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A DETAILED AND SIMPLIFIED SOLUTION TO HYDRODYNAMIC FORCES
ON A SUBMERGED TANK SUBJECT TO LATERAL GROUND EXCITATION.

A.H.Helou
Civil Engineering Department,An-Najah University, Nablus.
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ABSTRACT

The domain where a submerged vertical cylindrical tank exists
is divided into two regions. Assuming irrotaional motion and an
ideal fluid the Laplace s equations in both regions are solved
by the method of separation of variables. The intgral equation
resulting from matching the potentials at the interface is
solved numerically by the Galerkin method. It is showen that
the mathematical labour is greatly reduced by dropping the
surface effects and the results are in good agreement with
those obtained by including surface effects albeit at higher
values of excitation frequencies. The case of protruding
cylinder is presented to further illustrate the simplicity of
the solution.

INTRODUCTION

In the early seventies, industrialized nations started to
consider the oceans as potential sites for oil production and
storage. The first off-shore tank was constructed 60 miles off
the coast of the Sheikhdom of Dubai. That tank has no bottom
and operates on the water displacement principle with oil
floating on top. In earthquake prone areas such structures
have to resist the seismic-induced hydrodynamic forces.
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Under earthquake excitation, surface waves are generated outside the tank.

Inside the tank, due to the presence of two fluids, oil and water, internal

waves are also generated (Helou [2]). In this presentation the tank is assumed

to be rigid allowing the complete separation of the hydrodynamic problem inside

and outside the tank. The following is a detailed and simplified solution to

the exterior wave radiation problem.

The problems of wave scattering and radiation by submerged and

semisubmerged tanks of simple geometry were studied by Black and Mei [1), and

later by Tung [.3], who considered the radiation problem of a submerged circular

cylindrical tank. In the following presentation it is intended to show that by

neglecting the surface effects the mathematics involved in deriving the

hydrodynamic pressure distribution is considerably simplified. However, it

should be noted that this simplification is applicable only at higher values of

excitation frequencies where most of the energy is contained. The results

pertaining to a protruding vertical cylindrical tank will also be presented.

Statement of the Problem and its Solution

Consider the tank shown in Figure 1 to be oscillating in the horizontal

direction with a harmonic ground excitation of unit amplitude f H(t) - e-iWt •

Region 1 

Assuming the fluid motion to be irrotational and the fluid ideal, the

velocity potential . 1 exists and, for small amplitude waves, satisfies the

equation

V
2

1 = 0 	 (1)
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Figure 1 Definition sketch of the submerged vertical circular cylindrical
tank. It shows the coordinate system employed in subsequent
discussions.
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subject to the following boundary conditions

a01
= 0 	 at z = -h 	 (2)

az

At the surface the kinematic boundary condition requiring a particle on the

surface to stay on the surface is written as

ail 	 an
-az 	 at 	 0

at z 	 0 (3)

where n is the water surface displacement. Furthermore, the dynamic free

surface boundary condition is

a t1
at 

+ gn = 0 	 at z = 0 	 (4)

g denotes the gravitational acceleration.

At the lateral surface of the tank the boundary condition is

at'

ar = f (0 cos e 	 at r = R 	 (5)

and -h < z < -H

In addition to the above stated boundary conditions the radiation condition

needs to be satisfied. It requires the waves to be outgoing as r becomes

infinite.

Region 2

Similar to region 1, Laplace's equation defines the fluid motion in region

V
2

2 = 0 	 (6)

Together with the following boundary conditions
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at#2

az 
= 0 	 at z = -H 	 (7)

(42 an

ataz
- 	 = 0 	 at z = 0 	 (8)

at2
+ gn = 0 	 at z = 0 	 (9)at

Across the boundaries between regions 1 and 2, two additional boundary

conditions are available. They are the continuity of pressure and velocity

asti 	 ao2

Pat = Pat

ai l 	ao2

ar 	 ar

at r = R
and - h < z < -H

at r = R
and - h < z < -H

(10)

In equation (10) p is the fluid density. The ground motion is conveniently

separated into spatial and temporal parts

0 1 (z,r,e,t) = • 1 (z,r,6)e -i(at 	(12)

02 (z,r,e,t) = +2 (z,r,e)e - itat 	(13)

which together with equation (10) imples that

at r = R 	 (14)
and -h < z < -H

The dynamic and kinematic boundary conditions are customarily combined to yiel

2
01 0 ,_ 	 T I = 0 	 at z = 0 	 (15)
az 	 g

4 
-

2 w
2 
A

	2 = 0 	 at z = 0 	 (16)--v
az 	 g
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The solution to Laplace's equation (1) is obtained by the method of separation

of variables. In region 1, let

(01(z,r.e) 	 Z1(z) • R 1 (r) 	el ( e )

Substituting this into equation (1) and dividing by Z I R I e l gives

R 1 	1 R I 	1 e l 	zi
+ — 	 + 	 - 	 Constant

R1 	 r RI 	 r2 el 	 zi

From the boundary condition mentioned in equation (5), it is observed that the

e-dependence must be given by

(ye) - cos e 	 (19)

which means that equation (18) reduces to

Z1(z)
k
2

(20)z l

and

r2R
1 + rR + (k

2
r
2 

- 1)R
1 m

“
0 	 (21)

in which k is the wave number and k
2 
can take all possible values (i.e.,

positive, zero and negative).

For k2 > 0 and with the boundary condition 2 the solution to equation (20)

is written as

Z 1 (z) 	 C cosh k(z + h)
	

(22)

in which C is a constant to be determined.

Applying the combined free surface boundary condition of equation (15)

yields the dispersion relation

(17)

(18)
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w
2

k = tanh kh
	

(23)

g
The surface effect is neglected by setting -- = 0. This indicates that for

k
2 > 0 no solution exists. A similar result is obtained for k2 = 0. However

for k2 < 0 and using the following identities between circular and hyperbolic

functions

cos le = cosh e

and

sin ie 	 i sinh e

The solution of equation (22) becomes

Z 1 (z) = C cos k(z + h)
	

(24)

and the dispersion relation (23) takes the form

2

= -k tan kh
	

(25)
g

Setting 	 = 0 gives tan kh = . the roots of which are
,2

(2n -
kn =
	 n = 412,3, . . . m 	(26)

2h

And the eigenfunction in z takes the form

Z 1 (z) = Cn cos kn(z + h)
	

(27)

The eigenfunction in the radial direction is obtained from the following

solution of equation (21) which is recognized as the modified Bessel equation'

the first order and first kind. For each value of n the solution is
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R 1 (r) = an I 1 (knr) + bnK 1 (knr)
	

(28)

where I 1 is the modified Bessel function of the first kind and first order and

K 1 is the modified Bessel function of the second kind and first order. a
n and

bn are sets of constants.

Since I 1 does not satisfy the radiation condition the constants an are set

equal to zero and the solution to equation (21) reduces to

R I (r) = bnyknr) 	 (29)

Now the velocity potential function in region 1 may be written as a combination

of all eigenfunctions obtained

= E bn fn (z)K 1 (knr)cos e 	 (30)
n=1

where f
n (z) is an orthonormal function in z computed to be

fn ( z ) = Pi„.. cos kn (z + h) 	 (31)

Following an almost identical scheme the solution to equation (6) is obtained.

The potential function 02 is

02 = E BnFn (z)I 1 (knOcos e 	 (32)
n=1

(2n - 1)r
where kn - 	 2H 	

n = 1,2,3 . . .

and Fn
(z) 	 cos k

n (z + h)
	

(31)

In order to quantify the set of unknown constants bn 's and Bn 's the

condition of pressure continuity and velocity continuity across the boundary

r = R is utilized.



A.H.Helou
20

Differentiating the expression for . 1 and .2 with respect to r, the

following expressions are obtained for the velocities at r = R

v(z) = I bn fn (z)kn K I (knR) 	 -H < z < 0 	 (33)
n=1

and

* 	 I 	 *
v(z) 	 E B

n Fn (z)kn I 1
 (k 

n R) 	 -H < z < 0 	 (34)
n=1

The prime (') denotes differentiation with respect to r. The velocity of the

tank's wall follows from the assumption that the ground acceleration is harmonic

-h < z < -H 	 (35)

When both sides of equation (33) are multiplied by f m (z) and integrated

over the depth h the following expression for b n is obtained after the

orthonormality property is invoked.

O v(z) f n (z)

bn 
-h
f W1(k 

n
 R)k

 n
 dz

Similarly an expression for Bn is obtained

O v(z) Fn (z)
B = f 	 dz

I;(k *R)k
*

The quantity bn can be further simplified to take the form

O v(z) f n (z) 	 Mn 
bn 	 K . (k R)k dz 	K'(k R)k

-H 1 n 	 n 	 1 n 	 n

(36)

(37)

where
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Mn	-	 • - -i u 	h	 kn 
sin k DIT 1 	

(38)

Matching potentials 4 1 and 42 at r •'R and substituting the expressions for

bn 
and B

n 
the following integral equation is obtained

0
4(z) ■ f v(z) G(z/t)dt
	

(39)
-H

where

CO

4(z) • X fn (i) Mn K i (knR)
n•1

and G(z/t) is the Green's function

• _ 	 •
G(z/t) • nX 

1I
1.(k

 n
 R) Fn (z) Fn (t) -

n  K
I (knR) fn(z) fn (t)

• 1

The functions I
1
 and K

1
 are defined as

*
I 1

(k
n
R)

I(k R) • 	 .
1 	 n (k-R)I'(kn*R)

n 	 1 

i
I
(knR) • 	(K R)1C(k 

n
R)

n 	1 

The integral equation (39) is solved numerically by the Gelerkin technique

in which the function v(z) is expanded into an infinite series in terms of

Fm (z) and a set of unknown constants am

•

v(z) • f aFm(z) 	 (40)
m•1

K
1
(k

n
R)
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By substituting the above relation into equation (39), integrating with

respect to z over [-H,0] and invoking the orthonormality property of the

eigenfunctions an infinite set of algebraic equations with real coefficients are

obtained.

* = /aBmp
m=1

(41)

where

0 = E M K (k R)P
n 1 n 	 np

n=1

CO _ *
gmp = E I(K n R)6

np
6
nm 

- 	 K 1
(k

n
R)P

nm
P
npI

n=1 	 n=1

6 is the usual Kronecker delta function.

2 
k
n 

sin k
n
D

P
nm /171 (k:2 -

Upon solving equation (41) for am 's, the following expressions are obtained for

b
n 

and B
n

CD

1 
b -+ E am Pnm In 	 k K'(k

n
R) [Mn

m1

1 
B - 	 _6_
n 	k I'(k *R) 	 '"m

n 	 n

With the bn and Bn quantified the potential functions 0 1 and 02 are fully

determined. The hydrodynamic pressure distribution is obtained from Bernoulli's

equation, namely P = oaf
at
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Figure 2 Dyudmic pressure distribution on the tank'S wall at 0 = 	 h/H • 2
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Figure 2 shows the amplitude of the pressure distribution at the tank's

wall taken at e 0. The results are in agreement with those obtained by Tung

(3] for Q 	 10 radians per second. This reinforces the idea that for higher

values of excitation frequencies the surface effects may safely be neglected.

The Case of a Cylindrical Tank Protruding Over the Water Surface

When a circular cylindrical tank protrudes over the water surface, as shown

in Figure 3, region 2 will be absent and the algebra involved is greatly

simplified. The velocity potential function is

0 = E b 	 fn(z) K 1 (knr) cos e e
-iwt

n=1 n

where the bn 's are the only set of unknowns and may be qualified by applying the

boundary condition stated in equation (5)

b
n 

f
n
(z) K'(k

n
R) • k

n 
cos e e-iwt = 	 1 	 -icat

e 	 cos 9
n=1 	

1

From which an expression for bn is readily obtained

1 1/21
b
n 

= - 
iw h kA Ki(knR)

The following expression for the dyanmic pressure distribution is computed

from the Bernoulli's equation

-itat 	
K 1 (kn

R)
PD = -p cos 0 e 	 2 

n 	1
E 
1 k2

- sin k
n
h 

K'(k R) fn(z)

tt
h 

1

The amplitude of the hydrodynamic pressure distribution taken at e = 0 of a

selected tank is shown in Figure 4. The tank has a radius equal to 10 meters

and protruding over the surface of water 20 meters deep.

sin knh
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Figure 3 Definition sketch of a cylinder protruding over the water surface.
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Figure 4 Dynamic pressure distribution on the wall of . tank protruding over
the 	 surface
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Conclusion

In studying wave radiation it has been further established that the

influence of surface effects disappears at high values of excitation

frequencies. Dropping them at the onset has the advantage of appreciably

simplifying the solution.

Both cases of a submerged tank and a protruding one are clearly presented.

The simplicity of the solutions could not be overstated.
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