

AN-NAJAH NATIONAL UNIVERSITY FACULTY OF AGRICULTURE & VET.MED. <u>NUTRITION & FOOD TECHNOLOGY</u> <u>DEPARTMENT</u>

Production Processes Assessment for (Cucumber pickles in brine)

<u>By:</u> Donia Rashed

Supervisor: Dr. Samer Modallal

Introduction

- Pickling is the process of preserving or expanding the lifespan of food by either anaerobic fermentation in brine or immersion in vinegar, it's one of the oldest known methods of preserving foods
- The acidity or salinity of the solution, the temperature of fermentation, and the exclusion of oxygen determine which microorganisms dominate, and determine the flavor of the end product.

Introduction

- There are many types of pickles. Each calls for a different combination of ingredients and preparation methods.
- TYPES OF PICKLES :
- Fermented pickles
- Refrigerated dills.
- Fresh-pack (or quick process) pickles

.

- A Palestinian company was established in 2014, have two small scale factories, produce more than 80 different product
- Food health and safety is the primary concern for the company.
- The optimization of pickle quality

- A need to evaluate the production lines efficiency, to make a decision about the cleaning and disinfectant process.
- Project Brief :
- In only 30 days, we observed and collect data from usual day work ,set a table of parameters and make samples according to these parameters , using over than 200Kg of fresh cucumbers, about of 350L of water, 15Kg of R.M.
- using the actual production lines to simulate the actual process, which restrict our time to implement our experiment to suit the production time
- A crew of four to apply the process.

Methodology

Time

color	Soaking water viscosity	smell	Cleaning Stage			
Acceptable	Acceptable, white coating	Acceptable	Е	Z	Original	1
Acceptable	Acceptable	Acceptable	Ε	Y	Increasing vinegar 1%	2
Acceptable	Acceptable	Acceptable	Ε	X	Increasing salt 7%	3
Acceptable	Viscose	Acceptable	Α	W	Increasing salt 7%, Increasing vinegar 1%, reducing preservative 50%	4
Acceptable	Acceptable	Acceptable	Α	V	Increasing salt 7%, Increasing vinegar 1%, additive (x) 5g/kg	5
Acceptable	High viscosity(white coating)	margins	Α	U	reducing artificial additive 100%	6
Acceptable	Acceptable (white coating)	margins	Α	Т	reducing preservative 25%, Increasing vinegar 1.5%	7
Acceptable	Very high	margins	В	S	Washing raw materials with Municipal water, increasing vinegar 1.5%, reduction of preservative 30%.	8
Acceptable	Acceptable	Acceptable	Α	R	Additive(X) 15g/L, salt 7%, preservative 30% reducrtion.	9
Acceptable	Acceptable	Acceptable	Α	Q	Additive(X) 15g/L, salt 7%, artificial additive A 10% increase, decrease preservative 25%	10

Salt content%	рН	Cleaning Stage			
2.1802667	3.44	Ε	Z	Original	1
2.3093333	3.2	Ε	Y	Increasing vinegar 1%	2
3.8933333	3.36	Ε	X	Increasing salt 7%	3
3.2741333	3.25	Α	W	Increasing salt 7%, Increasing vinegar 1%, reducing preservative 50%	4
2.8306667	3.21	Α	V	Increasing salt 7%, Increasing vinegar 1%, additive (x) 5g/kg	5
1.9130667	3.48	Α	U	reducing artificial additive 100%	6
2.8933333	3.06	Α	Т	reducing preservative 25%, Increasing vinegar 1.5%	7
2.652	3.12	В	S	Washing raw materials with Municipal water, increasing vinegar 1.5%, reduction of preservative 30%.	8
3.8933333	3.41	Α	R	Additive(X) 15g/L, salt 7%, preservative 30% reducrtion.	9
2.7573333	3.43	A	Q	Additive(X) 15g/L, salt 7%, artificial additive(A)10% increase, decrease preservative 25%	10

				Microbial test		
			Cleaning Stage	FC	ТРС	Yeast and molds
1	Original	Z	Ε	Nil	100	Yeast=40
2	Increasing vinegar 1%	Y	Ε	Nil	90	Yeast=30
3	Increasing salt 7%	X	Ε	Nil	60	Yeast=30
4	Increasing salt 7%, Increasing vinegar 1%, reducing preservative 50%	W	А	Nil	26	Yeast=10
5	Increasing salt 7%, Increasing vinegar 1%, additive (x) 5g/kg	V	Α	Nil	45	Yeast=12
6	reducing preservative 100%	U	А	Nil	240	uncountable
7	reducing preservative 25%, Increasing vinegar 1.5%	Т	Α	Nil	180	Yeast=95
8	Washing raw materials with Municipal water, increasing vinegar 1.5%, reduction of preservative 30%.	S	В	Nil	115	Yeast=27
9	Additive(X) 15g/L, salt 7%, preservative 30% reducrtion.	R	Α	Nil	47	Yeast=30

Results

	Microbial test					
Yeast and molds	TPC	FC	Temp.	Time	#Group	
Nil	Nil	Nil	30	82	Α	1
Nil	Nil	Nil	17	87	В	2
Nil	Nil	Nil	35	75	D	4
Nil	Nil	Nil	25	79	Ε	5

Conclusions & Recommendations

- In common sense the fluctuation of time –temperature combination will affect the quality of the final product, if the initial microbial load is high this fluctuation, may lead to leave some cfu which will lead eventually to undesirable microbial load, reducing the shelf life of the product.
- Nevertheless, increasing the time or the temperature over the need, will affect the quality of the product from sensory and nutritional aspects.
- Maintaining an appropriate temperature is one of the most important factors to food safety.
- The results shows the possibility of total remove of preservative especially in small classification.

Conclusions & Recommendations

- Modifying the cleaning and disinfectant stages based on the result:
- Using stem between steps
- Using chemicals when the tanks of cucumber are not used for more than 3 days.
- Reducing the pasteurization temperature used 3 degree, which will lead to increase the efficiency of the production line, also reducing the cost of fuel used.

References

- Tyrewala, Ameet S., Doug Nelson, and Barbara Almanza. "The effects of door opening and food placement on food temperature within the refrigerator when power is lost during a disaster." (2011).
- Food and Drug Administration. "Evaluation and definition of potentially hazardous foods." (2001).

