interface 73

4.7 Retrieve Traffic Parameters 77

4.8 Traffic Visualization 79

Chapter Five: Conclusion 82

References 84

Appendix 88

A. Theory of Anisotropic Magnetic Resistance (AMR)

Sensor

88

B. Code for Arduino Sensor Node (Transmitter) 99

C. Code for coordinator Node (Receiver) 99

D. Code of traffic Visualization 99

 ب الملخص

VIII

List of Figures

Figure Number Caption Page

Figure (2.1) Inductive Loop Technology 6

Figure (2.2) Pneumatic Tube Technology 7

Figure (2.3) Piezoelectric Sensor 8

Figure (2.4) Microwave Radar 9

Figure (2.5) Example of Earth's magnetic field distortion 11

Figure (2.6) Basic architecture of WSN 15

Figure (2.7) Basic Components of WSN node 16

Figure (2.8) ZigBee Channels 20

Figure (2.9) ZigBee Node Structure 21

Figure (2.10) XBee Module 22

Figure (2.11) Packaging data for delivery 23

Figure (2.12) API frame structure 24

Figure (2.13) XBee-Pro Module and Pinouts 26

Figure (2.14) Microcontroller Interfacing to XBee 27

Figure (3.1) System Architecture 33

Figure (3.2) Honeywell’s HMC2003 sensor 36

Figure (3.3) Configuration of sensing system 37

Figure (3.4) Sensors configuration for estimating the

dimension of the vehicle

38

Figure (3.5) Sensor node data packet 41

Figure (3.6) Sensor node processes 43

Figure (3.7) Coordinator Process 44

Figure (4.1) Sensor Node 48

Figure (4.2) Arduino UNO 49

Figure (4.3) Arduino XBee Shield 51

Figure (4.4) Arduino IDE Interface 53

Figure (4.5) X-CTU Software Interface 54

Figure (4.6) Coordinator and End device XCTU configuration 56

Figure (4.7) Message sent from End device to Coordinator 57

Figure (4.8) Arduino communication through XBee modules. 58

Figure (4.9) Coordinator console showing received messages. 59

Figure (4.10) API frame received in Hex by coordinator 59

Figure (4.11) The frame message received on the coordinator 60

Figure (4.12) XBee API frame interpreter used to decode

received frames.

61

Figure (4.13) Coordinator connection with three end devices 64

Figure (4.14) Main tasks of Base station application (Traffic

Monitor Software)

68

IX

Figure (4.15) Traffic Monitor Software 70

Figure (4.16) Running Traffic Monitor Software 72

Figure (4.17) Table of Traffic Monitor Database 73

Figure (4.18) Table GetAllParameters method 76

Figure (4.19) data in JSON format 77

Figure (4.20) statistical retrieved traffic parameters collected

from the node 1

78

Figure (4.21) Traffic parameters collected from the 79

Figure (4.22) Traffic visualization interface 80

Figure (4.23) Traffic visualization after it is run 81

X

List of Tables

Table

Number

Caption Page

Table (2-1) Zigbee stack layers 20

Table (2-2) XBee 802.15.4 Pin Assignments 28

Table (4-1) XBee 802.15.4 Pins 50

Table (4-2) Configuration of XBee modules for XBee to XBee

test communication

56

Table (4-3) Configuration of XBee end devices and coordinator 63

XI

List of Symbols and Abbreviations

ITS Intelligent Traffic Systems

WSN Wireless Sensor Network

AMR Anisotropic Magnetic Resistance

WMSN Wireless Magnetic Sensor Network

WLAN wireless local area network

SN Sensor Node

ADC Analog to Digital Converter

IP Internet Protocol

OSI Model Open Systems Interconnection Model

IEEE Institute of Electrical and Electronics Engineers

RF Radio Frequency

PHY Physical layer

MAC media access control

AT Transparent Mode

API Application Programming Interface

LR-WPAN Low Range Wireless Personal Area Networks

XML Extensible Markup Language

JSON JavaScript Object Notation

PWM Pulse Width Modulation

USB Universal Serial Bus

CPU Central Processing Unit

IDE IDE (Integrated Development Environment).

FTDI Future Technology Devices International

SWSN Sensor Wireless Nodes

PANID Personal Area Network Identifier

SaaS Software-as-a-service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

MSB Most Significant Byte

LSB Least Significant Byte

DSS Design Support System

XII

Developing Wireless Sensor Network for Traffic Monitoring

By

Mohammad Fadi Abdel-Haq

Supervisor

Dr. Adnan Salman

Abstract

Intelligent Traffic Systems (ITS) management play an important role

in modern transportation system. An important area in ITS research is the

development of traffic monitoring systems that collects traffic information

such as vehicle counting, speed measurements and vehicle classification.

This information allows developing smart transportation systems that take

into consideration the current traffic situation in order to generate smart

decisions.

Existing traffic monitoring systems are mainly based on video

recognition or inductive loops. These systems have many limitations. Video-

based systems do not work well in inclement weather conditions, like heavy

rain or snow. Deployment and maintenance of inductive loops need to cut

off the road surface and interrupt traffic vehicles. Moreover, both kinds of

traffic monitoring systems are not suitable for large scale deployment.

In this thesis, we developed a Wireless Sensor Network (WSN)

application for vehicle counting, vehicle classification and speed

measurement based on roadside magnetic sensors. Magnetic sensors can be

deployed on the roadside to collect traffic data. Then, the data can be

communicated using wireless channels to a central computer to be processed

XIII

and analyzed. The traffic data will be saved in a database and can be shared

with other transportation applications through the use of web services. This

approach has many advantages includes, real time traffic monitoring, ensures

proper monitoring of the roads, and requires less human intervention. The

focus of this thesis is on the development of the wireless sensor network and

the traffic data management. Simulated data is used to evaluate the system

instead of deploying magnetic sensors.

1

Chapter One

Introduction

Transportation is one of the most important human activities that have

a major impact on economy and social interactions. It facilitates

communication between various locations and it has a major influence on

the flourishing of trade. On the other hand, it has side effects and negative

impact on the environment due to pollution and emission of carbon dioxide.

Traffic congestion causes significant amount of losses includes

economic losses due to the traffic delay, increasing consumption of fuel, and

increasing the chances of traffic accidents. One main cause of traffic

congestion is the number of vehicles on road. The number of vehicles of all

types is increasing constantly. More than 200 thousand vehicles are

registered in the west bank according to the Palestinian Ministry of Transport

of all types [3]. Such an increase led to saturation on many roads and semi-

permanent congestion. Also, poor infrastructures of roads may cause

congestion and traffic delay which can hinder the economic and social

advancements of the area. Another important cause of traffic congestion is

the traffic management system. Therefore, a smart traffic management

system that can reduce traffic congestion will be invaluable. For example, by

controlling the traffic light schedule dynamically based on the traffic flow

parameters.

2

In order to improve the current traffic management systems, accurate

real-time information about the traffic flow is necessary. This includes the

number of vehicles, their types and speed. This information will allow

developing ITS that minimizes total trip time. Furthermore, it will help

engineering road networks where total trip time is minimized.

Several technologies have been used to detect traffic flow parameters

include: traffic count, vehicle size and weight, and vehicle speed. These

technologies can be classified into two main categories, intrusive

technologies and non-intrusive technologies. Intrusive technologies require

the installation of the sensors onto or into the road service. This technology

includes several devices such as, Bending Plate [16], Pneumatic Road Tube

[16], Piezo-Electric Sensor [16], and Inductive Loop [16]. On the other hand,

Non-Intrusive technologies do not interfere with the traffic flow either during

installation or during operation. Non-intrusive devices include Passive and

Active Infrared [16], Passive Magnetic [16], Microwave - Doppler/Radar,

Ultrasonic and Passive Acoustic [16], and Video Image Detection [16]. Each

of these technologies has its own limitation. For instance, Video image

detection requires expensive processors and sensitive to weather condition.

Other technologies require high cost or have a small range of

applications[10].

No matter which technology is used to measure the traffic flow

parameters, this data must be communicated from road sites to a base station

efficiently and reliably. Once the data is available in the base station, it can

3

be processed, analyzed, saved and shared with other users. Also, the data can

be made available to other computer applications through the use of web

services which allow creating a smart traffic management system. The focus

of this thesis is on developing an application that allow gathering the data

from the road sites, communicating the data to the base station through

wireless channels, storing the data in a database, and making the data

available to other users includes human or computer application. This thesis

does not focus on measuring the traffic road parameters themselves. Instead,

we used a simulated data to evaluate our system.

In recent years, an efficient design of a Wireless Sensor Network [27]

(WSN) received significant attention. A Sensor is a device that detects

changes in a particular environment conditions, such as pressure, heat, light,

earth magnetic field strength, etc. The output of the sensor is an electrical

signal that is transmitted to a micro-controller for further processing. The

gathered data from the sensors is then communicated using WSN to a base

station computer for further processing. Software in the base-station can be

used to determine the traffic flow parameters in the road network and triggers

actions in the environment based on the collected data. Or, the data can be

communicated to the cloud where it can be further processed, saved, and

shared.

4

Objectives:

The main objective of this thesis is to design and develop a software

application that satisfies the following requirements:

1) Communicates the measured traffic flow parameters (number of

vehicles, their type and speed) wirelessly from road sites to a base

station. A Wireless Sensor Network (WSN) is used to accomplish this

goal.

2) The system saves this data in a database for further processing and

sharing.

3) The system provides dashboard for visualizing the traffic flow

parameters by human.

4) The system offers a low maintenance cost, ensures proper monitoring

of the roads, and requires less human involvement.

5

Chapter Two

Background and Literature Review

In this chapter, we review several techniques used to detect traffic

flow parameters includes, traffic count, vehicle size and weight, and vehicle

speed. In Section 3, we discuss the main motivations for using the wireless

sensor network for traffic monitoring.

2.1 Review of Traffic Monitoring Technologies

There are several methods used to monitor traffic. One of the simplest

and most accurate methods is manually counting vehicles using an electronic

hand held counter or records data using a tally sheet. With manual counts, a

small sample of data is taken (typically over less than a day) and results are

extrapolated for the rest of the year or season. Of course, this approach which

is still in use is inefficient and not accurate.

Advanced traffic monitoring technologies can be classified into two

categories, intrusive technologies and non-intrusive technologies. Intrusive

technologies require the installation of the sensors onto or into the road

surface. Nonintrusive sensors are installed above or on the side of roads. In

the following subsections we discuss some of these technologies.

6

2.1.1 Intrusive Technologies

2.1.1.a Inductive loops

Inductive loops [14] are considered the most common vehicle

detection method. An inductive loop consists of wire “coiled” to form a loop

that has a circle or rectangle shape that is installed into or under the surface

of the road (Fig (2.1)).

Fig(2.1) : Inductive Loop Technology [19]

When a vehicle (or any metallic object) drives over the loop, the loop

field changes which allows the device to detect the presence of an object

(mainly a vehicle). Inductive loops are referred to as presence detectors and

in traffic detection are often used to collect vehicle data such as speed and

size.

Inductive loop is considered to be the most reliable technology

because of its high detection accuracy. However, its biggest disadvantage is

that it causes serious traffic disruption during installation and repair. The

loop wire is also subjected to stresses of traffic and temperature, making its

7

failure rate relatively high. Therefore, alternative detectors that can give the

same accuracy level with minimum traffic disruption are being actively

researched.

2.1.1.b Pneumatic Tube [19]

In this technology, one or more rubber hoses are stretched across the

road and connected at one end to a data logger. The other end of the tube is

sealed. When a pair of wheels hits the tube, air pressure in the squashed tube

activates the data logger which records the time of the event. A pair of tubes

can be stretched across several lanes of traffic.

Fig (2.2): Pneumatic Tube Technology [19]

The data logger can establish vehicle direction by recording which

tube is crossed first. This has the drawback that if two vehicles cross the

tubes at the same time then the direction can't be accurately determined. If

two cars are very close to each other when they cross the tubes, the system

may see them as one vehicle. Road tubes work well for short duration counts

8

on lower volume roads. They are not as effective on higher volume, multi-

lane highways.

Fig(2.3) : Piezoelectric Sensor [19]

2.1.1.c Piezoelectric Sensor

Similar to inductive loop, piezoelectric sensor [19] is installed by

embedding it under the pavement. It collects data by converting mechanical

energy into electrical energy. When a car drives over the piezoelectric

sensor, it squeezes it and generates a voltage. The level of the voltage is

proportional to the degree of deformation. When a car moves off, the voltage

reverses. This change in voltage can be used to detect and count vehicles.

2.1.2 Nonintrusive Technologies

2.1.2.a Doppler and Radar Microwave Sensors

Doppler microwave detection devices transmit a continuous signal of

low-energy microwave radiation at a target area and then analyze the

9

reflected signal [16]. The detector registers a change in the frequency of

waves occurring when the microwave source and the vehicle are in motion

relative to one another. This allows the device to detect moving vehicles.

Fig(2.4) : Microwave Radar [8]

Radar is capable of detecting distant objects and determining their

position and speed of movement. With vehicle detection, a device directs

high frequency radio waves at the roadway to determine the time delay of

the return signal, thereby calculating the distance to the detected vehicle. The

main advantage of microwave radar is that the system performance is not

affected by any weather change. The drawback is that the radar cannot detect

motionless vehicle unless an auxiliary device is equipped [18].

2.1.2.b Passive infrared

Passive infrared devices [18] detect vehicles by measuring the infrared

energy radiating from the detection zone. When a vehicle passes the energy

radiated changes and the count is increased.

10

Slow changes in road surface temperature, caused by changing

weather conditions, are ignored. Lane coverage is limited to one to two lanes.

2.1.2.c Video Image Processing

This technology is based on the analysis of images from video camera

[18] to extract traffic data. In general, vehicle detection is done by

monitoring the changes between successive video frames.

This method has several advantages over other automatic systems. It

is cost-effective as it can count in many directions at once. Only one camera

is needed for several lanes or exits at a junction. Counts are easily verified

simply by watching the video and checking the automated counts. But its

performance is affected by many environmental factors, such as weather

conditions and lighting conditions.

2.1.2.d Acoustic detector

This detects vehicles [18] by the sound created as the vehicle passes.

The sensor is mounted on a pole pointing down towards the traffic. It can

collect counts for one or more travel lanes. Some can communicate their

counts wirelessly.

2.1.2.e Ultrasonic system

Ultrasonic [16] refers to high frequency sound waves that are beyond

a human’s audible range. Its principle mechanism is similar to that of radar.

Sound pulses are transmitted and the reflected pulses are received. The

11

distance from the receiver to the road or vehicle surfaces is measured

according to the wave travel time. If a distance smaller than that to the

background road surface is measured, the presence of a vehicle is declared.

Speed estimate is obtained by deploying multiple detection zones.

Disadvantages include temperature and wind dependence [16].

2.1.2.f Magnetic Sensor

This technique detects vehicles by measuring perturbation in the earth's

magnetic field [16] caused by the passage of vehicles near the detector. An

example of Earth's magnetic field distortion is shown in Fig (2.5)

Fig(2.5) : example of Earth's magnetic field distortion [16]

Based on the level of perturbation, it is possible to determine the size

and speed of the passing vehicle. The idea of using the geomagnetism

phenomenon in the detection of vehicles is not a new concept on a world-

scale. Devices operating on the same principle have been the subjects of

research [16]. It should be noted that it is still a novel idea and the

implemented systems are effective.

12

2.2 Comparison of Different Technologies

In this section different technologies are compared in terms of their

data type availability and system performance. The comparison is based on

the results of many experimental evaluation cases summarized in [10, 11,

12, 13 and 14].

Traffic count is available in all the technologies studied. Speed

measurement usually requires a dual-detection-zone configuration with

synchronized time and fixed separation. Vehicle type classification data is

usually obtained by analyzing the detected vehicle lengths, heights, number

of axles and spacing.

Inductive loop detector is one of the most accurate count detectors. In

[9], it gave an error rate of 0.1-3% for counting vehicles in a one-hour period

on the freeway. The system performance may change under the influence of

uncontrollable environmental conditions such as temperature, Lighting and

high traffic flow [23].

As a result, it is clear to us that the best technology in terms of system

performance, data type availability (traffic parameters) and even system cost

is the technology which is based on the earth magnetic field.

One type of magnetic field sensors is the Anisotropic Magnetic

Resistance (AMR), which is very suitable for use in a sensor node because

of its small size and its ability to measure the traffic parameters accurately.

13

2.3 Motivations of using Wireless Sensor Network

The main motivation of developing wireless sensor network for traffic

monitoring system is its ability to obtain real-time information about the

traffic distribution over a particular region. This information can be used to

control light signals in real-time. Also, this data can be saved and shared on

the cloud where it can be used in the design of roads.

Other motives are the difference of wireless sensor networks than

other popular wireless networks like cellular network and wireless local area

network (WLAN) in many characteristics which are described as follows

[24]:

Low Cost. Normally hundreds or thousands of sensor nodes are deployed to

measure different physical environment parameters. In order to reduce the

overall cost of the whole network, the cost of the sensor node must be kept

as low as possible.

Flexibility. Wireless sensor networks have a high level of flexibility in their

deployment configuration. Since sensor nodes can be placed virtually

anywhere on the road as long as they are within communication range,

customized configurations can be adopted for different applications and

environments. This unique characteristic has advantage over all other

technologies.

14

Multi-Functional. A multi-functions wireless monitoring system can be

developed by adding other sensing system to the existing sensor node such

as adding temperature sensors to detect ice and snow.

Communication Capabilities. The advantage of wireless communication

through radio waves reduces infrastructure cost and maintenance. The

network has the property of communicating in short range, with narrow and

dynamic bandwidth. The communication channel can be either bidirectional

or unidirectional. This feature is extremely useful in enhancing the safety

control at intersections, where traffic lights and warning signs can be

controlled in advance.

2.4 Concept of Wireless Sensor Network

In this section we describe the main concepts of a WSN. This includes

wireless sensor network technologies, the communication protocols, and

several topologies that can be implemented. In the next chapter we describe

our implementation of the WSN.

2.4.1 WSN Architecture and Components

A Wireless Sensor Network (WSN) [20] is a network of small Sensor

Nodes (SN) communicating with each other using wireless channels. The

goal of these networks is to measure local environmental conditions such as

temperature, sound, pressure, etc. Also, it can be used to trigger action in the

environments using actuators that are connected to the sensor nodes. WSN

15

combines distributed sensing elements, actuators, computation, and wireless

communication technologies.

A WSN generally consists of a base station that can communicate with

a number of wireless sensor nodes via radio channels. Data is collected at the

wireless sensor nodes using different sensing elements. Sensor nodes have

limited computational capability that allow them to process the collected data

and transmit it directly, or using other wireless sensor nodes (routers), to a

sink node. The sink node can transmit the data to a base station computer

through a gateway, where it can be processed further, saved, and shared with

other users and applications. The basic architecture of a WSN is shown

below in Figure (2.6) followed by a brief description of its basic elements.

Fig (2.6): Basic architecture of WSN

2.4.1.1 Sensor Nodes

A sensor node, the basic element of a WSN, is capable of gathering

data from different kinds of attached sensors. It has the ability of performing

16

a limited amount of processing on this data. Also, it is a capable of

communicating with other connected nodes in the network. A sensor node

consists of four basic components: a processing unit (microcontroller), a

transceiver for wireless communications, a power source, and one or more

sensors. These components are integrated on a single or multiple board.

Each component is described below and shown in Fig (2.7).

Fig (2.7): Basic Components of WSN node [22]

 Sensing Unit:

The main functionality of the sensing unit is to measure physical data

from the target area. The analog voltage or signal generated by the sensor

corresponds to the observed phenomenon. The signal is then digitized by an

Analog to Digital Converter (ADC) and sent to the Processor for further

processing or analysis [22].

 Processing Unit:

The processing unit, which is usually associated with a small storage

unit, manages the procedures that make the sensor node collaborate with

Sensing Unit

Processing Unit

Transceiver

 Power Unit

Processor

Storage

Sensor ADC (Analog to Digital
Converter)

17

other nodes to carry out the assigned sensing tasks, performing power

management functions [25], and capable of performing a limited amount of

processing the data.

 Transceiver Unit:

This unit is used to exchange data between individual wireless nodes

and between wireless nodes and the base station. It consists of a radio

receiver and a radio transmitter. The main task is to convert a bit/byte stream

coming from a processing unit to and from radio signals.

 Power Unit:

The power supply is necessary to provide the power for the wireless

nodes to work. Since power is limited, the amount of processing the data and

the data communication should be considered carefully.

2.4.1.2 Gateway (Coordinator):

A gateway is a network element that can connect two different-types

of networks with different communication protocols. It is basically a

protocol translator that can communicate packets between two systems that

have different communication protocols and different architecture [7]. In a

WSN, the gateway acts as a bridge between the WSN that uses a particular

communication protocol such as ZigBee [7] and another network type such

as IP-based networks. It is an interface between the application platform and

the wireless nodes. Information received from the sensor nodes is translated

18

by the gateway and forwarded to the application. The application runs on a

base station (local computer).

On the other hand, when a command is issued by the application

program to a wireless node, the gateway relays the information to the

wireless sensor network. A gateway can perform protocol conversion to

enable the wireless network to work with other industry standards or non-

standard network protocols.

2.4.1.3 Base station

The base station is the center of the wireless sensor network. It is

basically a computer connected to a gateway that has more computational

power, more energy and communication resources compared to the sensor

nodes. The base station runs an application that analyzes the received data

from the sensor nodes, performs appropriate computation, and then displays

the information on a user screen. In many applications the base station acts

as a bridge between sensor nodes and the end user where it forwards the data

to a server which is typically in a cloud.

2.4.2 WSN Communication Protocols

Wireless sensor nodes are highly limited in resources includes a

limited amount of power, limited computational and storage capacities, short

communication range, and low bandwidth. Therefore, unlike conventional

wireless network, a WSN has its own design that takes these resource

constraints into consideration. The specification of a particular design of a

19

WSN depends on the application itself. This includes the size of the network,

the deployment scheme, and the network topology.

The communication protocols used in WSN enable the

communication between the sensor nodes themselves and between the sensor

nodes and the base station. It consists of the five OSI model [7] for packet

switching: application, transport, network, link, and physical layer. The

WSN performance and energy consumption are depend on the protocols used

in each layer.

One of the main standards for WSN communication is the IEEE

802.15.4 ZigBee standard described below.

2.4.2.1 Communication protocol (ZigBee)

The ZigBee stack consists of several layers including the PHY, MAC,

Network, Application Support Sub layer (APS), and ZigBee Device Objects

(ZDO) layers. The ZigBee stack profile is shown in the table (2-1) [6].

ZigBee utilizes direct-sequence spread spectrum modulation and

operates on a fixed channel. The 802.15.4 PHY defines 16 operating

channels in the 2.4 GHz frequency band. The figure 4.8 shows ZigBee RF

channels, note normally ZigBee RF channels are counted from 11, up to 26

in the 2.4 Ghz band.

20

Fig (2.8): ZigBee Channels

Table (2-1): ZigBee stack layers

Zigbee

Layer

Description

PHY

Defines the physical operation of the ZigBee device

including receive sensitivity, channel rejection, output

power, number of channels, chip modulation, and

transmission rate specifications. Most ZigBee applications

operate on the 2.4 GHz ISM band at a 250kbps data rate.

MAC

Manages RF data transactions between neighboring devices

(point to point). The MAC includes services such as

transmission retry and acknowledgment management.

Network

Adds routing capabilities that allows RF data packets to

traverse multiple devices (multiple "hops") to route data

from source to destination (peer to peer).

APS

Application layer that defines various addressing objects

including profiles, clusters, and endpoints.

ZDO

Application layer that provides device and service discovery

features and advanced network management capabilities.

There are three different types of ZigBee devices as shown in figure

2.9:

1. Coordinator node. The main function of the coordinator is to

establish and maintain the network by assigning addresses to join

devices and assisting with route building.

2. Routers. These nodes rout data between end nodes that cannot

communicate directly to each other due to the long distances between

them.

21

3. Endpoints. These nodes collect data using sensors attached to them

and control devices that are attached to them. They are typically

connected to controllers, sensors and other devices for network

interfacing.

Fig (2.9): ZigBee Node Structure

2.4.3 XBee Networking

The XBee RF modules from Digi International is wireless transceiver.

XBee uses a fully implemented protocol for data communications that

provide features required for robust network communications in a wireless

sensor network (WSN). Features such as addressing, acknowledgements,

and retries ensure safe delivery of data to the intended node.

An XBee module has two addressing options: a fixed 64-bit serial

number (MAC address) which cannot be changed, and a 16-bit assignable

address that allows over 64,000 addresses on a network. For error checking

and acknowledgements, the XBee modules use a checksum to ensure that the

22

communicated data contains no errors. Acknowledgements are sent to the

transmitting node to indicate proper reception. Up to 3 retries are performed

by default if acknowledgements are not received.

Fig (2.10): XBee Module

2.4.3.1 XBee Communication Modes

XBee supports two types of communication modes, the Transparent

Mode (AT mode) and the Application Programming Interface (API) mode

for sending and receiving data. In AT mode, the message itself is sent to the

module and received by the controller. The protocol links between the two

modules is transparent to the end user and it appears to be a nearly direct

serial link between the nodes as illustrated in Figure (2.11). This mode allows

simple transmission and reception of serial data. AT commands are typically

used to configure the XBee, but the process requires placing the XBee

module into command mode, then sending AT codes for configuration, and

finally exiting the command mode. The transmission and reception are the

raw data and the message itself. The message passed between the nodes

23

encapsulates the required information such as addressing and error checking

bytes.

Fig (2.11): Packaging data for delivery

In API mode, the programmer packages the data with the required

information, such as, the destination address, the type of packet, and the

checksum value. The receiving node receives the data that includes the

source address, the type of packet, the signal strength, and the checksum

value. The advantages of using this mode includes the ability of building

packets that include customized data, such as destination address and the

receiving node can pull from the packet this information. Even though, the

API mode requires programming intensive, it allows greater flexibility and

increases reliability. The sender and receiver are not required to be in the

same mode. Data may be sent in API Mode and received in AT mode or

vice-versa. The mode defines the communications link between the PC or

controller and the XBee modem, and not between XBee modules. Data

24

between XBee modules is always sent using the IEEE 802.15.4 LR-WPAN

protocol.

When the API mode is enabled, the data frame structure is defined as

follows:

Fig (2.12): API frame structure

 Start delimiter. The first byte of a frame consists of a special

sequence of bits which indicate the beginning of a data frame. Its value

is always 0x7E. This allows for easy detection of a new incoming

frame.

 Length. These two bytes specify the total number of data bytes

included in the frame. This excludes the start delimiter, the length, and

the checksum.

 Frame data. Composed of the API identifier and the API identifier-

specific data. The content of the specific data depends on the API

identifier (also called API frame type).

 Checksum. This is the last byte of the frame. It helps test data integrity

and is calculated by taking the hash sum of all the API frame bytes

25

that came before it, excluding the first three bytes (start, delimiter and

length).

 2.4.3.2 XBee Operation Modes

When not receiving or transmitting data, the RF module is in the idle

mode. The module shifts into the other modes of operation under the

following conditions:

Transmit Mode. When the serial data is received and is ready for

packetization, the RF module will transmit the data. The destination address

determines which node will receive the data. When data is transmitted from

one node to another, a network-level acknowledgement is transmitted back

across the established route to the source node. This acknowledgement

packet indicates to the source node that the data packet was received by the

destination node. If a network acknowledgement is not received, the source

node will re-transmit the data.

Receive Mode. If a valid RF packet is received, the data is transferred

to the serial transmit buffer.

Sleep Mode. Sleep modes allow the RF module to enter a state of low

power consumption when not in use. The XBee RF modules support both

pin sleep (sleep mode entered on pin transition) and cyclic sleep (module

sleeps for a fixed time).

26

2.4.3.3 XBee Module Styles

The XBee module comes in several versions but all have similar

pinouts as shown in Figure (2.13). Differences between XBee versions

include the power output, antenna style, operating frequency and networking

abilities. The XBee is a 20-pin DIP module and available in two major

versions XBee and XBee-Pro.

Figure (2.14) illustrates a typical microcontroller connection to the

XBee [12].

Table (2-2) is a brief discussion of the pins and their functions on the XBee

[12].

Fig (2.13): XBee-Pro Module and Pinouts

27

Fig (2.14): Microcontroller Interfacing to XBee

The 802.15.4 style of XBee (commonly called Series1) allows point-

to-point networking and point-to-multipoint (one node to all nodes)

networking. They use the IEEE 802.15.4 data link protocol to move data

directly between 2 or more devices. All nodes in the network use same

firmware version.

There are two styles of mesh networking protocols available: ZigBee

and DigiMesh. Devices can be programmed with either protocol in either AT

or API versions depending on the function of the device.

In summary, the XBee is a feature-rich RF module for use on a

wireless sensor network where the IEEE 802.15.4 protocol reduces the work

of the programming for ensuring data communications. Also, the XBee has

many other features for use in a WSN beyond its networking ability.

28

Table 2-2: XBee 802.15.4 Pin Assignments

Pin Name Type Function

1 VCC P 2.8 V to 3.4 V

2 DOUT O Serial data output from XBee (received data)

3 DIN I Serial data input to XBee (data to transmit)

4 DO8 O Digital data output 8

5 RESET I Reset module (low)

6 PWM0/

RSSI

O

O

Pulse Width Modulated output

Received Signal Strength Indication as PWM

signal

7 PWM1 O Pulse Width Modulated output

8 (Reserved)

9 DTR

SLEEP_RQ

DI8

I

I

I

Data Terminal Ready: handshaking for

firmware updates (low)

Sleep Request: A high places XBee in sleep

mode when configured Digital Output 8

10 GND G Ground (Vss)

11 AD4

DIO4

A

IO

Analog to Digital Input 4

Digital Input/output 4

12 CTS

DIO7

O

IO

Clear to Send output for controller

handshaking (low)

Digital Input/Output 7

13 ON/SLEEP O Digital output, status indication: High = Awake,

Low = Sleep

14 VREF A Analog to Digital reference voltage

15 ASSOC

AD5

DIO5

O

A

IO

Associated indication when joining a network

Analog to Digital Input 5

Digital Input/Output 5

16 RTS

AD6

IO6

I

A

IO

Ready to Send Handshaking input (Low)

Analog to Digital Input 6

Digital Input/Output 6

17-

20

AD3-AD0

DIO3-

DIO0

A

IO

Analog to Digital Input 3 to 0

Digital Input/Output 3 to 0

Pin Type: P = Power, G = Ground, I = Input, O = Output, A = Analog Input

29

In general, some environmental conditions are measured by the sensor

nodes deployed with a spatial density and at a sampling rate specified by the

application.

The signals are processed by the microprocessor of the sensor node to

get useful information, then output of the sensor node is transmitted to the

access point either through a direct communication or through other sensor

nodes. Eventually, data from all sensor nodes is gathered through the access

point to the base station for further analysis. Software running on the base

station analyses the collected data to extract the desired information about

the traffic parameters (detection, speed and classification of detected

vehicle). This information will be changed to some meaningful format (XML

or JSON) and will be available to the end user or some other system.

In this thesis, we designed our system to use the anisotropic magneto-

resistive (AMR) magnetic sensors as a sensing device. However, we didn't

use the sensor in the work of this thesis. This sensor is capable of measuring

1/10000 of the earth magnetic field which makes it capable of detecting small

perturbation in the earth magnetic field caused by passing vehicles (appendix

A provides more theoretical details about the AMR Sensor).

The microprocessor to be used in the sensor node is the Arduino board.

And the XBee modules will be used for radio communication with the access

points. This module has an outdoor line-of-sight range of 100 m, required

power of 150 mW, and a radio frequency data rate of 250 kb/s.

2.5 Literature Review

Vehicle detection has been an active research topic for decades and a

full review of all the methods is out of the scope of this thesis. In this section,

we summarize some related papers to the proposed system.

30

In 2018, T. Thamaraimanalan, S.P. Vivekk, G. Satheeshkumar and

P.Saravanan [2], introduced an android intelligent irrigation system. The

system was implemented based on the idea of remote monitoring without

human intervention. The project is based on an intelligent microcontroller to

control irrigation system irrigation system controller. The implemented to

(remotely irrigate a field by an operator) was to design an irrigation

controller through a mobile app to promote remote practices and use of fuzzy

logic and neural networks supported by the hardware nodes present in the

fields and several parameters that are to be selected on the basis of the stage

of the crop. The Implemented consisted of soil moisture to measure the

amount of moisture in the soil and with the temperature sensor, it is

interfaced with an Arduino Microcontroller. According to the sensor

readings thus obtained on the mobile app, the controller will evaluate the

decision and the Motor will be activated through a mobile phone and the

water will be delivered from the pump through a relay.

The key findings from this paper are that use of manual/automated

method for delivering water with the aid of an android app.

In year 2010, S. Kaewkamnerd, J. Chinrungrueng, R.Pongthornseri,

and S. Dumnin [11], introduced Vehicle classification based on magnetic

sensor that is the system consists of a low power microprocessor together

with AMR magnetic sensors and an RF transceiver. Vehicle classification

tree based on above extraction features and it focuses on low computational

31

feature extraction and classification processes suitable for implementing on

microcontroller.

In May 2010, W. Zhang, G. Tan, H. Shi, and M. Lin [13] introduced

real time vehicle surveillance, utilize the advances in wireless sensor

networks to develop a magnetic signature and length estimation-based

vehicle classification methodology with binary proximity magnetic sensor

networks and intelligent neuron classifier. In this algorithm, use of low cost

and highly sensitive magnetic sensors to measure the magnetic field

distortion when vehicle crosses the sensors and detect vehicle via an adaptive

threshold.

The vehicle length is estimated with the geometrical characteristics of

the proximity sensor networks, and finally identifies vehicle type from an

intelligent neural network classifier.

In 2008, S. Jeng and S. Ritchie studied real-time vehicle classification

using inductive loop signature data present a method for vehicle

identification based on analyzing the inductive signatures in the frequency

domain instead of working in the time domain. Transform domain will be

used for vehicle classification by means of a simple threshold-based method

However, the accuracy rate is not 100% and can vary from 40% to 100%,

depending on the amount of “problematic” data present in the sensor

readings and the class of vehicle under consideration [14].

32

Vehicle detection and classification based on feature extraction from

camera systems have been developed by many researchers [24], [19]. The

research in [19] presented model based and fuzzy-logic approaches to

improve the reliability of such systems.

An evaluation of three commercial camera-based vehicle detection

systems is presented in [10] under adverse weather conditions of snow, fog,

and rain. The results therein show that the performance of such systems

deteriorates under adverse weather, particularly under snow conditions in

both daytime and night time. Increases in false activations by up to 90% and

in missed calls by up to 50% were shown to occur in adverse weather.

In 2008, D. Nan, T. Guozhen, M. Honglian, L. Mingwen, and S. Yao

[15], introduced Low-power vehicle speed estimation algorithm based on

WSN. A three nodes model to capture the vehicle speed based on the two

nodes detection model using the Magnetic sensitive signal with WSN. In the

model, the Collecting Node A and B were mainly detected the vehicle and

transmitted the detection information to the third node, the Detecting Node.

The Detecting Node was the key node of the mode. The speed calculation

and the command of the whole system were executed on it [15].

The focus of this thesis is not on the particular technology that is used

in counting and measuring the traffic parameters on the road. But the focus

is on the automation of gathering the traffic parameters from a particular

location on the road in a storage place where it can be processed and shared

by other users or application.

33

Chapter Three

System Design and Architecture

In this chapter, we show the design and architecture of the traffic

monitoring system. The design consists of software and hardware

components. The hardware components consist of a WSN, magnetic sensors,

and a base station. The software component includes a database to store the

traffic parameters, a dashboard to visualize the traffic parameters (detection,

speed and classification of detected vehicle), and a web service interface to

allow accessing the traffic data from other application. Figure (3.1) illustrates

the architectural design of the traffic monitoring system.

Figure (3.1): System Architecture

34

As shown in Figure (3.1), the WSN consists of four main elements:

sensor nodes, a gateway, base station and an internet server. Sensor nodes

gather the data from their attached sensors and process it to extract traffic

parameters (count, shape, and speed). Then, through wireless links, they

communicate this data through a gateway (coordinator node) to the base

station. The gateway is connected to a base station computer which has

unlimited computational resources, enhanced radio communication and

unlimited power supply. The application running on the base station gathers

the information from the WSN and communicates this information to a web

server on the cloud. The web server saves the data in a database.

In the following subsections, we further describe these elements and

the main technologies that we used to implement them.

3.1 Sensing system

Our approach in this thesis considers the use of magnetic sensors to

measure the traffic parameters. In this approach, the earth magnetic field at

a particular location on the side of the road is measured using a magnetic

sensor. Once a vehicle passed by the sensor, the earth magnetic field in that

location is perturbed. The perturbation in the earth magnetic field can be

detected. Consequently, the number of vehicles passed by the sensor, the

speed of the passing vehicle, and the size of the vehicle can be inferred from

the perturbed signals measured by multiple sensors as described at the end

of this section.

35

The design of our system considers the use of the AMR Honeywell

HMC2003 [8] magneto resistive sensor shown in Fig 3.2 that will be used in

our future work. The HMC2003 is a highly-sensitive, three-axis magnetic

sensor assembly used to measure low magnetic field strengths. It is a

combination of Honeywell’s most sensitive sensors HMC1001 and

HMC1002. HMC2003 provides maximum user flexibility due to its analog

interface with critical nodes available for pin interface. HMC2003 is a three-

axis magnetic sensor uses three permalloy magneto-resistive sensors to

measure the strength and direction of an incident magnetic field. This sensor

can measure the field along the length, width, and height (X, Y, Z axis) from

the hybrid. It has a reference voltage of 2.5 Volt, with a power supply range

of 6-15 Volts.

HMC20003 is configured in a 20-pin layout as shown in Fig 3.2. Its

dynamic range is from less than 40 micro gauss to +/-2 gauss. It is integrated

with magnetically coupled straps to eliminate unwanted magnetic fields.

These sensors can measure the changes in the field accurately even if the

target is away from the sensor. HMC2003 sensors can be used to measure

the presence, magnitude, and direction of a magnetic field. They can sense

changes in the magnetic field in the presence of ferromagnetic objects. They

can also be used to measure the earth’s field for navigation and compassing

purposes.

36

Fig (3.2): (left) Honeywell’s HMC2003 sensor

(middle) Block Diagram

(right) Pin Diagram

Due to its high sensitivity, even at very low field ranges, the

HMC2003 sensor is chosen over other AMR sensors sold by other

manufacturers to be integrated in our system.

Figure (3.3) shows the configuration of the proposed sensing system

which includes three three-axis AMR sensors placed on the side of the road

to detect passing vehicles for the purpose of counting them and estimating

their speed and size [5].

37

Figure (3.3): Configuration of sensing system. Sensor 2 is placed longitudinally

from sensor 1. Sensor 3 is placed vertically above sensor 1.

 Vehicles detection and counting. The signals along the z-axis have

almost the same patterns for a large variety of vehicles. Hence, the

magnetic readings of the z-axis of sensor 1 can be used for detecting

and counting the passing vehicles.

 Speed estimation. The speed of the passing vehicle can be estimated

by using two longitudinally spaced magnetic sensors (sensor 1 and

sensor 2) as shown in Figure (3.3). Assuming the distance between

the two sensors is d, the speed of the vehicle can be estimated from the

detection time of the two sensors. If the detection time of sensors 1

and 2 are T1 and T2, the speed of vehicle can be calculated as:

v =
d1−2

T2 − T1
,

where d1−2 is the distance between sensors 1 and 2

d

38

 Vehicles Classification. The proposed classification approach is based

on using the size of magnetic disturbance. Multiple magnetic sensors

can be placed at different location from the road. Then a correlation

analysis or machine learning classification approach can be used to

provide an estimate of the vehicle size.

In Figure (3.4), we show a possible placement of a second sensor

(sensor 3) vertically above sensor 1. The magnetic signals along the z-axis

have patterns for different types of vehicles. Therefore, magnetic readings of

the z-axis from multiple sensors can be used to give an estimate of the vehicle

size.

Figure (3.4): Sensors configuration for estimating the dimension of the vehicle

Each node placed in a particular location gathers the magnetic field

disturbance information resulting from vehicles passing from multiple

attached sensors. This information can be transferred to coordinator node

using radios signals.

3.2 Wireless Sensor Network

An important part of the system architecture is a WSN as shown in

Figure (3.1). A WSN is a group of wireless sensor nodes distributed at

39

different locations by the road side. Multiple magnetic sensors can be

attached to a sensor node to sense perturbation in the earth magnetic field.

Then, these perturbation signals can be used to determine the traffic

parameters. Once a sensor node identified a passing vehicle, it transfers this

information to the master node. The master node is a special node that acts

as a sink where information from all wireless nodes are transferred to this

node. The master node (Coordinator) is connected to the base station

computer. The base station computer is connected to the web application, a

shared place for processing, managing the data, and saving the data in a

database.

The Wireless Sensor Network is developed based on the open source

hardware platform Arduino Uno and XBee radios for wireless

communications.

Arduino Uno microcontroller is an open-source computing platform

based on a simple microcontroller board, and a development environment

for writing software, the Arduino Software (IDE) which is based on

processing language.

Arduino can be used to develop interactive projects, taking inputs

from a variety of sensors, and controlling a variety of lights, motors, and

other physical outputs. Arduino projects can be stand-alone, or they can

communicate with software running on the computer. Arduino can read

inputs from a sensor or a message and produce an output that can activate an

action in the environment such as turning a motor on or off.

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Products

40

Wireless nodes communicate with each other wirelessly through

XBee radio modules. XBee modules simply send data and receive data on

the provided frequency. This helps in dealing with issues such as media

access rules, data delivery verification, error checking, and in multi-node

networks (which node will accept and use the data).

Our choice to use Arduino is due to its flexibility to be customized and

extended. It offers a variety of digital and analog inputs includes serial

interface, and digital and PWM outputs. It is also easy to use and implement,

since it can be connected to a computer via USB port and communicates with

a computer using standard serial protocol.

The intended design of the system is to include the HMC2003

magnetic sensor as described in previous section.

In order to allow the XBee module to enter sleep modes and save

power, it needs to be configured properly. The coordinator XBee is set to be

awake at all time and simply just waiting for data. The XBee of sensor node

are set to be on cyclic sleep mode. This allows the XBee to sleep for a set

amount of time.

In order to reliably send data between the coordinator and the sensor

nodes, a custom packet is created. The first byte in the packet is the header

byte with a fixed value of 0xFF, the next field is the node ID, followed by

the data bytes which includes the signals along x, y and z axis, followed by

the last byte which is a checksum byte as shown in figure (3.5).

41

Fig (3.5): Sensor node data packet

3.2.1 Sensor Node

Each sensor node reads the analog values of the three components of

the magnetic field and sends them to its Arduino microprocessor. These

values can be used to detect if a vehicle is passed. If these values indicate a

passing vehicle, the current time and the digital values of the three

components are sent to the coordinator nodes using the XBee library send

function. The function assembles the massages into an API frames. The

following steps can be used by sensor node:

Step 1: Start

Step 2: Header byte and Id is assigned to sensor node

Step 3: Sense magnetic field in three axes (x, y and z)

Step 4: Send Analog values of sensed magnetic field in three axes (x, y and

z).

 To Arduino

Step 5: Does the value of z-axes indicate a vehicle movement?

 Yes: go to step 6

 No: go to step 9

Header Data Checksum

42

Step 6: Set detection time

Step 7: Inbuilt ADC in Arduino converts the values of x, y and z to digital

value

Step 8: Calculate checksum

Step 8: Send Header byte, Id, detection time, digital value values of (x, y

and z) and checksum to coordinator

Step 9: End.

3.2.2 Coordinator Node

The coordinator node collects the data from the sensor nodes and

makes some computations on them. Then it saves the results to be accessed

later as a Web service. The following steps are the performed by coordinator

node:

Step 1: Start

Step 2: Receive Header byte, Id, detection time, digital values of (x, y and z)

and checksum

Step 6: Calculate checksum

Step 3: Does calculated checksum value = received checksum value?

 Yes: go to step 4

 Yes: go to step 9

43

Step 4: Add one to counter

Step 5: calculate vehicle speed from

 𝑣 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒1 𝑎𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒2

𝑅𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑒𝑡𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟𝑚 𝑛𝑒𝑛𝑜𝑟2−𝑅𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑒𝑡𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟𝑚 𝑛𝑒𝑛𝑜𝑟2

Step 6: calculate the difference between the digital values of (x, y and z)

received from sensor1 and sensor3 to determine the class of vehicle

Step 8: Save counter, vehicle speed and vehicle class in base station

 Step 9: End.

Fig (3.6): Sensor node processes

End

Start

Header byte and Id is assigned to sensor node

Sense magnetic field in 3- axes (x, y and z)

Send Analog values of x, y and z to Arduino

Set detection time to current time

Inbuilt ADC convert x, y and z to digital

Send Header byte, Id, detection time, x, y, and z,

checksum to coordinator

Does

 z-axes value

indicate a

 vehicle movement?

Yes

No

44

Fig (3.7): Coordinator Process

3.2.3 Base Station Application

The base-station application listens to the serial port. Once the

application reads a header byte, it knows it is the beginning of a new packet

and it disassembles the packet and does the appropriate calculations to

Start

Receive Header byte, Id, detection time, x,y,z and checksum

sensor node

Calculate checksum

Dt= received detection time value

Add 1 to the counter

vehicle speed=d/ Dt2-Dt1

Calculate the difference between the digital values of 3-axes

received from sensor1 and sensor3 to determine the class of

vehicle

Display and save counter, vehicle speed and vehicle class in base

station

End

Does

calculated

checksum = received

checksum?

yes

No

45

determine source node ID and the received data. The application also shows

a simple visual interface and displays the received data. It also tags the data

with the real time and save it in database. The application allows the search

for the movement of vehicles within a specified date and time and displays

the results as statistical charts. The database consists of a single table with

the attributes (sensor ID (transmitter), vehicle classification, detection date,

detection time, and vehicle speed).

46

Chapter Four

System Implementation and Results

In this chapter, we describe the implementation of our system. This

includes, the implementation of the WSN, and the base station application

and its interfaces as mentioned in the previous chapter.

The implementation of a wireless sensor networks should meet several

requirements include low power consumption, contain reliable sensors

interface, transmit small amounts of data, and easy to deploy. Additional

requirements are:

 Radiolocation. The system should be able to identify the location of

any wireless sensor node.

 Single Destination points for data. All sensors send their data to one

central point, the base station. This will simplify the requirements of

the routing algorithm.

 Ease of maintenance. Maintaining the system should be achieved

centrally, therefore the base station must be capable of determining if

maintenance is required.

 Easy access to sensor data. The base station stores all sensor data and

accessing this data can be achieved through this application.

 Mechanism to support dynamic environment. The working

conditions in road monitoring systems are not static.

47

4.1 Hardware and Software to implement the Wireless Sensor Network

In this section, we show the components of the system, how it could

be used in the traffic monitoring, and the corresponding hardware and

software specifications of the prototypes that we developed, as well as the

communication protocols.

The main components of a Wireless Sensor Node are: the

microcontroller, Radio Frequency transceiver (RF), power source, and

several attached sensors. There are several technologies that can be used to

implement the WSN. The main difference between these technologies is the

tradeoff between the ease of use and the cost. Other difference is the

communication protocol that they support. In this thesis, we used the XBee

modules for the short-range low-power wireless communication. For the

microcontroller, we used the Arduino Uno. For the environment sensors, we

considered to use the HMC2003 magnetic sensor in the future work. The

XBee modules and the HMC2003 magnetic sensors are discussed in Chapter

[24]. These and other electronics parts that we used are discussed further

below in more details.

4.1.1 Arduino Uno

Arduino is an open source programmable circuit board that can be

used for building electronics projects. This board contains

a microcontroller which is able to be programmed to sense and control

objects in the physical world.

https://en.wikipedia.org/wiki/Microcontroller

48

There are many versions of the Arduino boards introduced in the

market include Arduino Uno, Arduino Due, Arduino Leonardo, Arduino

Mega. In this thesis we used the Arduino Uno.

Fig (4.1): Sensor Node

Some of the key characteristics why these microcontrollers are

particularly suitable to WSNs systems are: their flexibility in connecting with

other devices (like sensors), their low power consumption, and their built-in

memory.

Arduino microcontroller is the option chosen which covers all

requirements. It allows the designers to control and sense the external

electronic devices in the real world. Therefore, it is considered the core of a

wireless sensor node. It collects data from the sensors, processes this data,

decides when and where to send it, and receives data from other sensor

nodes. It has to execute various programs, ranging from signal processing

and communication protocols to application programs.

49

Arduino consists of a circuit board, which can be programmed using

the Arduino IDE (Integrated Development Environment). The Arduino IDE

is used to write and upload programs to the physical board. The board is

able to read analog or digital input signal from different sensors and turn it

into an output. [1]

Unlike most programmable circuit boards, Arduino does not need an

extra piece of hardware in order to load the code onto the board. It simply

uses the USB port. The Arduino IDE supports using special rules of code

structuring making it easier to program.

Arduino Uno (as shown in Fig 4.2) comes with USB interface, 6

analog input pins, 14 I/O digital ports that allow external connections with

circuit on board. These pins provide the flexibility and ease of use to the

external devices that can be connected through these pins. There is no

interface required to connect the devices to the board. Simply, plug the

external device into the pins of the board that are laid out on the board in the

form of the header. The description of each pin is shown in Table (4-1) [1].

Fig (4.2): Arduino UNO

50

Table 4-1: XBee 802.15.4 Pins

Category Pin Name Details

Power Vin, 3.3V,

5V, GND

Vin: Input voltage to Arduino when using an

external power source.

5V: Regulated power supply used to power

microcontroller and other components on the

board.

3.3V: 3.3V supply generated by on-board

voltage regulator. Maximum current draw is

50mA.

GND: ground pins.

Reset Reset Resets the microcontroller.

Analog

Pins

A0 – A5 Used to provide analog input in the range of 0-

5V

Input/Outp

ut Pins

Digital Pins

0 - 13

Can be used as input or output pins.

Serial 0(Rx),

1(Tx)

Used to receive and transmit TTL serial data.

External

Interrupts

2, 3 To trigger an interrupt.

PWM 3, 5, 6, 9,

11

Provides 8-bit PWM output.

SPI 10 (SS), 11

(MOSI), 12

(MISO)

and 13

(SCK)

Used for SPI communication.

Inbuilt

LED

13 To turn on the inbuilt LED.

TWI A4 (SDA),

A5 (SCA)

Used for TWI communication.

AREF AREF To provide reference voltage for input voltage.

51

4.1.2 Arduino XBee Shield

The Arduino shield allows the Arduino board to communicate

wirelessly using ZigBee. It can be used as a SERIAL/USB replacement or it

can be placed into a command mode and configure it for a variety of

broadcast and mesh networking options. The shields break out each of the

XBee's pins to a through-hole solder pad. It also provides female pin headers

for use of digital pins 2 to 7 and the analog inputs, which are covered by the

shield (digital pins 8 to 13 are not obstructed by the shield).

The XBee shield has two jumpers. These determine how the XBee's

serial communication connects to the serial communication between the

microcontroller and FTDI USB to-serial chip on the Arduino board.

With jumpers in the XBee, the DOUT pin of the XBee module is

connected to the RX pin of the microcontroller; and the DIN is connected to

TX (DOUT and DIN pins are used to send and receive data which are

explained in Section 4.1.1.

Fig (4.3): Arduino XBee Shield

4.1.3 Arduino IDE

The Arduino integrated development environment (IDE) is an official

software introduced by Arduino.cc, that is mainly used for editing, compiling

52

and uploading the code in the Arduino Device. Almost all Arduino modules

are compatible with this software that is an open source and is readily

available to install and start compiling the code on the go. IDE contains a

text editor for writing code, a message area, a text console, a toolbar with

buttons for common functions, and a series of menus. It connects to the

Arduino hardware to upload programs and communicate with them. It

includes a code editor with features such as syntax highlighting, brace

matching, and automatic indentation, and is also capable of compiling and

uploading programs to the board.

The Arduino programming language is based on a very simple

hardware programming language called processing, which is similar to the

C language. The Arduino IDE comes with a software library called "Wiring"

from the original Wiring project [1] which makes many common

input/output operations much easier.

The interface of Arduino IDE is shown in figure (4.4)

53

Fig (4.4): Arduino IDE Interface

4.1.4 X-CTU

X-CTU is free software provided from Digi which allows reading and

setting the XBee module parameters, such as the Node Identification,

destination address, PAN Id, operating channel, or applying configuration

changes, etc. It offers the following features:

 Integrated terminal window.

 Provides a range of test tools.

 Displays the Received Signal Strength Indicator (RSSI).

 Displays both ASCII and Hexadecimal characters in terminal window.

54

 Compose test packets for test transmissions.

 Automatically detect module type.

The interface X-CTU is shown in figure (4.5)

Fig (4.5): X-CTU Software Interface

4.1.5 Power Source

The nodes should work autonomously. This means that there should

be a power management stage to ensure such a condition. We can use battery

or solar panel to accomplish this.

4.2 Wireless Sensor Network implementation

In order to implement the network, two communication tests were

performed. First, we tested the communication using radios between two

XBee modules. A “simple Zigbee chat session” as FALUDI calls it in [21].

55

The other test is the communication between two Arduino boards where the

first board sends a message through the serial to its XBee module. The XBee

module transmits the message using radio signal to the XBee in the recover

node. Consequently, the XBee in the receiver node forward the message

through the serial port to the Arduino board in the receiver node.

4.2.1 XBee to XBee Communication Test

The goal of this test is to transmit real-time text messages from one

XBee module to another. For this test, I used:

 X-CTU software.

 Two (2) XBee modules.

 Two (2) XBee explorer USB modules.

The configuration of the XBee modules involves setting the Channel,

PAN ID, and Address values as follows:

Channel. XBee modules must be on the same channel to communicate with

each other.

PAN ID. XBee modules must share the same PAN ID to communicate

with each another (available values are between 0 and 0xFFFF).

Addressing. Each XBee has a source address and a destination address. An

XBee’s destination address specifies to which address it can send data. Using

the X-CTU software, one XBee was configured as a coordinator and named

56

“Coordinator”. The other XBee was set as an end device and labeled

“EndDevice”. Other Parameters is configured as shown in Figure (4.6).

Table 4-2: Configuration of XBee modules for XBee to XBee test

communication

 channel

number (CH)

PAN

ID (ID)

Destination

High (DH)

Destination

Low (DL)

MY

Address

Coordinator C 1001 0 2 1

End Device C 1001 0 1 2

Fig (4.6): Coordinator and End device XCTU configuration

Next, I proceeded to open a console window in the X-CTU and created

the message that was sent from the end device to the coordinator. Fig. 4.7:

57

Fig (4.7): Message sent from End device to Coordinator

Finally, as expected, the communication between the XBee modules

works fine.

4.2.2 Arduino to Arduino Communication Test

A simple sketch with the message “Hello from End device” was

programmed on the Arduino board (Figure (4.8) shows the script at the

58

Arduino IDE and on the Terminal). The message that end device is

transmitting to the coordinator every two seconds.

The configured XBee of end device is placed on the XBee shield, and

the shield with XBee is placed on the Arduino board. It’s important to

change the jumper’s position from USB to XBEE. The configured XBee of

Coordinator is placed on the XBee explorer USB, and the XBee explorer

USB XBee is connected to PC.

The Communication path is:

Now, on the coordinators side, Fig. 4.9 shows that it actually received

a frame.

Fig (4.8): Arduino communication through XBee modules.

Arduin

o

PC XBee of

Coordinator

XBee of End

Device

59

7E 00 12 81 00 01 47 02 00 64 17 06 00 00 07 E3 10 25 19 00 4D 2E

Fig (4.9): Coordinator console showing received messages.

4.2.3 Data Transmission

Each end node (Sensor Node) will generate a random vehicle speed

and size at current time, and send them to the coordinator. The Coordinator

will receive an API frame like the one shown on Figure (4.10).

Fig (4.10): API frame received in Hex by coordinator.

The frame message received on the coordinator sent by the end device

has 18 bytes, which includes control headers, payload, delimiter and

checksum.

60

Fig (4.11): The frame message received on the coordinator

using the X-CTU frame interpreter I got the following info from the

frame as shown in Figure (4.12)

61

Fig (4.12) : XBee API frame interpreter used to decode received frames.

62

Each field of the API frame is described below:

 Start delimiter (7E): It indicate that a new frame has arrived.

 Length (18): refers to the number of bytes between length and

checksum fields.

 Frame type (81): is the code for a received packet (Packet 16-bit

Address).

 16-bit source address (0001): is the sender network address (Node Id).

 RSSI (47): refers to the strength of signal.

 Receive options (02): indicates that packet has been acknowledged

 RF data: the message sent from the end device and received by the

coordinator.

 Checksum (2E): To test data integrity, the device calculates and

verifies a checksum on non-escaped data.

To calculate the checksum of an API frame, we do the following:

1. Add all bytes of the packet, except the start delimiter 0x7E and the

length.

2. Keep only the lowest 8 bits from the result.

3. Subtract this quantity from 0xFF.

To verify the checksum of an API frame we:

1. Add all bytes including the checksum without including the delimiter

and length.

63

2. If the checksum is correct, the last two digits on the far right of the

sum equal 0xFF.

After every stage of the system (variable measurement and data

transmission) has been studied, we proceeded to complete our system as

below.

We decided to simulate the sensor data by creating a function that

generates random data as an alternative to the magnetic sensor reading since

the focus of this thesis is on building the wireless network and the data

communication and not the application of the magnetic sensor.

Each end device node (Sensor Node) generates a random data (vehicle

speed and size), then it sends these data to the coordinator. So, we want

multiple Arduino to send data to a single master node (Coordinator).

The configurations of XBee end devices and coordinator is as shown in the

Table (4-3).

Table 4-3: Configuration of XBee end devices and coordinator

 Coordinator End

Device1

End

Device2

End

Device3

channel number

(CH)

C C C C

PAN ID (ID) 1001 1001 1001 1001

Destination High

(DH)

0 0 0 0

Destination Low

(DL)

1 4 4 4

MY Address 4 1 2 3

Node Identifier

(NI)

Coordinator Sensor

Node1

Sensor

Node2

Sensor

Node3

Coordinator Enable

(CE)

Coordinator End

Device

End

Device

End Device

64

After the configuration process, all XBee modules can exchange the

data using the XCTU terminal.

Figure (4.13) illustrates connection example between one coordinator

and three other end devices, the figure is the coordinator XCTU terminal:

Fig (4.13): Coordinator connection with three end devices

The Arduino executes a sketch that makes the operation described

above and sends the data value via the serial to the XBee radio. The XBee

radio end device sends this information to the coordinator node. The

coordinator takes care of receiving the data, processes it properly, and saves

it in a database for further processing and analysis.

The nodes were deployed within enough space to send the data and to

make sure that nodes were communicating with the coordinator correctly.

65

Uint8_t payload [13] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }

Tx16Request tx = Tx16Request(0xFFFF, payload,

sizeof(payload));

TxStatusResponse txStatus = TxStatusResponse();

 pinMode(XBee_wake, INPUT); // put pin in a high impedence state

digitalWrite(XBee_wake, HIGH);

sleepTime = 898000; // time in ms (max sleep time is 49.7 days)

sleep.pwrDownMode(); //set sleep mode

sleep.sleepDelay(sleepTime); //sleep for: sleepTime

int randsize[3]={80, 100, 200};

4.3 Program of Arduino End Device (Sensor Node):

Appendix B at the end of this thesis, is the c-programing language

code loaded to the Arduino end device node.

The main tasks of transmitter Arduino node are:

1. Define a byte array (13 bits) to hold traffic parameters.

2. Define 16-bit addressing: typically, the coordinator 0xFFFF

3. set sleep and wake up mode

4. Define an integer array as an Assumption of vehicle size

5. Generate normally distributed random number based on Average and

Standard Deviation to obtain assumed vehicle speed and size.

66

int GenerateVehicleSize()

{int pickedindex=randn(0.91, 0.41);

 return randsize[pickedindex];}

 int GenerateVehicleSpeed()

{ return randn(55, 17.8); }

int GenerateVehicleSpeed()

{ return randn(55, 17.8); }

int GenerateVehicleSpeed()

{ return randn(55, 17.8); }

double randn (double mu, double sigma){

 double U1, U2, W, mult, randnum;

 static double X1, X2;

 static int call = 0;

 if (call == 1) {

 call = !call;

 randnum = mu + sigma * (double) X2;

 if (randnum < 20 || randnum > 100)

 return mu;

 else

 return randnum;}

 do{

 // Get two random numbers

 U1 = -1 + ((double) rand () / RAND_MAX) * 2;

 U2 = -1 + ((double) rand () / RAND_MAX) * 2;

 // Radius of circle

 W = pow (U1, 2) + pow (U2, 2);}

67

6. Get the current date and time and consider them as detection date and

time using “RTClib”

7. Insert the traffic Parameters to payload array

 while (W >= 1); //If outside unit circle, then reject number

 mult = sqrt ((-2 * log (W)) / W);

X1 = U1 * mult;

X2 = U2 * mult;

call = !call;

randnum = mu + sigma * (double) X1;

if (randnum < 20 || randnum > 100)

 return mu;

 else

 return randnum;

}

RTC_Millis RTC;

DateTime now =RTC.now();

// Converting int to hex could also used highByte() lowByte()

payload[0] = v_size >> 8 & 0xff;

payload[1] = v_size & 0xff;

payload[2] = now.day();

payload[3] = now.month();

u.j = now.year();

payload[4] = u.b[3];

payload[5] = u.b[2];

payload[6] = u.b[1];

payload[7] = u.b[0];

68

8. Send Tx request

After sending a tx request, we expect a status response, wait up to 5

seconds for the status response.

4.4 Base Station Application

The application was programmed using (Visual Basic.Net).

Figure (4.14) illustrates the main tasks of application (Traffic Monitor

Software).

Fig (4.14): Main tasks of Base station application (Traffic Monitor Software)

payload[8] = now.hour();

payload[9] = now.minute();

payload[10] = now.second();

payload[11] = v_speed >> 8 & 0xff;

payload[12] = v_speed & 0xff;

xbee.send(tx);

69

The XBee coordinator connected with serial USB port with computer

using the USB Adapter.

The software is designed to simply listen to the serial port. Once the

software sees a header byte ‘0xFFFF’, it knows it is the beginning of a packet

and then it purses the packet and determines the ID and the data received

from the end device node.

Another component of the application is a simple visual interface. The

interface displays the received data. The application then stamps the data

with the real time and saves it in database for further processing and sharing.

Figure (4.15) illustrates the main interface of the base station

application. The application uses a single interface. The interface displays

the received traffic parameters from end device in a list box.

The interface includes:

 A drop-down list that contains the available COM ports

 A drop-down list that contains the Baud Rates

 A connect/disconnect button.

 A list box where the received API frame is added.

 Text boxes where the components of received API frame is displayed

after converted the traffic parameters to Hex.

 Data grid view where the received traffic parameters is added.

70

 Chart where the received traffic parameters is drawn.

 Fig (4.15): Traffic Monitor Software

As shown in figure 4.14 he main tasks of Base station application:

1. Find available COM ports in Pc and add it to the dropdown list. The

function responsible for that is (FindSerialPorts()).

2. Set the properties of selected serial port and then open it. The

properties of serial port are Port Name, Baud Rate, Data Bits, Parity,

Stop Bits, Handshake, Encoding and Timeout. The function

responsible for that is (OpenPort()) .

3. Close an opened serial port. The function responsible for that is

(ClosePort()).

71

4. Read received serial data, extract traffic parameters from it and then

add these parameters to database.

When user click on the search button (), the function

(FindSerialPorts()) populates the COM port drop down list with the available

COM ports. The program then waits for the user to pick one and select baud

rate.

When user click on the connect button (), the first thing the

routine does is determine if the serial port is open. The serial port is closed

if it is open, then the serial port properties are set, the serial port is opened

and the timer is started.

A timer is used to check for incoming data. The timer is set to trigger

every 500 ms or half a second and when triggered it calls the RcvdTimer_Tick()

routine.

RcvdTimer_Tick() calls a function(ReceiveSerialData()) that creates

a byte array to hold the API frame that is read through the serial port then

this API frame is returned as an array of bytes.

There are other routines that add received API frame to the list box,

extract traffic parameters from the frame, create a graph of the parameters,

save the parameters to database and displays them to user.

72

When user click on any received API frame in the list box, the function

(extractdata()) will disassemble the selected frame and display its parts to the

user in hex format.

The routine (InsertData()) will add the traffic parameters to the data grid

view and insert them to the database.

Figure (4.16) demonstrate the execution of the application.

Fig (4.16): Running Traffic Monitor Software

The code for the Base station application is found in APPENDIX B.

The code for web service of saved database is found in APPENDIX C.

4.5 Data Base

The database of Traffic Monitor Software consists of single table with

the following attributes:

73

 Sensor ID (transmitter).

 Vehicle Class.

 Detection Date.

 Detection Time.

 Vehicle speed.

Fig (4.17): Table of Traffic Monitor Database

Microsoft SQL server was used to implement the data base, it is a

relational database management system developed by Microsoft. As a

database server, it is a software product with the primary function of storing

and retrieving data as requested by other software applications—which may

run either on the same computer or on another computer across a network

(including the Internet).

4.6 Programming Interface

Also, we provided a programming interface for our system where

other application can connect to the system and retrieve information about

74

namespace TrafficService

{

 public class Vehicle

 {

 public String sensorId { get; set; }

 public string vclass { get; set; }

 public int vspeed { get; set; }

 public string detectionDate { get; set; }

 public string detectionTime { get; set; }

 }

}

List<Vehicle> listTraffic = new List<Vehicle>();

String constring =

ConfigurationManager.ConnectionStrings["TrafficPr"].ConnectionStrin

g;

the traffic parameters. The programming interface consists of one class

called Vehicle.cs described below.

1. Create a class file named “Vehicle.cs”.

We have defined five entities using get and set properties within the

Vehicle class. These entities correspond to the columns of the database table.

2. create method named “GetAllParameters()”

We have used one strongly typed list of objects using Vehicle.cs class

to manipulate, search and sort the lists and I have used the connection string

of database.

75

- Then, all ADO.NET objects and properties are mentioned with

their vast roles like SqlConnection , SqlCommand , SqlDataReader

etc.

- use SQL statement to read all field of the table.

- Mention all the fields using object of Vehicle class and add them

to List class object “listTraffic“

- Convert the listTraffic object values into JSON string.

SqlConnection cn = new SqlConnection(constring);

SqlCommand cmd = new SqlCommand(strdtails, cn);

SqlDataReader rdr ;

"SELECT SenderId, Calssification, DetectionDate, DetectionTime,
Speed FROM TrafficDB.dbo.tbl_Traffic"

rdr = cmd.ExecuteReader();

 while (rdr.Read()){

 Vehicle v = new Vehicle();

 v.sensorId = rdr["SenderId"].ToString();

 v.vclass = rdr["Calssification"].ToString();

 v.detectionDate = rdr["DetectionDate"].ToString();

 v.detectionTime = rdr["DetectionTime"].ToString();

 v.vspeed = Convert.ToInt32(rdr["Speed"]);

 listTraffic.Add(v);}

JavaScriptSerializer js = new JavaScriptSerializer();

Context.Response.Write(js.Serialize(listTraffic));

76

- Table’s data in JSON format will be like :

Fig (4.18): Table GetAllParameters method

[{"sensorId":"01","vclass":"Small","vspeed":36,"detectionDate":"23/06/2019","detectionTime":"15:

48:28"},

{"sensorId":"01","vclass":"Large","vspeed":74,"detectionDate":"23/06/2019","detectionTime":"15:4

8:32"},

{"sensorId":"01","vclass":"Medium","vspeed":46,"detectionDate":"23/06/2019","detectionTime":"1

5:48:3"},

{"sensorId":"01","vclass":"Small","vspeed":55,"detectionDate":"23/06/2019","detectionTime":"15:4

8:38"},

{"sensorId":"01","vclass":"Large","vspeed":66,"detectionDate":"23/06/2019","detectionTime":"15:4

8:43"},

{"sensorId":"01","vclass":"Medium","vspeed":51,"detectionDate":"23/06/2019","detectionTime":"1

5:48:46},

{"sensorId":"01","vclass":"Medium","vspeed":48,"detectionDate":"23/06/2019","detectionTime":"1

5:48:52},

{"sensorId":"01","vclass":"Large","vspeed":42,"detectionDate":"23/06/2019","detectionTime":"15:4

8:55"},

{"sensorId":"01","vclass":"Medium","vspeed":51,"detectionDate":"23/06/2019","detectionTime":"1

5:48:59}]

77

Fig (4.19): data in JSON format

4.7 Retrieve Traffic Parameters

I have created a simple Windows application that retrieves counters of

traffic parameters from the database and displays them to the user.

The application retrieves the counters of traffic parameters from the

database by a given date and two times. The retrieved data is a counter of

traffic parameters collected from specific nodes are displayed to the user as

statistical data in the form of pie charts.

Figure (4.20) illustrates the application with statistical retrieved

counters of traffic parameters collected from the node 1.

78

Fig (4.20): statistical retrieved traffic parameters collected from the node 1

Each pie chart displays the number of vehicles in two categories

(speeds and classifications).

Speed category shows the number of vehicles for five speeds (20-39,

40-59, 60-79, 80-99 and more than 100 km/hour).

Classification category shows the number of vehicles for three

classification (small, medium and large).

The column chart displays the number of vehicles with all speeds and

classifications in one chart.

Figure (4.21) illustrates the speeds and classifications with detection

times collected from all nodes.

79

Fig (4.21): Traffic parameters collected from the nodes

The code for statistical retrieved traffic parameters collected from the

nodes is found in APPENDIX D.

4.8 Traffic Visualization

The working of the design is evaluated by the acquisition of a baseline

data set. The baseline data set provides a data package for testing of the

sensors performance and functionality which include sensed magnetic field

in 3-axes (x, y and z) for each sensor node.

The data package for each sensor node contains vehicle classification,

vehicle speed and direction. To obtain and apply them we created an

application for traffic visualization on road. The application divided the road

into two directions (left and right) and placed two sensors on the side of the

road with a distance from each other as shown in Figure (4.22).

80

Fig (4.22): Traffic visualization interface

We assumed that the vehicles have three Classifications (large,

medium and small) with sizes ({50, 100}, {80, 200}, {40, 80} inch).

The application selects from these values randomly and assigns it to a

vehicle, then moves it at random speed by changing the coordinates of its

location using loop).

When the vehicle reaches the area detection for both sensor nodes, the

both detection times are obtained.

The speed of the vehicle is then calculated from the equation:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒1 𝑎𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒2

𝑆𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝐹𝑖𝑟𝑠𝑡 𝑑𝑒𝑡𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

81

Therefore, the dataset obtained from vehicle traffic using this

simulator are including (vehicles counter, detection date, detection time of

sensor node1, detection time of sensor node2, vehicle speed, vehicle

classification, and vehicle direction).

The Figure (4.23) shows the application after it is run.

The code of application is found in APPENDIX D

The data obtained from the simulator of vehicle traffic are saved to

database table to be accessible through the Web.

Fig (4.23): Traffic visualization after it is run

82

Chapter Five

Conclusion

The body of this thesis consists of two main subjects, the first

describes the design of a simple magneto-resistive sensor, the other focuses

on how to build a wireless sensor network.

In the beginning of the thesis, a detailed theory of Anisotropic

Magneto-Resistive sensors (AMR) is described to provide a better

understanding of the underlying principles of the sensors used in the design.

Having introduced the theory, the details of hardware equipment employed

in the design are described in the hardware to Implement chapter.

The details of different components available and the requirement of

each component in the design is explained. Next, the Wireless Sensor

Network technologies was reviewed, and among a broad amount of options

to implement based on criteria of easy implementation, documentation,

distance range, mesh networking, then it was decided to use XBee modules.

Then we decided to work with Arduino hardware/software, because it is easy

to implement, the IDE is programmed in C language an even more important,

there are lots of tutorials and projects available by the Arduino community

online. Following that, communication tests were performed-on a first hand,

it was made a XBee to XBee test, and second, an Arduino to Arduino test

via wireless, aided by the XBee- in order to ensure that data sent by nodes

83

was effectively received by the coordinator for further processing or

analysis.

This project can be considered as a small step for creating a traffic

monitor station, or also to create a control and monitoring system for crops

water irrigation.

The base station applications were implemented that allow to save,

retrieve and display data within graphical interfaces and statistical charts.

There is still a lot to work in the field of Wireless Sensor Network

technology, since it has an enormous potential to improve outdoor control

systems and quality of life of citizens within a called smart city for instance:

the development of low power communication hardware, low-power

microcontrollers, MEMS based sensors and actuators, and energy-

scavenging devices is necessary to enhance the potential and the

performance of sensor networks. Also, this project offers flexibility in

hardware selection along with the ability to expand the number of sensors

used.

84

References

- [1] Arduino.cc (2019). Arduino – Introduction. [online] Available

from:

https://www.arduino.cc/en/guide/introduction

- [2] T.Thamaraimanalan, S.P.Vivekk, G.Satheeshkumar and

P.Saravanan (2018). Smart Garden Monitoring System Using IOT.

Asian Journal of Applied Science and Technology (AJAST)

(Open Access Quarterly International Journal), vol. 2, pp. 186-

192.

- [3] Rana Abu Qarea (2017), Annual Statistical Report, Palestinian

Ministry of Transport, Ramallah, Palestine. available from:

http://www.mot.gov.ps/wp-

content/uploads/Portals/_Rainbow/Documents/Stats/Annual_Repoert

2017.pdf

- [4] Lisa Jogschies (2015), Recent Developments of Magnetoresistive

Sensors for Industrial Applications, Sensors. 15. 28665-28689.

10.3390/s151128665.

- [5] Saber Taghvaeeyan and Rajesh Rajamani (2014). Portable

Roadside Sensors for Vehicle Counting, Classification, and Speed

Measurement. IEEE Transactions on Intelligent Transportation

Systems, vol. 15, pp. 73-83.

- [6] FOSIAO LLC (2014). Zigbee RF Channels. [online] Available

from: https://fosiao.com/content/zigbee-and-wifi-rf-channels

- [7] Robert Faludi (2011). Building Wireless Sensor Networks: with

ZigBee, XBee, Arduino, and Processing (1st ed). USA, CA:

O’Reilly Media, Inc. [online] Available from:

https://ab-log.ru/files/File/books/WirelessSensorNetwork.pdf

https://www.arduino.cc/en/guide/introduction
http://www.mot.gov.ps/wp-content/uploads/Portals/_Rainbow/Documents/Stats/Annual_Repoert2017.pdf
http://www.mot.gov.ps/wp-content/uploads/Portals/_Rainbow/Documents/Stats/Annual_Repoert2017.pdf
http://www.mot.gov.ps/wp-content/uploads/Portals/_Rainbow/Documents/Stats/Annual_Repoert2017.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
https://fosiao.com/content/zigbee-and-wifi-rf-channels
https://dl.acm.org/author_page.cfm?id=81482652073&coll=DL&dl=ACM&trk=0
https://ab-log.ru/files/File/books/WirelessSensorNetwork.pdf

85

- [8] Honeywell (2011). 3-Axis Magnetic Sensor Hybrid HMC2003:

Datasheet.[online] Available from:

https://neurophysics.ucsd.edu/Manuals/Honeywell/HMC_2003.pdf

- [9] Erik Minge. Scott Petersen, and Jerry Kotzenmacher (2011).

Evaluation of Non-Intrusive Technologies for Traffic Detection.

Transportation Research Record, vol. 2256, pp. 95–103.

- [10] J. Medina, M. Chitturi, and R. Benekohal (2010). Effects of fog,

snow, and rain on video detection systems at intersections.

Transportation Letters, vol. 2, no. 1, pp. 1–12.

- [11] S. Kaewkamnerd, J. Chinrungrueng, R. Pongthornseri, and S.

Dumnin (2010). Vehicle classification based on magnetic sensor

signal. IEEE International Conference on Information and

Automation, pp. 935–939.

- [12] Martin Hebel and George Bricker (2010). Getting Started with

XBee RF Modules (1st ed) - A Tutorial for BASIC Stamp and

Propeller Microcontrollers. [online] Available from:

https://www.jameco.com/Jameco/Products/ProdDS/2171225QuickG

uide.pdf

- [13] W. Zhang, G. Tan, H. Shi, and M. Lin (2010). A distributed

threshold algorithm for vehicle classification based on binary

proximity sensors and intelligent neuron classifier. Journal of

Information Science and Engineering, vol. 26, no. 3, pp. 769–783.

- [14] S. Jeng and S. Ritchie (2008). Real-time vehicle classification

using inductive loop signature data. Transportation Research

Record, vol. 2086, pp. 8–22, 2008

- [15] D. Nan, T. Guozhen, M. Honglian, L. Mingwen, and S. Yao

(2008). Low-power vehicle speed estimation algorithm based on

WSN. in Proc. 11th International IEEE Conference on Intelligent

Transportation Systems, pp. 1015–1020.

https://neurophysics.ucsd.edu/Manuals/Honeywell/HMC_2003.pdf
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Petersen%2C+Scott
https://www.jameco.com/Jameco/Products/ProdDS/2171225QuickGuide.pdf
https://www.jameco.com/Jameco/Products/ProdDS/2171225QuickGuide.pdf

86

- [16] S. Y. Cheung and P. Varaiya (2007). Traffic Surveillance by

Wireless Sensor Networks: Final Report for PATH TO 5301.

University of California, Berkely. [online]. Available from:

https://pdfs.semanticscholar.org/959b/65e302c8ab778834eb4f87edc

0a5714baa0d.pdf

- [17] Andreas Willig and Holger Karl (2007). Protocols and

Architectures for Wireless Sensor Networks (1st ed). New York,

NY, USA: Wiley-Interscience.

- [18] L. E. Y. Mimbela and L. A. Klein (2007). A summary of vehicle

detection and surveillance technologies used in intelligent

transportation systems. UC Berkeley Transportation Library.

[online]. Available from:

https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstit

s2007.pdf

- [19] H. Cheng, H. Du, L. Hu, and C. Glazier (2005). Vehicle detection

and classification using model-based and fuzzy logic approaches.

Transportation Research Record, vol. 1935, pp. 154–162.

- [20] Nirupama Bulusu, Sanjay Jha (2005), Wireless sensor networks,

Boston, MA: Artech House.

- [21] D. Puccinelli y M. Haenggi (2005). Wireless Sensor Networks:

Applications and Challenges of Ubiquitous Sensing. IEEE

Circuits and Systems Magazine, pp. 19-29.

- [22] I. KEMAPECH, I. DUNCAN and A. MILLER (2005). A

Survey of Wireless Sensor Networks Technology. In Proceedings

of the 6th annual post graduate symposium on the Convergence

of telecommunications, networking, and broadcasting.

- [23] Dr. Peter T. Martin (2003), Detector Technology Evaluation,

University of Utah, MPC Report No. 03-154. [Online]. Retrieved

from

https://www.ugpti.org/resources/reports/downloads/mpc03-154.pdf

https://pdfs.semanticscholar.org/959b/65e302c8ab778834eb4f87edc0a5714baa0d.pdf
https://pdfs.semanticscholar.org/959b/65e302c8ab778834eb4f87edc0a5714baa0d.pdf
https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstits2007.pdf
https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstits2007.pdf
https://www.ugpti.org/resources/reports/downloads/mpc03-154.pdf

87

- [24] S. Gupte, O. Masoud, R. F. K. Martin, and N. P.

Papanikolopoulos (2002). Detection and classification of

vehicles. IEEE Transactions on Intelligent Transportation

Systems, vol. 3, no. 1, pp. 37–47.

- [25] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci

(2002). Wireless sensor networks: a survey, Computer Networks,

vol. 38, pp. 393-422.

- [26] Michael Caruso, Tamara Bratland, Carl Smith and Robert

Schneider (1998). A new perspective on magnetic field sensing.

Sensors (Peterborough, NH). 15.

- [27] Tarun Agarwal. wireless sensor network and their applications

[Online]. Available from:

https://www.elprocus.com/introduction-to-wireless-sensor-networks-

types-and-applications/

https://www.elprocus.com/author/elprocus/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/

88

APPENDIX

A. Theory of Anisotropic Magnetic Resistance (AMR) Sensor

The earth has a natural magnetic field of 25 to 65 microtesla (0.25 to

0.65 Gauss) at the earth’s surface as shown in Figure (A.1). Since almost all

vehicles have significant amounts of ferrous metals in their chassis, they

cause a disturbance in the earth’s magnetic field around them. If this

disturbance can be detected using sensing technology, it will provide a way

to detect passing vehicles and an estimate of their size and speed.

Figure (A.1): The earth magnetic field lines (left), the perturbation of the earth magnetic

caused by presence of a vehicle (right).

Recent advancement in magneto resistance technology allows

detecting such small disturbance in the earth magnetic field. For instance,

the 3-Axis Magnetic Sensor Hybrid HMC2003 from Honeywell is a high

sensitivity magnetic sensor that can measure the direction and strength of a

low incident magnetic field. This sensor is highly sensitive to magnetic fields

89

along the three axis (X, Y, and Z). It can detect fields as low as 40 microgauss

and up to +- 2 Gauss. The sensor provides analog outputs for each axis.

Further, the sensor has a high bandwidth which allows measuring passing

vehicles or even planes at high speed.

AMR sensor is designed in Wheatstone bridge configurations to

measure magnetic fields by measuring the small change in resistance of this

bridge. This is used to convert a resistance change to a voltage change of a

transducer. A Wheatstone bridge consists of four resistors that are connected

with the supply source and indicating instruments as shown in figure A.2.

Figure (A.2): Wheatstone bridge

This bridge is used to find the unknown resistance very precisely by

comparing it with a known value of resistances. In this bridge null or

balanced condition is used to find the resistance.

90

For this bridge balanced condition voltage at points C and D must be

equal. Hence, no current flows through the galvanometer. For getting the

balanced condition one of the resistors must be variable.

From the figure,

The voltage at point 𝑫 = 𝑽 ×
𝑹𝒙

𝑹𝟑+𝑹𝒙
 , and the voltage at point 𝑪 =

𝑽 ×
𝑹𝟐

𝑹𝟏+𝑹𝟐

The voltage (V) across galvanometer or between C and D is

 𝑽𝑪𝑫 = 𝑽 ×
𝑹𝒙

𝑹𝟑+𝑹𝒙
− 𝑽 ×

𝑹𝟐

𝑹𝟏+𝑹𝟐

When the bridge is balanced 𝑽𝑪𝑫 = 𝟎

So,

 𝑽 ×
𝑹𝒙

𝑹𝟑+𝑹𝒙
= 𝑽 ×

𝑹𝟐

𝑹𝟏+𝑹𝟐

𝑹𝒙

𝑹𝟑+𝑹𝒙
=

𝑹𝟐

𝑹𝟏+𝑹𝟐

 𝑹𝒙𝑹𝟏 + 𝑹𝒙𝑹𝟐 = 𝑹𝟐𝑹𝟑 + 𝑹𝟐𝑹𝒙

 𝑹𝒙𝑹𝟏 = 𝑹𝟐𝑹𝟑

 𝑹𝟐/𝑹𝟏 = 𝑹𝒙/𝑹𝟑

This is the condition to balance the bridge. And for finding the unknown

value of resistance

 𝑹𝒙 = 𝑹𝟑 ×
𝑹𝟐

𝑹𝟏

91

From the above equation R4 or Rx can be computed from the known value

of resistance R3 and the ratio of R2/R1. Therefore, most of the cases R2 and

R1 values are fixed and the R3 value is variable so that null value is achieved

and the bridge gets balanced.

1. Magnetic Resistance

The anisotropic magnetoresistive (AMR) effect was first described in 1857

by William Thomson [4]. Thomson observed that the resistivity of

ferromagnetic materials depends on the angle between the direction of

electric current and the orientation of magnetization. AMR effect can be

explained with reference to figure A.3.

Figure (A.3): Principle of Magneto- Resistive Effect

In a thin magnetic film, the angle between magnetization (M) and sensing

current (I) is 𝜃, then the electrical resistance can be defined as,

𝑹 = 𝑹𝟎 + 𝜟𝑹 𝒄𝒐𝒔𝟐 𝜽

92

In the above equation 𝑹𝟎 is the fixed part and 𝜟𝑹 is the maximum value of

variable resistance.

AMR effect takes place in ferrous materials. The transducer of magneto-

resistive elements is in the form of a Wheatstone bridge. Resistance of all

four resistor elements in the bridge is 𝑹, and supply voltage is 𝑉𝑏. The supply

voltage causes a current to flow in the resistors. Due to the applied field H,

the magnetization in two opposition resistors rotates in the direction of

current and in the other two resistors it rotates away from the direction of

current.

An increase in the resistance (𝑹) of the two resistors with magnetization in

the direction of current is observed. The other two resistors have a decrease

in the resistance (𝑹). The output will be proportional to applied field 𝑯,

𝜟𝑽 = 𝑺 𝑽𝒃.

So, the film resistance is greatest when the current flows parallel to the M

and least when the current is perpendicular to M.

 AMR sensors undergo a resistance change of 2-3% in the presence of

magnetic field. The figure A.4 [4] shows the AMR circuit.

Fig (A.4): Operation of AMR sensor

93

Fig (A.5): Transducer of MR elements

AMR sensors are made of a nickel-iron (Permalloy) thin film

deposited on silicon wafer in a resistor bridge pattern. The deposition of

Permalloy film on the wafer is done in a strong magnetic field. This strong

magnetic field sets the orientation of magnetization vector in the direction

preferred. The magnetization vector is parallel to the length of the resistor

and can be set to either left or right in the film. The magnetic range of AMR

sensors lies in the range of the Earth’s magnetic field. AMR sensors can

measure both linear and angular position displacement in the Earth’s

magnetic field.

94

Fig (A.6): AMR sensor circuit

2. Resetting the Magnetization

A concern for any magnetic sensor made of ferromagnetic material is

the exposure to a disturbing magnetic field. For AMR sensors, this

disturbing field actually breaks down the magnetization alignment in the

Permalloy film that is critical to the sensor operation. The direction and

magnitude of vector M is essential to repeatable, low noise, and low

hysteresis output signals. The top film in Figure A.7 illustrates the AMR film

when exposed to a disturbing magnetic field. The Permalloy strip is broken

up into random oriented magnetic domains that degrades the sensor

operation [26] shown in Figure A.3

To recover the magnetic state, a strong magnetic field must be applied

along the length of the Permalloy film to restore M. Within tens of

nanoseconds the random domains will line up along the easy axis as shown

in the lower film of Figure A.7. Now the M vector will stay in this state for

years as long as there is no magnetic disturbing field present.

95

Fig (A.7): Magnetic Domain Orientation in AMR Thin Films

A common method used to realign these domains is to use external

coil around the Wheatstone bridge resistors. Switching a high current pulse

through the coil (Figure A.8) will create a large magnetic field of 60-100

gauss and restore the M vector [26].

Fig (A.8): Set and Rest Flipping Circuits

This process is referred to as flipping the magnetic domains with a set

pulse. This flipping action will also take place for a pulse in the opposite

direction through this external coil.

96

In this case, the reset pulse, the domains will all point in the opposite

direction along the easy axis. The KMZ-10A AMR sensor from Philips

requires an external coil around the package to create the set and reset fields.

Honeywell’s family of AMR sensor uses on chip strap that replaces

the external coil to set and reset field effects.

Fig (A.9): Set and Reset Output Transfer Curves

There are undesirable effects inherent in the sensor may interfere with

magnetic field sensing such as bridge offset voltages and temperature effects.

The transfer curves for a sensor after it has been set, and then reset, shows

an inversion of the gain slope and a common crossover point on the bridge

output axis (the zero-field bridge offset voltage). For the sensor in Figure

(A.9), the bridge offset is around –3 mV. This is due to the resistor mismatch

during the manufacture process. This offset voltage is usually not desirable

and can be reduced, or eliminated, using one of four techniques described

below.

97

1. Manual offset trim

It is by adding a parallel trim resistor across one leg of the bridge to

force both outputs to the same voltage. Addition of a resistor should be done

in a zero magnetic field environment so that it does not get affected by the

Earth‟ magnetic field. The drawback of this method is labor intensive since

each sensor may require a different value trim resistor.

2. Offset strap

It is by using a coil to create a field in the sensitive axis direction.

When a current is passed through this coli, a field which is equal to the bridge

offset voltage is created and it will nullify the bridge offset.

Honeywell’s family of AMR sensors uses on-chip offset strap to

accomplish offset adjustment. The offset current must be determined in a

zero-gauss environment and requires a constant dc source.

3. Set / Reset with microprocessor

This method uses numerical subtraction to measure the field 𝑯𝒂𝒑𝒑𝒍𝒊𝒆𝒅

, first activate a set pulse, then take a reading and store it as 𝑽𝒔𝒆𝒕. Again,

activate a reset pulse and store the reading as 𝑽𝒓𝒆𝒔𝒆𝒕. The expressions for

these two readings, and their difference, are:

𝑽𝒔𝒆𝒕 = 𝒔 × 𝑯𝒂𝒑𝒑𝒍𝒊𝒆𝒅 + 𝑽𝒐𝒔 (1)

𝑽𝒓𝒆𝒔𝒆𝒕 = −𝒔 × 𝑯𝒂𝒑𝒑𝒍𝒊𝒆𝒅 + 𝑽𝒐𝒔 (2)

98

𝑽𝒔𝒆𝒕 − 𝑽𝒓𝒆𝒔𝒆𝒕 = 𝟐 × 𝒔 × 𝑯𝒂𝒑𝒑𝒍𝒊𝒆𝒅 (3)

In equation (3) there is no 𝑽𝒐𝒔 term.

The benefit of offset cancellation using this method is that any temperature

drift of the bridge offset, including the amplifier, is eliminated

This is a powerful and easy to implement if the readings are controlled by a

microprocessor.

4. Electronic feedback

A feedback signal is generated to null the bridge offset voltage. In this

method, the output of the bridge is made to switch between 𝑽𝒔𝒆𝒕 and 𝑽𝒓𝒆𝒔𝒆𝒕

by applying set and reset pulses.

 This process modulates the output signal to a higher band. The

amplifier#1 outputs a negative dc signal compared to the bridge offset and

this signal is fed back to the input of amplifier#2. This process will eliminate

the offset voltage. In the third stage the output which is free from bridge

offset is demodulated.

Any of the above methods can be used to solve the issue bridge offset

voltage in the AMR sensors.

99

B. Code for Arduino Sensor Node (Transmitter)

/*

XBee-Arduino library

https://github.com/andrewrapp/xbee-arduino/blob/master/XBee.h

*/

#include <XBee.h>

/*

For Date and time using just software,

based on millis() & timer

*/

#include <RTClib.h>

/*

The Program is for Series 1 XBee

Sends a TX16 or TX64 request with the values of Traffic parameters and checks the

status response for success

Note: In my testing it took about 15 seconds for the XBee to start reporting success, so

I've added a startup delay

*/

100

#include <Sleep_n0m1.h>

/* Sleep Mode Library */

XBee xbee = XBee();

RTC_Millis RTC;

unsigned long start = millis();

Sleep sleep;

unsigned long sleepTime; //How long you want the arduino to sleep.

// allocate 13 bytes for to hold traffic parameteres

uint8_t payload[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

// // union to convert integer year of date to byte string

union {

 int32_t j;

 byte b[4];

} u;

// Assumptions of vehicle sizes

int randsize[3]={80, 100, 200};

int v_size;

101

//vehicle speed

int v_speed;

// 16-bit addressing: typically the coordinator 0xFFFF

Tx16Request tx = Tx16Request(0xFFFF, payload, sizeof(payload));

TxStatusResponse txStatus = TxStatusResponse();

// flash TX indicator

int statusLed = 11;

int errorLed = 12;

void flashLed(int pin, int times, int wait)

{

 for (int i = 0; i < times; i++)

 {

 digitalWrite(pin, HIGH);

 delay(wait);

 digitalWrite(pin, LOW);

 if (i + 1 < times)

 {

102

 delay(wait);

 }

 }

}

// Function to generate normal distributed random number

//based on Average and Standard Deviation

double randn (double mu, double sigma)

{

 double U1, U2, W, mult, randnum;

 static double X1, X2;

 static int call = 0;

 if (call == 1)

 {

 call = !call;

 randnum = mu + sigma * (double) X2;

 if (randnum < 20 || randnum > 100)

 return mu;

103

 else

 return randnum;

 }

 do

 {

 // Get two random numbers

 U1 = -1 + ((double) rand () / RAND_MAX) * 2;

 U2 = -1 + ((double) rand () / RAND_MAX) * 2;

 // Radius of circle

 W = pow (U1, 2) + pow (U2, 2);

 }

 while (W >= 1); //If outside unit circle, then reject number

 mult = sqrt ((-2 * log (W)) / W);

 X1 = U1 * mult;

 X2 = U2 * mult;

 call = !call;

 randnum = mu + sigma * (double) X1;

104

 if (randnum < 20 || randnum > 100)

 return mu;

 else

 return randnum;

}

// Generate normal distributed random Vehicle Size

int GenerateVehicleSize()

{

// int pickedindex=randn(0.91, 0.41);

 int pickedindex=random(3);

 return randsize[pickedindex];

}

// Generate normal distributed random Vehicle speed

int GenerateVehicleSpeed()

{

 return randn(55, 17.8);

}

105

void setup()

{

 pinMode(statusLed, OUTPUT);

 pinMode(errorLed, OUTPUT);

 Serial.begin(9600);

 xbee.setSerial(Serial);

 RTC.begin(DateTime(__DATE__, __TIME__));

 sleepTime = 898000; //set sleep time in ms, max sleep time is 49.7 days

}

void loop()

{

 // start transmitting after a startup delay. Note: this will rollover to 0 eventually so

not best way to handle

 if (millis() - start > 15000)

 {

 DateTime now =RTC.now();

 v_size = GenerateVehicleSize(); // random speed

106

 v_speed= GenerateVehicleSpeed(); // random speed

 payload[0] = v_size >> 8 & 0xff; // Converting int to hex could also used

highByte() lowByte()

 payload[1] = v_size & 0xff;

 payload[2]=now.day();

 payload[3]=now.month();

 u.j=now.year();

 payload[4] = u.b[3];

 payload[5] = u.b[2];

 payload[6] = u.b[1];

 payload[7] = u.b[0];

 payload[8]=now.hour();

 payload[9]=now.minute();

 payload[10]=now.second();

 payload[11] = v_speed >> 8 & 0xff;

 payload[12] = v_speed & 0xff;

 xbee.send(tx);

107

 // flash TX indicator

 flashLed(statusLed, 1, 100);

 sleep.pwrDownMode(); //set sleep mode

 sleep.sleepDelay(sleepTime); //sleep for: sleepTime

 }

 // after sending a tx request, we expect a status response

 // wait up to 5 seconds for the status response

 if (xbee.readPacket(5000))

 {

 // got a response!

 if (xbee.getResponse().getApiId() == TX_STATUS_RESPONSE)

 {

 xbee.getResponse().getTxStatusResponse(txStatus);

 // get the delivery status, the fifth byte

 if (txStatus.getStatus() == SUCCESS)

 {

 // success. time to celebrate

108

 flashLed(statusLed, 5, 50);

 }

 else

 {

 // the remote XBee did not receive our packet. is it powered on?

 flashLed(errorLed, 3, 500);}}}

 else if (xbee.getResponse().isError())

 {

 flashLed(errorLed, 3, 500);

 }

 else

 {

 // local XBee did not provide a timely TX Status Response. Radio is not

configured properly or connected

 flashLed(errorLed, 2, 50);

 }

 delay(random(1000, 20000));

109

}

C. Code for coordinator Node (Receiver)

Imports System.IO.Ports

Imports System.Text

Imports System.Data.SqlClient

Public Class frmTrafficMonitor

 Dim receivedData As String = ""

 Private Function FindSerialPorts() As List(Of String)

 Dim lstport As New List(Of String)

 For Each port As String In SerialPort.GetPortNames

 lstport.Add(port)

 Next

 Return lstport

 End Function

 Public Function OpenPort(ByVal sprt As SerialPort, ByVal Prtname As String, ByVal baudrate As

Integer) As String

 Dim statusmsg As String = Nothing

 Try

 'first check if the port is already open

 'if its open then close it

 If sprt.IsOpen = True Then

 sprt.Close()

 End If

 'set the properties of our SerialPort Object

 sprt.PortName = Prtname

 sprt.BaudRate = baudrate

 'BaudRate

 sprt.DataBits = 8

 'DataBits

 sprt.Parity = Parity.None

 ' Parity

 sprt.StopBits = StopBits.One

 'StopBits

 sprt.Handshake = Handshake.None

 'Handshake

 sprt.Encoding = System.Text.Encoding.Default

 'Encoding

 sprt.ReadTimeout = 10000

 'Timeout

 'now open the port

 sprt.Open()

 'display message

 statusmsg = "Port opened at " + DateTime.Now + "" + Environment.NewLine + ""

 Catch ex As Exception

 statusmsg = ex.Message.ToString

 End Try

 Return statusmsg

 End Function

 Public Function ClosePort(ByVal sprt As SerialPort)

 Dim statusmsg As String = Nothing

 If sprt.IsOpen Then

 statusmsg = "Port closed at " + DateTime.Now + "" + Environment.NewLine + ""

 sprt.Close()

 End If

 Return statusmsg

 End Function

 Private Function extractdata(ByVal frm As String, ByVal dttype As String)

110
 Dim rtnvalue As String = Nothing

 Dim tem() As String = frm.Split(" "c)

 Dim frame As New List(Of String)

 For Each s As String In tem

 If s <> "" Then

 frame.Add(s)

 End If

 Next

 Try

 Select Case dttype

 Case "Start delimiter"

 rtnvalue = frame.Item(0).ToString

 Case "Length"

 rtnvalue = frame.Item(1).ToString

 Case "Frame type"

 rtnvalue = frame.Item(2).ToString

 Case "sensorid"

 rtnvalue = frame.Item(3).ToString

 Case "RSSI"

 rtnvalue = frame.Item(4)

 Case "Options"

 rtnvalue = frame.Item(5)

 Case "RF Data"

 For i = 6 To frame.Count - 2

 rtnvalue = rtnvalue + " " + frame.Item(i)

 Next

 Case "v_class"

 rtnvalue = Convert.ToInt64(frame.Item(6), 16).ToString

 Case "deteciondate"

 rtnvalue = ZeroPadding(Convert.ToInt64(frame.Item(7), 16).ToString) + "/" +

ZeroPadding(Convert.ToInt64(frame.Item(8), 16).ToString) + "/" +

ZeroPadding(Convert.ToInt64(frame.Item(9) + frame.Item(10), 16).ToString)

 Case "detectiontime"

 rtnvalue = ZeroPadding(Convert.ToInt64(frame.Item(11), 16).ToString) + ":" +

ZeroPadding(Convert.ToInt64(frame.Item(12), 16).ToString) + ":" +

ZeroPadding(Convert.ToInt64(frame.Item(13), 16).ToString)

 Case "v_speed"

 rtnvalue = Convert.ToInt64(frame.Item(14), 16).ToString

 Case "Checksum"

 rtnvalue = frame.Item(frame.Count - 1)

 End Select

 Catch ex As Exception

 End Try

 Return rtnvalue

 End Function

 Private Function ZeroPadding(ByVal strValue As String) As String

 If Integer.Parse(strValue) <= 9 Then

 Return "0" + strValue

 Else

 Return strValue

 End If

 End Function

 Private Sub InsertData(ByVal recdata As String)

 Try

 Dim counter As Integer = 1

 Dim sensorid As String = extractdata(recdata, "sensorid")

 Dim v_class As String = getVehicleClassification(extractdata(recdata, "v_class"))

 Dim deteciondate As String = extractdata(recdata, "deteciondate")

 Dim detectiontime As String = extractdata(recdata, "detectiontime")

 Dim v_speed As String = extractdata(recdata, "v_speed")

111

 If DataGridView1.RowCount > 0 Then

 Dim rowcount As Integer = DataGridView1.RowCount - 1

 counter = DataGridView1.Rows(rowcount).Cells(0).Value

 counter = counter + 1

 End If

 DataGridView1.Rows.Add(New String() {Trim(counter.ToString), Trim(sensorid.ToString),

Trim(v_class.ToString), Trim(deteciondate.ToString), Trim(detectiontime.ToString),

Trim(v_speed.ToString)})

 Dim DetectionDatestr As Date = Date.Parse(deteciondate.ToString)

 Dim sqlDetectionDate As String = DetectionDatestr.ToString("yyyy-MM-dd")

 Dim DetectionTimestr As Date = DateTime.Parse(detectiontime.ToString)

 Dim sqlDetectionTime As String = DetectionTimestr.ToString("h:mm:ss tt")

 Dim constring As String = "Data Source=.\SQLEXPRESS;Initial Catalog=TrafficDB;User

ID=sa;Password=104123"

 Dim cn As SqlConnection = New SqlConnection(constring)

 cn.Open()

 Dim strsql As String = "INSERT INTO TrafficDB.dbo.tbl_Traffic (SenderId, Calssification,

DetectionDate, DetectionTime, Speed) VALUES (N'" + sensorid + "', N'" + v_class + "',

CONVERT(DATETIME, '" + sqlDetectionDate + "', 101), CONVERT(DATETIME, '" + sqlDetectionTime

+ "', 108), " + v_speed + ")"

 Dim cmd As SqlCommand = New SqlCommand(strsql, cn)

 cmd.ExecuteNonQuery()

 cn.Close()

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 End Sub

 Function ReceiveSerialData() As String

 Dim bytes As Integer = TrafficSerialPort.BytesToRead

 'create a byte array to hold the awaiting data

 Dim comBuffer As Byte() = New Byte(bytes - 1) {}

 'read the data and store it

 TrafficSerialPort.Read(comBuffer, 0, bytes)

 'return the data to

 Dim Incoming As String = Disassembleframe(comBuffer)

 Try

 If Incoming Is Nothing Then

 Return "nothing"

 Else

 Return Incoming

 End If

 Catch ex As TimeoutException

 Return "Error: Serial Port read timed out."

 End Try

 End Function

 Private Function Disassembleframe(ByVal comByte As Byte()) As String

 'create a new StringBuilder object

 Dim builder As New StringBuilder(comByte.Length * 3)

 Dim dbyate() As String = Nothing

 Dim i As Integer = 0

 'loop through each byte in the array

 For Each data As Byte In comByte

 builder.Append(Convert.ToString(data, 16).PadLeft(2, "0"c).PadRight(3, " "c))

 'convert the byte to a string and add to the stringbuilder

 Next

 'return the converted value

 Return builder.ToString().ToUpper()

 End Function

 Private Function getVehicleClassification(ByVal vsize As String)

112
 Dim resultclass As String = Nothing

 Select Case vsize

 Case "80"

 resultclass = "Small"

 Case "100"

 resultclass = "Medium"

 Case "200"

 resultclass = "Large"

 End Select

 Return resultclass

 End Function

 Private Sub frmTrafficMonitor_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 RcvdTimer.Enabled = False

 End Sub

 Private Sub btnFindPort_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnFindPort.Click

 Dim ports As List(Of String) = FindSerialPorts()

 btnFindPort.Cursor = Cursors.WaitCursor

 Cmbports.Items.Clear()

 For Each prt As String In ports

 Cmbports.Items.Add(prt)

 Next

 If Cmbports.Items.Count > 0 Then

 Cmbports.SelectedIndex = 0

 CmbBrate.SelectedItem = "9600"

 btnFindPort.Cursor = Cursors.Hand

 Else

 MsgBox("COM Port not detected")

 End If

 End Sub

 Private Sub btnconnect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnconnect.Click

 Dim message As String = Nothing

 If CmbBrate.Items.Count > 0 AndAlso Cmbports.Items.Count > 0 Then

 Try

 btnconnect.Visible = False

 btndisconnect.Visible = True

 ClosePort(TrafficSerialPort)

 message = OpenPort(TrafficSerialPort, Cmbports.SelectedItem, Val(CmbBrate.SelectedItem))

 lstRecievedFrame.Items.Add(message)

 CmbBrate.Enabled = False

 Cmbports.Enabled = False

 RcvdTimer.Enabled = True

 Catch ex As Exception

 End Try

 End If

 End Sub

 Private Sub btndisconnect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btndisconnect.Click

 Try

 Dim message As String = ClosePort(TrafficSerialPort)

 lstRecievedFrame.Items.Add(message)

 btnconnect.Visible = True

 btndisconnect.Visible = False

 CmbBrate.Enabled = True

 Cmbports.Enabled = True

 Cmbports.SelectedItem = Nothing

 Cmbports.Items.Clear()

 RcvdTimer.Enabled = False

113
 Catch ex As Exception

 End Try

 End Sub

 Private Sub RcvdTimer_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

RcvdTimer.Tick

 receivedData = ReceiveSerialData()

 If Trim(receivedData.StartsWith("7E")) AndAlso Trim(receivedData).Length = 47 Then

 lstRecievedFrame.Items.Add(receivedData)

 InsertData(receivedData)

 Dim speed = extractdata(receivedData, "v_speed")

 Dim classification = extractdata(receivedData, "v_class")

 Dim dttime = extractdata(receivedData, "detectiontime")

 Chart1.Series("SPEED").Points.AddXY(dttime, speed)

 Chart1.Series("Classification").Points.AddXY(dttime, classification)

 If Chart1.Series(0).Points.Count = 9 Then

 Chart1.Series(0).Points.RemoveAt(0)

 End If

 If Chart1.Series(1).Points.Count = 9 Then

 Chart1.Series(1).Points.RemoveAt(0)

 End If

 Chart1.ChartAreas(0).AxisY.Maximum = 250

 End If

 End Sub

 Private Sub lstRecievedFrame_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles lstRecievedFrame.SelectedIndexChanged

 Try

 Dim str As String = Trim(lstRecievedFrame.SelectedItem.ToString)

 If str.StartsWith("7E") Then

 txtstartdl.Text = extractdata(str, "Start delimiter")

 txtlength.Text = extractdata(str, "Length")

 txtfrmtype.Text = extractdata(str, "Frame type")

 txtsourceadd.Text = extractdata(str, "sensorid")

 txtrssi.Text = extractdata(str, "RSSI")

 txtoption.Text = extractdata(str, "Options")

 txtRFdata.Text = extractdata(str, "RF Data")

 txtChecksum.Text = extractdata(str, "Checksum")

 txtvehicleclass.Text = getVehicleClassification(extractdata(str, "v_class"))

 txtdetcdate.Text = extractdata(str, "deteciondate")

 txttime.Text = extractdata(str, "detectiontime")

 txtspeed.Text = extractdata(str, "v_speed")

 End If

 Catch ex As Exception

 End Try

 End Sub

End Class

Imports System.Data.SqlClient

Imports System.Windows.Forms.DataVisualization

Imports System.Windows.Forms.DataVisualization.Charting

Public Class Form1

114
 Dim constring As String = "Data Source=.\SQLEXPRESS;Initial Catalog=TrafficDB;Integrated

Security=SSPI"

 Dim cn As SqlConnection = New SqlConnection(constring)

 Private Sub button13_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

button13.Click

 Application.Exit()

 End Sub

 Private Function CalculateNumberofVehicles()

 Dim v_num As Integer = 0

 Dim sqlstr As String = "SELECT Count(SenderId) AS Counter FROM TrafficDB.dbo.tbl_Traffic

WHERE (DetectionDate = " + getDetectionDate() + ") AND (CAST(DetectionTime AS TIME) BETWEEN

" + getDetectionTime() + ") AND (SenderId='" + cmbNodeId.SelectedItem.ToString + "')"

 Try

 cn.Open()

 Dim cmd As New SqlCommand(sqlstr, cn)

 Dim myreader As SqlDataReader = cmd.ExecuteReader()

 While myreader.Read()

 v_num = myreader("Counter").ToString()

 End While

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cn.Close()

 End Try

 Return v_num

 End Function

 Private Function getDetectionDate()

 Dim str As String = Nothing

 Dim dt As Date = pikdate.Value

 str = "CONVERT(DATETIME, '" + getsqldate(dt) + "', 102)"

 Return str

 End Function

 Private Function getDetectionTime()

 Return "'" + pikfromtime.Text.ToString() + "' and '" + piktotime.Text.ToString() + "'"

 End Function

 Private Function getsqldate(ByVal dd As Date)

 Dim day As String = dd.Day

 Dim month As String = dd.Month

 Dim year As String = dd.Year

 Dim d As String = year + "-" + month + "-" + day

 Return d

 End Function

 Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 InitializeControls()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button2.Click

 If Chart1.Series(0).Points.Count = 0 Then

 lblV_passed.Text = CalculateNumberofVehicles()

 Label27.Text = getclassificationcounter("Large")

 Label25.Text = getclassificationcounter("Medium")

 Label23.Text = getclassificationcounter("Small")

 Label17.Text = getspeedcounter("20", "39")

 Label15.Text = getspeedcounter("40", "59")

 Label9.Text = getspeedcounter("60", "79")

 Label19.Text = getspeedcounter("80", "99")

 Label21.Text = getspeedcounter("100", "999")

 drawpiechart()

 DrawColChart()

115
 GroupBox9.Visible = True

 End If

 End Sub

 Private Sub drawpiechart()

 Chart1.Series("SPEED").Points.AddXY(Label16.Text, Label17.Text)

 Chart1.Series("SPEED").Points.AddXY(Label14.Text, Label15.Text)

 Chart1.Series("SPEED").Points.AddXY(Label7.Text, Label9.Text)

 Chart1.Series("SPEED").Points.AddXY(Label18.Text, Label19.Text)

 Chart2.Series("Classification").Points.AddXY(Label26.Text, Label27.Text)

 Chart2.Series("Classification").Points.AddXY(Label24.Text, Label25.Text)

 Chart2.Series("Classification").Points.AddXY(Label22.Text, Label23.Text)

 End Sub

 Private Function getclassificationcounter(ByVal clss As String)

 Dim rvalue As Integer = 0

 Dim sqlstr As String = "SELECT Count(SenderId) AS Counter FROM TrafficDB.dbo.tbl_Traffic

WHERE (DetectionDate = " + getDetectionDate() + ") AND (CAST(DetectionTime AS TIME) BETWEEN

" + getDetectionTime() + ") AND (Calssification LIKE N'%" + clss + "%') AND (SenderId='" +

cmbNodeId.SelectedItem.ToString + "')"

 Try

 cn.Open()

 Dim cmd As New SqlCommand(sqlstr, cn)

 Dim myreader As SqlDataReader = cmd.ExecuteReader()

 While myreader.Read()

 rvalue = myreader("Counter").ToString()

 End While

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cn.Close()

 End Try

 Return rvalue

 End Function

 Private Function getspeedcounter(ByVal minspeed As String, ByVal maxspeed As String)

 Dim rvalue As Integer = 0

 Dim sqlstr As String = "SELECT Count(SenderId) AS Counter FROM TrafficDB.dbo.tbl_Traffic

WHERE (DetectionDate = " + getDetectionDate() + ") AND (CAST(DetectionTime AS TIME) BETWEEN

" + getDetectionTime() + ") AND (Speed BETWEEN " + minspeed + " AND " + maxspeed + ") AND (

SenderId='" + cmbNodeId.SelectedItem.ToString + "')"

 Try

 cn.Open()

 Dim cmd As New SqlCommand(sqlstr, cn)

 Dim myreader As SqlDataReader = cmd.ExecuteReader()

 While myreader.Read()

 rvalue = myreader("Counter").ToString()

 End While

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cn.Close()

 End Try

 Return rvalue

 End Function

 Private Function getspeed_with_sizecounter(ByVal minspeed As String, ByVal maxspeed As String,

ByVal clss As String)

 Dim rvalue As Integer = 0

 Dim sqlstr As String = "SELECT Count(SenderId) AS Counter FROM TrafficDB.dbo.tbl_Traffic

WHERE (DetectionDate = " + getDetectionDate() + ") AND (CAST(DetectionTime AS TIME) BETWEEN

116
" + getDetectionTime() + ") AND (Speed BETWEEN " + minspeed + " AND " + maxspeed + ") AND

(Calssification LIKE '" + clss + "') AND (SenderId='" + cmbNodeId.SelectedItem.ToString + "')"

 Try

 cn.Open()

 Dim cmd As New SqlCommand(sqlstr, cn)

 Dim myreader As SqlDataReader = cmd.ExecuteReader()

 While myreader.Read()

 rvalue = myreader("Counter").ToString()

 End While

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cn.Close()

 End Try

 Return rvalue

 End Function

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button3.Click

 InitializeControls()

 End Sub

 Private Sub DrawColChart()

 Dim Spd20_39 As Integer = getspeedcounter("20", "39")

 Dim Spd40_59 As Integer = getspeedcounter("40", "59")

 Dim Spd60_79 As Integer = getspeedcounter("60", "79")

 Dim Spd80_99 As Integer = getspeedcounter("80", "99")

 Dim Spd100_999 As Integer = getspeedcounter("100", "999")

 Dim Spd20_39_Large As Integer = getspeed_with_sizecounter("20", "39", "Large")

 Dim Spd40_59_Large As Integer = getspeed_with_sizecounter("40", "59", "Large")

 Dim Spd60_79_Large As Integer = getspeed_with_sizecounter("60", "79", "Large")

 Dim Spd80_99_Large As Integer = getspeed_with_sizecounter("80", "99", "Large")

 Dim Spd100_999_Large As Integer = getspeed_with_sizecounter("100", "999", "Large")

 Dim Spd20_39_Medium As Integer = getspeed_with_sizecounter("20", "39", "Medium")

 Dim Spd40_59_Medium As Integer = getspeed_with_sizecounter("40", "59", "Medium")

 Dim Spd60_79_Medium As Integer = getspeed_with_sizecounter("60", "79", "Medium")

 Dim Spd80_99_Medium As Integer = getspeed_with_sizecounter("80", "99", "Medium")

 Dim Spd100_999_Medium As Integer = getspeed_with_sizecounter("100", "999", "Medium")

 Dim Spd20_39_Small As Integer = getspeed_with_sizecounter("20", "39", "Small")

 Dim Spd40_59_Small As Integer = getspeed_with_sizecounter("40", "59", "Small")

 Dim Spd60_79_Small As Integer = getspeed_with_sizecounter("60", "79", "Small")

 Dim Spd80_99_Small As Integer = getspeed_with_sizecounter("80", "99", "Small")

 Dim Spd100_999_Small As Integer = getspeed_with_sizecounter("100", "999", "Small")

 Chart4.ChartAreas(0).AxisX.LabelStyle.Enabled = True

 Chart4.Series("SPEED").Points.AddXY("20 - 39", Spd20_39)

 Chart4.Series("Large").Points.AddXY("20 - 39", Spd20_39_Large)

 Chart4.Series("Meduim").Points.AddXY("20 - 39", Spd20_39_Medium)

 Chart4.Series("Small").Points.AddXY("20 - 39", Spd20_39_Small)

 Chart4.Series("SPEED").Points.AddXY("40 - 59", Spd40_59)

 Chart4.Series("Large").Points.AddXY("40 - 59", Spd40_59_Large)

 Chart4.Series("Meduim").Points.AddXY("40 - 59", Spd40_59_Medium)

 Chart4.Series("Small").Points.AddXY("40 - 59", Spd40_59_Small)

 Chart4.Series("SPEED").Points.AddXY("60 - 79", Spd60_79)

 Chart4.Series("Large").Points.AddXY("60 - 79", Spd60_79_Large)

 Chart4.Series("Meduim").Points.AddXY("60 - 79", Spd60_79_Medium)

 Chart4.Series("Small").Points.AddXY("60 - 79", Spd60_79_Small)

117

 Chart4.Series("SPEED").Points.AddXY("80 - 99", Spd80_99)

 Chart4.Series("Large").Points.AddXY("80 - 99", Spd80_99_Large)

 Chart4.Series("Meduim").Points.AddXY("80 - 99", Spd80_99_Medium)

 Chart4.Series("Small").Points.AddXY("80 - 99", Spd80_99_Small)

 Chart4.Series("SPEED").Points.AddXY("100 - ", Spd100_999)

 Chart4.Series("Large").Points.AddXY("100 - ", Spd100_999_Large)

 Chart4.Series("Meduim").Points.AddXY("100 - ", Spd100_999_Medium)

 Chart4.Series("Small").Points.AddXY("100 - ", Spd100_999_Small)

 End Sub

 Private Sub InitializeControls()

 pikdate.Value = Now.Date

 pikfromtime.Text = "00:00:00"

 piktotime.Text = "23:59:59"

 lblV_passed.Text = Nothing

 Chart1.Series(0).Points.Clear()

 Chart2.Series(0).Points.Clear()

 Chart4.Series(0).Points.Clear()

 Chart4.Series(1).Points.Clear()

 Chart4.Series(2).Points.Clear()

 Chart4.Series(3).Points.Clear()

 Label27.Text = Nothing

 Label25.Text = Nothing

 Label23.Text = Nothing

 Label17.Text = Nothing

 Label15.Text = Nothing

 Label9.Text = Nothing

 Label19.Text = Nothing

 Label21.Text = Nothing

 cmbNodeId.SelectedItem = "01"

 End Sub

End Class

D. Code of traffic visualization

Imports System.Threading

Imports System.Data.SqlClient

Public Class Form1

 Dim imgs(16) As Bitmap

 Dim retimgs(16) As Bitmap

 Dim car1 As PictureBox

 Dim car2 As PictureBox

 Dim car3 As PictureBox

 Dim car4 As PictureBox

 Dim thread1 As System.Threading.Thread

 Dim thread2 As System.Threading.Thread

 Dim thread3 As System.Threading.Thread

 Dim thread4 As System.Threading.Thread

 Dim count1 As Integer = 0

 Dim count2 As Integer = 0

118
 Dim count3 As Integer = 0

 Dim count4 As Integer = 0

 Dim yLocation1 As Integer = 0

 Dim yLocation2 As Integer = 0

 Dim yLocation3 As Integer = 0

 Dim yLocation4 As Integer = 0

 Dim yLocation11 As Integer = 0

 Dim yLocation22 As Integer = 0

 Dim yLocation33 As Integer = 0

 Dim yLocation44 As Integer = 0

 Private counted1 As Boolean = False

 Private counted2 As Boolean = False

 Private counted3 As Boolean = False

 Private counted4 As Boolean = False

 Private settime1 As Boolean = False

 Private settime2 As Boolean = False

 Private settime3 As Boolean = False

 Private settime4 As Boolean = False

 Private adddb1 As Boolean = False

 Private adddb2 As Boolean = False

 Private adddb3 As Boolean = False

 Private adddb4 As Boolean = False

 Private V_Calss1 As String = Nothing

 Private V_Calss2 As String = Nothing

 Private V_Calss3 As String = Nothing

 Private V_Calss4 As String = Nothing

 Private detectiontime1 As Date = Nothing

 Private detectiontime2 As Date = Nothing

 Private detectiontime3 As Date = Nothing

 Private detectiontime4 As Date = Nothing

 Private detectiontime21 As Date = Nothing

 Private detectiontime22 As Date = Nothing

 Private detectiontime23 As Date = Nothing

 Private detectiontime24 As Date = Nothing

 Delegate Sub UpdateProgressHandler(ByVal TotalPages As Integer, ByVal CC As String)

 Private Shared random As Random = New Random()

 Private Function RandomNumber(ByVal min As Integer, ByVal max As Integer)

 Return random.Next(min, max)

 End Function

 Private Sub sotreImgList()

 imgs(0) = vehicle_Counter.My.Resources.C01

 imgs(1) = vehicle_Counter.My.Resources.C02

 imgs(2) = vehicle_Counter.My.Resources.C03

 imgs(3) = vehicle_Counter.My.Resources.C04

 imgs(4) = vehicle_Counter.My.Resources.C05

 imgs(5) = vehicle_Counter.My.Resources.C06

 imgs(6) = vehicle_Counter.My.Resources.C07

 imgs(7) = vehicle_Counter.My.Resources.C08

 imgs(8) = vehicle_Counter.My.Resources.C09

119
 imgs(9) = vehicle_Counter.My.Resources.C10

 imgs(10) = vehicle_Counter.My.Resources.C11

 imgs(11) = vehicle_Counter.My.Resources.C12

 imgs(12) = vehicle_Counter.My.Resources.C13

 imgs(13) = vehicle_Counter.My.Resources.C14

 imgs(14) = vehicle_Counter.My.Resources.C15

 imgs(15) = vehicle_Counter.My.Resources.C16

 imgs(16) = vehicle_Counter.My.Resources.C17

 retimgs(0) = vehicle_Counter.My.Resources.R01

 retimgs(1) = vehicle_Counter.My.Resources.R02

 retimgs(2) = vehicle_Counter.My.Resources.R03

 retimgs(3) = vehicle_Counter.My.Resources.R04

 retimgs(4) = vehicle_Counter.My.Resources.R05

 retimgs(5) = vehicle_Counter.My.Resources.R06

 retimgs(6) = vehicle_Counter.My.Resources.R07

 retimgs(7) = vehicle_Counter.My.Resources.R08

 retimgs(8) = vehicle_Counter.My.Resources.R09

 retimgs(9) = vehicle_Counter.My.Resources.R10

 retimgs(10) = vehicle_Counter.My.Resources.R11

 retimgs(11) = vehicle_Counter.My.Resources.R12

 retimgs(12) = vehicle_Counter.My.Resources.R13

 retimgs(13) = vehicle_Counter.My.Resources.R14

 retimgs(14) = vehicle_Counter.My.Resources.R15

 retimgs(15) = vehicle_Counter.My.Resources.R16

 retimgs(16) = vehicle_Counter.My.Resources.R17

 End Sub

 Private Function getImgsize(ByVal index As Integer)

 Dim imgsize As Size = New Size(50, 100)

 If index <= 5 Then

 imgsize = New Size(80, 200)

 End If

 If index >= 13 Then

 imgsize = New Size(40, 80)

 End If

 Return imgsize

 End Function

 Private Function classification(ByVal hiegt As Integer)

 Dim clss As String = Nothing

 Select Case hiegt

 Case 100

 clss = "Medium"

 Case 200

 clss = "Large"

 Case 80

 clss = "Small"

 End Select

 Return clss

 End Function

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 Control.CheckForIllegalCrossThreadCalls = False

 sotreImgList()

 End Sub

 Private Sub LoadCarLane1()

 Dim randimg As Integer = RandomNumber(0, 16)

 car1 = New PictureBox

 car1.Image = imgs(randimg)

 car1.Size = getImgsize(randimg)

 car1.BringToFront()

 car1.Location = New Point(400, 700)

 car1.SizeMode = PictureBoxSizeMode.Normal

120
 car1.Visible = True

 Me.Controls.Add(car1)

 End Sub

 Private Sub LoadCarLane2()

 Dim randimg As Integer = RandomNumber(0, 16)

 car2 = New PictureBox

 car2.Image = imgs(randimg)

 car2.Size = getImgsize(randimg)

 car2.BringToFront()

 car2.Location = New Point(300, 700)

 car2.SizeMode = PictureBoxSizeMode.Normal

 car2.Visible = True

 Me.Controls.Add(car2)

 End Sub

 Private Sub LoadCarLane3()

 Dim randimg As Integer = RandomNumber(0, 16)

 car3 = New PictureBox

 car3.Image = retimgs(randimg)

 car3.Size = getImgsize(randimg)

 car3.BringToFront()

 car3.Location = New Point(48, -300)

 car3.SizeMode = PictureBoxSizeMode.Normal

 car3.Visible = True

 Me.Controls.Add(car3)

 End Sub

 Private Sub LoadCarLane4()

 Dim randimg As Integer = RandomNumber(0, 16)

 car4 = New PictureBox

 car4.Image = imgs(randimg)

 car4.Size = getImgsize(randimg)

 car4.BringToFront()

 car4.Location = New Point(150, -300)

 car4.SizeMode = PictureBoxSizeMode.Normal

 car4.Visible = True

 Me.Controls.Add(car4)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

 Try

 Me.Controls.Remove(car1)

 Me.Controls.Remove(car2)

 Me.Controls.Remove(car3)

 Me.Controls.Remove(car4)

 Catch ex As Exception

 End Try

 LoadCarLane1()

 Timer1.Enabled = True

 LoadCarLane2()

 Timer2.Enabled = True

 LoadCarLane3()

 Timer3.Enabled = True

 LoadCarLane4()

 Timer4.Enabled = True

 End Sub

 Private Sub Timer1_Tick(ByVal sender As Object, ByVal e As System.EventArgs) Handles Timer1.Tick

 thread1 = New Threading.Thread(AddressOf movecar1)

121
 thread1.Start()

 If car1.Location.Y < 425 AndAlso counted1 = False Then

 yLocation1 = car1.Location.Y

 count1 = count1 + 1

 V_Calss1 = classification(car1.Height)

 detectiontime1 = TimeOfDay

 counted1 = True

 End If

 If car1.Location.Y < 130 AndAlso settime1 = False Then

 yLocation11 = car1.Location.Y

 detectiontime21 = TimeOfDay

 settime1 = True

 End If

 tblfstlane.Text = CInt(count1)

 lblclass1.Text = V_Calss1

 lbltime1.Text = detectiontime1.ToString("h:mm:ss tt")

 lbltime21.Text = detectiontime21.ToString("h:mm:ss tt")

 Dim timediff As TimeSpan = (detectiontime21 - detectiontime1)

 Dim vspeed As Double

 If timediff.TotalSeconds >= 0 Then

 vspeed = (yLocation1 - yLocation11) / timediff.TotalSeconds

 lblspeed1.Text = vspeed

 If adddb1 = False AndAlso V_Calss1 <> Nothing AndAlso counted1 = True Then

 DataGridView1.Rows.Add(New String() {V_Calss1, Now.Date.ToString("dd/MM/yyyy"),

detectiontime1.ToString("h:mm:ss tt"), vspeed, "Right Lane1"})

 adddb1 = True

 End If

End If

 tblfstlane.Refresh()

 End Sub

 Private Sub movecar1()

 car1.Location = New Point(car1.Location.X, car1.Location.Y - RandomNumber(2, 7))

 If car1.Location.Y < -300 Then

 Dim randimg As Integer = RandomNumber(0, 16)

 car1.Size = getImgsize(randimg)

 car1.Location = New Point(car1.Location.X, 700)

 car1.Image = imgs(randimg)

 car1.Location = New Point(car1.Location.X, car1.Location.Y - RandomNumber(2, 7))

 counted1 = False

 settime1 = False

 adddb1 = False

 End If

 Me.ResumeLayout()

 End Sub

 Private Sub movecar3()

 car3.Location = New Point(car3.Location.X, car3.Location.Y + RandomNumber(2, 7))

 If car3.Location.Y > 700 Then

 Dim randimg As Integer = RandomNumber(0, 16)

 car3.Size = getImgsize(randimg)

 car3.Location = New Point(car3.Location.X, -300)

 car3.Image = retimgs(randimg)

 car3.Location = New Point(car3.Location.X, car3.Location.Y + RandomNumber(2, 7))

 counted3 = False

 settime3 = False

122
 adddb3 = False

 End If

 Me.ResumeLayout()

 End Sub

 Private Sub movecar4()

 car4.Location = New Point(car4.Location.X, car4.Location.Y + RandomNumber(3, 10))

 If car4.Location.Y > 700 Then

 Dim randimg As Integer = RandomNumber(0, 16)

 car4.Size = getImgsize(randimg)

 car4.Location = New Point(car4.Location.X, -300)

 car4.Image = retimgs(randimg)

 car4.Location = New Point(car4.Location.X, car4.Location.Y + RandomNumber(3, 10))

 counted4 = False

 settime4 = False

 adddb4 = False

 End If

 Me.ResumeLayout()

 End Sub

 Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer2.Tick

 thread2 = New Threading.Thread(AddressOf movecar2)

 thread2.Start()

 If car2.Location.Y < 425 AndAlso counted2 = False Then

 yLocation2 = car2.Location.Y

 count2 = count2 + 1

 counted2 = True

 V_Calss2 = classification(car2.Height)

 detectiontime2 = TimeOfDay

 End If

 If car2.Location.Y < 130 AndAlso settime2 = False Then

 yLocation22 = car2.Location.Y

 detectiontime22 = TimeOfDay

 settime2 = True

 End If

 lblscndlane.Text = CInt(count2)

 lblclass2.Text = V_Calss2

 lbltime2.Text = detectiontime2.ToString("h:mm:ss tt")

 lbltime22.Text = detectiontime22.ToString("h:mm:ss tt")

 Dim timediff As TimeSpan = (detectiontime22 - detectiontime2)

 Dim vspeed As Double

 If timediff.TotalSeconds >= 0 Then

 vspeed = (yLocation2 - yLocation22) / timediff.TotalSeconds

 lblspeed2.Text = vspeed

 If adddb2 = False AndAlso V_Calss2 <> Nothing AndAlso counted2 = True Then

 DataGridView1.Rows.Add(New String() {V_Calss2, Now.Date.ToString("dd/MM/yyyy"),

detectiontime2.ToString("h:mm:ss tt"), vspeed, "Right Lane2"})

 adddb2 = True

 End If

 End If

 lblscndlane.Refresh()

 End Sub

 Private Sub movecar2()

123
 car2.Location = New Point(car2.Location.X, car2.Location.Y - RandomNumber(3, 10))

 If car2.Location.Y < -300 Then

 Dim randimg As Integer = RandomNumber(0, 16)

 car2.Size = getImgsize(randimg)

 car2.Location = New Point(car2.Location.X, 700)

 car2.Image = imgs(randimg)

 car2.Location = New Point(car2.Location.X, car2.Location.Y - RandomNumber(3, 10))

 counted2 = False

 settime2 = False

 adddb2 = False

 End If

 Me.ResumeLayout()

 End Sub

 Private Sub Timer3_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer3.Tick

 thread3 = New Threading.Thread(AddressOf movecar3)

 thread3.Start()

 If car3.Location.Y > 40 AndAlso counted3 = False Then

 yLocation3 = car3.Location.Y

 count3 = count3 + 1

 counted3 = True

 V_Calss3 = classification(car3.Height)

 detectiontime3 = TimeOfDay

 End If

 If car3.Location.Y > 300 AndAlso settime3 = False Then

 yLocation33 = car3.Location.Y

 detectiontime23 = TimeOfDay

 settime3 = True

 End If

 lblthirdlane.Text = CInt(count3)

 lblclass3.Text = V_Calss3

 lbltime3.Text = detectiontime3.ToString("h:mm:ss tt")

 lbltime23.Text = detectiontime23.ToString("h:mm:ss tt")

 Dim vspeed As Double

 Dim timediff As TimeSpan = (detectiontime23 - detectiontime3)

 If timediff.TotalSeconds >= 0 Then

 vspeed = (yLocation33 - yLocation3) / timediff.TotalSeconds

 lblspeed3.Text = vspeed

 If adddb3 = False AndAlso V_Calss3 <> Nothing AndAlso counted3 = True Then

 DataGridView1.Rows.Add(New String() {V_Calss3, Now.Date.ToString("dd/MM/yyyy"),

detectiontime3.ToString("h:mm:ss tt"), vspeed, "Left Lane1"})

 adddb3 = True

 End If

 End If

 tblfstlane.Refresh()

 End Sub

 Private Sub Timer4_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer4.Tick

 thread4 = New Threading.Thread(AddressOf movecar4)

 thread4.Start()

 If car4.Location.Y > 40 AndAlso counted4 = False Then

 yLocation4 = car4.Location.Y

 count4 = count4 + 1

 counted4 = True

 V_Calss4 = classification(car4.Height)

124
 detectiontime4 = TimeOfDay

 End If

 If car4.Location.Y > 300 AndAlso settime4 = False Then

 yLocation44 = car4.Location.Y

 detectiontime24 = TimeOfDay

 settime4 = True

 End If

 lblfourthlane.Text = CInt(count4)

 lblclass4.Text = V_Calss4

 lbltime4.Text = detectiontime4.ToString("h:mm:ss tt")

 lbltime24.Text = detectiontime24.ToString("h:mm:ss tt")

 Dim timediff As TimeSpan = (detectiontime24 - detectiontime4)

 Dim vspeed As Double

 If timediff.TotalSeconds >= 0 Then

 vspeed = (yLocation44 - yLocation4) / timediff.TotalSeconds

 lblspeed4.Text = vspeed

 If adddb4 = False AndAlso V_Calss4 <> Nothing AndAlso counted4 = True Then

 DataGridView1.Rows.Add(New String() {V_Calss4, Now.Date.ToString("dd/MM/yyyy"),

detectiontime4.ToString("h:mm:ss tt"), vspeed, "Left Lane2"})

 adddb4 = True

 End If

 End If

 lblfourthlane.Refresh()

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button3.Click

 Timer1.Dispose()

 Timer2.Dispose()

 Timer3.Dispose()

 Timer4.Dispose()

 Button1.Text = "Restart"

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button2.Click

 Timer1.Dispose()

 Timer2.Dispose()

 Timer3.Dispose()

 Timer4.Dispose()

 Me.Close()

 End Sub

 Private Sub saverecords()

 Dim constring As String = "Data Source=DESKTOP-BBKMTI1\SQLEXPRESS;User

ID=sa;Password=104123"

 Dim cn As SqlConnection = New SqlConnection(constring)

 Dim strsql As String = Nothing

 DataGridView1.CurrentCell = DataGridView1(1, 1)

 For Each row As DataGridViewRow In DataGridView1.Rows

 Try

 Dim V_Class As String = row.Cells("V_Class").Value.ToString

 Dim DetectionDatestr As Date = Date.Parse(row.Cells("DetectionDate").Value.ToString)

 Dim DetectionDate As String = DetectionDatestr.ToString("yyyy-MM-dd")

 Dim DetectionTimestr As Date = DateTime.Parse(row.Cells("DetectionTime").Value.ToString)

 Dim DetectionTime As String = DetectionTimestr.ToString("h:mm:ss tt")

 Dim Speed As String = row.Cells("Speed").Value.ToString

125
 Dim Direction As String = row.Cells("Direction").Value.ToString

 cn.Open()

 strsql = "INSERT INTO [vehicle Counter].dbo.MainTable(V_Class, DetectionDate,

DetectionTime, Speed, Direction) VALUES ('" + V_Class + "', CONVERT(DATETIME, '" +

DetectionDate + "', 101), CONVERT(DATETIME, '" + DetectionTime + "', 108), " + Speed + ",'" +

Direction + "')"

 Dim cmd As SqlCommand = New SqlCommand(strsql, cn)

 cmd.ExecuteNonQuery()

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cn.Close()

 End Try

 Next

 DataGridView1.Rows.Clear()

 removealldata(GroupBox2)

 removealldata(GroupBox3)

 removealldata(GroupBox4)

 removealldata(GroupBox5)

 Timer1.Dispose()

 Timer2.Dispose()

 Timer3.Dispose()

 Timer4.Dispose()

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button4.Click

 saverecords()

 End Sub

 Private Sub removealldata(ByVal gpbox As GroupBox)

 For Each lbl As Label In gpbox.Controls

 lbl.Text = "0"

 Next

 End Sub

End Class

 جامعة النجاح الوطنية
 كلية الدراسات العليا

لرصد حركة تطوير شبكة استشعار لاسلكية
 المرور

 إعداد

 محمد فادي عبد الحق

 إشراف
 د. عدنان سلمان

 المتقدمة قدمت هذه الأطروحة استكمالا لمتطلبات الحصول على درجة الماجستير في الحوسبة

 .اح الوطنية في نابلس، فلسطينبكلية الدراسات العليا في جامعة النج
2019

 ب

 تطوير شبكة استشعار لاسلكية لرصد حركة المرور
 إعداد

 محمد فادي عبد الحق
 إشراف

 عدنان سلمان د.

 الملخص

دورًا مهمًا في نظام النقل الحديث حيث يعتبر تطوير (ITS) تلعب إدارة أنظمة المرور الذكية
 .امة في هذا المجالانطمة مراقية حركة المرور من الابحاث اله

أحد اهم انظمة المرور الذكية هي تلك الانظمة التي تعتمد على تطبيقات متقدمة لجمع
معلومات عن حالة المرور في الزمن الحقيقي مثل عد المركبات وقياس سرعاتها وتحديد احجامها

 من أجل اتخاذ قرارات ذكية.

سي على كاميرات تصوير الفيديو أو تعتمد أنظمة مراقبة حركة المرور الحالية بشكل أسا
الحلقات الاستقرائية. هذه الأنظمة لها العديد من القيود. فعلى سبيل المثال، أداء الأنظمة القائمة
على كاميرات تصوير الفيديو يتأثر باحوال الطقس كالامطار الغزيرة والثلوج كذلك يحتاج نشر وصيانة

يق وبالتالي عرقلة لحركة المركبات، علاوة على ذلك، تكلفة الحلقات الاستقرائية إلى حفر سطح الطر
 .كلا النوعين من أنظمة مراقبة حركة المرور عالية وليست مناسبة للنشر على نطاق واسع

لعد المركبات وتحديد حجمها (WSN) في هذه الرسالة، قمنا بتطوير شبكة استشعار لاسلكية
 .مغناطيسية التي توضع على جانب الطريقوقياس السرعة على أساس أجهزة الاستشعار ال

بيانات المرور التي تم جمعها من اجهزة الاستشعار اللاسلكية يتم ارسالها الى كمبيوتر
مركزي لاسلكيا لمعالجتها وتحليلها وحفظها في قاعدة بيانات وكما يمكن مشاركتها مع تطبيقات أخرى

 .من خلال استخدام خدمات الويب

 ج

تطويرها في الاطروحة توفر مراقبة حركة المرور في الوقت الحقيقي، التطبيقات التي تم
 .تضمن مراقبة مناسبة للطرق ومشاركة بشرية أقل وتكلفة منخفضة، كما

حيث ينصب تركيز هذه الاطروحة على تطوير شبكة استشعار لاسلكية لادارة بيانات المرور
 استشعار مغناطيسية. ات لتقييم النظام بدلًا من نشر أجهزةنتم محاكاة البيا

