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Abstract  
“Fuzzy probability theory” appeared as a smooth extension of classical 

probability theory in 1995. It was ex- pected that it will be of great importance 
in quantum me- chanics, but the theory doesn’t keep its development as it was 
expected.  This necessitates revising some of its funda- mental basic concepts. 
We argue that if quantum probability theory should have less constrains than 
classical probability theory as can be seen in the case of joint random 
variables, we surely need to weaken the definition of the intersection operation. 
We will try to discuss the definition validity in quantum probability theory and 
to discuss the consistency of the given definitions with the whole theory and the 
possi- bility to have a more suitable definition. 

Key words and phrases: fuzzy set, effects, states, the intersection 
operation, fuzzy random variable (observable), joint random 
variables. 

 
  ملخص

ان من  ١٩٩٥ظھرت نظرية الاحتمالات الفازية العملية عام  ة، و ك الات التقليدي ة الاحتم ة لنظري كتوسعة سَلسِ
ذا كانت .  المتوقع أن يكون للنظرية أھمية كبيرة في تطور ميكانيكا الكم ا، ل ان متوقع ا ك م تتطور كم و لكن النظرية ل

ة الحاجة ماسة ة للنظري وم  .لمراجعة الأسس الأولي اطع و مفھ ة التق ين عملي ر ب رابط الكبي ذا البحث نجد أن الت في ھ
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ة  ة تعريف عملي درس مدى فاعلي المتغيرات العشوائية المرتبطة يتطلب منا توسعة مفھوم عملية التقاطع، لذا سوف ن
  .و مناقشة إمكانية وجود حلول بديلة التقاطع في ميكانيكا الكم، و مدى اتساق ھذا التعريف مع النظرية،

 
Introduction 

The connection between the pure concepts of classical probability theory 
and its applications is strongly maintained as they go hand in hand along the 
various steps of the theory. Moreover, it can be easily seen that the def- 
initions in the theory accurately translate the concepts that they represent. 
The main definitions of the theory such as probability measure, events, ran- 
dom variables, independence, and joint random variables are very consistent 
with common sense and general understanding of the word “probability”. To 
indicate this, notice that the widespread definition of the “probability of an 
event” is the limit of the ratio of the frequency in which the event falls when the 
experiment is repeated n times as n goes to infinity.  Although the axioms of 
the probability space are not based on the previous definition, they succeeded 
to prove the “laws of large numbers”, which emphasizes the existence of such 
limit. The strength of the theory was then evident since the mathematical 
structure of probability theory translates precisely its applied nature. 

Till the appearance of the field of quantum mechanics, there was no need 
to construct a new probability theory or to extend its scope. But as quan- tum 
mechanics was developing, the demand to extend probability theory was urgent 
[BB95]. There were several trials to build other probability theories that fulfill 
the quantum mechanics needs [Gra89, Rie00]. “Operational prob- ability 
theory” which appeared as a smooth extension of classical probability theory is 
one such [BLM96, Gud00, BS08]. Moreover, it seems to possess the ability to 
extend all the other new theories, so it was expected that it will be of great 
importance [Gud98, Gud00]. However, the theory did not develop as expected. 
A review of the literature on operational probability theory has been conducted 
and shown very little progress in its development. The liter- ature was limited 
by the work appeared in [FP10, CF10, Fri07] over the last fifteen years. The 
weak progress of the theory especially after the death of S. Bugajski (March 
2003) [Bug98a] poses questions regarding the consistency of the theory 
structure. On the other hand, since any quantum theory has a statistical 
nature, we need to know to what degree the basic definitions of the theory 
translate the quantum mechanics nature. This paper aims to answer this 
question in its mathematical aspects.  In the first section, the main bases of the 
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theory are presented. In the second section, we focus on the importance of the 
intersection operation and demonstrate the need to extend its definition in 
operational probability theory.  In the third section we exploit the concept of 
joint observable by explaining its relation with the intersection operation, and 
hence use that relation to explain and establish the need to extend it. The last 
section suggests the approach that can be used to define the intersection 
operation. 
1. Operational probability theory 

Pykacz (1992) introduced the notion of a fuzzy quantum logic using the 
notion of fuzzy set theory only. Pykacz’s approach was based on a theo- rem 
proving that any quantum logic L with an ordering set of states can be 
isomorphically represented by a special family of fuzzy subsets [Mes95]. Op- 
erational probability theory appears as a natural result of the development of 
quantum structures and the corresponding probability theories. So the 
definitions of the operations on fuzzy sets are derived from the correspond- 
ing definitions on the several quantum structures by extending its range to the 
set of all fuzzy sets. 

Before introducing fuzzy sets, note that if Ω is a nonempty set and 2Ω is 
its power set, we can identify any set A ∈  2Ω with its indicator function IA 

since A = B if and only if IA = IB . In fuzzy set theory, subsets of Ω are 
replaced by fuzzy sets, where the fuzzy sets are defined as follows. 

Definition 1.1. A fuzzy subset f of Ω is a function f : Ω → [0, 1]. Hence 

the system of all fuzzy subsets [0, 1]Ω can be treated as a power set. We say 
that a fuzzy set f is a crisp set if the values of f are contained in {0, 1}. 
Thus, f is crisp if and only if f is an indicator function. 

It is clear that crisp fuzzy sets correspond to the usual sets. We thus say 
that a fuzzy set is a generalization of a set. We say f ⊆  g if f (x)  g(x) for 

any x ∈  Ω. 

Let (Ω, A) be a measurable space.  A random variable f : Ω → [0, 1] is 
called an effect or a fuzzy event. In operational probability theory, [Bug96, 
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n=1 n=1

Bug98b, Gud98, Gud00], we replace the σ-algebra A with E (Ω, A), the set of 

all effects f : Ω → [0, 1]. 

Definition 1.2. [Gud98] Let f, g ∈  E (Ω, A). Define f ′ := 1   f , f ∩  g := f g 

and f ∪  g := f + g   fg. 

These definitions correspond to the usual properties of indicator functions. 

Lemma 1.3.  [HN02] Let fn ∈  E (Ω, A),  n ∈  N. Then U ∞ n=1 fn 

exists and 
∞        ∞ 

U
 
fn = 1   ∏

 
(1   fn) 

 

Lemma 1.4.  [HN02] For f ∈  [0, 1]Ω the following are equivalent : 

(1)  f is crisp, 

(2)  f  ∩  f = f , 

(3)  f  ∪ f ′= 1. 

The following examples indicate the need to generalize classical probabil- 
ity theory. 

Example 1.5.  [Bug98b] 

(1)  In real situations, even if the measurable quantity represented by a 
random variable f : Ω → R on a measurable space (Ω, A) assumes in fact a 
single value f (ω), the single readings of a measuring  apparatus are subject to 
some errors which can be described by an error map ε that to every value x 
∈ R attaches a probability measure νx such that 

ε ◦ f (ω) = νf (ω). 
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µ

Now ∀B ∈  B(R), define Xf (B): Ω → [0, 1] such that Xf (B) (ω) = νf 

(ω)(B). Then Xf (B) determines a fuzzy set.  Now if Xf (B) is measurable for 
every B ∈  B(R), it is clear that Xf corresponds to no random variable (see 
Example 1.14,1). 

(2)  Let (Ω, A, µ) be a probability measurable space. The probability dis- 
tribution   

P X (B)  := µ(X− 1(B))  ∀ B ∈  B. 

 

Let  f, g : Ω →R be two random  variables.  The mixed measurement of f 

and g in the ratio λ: 1   λ, 0 < λ < 1 yields the probability distribution 

λP µ
g  + (1   λ)P µ

f  , 

which in general does not correspond to any standard random variable as we 
will see later (see Example 1.14,2). 

For more details we refer the reader to [Bug98b]. Thus standard random 
variables fail to represent properties of events in the previous two exam- ples, 
while, as we will see in Example 1.14, we can represent them by the 
corresponding concept of random variable, that is; fuzzy random variable. The 
standard random variables represent special properties of elementary events. 
So, various properties lie outside the scope of standard probability theory or, at 
best, can be modeled there in an indirect way [Bug96, Gud98]. Operational 
probability theory introduces new probability space generated from the classical 
one in a natural way.  As before, the basic structure is a measurable space (Ω, 

A).  We identify any set A ∈  A with its indicator function IA. 

Definition 1.6. If µ is a probability measure on (Ω, A) and f ∈  E , we 

define the probability of f  to be its expectation µ( f  ) = ∫ .f dµ . 

Corresponding to the concept of probability measures in classical proba- 
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bility theory, we have states in quantum mechanics. 

Definition 1.7.  A state  on E (Ω, A) is a map s : E (Ω, A) → [0, 1] that 
satisfies 

(i)  s(IΩ ) = 1, and 

(ii)  if fi ∈  E (Ω, A) is a sequence such that ∑
 
fi ∈  E (Ω, A),  then 

φ(∑  if ) =∑  φ( f i). 

A state corresponds to a condition of a system and s ( f ) is interpreted as 
the probability that the effect f occurs when the system is in the condition 
corresponding to s. 

Using the important concept of σ-morphism, it can be proved that µ is a 
probability measure on (Ω, A), if and only if µ is a state on E (Ω, A). 

Definition 1.8.  [Gud99, Gud00] A mapping φ: E (Ω, A) → E (Λ, B) is 
called a morphism if 

(1)  φ(1) = 1, and 

(2)  f ⊥  g in E (Ω, A) implies that φ(f ) ⊥  φ(g)  in E (Λ, B) and 

φ(f + g) = φ(f ) + φ(g). 

A morphism is σ-morphism if for every sequence fi ∈  E (Ω, A) such that 

∑  if ∈  E (Ω, A), e have ∑  φ(fi) ∈  E (Λ, B) and 

φ(∑  if ) =∑  φ(fi). 

Hence when we restrict the codomain of a σ-morphism φ to [0, 1], then 

φ : E (Ω, A) → [0, 1] is simply a state. 

Theorem 1.9.  [Gud98] 

(1)  If φ : E (Ω, A) → E (Λ, B) is a σ-morphism, then  φ(λf ) = λφ(f ) for 
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every λ ∈  [0, 1], f ∈  E (Ω, A). 

(2)  If s is a state on E (Ω, A), then there exists a unique probability mea- 

sure µ on (Ω, A) such that s(f ) = µ(f ) for every f ∈  E (Ω, A). 

Thus we have that states coincide with probability measures in classical 
probability theory. In fact, the main difference between operational proba- 
bility theory and classical probability theory lies in the definition of fuzzy 
random variables, which are called observables. 

Definition 1.10. [Gud98] If (Γ, B) is a measurable space, a B-observable 

on (Ω, A) is a map X : B → E (Ω, A) such that 

(1)  X (Γ) = 1, and 

(2)  If Ai ∈  B are mutually disjoint, then X (UAi) =∑  ) X (Ai  where the 
convergence of the summation is pointwise. 

A B(R)-observable is simply called an observable. 

For an observable X , if X (B)  is crisp for every B ∈  B, then  X is crisp. It 
was proved that there exists a natural one-to-one correspondence be- tween 
observables and σ-morphisms (see [HN02]). 

Theorem  1.11. [HN02] If  X : B → E (Ω, A)  is  a B-observable,  then  

X has a unique  extension  to a σ-morphism X~ : E (Γ, B) → E (Ω, A).   If   Y E 
(Γ, B) → E (Ω, A)  is a σ-morphism, then Y |B is a B-observable. 

If f : Ω → Γ is measurable  function,  then  the  corresponding  crisp ob- 
servable Xf   is given by; Xf (B)  = If −1 (B). 

It was proved that most of the results in classical probability theory are 

still valid in operational probability theory [Gud98, Gud00, HN02].  Let (Ω, A) 

and (Γ, B) be measurable spaces.  If µ is a probability measure on (Ω, A) and 
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P Y

X is a B-observable on (Ω, A), the distribution of X is the prob- ability 

measure µX on B given by, 

µX (B): = µ(X (B)). 

We interpret µX (B) as the probability that X has a value in B when the 
system is in the state µ. 

Definition 1.12. If X is an observable on (Ω, A), µ is a probability 

measure on  (Ω, A)  and  u  : R  →R is a  Borel  function,  we define the  

observable u(X ) : B(R) → E (Ω, A)  by u(X )(B)  = X (u− 1(B)). The 
distribution of u(X ) becomes; 

µu(X )(B)  = µ(X (u− 1 (B)))  ∀B ∈  B(R). 

Definition 1.13. [Gud98] If X is an observable and u: R →R is a Borel 

function, then E(u(X )) =
  
∫ λµu(X ) (dλ). 

Here are some examples of noncrisp observables. 

Example 1.14.  (1) Refer to Example 1.5,1, and define the observable X : 
B(R) → E (Ω, A) such that X (B) = Xf (B)  ∀ B ∈  B(R). Then X is an 
observable. 

(2)  If f, g are random variables on (Ω, A), λ ∈  (0, 1), let Xf , Xg   be the 
observables generated by f, g; i.  e.  , 

Xf  (B) = If −1 (B), Xg (B) = Ig−1 (B)  ∀B ∈  B(R). 

Define Y: B(R) → E (Ω, A) such that 

Y (B) = λXf (B) + (1   λ) Xg (B). 

Then Y is an observable which is not crisp. Now if µ is a probability 
measure and hence a state on (Ω, A), then the distribution of Y will be P Yµ  
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P Y

P Y

where; 

P Yµ  (B)  = P (Y (B))  = P (λXf (B) + (1   λ)Xg (B)). 

Applying Theorem 1.9, we have 

P Yµ  (B)  = λP (Xf (B))  + (1   λ)P (Xg (B)). 

Hence; 

P µ
Y

=λP µ
f  + (1   λ)P µ

g  , 

which is exactly the probability distribution  defined in Example 1.5,2. 

(3)  For every f ∈  E (Ω, A), we can define the observable Xf  on (Ω, A) by 

        0          if {0, 1} ∩  B = ∅  

             f       if {0, 1} ∩  B = {1} 
Xf (B)  :=       

      1  f     if {0, 1} ∩  B = {0} 

                   1         if {0, 1} ⊆  B. 

In general, Xf has no corresponding random variable since if so, then 
according to the above remark the observable Xf will be crisp but it’s clear that 
if f is not crisp, then so is the observable Xf . 

Theorem 1.15. [Nas00, HN02] For an observable X on (Ω, A), X is 

crisp if and only if there exists a random variable f : Ω →R such that X (B) 

= If −1 (B)  ∀ B ∈  B(R). 

Definition 1.16. Let X1, · · · , Xn be observables  on (Ω, A).  We say that 

a B(Rn)-observable X on (Ω, A) is their  joint  observable  if 
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2

πi(X ) = Xi, i = 1, · · · , n, 

where πi is the marginal projection map.  For finite collections of observables, 
we have the following theorem. 

Theorem 1.17. [Gud98]  If  X1 , · · · , Xn  are observables on (Ω, A), then 

there exists a unique n-dimensional observable Z on (Ω, A) such that (1.  1) 

Z (B1  × · · · × Bn) = X1(B1) · · · Xn(Bn)  for all B1 , · · · , Bn ∈  B(R). 

Note that condition 1. 1 is essential for the uniqueness of the joint ob- 
servable Z , as the following example indicates. This example can be found in 
[Bug96] and it has a direct connection to the quantum mechanical de-scription of 
spin- 1 objects. 

Example 1.18. Let Ω denote the set of points of the unit sphere in R3  

and let ω1 , ω2 ∈  Ω. Define B(R)-observables Xωi ,  i = 1, 2 on (Ω, B(Ω)) by; 
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where  rω   is  the unit vector of  R 3 pointing to ω. Now define a B(R2)-
observable X on (Ω, B(Ω)) generated by; 
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where λ(ω) may be one of the following two functions: 
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In each case, X is a joint observable of Xω1 , Xω2 .  Hence we have two 
dif- ferent joint observables for the same observables Xω1 , Xω2 . 

Definition 1.19. [Gud98] Let X1, · · · , Xn be observables  on a 

probability space (Ω, A, P ), then the probability measure µX1 ,··· ,Xn  on B(R) 
given by 

µX1 ,··· ,Xn (B)  := µZ (B)  = P (Z (B)), 

where Z is given by Equation 1.  1,  is  called  the  joint  distribution   of 
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X1, · · · , Xn. 

Definition 1.20. We say that; 
 

(1)  f, g ∈  E (Ω, A)  are independent if they  are independent  as random 
variables; 

(2)  a sequence  of events  (fi)  from E (Ω, A)  are  pairwise  independent if 

fi, fj are independent ∀i = j; 

(3)  a sequence of events  (fi)  from E (Ω, A) are independent if they are 
(totally) independent  as random  variables. 

If f, g ∈  E (Ω, A) are independent and µ(g) = 0, then 

µ(f g) = E(f g) = E(f )E(g)  = µ(f )µ(g). 

Definition  1.21. Following  [Gud98],  a  sequence  Xi  of observables  on  
a probability space  (Ω, A, P ) is said to be (pairwise) independent if the se- 

quence Xi(Bi) is (pairwise) independent for all possible choices of {Bi} in 
B(R). 

It is clear that if the Xi's are (pairwise) independent observables and ui: R 
→ R are Borel functions, then ui(Xi ) are also (pairwise) independent. 

Let X, Y be independent observables on (Ω, A, P), let µX,Y  be their joint 

distribution, then for every B1, B2  ∈  B(R), we have; 

µX,Y (B1 ×B2) = P (X (B1)Y (B2)) = P (X (B1))P (Y (B2)) = µX (B1)µY 

(B2). 

2.  A closer look at the Operations on fuzzy events 
As we saw in the previous section, operational probability theory appeared 

as an extension of the standard probability theory by its natural extended 
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concepts  to  obtain  a  probability theory  that can  be  applied  to  classical 
statistics as well as to quantum physics.  On the other hand, we lost some 
features which characterize the classical theory as we can see in the following 
remark. 

Remark 2.1.  By generalizing the definitions of operations on fuzzy sets, we 
obtain some properties, which appeared very strange.  For example, 

(1)  we may have a fuzzy set which has a nonempty  intersection with its 
complement. 

(2)  the intersection of two  noncrisp  fuzzy sets u, v is strictly less than any of 
them.  Moreover, 

(3)  if u is a noncrisp  fuzzy set then  u  ∩  u < u. 

Some will argue that “these properties are not strange from the nature of 
quantum physics.  In fact, these properties prove the capability of the theory to 
describe the events in quantum physics.” But is it true that defining the 
intersection operation of two effects (fuzzy set) u, v as u  ∩  v = uv translates 
exactly the needed properties of quantum events? We will try to answer this 
question mathematically and physically. We concentrate on the intersection 
operation since the definitions of other operations can be determined according 
to it. 

Let us begin to discuss the advantages of the given definition of the in- 
tersection operation in operational probability theory. Besides the fact that this 
definition was a natural result of the development in quantum structures and 
the fact that this definition generalizes the corresponding operation for crisp 
sets, it was rational to define the independence condition of two fuzzy events u, 
v to be “u, v are independent as random variables”.  The aim can be explained 
if we notice that in this way we can assure that if u, v are independent then P 
(uv) = P (u)P (v) which means that we really extend the classical definitions. 

Now since the probability space defined on the σ- algebra (Ω, A) is arbitrary, 
and we used to define the independence of events by using the intersection 
operation as P (u ∩  v) = P (u)P (v), it was natural to define u ∩  v = uv. But it 
is worth to mention here that if all we need to be satisfied is P (uv) = P (u)P 
(v) if u, v are independent, the condition that u, v are independent as random 
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variables is a very strong condition. 

On the other hand, let X be an observable. If ω ∈  Ω, then X (B)(ω), B ∈  
B(R) determines a probability measure µω where µω (A) = X (A)(ω). Ac- 
cording to the given definition of the intersection operation, for any two sets 
A, B ∈  B(R), we have 

X (A ∩  B)(ω) = X (A)(ω)X (B)(ω). 

Hence A, B are independent classical events with respect to the measure 
µω . Although the measure µω determined only by the observable X and has no 
relation with the original probability space on Ω, the independence is an ideal 
case for the relation between events in arbitrary probability measures 
especially when we deal with fuzzy sets.  Do we really need this strong 
condition? To be more obvious, let us consider first the classical case. If f is a 
classical random variable, then Xf (B)(ω) = If −1 (B)(ω). So 

Xf (A ∩  B)(ω) = If −1 (A)(ω)If −1 (B)(ω) = If −1 (A∩ B)(ω). 

Thus the independence is satisfied in the classical case. But note that the 
probabilities here related to A, B have only the values 0 or 1 and we know 
that the independence is trivially satisfied in such situation. That is, for any 
two events if one of them has probability 0 or 1, then they are automat- ically 
independent. But if we lose this condition as the case when we deal with fuzzy 
sets, the independence needn’t be satisfied unless we have some specified 
conditions. So we think that the used intersection definition is very strong since 
it is not compatible with the need to weaken the conditions in classical 
probability theory to in order to extend it. 

Moreover, we think that it will be more appropriate that the independence 
condition needn’t be satisfied in fuzzy random variables since the possibility of 
the belonging degree of some element ω is affected mainly by our partial 
knowledge and with the nature of the system and the events we deal with, 
which affect the whole experiment in some direction besides the observable 
itself.  So we can not translate these effects by supposing that the events are 
independent, since the independence reflects only the relations and the 
homogeneity between the subsets themselves, while fuzzyness is a problem that 
concerns the system itself besides the events and it varies from event to event. 
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To solve the problem, we suggest that we make use of the simple fact that 
for any two events u, v we have P (u ∩  v) = P (u)P (v|u). We think that it is 

more reasonable  to define X (A ∩  B)(ω)  = X (A)(ω)X (B|A)(ω), where the 

event B|A is explained  according  to the problem  at hand  which may be 
affected by the whole system and by the element ω itself. 
3. A closer look at  joint observables 

Here, we will try to make use of the concept of joint observable to confirm 
the need to review the definition of the intersection operation. To this end, 
we think that we need to revise the original concepts in classical probability 
theory and how it was translated mathematically to see how we need to extend 
the intersection operation to be consistent with the whole theory. As we will 
see, the intersection operation and the concept of joint random variables are 
very correlated. First, we will consider the classical case. Clas- sically, in any 
experimental situation, it would be unusual to observe only the value of one 
random variable. That is, it would be an unusual experiment in which the total 
data collected consist of one numeric value. In almost all applications, random 
variables don’t occur singly. We will have a need for the tools necessary to 
describe or model the behavior of n random variables simultaneously [CB90, 
Lar82]. For example, consider an electronic system containing two components, 
one for backup, but both underload.  Suppose that the only way the system will 
fail if both components fail. The distribu- tion, then, of Z , the system life, 
depends “jointly” on the distribution of X and Y , the components lives. 
Knowing only the probability distribution of X and Y , though, will not 
necessarily provide us with enough information to determine the probability 
distribution of Z . What we need is a probability function (the joint 
probability distribution) describing the “simultaneous” behavior of X and Y 
[LM86]. To be more precise this is the fact which makes the definition of 
dependence or independent the most great feature that characterizes 
probability theory from measure theory. 

Mathematically, let f, g be any two random variables with probability 
distributions µf , µg respectively and let µf,g be their joint distribution. Note 
firstly that we use the joint distribution µf,g  of the two random variables f, g, 
these random variables in general may or may not be independent, to get the 
probabilities of the events in the product space B(R2); that is, for any two 
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measurable sets A, B ∈  B(R), µf,g (A × B) is the probability that the two 

events f − 1(A), g− 1(B) fall on the same time; that is (see [Bau81]), 

 (3.  1)  µf,g (A × B) =P (f − 1(A) ∩  g− 1(B)). 

So we can see that the joint distribution µf,g of the two random variables 
f, g can be defined to be the distribution generated by the joint mapping h : Ω 
→ R2 defined by h(ω) = (f (ω), g(ω)) [Bau81, Bil86], which satisfies 

µh(A × B) = P (h− 1(A × B))  = P (f − 1(A)  ∩  g− 1(B)) = µf,g (A × B). 

Hence the joint random variable of f, g is uniquely determined with the 
joint mapping h. Moreover, µf,g (R × B) = µg (B) and µf,g (A × R) = µf (A). If 
the random variables are independent we will have 

µf,g (A × B) = P (f − 1(A) ∩  g− 1(B))  = µf (A)µg (B). 

We have similar situation in operational probability theory. But this situ- 
ation has two stages here. It is not represented only for the joint probability 
distribution but it is also represented in the definition of the joint observable 
(fuzzy random variable). 

To explain, let X, Y be two observables (fuzzy random variables) and let Z 
be the joint observable of X, Y . Note that while in classical probability theory 
we can deal with the joint distribution of two random variables with- out any 
need to determine their joint random variable since it is uniquely determined 
by the relation 3. 1, in operational probability theory we must determine 
explicitly their joint observable (joint fuzzy random variable) since it is not 

uniquely determined. In fact, the fuzzy set Z (A × B) is the fuzzy set which 
represents that a simultaneous measure of X and Y has value in A, B, 
respectively. That is, 

Z (A × B) = X (A) ∩  Y (B). 

But we must be careful when dealing with the intersection operation here 
since there are many constrains in quantum mechanics which affect it other 
than the fuzzy sets themselves such that the uncertainty relation [BHL07], 
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unsharpness of the state [Bus10] and the effect of the measuring process and the 
apparatus [BLM96, BL10]. Therefore the joint observable or the simul- taneous 
measure of X and Y doesn’t represent the values of the observable X and the 
observable Y as if we measure each alone, the matter which is im- possible in 
quantum mechanics [Bus85]. So we surely will not deal with the product 
observable and this is the basic difference from classical probability theory. E. 
G. Beltrametti and S. Bugajski separate the two concepts of cor- relation 
between quantum observables in their papers [BB03, BB04, BB05], the classical 
correlation and probabilistic entanglement. The probabilistic entanglement 
can emerge only when the joint observable referred to differs from the product 
observable [BB03, BB05]. In fact, a consistent separation of a total correlation 
into a classical and quantum term requires the knowl- edge of the particular 
statistical content of the mixed state we are dealing with [BB04]. So by 
connecting the intersection operation with the concept of joint observable, we 
can deal with the concept of entanglement between fuzzy sets. Moreover, the 
concept of independence, when it is only defined on the range of observables, 
can be used to classify those cases in which the intersection of two given 
fuzzy sets u, v is their product and other cases in which their intersection could 
not be their product. Moreover, we can define the concept of correlation 
between fuzzy sets to determine the strength of the relation between them. We 
think that this relation should be specified when we describe the space we deal 
with. We leave it to the people inter- ested in operational quantum physics to 
come up with a suitable definition of correlation in measurements. 

In all cases we needn’t to have Z (A × B) = X (A).Y (B) except in the 
case we deal with crisp observable since they are another shape of 
classical random variables. 

We can notice from the previous brief notes that; 

Remark 3.1.  (1) Any joint random variable or joint observable repre- sents 
some intersection operation and the converse is also true since if C, D are two 
events in a probability space (Ω, A, P ), define the two random variables f = IC , 
g = ID . Hence 

P (C ∩  D) = P (f − 1({1}) ∩  g− 1({1})) = µf,g ({1} × {1}). 

So the joint distribution for any set of the form A × B is another 
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3

expression of the intersection operation of two events.  This proves the great 
connection between the intersection operation and the joint probability 
distributions. 

 (2) Classically, the existence and uniqueness of the joint random vari- able 
correspond to the fact that the intersection operation of events is a closed 
operation. Although in classical probability theory the joint random variable is 
unique, the joint measure of two random variables is not. This fact refers to the 
relation between the random variables; that is, whether they are independent or 
not. If the ran- dom variables are not independent then knowing all the 
information about the distribution of any two random variables f and g 
doesn’t provide enough information about their joint distribution. Example 

1.18 is an applied  example  of the need to dependent joint measures and  
here are some examples  of simple joint measures  of dependent random  
variables. 

Example 3.2.  Let (Ω, A, P ) be a probability space and let f, g be two 

random variables each of them has a range {1, 2, 3} and their probability 

distributions µf , µg  are given by µf ({x}) = µg ({x}) = 3 ,  x = 1, 2, 3. Define 

the joint probability distributions µ1, µ2, µ3 on (R2, B(R2))  such that; 

(a)  µ1({(1, 1)}) = µ1({(2, 2)}) = µ1({(3, 3)}) =  1 

(b)  µ2({(1, 3)}) = µ2({(2, 2)}) = µ2({(3, 1)}) =  1 

(c)  Finally 

µ3({(1, 1)})    =  mu3({(1, 3)}) = µ3({(2, 1)}) = µ3({(2, 2)})  

=  µ3({(3, 2)}) = µ3 ({(3, 3)}) = 1 
6 

Note that the joint probability distributions in the previous exam- ple are 
certainly  joint measures,  each of them  differ from the unique product  measure  
which is the  probability measure  µ′   generated  by µ′  ({(i, j)}= 9

1  ∀i, j = 1, 



Taghreed Nasr  97 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ 

 An - Najah Univ.  J.  Res. (N. Sc.) Vol. 25, 2011 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

2, 3.  Note also that µ3  in part  (c) is not commutative. That is, although the 
two random variables are iden- tically distributed we have µ′  ({(i, j)}) = µ′  

({(j, i)}) in general.  I hope that these facts can be considered as starting 
point to model the noncommutative nature of quantum mechanics.  Other 
complicated examples can also be easily found in probability theory text 
books. This situation discriminates classical probability theory from its 
mathematical background measure theory. 

3.1. From measure theory to probability theories. The mathematical 
background of probability theory is measure theory. But measure theory is 
concerned with the product measure as the unique well-defined joint mea- sure; 
that is, the product measure µ1,2 of µ1 and µ2 is the measure on R2 which 
satisfies 

µ1,2(B1 × B2) = µ1(B1 )µ2(B2)  ∀B1, B2  ∈  B(R). 

The situation in probability theory is different. In fact, in probability 
theory we may deal with various distributions of dependent or independent 
random variables which are generated in a common probability space. This 
feature as Kolmogorov and others have remarked, “it is the concept of 
independence more than anything else which has given probability theory a life 
of its own, distinct from other branches of analysis ” [Lam66]. So joining the 
random variables always has a meaning in probability theory, while in measure 
theory the product measure is the unique meaningful joint measure since there is 
no information that can connect the measures to each other. This leads us to 
the following remarks. 

Remark 3.3.  (1) Comparing the condition for the product measure and the 
joint measure for independent random variables we conclude, that the product 
measure in probability theory treats only the case of random variables that are 
independent. 

(2)  If each of the probability spaces (Ωi, Ai, Pi) describes an experiment 

Ei   with  a random  outcome,  then  the  product  of these  probability spaces 

should describe that experiment E which consist of perform-ing E1, ..., En  one 
after  the other  or simultaneously “without mutual influence”. The terminology 
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“without mutual influence” can and could henceforth be replaced by 
“independently”. The random  vari- able Xi just  defined describes  the  

outcome  of the  experiment  Ei  in the  joint  experiment  E . Such experiments 

are usually possible in classical probability theory [Bau81].  So classical 
probability theory gives a great importance to the product measure and we 
found that nearly all advanced topics in probability theory deal with the prod- 
uct measure and hence consider the independence condition to be satisfied. 

(3)  The question that arises is the following: how does probability the- 
ory deal with the joint random variables which are dependent?  We can separate 
the treatment for the problem in probability theory into two parts.  The first 
deals directly with the probability of the events in the sample space which 
correspond to the measurable sets in the product space on R2   by using the 

conditional probability. That is, µf,g (A×B) = µf (A|B)µg (B) where µf (A|B) 
is called the conditional probability of A given B.  To do so we need a 
complete knowledge of the nature of the probability space we deal with.  The 
second treats the problem partially by dealing only with the moments and cor- 
relation coefficient between two random variables which carry only partial 
information about the strength of the relation between ran- dom variables. 

According  to  the  previous  remarks,  and  by recognizing the  relation  be- 
tween  joint  observables  and  the  intersection operation, we realize that the 
nonuniqueness of the joint observable  means that there  is some intersection 
operation  with various results.  This contradicts the uniqueness of the inter- 
section operation as shown in Definition 1.2. In fact, as we have in Theorem 

1.17 the product  observable is unique.  But as indicated in Example 1.18 we 
do need in quantum mechanics to deal with joint observables rather than the 
product one. Moreover, such observables always exist. 

Example 3.4.  According to Example 1.18 we have two possible fuzzy sets 
for the effect X ({(

2
1

2
1 , )}), namely 
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But if we insist to define the intersection operation as in Definition 1.2, we  

will have a unique result of X ({( 2
1

2
1 , )})(ω) since 

 

 
 
In fact the nonuniqueness of the joint observable is basic in operational 

probability theory since it has a great importance in illustrating the Bell 
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phenomenon in quantum mechanics which can’t be explained by classical 
probability theory [BB02]. To indicate, let us refer to the reference [BB02] 
where the authors said:  “The occurrence of the Bell phenomenon in op- erational 
probability theory and its non occurrence in standard probability theory mirrors the 
fact that in operational probability theory we have the non-uniqueness of the 
joint fuzzy random variable while in standard prob- ability theory there is 
uniqueness of the joint random variable.” Thus we conclude that we really need 
to redefine the intersection operation to be consistent with the nonuniqueness 
of the joint observable. 
4.  Another approach to define fuzzy operations 

Far away from quantum mechanics, there is another totally different well 
constructed fuzzy probability theory. The concept of fuzzy random variables 
was firstly introduced by Puri and Ralesscu (1986) as a generalization of 
compact random sets to combine both randomness and imprecision. The 
stochastic variability is represented by use of probability theory while the 
vagueness by use of fuzzy sets introduced by Zadeh [Zad65]. The operations 
on fuzzy sets are defined there as follows. 

Definition 4.1.  Let A, B be two fuzzy sets. 

( 1 )  The complement of A, denoted by Ac, is defined by µAc (x) =  

1  µA(x)  ∀x ∈  X. 

(2)  The intersection of A, B is a fuzzy set defined by µA ∩ B (x) = T (µA(x), 
µB (x)) 

 

where T is a triangular norm (i.  e., commutative, associative, non- decreasing 
in each argument, and T (a, 1) = a  ∀a ∈  [0, 1] ). 

(3)  The union of A, B is a fuzzy set defined by µA ∪B (x) = S(µA(x), µB 
(x)) where S  is a triangular conorm  (i.   e., commutative, associative, 
nondecreasing in each argument, and S(a, 0) = a  ∀a ∈  [0, 1]). 

We will exemplify with two widely used t-norms and t-conorms [Pop04]: 

(1)  (Standard) TS (a, b) = min{a, b} and SS (a, b) = max{a, b} 
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(2)  (Lukasiewicz) TL(a, b) = max{a + b   1, 0} and SL(a, b) = min{a +b, 1}. 

Some other examples of t-norms and the corresponding t-conorm are given 
in the following table 

 

t-conorm t-norm 

xy-y+x=y)S(x,  

⎩
⎨
⎧

otherwise.  1,
= y) min(x, if    y), max(x,      = y) S(x,

xy=yT(x ),  

⎩
⎨
⎧

otherwise  0,
y max(x, if    y), mim(x,      T(x, y) =

 

Note that the definition of intersection in operational probability theory 
is a special case of t-norm.  Moreover, each of these definitions generate the 
corresponding definitions on crisp sets.  So it can easily seen that the standard 
t-norm is also natural generalization of the intersection operation on crisp 
sets.  In fact, the standard t-norm is the largest t-norm we may have. Moreover, 

it satisfies the familiar property, if u is any fuzzy set then u ∩  u = u, which is 
different to the case in remark  2.1. 

Conclusion and Further Work. The need to extend the definition of the 
intersection operation has been established through this paper. Now to get a 
suitable clear definition of the intersection operation, we firstly need to 
determine the conditions that the intersection operation should have. Further 
research can use those conditions to examine whether the concept of t-norms 
can be used to define the intersection operation or not. Even in the case where 
the conditions of t-norms are not satisfied in quantum mechanics, it is worth to 
know if we can define the intersection operation by a flexible concept such as 
the concept of t-norms. Finally, the author concludes that, defining the 
intersection of two fuzzy events to be their product may give us a very nice 
theory, However, it will not be the appropriate one for operational quantum 
physics.  In fact, if we manage to extend the definition of the intersection 
operation, a lot can be done to develop operational probability theory, take for 
example, the field of conditional probability theory [Mye06] and quantum 
Markov chains [Gud08, Gud09]. 
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It is thus recommended that specialists of quantum physics should take the 
lead in studying the validity of the previous suggestions in order to derive the 
possibilities and the restrictions that should be applied to any intersection 
operation in quantum physics. 
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− [CF10] F. Chovanec, & Roman, Frič. (2010). “States as  morphisms”. Int. J. 
Theor. Phys. 49. 3050–3060. 
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