ON SEMILOCAL RINGS AND FINITELY GENERATED PROJECTIVE MODULES

BY

Ali Abdel-Mohsin *

ملخصص

نطوَّر في هذه الـورقـة العلمية بعض النتائج المتعلقة بها يسمى بـ Cyclic projective modules بالاضافة إلى نتائج جديدة أخرى كها يعطي المؤلف مثالاً يثبت من خلاله أن النتائج التي حصل عليها لا يمكن تعميمها إلى أنواع أعم من Cyclic projective modules .

Abstract

We establish the equivalence between the existence of a cyclic projective right C-module P such that P/J ($_{\rm B}$ P) is semisimple and $_{\rm B}$ P is finitely generated (B = End (P_c)) and the existaence of an idempotent element e in c such that trace (P_c) is finitely generated (and equals CeC) and C/S is semisimple where S is the intersection of all maximal left ideals of C not containing the trace ideal of P_c.

1. Introduction, Notations and Preliminaries:

In this paper we study further the situation where P is finitely generated projective right C-module (C is a ring) with trace ideal I, $B = End(P_c)$, J = J(B) and P is finitely generated as a left B-module.

The existence of a cyclic projective right C-module P such that P/J ($_{B}P$) is semisimple and $_{B}P$ is finitely generated (B = End (P_c)) is shown to be equivalent to the existence of an idempotent element in C such that trace (P_c) is finitely generated and equals CeC and C/S is semisimple, where S is the intersection of all maximal left ideals of C not containing the trace ideal of P_c. It is also demonstrated that the above result can not be generalized to the case P_c is finitely generated projective.

The following terminology, notations and results are needed.

^{*} Mathmatics Department, Faculty of Science, An-Najah National University – Nablus.

Given t a left exact radical on A-Mod and M in A-Mod we say that M is t-torsion (t-torision free) provided that t(M) = M(t(M) = 0).

A submodule N of M is t-closed if M/N is t-torsion free . A non-zero left A-module M is t-simple if M/N is t-torsion for all submodules N of M such that $N_{t}(M)$. A submodule N of M is t-maximal if M/N is t-simple and t-torsion free. (for torsion theoretical concepts we refer the reader to Stenstrom , B., 1971).

Define **I**M to be the collection of all maximal left ideals M of C such that the trace ideal, I, of P_c is not contained in M, $S = \bigcap_M M$, K is the collection of all t-maximal left ideals of C, $N = \bigcap_K K$ and $C(S) = \{ c + S \in C/S: c + S \text{ is regular } \}$.

The following results may be found in Morita, K., 1970, Sandomierski, F.L., 1972 and Mohammad A., 1987.

Lemma 1.1 : The following hold

 $1 - J(P_c) = PS$ $2 - J(P_R) = PN$

Lemma 1.2: Let $G = Hom(P_c, C_c)$, then :

- 1- G is a finitely generated projective left C-module .
- $2 B = End(_{c}G)$.
- 3 The trace ideal of $_{c}G$ = the trace ideal of P_{c} , and
- 4 P \otimes . is naturally equivalent to Hom (, G,.).

Proposition 1.3: The following hold :

- 1 If U is a simple left C-module and IU = O, then SU = O.
- 2- If H is a t-maximal submodule of G, then H is a maximal submodule of G.
- 3 If U is a t-simple left C-module , then U contains a simple submodule , and
- $4 SI \subset N$

If in addition to the hypothesis in the situation under consideration we have B/J is semisimple then we have the following [see Mohammad , A., 1987].

Proposition 1.4 : The following hold :

- i C/S semisimple,
- ii C/N has finite left Goldie dimension as a left C/N modul and is nonsingular, and
- $\mathbf{i}\mathbf{i}\mathbf{i} \mathbf{I} + \mathbf{S} = \mathbf{C} \ .$

The following lemma is needed and can be found in Sandomierski, F.L. 1972.

Lemma 1.5: If P_c is finitely generated projective with trace ideal I, then _cI is finitely generated iff _BP is finitely generated , where $B = End(P_c)$.

Although we really need the remark after the following theorem, but we must write the statement of the theorem which was proved by Ghazi, M. Eid in his Ph.D. thesis in 1983.

Theorem 1.6 : Let P in A-Mod be flat of hype $FP, B = End(P_A), C = End(_BP), M$ in A-Mod and $_BX = T(M) = P \otimes M$, then

- $\begin{array}{l} 1- \mbox{ If } N \mbox{ is a submodule of } M \mbox{ and } Y \mbox{ a left } B-\mbox{ submodule of } X, \mbox{ lef } \widehat{T}(N) = Img(T(N)) \\ \rightarrow T(M) \mbox{ and } \overline{S}(Y) = \{ \mbox{ m } \in M : P \mbox{ m } \subset Y \}, \mbox{ then } \overline{S} \mbox{ and } \overline{T} \mbox{ are lattice isomorphisms} \\ \mbox{ of the lattice of } t-\mbox{ closed submodules of } M \mbox{ and the lattice of submodules of } X \ . \end{array}$
- $2 {}_{A}M$ is a t-simple submodule of ${}_{A}M$ if and only if $\overline{T}(N)$ is a maximal submodule of T(M).
- $3 {}_{A}M$ has a unique t-maximal submodule if and only if T(M) has a unique maximal submodule.
- $4 {}_{A}N$ is a t-simple submodule of ${}_{A}M$ if and only if T(N) is a simple submodule of T(M).

Remark : For P_A a flat right A-Module of type FP and $B = End (P_A)$ theorem 1.6 above yields a one-to-one correspondence between the submodules of P(as a left B-module) and the t-closed left ideals of A. In particular , if X is a submodule of P and $D = \{a \text{ in } A: Pa \subset X\}$, then clearly D is a t-closed ideal of A and X = PD.

2. Semilocal Rings

Recall that a ring R is semilocal provided that R/J, J the Jacobson radical of R, is a semisimple ring.

Proposition 2.1: Let C be a ring and P a finitely generated projective right C-module with trace ideal I satisfying :

- i $-\oint = \{ L \subset C : PL = P, \text{ where } L \text{ is a left ideal of } C \}$ is an idempotent topologizing filter on C.
- ii For $B = End(P_c)$, B/J is semisimple, and
- iii _BP is finitely enerated.

Then the following hold :

- i C/S is semisimple, I+S = C and $_{c}I$ is finitely generated.
- $\mathbf{i}\mathbf{i} \mathbf{\phi} = \{\mathbf{L} \subset \mathbf{C} : \mathbf{I} \subset \mathbf{L}\}.$
- iii If $\{ D_k \}_K$ is chain of proper left ideals of C such that $D_k \notin \Phi$ for all $k \in K$, then $U_K D_k \notin \Phi$

Proof: In view of proposition 1.4 and lemma 1.5 i) holds and we listed it only for completion.

To prove ii), let L be a left ideal of C such that $I \subseteq L$, then $PI \subseteq PL$. Since PI = P, then $P \subseteq PL$. Since the other inclusion is trivial then PL = P. On the other hand if PL = P then P/PL = 0. But P/PL is isomorphic to $P \Re (C/L)$, thus $P \Re (C/L) = 0$ which in turn implies that I(C/L) = 0, hence $I \subseteq L$.

Finally for iii), assume on the contrary that $D_k \notin \Phi$ for all $k \in K$, but $U_K D_k \in \Phi$. Then $P(UD_k) = U_K (PD_k) = P$. Since $\{D_k\}_K$ is a chain of proper left ideals of C, then $\{PD_k\}_K$ is a totally ordered collection of proper submodules of $_BP$. Since $_BP$ is finitely generated then $U(PD_k) \subseteq P$. Acontradication and iii) follows.

The following lemmas are needed for later consideration .

Lemma 2.2: For a left C-module M the following are equivalent .

 $i - \dim (M) < \infty$.

ii – whenever $M_1 \supset M_2 \supset M_3 \supset \dots$, where M_i is a left C-submodule of M, then $\exists N$, a positive integer, such that M_{N+1} is large in M.

Proof:

i - implies ii :

Given i) suppose that ii) does not hold. Rearrange and renumber the descending sequence so that M_{i+1} is not large in $M_i \forall i$. Thus in particular we get M_2 (say) is not large in M_1 , hence $] M_1 \subset M_1$ such that $M_1 \cap M_2 = \circ$. Notice that $M_1 + M_2 \subset M_1$. Since M_3 is not large in M_2 , then $] M_2 \subset M_2$ such that $M_3 \cap M_2 = \circ$. Again notice that $M_2 + M_3 \subset M_2$.

Now we have the direct sum $M_1 \not \oplus M_2 \not \oplus M_3$. Continue the above process . In view of i) this process must terminate , while if the contrary of ii) holds , the process above must be infinite , an obsurdity . Thus ii) holds .

ii) implies i) :

Suppose on the contrary that ii) holds but dim(_cM) is not finite. Write $M = \bigoplus$ L_i , Where L_i is a submodule of $M \forall i$. Then $\bigoplus_{i=1} L_i \supset \bigoplus_{i=2} L_i \supset \dots$ with each term being not large in the preceeding one, a contradication to ii). Thus ii) implies i).

Lemma 2.3 : Let M be a left C-module such that $t(_{c} M) = \circ$, dim $(_{c} M) < \infty$ then $_{c} M$ has the descending chain condition on t-closed submodules.

Proof: Let $M_1 \supset M_2 \supset \dots \supset M_n \dots$ be a descending chain of t-closed left C-submodules of M. be Lemma 2.2] N, a positive integer such that M_{N+1} is large in M_N . Thus M_{N+1} is t-dense in M_N . By hypothesis M_{N+1} is also t-closed in M_N . The only way out is that $M_{N+1} = M_N$ and the proof is complete.

Remark 2.4 : Replacing M above by C/N we get $_{c}(C/N)$ to have the descending chain condition on t-closed left C-submodules . Thus C has the descending chain condition on t-closed left ideals containing N.

Lemma 2.5 : N =
$$\bigcap_{i=1}^{n} K_i (K_i \in \mathbb{K})$$
.

Proof: By Remark 2.4, C has the descending chain condition on left ideals containing N. By definition $K_i \supseteq N \forall i$. Now, pick $K_1 \in \mathbb{K}$ if $K_1 = N$ we are done, if not, then $K_1 \supseteq N$ and in the latter case $\exists K_2 \in \mathbb{K}$ such that $K_1 \cap K_2 \supseteq N$. If equality holds we are done, otherwize, $K_1 \cap K_2 \supseteq N$ and hence $\exists K_3 \in \mathbb{K}$ such that $K_1 \supseteq K_1 \cap K_2 \supseteq K_1 \cap K_2 \cap K_3 \supseteq N$. Continuing in the above manner we must have a positive integer n such that $N = \bigcap_{i=1}^{n} K_i$.

Proposition 2.6 :

Let P_c be a finitely generated projective right C-module with trace ideal I that is finitely generated and suppose that dim ($_{C/N}$ (C/N)) is finite.

Then _B P is finitely generated and B/J (B) is semisimple, where $B = End(P_c)$.

Proof : Since $J(_{B}P) = PN \supset J(B) P$, then

P/PN is a left B/J (B) module . Next, P/PN = P/P ($\bigcap_{i=1}^{n} K_i$) = P/($\bigcap_{i=1}^{n} (PK_i)$).

Thus the B-homomorphism P/PN \rightarrow P/PK₁ x x P/PK_n is one-to-one. Since $\prod_{i=1}^{n}$ (P/PK_i) is semisimple, then so is _B(P/PN).

Now, ${}_{B}P$ is a generator for B-Mod, thus $\exists n \in \mathbb{Z}^{+}$ and an epimorphism $f: P^{n}$. \rightarrow B. Since $J(P^{n}) = (J(P))^{n}$ and f maps the radical to the radical then f induces the epimorphism : $\int_{\mathbb{Z}} P^{n} (U(P^{n})) = P(U(P))$

 $\tilde{f}: \operatorname{P}^n/J(\operatorname{P}^n) \ \to \ B/J(B) \, .$

Being the homomorphic image of a semisimple module , B/J(B) is semisimple . In view of lemma 1.5 the other conclusion is trivial .

In case P_c is cyclic projective we get better results as the theorem below shows. But for that we recall that $_cG = Hom(P_c,C_c)$ is finitely generated projective which has the same trace ideal as that of P_c . We also need the following lemma.

Lemma 2.7 : $J(_{c}G) = SG$

Proof: $J(_CG) = J(C)G = (\cap M)G$, where the intersection runs over the maximal left ideals of C.

Since $(\bigcap M) C \subseteq (\bigcap_m M)G = SG$, then $J(_cG) \subset SG$. On the othedr hand, if $_cM$ is maximal in $_cG$, then G/M is simple. Now, either $I \not\subset M$ and hence G/M is not torsion, in which case we get S(G/M) = 0 (by proposition 1.3.i) and hence $SG \subset M$ which implies that $SG \subset J(_cG)$, or $I \subset M$, in which case, since IG = G, then MG = G, so that $J(_cG) = J(C)G = (\bigcap M)G$, where the intersection runs over all maximal left ideals of C, thus $J(_cG) = (\bigcap MG)$, where the intersection runs over the maximal left ideals of C not containing I. Since $(\bigcap M)G \subset MG$ for all maximal left ideals of C, then $SG \subset \bigcap MG = J(_cG)$ and the lemma is proved.

For $b \in B = End(P_c)$ (= End (_cG) by lemma 1.2) we have the induced homomorphism $\overline{b}: G/(SG) \to G/(SG)$ where $(g+SG)\overline{b} = gb + SG$. Next, given $h \in End(G/SG)$ we have the diagram.

Where g is the natural epimorphism $G \rightarrow G/SG$ and $\overline{G} = G/SG$. By the projectivity of _cG there exist a unique $b: {}_{c}G \rightarrow {}_{c}G$ making the diagram commutative (Note that upto this point we used only the projectivity of _cG). Thus we have $B = End({}_{c}G) \rightarrow End(G/SG)$ is a surjective ring hamomorphism. Simple calculations show that its kernel = { $b \in B : Gb$ is small in _cG } = J(B) (see also Sandomierski , F.L., 1964). Thus we have B/J(B) is isomorphic to End(G/SG).

Theorem 2.8: Given a ring C, the following are equivalent :

- 1 There exist a right C-module P which is cyclic projective such that for $B = End(P_c)$ we have
 - $a P/J(_{B}P)$ is semisimple as a left B-module, and
 - $b {}_{B}P$ is finitely generated.
- 2 There exist an idempotent element e in C such that :
 - i The trace ideal, I, of P_c equals CeC and is finitely generated, and
 - ii C/S is semisimple.

Proof: 1 - implies 2

 P_c cyclic implies that there exists an idempotent e in C such that P = eC. Now , easily [see Anderson and Fuller PP 266] the trace ideal of $P_c = CeC$. The other conclusions of 2. are clear [see proposition 1.4 and lemma 1.5]

2 - implies 1 :

By 2 there exists an idempotent e in C. Define $P_c = eC$. Then by choice P_c is cyclic and projective [see Anderson and Fuller PP 199] with trace ideal = CeC . By lemma 1.5, $_{\rm B}P$ is finitely generated. Observe that B = End(P_c) = End (eC) is isomorphic to eCe. Now $G = Hom(P_c, C_c) = Hom(eC, C) = Ce$. Also B/J(B) is isomorphic to End(G/J(G) = End(Ce/Se) which is the endomorphism ring of a semisimple ring and hence is semisimple. Thus B/J(B) is semisimple and the proof is complete .

Remark 2.9: 1. (and hence 2.) in Theorem 2.8 implies that

i - I + S = C. ii – SI \subset N, and iii - Se = Ne.

Proof:

- i Suppose on the contrary that $I + S \subseteq C$, then there exist a maximal left ideal of C such that $(I + S) \subseteq M \subseteq C$. Thus C/M is simple with $I(C/M) = \circ = S(C/M)$ which is impossible.
- ii See proposition 1.3.
- iii $-SI \subset N$ implies that $SIG \subset NG$ with IG = G and $NG \subset SG$. Thus SG = NG. But SG = SCe = Se and NG = NCe = Ne and iii) follows.

We demonstrate now that Theorem 2.8 above can not be generalized to the case P_c finitely generated projective .

If P_c is a finitely generated projective module , then there is a positive integer n

such that $C_c^{(n)}$. $\rightarrow P_c \rightarrow \circ$ is exact. Since End $(_cC^{(n)})$ is isomorphic to C_{nxn} with $_cC^{(n)}$ finitely generated projective generator, then $C_c^{(n)} \otimes C \xrightarrow{(n)} P \otimes C \xrightarrow{(n)} \circ$ is exact with $C^{(n)} \otimes C^{(n)}$ is isomorphic to $(C_{nxn})_{Cnxn}$ and $(P \otimes C \xrightarrow{(n)}_{C} C^{(n)})_{Cnxn}$ is isomorphic to P⁽ⁿ⁾_{Cnxn} which we claim to be cyclic .

To prove this claim, write $P = Cx_1 + ... + Cx_n$ and let $y = [y_1, ..., y_n] \in P^{(n)}$. Since $y_j \in P$ for every j = 1, 2, ..., n, then each y_j is a linear combination of $x_1, ..., x_n$ with coefficients from C . Form an nxn matrix , M_{nxn} , by putting the coefficients of the linear combination for y_i in the j_{th} column , then , as simple calculations show , we have $[x_1, ..., x_n] M_{nxn} = [y_1, ..., y_n]$. Thus we have shown that $P_{Cnxn}^{(n)} = [x_1, ..., x_n]$ C_{nxn} and the claim is proved. Observe now that :

- 1 The trace ideal of P_c , I, corresponds to the trace ideal I_{nxn} of $P_{Cnxn}^{(n)}$ and $_c I$ is finitely generated (iff $_{B}P$ is finitely generated) iff I_{nxn} is finitely generated.
- 2 As ideals, S also corresponds to S_{nxn} and C/S is semisimple iff C_{nxn} / S_{nxn} is semisimple. But C_{nxn} / S_{nxn} is isomorphic to (C/S)_{nxn}, thus C/S is semisimple iff (C/S)_{nxn} is semisimple.

Nevertheless, for $I_{nxn} = C_{nxn} eC_{nxn}$ for some idempotent element e of C_{nxn} , it is NOT necessary'the case that e corresponds to an idempotent in C (for example, take C = F, a field, and $C_{nxn} = F_{nxn}$ where we don't know how to find an idempotent element e in C such that I = CeC).

References

- 1- Anderson, F.W. and Fuller, K.R., Rings and categories of modules, Graduate text in mathematics, Berlin-Heidelberg-New York, 1974.
- 2- Benander, B.A. Torsion theory and modules of finite length, Ph.D dissertation, Kent State University, 1980.
- 3- Ghazi, M. Eid., Classical quotient rings with perfect to pologies, Ph.D. dissertation, Kent State University, 1983.
- 4- Goldie, A.W., Localization in non-commutative Noetherian rings, J. Algebra, 5, (1967)
 , pp. 89-105.
- 5- Hinohara, Y., Note on non commutative semi-local rings, Nagoa Math. J. 17, (1960), pp.
- 6- Mohammad, A., projective concepts relative to classes of modules, Ph.D. dissertation, Kent State University, 1987.
- 7- Morita, K., Localization in categories of modules, I. Math. Z., 114, pp. 121-144.
- 8- Sandomierski, F.L. Relative injectivity and projectivity Ph.D. thesis, Penn State University, 1964.
- 9- Sandomierski, F.L., Modules over the endomorphism ring of a finitely generated projective module, Proc. Amer. Math. Soc., 31, (1972), pp. 27 – 31.
- 10 Stenstrom. B., Rings and modules of quotients, Lecture notes in Mathematics, Vol 237, Springer, Berlin – Neidelberg – New York, 1971.