

The Effect of Salinity on Chlorophyll Content, Relative Water Content and Growth of Local Wheat Landraces

Graduation Project

Students: Ahmad Yasin, Jawad Fatoom and Muntaser Jebreen

Supervisor : Dr. Munqes Shtaya

Tulkarm 24/12/2017

- Wheat is one of the most ancient cultivated cereals.
- It is the first most important cereal crop in the world.
- The total cultivated area in the world is 218543071 ha producing 35312 hg/ha
- The total cultivated area in Palestine is 15489 ha producing 22301 hg/ha
- Salinity and drought are serious environmental constraint to crop production

- 1. Evaluate the level of tolerance to salinity in local wheat landraces .
- 2. Study the effect of salinity on chlorophyll content.
- 3. Study the effect of salinity on plant fresh and dry weight.
- 4. Study the effect of salinity on leaf relative water content.

Plant material

Three local wheat landraces (Norsi, Black Heteyeh and White Heteyeh) and one introduced line (Meridiano) were used in this study.

Experimental design:

Experimental design:

(50 and 100 mM NaCl) and TW was used as control) .

Leaf relative water content

Plant fresh and dry weight

Chlorophyll content

Table 1: The effect of different levels of NaCl on plant fresh weight

Salinity	Plant fresh weight
Control	1.99067 ^a
50 mM	2.08096^{a}
100 mM	1.46700^{a}

Accessions	
Meridiano	2.64128 ^a
White Heteyeh	1.60856 ^b
Black Heteyeh	1.60856 ^b
Norsi	1.41333 ^b

Table 2: The effect of different levels of NaCl on plant dry weight

Salinity	Plant dry weight
Control	0.240083 ^{ab}
50 mM	0.307167 ^a
100 mM	0.162250 ^b
Accessions	
Meridiano	0.325889 ^a
White Heteveh	0.235667 ^{ab}

White Heteyeh	0.235667^{ab}
Black Heteyeh	0.195889 ^b
Norsi	0.188556^{b}

Table 3: The effect of different levels of NaCl on chlorophyll content (SPDA)

Salinity	SPDA
Control	33.4250 ^a
50 mM	36.7667 ^a
100 mM	35.8667 ^a
Accessions	
Meridiano	43.1222 ^a
White Heteyeh	34.1889 ^b
Black Heteyeh	37.6667 ^{ab}
Norsi	26.4333 ^c

 Table 4: The effect of different levels of NaCl on leaf relative water content (LRWC)

Salinity	LRWC
Control	115.942 ^a
50 mM	92.205 ^b
100 mM	89.495 ^b
Accessions	
Meridiano	97.888 ^b
White Heteyeh	105.023 ^a
Black Heteyeh	95.643 ^b
Norsi	98.302 ^b

- 1. Salinity had no effect on wheat shoot fresh weight and chlorophyll content.
- 2. Salinity had no effect on wheat chlorophyll content.
- 3. Salinity had significant effect on LRWC.
- 4. White Heteyeh can be considered as a promising material for salinity tolerance.
- 5. Further studies are needed to study the effect of salinity on the total yield