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Abstract  
  

There are two types of data compression; the first is lossless (exact) and 

the second is lossy (approximate). In lossless compression, all details are 

reserved but high compression ratios can not be achieved and this type is 

not considered in this thesis. The other type is the lossy compression where 

some details are lost in the process of compression. The size of the lost 

details is proportional with the the desired compression ratio which is 

controlled by the user. Using this type, high compression ratios can be 

achieved with acceptable resolution in the reconstructed data.  

In this thesis, a computational study of the classical Fourier transform 

and the relatively new wavelet transform is done. In addition, a 

computational comparison between the two major transforms shows that the 

wavelet transform is more efficient than the classical Fourier transform. The 

high compression ratios that can be achieved by wavelet transform lead to 

the introduction of several wavelet-based lossy data compression software. 

Examples of these are the image compressor JPEG2000 and the text 

compressor DJVU. 
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1.1 Approximation Theory 
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Chapter One 

Introduction 

Wavelets are functions that satisfy certain mathematical requirements 

and are used to analyze functions or to represent a set of sampled data by a 

function for further processing. Approximation of functions is not a new 

idea. In 1715, Brook Taylor discussed a power series expansion of analytic 

functions; the result is the well known Taylor series. In 1822, Joseph 

Fourier began the development of the theory of trigonometric series. In fact, 

Fourier paper in 1807 [5] about convergence of trigonometric series was 

rejected by other scientists and was not published until 1822. 

Joseph Fourier, have used the orthogonal set ∞
=0)}sin(),{cos( nnxnx  to 

represent periodic functions. The idea has been extended to non-periodic 

functions through Fourier integral. However, Fourier approximation is poor 

in approximating functions near discontinuities where Gibbs phenomenon 

persists. Search for methods to better approximate functions continued and 

wavelets become the answer for many applications. 

While the origins of wavelets go back to the early years of 1900’s, 

wavelet analysis and the extensive use of wavelets in applications is a 

relatively new subject. The term wavelet was first mentioned in 1909 by 

Haar in his doctoral thesis on orthogonal systems of functions [2]. Between 

1960 and 1980, the mathematician Guido Weiss and Roland R. Coifman [2] 

studied the simplest elements of a function space, called atoms, the goal 
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was finding atoms for a common function and finding “assembly rules” that 

allow to reconstruct the function using these atoms. In 1980, Grossman and 

Morlet, defined wavelets in the context of quantum physics [2]. However, 

these two researchers provided a way of thinking of wavelets. The use of 

wavelets in applications goes back to the late 1980’s and early 1990’s; in 

1985 there have been many research activities to construct wavelet with 

specified properties. The search was initiated by French mathematician 

Yves Meyer [7], who was sure that no wavelet could be infinitely often 

differentiable and decay exponentially. However, when he was trying to 

prove his claim he realized that he was wrong: in fact, he found a wavelet 

with properties he thought were impossible. Today, this wavelet is called 

Meyer’s wavelet. The first wavelet was constructed on some clever 

observations and tricks. For this reason there was a belief that wavelets are 

so special that the ways to find them are limited. But, around 1987 Stéphan 

Mallat and Yves Meyer [7] found conditions under which wavelets can be 

constructed. Their findings lead to multi-resolution analysis. In 1990, Ingrid 

Daubechies [7] boosted the theory of wavelets by constructing wavelets 

with compact support via multi-resolution analysis. Since then, much work, 

especially in applications of wavelets, has been done. Currently, research in 

both the theory and applications is an active field. The mathematical theory 

of wavelets is a challenging one but it is not subject of this thesis. 

There are many fields where wavelets analysis can be used and give 

results superior to the classical Fourier analysis. For instance, the new 

JPEG2000 image format, which is used in digital cameras, compresses 
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images using wavelets transform. Data compression is an important field in 

archiving, processing, and transmitting data. In this thesis, we will review 

discrete wavelets transform, as well as, the discrete Fourier transform. Then a 

computational study of the differences between the two major transforms is 

carried out. In signal analysis, a signal is considered as a function of time. 

Computationally, the signal is sampled and is given as a discrete function of 

time or as a sequence of time. Many signals, exhibit a periodic behavior 

where Fourier transform can be used efficiently. There is a wide range of 

applications of wavelet. Some of such applications are listed below: 

•  Denoising: Old recordings, Long distance telephone messages, and 

images produced by electronic microscopes are often containing 

significant amounts of noise and wavelets are used to filter out such 

noise.The main idea is to transform the signal and remove the high 

frequency components which usally represents a noise in the signal.  

• Compression:  There are two categories of compression techniques. 

The first category is lossless compression. Examples of lossless 

compression methods are Huffman compression which is used in 

compression programs such as winzip files which is not the subject 

of this thesis. This type of compression achieves complete error free 

compressed signal. Unfortunately, compressions that can be 

obtained with lossless methods are rarely more than 2:1.  

The second category is lossy compression. A lossy compression 

method is one which produces inaccuracies in the signal. Lossy 
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techniques are used when these inaccuracies are too small to be 

imperceptible. The advantage of lossy techniques over lossless ones 

is that higher compression ratios can be achieved. 

Raw images produced by digital cameras require a large storage 

space and high speed connections to transmit to another device or 

over the internet.  Compressed images require less storage space 

and can be transmitted efficiently over low speed connections. 

Compression using wavelets proved to be more efficient. In fact, 

the late JPEG2000 uses wavelet transform as a compression 

method. The FBI with 25 million set of fingerprints found the 

solution to the storage of over 250 trillion bytes and the manual 

processing of such fingerprints by adoption of wavelets as their 

main storage and processing method. 

DjVu is wavelet-based compression method for text files. It 

creats high quality scanned pages that are much smaller than PDF 

files. 

• Object detection: This is another challenging application. Voice 

and image or character recognition becomes more important. Voice 

recognition can be used to replace the keyboard by dictating to the 

machine orally. Image recognition can be used in airports to 

pinpoint fugitives. Wavelets is a perfect tool for such applications. 
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1.1 Approximation Theory 

 In many applications of mathematics, we face functions which are far 

more complicated than the standard functions from classical analysis. Some 

of these functions can not be expressed in closed form via the standard 

functions, and some are only known implicitly or via their graph. Think of 

the integral dxeI

b

a

x∫=
2

. There is no closed form for this integral and 

approximation is needed. Approximation is carried out in two stages: 

interpolate 
2x

e over the interval [ ]ba, , then integrate the polynomial from a to 

b. This is an example where approximation of a function is needed. An 

important theorem regarding the approximation of continuous functions by 

polynomials is given by Weierstrass which says that any continuous 

function on a closed interval of R  can be approximated by a polynomial to 

within an arbitrarily 0>ε . 

Theorem 1.1 [6]: Weierstrass Approximation Theorem  

Suppose that f  is defined and continuous on [ ] R∈ba,  . For each 0>ε , 

there exists a polynomial εP , with the property that 

)()( xPxf ε− < [ ]. ,   allfor    , bax∈ε  

Theorem 1.2 [6]: Taylor Theorem  

Suppose [ , ]nf C a b∈ , that ( 1)nf + exists on [ , ]a b , and ],[0 bax ∈ . For every 

[ , ]x a b∈ , there exists )(xξ  between x  and 0x  such that 
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The polynomial nP  is called the Taylor polynomial of degree n of f  at 

the point 0x  and 1( )nR x+  is the remainder.  

The remainder term in the Taylor theorem is not computable since the 

value ξ  is undetermined, however, the remainder term can be used to bound 

the error in Taylor polynomial. Taylor polynomial approximates a function 

near a point 0x . Accuracy of Taylor polynomial at a given point x  depends 

on two factors; the distance between x  and 0x  and the degree of the 

polynomial.  

Remark: McLaurin polynomial is the Taylor polynomial about 00 =x . 

Example 1.1: 

The 5th degree Taylor polynomial of the function ( ) sin( ) , f x x x= ∈R  

about 00 =x  is given by 
3 5

5P (x)
3! 5!

x x
x= − + , with remainder 

!7

)cos(
   (x)R 7

ξ−
=  

where ξ  lies between 00 =x  and x . 

Example 1.2: 

The function xexf =)(  has derivatives of all orders at any point R∈x . 

The thn -degree Taylor polynomial of f about any R∈0x  is given by  

 k
n

k

x

n xx
k

e
xP )(

!
)( 0

0

0

−=∑
=
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Figure 1.1 shows the graphs of f  together with Taylor polynomials 1P , and 

2P  about 10 =x . The graph of the 2nd-degree Taylor polynomial is closer to 

the graph of f over a larger interval centered at 10 =x  when compared to the 

graph of 1P . 

 

Figure 1.1  

The remainder term in Taylor theorem shows that accuracy in Taylor 

polynomial depends on its degree and the distance from x  to 0x . In fact, the 

maximum errors in )2(1P  and )2(2P  equal 1.952492443 and 0.593351529 

respectively. Moving away from 0x ,  we find the maximum errors )3(1P  and 

)3(2P  equals 11.93069144 and 6.49412778 respectively. This means the 

error becomes larger when moving away from 0x  and stays smaller for 

larger degree. 
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Chapter Two 

Signal Analysis 

Signals are functions with their values depend on the phenomenon they 

represent. Gray scale images, for example, are signals in two dimensions 

with values equal to the light intensity at each point.  In our daily life we 

communicate using different means. Audio (sound) messages and 

electrocardiogram are one-dimensional signals. Images, fingerprints, and 

video files are treated as two-dimensional signals. For computational 

purposes, such signals are sampled, producing digital signals, so they can be 

processed by digital computers. Processing digital signals is a wide range 

field known as Digital Signal Processing (DSP). Audio files are one-

dimensional signals while images and text files are two-dimensional 

signals. Because of the importance of signal processing as a major 

application of wavelets, we give a brief review of signal analysis. 

2.1 Signals 

Definition 2.1 [1]:  Analog Signals  

An analog signal is a function RR →:f , where R  is the set of real 

numbers, and )(tf  is the signal value at the independent variable t . A 

complex-valued analog signal is a function CR →:f , where C  is the set of 

complex numbers and ( ) )()( tivtutf +=  with  u  as the real part of f  and v  as 

the imaginary part f . Both parts are real valued signals and 12 −=i . 
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Example: 2.1: 

The function )5cos(6)3sin(11)( tttg ππ += , where R∈t , is an analog 

signal. It is a combination of two sinusoidal functions.  

Definition (2.1) means that the theory of analog signals follows the 

theory of functions of real variables. Complex-valued signals appear in the 

study and analysis of the frequency contents of a signal. A generalization of 

this definition can be made to cover multi-dimensional signals from 

RR n → , for 2≥n . For example, a photo or a text is a two-dimensional 

signal. Some special analog signals are listed below. 

1. Unit step signal )(tu , see Figure 2.1(a),  is defined by: 

                                                         

     




<

≥
=

.0   if    0

,0    if    1
)(

t

t
tu          (2.1) 

2. Sawtooth signal )(tf , see Figure 2.1(b), is the piecewise linear signal 

defined by: 

                                     (2.2)      




<

≥
=

.0   if    0

,0   if    
)(

t

tt
tf  

3. Dirac delta  )(tnδ , see Figure 2.1(c,d), is a sequence of analog signals 

0  where)( >ntnδ defined by: 

                                           (2.3) 
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Sometimes, the values of a signal can be given by a formula or an 

expression of the independent variable as in the analytical solution of a 

differential equation. In many cases, however, such a closed formula can 

not be obtained and approximation is needed for processing such signals. 

This leads to discrete and digital signals. 

         

          (a)   Unit step signal )(tu                              (b) Sawtooth signal 

             

                   (c)  )(1 tδ                                                    (d)  )(2 tδ   

Figure 2.1 
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Definition 2.2 [1]: Discrete signals  

A discrete signal in one dimension is a real-valued function RZ →:x  

and )(nx  is the signal’s value at instant n ; Z is the set of integers.  In other 

words, a discrete signal is a sequence of real numbers. A generalization can 

be easily made for multi-dimensional discrete signals. Some special discrete 

signals are listed below: 

1. Sinusoids: discrete sinusoid signals such as )sin( nω or )cos( nω . The 

function )sin( φω +t is the discrete sine function of radial frequency ω  

and phase φ .Also )cos( φω +t  is a sinusoid as well. 

                    
(a)   )

324
cos()(

ππ
+= nnx                                        (b)   )

7

1
cos()( nnx =  

Figure 2.2 

2. Exponentials: a discrete exponential function is defined by: 

                                                   nacenx =)(                                           (2.4)  

where c  and a  are constants. Discrete exponential are used in frequency 

domain signal analysis. See Figure 2.3(a,b). 
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≥
=

,0    if  0

,0    if   1
)(u

n

n
n

3. Discrete delta: the discrete delta or impulse signal )(nδ  is defined as:  

                                          




≠

=
=

.0 if    0

,0 if    1
)(

n

n
nδ                                       (2.5) 

It is zero everywhere except at the origin, which is one.     

       

                  (a) )2/exp(
3

1
)( nnx =                                       (b)  )2/exp(

3

1
)( nnx −=  

Figure 2.3 

4. Discrete unit step: the unit step signal is defined as: 

(2.6)                                             

See Figure 2.4 
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( ) ( ) ( )�� tgftgftgf ===  ,....,   , 2211

 

 Figure 2.4 

Definition 2.3 [1]: Digital signals  

A digital signal in one dimension is a discrete integer-valued 

signal ZZ →:f , which means it is a sequence of integers. 

We will express a discrete signal in the form ( ),,...,, 21 �ffff =  where � 

is positive integer. For simplicity, we restrict � to powers of 2; I mean 

n� 2=  for n  integer. The components of f are the � real numbers: �fff ,...,, 21  

representing an analog signal g  measured at equally spaced time values 

.,...,, 21 �tttt =  i.e.  

                                                                      (2.7) 

Example 2.2: 

The signal ( )5,0,8,3,4,9,6,2=f  is considered as a digital signal in 1D. 

Also, the signal 



















=

5976

3457

8634

3475

g is considered to be a digital signal in 2D.                            
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Definition 2.4:  The energy of an analog signal  

The energy of an analog signal f is defined as the inner product: 

∫
∞

∞−

>=< dttfff  )(, 2  

Definition 2.5:  The energy of a discrete signal  

The energy ε  of a discrete signal ( )�ffff ,...,, 21=  is the sum of the 

squares of its components or ∑
=

=
�

k

kf f
1

2
)(ε . 

Remark: Any digital signal must be bounded, that is a number 0>M  exists 

such that Mf k ≤ for all k  where �k ≤≤1 . It is also true that signals have 

finite energy which means any signal satisfies ∞<)( fε .                                                                                                           

2.2 Sampling and Interpolation                                   

In nature, signals are analog. For processing signals on digital machines, 

digital signals are more convenient. Sampling converts an analog signal to a 

digital signal by taking values of the analog signal at discrete time intervals; 

usually, regular time intervals. Accurate representation of an analog signal 

depends on its sampling. On the other hand, interpolation converts a digital 

signal into an analog signal. In some applications, sampling is done 

manually, for instance, sampling the room temperature by measuring the 

temperature every one hour or even every 15 minutes. However, there are 

applications where much larger sample is to be taken. In such cases, digital 

sampling instruments are used. In digital photography, a 5 mega-pixel 
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digital camera samples a picture (a two-dimensional signal) by 10105×  

pixels (picture element) where each pixel is assigned a color.  

The sampling interval is the time (or other measure dimension) between 

samples. For a time signal, the sampling frequency is measured in hertz 

(Hz), which is one cycle per second. On the other hand, the sampling 

frequency for distance signal with sampling interval in meters is in units of 

(meter)-1. 

For theoretical work, discrete signals are more convenient, but for 

computer processing, only a finite number of bits can represent a signal’s 

value in binary form. The signal must be digitized, or the signal values must 

be quantized. Squeezing the signal value into an �-bit register, some 

fraction of the true signal is lost; the fraction is called quantization error. 

Also, the number of possible digital signal values is called the dynamic 

range of the conversion. 

Definition 2.6 [1]: Sampling  

Sampling is the reduction of a continuous signal into a discrete signal. A 

common example is the conversion of a sound wave which is continuous-

time signal to a sequence of samples representing a discrete time-signal. 

Definition 2.7 [1]: Sampling rate  

The sampling rate (frequency) sf  of a time-signal is the number of 

samples obtained in one second and 
T

f s

1
=  where T  is the sampling 
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interval. Sampling rate is measured in hertz which is one sample per 

second.  

An �-bit register can hold non-negative values from 0  to 2�-1. When 

all bits are clear the smallest value is present, and when all bits are set, the 

largest value is present. Suppose there are �  bits available in the input 

register, and the quantized signal's bit values are 0121 ,,...,, bbbb �� −− . Then the 

digital value is 

                    1 2 2 1 0
1 2 2 1 02 2 ... 2 2 2� �

� �D b b b b b− −
− −= + + + + +                 (2.8) 

In this form, a register full of zero represents a digital zero value. The 

dynamic range of an � -bit register is �2 .   

Example 2.3:  

Consider the analog signal: )1.0cos()( ttf = ,1 100t≤ ≤ . We sample f  

using three different sampling intervals; 1=T , 5=T , and 20=T . The 

corresponding sampling rates are 100, 20, and 5 respectively. Figure 2.5(b) 

clearly shows that the signal with high sample rate approximates the analog 

signal more accurately than signals with less sampling rate as in figure 2.5 

(c) and (d). 
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            (a)   )1.0cos()( ttf =                                           (b)    1=T   

                 

             (c)      5=T                                                   (d)   20=T  

Figure 2.5 

Definition 2.8 [6]: Algebraic polynomials  

An algebraic polynomial is a function in the form:  

01
1

1 ...)( atatatatP n

n

n

nn ++++= −
−  

Where n  is a non-negative integer, ia  is a real constant for each ni ,...,1,0= . 
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Weierstrass Approximation theorem guarantees the existence of a 

polynomial that approximates any continuous function defined on closed 

and bounded interval to within any .0>ε  Also, the importance of 

polynomials in the approximation of functions is that the derivatives and 

indefinite integral of a polynomial are polynomials and are easy to 

determine. This is why polynomials are often used for approximating 

continuous functions. Taylor polynomial, given in theorem (1.2), 

approximates a function near a point. In some applications, a tabulated 

function over a long interval, need to be processed. Polynomial 

interpolation approximates the given tabulated function over the entire 

interval.  

Theorem 2.1 [6]: Lagrange interpolation  

If f be a function defined at the 1+n  distinct numbers: nttt ,...,, 10 , then 

there exists a unique polynomial )(tP  of degree at most n  with the property 

that 

.,...,1,0each for    )()( nktPtf kk ==  

This polynomial is given by 

                                        ,)()()(
0
∑
=

=
n

k

kk tLtftP        (2.9)  

where 

                                         ∏
≠
=

−
− ==

n

ki
i

tt

tt

k nktL
ik

i

0
)(
)( .,...,1,0each for    )(    (2.10)  
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There are other forms of the interpolating polynomials, like Newton 

forms, which have computational advantages over Lagrange form and they 

can be found in any numerical analysis text book.   

Example 2.4: 

The second-degree interpolating polynomial for ttf /1)( =  using the 

numbers (nodes) 4 and ,5.2 ,2 210 === ttt   is: 

15.1425.005.0)()()( 2
2

0

+−==∑
=

tttLtftP
k

kk  

Figure 2.6 shows the graph of f  (solid) together with the graph of P  (dots) 

 

Figure 2.6 

2.3 Periodic Signals  

Periodic signals, whether analog or discrete, repeat their values over 

intervals. A sinusoid signal is a good example of periodic signals. The 

period of a function is the interval on which a signal repeats itself, and the 

reciprocal of its period is its frequency. If a signal repeats itself over an 
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interval, then it repeats itself over any positive integer multiple of that 

interval. We will characterize a periodic signal by the smallest interval of 

repetition.  

Definition 2.9 [1]: Periodicity  

An analog signal f  is periodic if there is a number 0>T  with 

)()( tfTtf =+  for all t . A discrete signal x  is a periodic if there is an integer 

0>�  with )()( nx�nx =+  for all  Z∈n  . The smallest value, for which a 

signal is periodic, is called the fundamental period. 

Definition 2.10 [1]: Amplitude  

The amplitude of a signal is its maximum value. 

Example 2.5: 

The signal )
2

cos(3)( ttf
π

=  is periodic with fundamental period 4 and 

amplitude 3  as in figure 2.7. 

 

Figure 2.7 
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2.4 Frequency Domain  

The signals; )sin(t  and )cos(t  are the most popular for identifying 

periodicities in signals. This is done by decomposing the signal in terms of 

)sin( tω  and )cos( tω  forming a trigonometric series.  For periodic signals, 

convergence of a series means that only the first few terms are significant 

and the rest are considered noise in the signal. Therefore, the signal is 

approximated using few terms (partials sums) of the series representing the 

signal. 

Example 2.6: 

Consider the signal in figure 2.8(a), which consists of a series of 

irregular pulses. 

      

                         (a)                                                               (b)  

Figure 2.8 

We can write the signal in figure 2.8(a) as a sum of three sinusoid and small 

noise component: 
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)(
50

2
sin

25

2
sin

15

2
sin)( n�

nnn
nx +








+








+








=

πππ  

Notice that the graphs of the three sinusoids in figure 2.8(b) are very close 

to the original signal in Figure 2.8(a). 

2.5 Time and Frequency Domains  

 For signal in time-domain, which is a sequence of numbers, we can 

identify each value for this signal at a specified time, but we can't recognize 

its shape at a specified time. On the other hand, signal in frequency-domain 

we can identify its shape and recognize the part which contains high 

frequency but we don't know at any time.  

     Frequency-domain analysis is good and effective when we are dealing 

with regular signals. However, frequency-domain analysis is not as 

effective when dealing with irregular signals such as irregular heart beat and 

seismic signal interpretation. Our ultimate goal is to analyze a signal for its 

time and frequency. 

Definition 2.11 [20]: Frequency  

The frequency ω  is the inverse of the period. It is measured in cycle per 

second or hertz  (Hz). 

To understand the frequency domain, let's look at two simple examples. 
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Example 2.7: 

The function ( ) ( ) ( )1
sin 2 sin 6

3
g t t tπ π= +  is a combination of two sine 

waves with amplitudes 1 and 
3

1 , and frequencies 1 and 3 , respectively.  

              

                          (a)  ( )tπ2sin                                               (b)  ( )tπ6sin
3

1  

 

             (c)   ( ) ( )tt ππ 6sin
3

1
2sin +                           (d)    ( ) ( ) 16sin

3

1
2sin ++ tt ππ  

Figure 2.9  
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Their sum, shown in Figure 2.9(c), is periodic with frequency1 (the 

smallest). The frequency domain of ( )tg  is a function consisting of just two 

points ( )1,1 and 1
3,

3
 
 
 

. 

Remark: Every function has a simple frequency domain representation.   

Example 2.8: 

Consider the signal )(tg   



 <<−−

=
otherwise

tt
tg

,0

11,1
)(  

      

                        (a)                                                                (b) 

Figure 2.10 

The Fourier sine series of )(tg  is given by: 

)sin()(
1

tnbtg
n

n π∑
∞

=

=  

Where               

22

))sin((2

n

nn
bn π

ππ −
=  
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The function )(tg  is localized in time domain as we can see in Figure 

2.10(a), but it is not localized in frequency domain as we can see in Figure 

2.10(b). The signal )(tg  is decomposed as an infinite sum of sinusoids 

signals each of frequency 
n

1
=ω  and amplitude nb . The above series is 

known as the Fourier sine series and will be discussed in chapter 3. Figure 

2.10(a) shows the time domain of )(tg  and Figure 2.10(b) shows the 

frequency domain of )(tg . It is obvious that signal )(tg  is well localized in 

the time domain but not localized in the frequency domain.      

Periodic functions can be represented in frequency domain as the sum 

of sine waves with frequencies that are integer multiples of some 

fundamental frequency. Note that the signal in Figure 2.10(a) is not periodic 

in time domain and we noticed that frequency domain concept can be 

applied to a nonperiodic function, but only if it is nonzero over a finite 

range (localized). Localized functions can be represented as the sum of sine 

waves with all kind of frequencies not only the harmonics. 

Definition 2.12 [20]: The spectrum 

The spectrum of frequency domain (also called the frequency content of 

the function) is the range of frequencies it contains.    

For instance the function in figure 2.9(c) has the spectrum{1,3} , while the 

spectrum of the function in Figure 2.10(b) is the entire range [ )∞,0 . 
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2

)()(
)(

nxnx
nxe

−+
=

2

)()(
)(

nxnx
nxo

−−
=

)()()( nxnxnx oe +=

Definition 2.13 [20]: The bandwidth 

Bandwidth of frequency domain is the width of its spectrum. 

The bandwidth of the frequency domain of the function in figure 2.9(c) is 2 , 

but the bandwidth of figure 2.10(b) is ∞ . 

The concept of time and frequency domains is due to the French 

mathematician Joseph Fourier. He proved that any periodic function real or 

complex can be represented as the sum of sine and cosine functions. 

Moreover, he showed how to transform between the time and the frequency 

domains. 

2.6 Special Types of Signals 

In this section, we briefly discuss signals of special types that make 

processing such signals easier. 

Definition 2.14 [1]: Even and odd part of signals 

A discrete signal )(nx  can be decomposed into an even part: 

                                                                                            (2.11a) 

and an odd part: 

                                                                                            (2.11b) 

with  
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∞<∑
∞

∞−=n

nx )(

∫
∞

∞−

∞<dttf  )(

∞<∑
∞

∞−=t

tx
2

)(

Definition 2.15 [1]: Finite support 

A discrete signal )(nx  is finitely supported if there are integers �M <  

such that . and for  0)( �nMnnx ><=  An analog signal is finitely supported if 

it is zero outside some interval [ ]ba,  on the real line.   

Definition 2.16 [1]: Absolutely summable signals 

A discrete signal )(nx  is absolutely summable (or summable) if the sum 

of its absolute values is finite; i.e. 

                                                                                                          (2.12) 

Definition 2.17 [1]: Absolutely integrable signals 

An analog signal )(tf  is absolutely integrable (or integrable) if the 

integral of its absolute value over R  is finite; i.e. 

                                                                                                 (2.13)  

2.7 Signals of Finite Energy 

The most important signal classes are the discrete and analog signals of 

finite energy. 

Definition 2.18 [1]: Finite-energy discrete signals 

A discrete signal )(tx  has a finite energy (or square-summable) if  

                                                      (2.14)  
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An analog signal )(xf  is of finite-energy (or square integrable) if 

                                              ∫
∞

∞−

∞<dxxf  )(
2                                           (2.15) 

2.8 Signal Transmission                                   

Modern technology often requires that information can be sent from one 

place to another, which is called signal transmission. It occurs, for example, 

in wireless communication, the internet, computer graphics, or transfer of 

data from CD-ROM to computer. 

All types of signal transmission are based on transmission of a series of 

a numbers. One can sample the graph and send the sampled graph which 

consists of large number of sampled data. A more efficient way is to find a 

convergent series representation of the signal and to send the most 

significant coefficients then the receiver can reconstruct the signal from 

these significant coefficients. We illustrate the major steps to send a signal 

f  from a sender S to a receiver R by assuming a power series representation 

of f .  

• S finds ( ) ∑
∞

=

=
0n

n

n xaxf ; 

• S sends the coefficients L,, 10 aa , 

• R receives the coefficients L,, 10 aa ,  

• R reconstructs the signal by multiplying the coefficients na  by nx  and 

forming the infinite series ( ) ∑
∞

=

=
0n

n

n xaxf . 
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In practice, S can not send an infinite sequence of coefficients L,, 10 aa : 

so, S sends a finite sequence of coefficients. This finite set of coefficients 

must consist of the most significant coefficients. For a convergent series, 

the most significant coefficients are the first few coefficients.  

Example 2.9: 

Assume that S wishes to send the function  

( ) [ ]3,0,sin ∈= tttf  

Using Taylor theorem  

( )
( )

5432

0

12

120

1
.0

6

1
.00

!12
1sin ttttt

n

t
t

n

n
n ++−++≈

+
−=∑

∞

=

+

    

With 1666.1
6

1
≈  and 0083.0

120

1
≈ , S sends the numbers: 0083.0;0;1666.0;0;1;0 −  

and R will reconstruct the signal from the received coefficients as 

( ) 5432 0083.0.01666.0.00
~

ttttttf ++−++=  

Figure 2.11(a) shows the original signal )(tf  and the reconstructed signal 

)(
~

tf  over the interval ]3,0[ . From Figure 2.11(a) we can see that the 

reconstructed signal is close to the original signal when [ ]2,0∈x , but then the 

approximation starts to deviate from the signal. A better reconstruction can 

be reached if S  sends more coefficients. The next significant coefficient is 

000198.0
!7

1
=

− .  Figure 2.11(b) shows the reconstructed signal 

( ) 75432 000189.00083.0.01666.0.00
~

tttttttf −++−++=  
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And the original signal over the interval ]3,0[ . 

    

                                 (a)                                                      (b) 

Figure 2.11 

Comparing Figure 2.11(a) with Figure 2.11(b) we see that Figure 

2.11(b) is better since it is very close to the original signal. But, the problem 

here is that not every signal has a power series representation. So, we need 

to work with other types of series representation. 

2.9 The Uncertainty Principle [20] 

The relation between time and frequency domains is very important, 

they are complementary. Each of them complements the other, when one of 

them is localized the other must be global. 

Example 2.10:  

A pure sine wave is not localized in the time domain but it is well 

localized in the frequency domain. Example 2.8 shows a signal that is well 

localized in the time domain but not in in the frequency domain. 
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Chapter Three 

Fourier Analysis 

3.1 Fourier Series 

3.2 Complex Form of  Fourier Series 

3.3 Fourier Transform 

3.4 Fast Fourier Transform 

3.4.1 Splitting Method 

3.5 Two-Dimensional Fourier Transforms 

3.6  Fourier Image Compression 
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Chapter Three 

Fourier Analysis 

Fourier analysis is a large classical area of mathematics. While Taylor 

series expands a function about a point 00 =x  using the basis{ }∞=0n

nx , Fourier 

series, uses the system ( ) ( ){ }∞=0cos,sin nnxnx  which is orthogonal over any 

period of length 2π . The idea is to represent functions on R via 

trigonometric functions. This is suitable for periodic functions with 

periods π2 . For a periodic function with period L2 , the orthogonal system 
∞

=
























0

cos,sin
n

L

xn

L

xn ππ is used. Non-periodic functions can be considered 

periodic with period ∞  and the result is the well known Fourier integral. In 

1807 Fourier claimed that the Fourier series converges without any 

assumptions on the function, and later it was proved that the result does not 

hold as generally as Fourier believed. However, the theory is not part of this 

thesis. 

3.1 Fourier Series 

The functions ( )xsin  and ( )xcos  have periods 2π. The functions ( )axsin  

and ( )axcos , 0>a  have the period a/2π . If f  has period 0>p , it also has 

period kp  for �∈k . Hence a periodic function can have many periods. The 

smallest period of f  is referred to as the period of f . 
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( )∫
−

=
π

ππ
dxnxxfan cos)(

1

∑
=

++=
�

n

nn� nxbnxaaxS
1

0 ).sincos(
2

1
)(

Definition 3.1 [7]: Fourier series expansion 

Let f  be a periodic function with period π2=p , and square integrable 

on ],[ ππ− . Fourier series expansion of f  is given by: 

                                     ( ),sincos
2

1
)(

1
0 ∑

∞

=

++=
n

nn nxbnxaaxf                     (3.1)  

where the coefficients na , and nb   are defined as: 

                                        , n  = 0,1,2,…              (3.2)  

and 

                                      ( )∫
−

=
π

ππ
dxnxxfbn sin)(

1
dx  , n = 1,2,3,…             (3.3) 

The th�  partial sum of the Fourier series is 

                                               (3.4) 

Definition 3.2 [16]: The inner product  

Let f and g  be two complex valued functions defined on the interval 

[ ]ba, . The inner product >< gf ,  is defined by: 

( ) ( )∫>=<
b

a

dxxgxfgf ,  

where g  is the complex conjugate of g .   
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Definition 3.3 [16]: Orthogonality 

A set of functions ( )}{ ∞
=0nn xf  is orthogonal on an interval I ,  if 

mnff mn ≠∀>=<   0,  on I . 

Theorem 3.1 [16]: the set }{ ∞
=0)cos(),sin(

n
xnxn  is orthogonal on [0, 2 ]π . 

Proof: We want to show: 

a. 
2

0

sin( )cos( ) 0 ,nx mx dx n m

π

= ∀∫  

b. 
2

0

sin( )sin( ) 0nx mx dx n m

π

= ∀ ≠∫  

c. 
2

0

cos( )cos( ) 0nx mx dx n m

π

= ∀ ≠∫  

a. If n = m, then 

              ( ) ( )dxxnxndxxmxn ∫∫ =
ππ 2

0

2

0

cossin)cos()sin(  

                              ( ) ( )[ ] π
π

2

0

2

0

2cos
4

1
2sin

2

1
xn

n
dxxn −=== ∫  

      ( ) ( )[ ] 00cos4cos
4

1
=−

−
= πn

n
 

If n≠ m, then 

( ) ( )

π

ππ

2

0

2

0

2

0

)sin(
1

)sin(
1

2

1

)cos()cos(
2

1
)cos()sin(









+

+
−−

−
=

+−−= ∫∫

xmn
mn

xmn
mn

dxxmnxmndxxmxn
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Let k = n – m and r = n + m. Then, 

               
ππ 2

0

2

0

)sin(
1

)sin(
1

2

1
)cos()sin( 




 −=∫ xr
r

xk
k

dxxmxn  

                                           0)2sin(
1

)2sin(
1

2

1
=




 −= r
r

k
k

ππ          

Similarly we can prove (b) and (c). 

Theorem 3.2 [7]:  

a. If f  is an even function, then  0=nb  for all n , and 

,...2,1,0    ,    )cos()(
2

0

== ∫ ndxxnxfan

π

π
 

The result is a Fourier cosine series. 

b. If f  is odd, then 0=na  for all n , and 

     ,...3,2,1     ,   )sin()(
2

0

== ∫ ndxxnxfbn

π

π
 

The result is a Fourier sine series. 

Example 3.1: 

Consider the step function: 

                                       
[ )

( ]







∈

=

−∈−

=

,,0    1

,0    0

,0,1

)(

π

π

xif

xif

xif

xf                              (3.5) 

The periodic odd extension of the function f  is represented by a Fourier 

sine series with coefficients:  
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=== ∫∫

even is  if   0

odd is  if  
4

)sin(
2

 )sin()(
2

00 n

n
ndxnxdxnxxfbn π

ππ

ππ

 

The Fourier sine series is: 








 +++== ∑ ...5sin
5

1
3sin

3

1
sin

4
sin

4
)( xxx

n
xn

n
xf

oddn ππ
 

                              )(∑
∞

=

−
−

=
1

12sin
12

14

n

xn
nπ

                                              (3.6) 

    

                  (a)                                                        (b) 

 

                                      (c) 

Figure 3.1 
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Figures 3.1(b,c) show that the partial sums approximate f  well when f  

is continuous, but that is not the case in the neighborhoods of points of 

discontinuities of f . This phenomenon is known as Gibb's phenomenon. 

Example 3.2: 

Consider the function 

( )ππ ,       ,)( −∈= xxxf  

The odd extension of the function f  is represented by a Fourier sine series 

with coefficients: 

,)1(
2

 sin
2

  sin)(
2 1

00

+−==== ∫∫ n

n
n

dxxnxdxnxxfb

ππ

ππ
                                                         

and the Fourier sine series is: 

    1

 1

2 1 1 1
( ) ( 1) sin 2 sin sin 2 sin 3 sin 4 ...

2 3 4
n

n

f x n x x x x x
n

∞
+

=

 = − = − + − + 
 

∑             (3.7) 

          

                        (a)                                                      (b) 
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                                    (c) 

Figure 3.2 

Figures 3.2(b,c) show that the partial sums approximate f  well, except 

around point  where f  is not continuous. 

Example 3.3: 

Consider the function 

[ )ππ ,       ,)( −∈= xxxf  

The even extension of the function f  is represented by a Fourier cosine 

series with coefficients: 






 −
===

==

∫∫

∫

even    if        0

odd    if 
 

4
dx )cos(

2
dx )cos()(

2

dx 
2

2

00

0

0

n

n
nnxxnxxfa

xa

n π
ππ

π
π

ππ

π
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and the Fourier cosine series is: 

           






 +++−=−= ∑
∞

...5cos
25

1
3cos

9

1
cos

4

2
cos

 

4

2  
2

xxxxn
n

f
oddn π

π
π

π            (3.8) 

      

                            (a)                                                      (b) 

 

                                        (c) 

Figure 3.3  

Figure 3.3(b,c) show that the partial sums approtimates f  very well snice 

f  is  continous. 
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3.2 Complex Form of Fourier Series  

Definition 3.4 [27]: Given a > 0 the set of functions 

                                                     }{ Zn

axnie   
/     2

∈
π         (3.9)                                                                     

is called the period-a trigonometric system. 

Remarks: 

• Euler's formula: ( ) ( )xixe xi sincos +=  implies that  

( ) ( )axniaxne anxi /  2sin/  2cos/2 πππ +=  

This means that each element in trigonometric system has period- a .  

• The period-a trigonometric system is sometimes given in the form              

                                     ( ) ( )}{ Z∈n
axnaxn /  2sin,/  2cos,1 ππ    (3.10)  

Systems (3.9) and (3.10) can be obtained from each other by forming 

simple linear combinations. Specially, for ,Z∈n  





=

≠+
=

,01

,0)/2sin()/2cos(/2

nif

nifaxniaxn
e

axni
πππ  

and for �∈n , 

 ( )
2

/ 2cos
/2/2 axniaxni ee

axn
ππ

π
−+

=  

and 

i

ee
axn

axniaxni

2
)/2sin(

/2/2 ππ

π
−−

=  
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• A function that can be written as a finite linear combination of 

elements of the period- a  trigonometric system is called a period- a  

trigonometric polynomial. That is, a trigonometric polynomial has the 

form 

( ) ∑
=

=
�

Mn

axni
encxf

/2)( π  

for some Z∈�M ,  and some coefficients ( )nc . 

Theorem 3.3 [7]: The period- a  trigonometric system in 3.9 is orthogonal. 

Definition 3.5 [7]: Given an intagrable function )(xf  on [ ]a,0 . Fourier 

series expansion of )(xf  is given by: 

                                    ∑
∈Zn

axniencxf /2)(~)( π        (3.11)  

where the coefficients )(nc  are defined as: 

                              ∫ ∈= −
a

axni
ndxexf

a
nc

0

/2 .for)(
1

)( Zπ                    (3.12) 

provided that those integrals make sense. For example, if )(xf  is integrable 

on [ ]a , 0 , then the integral in (3.12) exists for each n . 

Remark: The complex form of the Fourier series is just another form of the 

Fourier series. To show this, write  

∑

∑∑

∈

∈∈
















−






−+

















+








+=

�

�

n

nZn

axni

a

xn
i

a

xn
nc

a

xn
i

a

xn
nccenc

ππ

πππ

2
sin

2
cos)(                                  

2
sin

2
cos)()0()( /2
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=

−

≠

=

=

−

.0 if           
2

1
           

odd, is  if   )1(
1

,0 even, is  if            0           

       

)2/sin(
2

2

1
)(

2/)1(

n

n
n

nn

n
n

nc

n

π

π
π

( ) [ ]

[ ]∑

∑

∈

∈








−−+









−++=

�

�

n

n

a

xn
ncnci

a

xn
ncnc

π

π

2
sin)()(        

2
cos)()(0c

    

Conversely, a series of the form 

∑
∈

++
�n

nn axnbaxnaa )/2sin()/2cos(0 ππ  

Can be rewritten as 

∑
∈Zn

axnienc /2)( π , 

where  

0)0( ac = ,        , 0 , 
2

)( >
−

= n
iba

nc nn       . 0 , 
2

)( <
+

= −− n
iba

nc nn   

Example 3.4: 

(a) Let )(xf  be the period-2 extension of the function [ ]( )x1/2 , 2/1−χ . The 

Fourier coefficients of )(xf  are: 

[ ]

∫

∫

−

−

−

−
−

=

=

2/1

2/1

1

1

2/2
2/1,2/1

2

1
        

)(
2

1
)(

dxe

dxexnc

xni

xni

π

πχ
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, 0
1

)0(
2/

2/

== ∫
−

π

ππ
dxxc

The Fourier series associated to )(xf  is:  

( ) ( ) ...3cos
3

2
cos

2

2

1
 ~          

)1(
)12(

1

2

1
~)( )12(

+−+

−
+

+ ∑
∞

−∞=

+

xx

e
k

xf
k

xkik

π
π

π
π

π
π

 

 (b) Let )(xf   be the period-π  extension of the function ( )( )xx πχ  , 0⋅  . Then 

( ) ,
2

/1)0(
0

π
π

π

== ∫ xdxc   

and for ,0≠n  

  .
2

 
1

)( 2

0 n

i
dxexnc

xni == −∫
π

π
 

Therefore, 

 ∑∑
∈∈

−+
�Z nn

xni

n

nx
e

n

i
xf .

)2sin(
~

1

2
~)( 2 ππ  

(c) Let )(xf  be the period-π extension of the function ( ) ( )xx 2/ , 2/ ππχ −⋅ . Then  

   

and for 0≠n ,  

( )
,

2

1
 

1
)( 2

2/

2/ n

i
dxexnc

n

xni π
π

π

π

−
== −

−
∫  

so that 

              

 

( ) ∑∑
∈∈

−−=
−

�Z n

n

n

xni
n

n

nx
e

n

i
xf .

)2sin(
)1(

)1(

2
~ 2
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(d) Let )(xf  be the period-2π extension of the function ( )( )xx ππχ  ,  −⋅ . Then  

,
22

1
)0(

π
π

π

π

== ∫
−

dxxc  

and for 0≠n ,   

   xnixnixni
edxexdxexnc
−−

−

− === ∫∫ 2
  

1
 

2

1
)(

0

2/2 π
ππ

ππ

π

π  

( )( )∑
∈

+
+

−
�n

xn
n

xf .12cos
)12(

14

2
~)(

2π
π   

3.3 Fourier Transform 

Fourier series is a useful tool for representation and approximation of 

periodic functions via trigonometric functions. Non-periodic functions can 

be considered periodic with period ∞ . Taking the limit as the period ∞→L  

in the Fourier series leads to the Fourier integral from which Fourier 

transform and its inverse are derived. Fourier transform, transforms a 

function (signal) from its time domain to its frequency domain. The inverse 

does the opposite. 

Theorem 3.4 [16]: If  f  is continuously differentiable function with 

( ) ∞<∫
∞

∞−

dttf , then the Fourier transform of f  is: 

( ) ( ) dtetff
ti∫

∞

∞−

−= ω

π
ω

2

1ˆ .      (3.13) 

Its inverse is  

( ) ( ) ωω
π

ω deftf ti∫
∞

∞−

= ˆ
2

1 .      (3.14) 
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Example 3.5:  

The Fourier transform of the rectangular wave 

( )


 ≤≤−

=
otherwise

tif
tf

0

1 ππ
 

is  

( ) ( ) dtetff ti∫
∞

∞−

−= ω

π
ω

2

1ˆ  

Using Euler’s formula, 

( ) ( )( )tittfetf ti ωωω sincos −=−  

The product ( ) ( )ttf ωsin  is odd since f  is even. Therefore the integral of the 

imaginary part of the product ( ) ( )ttf ωsin  is zero and the Fourier transform 

of  f  is reduced to  

( ) ( ) ( ) dtttff ∫
∞

∞−

= ω
π

ω cos
2

1ˆ  

( )

( )
ωπ

πω

ω
π

π

π

sin2

cos
2

1

=

= ∫
−

dtt
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                               (a)                                                           (b) 

Figure 3.4 

Figure 3.4(a) shows the function f  which is well-localized in time 

domain while figure 3.4(b) shows the Fourier transform f̂  is not localized 

in the frequency domain, as the uncertainty principle asserts.  

Fourier transform has a drawback; it shows the frequency content of a 

function f , but it doesn't specify where. i.e. the values of t  where the 

function has low and high frequencies. The reason for this is that Fourier 

transform uses the sine and cosine as a basis functions and they are 

infinitely long, so they pick up the different frequencies of  f  without their 

location.  

 Computationally, we work on discrete signals not continuous ones. 

Therefore, a discrete version of the Fourier transform is needed. Fourier 

Transform (3.13) can be approximated by discrete Fourier transform (DFT). 

The function f  must be assumed zero outside some finite interval i.e. 
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2/for  0)( Axxf >= . The Fourier transform of such a function with limited 

extent is given by [4]: 

( ) ( ) ( ) dxexfdxexff

A

A

xixi ∫∫
−

−
∞

∞−

− ==
2/

2/

22ˆ ωπωπω , 

This is the integral we wish to approximate numerically.  

 The interval of integration [ ]2/,2/ AA−  is divided into to �  intervals of 

length �Ax /=∆  assuming that � is even, so the points are defined as 

.2/,...,2/ ��xn −=  The set of points are 

,
2

,...,0,...,
2 2/02/

A
xx

A
x �� ==

−
=−  

Assuming the function f  is known at these points. Letting the integral be 

,)()( 2 xiexfxg ωπ−=  

Applying the trapezoid rule to this integral we obtain 

∫ ∑
−

−

+−= 






















++






 −∆
=

2/

2/

1
2

1
2

2
)(2

22
)(

A

A

�

�
n

n

A
gxg

A
g

x
dxxg  

With the assumption that g is even, the trapezoid rule approximation may 

be written as: 

( ) ( ) nxi

�

�
n

n

�

�
n

n

A

A

exf
�

A
xgxdxxgf

ωπω 2
2

1
2

2

1
2

2/

2/

)()(ˆ −

+−=+−=

∑∑∫ =∆≈==  

This approximation can be evaluated for any value of ω . 

For convenience, we adopt the notation  
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The following definition uses the above notations.  

Definition 3.6 [4]: Discrete Fourier Transform (DFT) 

Let �  be a positive integer and let nf  be a sequence of �  complex 

numbers where .1,...,1,0 −= �n  Then its discrete Fourier transform is another 

sequence of �  complex numbers given by: 

                              for                                               (3.15) 

              

The output of the DFT kF , is a complex-valued sequence. We will 

examine the real and imaginary parts of the DFT independently. These two 

sequences are denoted by { }kFu  and { }kFv  respectively, and they are defined 

as follows: 

{ } { } { }∑
+−=








+






=
2

1
2

2
sin

2
cos

1
�

�
n

nnk
�

kn
fv

�

kn
fu

�
Fu

ππ     (3.16) 

{ } { } { }∑
+−=








−






=
2

1
2

2
sin

2
cos

1
�

�
n

nnk
�

kn
fu

�

kn
fv

�
Fv

ππ    (3.17) 
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Definition 3.7 [4]: Inverse Discrete Fourier Transform (IDFT) 

Let �  be an even positive integer and let kF  be a sequence of �  

complex numbers where 
2

,...,1
2

��
k +

−
=  . Then its inverse discrete Fourier 

transform is another sequencer of �  complex numbers given by  

                                          .
2

,...,1
2

for          
2

1
2

��
nFf

�

�
k

kn

�kn +
−

== ∑
+−=

ω    (3.18)  

If �  is odd positive integer and  kF  is a sequence of  �  complex numbers, 

where 
2

1
,...,

2

1 −−
−=

��
k , then its inverse discrete Fourier transform is 

another sequence of  �  complex numbers given by 

                                 .
2

1
,...,

2

1
for       

2

1

2

1
∑
−

−
−=

−−
−==

�

�
k

kn

�kn

��
kFf ω    (3.19)                          

Example 3.6: �umerical evaluation of the FT and its inverse 

Consider 6  points from the complex function  

)
3

(
iI

ef =  

The DFT and IDFT of these 6  points can be computed using any math 

program such as (maple, matlab,…,etc.). Table 3.1 shows the input 

sequence nf , the DFT  kF  and the IDFT nf , respectively. 
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Table 3.1 

The 6 points Discrete Fourier 

transform 

Inverse Discrete 

Fourier transform 

Error 

0.9450+0.3272I 08143+1.904I 0.945+0.3272I 1×10-16-6×10-17I 

0.7859+0.6184I 0.1172-0.9762I 0.7859+0.6134I 1×10-16-2×10-16I 

0.5403+0.8415I 0.2672-0.3565I 0.5403+0.8415I 0-1×10-16I 

0.2352+0.9719I 0.3203-0.137I 0.2352+0.9719I 8×10-17I -1×10-16I 

-0.0957+0.9954I 0.364+0.0437I -0.0957+0.9954I -6×10-17+0I 

-0.416+0.9093I 0.4317+0.3235I -0.416+0.9093I -2×10-16-2×10-16I 

3.4 Fast Fourier Transform (FFT) 

The fast Fourier transform is a well-known efficient algorithm that 

reduces the number of iterations in approximating a function. i.e. it reduces 

the cost of calculating the coefficients }{ �

nnc 0=  when �  is large. Also, FFT 

is a set of methods all designed to compute the various forms of the DFT 

efficiently. FFT uses many methods but we will focus on splitting methods.  

3.4.1 Splitting Method [4] 

The goal of the FFT is to efficiently compute the DFT of a sequence nf  

which has length �  and is assumed to have a period of length � .  

Using definition (3.15) , we get: 
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 .1,...,1,0for       
1

0

−== −
−

=
∑ �kfF

kn

�

�

n

nk ω  

where �i

� e /2πω = . 

Lets begin with the case M� 2=  where M  is a natural number. Now 

split nx  into its even and odd subsequences by letting nn fy 2=  and 12 += nn fz , 

then formula (3.15) becomes: 

.1,...,0for      )12(2

1
2

0

−=+= +−−

−

=
∑ �kzyF kn

�n

kn

�

�

n

nk ωω    (3.20) 

Also, )2/(/2/4 �kni�kni ee ππ −− =  is equivalent to kn

�

kn

�

−− = 2/
2 ωω  . 

So formula (3.20) can be written as:  

k

k k � kF Y Zω −= +       

where  

 
1

2

/2
0

�

n k

k n �

n

Y y ω
−

−

=

=∑  is the DFT of the sequence ny , 

and 

       
1

2

/2
0

�

n k

k n �

n

Z z ω
−

−

=

=∑  is the DFT of the sequence nz . 

Each kY and kZ is a DFT of length 2/�  or half-length DFT with period 2/� . 

we conclude: 

2

2 2 2

          where    0,..., 1.
2

�
k

� � � �
k k k

�
F Y Z kω

 − + 
 

+ + +
= + = −    
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Notice that  12/ −=− �

�ω  and the subsequences kY  and kZ  have a period of 

2/� , we conclude: 

.
2

,...,0    where          
2

�
kZYF

ZYF

k

k

�k�
k

k

k

�kk

=−=

+=

−

+

−

ω

ω

          

The idea of splitting method is to express the DFT sequence of length 

�  as a combination of two subsequences both of length 2�  and we repeat 

the splitting method again on each subsequence. A full FFT algorithm 

results when the splitting idea is applied to the computation of kY  and kZ . 

Finally, the problem of computing a DFT of length �  has been replaced by 

computing �  DFTs of length 1. At this point there are really no DFTs left 

to be done, since the DFT of a sequence of length 1  is itself.        

3.5 Two-Dimensional Fourier Transforms 

The discrete Fourier transform (DFT) of an image is a representation of 

an image as a double sum of complex exponentials of varying magnitudes, 

frequencies, and phases. The Fourier transform plays a critical role in a 

broad range of image processing applications, including analysis, denoising, 

and compression. 

There are two important reasons for using   DFT: 

• The input and the output of DFT are both discrete, which makes it 

convenient for computer manipulations. 
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• Fast Fourier Transform FFT is a fast algorithm for computing the 

DFT.   

 The DFT is usually defined for a discrete function ( )nmf ,  that is 

nonzero over the finite region 10 −≤≤ Mm and 10 −≤≤ �n . The two-

dimensional �M ×  Discrete Fourier transform of  ( )nmf ,   is defined by: 

( ) ( )∑∑
−

=

−

=

−−=
1

0

1

0

)/2()/2(

21 ,,
M

m

�

n

n�jmMj
eenmfF 21 ωπωπωω , 

where     

.1,...,1,0

,1,...,1,0

2

1

−=

−=

�

M

ω

ω
 

The variables 1ω  and 2ω  are frequency variables; their units are radians 

per sample. ( )21 ,ωωF  is often called the frequency-domain representation of 

( )nmf , . ( )21 ,ωωF  is a complex-valued function that is periodic both in 1ω  

and 2ω , with period π2 . Because of the periodicity, only the range 

πωωπ ≤≤− 21 ,  is displayed. 

The inverse M� ×  two-dimensional Fourier transform is given by:  

( ) ( )∑∑
−

=

−

=

=
1

0

1

0

)/2()/2(

21 ,
1

,
M �

n�jmMj
eeF

M�
nmf

1 2

21

ω ω

ωπωπωω , 

where    0,1,..., 1m M= −  and 0,1,..., 1n �= − .  

This equation means that ( )nmf ,  can be represented as a sum of an 

infinite number of complex exponentials (sinusoids) with different 
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frequencies. The magnitude and phase of the contribution at the frequencies 

( )21 ,ωω  are given by ( )21 ,ωωF . 

3.6 Fourier Image Compression 

Imagine that we want to scan a white and black photograph line by line. 

We can assume that the image has an infinite resolution. The ideal scan 

would be an infinite sequence of numbers that can be considered the values 

of a continuous light intensity function I(t). But, in practice we can store a 

finite amount of data in memory, so we have to choose a finite number of 

values I(1) through I(n). This process is known as sampling.  

Sampling seems tradeoff between quality and price. The bigger the 

sample the better the quality of the final image, but requires more memory 

and higher screen resolution, resulting in higher costs. However, this 

conclusion is not entirely true. Sampling theory says that we can sample an 

image and reconstruct it later in memory without loss of quality if we can 

do the following: 

1. Transform the infinity function from the time domain )(tI to 

frequency domain )( fG . 

2. Find the maximum frequency .mf   

3. Sample )(tI  at a rate slightly higher than mf2 . For example if  

            fm = 22000 Hz, samples are generated at the rate of 44100 Hz . 
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     4. Store the sampled values in the bitmap. The resulting image would 

be equal in quality to the original quality on the photograph.   

There are two points to consider:  

The first point is that mf  could be infinite. The value of mf  should be 

selected so that the frequencies that are greater than mf  are not contributed 

i.e. have low amplitude. But, in this case there would be lose in quality.    

The second point is that the bitmap (the resolution) may be too small 

for a generated sample (in step 3). So, we have to choose a smaller sample 

and still there would be a loss in image quality. 

The previous result was proved by Harry Nyquist, and 2fm is called 

Nyquist rate. Nyquist rate is being used in practical situations. For example 

the range of human hearing is between 16 Hz and 22000 Hz. So, when the 

sound is digitized at a high quality, it sampled at  the rate of 44000Hz. Any 

thing lower than that result would be distortion. Note that Nyquist rate is the 

difference between the maximum and the minimum frequencies, the 

bandwidth of the signal. 

Notice that once we take samples of a signal we may loose the behavior 

of the signal between samples, and we may miss some important 

information. But, in practice all analog signals have limited frequency 

response because they are created by sources like mouth, microphone or 

speaker whose response speed is limited, so the changing in real signal is so 

limited. We can say that finite bandwidth of real signals is what makes their 

digitizing possible. In the next two examples, the software FAWAV [26] is 

used. 
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Example 3.7: 

                                              

                          (a)                                                                     (b) 

                                           

                             (c)                                                               (d) 

                                         

                      (e)                                                                      (f ) 

Figure 3.5 

Figure 3.5 (a) represents the original image and figures 3.5 (b,c,d,e,f ) 

represent the Fourier series compressed images at 10, 20, 30, 40,50 terms 
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respectively. Its clear that as the number of terms of the Fourier series 

increases the resolution of the reconstructed image increases. 

Exapmle 3.8:  

Figure 3.6 (a) represents 512512×  image for An-Najah national 

university, Nablus, Palestine. The image type is a bitmap and its size is 257 

KB. Now we will compress this image using Fourier series using different 

reolutions (different terms). 

 

(a) 

 

(b) 
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(c)                                                                                             

 
(d) 

 
(e) 

Figure 3.6 
Figures 3.6 (b,c,d,e) represent the Fourier series compressed images at 

20, 30, 40,50 terms respectively. Its clear that the resolution is proportional 
to the number of terms used in the partial sum of Fourier series. 
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Chapter Four 

Wavelets 

In Fourier series, the orthogonal system ∞
=0}cos,{sin nnxnx  is used to 

represent a function. In wavelet series, another orthogonal system is used. 

This system consists of functions generated, by scaling and dilation, from 

one function called mother wavelet. Wavelets are functions that satisfy 

certain mathematical requirements and are used in analyzing data or other 

functions. Wavelets cut up data into different frequency components, and 

then study each component with a resolution matched to its scale. They 

have advantages over traditional Fourier methods in analyzing functions. 

We can compare wavelet analysis to viewing an object from a distance, 

then closer, then through a microscope. When we look from a distance, we 

see the whole shape of the object, but not the small details. Looking closer, 

we can see more details. When we look through a microscope, we see small 

details, but not the whole shape. This is why it is important to analyze in 

different scales. In short, when we change the scale of the wavelet, we get 

new information about the function being analyzed.  

Wavelet analysis procedure is to adapt a wavelet prototype function, 

called an analyzing wavelet or mother wavelet. Temporal analysis is 

performed with a contracted, high frequency version of the prototype 

wavelet, while frequency analysis is performed with a dilated, low-

frequency version of the same wavelet. Representing a signal or a function 
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by a wavelet expansion enables us to analyze the signal using the 

coefficients in the corresponding series expansion. In this series, the terms 

with small coefficients contribute less to the sum. Therefore we can neglect 

terms with coefficients of magnitude less than a specific value called 

threshold. Storing coefficients of magnitude greater than a given threshold 

leads to less storage space; this is the main idea of data compression.   

Some applied fields that makes use of wavelets include astronomy, 

nuclear engineering, signal and image processing, neurophysiology, music, 

speech recognition, image compression, human vision and solving partial 

differential equations.    

4.1 Wavelets and Signal Processing 

We start this section by an example that illustrates the use of wavelet in 

signal processing. The example transforms a discrete signal using running 

averages and differences. The result is a transformed (new) signal consists 

of averages and differences. Grouping the averages together results in a 

signal of averages called the trend subsignal whose length is half length of 

the original signal. Similarly, the signal of differences is called the 

fluctuation subsignal whose length is half the length of the original signal. 

The trend subsignal represents (approximates) the original signal while the 

fluctuation signal represents the details in the signal.  
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Example 4.1: 

Let { }n

iix 0=  for some even non-negative integer. For each 
2

1
,...1,0

−
=

n
i , let  

2
ˆ 122

2
++

= ii

i

xx
x  and  

2
ˆˆ 122

2212
+

+

−
=−= ii

iii

xx
xxx    (4.1) 

The first subsignal in (4.1) is the trend (scale) subsignal and it consists of 

running averages. The second subsignal in (4.1) is the detail (fluctuation) 

subsignal and it consists of running differences. Equation (4.1) represents a 

discrete transform. The inverse transform of (4.1) is easily found as: 

 1222 ˆˆ ++= iii xxx  and  12212 ˆˆ ++ −= iii xxx       (4.2) 

Consider the following sequence of numbers which represent a discrete 

signal: 

56 40 8 24 48 48 40 16 

Applying the transform in (4.1), we get: 

First pair: 48
2

96

2

4056
==

+  and   84856 =−  

Second pair: 16
2

32

2

248
==

+  and 8168 −=−  

Third pair: 48
2

4848
=

+  and 04848 =−  

 The last pair: 28
2

56

2

1640
==

+  and 122840 =−  

The first row of the following table shows the original signal while the 

second row shows the transformed signal using running averages and 
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differences, see equation (4.1). The first 4 entries of the second row show 

the trend subsignal and the last 4 entries of the same row show the detail 

subsignal. Denote the trend signal by 1a  and the detail signal by 1d . The 

following table shows the original signal and its transformation. 

Original signal 56 40 8 24 48 48 40 16 

< 1a | 1d > 48 16 48 28 8 -8 0 12 

The original signal in the first row can be reconstructed from the 

transformed signal in the second row by the inversion formulas in equation 

(4.2). For example, 56848 =+ , 40848 =− , 8)8(16 =−+ , 24)8(16 =−− , and so 

on. 

The original signal is approximated by the trend subsignal whose length 

is half the length of the original subsignal. Taking the transform (4.1) on the 

trend subsignal will reduce the length of the second trend subsignal by one 

half which means one fourth of the original signal.  

Applying equation (4.1) on the first trend subsignal and leaving the first 

details subsignal untouched implies.  

32
2

64

2

1648
==

+   ,  16
2

32

2

1648
==

−  

And 48, 28 will be replaced by: 

 38
2

76

2

2848
==

+   ,  10
2

20

2

2848
==

−  
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Denoting the 2-level trend signal by 2a  and the detail signal by 2d  We get 

the following table:   

Original signal 56 40 8 24 48 48 40 16 

< 2a | 2d | 1d > 32 38 16 10 8 -8 0 12 

These eight numbers also represent the original information, but if we 

invert the above procedure twice, then we go back to the original sequence. 

However, we must be careful and keep track of numbers we calculated as 

averages and the ones that are calculated as differences. 

Finally, we repeat the process on 2-level trend subsignal leaving the 

fluctuation subsignal untouched. The numbers 16, 10 are not changed since 

they are differences, but we replace the averages 32, 38 by their average and 

difference, so, we replace 32 by 35
2

70

2

3832
==

+  and we replace 38 by 

3
2

6

2

3832
−=

−
=

− ,  so, we obtain the table:  

Original signal 56 40 8 24 48 48 40 16 

< 3a | 3d | 2d | 1d > 35 -3 16 10 8 -8 0 12 

Notice that transformation (4.1) changes the signal but preserves the 

information in it. The information can be recovered through the inversion 

formula (4.2). The new signal obtained after three transformations is of the 

same length. However, the third trend subsignal has a length of one eighth 

of the original signal. The approximation of the signal by the third trend is 

not accurate since it consists of only one value. But when the original signal 

consists of large number of values, as in sampling audio signals which is 
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measured by kilo-hertz (Khz), the approximation by the third and higher 

level trend signals is acceptable. The detail signal usually consists of values 

that are relatively much smaller than the values of the trend subsignal. By 

looking at the details, we see that some details can be used to improve the 

accuracy. This is done by replacing numbers that are numerically smaller 

than a certain fixed number (threshold) by zeros. For instance, if we remove 

all numbers which numerically are smaller than 4 from the transformed 

signal >< 1233 ||| ddda  , we obtain the following table:  

35 0 16 10 8 -8 0 12 

To reconstruct the signal, we apply the inverse formula (4.2). Based on 

these numbers we will perform the inversion formula as follows: first, 

>< →>< 2ada 2.433 | formula , then >< →>< 12.422 | ada formula , and finally, 

signal original| 2.411  →>< formulada    

35 8 16 - 8 0 0 10 12 

 

35 8 16 -8 35 0 10 12 

 

51 8 19 -8 45 0 25 12 

 

59 43 11 27 45 45 37 13 

Here the four sequences explain the reconstruction after thresholding 

which gives an approximation of the original signal. The first row of the 
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following table shows the reconstructed signal from the transformed 

sequence with threshold 4. The second row shows the original signal.  

59 43 11 27 45 45 37 13 

56 40 8 24 48 48 40 16 

Repeating the thresholding and reconstruction with a threshold of 9, we 

get the following table with the first row for the reconstructed signal and the 

second row for the original one. The following table show the original 

sequence and the reconstructed one after thresholding by 9. 

51  51 19 19 45 45 37 13 

56 40 8 24 48 48 40 16 

Figure 4.1 shows the plot of the original signal together with the 

reconstructed ones.  

 

Figure 4.1 

The energy of the original signal is 11840 while the energy for the 

reconstructed signal after thresholding by 4 is 11786 or 99.544% of the 
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energy of the original signal. The energy for the reconstructed signal after 

thresholding by 9 is 11521 or 97.306% of the energy in the original signal.  

The accuracy in the reconstructed sequence depends on the choice of 

the threshold. After applying a threshold on the transformed version of the 

given sequence, large part of the signal consists of zeros. For instance, in 

example 4.1 with thresholding at 9, we store the four numbers 35, 16, 10, 

12 instead of the original eight numbers, and still we are able to recover 

about 97% of the original signal. This is the key of lossy compression.  

4.2 Wavelet Transform 

 Just as with the Fourier transform, there are three types of wavelet 

transforms; The Continuous Wavelet Transform (CWT), the Discrete 

Wavelet Transform (DWT), and the Wavelet series. The CWT transforms a 

continuous signal to a continuous signal. The DWT transforms the discrete 

signal to a discrete signal. The wavelet series transforms a continuous signal 

to a discrete signal.       

4.2.1 The Continuous Wavelet Transform and Its Inverse 

The continuous wavelet transform of a function f  depends on a mother 

waveletψ . The mother wavelet can be any real or complex continuous 

function that satisfies the following properties: 
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1. The total area under the curve of the function is zero, 

i.e. 0)( =∫
∞

∞−

dttψ suggesting a function that oscillates above and bellow the 

t-axis. Such a function tends to have a wavy appearance. 

2. )(tψ  is square integrable which means it has a finite energy. 

This implies that the energy of the function is finite, suggesting that the 

function is localized in some finite interval and zero or almost zero 

outside this interval. These properties justify the name “wavelet”. There 

are many known functions that satisfy these conditions, and some of 

them have been researched and are commonly used for wavelet 

transforms. 

3.   The admissibility conditions which are:  

• ψ  is smooth, maybe infinitely differentiable. 

• ψ  is in computationally convenient form. 

• ψ  has compact support, i.e. all functions values are zero outside a 

certain bounded interval. 

Example 4.2: 

Some of well-known mother wavelets are: 

1. The Morlet wavelet, shown in figure 4.2, is defined as: 

).885.2cos(
2ln

2
cos)( tetet tt ππψ

22 −− ≈









=  
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Figure 4.2 

This cosine curve has oscillations dampened by the exponential 

(Gaussian) factor. More than 99% of its energy is concentrated in the 

interval 5.25.2 ≤≤− t . 

2. The Mexican Hat wavelet, shown in  figure 4.3, is defined as: 

2
tett −−= )21()( 2ψ  

 

Figure 4.3 

This is the second derivative of the (negative) Gaussian function .5.0
2

te−−   

More than 99% of its energy is concentrated in the interval 22 ≤≤− t . 
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Definition 4.1 [20]: Once a wavelet )(tψ  has been chosen, the Continuous 

Wavelet Transform (CWT) of a square integrable function f  is defined as: 

dtttfbaW ba )()(),( ,ψ∫
∞

∞−

=                                          (4.3)  

where 






 −
=

a

bt

a
ba ψψ

1
,  is the function generated from the mother wavelet 

ψ  by scaling and translation and ψ  is the complex conjugate of ψ . 

The quantity a1 is the normalizing factor that ensures that the energy of 

)(tψ  remains independent of the factors  a  andb , i.e. 

dttdttba ∫∫
∞

∞−

∞

∞−

=
22

, )()( ψψ  

Example 4.3: 

Consider the Mexican hat wavelet  

2
tett −−= )21()( 2ψ  

Also  

2








 −
−


















 −
−=







 −
= a

bt

ba e
a

bt

aa

bt

a

2

, 21
11

ψψ  

Fixing 1=a  and the translating factor b  could be any integer, 

( ) ( ) ,)(21 ) (2
,1

2bt

b ebtbt −−−−=−=ψψ  
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               (a) ( ) 2)3(2
3,1 )3(21 −−−−= tetψ                    (b) ( ) 2)3(2

3,1 )3(21 +−
− +−= tetψ                   

           

            (c)

2









−


















−= 3

2

0,3 3
21

3

1
t

e
t

ψ                    (d) ( )( ) ( )2tet 32
0,3/1 3213 −−=ψ  

Figure 4.4 

Figure 4.4 (a,b) is the graph of the Mexican hat wavelet where 1=a  and 

3=b , 1=a  and 
3

1
=b  respectively. 

Also, fixing 0=b  and the scaling factor (or dilation) 

parameter 0 and ≠∈ aa R ,  
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2









−


















−=






= a

t

a e
a

t

aa

t

a

2

0, 21
11

ψψ  

Notice, the scaling factor 1>a  stretch the wave and 10 << a  shrink the 

wave as we can see in figures 4.4 (c,d) respectively.     

Example 4.4:  

Consider the signal  

[ ]ππ 2,2               )sin()( −∈= tttf   

Also, consider two translated copies of the Mexican Hat wavelet which are: 

2

2








 +−









−−


















 +−=


















 −−=

1
2

12

2

1
2

12

1

1
2

1
21)(

1
2

1
21)(

t

t

ett

ett

ψ

ψ

 

          

                 (a)  )sin()( ttf =                                                   (b) 
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                                                              (c)  

Figure 4.5 

Figure 4.5 (b) is positioned at a point where the sine wave has a 

maximum. At this point there is a good match between the function being 

analyzed (the sine), and the wavelet. The wavelet replicated the features of 

the sine wave. As a result, the inner product of the sine and the wavelet is a 

large positive number. In contrast, figure 4.5 (c) is positioned where the 

sine wavelet has minimum. At that point the wave and the wavelet are 

almost mirror images of each other. Where the sine wave is positive, the 

wavelet is negative and vice versa. The product of the sine and the wavelet 

at this point is negative, and the CWT, becomes a large negative number. 

Between points 1−  and 1 the CWT drops from positive to zero to negative. 

 As the wavelet translated, from left to right, along the sine wave, the 

CWT alternates between positive and negative values producing small 

waves. 
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This shape shows the close match between the function being analyzed (the 

sine wave) and the analyzing wavelet. We notice that they both have similar 

shapes and similar frequencies. 

 Example 4.5: 

 Let’s extend the analysis to cover different frequencies. This is done by 

scaling the wavelet. Figure 4.6 (a) shows what happens when the wavelet 

stretched 

          

                                  (a)                                                        (b) 

Figure 4.6 

such that it covers several periods of the sine wave. Translating the wavelet 

from left to right doesn’t affect the match between the wavelet and the sine 

wave by much. So, as the result the CWT varies just a little. The wider the 

wavelet, the closer the CWT to a constant. Notice how the amplitude of the 

wavelet has been reduced, and so the area also reduced and produced a 

small constant. Similar thing happens in figure 4.6 (b) where the wavelet 
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has shrinked and is much narrower than only cycle of the sine wave. Since 

the wavelet is so thin the inner product of it and the sine wave is always a 

small number (positive or negative) regardless of the precise position of the 

wavelet relative to the sine wave. We conclude that translating the wavelet 

does not affect its match to the sine wave. The result is a CWT that is close 

to a constant. 

 It is clear that the quality of the match depends on the choice of wavelet. 

If the wavelet is very different from )(tf  at any frequencies and any times, 

the values of the resulting ( )baW ,  will all be small and will not exhibit much 

variation. As a result, different wavelets should be selected to compress 

different image types (bi-level, continuous-tone, and discrete-tone), but the 

precise choice of wavelet is still the subject of much research. 

In example 4.5, the CWT of the sine function can be evaluated. 

However, in general this is impossible, either in practice or in principle, and 

the calculations have to be done numerically. 

The next example is slightly more complex and leads to a better 

understanding of the CWT.    

Example 4.6: 

Consider analyzing )sin()( 2ttf =   using the Mexican hat wavelet, whose 

graph is given in figure 4.7 
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                   (a)  )sin()( 2ttf =                                           (b) 

Figure 4.7 

Wavelets are subject to uncertainty principle. The Haar wavelet is very 

well localized in the time domain. In contrast, the Mexican hat wavelet and 

especially the Morlet wavelet is localized in frequency domain, but are 

spread over time. An important result of the uncertainty principle is that it is 

impossible to achieve a complete simultaneous mapping of both time and 

frequency. Wavelets provides near an optimal solution for this problem, and 

this is one of the features that makes them superior to Fourier analysis. 

Definition 4.2 [20]: Inverse Wavelet Transform 

 Let )(ωΨ  be the Fourier transform of the :)(tψ   

dtet
ti∫

∞

∞−

−=Ψ ωψω )()( . 
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If ),( baW  is a CWT of a function ( )f t  with a wavelet )(tψ , then the inverse 

CWT is defined by: 

,)(),(
11

)( ,2
dbdatbaW

aC
tf ba∫ ∫

∞

∞−

∞

∞−

= ψ  

Where the quantity C depends on the Fourier transform of  )(ωΨ  and is 

defined as 

.
)(

2

ω
ω

ω
dC ∫

∞

∞−

Ψ
=  

The inverse CWT exists if C  is positive and finite.  

4.2.2 Wavelet Series 

The series expansion of a function f  in terms of a given set of simple 

functions ∞
=0}{ nnf  which satisfy certain properties is:  

∑
∞

=

=
0

)()(
n

nn xfaxf        (4.4) 

for some coefficients na . The function f and the set ∞
=0}{ nnf  must satisfy 

certain conditions that enable us finding the coefficients na . For example, 

Taylor series expands a function that is analytic at 0x  using the orthogonal 

system { }∞=− 00 )(
n

nxx  while Fourier series expands a square integrable 

function using the orthogonal trigonometric system ∞
=0}cos,{sin nnxnx . It is the 

orthogonality of such systems that enables us to compute the coefficients of 

the corresponding series. 
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Definition 4.3 [7]: Let ψ  be a function that is defined on R , smooth, and 

has compact support. For each Z∈kj, , define a function kj ,ψ  by   

( ) R∈−= xkxx jj

kj   ,22)( 2/
, ψψ . 

The function kj ,ψ  is a scaling by j  units and a translation by k  units of ψ . 

The function ψ  is called the mother wavelet. 

Example 4.7: Consider the mother wavelet
2

xex −=)(ψ . We use scaling and 

translations to generate the wavelets 

ZR
2j

∈∈= −− kj,  ,  ,2)( )2(2/
, xex kxj

kjψ . 

To understand the scaling role of j , fix 0=k . 

Then 

( ) RZ
2j

∈∈== − xjexx xjjj

j ,,222)( )2(2/2/
0, ψψ . 

If j  is positive then the graph of 0,jψ  is similar to the graph ψ  but 

compressed, but if j  is negative then the graph of 0,jψ  similar to the graph 

of ψ  but less localized as in figure 4.8 (a). 

Also, to understand the translation role of k , fix 0=j  

( ) RZ
2

∈∈=−= −− xkekxx kx

k    ,,)( )(
,0 ψψ . 

If k  is positive then the graph of k,0ψ  is similar to the graph ψ  but shifted to 

the right and if k  is negative then the graph of k,0ψ  is similar to the graph of 

ψ  but shifted to the left as in figure 4.8 (b). 
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( ) ( )


 ==

=∫
∞

∞− Otherwise

kkjjif
dxxx

kjkj
0

ˆ,ˆ1
ˆ,ˆ, ψψ

dxxxfc kjkj ∫
∞

∞−

= )()( ,, ψ

 

(a) 

 

(b) 

Figure 4.8 

Theorem 4.1 [7]: The system of wavelets Zkjkj ∈,, }{ψ  form an orthonormal 

system which means  

                                                         (4.5)  

Definition 4.4 [7]: Wavelet series 

The wavelet series expansion of a given function f  is given by: 

( )∑∑
∈ ∈

=
Zj Zk

kjkj xcxf ,,)( ψ        (4.6) 

where the coefficients kjc , are uniquely defined by: 

                                                                                            (4.7)                    
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∑ ∑
−= −=

≈
n

nj

n

nk

kjkj xcxf )()( ,, ψ

The wavelet system Zkjkj ∈,, }{ψ  is fully determined by the functionψ , we 

only need to store information about the signal function ψ  to be able to use 

(4.6). For practical and theoretical reasons, the mother wavelet must satisfy 

the admissibility conditions.                                  

If we want to use (4.6) to calculate derivatives of the function f , so we 

need at least to assume that ψ  is differentiable. Compact support of ψ  is 

very important for computer-based calculations, since the computer can 

handle only a finite numbers. So, functions without compact support will 

have to be truncated at some point. 

In practice, the mother wavelet ψ  need not satisfy all of the above 

properties. In such cases, the requirements of the mother wavelet can be 

modified to suite each application individually. For example, the 

requirement of the mother wavelet to have compact support can be replaced 

by a function that decays rapidly to zero. In other words, if ψ  does not have 

compact support, it is sufficient that 0 and  0 >>∃ αc  such that  

  ( ) R∈∀≤ −
xecx

x ,αψ                                       (4.8) 

Assuming the convergence of the wavelet series, we may use it to 

approximate a given function by: 

                                                                                      (4.9) 

For sufficiently large value of �∈n . 
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Example 4.8: 

The Haar mother wavelet has the compact support )1,0[  and is given by 

the piecewise polynomial: 

 

 

 

Figure 4.9: Haar mother wavelet  

The Haar mother wavelet satisfies the requirement that each )(2 RLf ∈  

has an expansion as in equation (4.6), the condition (4.5) satisfies as well. 

However, ψ  is not continuous for ,
2

1
,0 == xx  and .1=x  If we want to apply 

the representation (4.6) for signal transmission on finite machines, an 

infinite sum can’t be evaluated; therefore the series is truncated and 

becomes: 

( )





















∈−







∈

=

Otherwise

x

x

x

,0

1,
2

1
,1

2

1
,0,1

ψ
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∑ ∑
−= −=

≈
n

nj

n

nk

kjkj xcxf )(~)( ,, ψ                                       (4.10) 

If ψ  is the Haar wavelet, then even if f  is infinitely differentiable function, 

finite machines will produce a function which is not continuous.     

4.3 Haar Transform 

Haar transform is used to analyze discrete signals. Like all wavelet 

transform, the Haar transform decomposes a discrete signal into two 

subsignals each of half its length. The first subsignal, 1a , is a running 

average or trend; the second subsignal, 1d , is a running difference or 

fluctuation. 

Let ( )�fff ,...,, 21=f  be a sampled signal where �  is even.The first trend 

subsignal is ( )2/21
1 ,...,, �aaa=a  where ( ) 2211 ffa += . Similarly, 

( ) 2432 ffa +=  and so on. Each component of 1a  is produced by taking the 

average of successive pairs of values of f , and then multiplying these 

averages by 2 . In general, the formula for the thm  component of 1a  is: 

         2/,...,2,1        
2

212 �m
ff

a mm
m =

+
= −    (4.11) 

Example 4.9: 

Let  ( )5,5,6,8,12,10,6,4=f  then:   

25
2

64
1 =

+
=a    , 211

2

1210
2 =

+
=a  

27
2

68
3 =

+
=a          , 25

2

55
4 =

+
=a  
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∴ The first trend subsignal is:  

( )25,27,211,251 =a  . 

This result can be calculated as the following diagram: 

 

252721125:

57115

5568121064:

1a

f

 

We multiply by 2  to ensure that the Haar transform preserves the energy 

of a signal. 

 The other subsignal is called the first fluctuation. The first fluctuation of 

the signal f  is denoted by ( )2/21
1 ...,,, �ddd=d  and is computed by taking a 

running difference, ( ) 2211 ffd −= . Similarly, ( ) 2432 ffd −= . 

In general, the formula for the thm  component of 1d  is: 

           2/,...,2,1     
2

212 �m
ff

d mm
m =

−
= −    (4.12)  

Example 4.10: 

For the signal  f   in example 4.9, 

2
2

64
1 −=

−
=a     ,        2

2

1210
2 −=

−
=a  

2
2

68
3 =

−
=a     ,         0

2

55
4 =

−
=a  
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∴ The first fluctuation subsignal 1d  is: 

( )0,2,2,21 −−=d  . 

Also, 1d
 can be calculated as the following diagram 

0222:

0111

5568121064:

1 −−

−−

d

f

 

4.3.1 First-level Haar Transform 

The Haar transform is performed in several levels. The first level is the 

mapping 1H  defined by: 

                                                     ( )11
1 |: daf →H        (4.13) 

Examples 4.9 and 4.10 gives: 

           ( ) ( ).0,2,2,2|25,27,211,255,5,6,8,12,10,6,4:1 −−→H             

The mapping 1H  in (4.13) has an inverse. Its inverse maps the transformed 

signal ( )11 | da  back to the original signal f . 

For each .2/...,,2,1 �i =  

                           
2

212 ii
i

ff
a

+
= −  and     

2
212 ii

i

ff
d

−
= −  

We get,  

                           
2

12
ii

i

da
f

+
=−               and          

2
2

ii
i

da
f

−
=  

The 1-level Haar inverse transform is: 

                        






 −+−+
=

2
,

2
,...,

2
,

2
2/2/2/2/1111 ���� dadadada

f     (4.14) 
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Example 4.11: 

To obtain the original signal from the transformed signal, 

 ( ).0,2,2,2|25,27,211,25 −−  

we apply formula (4.14) 

( ) ( )

( ) ( )
12

2

212

2

2211

2
         10

2

210

2

2211

2

6
2

26

2

225

2
              4

2

24

2

225

2

22
4

22
3

11
2

11
1

==
−−

=
−

===
−+

=
+

=

==
−−

=
−

===
−+

=
+

=

da
f

da
f

da
f

da
f

 

( )5,5,6,8,12,10,6,4

5
2

25

2

025

2
                      5

2

25

2

025

2

6
2

26

2

227

2
                 8

2

218

2

227

2

44
8

44
7

33
6

33
5

=∴

==
−

=
−

===
+

=
+

=

==
−

=
−

===
+

=
+

=

f

da
f

da
f

da
f

da
f

  

Small fluctuation feature 

The magnitudes of the components of the fluctuation signal are often 

significantly smaller than the magnitude of the components of the original 

signal. 

Example 4.12: 

For the signal ( )5,5,6,8,12,10,6,4=f  , the average magnitude of the 

components  is 7. While, for its first fluctuation 

subsignal ( )0,2,2,21 −−=d , the average magnitude of the components is 

06066.1275.0 ≈ . Notice that the magnitudes of the fluctuation's components 
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are an average of 6.6 times smaller than the magnitudes of the original 

signal's components. 

Example 4.13: 

Consider the signal 

( ) 1x0          12cos120)( 42 <≤−= xxxxg π   

            

                          a                                                                 b 

Figure 4.10 

Figure 4.10(a,b) represent the original signal and its 1–level Haar transform, 

respectively. Notice, in figure 4.10(b) the trend subsignal is in the left half, 

over the interval [ )5.0,0 , while the fluctuation subsignal is in the right half 

over the interval  [ )1,5.0 . It is clear that most of fluctuation's values are close 

to 0  in magnitude. Also, the trend subsignal looks like the original signal, 

except it is shrinked by half in the length and expanded vertically by factor 

of 2 .   
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Equation in (2.7) holds with a small time step size kk tth −= +1  for 

each 1...,,3,2,1 −= �k , where �  is an even integer. If h is small enough, then 

the successive values ( )1212 −− = mm tgf  and ( )
mm tgf 22 =  of the signal f  will be 

very  

close to each other since g  is continuous. So, the fluctuation values satisfy: 

( ) ( )
0

2

212 ≈
−

= − mm

m

tgtg
d  

And the trend values satisfy: 

       

( ) ( )

( ) ( )
m

m

mm

m

tg
tg

tgtg
a

2
2

212

2
2

2

2

=≈

+
= −

 

This equation shows that the componenets of 1a  are approximately the 

same as sample values of ( )xg2  for �tttx ,...,, 42= . It shows that the graph of 

the first trend subsignal is similar in appearance to the graph of g . This is 

the reason that small fluctuation feature is important in signal compression. 

Compressing a signal means that we can save a signal using smaller number 

of bits. We can save the trend subsignal only and then we perform the 

inverse Haar transform using zero values for fluctuation subsignal to obtain 

an approximation of the original signal. Since the length of the trend 

subsignal is half the length of the original signal, this would achieve %50  

compression. 
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4.3.2 Conservation and Compaction of Energy 

In this section, we discuss the most two important properties of 1-level 

Haar transform. 

1. Haar transform conserves the energy of signals. 

2. Haar transform perform compaction of the energy of signals. 

Conservation of energy 

The energy of  a Haar transformed signal ( )11 | da  is: 

( ) 2/
22

3
2

2
2

12/
22

3
2

2
2

1|
......11 �� ddddaaaa +++++++++=

da
ε  

.
2

22

2

2

2

2

22

2
2

2
1

2
2

2
1

2
221

2
1

2
221

2
1

2

21

2

212
1

2
1

ff
ffffffffff

ffff
da

+=
+

=
+−

+
++

=








 −
+







 +
=+

 

Similarly, mmmm ffda 2
2

12
222 +=+ − .  

Therefore, ( )
22

3
2

2
2

1|
...11 �ffff ++++=

da
ε . 

 In other words, ( ) fda
εε =11|

, which justifies the conservation of energy 

property. 

 Example 4.14: 

The energy for the signal ( )5,5,6,8,12,10,6,4=f  is: 

4465568121064 22222222 =+++++++=fε ,  
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The 1-level Haar transform of this signal is: 

( ) ( ),0,2,2,2|25,27,211,25| 11 −−=da and its energy is:  

( ) .4460222225249212122511 |
=++++×+×+×+×=

da
ε  

So, the 1-level Haar transform has conserved the energy.  

Compaction of energy 

The energy of the trend subsignal 1a
  accounts for a large percentage of 

energy of the transformed signal ( )11 | da . 

Compaction of energy occur whenever the magnitudes of the fluctuation 

values are significantly smaller then the trend’s values. 

The next two examples sho how Haar transform redistributes the energy 

of a signal by compressing most of the energy in the trend subsignal.  

Example 4.15: 

Consider the signal ( )5,5,6,8,12,10,6,4=f  in example 4.14. Its trend 

subsignal is:   

( )25,27,211,251 =a , 

with energy 

.44022524921212251 =×+×+×+×=
a

ε  

On the other hand, the fluctuation subsignal is: 

( )0,2,2,21 −−=d , 
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with energy 

.602221 =+++=
d

ε  

The energy of the trend subsignal accounts for %7.98446440 =  of the 

total energy of the signal. In other words, the 1-level Haar transform has 

allocated %98  of the total energy of f  in the 1-level trend subsignal 1a . 

Example 4.16: 

Consider the signal f  generated from 10 equally spaced sampled values 

of the function ( ) xxxxg π12cos120)( 42 −= . Its energy is 308.127  while the 

energy of its first trend subsignal 1a
 is 305.127 . So, %998.99  of the total 

energy is compacted into the half-length subsignal 1a . See figure 4.10(b).  

4.3.3 Haar Transform, Multiple levels 

The 1-level Haar transform can be repeated giving multiple levels Haar 

transform. The second level of the Haar transform is performed by 

computing a second trend 2a
 and a second fluctuation 2d

 from the first trend 

1a only. In other words, ( )221
1 |: daa →H . The 2-level Haar wavelet 

transform 2H  is defined by the mapping: ( )122
2 ||: ddaf →H  . 

The generalization to the k-level is straight forward. Applying the 1-

level transform, ( )kkkH daa |: 1
1 →− , then the k-level Haar wavelet transform 

is given by: ( )11 |...|||: dddaf −→ kkk

kH . 
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Example 4.17:  

Recall the signal in example 4.14.  To get the second trend subsignal 2a  

we apply formula (4.11) to the 1-level trend subsignal 1a , 

1216:

252721125:
2

1

a

a
 

And to get the second fluctuation subsignal 2d
 we apply formula (4.12) to 

1a , 

26:

252721125:
2

1

−d

a
 

So, the 2-level Haar transform of f   is the signal 

( ) ( ).0,2,2,2|2,6|12,16|| 122 −−−=dda  

Furthermore, 

214:

1216:

3

2

a

a

 

and 

22:

1216:

3

2

d

a

 

So, the 3-level Haar transform of f  is: 

 ( ) ( ).0,2,2,2|2,6|22|214||| 1233 −−−=ddda  

Remark: Further transformation can not be done.  
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The energy of 2-level Haar transformed signal is: 

4462222436144256

)2()2()2(26)12()16( 2222222

)||( 122

=+++++++=

+−+−++++=
dda

ε

 

Notice that the energy of 2-level Haar transform equals the energy of 

the orginal signal f , i.e. fdda
εε =

)||( 122  since Haar transform conserves the 

energy. 

The energy of the second trend subsignal is 

400144256)12()16( 22
2 =+=+=

a
ε . Notice, the 2-level Haar transformed 

signal ( )122 || dda  has ( ) %90%100446400 ≈× of the total energy of f  

contained in the second trend subsignal 2a
 which is 41  the length of f . This 

is further compaction, or localization, of the energy of f . 

Moreover, 3922196)214( 2
3 =×==

a
ε , so the third trend subsignal has 

almost ( ) %89%100446392 ≈× of the total energy of f  . 

 The 3-level Haar transform ( )1233 ||| ddda  has almost 88% of the total 

energy of f contained in the third trend 3a
 which is 81  the length of f . 

Definition 4.5 [25]: The cumulative energy profile of a signal f  is defined 

by:  
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The cumulative energy profile of the signal  f  provides a summery of 

accumulation of energy in signal as time proceeds. The next two examples 
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show how Haar transform redistributes and localizes the energy in a 

continuous signal. 

Example 4.18: 

Consider the piecewise function  

( )

( )
         

84       sin

4x2               0

20        xsin

)(








≤≤

<<

≤≤

=

ππ
ππ

π

xx

x

xg  

         

                             a                                                     b  

Figure 4. 11 

Figure 4.11(a) represents the original signal and its cumulative energy 

profile, also figure 4.11(b) represents the 2-level Haar transform for the 

signal ( )xg  and its cumulative energy profile. It's clear that the 2-level Haar 

transform has redistributed and localized the energy of original signal. 
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Example 4.19:  

Consider the piecewise function defined by: 

( ) ( )
( ) ( )

         
21       12cos140

10        12cos140
)(

4 2

42







≤≤−

<≤−
=

xxxx

xxxx
xg

π

π
 

Its energy redistributed in two different time intervals.  

   

                    

                             a                                                           b 

Figure 4.12 

Figure 4.12(a) represents the original signal and its cumulative energy 

profile, also figure 4.12(b) represents the 2-level Haar transform for the 

signal ( )xg  and its cumulative energy profile. It's clear that the 2-level Haar 

transform has redistributed and localized the energy of original signal. 
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4.3.4 Haar Wavelet Transform Via Scalar Product 

A Haar wavelet is the simplest type of wavelets. It has a compact 

support, but unfortunately, Haar wavelets are not continuously 

differentiable which somewhat limits their applications. In discrete form, 

Haar wavelets are related to a mathematical operation called the Haar 

Transform. The Haar transform serves as a prototype for all other wavelet 

transforms. Studying Haar transform in details will help in understanding 

the more complicated wavelet transform. 

The 1-level Haar wavelets are defined as: 

                                             

( )
( )

( )21
1

2/

21
1
2

21
1
1

,,...,0,0

0,...,,,0,0

0...,,0,0,,

ββ

ββ

ββ

=

=

=

�W

W

W

M
      (4.15)  

The numbers 1 2 and β β  are called wavelet numbers. The 1-level Haar scaling 

signals are defined as: 

( )
( )

( )21
1

2/

21
1
2

21
1
1

,,...,0,0

0,...,,,0,0

0...,,0,0,,

αα

αα

αα

=

=

=

�V

V

V

M
      (4.16) 

As with the wavelet numbers, 1 2 and α α  are called scaling numbers. 

The scaling numbers and the wavelet numbers are chosen so that the system 

}{ 2/

1
11 ,

�

mmm =WV  is orthonormal. This means: 
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mn

mn

mn

mn

mn

mn

mn

mn

,  allfor    0

 if   0

 if   1

 if   0

 if   1

11

11

11

=⋅





≠

=
=⋅





≠

=
=⋅

WV

WW

VV

 

In addition, we require that the fluctuation in a constant signal is zero which 

means 0. =k

mWf . 

The orthonormality of the fluctuation signals and the previous statement 

must satisfy:  

                              

0

1

21
1
10

2
2

2
1

1
1

1
1

=+=⋅

=+=⋅

ββ

ββ

WP

WW

       (4.17) 

where  )1,.....,1,1,1,1(0 =P . 

Solving for the Haar wavelet numbers gives:  

2

1
  ,

2

1
21

−
== ββ         (4.18) 

Similarly, the Haar scaling signals must satisfy:  

                                     

0

1

2211
1
1

1
1

2
2

2
1

1
1

1
1

=+=⋅

=+=⋅

βαβα

αα

WV

VV

       

Using the Haar wavelet numbers (4.18) and solving for the Haar scaling 

numbers gives: 

2

1
,

2

1
21 == αα ,       (4.19) 
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As can be seen, the scaling numbers are related to the wavelet numbers by 

the relation: 121  and βαβα =−= .   

The 1-level Haar wavelets have a number of interesting properties. 

First, each wavelet has energy of 1. Second, each wavelet consist of a rapid 

fluctuation between only two non-zero values 2±  with an average values 

of 0. Finally, they are similar to each other. Each wavelet is a translation in 

time by an even number of time-units of the first Haar wavelet 1
1W . The 

second Haar wavelet 1
2W  is a translation forward in time by 2 units of 1

1W  

and 1
3W  is a translation forward in time by four units of 1

1W , and so on.  

The 1-level Haar scaling signals are quite similar to the Haar wavelets. 

They all have energy 1 and have a support consisting of just two 

consecutive time indices. They are all translated by an even multiple of 

time-units of the first scaling signal 1
1V . Unlike the Haar wavelets, the 

average values of the Haar scaling signals are not zero, in fact each scaling 

signal has an average value of 
2

1

2

1

2

2

2
2

1

2

1

=×=
+

  . 

Using the 1-level Haar wavelet, we can express the values 2/21 ...,,, �ddd  

for the first fluctuation subsignal 1d  as a scalar products. For example, 

1
121

21
1 .

2

1

2

1

2
Wf=

−
×+×=

−
= ff

ff
d  . 

Similarly, 
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2/,,2,1for       . 1 �md mm L== Wf

2/,,2,1for       . 1 �ma mm L== Vf

                     
1
243

4343
2 .

2

1

2

1
00

2

00

2
Wf=

−
×+×++=

−++
=

−
= ff

ffff
d  . 

And so on, we can rewrite formula (4.12) in terms of scalar products with 

the 1-level Haar wavelets: 

                                                               (4.20)                    

Using 1-level Haar scaling signals, the values 2/21 ...,,, �aaa  for the 

first trend subsignal 1a  are: 

1
243

43
2

1
121

21
1

.
2

1

2

1
00

2

.
2

1

2

1

2

Vf

Vf

=×+×++=
+

=

=×+×=
+

=

ff
ff

a

ff
ff

a

 

And so on. We can rewrite formula (4.11) in terms of scalar products with 

the 1-level scaling signals : 

                                                         (4.21) 

Now ( )11
1 |: daf →H .  

The 2-level Haar scaling signals are defined by:  
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      (4.22) 
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  These scaling signals are all translations by multiple of four time-units of 

the first scaling signal 2
1V , they all have energy 1 and average value of 

.
2

1

4

2

4
2

1

2

1

2

1

2

1

==
+++

 

Moreover, the values of the 2-level trend 2a are: 

..
2

1

2

1

2

1

2

1

22222

..

2

2
13321

3321
1
2

1
121

2

Vf

VfVf

=×+×+×+×=

+++=
+

=
+

=

ffff

ffffaa
a

 

The 2-level trend subsignal is: 

                                 ( )2
4/

2
3

2
2

2
1

2 .,...,.,.,. �VfVfVfVfa =       (4.23) 

Likewise, the two 2-level Haar wavelets are defined by: 
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     (4.24) 

Note that these wavelets have support of length 4, since they all translation 

by multiple of four time-unit of the first wavelet 2
1W  . They also have 

energy 1 and average value 0. the 2-level fluctuation is: 

..
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1

2

1

2

1

2

1

22222
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2

2
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1
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1
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ffffdd
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11 DAf +=

The 2-level fluctuation subsignal is: 

                               ( )2
4/

2
3

2
2

2
1

2 .,...,.,.,. �WfWfWfVfd =     (4.25) 

Now, ( )122
2 ||: ddaf →H .                                

4.3.5 Haar Wavelet Inverse Transform 

We discussed the Haar transform using a scalar product with scaling 

signals and wavelets. Now, we will discuss how the inverse Haar transform 

can also be described in term of these elementary signals.  

Multilinear Resolution Analysis (MRA)  

Discrete signals are synthesized by beginning with a very low resolution 

signal and successively adding on details to create higher resolution 

versions ending with a complete synthesized of the signal at the finest 

resolution. To define the first level of Haar MRA, we rewrite the Haar 

inverse transform in formula (4.14) as: 








 −−−
+
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,

2
...,,

2
,
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,

2
,

22
,

2
...,,

2
,

2
,

2
,

2
2/2/22112/2/2211 ���� ddddddaaaaaa

f

This formula shows that f  can be expressed as a sum of two signals that we 

shall call the first averaged signal and the first detail signal.  

That is:  

                                                                  (4.26) 

Where the signal 1A  is the first averaged signal and is defined by: 

                                  







=

2
,

2
...,,

2
,

2
,

2
,

2
2/2/22111 �� aaaaaa

A      (4.27) 
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1
2/2/

1
22

1
11

1 ... ��ddd WWWD +++=

1
2/2/

1
22

1
11

1 ... ��aaa VVVA +++=

And the signal 1D  is the first detail signal and is defined by: 
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2/2/22111 �� dddddd

D    (4.28) 

Notice that 
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                        (4.29a) 

So, the averaged signal 1A  is expressed in terms of Haar scaling signals. 

In the same way we can express the detail signal 1D  as: 

                                                            (4.29b) 

Applying the scalar product formulas for the coefficients in equation (4.20) 

and (4.21), we can rewrite equations (4.29 a) and (4.29 b) respectively as 

follows: 

( ) ( ) ( )

( ) ( ) ( ) 1
2/

1
2/

1
2

1
2

1
1

1
1

1

1
2/

1
2/

1
2

1
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1
1

1
1

1
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fff

fff

WWWWWWD

VVVVVVA

+++=

+++=

 

The first formula shows that the averaged signal is a combination of 

Haar scaling signals with the values of the first trend subsignal as its 

coefficients, and the second formula shows that the detail signal is a 
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combination of Haar wavelets with the values of the first detail signal as its 

coefficients. 

Example 4.20:  

In examples (4.9) and (4.10), the 1-level Haar transform of the signal 

( )5,5,6,8,12,10,6,4=f  

is  

( ) ( )0,2,2,2|25,27,211,25| 11 −−=da  

Applying formula (4.27), the averaged signal is: 

( )5,5,7,7,11,11,5,51 =A  

Using formula (4.29 a) the first averaged signal can also be expressed in 

terms of Haar scaling signals as: 

( )1
4

1
3

1
2

1
1

1 25,27,211,25 VVVVA =  . 

 Comparing these last two equations we can see that the position of the 

repeated averages corresponds precisely with the supports of the scaling 

signals. 

Also, we found that the first fluctuation signal for f  is ( )0,2,2,21 −−=d  

. Using formula (4.28) we obtain: ( )0,0,1,1,1,1,1,11 −−−=D , and using 

formula (4.29 b), the first detail signal can also be expressed in terms of 

Haar wavelets as: 

( )1
4

1
3

1
2

1
1

1 0,2,2,2 WWWWD −−=  
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This formula shows that the values of 
1D  occur in successive pairs of 

rapidly fluctuating values positioned at the supports of the Haar wavelets. 

Using the result of 1A  computed above, we have 

( ) ( )

( ) .5,5,6,8,12,10,6,4   

0,0,1,1,1,1,1,15,5,7,7,11,11,5,5

11

=

−−−+=

+=

f

DAf

 

This equation illustrates the basic idea of MRA. The signal f  can be 

expressed as a sum of a lower resolution signal 1A  and a fluctuation signal 

1D .  The lower resolution signal 1A  serves as an approximation to the 

original signal. Increasing the resolution can be obtained by adding the 

detail signal 1D  to 1A . 

4.3.6 Multiresolution Analysis, Multiple levels 

The idea of the first level of the Haar MRA of a signal in the previous 

section can be extended to further to as many levels as the number of times 

the length of the signal can be divided by 2. 

 The second level of MRA of a signal f   involves expressing  f  as:  

122 DDAf ++=                                                   (4.30) 

where 2A  is the second averaged signal and 2D  is the second detail signal. 

Formula (4.26) express f  as 11 DAf +=  while formula (4.30) express f  as 

122 DDAf ++= , which implies that: 
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221 DAA +=                                                   (4.31) 

This formula says that computing the second average signal 2A  and the 

second detail signal 2D  consist of performing a first level MRA of the 

signal 2A . So, the second level averaged signal 2A  satisfies  

( ) ( ) ( ) 2
4/

2
4/

2
2

2
2

2
1

2
1

2 ...... �� VVfVVfVVfA +++=  

and the second level detail signal 2D  satisfies:  

( ) ( ) ( ) 2
4/

2
4/

2
2

2
2

2
1

2
1

2 ...... �� WWfWWfWWfD +++=  

Example 4.21: 

If ( )5,5,6,8,12,10,6,4=f  we computed 2a
 and ( ) .21,162 =a  Therefore, 
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So, ( )6,6,6,6,8,8,8,82 =A                                                                   

 By comparing the results from examples 4.20 and 4.21 we notice that 

the second averaged signal 2A  has values created from averages that 

involve twice as many values as the averages that create 1Α . But, the second 

averaged signal reflects more long term trends than those reflected in the 

first averaged signal 1Α . Consequently, these averages are repeated for twice 
as many time units. The signal has the second level fluctuation ( )2 6,2= −d . 

Consequently, 
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    ( )1,1,1,1,3,3,3,3 −−−−=  

Using  1D  from example 4.20, we get 

( ) ( ) ( )0,0,1,1,1,1,1,11,1,1,1,3,3,3,36,6,6,6,8,8,8,8

122

−−−+−−−−+=

++= DDAf

 

 This formula illustrates the idea of MRA. The full resolution signal f  is 

produced from a very low resolution, averaged signal 2A  consisting of 

repetitions of the two averaged values, 8 and 6, to which are added two 

detail signals. The first addition for this averaged signal with enough details 

to produce the next higher resolution averaged signal ( )5,5,7,7,11,11,5,5  the 

second addition provides enough details to produce the full resolution signal 

f . In general, if the number �  of signal values is divisible k time by 2, then 

the k-level MRA is: 

12... DDDAf ++++= kk  

Methods of Wavelet Transform Compression 

We will illustrate the general principles of wavelet compression of 

signals. 

Step 1: Perform a wavelet transform of the signal.  
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Step 2: Set equal to 0 all values of the wavelet transform which are 

insignificant, i.e. which lies below some threshold values specified by the 

user.             

Step 3: Save only the significant, non-zero values of the transform obtained 

from step 2 and a significant map showing their indices. This should be a 

much smaller data set than the original signal.         

Step 4: To reconstruct the signal, perform the inverse wavelet transform of 

the signal saved in step 3, assigning zero values to the insignificant values 

which were not transmitted. This decompression step produces an 

approximation of the original signal.  

Summery 

• The basic method of wavelet transform compression consisted of 

setting equal to zero all transformed values whose magnitudes lie 

below a threshold value. 

• The compression version of the signal consists of the significant, 

non-zero, values of the transform which survived the thresholding, 

along with a significance map indicating their indices. 

• Reconstruction (decompression) consists of using the significance 

map and the significant transform values to reconstruct the transform, 

and then performing an inverse wavelet transform to produce an 

approximation of the original signal.  
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Chapter 5 

Daubechies Wavelet Transform 

 In this chapter we consider the popular Daubechies wavelet transforms. 

Daubechies wavelet transforms are defined in the same way as the Haar 

wavelet transforms; i.e. by computing running averages and differences via 

scalar product with scaling signals and wavelets. The only difference 

between them consists in how these scaling signals and wavelets are 

defined. For the Daubechies wavelet transforms, the scaling signals and 

wavelets have longer support, i.e. they produce averages and differences 

using just a few more values from the signal. This difference makes the new 

transform more efficient in many applications especially in data 

compression. 

5.1 The Daub4 Wavelet Transform 

There is a variety of Daubechies transforms, but they are very similar. 

The simplest one is the Daub4 wavelet transform which is defined as 

follows:  

Let f  be a sampled signal with an even number � of values. The 1-level 

Daub4 transform is the mapping )|(  : 11
1 daf →D  where ( )2/21

1 ...,,, �aaa=a  is 

the first trend subsignal and ( )2/21
1 ...,,, �ddd=d  is the first fluctuation 

subsignal. Each component ma  of the trend subsignal 1a  is the dot product 

of f  by a 1-level scaling signal 1
mV : 
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1. mma Vf=

1. mmd Wf=

                                                                                                              (5.1) 

Likewise, each component md  of 1d  is the dot product of f  by a 1-level 

wavelet signal 1
mW . 

                                                     (5.2) 

 Higher level Daub4 transforms can be extended to multiple levels as 

many times as the signal’s length can be divided by 2. The extension to 

higher levels is similar to the way the Haar transform is extended, i.e. by 

applying 1-level Daub4 transform )|(  : 221
1 daa →D  to the first trend 

subsignal 1a . The 2-level Daub4 transform 2D  is then defined by the 

mapping: )||(: 122
2 ddaf →D . 

The generalization to the k-level is straight forward. Apply the 1-level 

transform: )|(  : 1
1

kkkD daa →− , then the k-level Daub4 transform is given by:  

)|...|||(: 11 dddaf −→ kkk

kD . 

The 1-level Daub4 scaling signals are defined by:  

( )
( )

( )
( )2143

1
2/

4321
1

1)2/(

4321
1
2

4321
1
1

,,0...,,0,0,,

,,,,0...,,0,0,0,0

0...,,0,0,,,,,0,0

0...,,0,0,,,,
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αααα

αααα

αααα

=

=

=

=

−

�

�

V

V

V

V

M ,     (5.3) 

The numbers 4321 ,,, αααα  are called scaling numbers. The 1-level Daub4 

wavelet signals are defined by:  
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                                    .                                 (5.4) 

 

 

Now, the numbers 4321 ,,, ββββ  are called wavelet numbers. 

The scaling numbers and wavelet numbers are chosen so that the system 

{ } 2/

1
11 ,

�

mmm =WV  is orthonormal which means:  





≠

=
=⋅

mn

mn
mn  if   0

 if   111 VV  





≠

=
=⋅

mn

mn
mn  if   0

 if   111 WW  

 mnmn ,  allfor    011 =⋅WV .    

In addition, the following property is required for computing the fluctuation 

numbers. 

  Property I [25]: if f  is (approximately) linear over the support of a k-

level Daub4 wavelet k

mW , then the k-level fluctuation value k

mWf .  is 

(approximately) zero. 

The orthonormality of the fluctuation signals and property I imply that 

the Daub4 wavelets (fluctuations) must satisfy:  
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    (5.5) 

Where )1,.....,1,1,1,1(0 =P and ),....4,3,2,1,0(1 �=P . 

Solving for the Daub4 wavelet numbers gives:  

24

31
,

24

33
,

24

33
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24
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+
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=

−
= ββββ   (5.6) 

Similarly, the Daub4 scaling signals must satisfy:  
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βαβα
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WV
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Using the Daub4 wavelet numbers (5.6) and solving for the Daub4 scaling 

numbers gives: 

24

31
1

+
=α , 

24

33
2

+
=α ,  

24

33
3

−
=α ,   

24

31
4

−
=α    (5.7) 

As can be seen, the scaling numbers are related to the wavelet numbers 

by the relations: 41 βα −= , 32 βα = , 23 βα −= , and 14 βα =  . In addition, the 

scaling numbers satisfy the relation: 24321 =+++ αααα . This relations 
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means that each component of the 1-level trend subsignal 1a ; 1. mma Vf=    is 

the weighted average of four consecutive values of  f  multiplied by 2 . 

Each Daub4 scaling signal has a support of just four time-units. The 

second scaling signal 1
2V  is just a translation by two time-units of the first 

scaling signal 1
1V  and each subsequence scaling signal is a translation by a 

multiple of two time-units of 1
1V . For 1

2/�V , we have to translate 1
1V  by 

12/ −�  time-units which would send 3α  and 4α  beyond the length � of the 

signal f . This is avoided by wraping-around to the start giving  

( )2143
1

2/ ,,0...,,0,0,, αααα=�V  . The same is true for the Daub4 wavelet 

signals 1
mW . 

5.2 Daub4 Inverse Transform  

Each level of Daub4 transform has an inverse. The inverse for 1-level 

Daub4 transformed signal ( )11 | da  is given by: 

11 DAf +=           (5.8a)                                     

where 1A  is the first averaged signal: 

1
2/2/

1
22

1
11

1 ... ��aaa VVVA +++=       (5.8b) 

And 1D  is the first detail (fluctuation) signal, 

1
2/2/

1
22

1
11

1 ... ��ddd WWWD +++=      (5.8c) 

To prove this, expand the signal f  in terms of the orthonormal 

basis{ } 2/

1
11 ,

�

mmm =WV : 
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1
224

1
123

1
22

1
121

2
++− +++= mmmmm VVVVV αααα

∑∑
==

+=
2/

1

1
2/

1

1
�

m

mm

�

m

mm sr WVf  

Taking the inner product with 1
mV , and using the orthonormality of the 

basis, we get: 1
mmr Vf ⋅= . Similarly, we get 1

mms Wf ⋅= . Therefore 

( )

11

2/

1

1
2/

1

1

2/

1

11
2/

1

11

  

  

.)(

DA

WV

WWfVVff

+=

+=

+⋅=

∑∑

∑∑

==

==

�

m

mm

�

m

mm

�

m

mm

�

m

mm

da  

Using natural basis{ } 2/

1
00 ,

�

mmm =WV , where each element (vector) consists of 

zeros except for a one in the thm  component, we can write: 

0
224

0
123

0
22

0
121

1
++− +++= mmmmm VVVVV αααα     (5.9a) 

with a wrap-around defined by 00
m�m VV =+ . Similarly the second level Daub4 

scaling signals satisfy  

                                                    (5.9b) 

with a wrap-around defined by 11
2/ m�m VV =+ . 

Notice that each second-level Duab4 scaling signal 2
mV  lives for just 10 

time-units, and translate by m4  time-units of 2
1V  (if we include wrap-

around). 

 The second-level trend values are }{ 2. mVf  and they measure trends over 

10 successive values of f  located in the same time positions as the non-zero 

values of 2
mV . Hence, these trends are measured over short time intervals 

that are shifted by multiples of 4 time-unit of the interval consisting of the 
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122 DDAf ++=

( ) ( ) ( ) 2
4/

2
4/

2
2

2
2

2
1

2
1

2 ...... �� WWfWWfWWfD +++=

first 10 time-units. These 10-unit trends are slightly more than twice as long 

as the trends measured by the first level scaling subsignals. 

The k-level Daub4 scaling signals are defined by formulas similar to 

(5.9 a) and (5.9 b). The 1-level Daub4 wavelets satisfy: 

0
224

0
123

0
22

0
121

1
++− +++= mmmmm WWWWW ββββ     

Similarly, the 2-level Daub4 wavelets are defined by: 

1
224

1
123

1
22

1
121

2
++− +++= mmmmm WWWWW ββββ     

The inverse of the 2-level Daub4 transform is described by the formula 

                                                          (5.10a) 

where 

                            ( ) ( ) ( ) 2
4/

2
4/

2
2

2
2

2
1

2
1

2 ...... �� VVfVVfVVfA +++=  

                        (5.10b) 

The product 2. mVf  is the thm component of the 2-level trend subsignal of 2a  

and 2. mWf  is the thm  component of the 2-level fluctuation subsignal 2d . The 

signal 1D  is the first detail signal which is defined in (5.8 c). 

Since 221 DAA += , the second detail subsignal 2D  provides the details 

needed to produce the first averaged signal from the second averaged 

signal. 
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 The k-level Daub4 transform has an inverse that produce the following 

Multi-resolution Analysis (MRA) for the signal f : 

12... DDDAf ++++= kk  

Let k

k �� 2/=  

Formulas for kA  and kD  are: 

( ) ( ) ( )

( ) ( ) ( ) k

�

k

�

kkkkk

k

�

k

�

kkkkk

kk

kk

WWfWWfWWfD

VVfVVfVVfA

......

......

2211

2211

+++=

+++=

  

Agin, the product k

mVf .  is the thm component of the k-level trend subsignal of 

ka  and k

mWf .  is the thm  component of the k-level fluctuation subsignal kd . 

 5.3 Conservation and Compaction of Energy  

In this section we will show that the first level Daub4 transform 

preserves the energy of the signal. Higher level can be treated in the same 

way. 

Define the matrix �D  as the matrix whose rows are given by: 

.2/,...,2,1   e      wher,Row      ,Row 1
2

1
12 �mmmmm- === WV  

It follows that: 
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=
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4321

4321
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00000
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00000
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ββββ

αααα

ββββ

αααα

ββββ

αααα

L

L

OMMMMMMM

L

L

L

L

�D (5.11) 

The rows of �D  are orthonormal, therefore �D  is an orthogonal matrix, and 

this means;             

                                              ��

T

� IDD =                                       (5.12) 

where T

�D  is the transpose of the matrix �D  and �I  is the �� ×  identity 

matrix. 

Now,  

                 ( ) T

��

T

� dadada 2/2/2211 ,,,,,, L=fD  

Therefore, the energy of the 1-level Daub4 transform is:  

( )
2

2/
2

2/
2

2
2

2
2

1
2

1| 11 �� dadada ++++++= L
da

ε  

So, 

( ) ( ) ( )

( )

f

da

ff

fIf

fDDf

fDfD

ε

ε

==

=

=

=

T

T

�

T

�

T

�

TT

T

�

TT

�

          

          

          

11 |
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The above results show that the 1-level Daub4 transform has the 

conservation energy property. This result can be generalized to every level 

Daub4. 

Example 5.1:  

Consider the signal 

( ) ( )
( ) ( ) ( )

         
21       24cos2140

10                   12cos140
)(

42 2

42







≤≤−−

<≤−
=

xxxxx

xxxx
xg

π

π
 

        

                             (a)                                                           (b) 

 

 (c) 

Figure 5.1 
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Figures 5.1 (b,c) show the 2-level Haar transform and  the 2-level 

Daub4 transform respectively, but as can be seen, the Daub4 transform also 

redistribute the energy of the signal into a more compact form, also, the 

cumulative energy profile shows that the  2-level Daub4 transform has 

redistributed almost all of the energy of the signal into the second trend 

subsignal, it is obvious that the Daub4 transform achieves a more compact 

redistribution of the energy of the signal.  

5.4 Other Daubechies Wavelets  

There is a variety of Daub transforms, all are constructed in a way 

similar to Daub4. The idea is to increase the supports of scaling and wavelet 

signals to get more accurate results. As an example, we consider the Daub6 

transform:   

The 1-level Daub6 scaling signals are defined by:  

( )
( )
( )

( )
( )216543

1
2/

432165
1

1)2/(

654321
1
3

654321
1
2

654321
1
1

,,0...,,0,0,,,,

,,,,0...,,0,0,0,0,,

0...,,0,0,,,,,,,0,0,0,0

0...,,0,0,,,,,,,0,0

0...,,0,0,,,,,,

αααααα

αααααα

αααααα

αααααα

αααααα

=

=

=

=

=

−

�

�

V

V

V

V

V

M
    (5.13) 

The numbers 654321 ,,,,, αααααα  are scaling numbers. A wrap-around 

occurrs in 1
1)2/( −�V  and 1

2/�V  . The 1-level Daub4 wavelet signals are defined 

by: 
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( )
( )
( )

( )
( )216543

1
2/

432165
1

1)2/(

654321
1
3

654321
1
2

654321
1
1

,,0...,,0,0,,,,

,,,,0...,,0,0,0,0,,

0...,,0,0,,,,,,,0,0,0,0

0...,,0,0,,,,,,,0,0

0...,,0,0,,,,,,

ββββββ

ββββββ

ββββββ

ββββββ

ββββββ

=

=

=

=

=

−

�

�

W

W

W

W

W

M
    (5.14)  

The numbers 654321 ,,,,, ββββββ  are wavelet numbers. A wrap-around 

occurrs in 1
1)2/( −�W  and 1

2/�W  .  The scaling numbers satisfy the following 

properties: 

                              12
6

2
5

2
4

2
3

2
2

2
1 =+++++ αααααα           (5.15a)                                     

2654321 =+++++ αααααα     (5.15b) 

Equation (5.15 a) means that the energy of each scaling signal 1
mV  has an 

energy 1, and, equation (5.15 b) means that the trend values 1. mf V  are 

average of six successive values of  f  multiplied by 2 . The wavelet 

numbers satisfy:  

12
6

2
5

2
4

2
3

2
2

2
1 =+++++ ββββββ  

The above equation says that each 1
mW  has energy of 1.  

Property II [25]: if f  is (approximately) quadratic over the support of a k-

level Daub6 wavelet k

mW , then the k-level fluctuation value k

mWf .  is 

(approximately) zero. 

The orthonormality of the fluctuation signals and property II imply that 

the Daub6 wavelets (fluctuations) must satisfy:  
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0.

0.

0543210.

0543210.

0.

1.

6251
1
3

1
1

64534231
1
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1
1

6
2

5
2

4
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3
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2
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1
21
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1
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1
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2
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2
5

2
4

2
3

2
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2
1

1
1

1
1

=+=

=+++=

=+++++=

=+++++=
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=+++++=
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ββββββββ

ββββββ

ββββββ

ββββββ

ββββββ

WW

WW

WP

WP

WP

WW

 (5.16) 

where )1,.....,1,1,1,1(0 =P , ),....4,3,2,1,0(1 �=P  and ),....4,3,2,1,0( 22222
2 �=P . 

Solving for the Daub6 wavelet numbers gives:  

.500833326705529.0,110928068915093.0

,184914598775021.0,102551350110200.0

,8202670854412738.0,8570950352262918.0

65

43

21

−==

−=−=

==

ββ

ββ

ββ

   

Similarly, the Daub6 scaling signals must satisfy:  

0.

0.

0543210.
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0.
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46352413
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1
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1
1
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2

4
2
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1
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(5.17) 
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Where )1,.....,1,1,1,1(0 =P , ),....4,3,2,1,0(1 �=P  and ),....4,3,2,1,0( 22222
2 �=P . 

Using the Daub6 wavelet numbers and solving for the Daub6 scaling 

numbers gives: 

.8570950352262918.0,8202670854412738.0

,102551350110200.0,184914598775021.0

,110928068915093.0,500833326705529.0

65

43

21

=−=

−==

==

αα

αα

αα

   

As can be seen, the scaling numbers are related to the wavelet numbers by 

the relations: .,,,,, 162534435261 βαβαβαβαβαβα =−==−==−=   

Example 5.2: 

Consider the signal  

( )
( )





≤≤−−

<≤−
=

2124cos)2()1(40

1012cos)1(20
)(

42

42

xxxx

xxxx
xg

π

π
 

Using the FAWAV software [26], we get: 

           

                    (a)                                                           (b)  
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                            (c)  

Figure 5.2 

Figure 5.2 (a,b and c) represent the original signal, the 1-level Daub4 

transform and the 1-level Daub6 transform, respectively. It is clear that the 

Daub4 fluctuation values are significantly larger in magnitude than the 

Daub6 fluctuation values. Also, Daub6 transform redistributes the energy of 

the signal into a more compact form comparing with Daub4 transdorm. 

Figure 5.3 (a,b) represent the 5-level Daub4 and 5-level Duab6 transforms 

for the signal in figure 5.2 (a).  

            

                             (a)                                                  (b) 

Figure 5.3 
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The following property is used in computing higher order Daub transforms. 

  Property III [25]: if f  is (approximately) equal to polynomial of degree 

less than 2/J  over the support of a k-level DaubJ wavelet k

mW , then the k-

level fluctuation value K

mWf .  is (approximately) zero. 

 The Daub J  transforms for 20,,10,8 L=J , are defined in the same way 

as with Daub4 and Daub6; using property III and orthonormality In general, 

Daub J  wavelet with a larger value for J  improves the MRA for smoother 

signals (signals sampled from analog signals having more differentiability).  

However, such wavelets are not always the best as in the following 

example. 

Example 5.3: 

The signal: 

( ) xxxxxg ≤−= 0       12cos)1(20)( 42 π <1 

is sampled at 1024  sample  points then compressed using Haar, Daub4 and 

Daub20 wavelets. Table 5.1 shows the minimum number of transform 

values needed to capture %99.99  of the energy of the signal. 

Table 5.1 

Wavelet transform Values for %99.99  

energy 
Compression 
percentage 

Haar 453 56% 
Daub4 194 81% 
Daub20 193 81% 

It is clear from the previous table that the Daub4 and Daub20 transforms do 

the best job, while Haar transform is worst.  
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Coiflet wavelets 

Now we will talk about another class of wavelets, the CoifI wavelets. 

These wavelets are designed to maintain a close match between the trend 

values and the original signal values. These wavelets were first constructed 

by Daubechies, who called them “Coiflets”. All of CoifI, ,....12,6=I wavelets 

are defined in similar way; so we will concentrate on the simplest case of 

Coif6 wavelets. Coif6 wavelet and scaling numbers are found using the 

orthonormality property and property III in the same way in Daub6. The 

difference is in the way the wavelet and scaling signals are defined.  

The first-level Coif6 wavelets defined as follows: 

                         

( )
( )
( )

( )
( )432165

1
2/

654321
1

1)2/(

654321
1
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1
2
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0...,,0,0,,,,,,,0,0
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W

W

W

M
    (5.18) 

Notice there are wrap-arounds for the first and the last wavelets 1
1)2/( −�W  and 

1
2/�W . 

The first-level Coif6 scaling signals are defined as: 

( )
( )
( )

( )
( )432165

1
2/
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1

1)2/(
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1
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1
2

216543
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1
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,,,,,,0...,,0,0,0,0

0...,,0,0,,,,,,,0,0

0...,,0,0,,,,,,

,,0...,,0,0,,,,
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=

−
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�

V
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V
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V

M
    (5.19) 

Again, there is wrap-around for 1
1)2/( −�V  and 1

2/�V  . 



 

 

127

Using the orthonormaility and property III, the wavelet numbers for the 

Coif6 wavelet signals can be found as: 

216

73
1

+−
=β ,         

216

71
2

+−
=β ,          

216

7214
3

−
=β   

216

7214
4

−−
=β ,       

216

75
5

+
=β ,                

216

71
6

+−
=β   

The scaling numbers are related to the wavelet numbers by: 

         162534435261     ,    ,    ,    ,    , βαβαβαβαβαβα =−==−==−=        (5.20) 

The Coif6 scaling numbers satisfy the following identity 

                                     12
6

2
5

2
4

2
3

2
2

2
1 =+++++ αααααα                       (5.21) 

Identity (5.21) implies that each Coif6 scaling signal has energy 1. 

Moreover, the wavelet numbers satisfy 

                                    0654321 =+++++ ββββββ                               (5.22a) 

                            0543210 654321 =+++++ ββββββ                           (5.22b) 

Equations (5.22 a,b) show that Coif6 wavelet is similar to Daub4 

wavelet, so it will produce a zero fluctuation value if the signal is linear 

over its support. However, the difference between Coif6 and Daub4 wavelet 

is the properties of the scaling numbers. The coif6 scaling numbers satisfy 

                                     2654321 =+++++ αααααα                          (5.23a) 

                                   0321012 654321 =++++−− αααααα                  (5.23b) 

                    ( ) ( ) 0321012 6
2

5
2

4
2

3
2

2
2

1
2 =++++−+− αααααα                (5.23c) 
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Equation (5.23 a) implies that Coif6 trend values are averages of 

successive values of a signal  f   (with wrap-around when 1
1.Vf  and 1

2/. �Vf  

are computed). Notice that no Daub J  scaling numbers satisfy any of the 

equations (5.23 b,c). However, these three equations have an important 

consequence. When a signal consists of sample values (equally spaced 

values) of an analog signal, then a Coif6 transform produces a much closer 

match between trend subsignals and the original signal values than can be 

obtained with any of the Daub J  transforms. Since there is a close match 

between trends and subsignal values, this means that the following 

approximations hold to a high degree of accuracy; 

               
( )

( )mm

mm

tg

tg

4
2

2
1

2

2

≈

≈

a

a
                                                 (5.24) 

This approximation holds for higher levels, but, in general, the accuracy 
decreases as the numbers of levels increases. 

Example 5.4: 

Consider the signal 

( )xxxxg π12cos)1(20)( 42 −= , [ )0,1x∈  

           

                           (a)                                                        (b) 
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                         (c) 

Figure 5.4 

Figure 5.4 (a) represents the signal g  which is obtained from 142 16384=  

sample values of the signal. Figure 5.4 (b,c) shows the 2-level Daub4 

transform and the 2-level Coif6 transform for g  , respectively. While these 

two figures seem very similar to each other, the maximum error between 

the 2-level Daub4 trend values and samples of )4(2 xg  over the interval 

[ )25.0,0   is 31076.3 −×  and the maximum error in the Coif6 case is 71084.4 −× , 

which is much smaller. For the 1-level transforms we find that the 

maximum error between the first trend and samples of  ( )
mtg 22  is 

41087.8 −×  in the Daub4 case, and 81059.8 −×  in the Coif6 case. This property 

of trends providing close approximations of the analog signal, which is 

shared by all the Coiflet transforms providing a useful means of 

interpolating the trend subsignals. 
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5.5 Compression of Audio Signals 

A wavelet transform can be used to localize the energy of a signal into a 

shorter signal. Compressing an audio signal means converting the signal 

into a new format with smaller size to store or to transmit. In practice, most 

audio signals are discrete samples of a sound signal as in a computer audio 

file, or a compact disc. 

Example 5.5: 

To illustrate the general principle of compression of signals in one 

dimension, we will use Haar wavelet transform to compress the following 

signal whose graph is given in figure 5.5 (a). 
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x

x

x

x

xg  

This signal can be compressed effectively by Haar transform since it is 

piecewise constant.This signal has 1024  values over the time interval [ ]20,0 . 

Figures 5.5 (b,c) shows that large portion of the 1-level and the 2-level Haar 

transform values are zeros or very close to zero. Table 5.2 shows the 

number of coefficients used to compress the signal with %99.99  of its 

energy preserved using different levels. 
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Table 5.2 

Haar levels Number of coefficients Ratio of compression 
1-level 272 3.8:1 
4-level 48 21.3:1 
10-level 32 32:1 

               

                           (a)                                                        (b)  

 

                            (c) 

Figure 5.5 

n table 5.3, Daub4 is used. Comparison between the two tables shows 
that Haar transform is more efficient for this piecewise constant function. 
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Table 5.3 

 
Daub4 levels Number of coefficients Ratio of compression 

1-level 279 3.7:1 
4-level 89 11.5:1 
10-level 96 10.7:1 

The results obtained by Coif6 transform are close to those obtained using 

Daub4 as given in table 5.4. 

Table 5.4 

Coif6 levels Number of coefficients Ratio of compression 

1-level 281 3.6:1 

4-level 95 11:1 

10-level 100 10.4:1 

According to tables 5.2, 5.3, and 5.4 we can see that Haar transform is 

the best method to compress the piecewise signal given in example 5.5. 

However, the signal in the next example will not compressed nearly so 

well; this signal requires more sophisticated wavelet transform.     

Example 5.6: 

Consider the signal 

( ) ( ) [ ]π20,      xe      whersin2 ∈= xxxg  

whose graph is given in figure 5.6. 
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Figure 5.6 

This signal can be compressed effectively at energy %99.99  with Coif6 

transform, see table 5.5. 

Table 5.5 

Coif6 levels Number of coefficients Ratio of compression 
1-level 425 2.4:1 
4-level 54 18.9:1 
10-level 23 44.5:1 

Moreover, Daub4 transform will compress the signal ( )xg  in a effectively,  

see table 5.6. 

Table 5.6 

Daub4 levels Number of coefficients Ratio of compression 
1-level 425 2.4:1 
4-level 54 18.9:1 
10-level 25 41:1 

Table 5.7 shows that Harr transform for this signal is much less efficitive 

than either of Daub4 or Coif6 transforms.  
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Table 5.7 

Haar levels Number of coefficients Ratio of compression 
1-level 427 2.4:1 
4-level 125 8.2:1 
10-level 123 8.3:1 

5.6 Two Dimensional Wavelet Transforms  

Many basic ideas in 2D wavelet analysis are similar to the 1D case; so 

we will not repeat the similar formulas but we will focus on the ideas that 

are needed for 2D case, and we will describe some applications of 2D 

wavelet analysis. 

5.6.1 Discrete Images 

A digital image consists of number of pixels (picture elements) arranged 

in rows and columns. The 2D data that we will work with are discrete 

images. A discrete image f  is an array of M  rows and �  columns of real 

numbers: 

                                              

























=

1,1,21,1

2,2,22,1

3,3,23,1

,,2,1

�

�

�

M�MM

fff

fff

fff

fff

L

L

L

MOMM

L

f                                (5.25) 

Notice that the way the values of f  are displayed in the above array is 

not the most commonly used one. But, we will use it because it corresponds 

with the case where f  is an array of sampled values.  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) 
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22221

22221

21

,,,

,),(,

,,,

,,,

yxyxyx

yxyxyx

yxyxyx

yxyxyx

�

�

�

M�MM

ggg

ggg

ggg

ggg

L

L

L

MOMM

L

f      (5.26) 

The above matrix shows f  as a two dimensional array of sample values 

of a function of two variables ( )yxg ,  at the sample points ( )
kj yx ,  in the 

Cartesian coordinates plane. 

We can view a discrete image in one of two ways. First, as a single 

column consists of M  1D signals having length � , 

                                                      



















=

1

2

f

f

f

f
M

M

                                            (5.27) 

where the signals are: 

                                                  

( )

( )

( )1,1,21,11

2,2,22,12

,,2,1

,,,

,,,

,,,

�

�

M�MMM

fff

fff

fff

L

L

M

L

=

=

=

f

f

f

       

Second, as a single row consists of �  1D signals of length M  

                                                      ( )�ffff ,,, 21
L=      (5.28) 
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with the columns being the signals  
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f
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f

M
f  

Notice that the row index for each column increases from bottom to the top 

instead from the top to the bottom which is more common notation in image 

processing. 

 The energy fε  of a discrete image f  is defined to be the sum of the 

squares of all of its values. It follows that fε  is the sum energies of the row 

signals in (5.27);  

∑∑
= =

=

+++=

M

j

�

i

jif

M

1 1

2     

21 ffff εεεε L

. 

Also, the energy fε  is the sum of the energies of all of columns signals; 

∑ ∑
= =

=

+++=
�

j

M

i

jif

�

1 1

2     

21 ffff εεεε L

 

As a result from the last two identities the 2D wavelet transform below 

conserves the energy of discrete images. 
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5.6.2 Wavelet Transform of Discrete Images 

A digital image can be represented by a matrix whose entries represent 

the light intensity. The 1-level wavelet transform of a 2D image with even 

number of rows and columns can be defined as follows: 

Step 1: Perform 1-level, 1D wavelet transform, on each row of f  , this will 

produce a  new image.  

Step 2: Perform the same 1D wavelet transform on each column on the new 

image obtained from step1. 

Now, A 1-level wavelet transform of an image f  can be symbolized as 

follows: 

                                                          









→

1

1

1

1

v

d

a

h
f                                   (5.29) 

where the subimages ,,, 111 dha and 1v  each have 2M  rows and 2�  

columns. 

 The subimage 1a  is created by computing trends along rows of f  

followed by computing trends along columns; so it is averaged, lower 

resolution version of the image f . Since a 1D trend computation is 2  

times an average of successive values in a signal, and the 2D trend 

subimage 1a  was computed from trends along both rows and columns, it 

follows that each values of 1a  is equal to 2 times an average of a small 

square containing adjacent values from the image f . We will express 1a  as 

a scalar products of the image f  with scaling signals, as we did in 1D case. 
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 The 1h  subimage is created by computing trends along rows of the 

image followed by computing fluctuations along columns. Consequently, 

whenever there are horizontal edges in an image, the fluctuations along 

columns are able to detect these edges. We shall refer to this subimage as 

the first horizontal fluctuation. The subimage 1v  is similar to 1h . We shall 

refer to this subimage as the first vertical fluctuation. The subimage 1d  is 

created by computing the fluctuations along both rows and columns. We 

shall refer to this subimage as the first diagonal fluctuation, since it tends to 

emphasize diagonal features. 

 Notice that, the basic principle for 1D wavelet analysis still apply here 

in 2D setting. For example, the fact that the fluctuation values are generally 

much smaller than trend values is still true. So, the fluctuation subimages 

,, 11 dh and 1v  have significantly smaller values than the values in the trend 

subimage 1a . In fact, to make the values for ,, 11 dh and 1v  visible, they are 

displayed on a logarithmic intensity scale, while the values for the trend 

subimage 1a  are displayed using an ordinary linear scale. Also, 2D wavelet 

transforms conserves energy. The energy of an image is the sum of the 

energies of each of its rows or each of its columns. Since, 1D wavelet 

transforms of the rows preserve energies, the image obtained in step1 will 

have the same energy as the original image. Also, since the 1D wavelet 

transforms of the columns preserve their energies, it follows that the 

transform obtained in step2 has the same energy is the image from step1. 

So, the 1-level wavelet transform has the same energy as the image in step1. 
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 The multiple levels of 2D wavelet transforms are defined by repeating 

the 1-level transform of the previous trend. For example, a 2-level wavelet 

transform is performed by computing a 1-level transform of the trend 

subimage 1a  as follows: 











→

2

2

2

2
1

v

d

a

h
a  

The 1-level fluctuations ,, 11 dh and 1v  remain unchanged. In general, a k-

level transform is defined by performing a 1-level transform on the previous 

trend subimage 1−ka . Notice that the 2D wavelet transform perform 

compaction and conservation of the energy. Most of the energy of the 

image is successively localized into smaller and smaller trend subimages. 

Example 5.7: 

Consider the following discrete image: 



















=

41086

12141210

68104

2462

f  

We apply the 1-level Haar Transform in 2D as follows: 

Computing the trend and the fluctuation subimages along rows as in (4.18) 

and (4.19) respectively, we get: 





















−

−

−

−

2622241214

2222226222

2226241214

22242628
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Repeat the same on columns to obtain the transformed image  





















−

−

−

−−
=

4     2

2     5

2      0   

0       1

02       81  

01       11  

6    4

4      3   

f̂  

The energy for the original image is: 

10762462681041214121041086 2222222222222222 =+++++++++++++++=fε

And the energy for the transformed image is: 

( ) ( ) ( ) ( ) ( ) 1076143264251011422018 22222222222222
ˆ =−++++−+−++−++++−++=
f

ε

The 1-level Haar transform preserved the energy, while the energy of its 

first trend subsignal is: 

94510112018 2222
1 =+++=

a
ε  

So, %83.87  of the total energy is compacted into the left bottom corner 

subimage 1a . 

Moreover, 2-level Haar transform in 2D performed by computing a 1-level 

transform of the trend subimage 1a  (repeat the previous procedure) 












−
−

→










− 21

  23 

259

217

22

  21  

238

221  

Its energy is ( ) ( ) 9455.15.85.5.29 2222 =−++−+  which is the same as the 

energy of the 1-level trend subimage 1a . The energy for the subimage 2a  is 

25.8705.29 2 = . So, %1.92  of the total energy is compacted into the left 

bottom corner subimage 2a . 
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5.6.3 Wavelet and Scaling Images 

In 1D case, the various levels of wavelet transform can be computed by 

scalar products of the image f  with elementary images called scaling 

images and wavelets. 

Definition 5.1 [25]: A scalar product of two discrete images f  and g , both 

having M  rows and �  columns, is defined by: 

                        M�M� gfgfgf ,,2,12,11,11,1. +++= Lgf     (5.30) 

In other words, gf .  is the sum of all products of the same indexed values of 

f and g . 

Example 5.8: 

Consider the two images 
2      3

5      4

 
=  
 

f  and 
3      6

1      2

 
=  
 

g . 

3724156332. =×+×+×+×=gf  

 The 1-level wavelet transform of a 2D image consists of the 4 

components; 1a , ,, 11 dh and 1v  as in (5.29). These components can be 

defined in terms of elementary images, but, first we need the following 

definitions: 

Definition 5.2 [25]: Tensor Product 

The tenser product of two vectors is defined as : 
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( )
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M

M

M
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babababa

babababa

bbbb

a

a

a

a

L

MOMMM

L

L

L

L

M

321

3332313

2322212

1312111

3213

2

1

                              

 

Definition 5.3 [25]: 

We define the following elementary images as: 

a. Elementary wavelet: 111
, nmnm WWW ⊗= . 

b. Scaling image: 111
, nmnm VVV ⊗= . 

c. Horizontal image: 111
, nmnm VWH ⊗= . 

d. Vertical image: 111
, nmnm WVD ⊗= . 

Using the Tensor product we will compute the 1-level elementary 

wavelet 1
1W , 1-level scaling image 1

1V , 1-level horizontal image 1
1H  and 1-

level vertical image 1
1D , respectively. 

( )
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Similarly, we compute:  
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Notice that the Haar wavelet 1
1,1

1
1,1 , HW  and  1

1,1D all have energy 1 and an 

average value of 0, like all the other Haar wavelets 1
,

1
, , nmnm HW , and  1

, nmD . 

Moreover, notice that the support of the Haar wavelet 1
1,1

1
1,1 , HW  and  1

1,1D  is a 

2 by 2 square, and so the support of each Haar wavelet 1
,

1
, , nmnm HW  and  1

, nmD  

is a 2 by 2 square as well. But, for the Daubechies wavelets, the supports of 

the wavelets 1
1,1

1
1,1 , HW  and  1

1,1D  are not 22×  ones. 

Like all the other Haar scaling images 1
, nmV .the scaling signal 1

1,1 V  has 

energy 1 and average value 21 , Moreover, notice that the support of the 

Haar scaling image 1
1,1 V  is a 2 by 2 square, and so the support of each Haar 

scaling image 1
, nmV  is a 2 by 2 square as well. But, the supports of the 

scaling image 1
, nmV  for the Daubechies wavelets are small squares, but not 

22×  ones. 
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Definition 5.4: 

a. The entries of the 1-level scaling image 1a  are defined as:  

1
,

1
, . nmnma Vf=  

b. The entries of the 1-level horizontal fluctuation 1h  are defined as: 

1
,

1
, . nmnmh Hf=  

c. The entries of the 1-level diagonal fluctuation 1d  are defined as: 

1
,

1 . nmnmd Wf=  

d. The entries of the 1-level scaling image 1v  are defined as: 

 

Example 5.9:  

We use 1-level Haar transform to transform the image 

 

 

Using definition (5.2, 5.3) and (5.4) compute the 1-level scaling image 1a , 

the 1-level horizontal fluctuation 1h , the 1-level diagonal fluctuation 1d , 

and the 1-level scaling image 1v ,  

First, compute the four entries in the subimage 1a : 

1
,

1
, . nmnmv Df=
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2462

f
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Similarly;  
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Second, compute the four entries in the subsignal 1v : 
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Third, compute the four entries of the subsignal 1h :  
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Fourth, compute the four entries of the subsignal 1d : 
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The transformed signal will be on the form: 
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The transformed signal is: 

 

 

The energy for the original signal f  and the transformed signal using 1-

level Haar transform in 2D is the same 1076. To obtain 2-level Haar 

transform we will repeat the previous procedure on trend subsignal 1a  

which contains most of the energy. 

First, compute the only entry of the subsignal 2a : 
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 Second, compute the only entry of the subsignal 2v : 
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Third, compute the only entry of the subsignal 2h : 
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Fourth, compute the only entry of the subsignal 1d : 
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So, the 2-level Haar transform of the original signal f  is:   
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 What is true for the first level remains true for all subsequent levels. 

The values of each subimage kkk dha ,,  and kv  are computed by scalar 

products with the scaling images k

nm,W , and the wavelets k

nm,D , k

nm,H , and k

nm,V , 

respectively.     

5.7 Applications 

In these sections, we discuss some major image compression 

applications of wavelets.  

5.7.1 Finger prints 

The Federal Bureau of Investigation (FBI) in the USA launched a 

project to store and process tens of millions of sets of finger prints 

electronically. The FBI project has boosted the research on wavelets.  

The FBI has been collecting fingerprints since 1924 [5]. By the year 

1994, the total number of fingerprints reached over 200 million. Over 30  
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million set of fingerprints are searched each time they investigate the 

records of a suspect. The list is updated at a rate of about 30000  fingerprint 

per day. The processing is manual and time consuming. However, storing 

over 200  million fingerprint set on a computer, and searching over 

30million fingerprint set require large storage space since each fingerprint 

set occupy about 10Mb and this require long time when transmitting data 

between different offices of the FBI. Still, processing and comparison is 

done manually. The FBI started searching for methods to reduce the size of 

the storage space and to automate the process of fingerprints. The FBI 

adopted wavelet transform for the compression and processing of 

fingerprints. While Fourier transform can be used in compressing and 

processing such huge number of fingerprint sets, wavelet transform proved 

to be more efficient.  

Another use of wavelets is in using fingerprints or the unique type of 

hemoglobin in blood to allow or refuse entries into high security buildings. 

In Singapore, a new security system based on wavelets transforms was 

introduced in Hitachi Tower in 2003. Later, 1500  employees got access to 

the building by scanning their fingers. The scanner uses infrared rays to 

trace the hemoglobin in blood in order to capture the vein patterns in the 

finger, and then compare them to a pre-stored image of vein patterns of the 

person. These patterns determine the person uniquely. The whole process 

need to be fast to allow or deny entry of a given person. 
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5.7.2 Compression of Images 

One of the most important applications of wavelets is image 

compression. Since an image is 2D signal, the same techniques for 2D 

signals are used. To illustrate, we consider the following example. 

Example 5.10:   

The image in figure 5.7 (a) is an example used very often in wavelet 

analysis. It shows a 512512×  image of Lena. This image is gray– scale with 

light intensity values from 0 to 255 (0 indicates pure black and 255 

indicates pure white, and other values indicates shades of gray, between 

these two extremes).To compress Lena image in figure 5.7 (a) we shall use 

its 4-level Coif12  transform; 

                                            

                   (a)                                                                     (b) 

Figure 5.7 

Figure 5.7 (b) represents the 4-level Coif12 transform for Lena  image, 

notice that the transform is very small compared to the original image since 

in the transform decreases the length and the width of the image according 

to the number of the levels, so the image will be decreased. 
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Example 5.11: 

For the same image from example 5.10 we will compress it using 2-

level Haar wavelet series   

                                                           

                     (a)                                                                  (b)                

                                      

                (c)                                                                      (d)   

                  

                (e) 

Figure 5.8 



 

 

155

Figure 5.8 (a,b,c,d,e) represent the original image and the compressed 

images using 2-level Haar wavelet series, where the 

thresholds 2
1 , 32

1 , 42
1 , and 82

1  respectively. 

Figure 5.8 (a) represents the original image where 263169 samples are 

used and its energy is 4634258609. 

Figure 5.8 (b) represents the reconstructed image after the 2-level Haar 

wavelet series, where the threshold is 2
1 , its energy is 4631351017.68097, 

3.7% of the coefficients used, 0.07 bits per pixel and the compression ratio 

is 0.9993725877. 

Figure 5.8 (c) represents the reconstructed image after the 2-level Haar 

wavelet series, where the threshold is 32
1 , its energy is 4641370350.85884, 

6.4% of the coefficients used, 0.25 bits per pixel and the compression ratio 

is 1.001534602.  

Figure 5.8 (d) represents the reconstructed image after the 2-level Haar 

wavelet series, where the threshold is 42
1 , its energy is 4618888060.62109, 

7.% of the coefficients used, 0.35 bits per pixel and the compression ratio is 

0.9966832779.  

Figure 5.8 (e) represents the reconstructed image after the 2-level Haar 

wavelet series, where the threshold is 82
1 , its energy is 4633945785.05686, 

40. % of the coefficients used 3.6 bits per pixel and the compression ratio is 

0.9999324975.  
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Example 5.12: 

For the same image from example 5.10 we will compress it using 2-

level Daub 4  wavelet series   

                                

(a)                                 (b)  

                                 

                (c)                                                                      (d) 

 

                  (e) 

Figure 5.9 
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Figure 5.9 (a,b,c,d,e) represent the original image and the compressed 

images using 2-level Daub 4  wavelet series, with thresholds 2
1 , 32

1 , 42
1 , 

and 82
1  respectively. 

Figure 5.9 (a) represents the original image where 263169 sample used 

and its energy is 4634258609. 

Figure 5.9 (b) represents the reconstructed image after the 2-level 

Daub 4  wavelet series, where the threshold is 2
1 , its energy is 

4768905656.29883, 3.6% of the coefficients used 0.07 bits per pixel and the 

compression ratio is 1.029054712.  

Figure 5.9 (c) represents the reconstructed image after the 2-level 

Daub 4  wavelet series, where the threshold is 32
1 , its energy is 

4649671220.0748, 6.3% of the coefficients used 0.25 bits per pixel and the 

compression ratio is 1.003325799.  

Figure 5.9 (d) represents the reconstructed image after the 2-level 

Daub 4  wavelet series, where the threshold is 42
1 , its energy is 

4622571014.11522, 6.7% of the coefficients used 0.34 bits per pixel and the 

compression ratio is 0.9974780011.  

Figure 5.9 (e) represents the reconstructed image after the 2-level 

Daub 4  wavelet series, where the threshold is 82
1 , its energy is 

4634029848.74203, 35.2% of the coefficients used 3.17 bits per pixel and 

the ratio compression is 0.9999506372.  
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From examples 5.10 and 5.11 we notice that the lower thresholding (the 

more the  ratio of bit rate increases)  the less compression  of image we 

obtain lower average speed of transferring data, but better quality of the 

reconstructed image we get.  

Example 5.13: 

For the same image from example 5.10 we will compress it using 3-

level Haar and Daub4 and Coif6 wavelet series at a fixed thresholding value 

 

(a) 

 

                                       

                           (b)                                                                (b') 
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                          (b'')                                                                (c)  

                                

                       (c')                                                                  (c'')                                

Figure 5.10 

Figure 5.10 (a) represents the original image and figure 5.10 (b,b',b'') 

represent the reconstructed images using 3-level Haar, Daub 4 and Coif 6  

wavelet series at a fixed thresholding value which is 2
1  respectively, figure 

5.10 (b) its energy is 4603786336, 1.% of the coefficients used, 0.02 bits 

per pixel and the compression ratio is 0.9934245632. While figure 5.10 (b') 

its energy is 4794384050.90519, 0.9% of the coefficients used, 0.02 bits per 

pixel and the compression ratio is 1.034552548. Also, figure 5.16 (b'') its 
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energy is 4671914069.34679 , 0.9% of the coefficients used, 0.02 bits per 

pixel and the compression ratio is 1.008125455. 

Figure 5.10 (c,c',c'') represent the reconstructed images using 3-level 

Haar, Daub 4  and Coif6  wavelet series at a fixed thresholding value which 

is 32
1 . Figure 5.10 (c) its energy is 4585718315.63846, 1.6% of the 

coefficients used, 0.07 bits per pixel and the compression ratio is 

0.9895257695. While figure 5.10 (c') its energy is 4622181129.64237, 1.6% 

of the coefficients used, 0.06 bits per pixel and the compression ratio is 

0.091100036. Also, figure 5.10 (c'') its energy is 4620789559.59031 , 1.6%  

of the coefficients used, 0.06 bits per pixel and the compression ratio is 

0.997093591 .  

Notice that the reconstructed images of 3-level Daub 4 and Coif6  

wavelet series transform is clearer than the one prepared by Haar wavelet 

series at the same level and same threshold even both have the same bits per 

pixel and percentage of coefficients being used. 

Example 5.14: 

For the same image from example 3.9 we will compress it using 2-level 

Haar and Daub 4  and Coif6  wavelet series at a fixed thresholding value 
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(a)                                                                       

    

 (b) 

    

(b')                                                                   
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   (b'') 

   

(c) 
                                                                         

      

 (c') 
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(c'')                                                                                                

   

 (d) 

     

(d')                                                                                   
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 (d'') 

Figure 5.11 

Figure 5.11 (a) represents the original image where 263169 sample used 

and its energy is 8596962998. 

  Figure 5.11 (b,b',b'') represent the reconstructed images using 2-level 

Haar, Daub 4 and Coif6  wavelet series at a fixed thresholding value which 

is 2
1  respectively, figure 5.11 (b) its energy is 9394226775, 5.3% of the 

coefficients used, 0.11 bits per pixel and the compression ratio is 

1.092737840. While figure 5.11 (b') its energy is 8665213903.66226, 5.1% 

of the coefficients used, 0.1 bits per pixel and the compression ratio is 

1.007938955. Also, figure 5.11 (b'') its energy is  8379409629.48208, 5.1% 

of the coefficients used, 0.1 bits per pixel and the compression ratio is 

0.9746941601. 

Figure 5.11 (c,c',c'') represent the reconstructed images using 2-level 

Haar, Daub 4  and Coif6 wavelet series at a fixed thresholding value which 

is 32
1 , respectively, figure 5.11 (c) its energy is 8673786643.17264, 6.5% 
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of the coefficients used, 0.26 bit per pixel and the compression ratio is 

1.008936138. While figure 5.11 (c') its energy is 8538627768.59786, 6.5% 

of the coefficients used, 0.26 bit per pixel and the compression ratio is 

0.9932144376. Also, figure 5.11 (c'') its energy is  8435345747.42825, 

6.5% of the coefficients used, 0.26 bit per pixel and the compression ratio is 

0.9812006576.  

Figure 5.11 (d,d',d'') represent the reconstructed images using 2-level 

Haar, Daub 4 and Coif6 wavelet series at a fixed thresholding value which is 

82
1 . Figure 5.11 (d) its energy is 8601794659.94574, 32.3% of the 

coefficients used, 2.9 bit per pixel and the compression ratio is 

1.000562020. While figure 5.11 (d') its energy is 8598852073.02674, 

28.9% of the coefficients used, 2.6 bit per pixel and the compression ratio is 

1.000219737. Also, figure 5.11 (d'') it energy is 8596796018.56208, 28.7% 

of the coefficients used, 2.59 bit per pixel and the compression ratio is 

0.9999805770. 

  Notice that the reconstructed images of 2-level Daub 4 and Coif6  

wavelet series transform is clearer than the one prepared by Haar wavelet 

series at the same level and same threshold even both have the same bits per 

pixel and percentage of coefficients being used. 

5.8 Compression by Fourier Transform and the Wavelet Transform 

Data compression is very active with new approaches, ideas, and 

techniques being developed and implemented all the time. JPEG is a 
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Fourier-based compression format widely used for color image compression 

but is not perfect. This is why in 1995 the JPEG committee has decided to 

develop a new wavelet-based standard for t compression of still images, to 

be known as JPEG2000. The final draft was approved by the JPEG 

committee in 2000 and this new standard is expected to improve the 

following areas: 

• High compression efficiency. 

• The ability to handle large images, up to 3232 22 ×  while the original 

JPEG can handle images of up to 1616 22 × . 

• Progressive image transmission. 

• Easy, fast access to various points in the compressed stream. 

• The decoder can pan, zoom, rotate and crop the image while 

decompressing only parts of it. 

• Error resilience. Error-correcting codes can be included in the 

compressed stream, to improve transmission reliability in noisy 

environments. 

The new important approaches introduced by JPEG2000 are: 

1.  The decoder can decompress the entire image or parts of it in 

lower quality and lower resolution. 
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2. The decoder can extract parts of the compressed stream and 

assemble them to create a new compressed stream without having 

to do any decompression. 

The advantages of JPEG2000 are: 

1.  Saves time and space. 

                2. Prevents the building of image noise. 

In the next two examples, we use the softwarte waveanalyzer [24] for 

comparison between between Fourier transform and the wavelet transform 

using the JPEG and JPEG2000 compression formats.  

Example 5.15: 

Figure 5.12 shows a 24-bit colored image of Archimedes. Its dimension 

is  25601920×  and the uncompressed size is 14400 Kb. Now we will 

compress this image using JPEG (Fourier-based compression) and 

JPEG2000 (wavelet-based compression) methods at different compression 

ratios.  

Figures 5.13, 5.15, and 5.17 show reconstructed images from 

compressed ones with different compression ratios using Fourier transform.  

      Figure 5.13 is obtained from the compressed image of size 83 Kb with 

compression ratio 0.6% and 0.1386 bits per pixel. Figure 5.15 obtained 

from the compressed image of size 319 Kb with compression ratio  2.2% 

and 0.5320 bits per pixel. Also, figure 5.17 is obtained from a compressed 
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image of size 3080 Kb with compression ratio 21.4% and 5.1340 bits per 

pixel.  

 

Figure 5.12 
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Figure 5.13  

 

Figure 5.14 
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Figure 5.15 

 

Figure 5.16 
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Figure 5.17 

 

Figure 5.18 
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Figures 5.14, 5.16, and 5.18 show   reconstructed images from 

compressed ones with different compression ratios using wavelet transform. 

Figure 5.14 is obtained from the compressed image of size 72 Kb with 

compression ratio 0.5% and 0.1198 bits per pixel. Figure 5.16 is obtained 

from the compressed image of size is 14 Kb with compression ratio 0.1% 

and 0.0239 bits per pixel. Also, figure 5.18 is obtained from the cmpressed 

image of size is 3 Kb with compression ratio is 0.02% and 0.0048 bits per 

pixel. 

 This example shows that compressing the image using JPEG 2000 

(wavelet based compression) is more efficient than compressing it using 

JPEG (Fourier based compression) since we could compress the image from 

14400 Kb to 3 Kb using JPEG 2000 with reasonable resolution, while the 

highest compression ratio obtained by JPEG for the same image is 0.6% 

and the compressed file size or 83 Kb. 

Table 5.8 

JPEG (using Fourier transform)  JPEG2000 (using wavelet 
transform) 

figure 
Compression 

Ratio 
Size figure Compression Ratio Size 

5.13 0.6% 83KB 5.14 0.5% 72KB 
5.15 2.2% 319KB 5.16 0.1% 14KB 
5.17 21.4% 3080KB 5.18 0.02% 3KB 

Example 5.16: 

Figure 5.19 represents an image for An-Najah University, its dimension 

is 479640× , its 24-bit colored image and its size is 898Kb. Now we will 

compress this image using JPEG and JPEG2000 methods at different 

compression ratios.   
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Figure 5.19 

 

Figure 5.20 

 

Figure 5.21 
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Figure 5.22 

 

Figure 5.23 

Figures 5.20 and 5.22 show reconstructed images from compressed ones 

with different compression ratios using Fourier transform. Figure 5.20 is 

obtained from the compressed image of size 7 Kb with compression ratio 

0.8% and 0.1979 bits per pixel. Figure 5.22 is obtained from the 

compressed image of size is 167 Kb with compression ratio 8.69% and 

4.4759 bits per pixel.  
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 Figures 5.21 and 5.23 show reconstructed images from compressed 

ones with different compression ratios using wavelet transform. Figure 5.21 

is obtained from the compressed image of size 4 Kb with compression ratio 

0.5% and 0.1198 bits per pixel. Figure 5.23 is obtained from the 

compressed image of size is 2 Kb with compression ratio 0.2% and 0.0471 

bits per pixel.  

Table 5.9 

JPEG (using Fourier transform)  JPEG2000 (using wavelet 
transform) 

figure 
Compression 

Ratio 
Size figure Compression Ratio Size 

5.20 0.8% 7KB 5.21 0.5% 4KB 
5.22 8.69% 167KB 5.23 0.2 2KB 

This example shows that wavelet transform is more efficient than 

Fourier transform in compressing colored images.  

5.9 Conclusion 

There are two categories of data compression; lossless and lossy. In 

lossless compression all details are reserved which means the reconstructed 

data is identical to the uncompressed ones. This type of compression does 

not achieve high compression ratios and is not considered in this thesis. The 

other type is the lossy compression where some details is lost in the process 

of compression which means the reconstructed signal is approximately the 

same, but not identical, to the original one. The accuracy in the 

reconstructed signal depends on a threshold value determined by the user.  
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Smaller threshold values leads to more accuare reconstructed images and 

higher compression ratio.  

Multiresolution analysis (MRA) divides the signal into a trend subsignal 

and a finite sequence of detailed subsignals. Reconstruction is done by 

adding a detail subsignal at a time to get the desired resolution.  

In this thesis, a computational study of two major transforms used 

extensively in digital signal processing in general and in data compression 

in particular is done. The two transforms are the classical Fourier transform 

and the relatively new wavelet transform. A computational comparison 

between the two transforms has been made showing that the wavelet 

transform is more efficient than Fourier transform in data compression. As a 

result, several data compression software, using wavelet transforms, were 

introduced in the last two decades. Examples of these are the image 

compressor JPEG2000 and the text compressor DJVU.  

There are several well-known wavelet transforms. In this thesis, we 

considered Haar, DaubJ for J= 4, 6, and 20, and the Coiflet wavelet 

transforms. Haar wavelet transform is the simplest one and is used as a 

prototype for other wavelet transforms.  A comparison between these 

transforms shows efficiency of each one compared to the others depends on 

the signal. For instance, the Haar transform is considered efficient for 

piecewise constant signals. For continuous signals, DaubJ and Coiflet 

transforms are more efficient.  



 

 

177

Results from section 5.7 shows that wavelet transform is more efficient 

than Fourier transform for image compression. Tables 5.8 and 5.9 clearly 

show the efficiency of the wavelet transform when compared with Fourier 

transform for colored images.  
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  الملخص

في النوع ). تقريبي(والثاني بخسارة  ) مطابق(ا£ول بدون خسارة : اتھناك نوعان من ضغط البيان

ا£ول، التفاصيل محفوظة لكن دون الحصول على نسبة ضغط كافية وھذا النوع من ضغط البيانات لم 

اما في النوع الثاني، فتكون ھناك خسارة لبعض التفاصيل وحجم ھذه . يناقش في ھذه ا£طروحة

باستخدام ھذا النوع من . مع نسبة الضغط المرجوة ويتحكم المستخدم بذلك التفاصيل يتناسب طرديا

الضغط، يمكن الحصول على نسبة ضغط عالية جدا مع دقة كافية في البيانات المسترجعة من البيانات 

  . المضغوطة

 في ھذا البحث، تمت دراسة تحوي´ت فورييه التقليدية وتحوي´ت المويجات الحديثة نسبيا، وھما من

إضافة لذلك، قمنا بعمل مقارنة محوسبة بين التحويلين .  أكثر التحوي´ت استخداما في ضغط البيانات

إن نسب .  ا£ساسيين وتبين أن تحوي´ت المويجات كانت أكثر فعالية من تحوي´ت فورييه التقليدية

ظھور العديد من الضغط العالية التي يمكن الحصول عليھا بواسطة تحوي´ت المويجات كانت حافزا ل

برمجيات : وكأمثلة على ذلك.  برمجيات ضغط البيانات بواسطة المويجات في العقدين ا£خيرين

JPEG 2000  لضغط الصور وبرمجياتDJVU  لضغط النصوص.



 


