An-Najah National University Faculty of Graduate Studies

The Exact and Asymptotic Parameters of the First Canonical Weight Vector where the Rank of ($\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}$) Equal One

By
Muiad Muhammad Muhammad Al-Surakhi

Supervisor

Dr. Farouk Al-Saad

[^0]
The Exact and Asymptotic Parameters of the First Canonical Weight Vector where the Rank of ($\Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$) Equal One

By
Muiad Muhammad Muhammad Al-Surakhi

This thesis was defended successfully on the 31/12/2003 and approved by.

Dr. Farouk Al-Saad - Supervisor
Dr. Abdelrahim Barham - Internal Examiner
Dr. Tahseen Al-Mughrabi - External Examiner

Dedication

To My Beloved Family With Love And Respect

Acknowledgment

First of all, I thank my god for all the blessing, he bestowed on me and continues to bestow on me.

I wish to extend my gratitude and appreciation to my supervisor Dr. Farouk for his help and encouragement during the preparation of this thesis. I also wish to thank Dr. Abdelrahim Barham and Dr. Tahseen Al-Mughrabi for accepting to be members of the defense committee and for their valuable remarks.

Warmest thanks to my family for their support and encouragement. Special thanks to lectures and professors in the department of mathematics, at An-Najah National University.

Finally, I would like to thank my friends.

List of Contents

	Committee decision	II
	Dedication	III
	Acknowledgment	IV
	List of contents	V
	Abstract	VII
	Chapter One Modes of Convergence	1
1.1	Introduction	2
1.2	Limiting distribution	2
1.2.2	Definition	3
1.2.3	Definition	3
1.2.4	Example	3
1.2.5	Example	4
1.3	Stochastic convergences	5
1.3.1	Definition	5
1.3.2	Theorem	5
1.3.3	Example	6
1.3.4	Definition	7
1.4	Limiting moment - generating function	7
1.4.1	Definition	7
1.4.2	Taylor's theorem	7
1.4.3	Theorem [1]	8
1.4.4	Example	8
1.4.5	Example	8
1.5	Central limit theorem	9
1.5.1	Theorem	9
1.5.2	Example	11
1.6	Some theorems on convergence	11
1.6.1	Theorem	11

VI

1.6 .2	Theorem	12
1.6 .3	Result	12
1.6 .4	Theorem - Cramer [9]	12
1.6 .5	Example	12
	Chapter Two The Exact and Asymptotic Parameters	$\mathbf{1 4}$
2.1	Canonical correlation	15
2.1 .1	Definition	16
2.1 .2	Result	17
2.2	Gamma distribution	21
2.2 .1	Definition	21
2.2 .2	Definition	21
2.2 .3	Definition	22
2.2 .4	Theorem [1]	23
2.3	The exact and asymptotic parameters	23
$2.3 . \mathrm{A}$	Derivation of the exact formula for var (1/s)	26
$2.3 . B$	Derivation of the asymptotic distribution of 1/s	27
2.3.B1	Lemma	28
$2.3 . C$	Compare between the exact and asymptotic variance	31
	References	32
	Appendix	33

The Exact and Asymptotic Parameters of the First Canonical Weight Vector where the Rank of ($\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}$) Equal One

By
Muiad Muhammad Muhammad Al-Surakhi
Supervisor
Dr. Farouk Al-Saad

Abstract

This research discusses the stability of the first canonical weight vector from the one-factor structure derivation of the exact formula for the weight's variance and the asymptotic distribution of the weight are emphasized to give theoretical robustness to the concept of stability. The closeness of the exact and asymptotic variances points to the precision of the derivation.

It was proven that the weight $\frac{1}{s} \sim N\left(1, \frac{1}{2(n-1)}\right)$, where the asymptotic variance is $\frac{1}{2(n-1)}$. The greater sample size the less variance of the weight will be, and hence more stable weight.

Chapter One

Modes of Convergence

1.1 Introduction

The most important theoretical results in probability theory are limit theorems of these the most important are those that are classified under the heading of "Central Limit Theorems" which are concerned with determining conditions under which the sum of a large number at random variables has a probability distribution that is approximately normal.

In many problems of probability and statistics we are faced with sequence of random variables like $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}, \ldots$ (e.g. estimators depending on sample, size n in statistics) and we are expected to find the limit of this sequence and also the distribution (asymptotic distribution) of the limit random variable.

1.2. Limiting distribution

Consider a distribution that depends upon the positive integer n, clearly the distribution function F of that distribution will also depend upon n , we denote this fact by writing the distribution function as F_{n} and the corresponding P.D.F as F_{n}. Moreover, to emphasize the fact that we are working with sequences of distribution functions, we place a subscript n on the random variables.

1.2.1. Example

$$
F_{n}(\bar{x})=\int_{-\infty}^{\bar{x}} \frac{1}{\sqrt{1 / n} \sqrt{2 \pi}} e^{-n w^{2} / 2} d w
$$

Is the distribution function of the mean $\overline{x_{n}}$ of a random sample of size n $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ from a normal distribution with mean zero and variance 1.

$$
\left(\overline{x_{n}} \sim N\left(0, \frac{1}{n}\right)\right)
$$

1.2.2. Definition

The sequence $\left\{x_{n}\right\}$ converges to x in distribution ($x_{n} \xrightarrow{D} x$ as $n \rightarrow \infty$) if $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty\left(\lim _{n \rightarrow \infty} F_{n}(x)=F(x)\right)$ for every point x at which $\mathrm{F}(\mathrm{x})$ is continuous (we call $\mathrm{F}(\mathrm{x})$ the asymptotic distribution of x_{n}).

1.2.3. Definition

A distribution of the discrete type that has a probability of 1 at a single point has been called a degenerate distribution (a random vector $x \in \mathfrak{R}^{n}$ is degenerate at point $c \in \mathfrak{R}^{n}$ if $\left.p(x=c)=1\right)$.

1.2.4. Example

Let Y_{n} denote the nth order statistic ${ }^{(1)}$ of $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ from a distribution having p.d.f
$f(x)=\left\{\begin{array}{cc}\frac{1}{\theta} & 0<x<\theta, 0<\theta<\infty \\ 0 & \text { else where }\end{array}\right.$

Then the P.D.F of Y_{n} is
$g_{n}(y)=\frac{n y^{n-1}}{\theta^{n}}, 0<y<\theta$

And the distribution function of Y_{n} is
$F_{n}(y)=\left\{\begin{array}{cc}0 & y<0 \\ \int_{0}^{y} \frac{n z^{n-1}}{\theta^{n}} d z=\left(\frac{y}{\theta}\right)^{n} & 0 \leq y<\theta \\ 1 & \theta \leq y\end{array}\right.$
Then $\lim _{n \rightarrow \infty} F_{n}(y)= \begin{cases}0 & y<\theta \\ 1 & y \geq \theta\end{cases}$
${ }^{(1)}$ See reference 7.

Now, $F(y)=\left\{\begin{array}{cc}0 & -\infty<y<\theta \\ 1 & \theta \leq y<\infty\end{array}\right.$
Is a distribution function and $\lim _{n \rightarrow \infty} F_{n}(y)=F(y)$

At each point of continuity of $F(y)$.

1.2.5. Example

Let \bar{X}_{n} have the distribution function
$F_{n}(\bar{x})=\int_{-\infty}^{\bar{x}} \frac{1}{\sqrt{1 / n} \sqrt{2 n}} e^{-n w^{2} / 2} d w$

By making the change of variable $v=\sqrt{n} w$ we get
$F_{n}(\bar{x})=\int_{-\infty}^{\sqrt{n} \bar{x}} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2} d v$

Then,
$\lim _{n \rightarrow \infty} F_{n}(\bar{x})=\left\{\begin{array}{cl}0 & \bar{x}<0 \\ 1 / 2 & \bar{x}=0 \\ 1 & \bar{x}>0\end{array}\right.$
Now the function $F(\bar{x})= \begin{cases}0 & \bar{x}<0 \\ 1 & \bar{x} \geq 0\end{cases}$
Is a distribution function and $\lim _{n \rightarrow \infty} F_{n}(\bar{x})=F(\bar{x})$ at every point of continuity of $F(\bar{x})$.

Notice:

$\lim _{n \rightarrow \infty} F_{n}(0)=1 / 2 \neq F(0)=1$ But $F(\bar{x})$ isn't continuous at $\bar{x}=0$.

1.3. Stochastic convergence

1.3.1. Definition

A distribution that has a probability of 1 at a single point is said to be degenerate and we say that the distribution converges stochastically to the constant that has a probability of 1 .

1.3.2. Theorem

Let $F_{n}(y)$ be the distribution function of a random variable y_{n} and let c be a constant independent of n then y_{n} converges stochastically to c iff for every $\in>0$ the $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|y_{n}-c\right|<\epsilon\right)=1$

Proof:

First assume
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|y_{n}-c\right|<\epsilon\right)=1$ for every $\in>0$ want to show $\lim _{n \rightarrow \infty} F_{n}(y)= \begin{cases}0 & y<c \\ 1 & y>c\end{cases}$

Now,
$\operatorname{Pr}\left(\left|y_{n}-c\right|<\epsilon\right)=F_{n}(c+\epsilon)^{-}-F_{n}(c-\epsilon)$

Where $F_{n}(c+\in)^{-}$is the left-hand limit of $F_{n}(y)$ at $y=c+\epsilon$

Thus we have:

$$
1=\lim _{n \rightarrow \infty} P\left(\left|y_{n}-c\right|<\epsilon\right)=\lim _{n \rightarrow \infty}\left[F_{n}(c+\epsilon)^{-}-F_{n}(c-\epsilon)\right]
$$

Because $0 \leq F_{n}(y) \leq 1$ for all values of y and for every n it must be that

$$
\lim _{n \rightarrow \infty} F_{n}(c-\epsilon)=0 \text { And } \lim _{n \rightarrow \infty} F_{n}(c+\epsilon)^{-}=1 \quad \forall \in>0
$$

$$
=>\lim _{n \rightarrow \infty} F_{n}(y)= \begin{cases}0 & y<c \\ 1 & y>c\end{cases}
$$

On the other hand, assume:
$\lim _{n \rightarrow \infty} F_{n}(y)= \begin{cases}0 & y<\epsilon \\ 1 & y>\epsilon\end{cases}$
Want to show $\lim _{n \rightarrow \infty} P\left(\left|y_{n}-c\right|<\epsilon\right)=1 \quad \forall \in>0$
$P\left(\left|y_{n}-c\right|<\epsilon\right)=F_{n}(c+\epsilon)^{-}-F_{n}(c-\epsilon)$
But $\lim _{n \rightarrow \infty} F_{n}(c+\in)^{-}=1$
and $\lim _{n \rightarrow \infty} F_{n}(c-\epsilon)=0 \quad \forall \in>0$
So $\lim _{n \rightarrow \infty}\left(\left|y_{n}-c\right|<\epsilon\right)=1-0=1$

1.3.3 Example

Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \sim N\left(\mu, \sigma^{2}\right)=>\overline{x_{n}} \sim N\left(\mu, \sigma^{2} / n\right)$
$P\left(\left|\overline{x_{n}}-\mu\right| \geq \epsilon\right)=P\left(\left|\overline{x_{n}}-\mu\right| \geq \frac{k \sigma}{\sqrt{n}}\right)$
Where $\epsilon=\frac{k \sigma}{\sqrt{n}}>0$
$\lim _{n \rightarrow \infty} P\left(\left|\overline{X_{n}}-\mu\right| \geq \frac{k \sigma}{\sqrt{n}}\right) \leq \lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \epsilon^{2}}=0$
By Chebyshev's inequality ${ }^{(1)}$ and $\frac{1}{k^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}$
$\Rightarrow P\left(\left|x_{n}-\mu\right|<\epsilon\right)=1$ for every $\in>0$

Hence, $\overline{x_{n}}$ converges stochastically to μ.

Remark:

When $\lim _{n \rightarrow \infty} P\left(\left|y_{n}-c\right|<\epsilon\right)=1$, we say y_{n} converges in probability to c which is equivalent to stochastic convergence.

[^1]
1.3.4 Definition

If $P\left(\lim _{n \rightarrow \infty} y_{n}=c\right)=1$ then we say y_{n} converges to c with probability 1 (w.p.1) or strong converges.

1.4. Limiting moment - generating functions

1.4.1. Definition

The moment generating function of a random variable denoted by $M(t)$ and is defined for every real number t by $M(t)=E\left(e^{t x}\right)$.

Remark:

$M^{(n)}(t)=E\left(x^{n} e^{t x}\right)$ also $M^{(n)}(0)=E\left(x^{n}\right)$
$M^{\prime}(0)=E(x), M^{(2)}(0)=E\left(x^{2}\right)$

1.4.2. Taylor's theorem

Let $f(x)$ be a function on interval I such that $f^{(n)}(c)$ exists for some real c in I, let $R_{n}(x)$ be the remainder for the $\mathrm{n}^{\text {th }}$ degree Taylor polynomial at c then $R_{n}(x)$ is continuous at c, that is $\lim _{n \rightarrow \infty} R_{n}(x)=R_{n}(c)=0$
$R_{n}(x)=\mathrm{n}^{\text {th }}$ degree Taylor polynomial of $f(x)$ at c

$$
=\sum_{J=0}^{n} \frac{(x-c)^{J} f^{(J)}(c)}{J!}
$$

$R_{n}(x)=n!\frac{\left[f(x)-P_{n}(x)\right]}{(x-c)^{n}}, x \neq c$
$f(x)=P_{n}(x)+\frac{(x-c)^{n} R_{n}(x)}{n!}$
$=f(c)+\ldots+\frac{(x-c)^{n-1}}{(n-1)!} f^{(n-1)}(c)+\frac{(x-c)^{n}}{n!}\left[f^{(n)}(c)+R_{n}(x)\right]$

1.4.3. Theorem [1]

Let the random variable y_{n} has distribution function $F_{n}(y)$ and the momentgenerating function $M(t ; n)$ that exists for $-n<t<n$ for all n. If there exists a distribution function $F(y)$, with corresponding moment-generating function $M(t)$, defined for $|t| \leq h_{1} \leq h$, such that $\lim _{n \rightarrow \infty} M(t ; n)=M(t)$ then y_{n} has a limiting distribution with distribution function $F(y)$.

Remark:

$\lim _{n \rightarrow \infty}\left[1+\frac{b}{n}+\frac{\psi(n)}{n}\right]^{c n}=\lim _{n \rightarrow \infty}\left(1+\frac{b}{n}\right)^{c n}=e^{b c}$

Where b and c do not depend on n and where $\lim _{n \rightarrow \infty} \psi(n)=0$

1.4.4. Example

$\lim _{n \rightarrow \infty}\left(1-\frac{t^{2}}{n}+\frac{t^{3}}{n^{3 / 2}}\right)^{-n / 2}=\lim _{n \rightarrow \infty}\left(1-\frac{t^{2}}{n}+\frac{t^{3} / \sqrt{n}}{n}\right)^{-n / 2}=e^{t^{2} / 2}$
for every fixed value of t
here $b=-t^{2}, c=-1 / 2$ and $\psi(n)=\frac{t^{3}}{\sqrt{n}}$

1.4.5. Example

let $Z_{n} \sim \chi^{2}{ }_{(n)}$, find the limiting distribution of $y_{n}=\frac{\left(Z_{n}-n\right)}{\sqrt{2 n}}$.

$$
Z_{n} \sim \chi_{(n)}^{2} \Rightarrow M_{z_{n}}(t, n)=(1-2 t)^{-n / 2}, \quad t<\frac{1}{2}
$$

we find $M_{y_{n}}(t, n)=M(t, n)=E\left(e^{\left(\frac{1}{\sqrt{2 n}}\left(Z_{n}-n\right) t\right.}\right)=e^{-n t / \sqrt{2 n}} E\left(e^{(1 / \sqrt{2 n}) Z_{n} t}\right)$

$$
=e^{\left(-\left(t \sqrt{2 / n} \frac{n}{2}\right)\right)\left(1-\frac{2 t}{\sqrt{2 n}}\right)^{-n / 2}}, t<\frac{\sqrt{2 n}}{2}
$$

$\left(e^{t \sqrt{2 / n}}\right)^{-n / 2}\left(1-\frac{2 t}{\sqrt{2 n}}\right)^{-n / 2}=\left(e^{t \sqrt{2 / n}}-t \sqrt{\frac{2}{n}} e^{t \sqrt{2 / n}}\right)^{-n / 2}, t<\sqrt{n / 2}$.

In accordance with Taylor's formula, there exists a number $C(n)$ between 0 and $t \sqrt{2 / n}$ such that $e^{t \sqrt{2 / n}}=1+t \sqrt{2 / n}+\frac{1}{2}(t \sqrt{2 / n})^{2}+\frac{e^{C(n)}}{6}(t \sqrt{2 / n})^{3}$

Substituted we get:
$M(t, n)=\left(1-\frac{t^{2}}{n}+\frac{\psi(n)}{n}\right)^{-n / 2}$
where $\psi(n)=\frac{\sqrt{2} t^{3}}{3 \sqrt{n}} e^{C(n)}-\sqrt{\frac{2}{n}} t^{3}-\frac{2 t^{4} e^{C(n)}}{3 n}$
since $C(n) \rightarrow 0$ as $n \rightarrow \infty$ then $\lim _{n \rightarrow \infty} \psi(n)=0$, for every fixed value of t
hence $\lim _{n \rightarrow \infty} M(t, n)=e^{t^{2} / 2}$
so $y_{n}=\left(Z_{n}-n\right) / \sqrt{2 n} \xrightarrow{D} N(0,1)$.

1.5. Central limit theorem (C.L.T)

1.5.1. Theorem

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ denote the item of a random sample from a distribution that has mean μ and positive variance σ^{2}, then $y_{n}=\left(\sum_{1}^{n} x_{i}-n \mu\right) / \sqrt{n} \sigma=\sqrt{n}\left(\overline{x_{n}}-\mu\right) / \sigma$ has a limiting distribution that is $N(0,1)$
$\left(\sqrt{n}\left(\bar{x}_{n}-\mu\right) / \sigma \xrightarrow{D} N(0,1)\right)$

Proof:

Let $M(t)=E\left(e^{t x}\right),-\mathrm{h}<\mathrm{t}<\mathrm{h}$ exists.

The function $\quad m(t)=E\left(e^{t(x-\mu)}\right)=e^{-\mu t} M(t)$ also exists for $-\mathrm{h}<\mathrm{t}<\mathrm{h}$, since $\mathrm{m}(\mathrm{t})$ is the moment generating function for $(x-\mu)$
$\mathrm{m}(0)=1, m^{\prime}(0)=E(x-\mu)=0$ and $m^{\prime \prime}(0)=E\left[(x-\mu)^{2}\right]=\sigma^{2}$.

By Taylor's formula there exists a number C between 0 and t such that $m(t)=m(0)+m^{\prime}(0) t+\frac{m^{\prime \prime}(c) t^{2}}{2}$

$$
\begin{aligned}
& =1+\frac{m^{\prime \prime}(c) t^{2}}{2}=1+\frac{\sigma^{2} t^{2}}{2}+\frac{m^{\prime \prime}(c) t^{2}}{2}-\frac{\sigma^{2} t^{2}}{2} \\
& =1+\frac{\sigma^{2} t^{2}}{2}+\frac{m^{\prime \prime}(c)-\sigma^{2}}{2} t^{2}
\end{aligned}
$$

$$
\text { consider } M(t, n)=E\left(e^{t\left(\frac{2 x_{i}-n \mu}{\sigma \sqrt{n}}\right)}=\left[E\left(e^{\left(\frac{x-\mu}{\sigma \sqrt{n}}\right)}\right)\right]^{n}=\left[m\left(\frac{t}{\sigma \sqrt{n}}\right)\right]^{n}\right.
$$

$-h<\frac{t}{\sigma \sqrt{n}}<h$.
In $\mathrm{m}(\mathrm{t})$ replace t by $\frac{t}{\sigma \sqrt{n}}$ to obtain
$m\left(\frac{t}{\sigma \sqrt{n}}\right)=1+\frac{t^{2}}{2 n}+\frac{\left[m^{\prime \prime}(c)-\sigma^{2}\right]}{2 n \sigma^{2}} t^{2}$ where $0<c<\frac{t}{\sigma \sqrt{n}}$ with $-h \sigma \sqrt{n}<t<h \sigma \sqrt{n}$

Accordingly,
$M(t, n)=\left\{1+\frac{t^{2}}{2 n}+\frac{\left[m^{\prime \prime}(c)-\sigma^{2}\right] t^{2}}{2 n \sigma^{2}}\right\}^{n}$
since $m^{\prime \prime}(t)$ is continuous at $t=0$ and $c \rightarrow 0$ as $n \rightarrow \infty$
we have $\lim _{n \rightarrow \infty}\left[m^{\prime \prime}(c)-\sigma^{2}\right]=0$
so $\lim _{n \rightarrow \infty}(M(t, n))=e^{t^{2} / 2}$ for all values of t.
So $y_{n}=\sqrt{n}\left(\bar{x}_{n}-\mu\right) / \sigma \xrightarrow{D} N(0,1)$

Remark:

On the central limit theorem (C.L.T)
$\sqrt{n}\left(\bar{x}_{n}-\mu\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$

1.5.2. Example

If $x_{1}, x_{2}, \ldots, x_{n}$ are $\operatorname{bin}(r, p)$ and $S_{n}=x_{1}+x_{2} \ldots+x_{n}$
Find the asymptotic distribution of $\frac{S_{n}-n r p}{\sqrt{n r p q}}$
$\mathrm{E}\left(\mathrm{S}_{\mathrm{n}}\right)=\operatorname{nrp}, \operatorname{Var}\left(\mathrm{S}_{\mathrm{n}}\right)=\mathrm{nrpq}, 0<\mathrm{p}<1$
Hence, by C.L.T $\frac{S_{n}-n r p}{\sqrt{n r p q}} \xrightarrow{D} N(0,1)$ and $\sqrt{n}\left(\bar{x}_{n}-r p\right) \xrightarrow{D} N(0, r p q)$

1.6. Some theorems on convergence

1.6.1. Theorem

Let u_{n} converge stochastically to c, if $h(u)$ is a continuous function at $u=c$, then $h\left(u_{n}\right)$ converges stochastically to $h(c)$.

Proof:

Since $h(u)$ is continuous at c, then for each $\in>0$
$\exists \delta>0$ Such that if $|u-c|<\delta \Rightarrow|h(u)-h(c)|<\epsilon$
Then if $|h(u)-h(c)|<\epsilon=>|u-c|<\delta$
So $\lim _{n \rightarrow \infty} P\left(\left|h\left(u_{n}\right)-h(c)\right|>\in\right) \leq \lim _{n \rightarrow \infty} P\left(\left|u_{n}-c\right|>\delta\right)=0$
So $0 \leq \lim _{n \rightarrow \infty} P\left(\left|h\left(u_{n}\right)-h(c)\right|>\in\right) \leq 0$
$\Rightarrow \quad \lim _{n \rightarrow \infty} P\left(\left|h\left(u_{n}\right)-h(c)\right|>\in\right)=0, \quad \forall \in>0$.

1.6.2. Theorem

Let u_{n} converges stochastically to c, then u_{n} / c converges stochastically to 1 .

Proof:

Let $h(u)=u / c$ then $h(u)$ cont.
$=>\mathrm{h}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{u}_{\mathrm{n}} / \mathrm{c} \xrightarrow{\mathrm{s}} h(c)=c / c=1$.

Note that: $\mathrm{u}_{\mathrm{n}} \xrightarrow{s} \mathrm{u}$ means that un converges stochastically to u .

1.6.3. Result

Let $u_{n} \xrightarrow{s} c$ and let $P\left(u_{n}<0\right)=0 \quad, \quad \forall n$

And $\mathrm{c}>0$
Then $\sqrt{u_{n}} \xrightarrow{s} \sqrt{c}$.

1.6.4. Theorem: (Cramer) [9]

If $\sqrt{n}\left(X_{n}-a\right) \xrightarrow{D} X$ and let $\mathrm{g}(\mathrm{x})$ be a function which is differentiable at $x=a$ then,
$\sqrt{n}\left(g\left(x_{n}\right)-g(a)\right) \xrightarrow{D} g^{\prime}(a) X$.
In particular if $\sqrt{n}\left(x_{n}-a\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$
$=>\sqrt{n}\left[g\left(x_{n}\right)-g(a)\right] \xrightarrow{D} N\left(0,\left(g^{\prime}(a)\right)^{2} \sigma^{2}\right)$.

1.6.5. Example

$$
\text { By C.L.T, } \sqrt{n}\left(\bar{x}_{n}-\mu\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)
$$

What is the asymptotic distribution of \bar{x}_{n}^{2}.
Solution: let $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2} \Rightarrow \mathrm{~g}^{\prime}(\mathrm{x})=2 \mathrm{x} \Rightarrow \mathrm{g}^{\prime}(\mu)=2 \mu$

$$
\Rightarrow \sqrt{n}\left(\bar{x}_{n}^{2}-\mu^{2}\right) \xrightarrow{D} N\left(0,4 \mu^{2} \sigma^{2}\right) .
$$

Chapter Two

The Exact and Asymptotic Parameters of the First Canonical Weight Vector

2.1. Canonical correlations

We shall be interested in measures of association between two groups of variables. The first group of p variables is represented by the $(p \times 1)$ random vector $X^{(1)}$ the second group of q variables is represented by the $(\mathrm{q} \times 1)$ random vector $\mathrm{X}^{(2)}$ and let $\mathrm{p} \leq \mathrm{q}$ also,
$E\left(X^{(1)}\right)=\mu^{(1)} \quad \operatorname{COV}\left(X^{(1)}\right)=\sum_{11}$
$E\left(X^{(2)}\right)=\mu^{(2)} \quad \operatorname{COV}\left(X^{(2)}\right)=\sum_{22}$

$$
\operatorname{COV}\left(X^{(1)}, X^{(2)}\right)=\sum_{12}=\sum_{21}
$$

Let
$X_{((p+q) \times 1)}=\left[\begin{array}{c}X^{(1)} \\ X^{(2)}\end{array}\right]=\left[\begin{array}{c}X_{1}^{(1)} \\ \cdot \\ X_{p}^{(1)} \\ X_{1}^{(2)} \\ \cdot \\ \cdot \\ X_{q}^{(2)}\end{array}\right]$

So,
$\mu_{((p+q) \times 1)}=E(X)=\left[\frac{E\left(X^{(1)}\right)}{E\left(X^{(2)}\right)}\right]=\left[\frac{\mu^{(1)}}{\mu^{(2)}}\right]$

And the covariance matrix
$\sum_{(p+q) \times(p+q)}=E\left[(X-\mu)(X-\mu)^{T}\right]$
$\left[\begin{array}{ll}E\left(X^{(1)}-\mu^{(1)}\right)\left(X^{(1)}-\mu^{(1)}\right)^{T} & E\left(X^{(1)}-\mu^{(1)}\right)\left(X^{(2)}-\mu^{(2)}\right)^{T} \\ E\left(X^{(2)}-\mu^{(2)}\right)\left(X^{(1)}-\mu^{(1)}\right)^{T} & E\left(X^{(2)}-\mu^{(2)}\right)\left(X^{(2)}-\mu^{(2)}\right)^{T}\end{array}\right]=\left[\begin{array}{ll}\sum_{11(p \times p)} & \sum_{12(p \times q)} \\ \sum_{21(q \times p)} & \sum_{22(q \times q)}\end{array}\right]$
Now let $U=a^{T} X^{(1)}, V=b^{T} X^{(2)}$ then
$\operatorname{Var}(U)=a^{T} \operatorname{Cov}\left(X^{(1)}\right) a=a^{T} \sum_{11} a$
$\operatorname{Var}(V)=b^{T} \operatorname{Cov}\left(X^{(2)}\right) b=b^{T} \sum_{22} b$
$\operatorname{Cov}(U, V)=a^{T} \operatorname{Cov}\left(X^{(1)}, X^{(2)}\right) b=a^{T} \sum_{12} b$

We shall seek coefficient vectors a \& b such that
$\operatorname{Corr}(U, V)=\frac{a^{T} \sum_{12} b}{\sqrt{a^{T} \sum_{11} a} \sqrt{b^{T} \sum_{22} b}}$
is as large as possible.

2.1.1. Definition

The first pair of canonical variables are the pair of linear combinations $\mathrm{U}_{1}, \mathrm{~V}_{1}$ having unit variances which maximize the correlation (1).

The second pair of canonical variables are the pair of linear combinations $\mathrm{U}_{2}, \mathrm{~V}_{2}$ having unit variances which maximize the correlation (1). Among all choices which are uncorrelated with the first pair of canonical variables.
at the $\mathrm{k}^{\text {th }}$ step.
The $\mathrm{k}^{\text {th }}$ pair of canonical variable are the linear combinations U_{k}, V_{k} having unit variance, which maximize the correlation (1) among all choices which are uncorrelated with the previous (k-1) canonical variable pairs.

The correlation between the $\mathrm{k}^{\text {th }}$ pair of canonical variable is called the $\mathrm{k}^{\text {th }}$ canonical correlation.

2.1.2. Result

Suppose $p \leq q$ and let the random vectors $X_{p \times 1}^{(1)}$ and $X_{q \times 1}^{(2)}$ have
$\operatorname{Cov}\left(X^{(1)}\right)=\sum_{11(p \times p)}, \operatorname{Cov}\left(X^{(2)}\right)=\sum_{22(p \times q)}$
$\& \operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)=\sum_{12(p \times 9)}$
for coefficient vectors $a_{(p \times 1)} \& b_{(q \times 1)}$, form the linear combinations
$U=a^{T} X^{(1)}$ and $V=b^{T} X^{(2)}$ then
$\max _{a, b} \operatorname{Corr}(U, V)=\rho_{1}^{*}$
attained by the linear combination (first canonical variate pair)
$U_{1}=e_{1}^{T} \sum_{11}^{-1 / 2} X^{(1)}$ and $V_{1}=f_{1}^{T} \sum_{22}^{-1 / 2} X^{(2)}$
the $\mathrm{k}^{\text {th }}$ pair of canonical variates $\mathrm{k}=2,3 \ldots \mathrm{p}$
$U_{k}=e_{k}^{T} \sum_{11}^{-1 / 2} X^{(1)}$ and $V_{k}=f_{k}^{T} \sum_{22}^{-1 / 2} X^{(2)}$
maximizes
$\operatorname{Corr}\left(U_{k}, V_{k}\right)=\rho_{k}^{*}$

Among those linear combinations uncorrelated with the preceding $1,2, \ldots \mathrm{k}-1$, the canonical variables $\left[\left(\rho_{1}^{* 2} \geq \rho_{2}^{* 2} \geq \ldots \geq \rho_{p}^{* 2}\right)\right.$ are the Eigen values of $\left.\sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2}\right] \& \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{p}}$ are the associated $(\mathrm{p} \times 1)$ eigen vectors.
(The quantities $\rho_{1}^{*}, \rho_{2}^{*}, \ldots . . ., \rho_{p}^{*}$ are also the p largest eigen values of the matrix $\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1} \sum_{12} \sum_{22}^{-1 / 2}$ with corresponding ($\mathrm{q} \times 1$) eigen vector $\mathrm{f}_{1}, \ldots . \mathrm{f}_{\mathrm{p}}$ each f_{i} is proportional to $\left.\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{i}\right)$.

The canonical variates have the properties:
$\operatorname{Var}\left(\mathrm{U}_{\mathrm{k}}\right)=\operatorname{var}\left(\mathrm{V}_{\mathrm{k}}\right)=1$
$\operatorname{Cov}\left(\mathrm{U}_{\mathrm{k}}, \mathrm{U}_{\mathrm{L}}\right)=\operatorname{Corr}\left(\mathrm{U}_{\mathrm{k}}, \mathrm{U}_{\mathrm{L}}\right)=0, \mathrm{k} \neq \mathrm{L}$
$\operatorname{Cov}\left(\mathrm{V}_{\mathrm{k}}, \mathrm{V}_{\mathrm{L}}\right)=\operatorname{Corr}\left(\mathrm{V}_{\mathrm{k}}, \mathrm{V}_{\mathrm{L}}\right)=0, \mathrm{k} \neq \mathrm{L}$
$\operatorname{Cov}\left(\mathrm{U}_{\mathrm{k}}, \mathrm{V}_{\mathrm{L}}\right)=\operatorname{Corr}\left(\mathrm{U}_{\mathrm{k}}, \mathrm{V}_{\mathrm{L}}\right)=0, \mathrm{k} \neq \mathrm{L}$

Where $\mathrm{k}, \mathrm{L}=1,2, \ldots \mathrm{p}$.

Proof:

We assume that $\sum_{11} \& \sum_{22}$ are non singular (if \sum_{11} or \sum_{22} is singular, variables(s) may be deleted from the appropriate set, and the linear combinations $a^{T} X^{(1)}$ and $b^{\prime} X^{(2)}$ can be expressed in terms of the reduced set. The reduced set has a non singular covariance matrix).

Introduce the symmetric square-root matrices $\sum_{11}^{1 / 2}$ and $\sum_{22}^{1 / 2}$ with $\sum_{11}=\sum_{11}^{1 / 2} \sum_{11}^{1 / 2}, \sum_{11}^{-1}=\sum_{11}^{-1 / 2} \sum_{11}^{-1 / 2}$

Let $c=\sum_{11}^{1 / 2} a, d=\sum_{22}^{1 / 2} b \Rightarrow a=\sum_{11}^{-1 / 2} c$ and $b=\sum_{22}^{-1 / 2} d$, then $\operatorname{Corr}\left(a^{T} X^{(1)}, b^{T} X^{(2)}\right)=\frac{a^{T} \sum_{12} b}{\sqrt{a^{T} \sum_{11} a} \sqrt{b^{T} \sum_{22} b}}=\frac{c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1 / 2} d}{\sqrt{c^{T} c} \sqrt{d^{T} d}}$.

By the Cauchy-Schawarz inequality ${ }^{(1)}$
$c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1 / 2} d \leq\left(c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2} c\right)^{1 / 2}\left(d^{T} d\right)^{1 / 2}$

Since is a $(\mathrm{p} \times \mathrm{p})$ symmetric matrix, then by maximization ${ }^{(2)}$ yields

$$
\begin{equation*}
c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2} c \leq \lambda_{1} c^{T} c \tag{4}
\end{equation*}
$$

[^2]Where λ_{1} is the largest eigen value of $\sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2}$
(Equality occurs in (4) for $c=e_{1}$, a normalized eigen value associated with λ_{1}, equality also holds in (3) if d is proportional to $\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{1}$.

Thus $\quad \max _{a, b} \operatorname{Corr}\left(a^{T} X^{(1)}, b^{T} X^{(2)}\right)=\sqrt{\lambda_{1}}$.
with equality occurring for $a=\sum_{11}^{-1 / 2} c=\sum_{11}^{-1 / 2} e_{1} \&$ with b proportional to $\sum_{22}^{-1 / 2} \sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{1}$, where the sign is selected to give positive correlation. We take $b=\sum_{22}^{-1 / 2} f_{1}$ this last correspondence follows by multiplying both sides of
$\left(\sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2}\right) e_{1}=\lambda_{1} e_{1}$
By $\sum_{22}^{-1 / 2} \sum_{11} \sum_{11}^{-1 / 2}$ yielding
$\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1} \sum_{12} \sum_{22}^{-1 / 2}\left(\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{1}\right)=\lambda_{1}\left(\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{1}\right)$.

Thus if $\left(\lambda_{1}, \mathrm{e}_{1}\right)$ is an eigen value-eigen vector pair for $\sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2}$ or $\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}$.
$\left(\lambda_{1}, f_{1}\right)$ with f_{1} the normalized form of $\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1 / 2} e_{1}$ is an eigen valueeigen Vector pair for $\sum_{22}^{-1 / 2} \sum_{21} \sum_{11}^{-1} \sum_{12} \sum_{22}^{-1 / 2}$.

The sign for f_{1} is chosen to give a positive correlation. We have demonstrated that $U_{1}=e_{1}^{T} \sum_{11}^{-1 / 2} X^{(1)}$ and $V_{1}=f_{1}^{T} \sum_{22}^{-1 / 2} X^{(2)}$ are the first pair of canonical variable and their correlation is $\rho_{1}^{*}=\sqrt{\lambda_{1}}$.

Also,
$\operatorname{Var}\left(U_{1}\right)=e_{1}^{T} \sum_{11}^{-1 / 2} \sum_{11} \sum_{11}^{-1 / 2} e_{1}=e_{1}^{T} e=1$

Similarly,
$\operatorname{Var}\left(V_{1}\right)=f_{1}^{T} \sum_{22}^{-1 / 2} \sum_{22} \sum_{22}^{-1} f_{1}=f_{1}^{T} f_{1}=1$.

Continuing, we note that U_{1} and V_{1} an arbitrary linear combination $a^{T} X^{(1)}=c^{T} \sum_{11}^{-1 / 2} X^{(1)}$ are uncorrelated if $0=\operatorname{Cov}\left(U_{1}, c^{T} \sum_{11}^{-1 / 2} X^{(1)}\right)=e_{1}^{T} c=e_{1}^{T} c$ or e1 $\perp \mathrm{c}$.

At the $\mathrm{k}^{\text {th }}$ stage we require $\mathrm{c} \perp \mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{k}-1}$

So by maximization yields:
$c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2} c \leq \lambda_{k} c^{T} c$ for $\mathrm{c} \perp \mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{k}-1}$.

By (3):

$$
\begin{aligned}
& \operatorname{Corr}\left(a^{T} X^{(1)}, b^{T} X^{(2)}\right)=\frac{c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1 / 2} d}{\sqrt{c^{\prime} c} \sqrt{d^{\prime} d}} \leq \\
& \frac{\left(c^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1 / 2} c\right)^{1 / 2}\left(d^{T} d\right)^{1 / 2}}{\sqrt{c^{T} c} \sqrt{d^{T} d}} \leq \frac{\left(\lambda_{k} c^{T} c\right)^{1 / 2}}{\sqrt{c^{T} c}}=\sqrt{\lambda_{k}}
\end{aligned}
$$

With equality for $c=e_{k}$ or $a=\sum_{11}^{-1 / 2} e_{k}$ and $b=\sum_{22}^{-1 / 2} f_{k}$
Thus, $U_{k}=e_{k}^{T} \sum_{11}^{-1 / 2} X^{(1)}$ and $V_{k}=f_{k}^{T} \sum_{22}^{-1 / 2} X^{(2)}$ are the $\mathrm{k}^{\text {th }}$ canonical pair, \& have correlation $\sqrt{\lambda_{k}}=\rho_{k}^{*}$.

Now,
$\operatorname{COV}\left(U_{K}, U_{L}\right)=e_{k}^{T} \sum_{11}^{-1 / 2} \sum_{11} \sum_{11}^{-1 / 2} e_{L}=e_{k}^{T} e_{L}=0 \quad$ if $k \neq L \leq p$
$\operatorname{COV}\left(V_{K}, V_{L}\right)=f_{k}^{T} \sum_{22}^{-1 / 2} \sum_{22} \sum_{22}^{-1 / 2} f_{L}=f_{k}^{T} f_{L}=0 \quad$ if $k \neq L \leq p$
$\operatorname{COV}\left(U_{K}, V_{L}\right)=e_{k}^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1 / 2} f_{L}=0 \quad$ if $k \neq L \leq p$
Since f_{L}^{T} is a multiple of $e_{L}^{T} \sum_{11}^{-1 / 2} \sum_{12} \sum_{22}^{-1 / 2}$.

2.2. Gamma distribution

2.2.1. Definition

$$
\Gamma(n)=\int_{0}^{\infty} x^{n-1} e^{-x} d x, x>0
$$

This function is called Gamma function and its domain is the set of positive real number.

$$
\Gamma(n)=\int_{0}^{\infty} x^{n-1} e^{-x} d x=(n-1)!=(n-1) \Gamma(n-1)
$$

2.2.2. Definition

A random variable X is said to have a Gamma distribution if

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(x)^{\alpha-1} e^{-x / \beta} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now we find the expectation \& the variance of the Gamma distribution...

$$
\left.\begin{array}{l}
\begin{array}{rl}
M(t) & =E\left(e^{\alpha x}\right)=\int_{0}^{\infty} \frac{1 x^{\alpha-1}}{\Gamma(\alpha) \beta^{\alpha}} e^{-x / \beta} e^{t x} d x \\
& =\int_{0}^{\infty} \frac{x^{\alpha-1}}{\Gamma(\alpha) \beta^{\alpha}} e^{-x\left(\frac{1}{\beta}-t\right)} d x \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-x\left(\frac{1-\beta t}{\beta}\right)} d x
\end{array} \\
\text { let } y=x\left(\frac{1-\beta t}{\beta}\right) \Rightarrow d y=\left(\frac{1-\beta t}{\beta}\right) d x \\
\text { and } x
\end{array}\right)=\left(\frac{\beta}{1-\beta t}\right) y \quad \text { y }
$$

$$
\begin{aligned}
\therefore M(t) & =\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty}\left(\frac{\beta}{1-\beta t}\right)^{\alpha-1}\left(\frac{\beta}{1-\beta t}\right) e^{-y} d y \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta}{1-\beta t}\right)^{\alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

But $\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\Gamma(\alpha)$
$\therefore M(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha}=(1-\beta t)^{-\alpha}$
$M^{\prime}(t)=-\alpha(-\beta)(1-\beta t)^{-\alpha-1}=\alpha \beta(1-\beta t)^{-(\alpha+1)}$
$M^{\prime}(0)=\alpha \beta=E X$

$$
E X^{2}=M^{\prime \prime}(0)
$$

$$
M^{\prime \prime}(t)=-(\alpha+1)(-\beta)(1-\beta t)^{-(\alpha+1)-1} \alpha \beta
$$

$$
M^{\prime \prime}(0)=\beta^{2} \alpha(\alpha+1)
$$

$$
\therefore \operatorname{Var}(X)=E X^{2}-(E X)^{2}
$$

$$
=\beta^{2} \alpha(\alpha+1)-\alpha^{2} \beta^{2}=\beta^{2} \alpha(\alpha+1-\alpha)=\beta^{2} \alpha
$$

2.2.3 Definition

A random variable X is said to have chi-square distribution ($X \sim \chi^{2}(n)$) with n degrees of freedom if
$f(x)=\left\{\begin{array}{cc}\frac{1}{\Gamma(n / 2) 2^{n / 2}}(x)^{n / 2-1} e^{-x / 2} & x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$

Remark:

$\chi^{2}(n)$ is gamma distribution with $\alpha=\frac{n}{2}$ and $\beta=2$ so $E(\chi)=\alpha \beta=n$ and $\operatorname{var}(\chi)=\alpha \beta^{2}=2 n$.

2.2.4. Theorem [1]

Let $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ be a random sample from a distribution that is $N\left(\mu, \sigma^{2}\right)$ then:
a. \bar{x} is $N\left(\mu, \frac{\sigma^{2}}{n}\right)$
b. $\frac{n s^{2}}{\sigma^{2}}$ is $\chi_{(n-1)}^{2}$
c. \bar{x} and S^{2} are independent random variable where $\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}$, and $S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}$
2.3. The exact and asymptotic parameters of the first canonical weight vector where the rank of $\left(\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}\right)=1$

Let $\quad X=\left(\begin{array}{cccc}x_{11} & x_{12} & \cdot & x_{1 n} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ x_{p 1} & x_{p 2} & \cdot & x_{p n}\end{array}\right)$

Then sample mean

$$
\bar{X}=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{1} \\
\cdot \\
\bar{x}_{p}
\end{array}\right], \bar{x}_{i}=\frac{1}{n} \sum_{j=1}^{n} x_{i j}, \mathrm{i}=1,2, \ldots \ldots \ldots \ldots \mathrm{p}
$$

Sample variance and covariance

$$
\begin{aligned}
& S_{n}=\left[\begin{array}{ccc}
S_{11} & \cdot & S_{1 p} \\
\cdot & \cdot & \cdot \\
S_{p 1} & \cdot & S_{p p}
\end{array}\right] \\
& S_{i k}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{i j}-\overline{x_{i}}\right)\left(x_{k j}-\bar{x}_{k}\right), \mathrm{i}, \mathrm{k}=1,2, \ldots \ldots \ldots \ldots \mathrm{p} .
\end{aligned}
$$

Suppose that $p+q$ variates

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right] \sim N_{P+q}\left\{\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \sum=\left[\begin{array}{ll}
\sum_{11} & \sum_{12} \\
\sum_{21} & \sum_{22}
\end{array}\right]\right\}
$$

and that from this normal population n observation vectors have been randomly drawn and their covariance matrix has been partitioned as

$$
S=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]
$$

The stability of the canonical weight vectors ∂ resulting from the solution to the homogeneous linear equations

$$
\left(s_{12} s_{22}^{-1} s_{21}-\lambda s_{11}\right) \partial=0
$$

Is the focus of this study? This study encompasses one underlying population structure where the matrix $\left(\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}\right)$ assumes a unit rank.

A more elaborate and scientific assessment of the one-factor weight stability is the establishment of a concrete and theoretical formulation of the weight's variance in question. Central to this formulation is the
derivation of the exact variance and the asymptotic distribution of the weight.

Suppose that we have a one-factor population structure and that the observation vectors have been transformed so that their distribution has mean vector $\mu=\left[\begin{array}{l}0 \\ . \\ 0\end{array}\right]$ and variance-covariance matrix $\sum^{*}=\left[\begin{array}{cc}I_{p} & \Delta \\ \Delta^{T} & I_{q}\end{array}\right]$, $\Delta=\left[\begin{array}{cccc}1 & 0 & . & 0 \\ 0 & 0 & . & 0 \\ . & \cdot & . & . \\ 0 & 0 & . & 0\end{array}\right]_{p \times q}, I_{n}=\left[\begin{array}{cccc}1 & 0 & . & 0 \\ 0 & 1 & . & 0 \\ . & . & . & . \\ 0 & 0 & . & 1\end{array}\right]_{n \times n}$

The one-factor solution resulting from the canonical correlation analysis on \sum^{*} is $\rho_{1}=1$ and its corresponding canonical weight vector is $A_{1}=\left[\begin{array}{l}1 \\ . \\ 0 \\ 0\end{array}\right]$. The sample estimate of A_{i} resulting from the canonical correlation analysis on S^{*} the estimate of \sum^{*} is $\partial_{1}^{*}=\left[\begin{array}{c}\partial_{11} \\ \varepsilon_{1} \\ . \\ \varepsilon_{p}\end{array}\right]$ where $\varepsilon_{i}, i=1, \ldots \ldots \ldots . p$ are infinitesimal. But since $\partial_{1}^{* T} S_{11}^{*} \partial_{1}^{*}=1$, then $\partial_{11}^{* 2} \cdot S^{2}=1$ or $\partial_{11}^{*}=\frac{1}{s}$ where s is the standard deviation of the sample drawn. Knowing that $(n-1) s^{2} \sim \chi_{(n-1)}^{2}$, it is of interest to derive the exact variance and the asymptotic distribution of $\frac{1}{S}$ as a theoretical evidence for assessing the stability of the weight of the first variable on the first canonical variate.

2.3.A. Derivation of the exact formula for $\operatorname{Var}(1 / \mathrm{s})$:

Consider $w=(n-1) s^{2} \sim \chi_{(n-1)}^{2} \quad$ so $\quad \frac{1}{s}=\left(\frac{n-1}{w}\right)^{1 / 2}$

$$
\begin{aligned}
E\left(\frac{1}{s}\right) & =E\left(\frac{n-1}{w}\right)^{\frac{1}{2}}=E\left(\frac{1}{w^{1 / 2}}\right) \sqrt{n-1} \\
& =\sqrt{n-1} \int_{0}^{\infty} \frac{1}{w^{1 / 2}} \frac{1}{2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)} w^{\left(\frac{n-1}{2}\right)-1} e^{-w / 2} d w \\
& =\frac{\sqrt{n-1}}{2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)^{\infty}} \int_{0}^{\infty} w w^{-3 / 2} w^{\left(\frac{n-1}{2}\right)-1} e^{-w / 2} d w \\
& =\frac{\sqrt{n-1}}{2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)_{0}^{\infty} w w^{\left(\frac{n-4}{2}\right)} e^{-w / 2} d w\left[\frac{\Gamma\left(\frac{n-4}{2}\right) 2^{\left(\frac{n-4}{2}\right)}}{\Gamma\left(\frac{n-4}{2}\right) 2^{\left(\frac{n-4}{2}\right)}}\right]} \\
& =\frac{\sqrt{n-1} \Gamma\left(\frac{n-4}{2}\right)}{2^{\left(\frac{n-4}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)} E\left(w^{*}\right)
\end{aligned}
$$

Where $w^{*} \sim \chi^{2}(n-4)$
So $E\left(\frac{1}{s}\right)=\frac{\sqrt{n-1} \Gamma\left(\frac{n-4}{2}\right) 2^{\left(\frac{n-4}{2}\right)}(n-4)}{\Gamma\left(\frac{n-1}{2}\right) 2^{\left(\frac{n-1}{2}\right)}}$

$$
=\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}
$$

Similarly,

$$
\begin{aligned}
& E\left(\frac{1}{s^{2}}\right)=(n-1) E\left(\frac{1}{w}\right) \\
& =(n-1) \int_{0}^{\infty} \frac{1}{w} \frac{1}{\Gamma\left(\frac{n-1}{2}\right) 2^{\left(\frac{n-1}{2}\right)}} w^{\left(\frac{n-1}{2}\right)-1} e^{-w / 2} d w \\
& =\frac{(n-1)}{2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} w^{\left(\frac{n-3}{2}\right)-1} e^{-w / 2} d w \\
& =\frac{(n-1)}{2} \frac{\Gamma\left(\frac{n-3}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}=\frac{\left(\frac{n-1}{2}\right) \Gamma\left(\frac{n-3}{2}\right)}{\left(\frac{n-3}{2}\right) \Gamma\left(\frac{n-3}{2}\right)}=\frac{n-1}{n-3} \\
& \text { so } \operatorname{Var}\left(\frac{1}{s}\right)=\mathrm{E}\left(\frac{1}{s}\right)^{2}-\left(E\left(\frac{1}{s}\right)\right)^{2} \\
& \operatorname{Var}\left(\frac{1}{s}\right)=\left(\frac{n-1}{n-3}\right)-\left(\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right)^{2}
\end{aligned}
$$

2.3.B. Derivation of the asymptotic distribution of $\frac{1}{s}$

The following result and its proof are essential to the asymptotic distribution of $\frac{1}{s}$.

2.3. B1 Lemma

let $X_{n} \sim \chi_{(n)}^{2} \quad$ then the limiting distribution of the random variable $Y_{n}=\frac{\left(X_{n}-\mu\right)}{\sigma}$ is $\mathrm{N}(0,1)$, where the mean $(\mu=n)$ and the variance $(\sigma=\sqrt{2 n})$.

Proof:

The moment-generating function of Y_{n} is

$$
\begin{aligned}
M(t ; n) & =E\left\{\exp \left[t\left(\frac{X_{n}-n}{\sqrt{2 n}}\right)\right]\right\} \\
& =\exp \left(-\frac{t n}{\sqrt{2 n}}\right) E\left(\exp \left(\frac{t X_{n}}{\sqrt{2 n}}\right)\right) \\
& =\exp \left[-t \sqrt{\frac{2}{n}}\left(\frac{n}{2}\right)\right]\left(1-2 \frac{t}{\sqrt{2 n}}\right)^{-\frac{n}{2}}, t<\frac{\sqrt{2 n}}{2}
\end{aligned}
$$

The expression for the moment-generating function of Y_{n} can be written as $M(t ; n)=\left(\exp \left[t \sqrt{\frac{2}{n}}\right]-t \sqrt{\frac{2}{n}} \exp \left[t \sqrt{\frac{2}{n}}\right]\right)^{-n / 2}, t<\sqrt{\frac{n}{2}}$

By using the Taylor expansion, there exists a number $C(n)$ between 0 and $t \sqrt{2 / n}$, such that
$\exp \left[t \sqrt{\frac{2}{n}}\right]=1+t \sqrt{\frac{2}{n}}+\frac{1}{2}\left(t \sqrt{\frac{2}{n}}\right)^{2}+\frac{e^{C(n)}}{6}\left(t \sqrt{\frac{2}{n}}\right)^{3}$
Substituting this expression for $e^{t \sqrt{\frac{2}{n}}}$ in the last expression for $\mathrm{M}(\mathrm{t} ; \mathrm{n})$, it is seen that
$M(t ; n)=\left(1-\frac{t^{2}}{n}+\frac{R(n)}{n}\right)^{-n / 2}$

Where
$R(n)=\frac{\sqrt{2} t^{3} e^{C(n)}}{3 \sqrt{n}}-\frac{\sqrt{2} t^{3}}{\sqrt{n}}-\frac{2 t^{4} e^{C(n)}}{3 n}$
Since $C(n) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, then $\lim _{n \rightarrow \infty} R(n)=0$ for every fixed value of t.

Therefore,
$\lim _{n \rightarrow \infty} M(t ; n)=e^{t^{2} / 2}$ which implies that $Y_{n}=\frac{X_{n}-n}{\sqrt{2 n}}$ has a limiting normal distribution with mean zero and variance 1.

By using lemma 2.3.B1 and the fact that $(n-1) s^{2} \sim \chi_{(n-1)}^{2} \quad$ implies
$\frac{1}{\sqrt{2(n-1)}}\left[(n-1) s^{2}-(n-1)\right] \sim N(0,1)$
therefore,
$\frac{(n-1)}{\sqrt{2(n-1)}}\left(s^{2}-1\right) \sim N(0,1)$

Or,

$$
\left(s^{2}-1\right) \sim N\left(0, \frac{2}{n-1}\right)
$$

let $f\left(s^{2}\right)=\frac{1}{s} \quad$ where the taylor series expansion exist and hence the conditions for the δ-method are satisfied,

Hence $\quad \frac{f\left(s^{2}\right)-f(1)}{f^{\prime}(1)} \sim N\left(0, \frac{2}{n-1}\right)$

Or

$$
f\left(s^{2}\right) \quad \sim N\left(f(1), \frac{2}{n-1}\left[f^{\prime}(1)\right]^{2}\right)
$$

But s. $f\left(s^{2}\right)=1 / \mathrm{s}$;

Let $s^{2}=\mathrm{x}$

Then $\sqrt{x} \cdot f(x)=1$
And $\sqrt{x} \cdot f^{\prime}(x) x^{\prime}+f(x) \frac{1}{2 \sqrt{x}} x^{\prime}=0$
So $\sqrt{x} f^{\prime}(x)=-f(x) \frac{1}{2 \sqrt{x}}$
Or $f^{\prime}(x)=-\frac{f(x)}{2 x}$
Now let $g(x)=\frac{1}{\sqrt{x}}=>g^{\prime}(x)=\frac{-1}{2 x^{3 / 2}}$
$\Rightarrow g^{\prime}(1)=-1 / 2$
$\therefore\left(g^{\prime}(1)\right)^{2}=\frac{1}{4}$
$\left(g^{\prime}(1)\right)^{2} \quad \operatorname{var}\left(s^{2}\right)=\frac{1}{4}\left(\frac{2}{n-1}\right)=\frac{1}{2(n-1)}$

So by Cramer Theorem,
$\left(\frac{1}{s}-1\right) \xrightarrow{D} N\left(0, \frac{1}{2(n-1)}\right)=>\frac{1}{s} \sim N\left(1, \frac{1}{2(n-1)}\right)$
So the asymptotic variance of $\frac{1}{s}$ is $\frac{1}{2(n-1)}$

Although the stability of the one-factor structure can be explained parsimoniously on the grounds that almost all variation could be explained
along a single continuum rather than in a multidimensional space, the above is a theoretical as well as a concrete empirical evidence of stability.

A look at the distribution of $\frac{1}{s}$ the sample weight of the one-factor structure reveals that $\frac{1}{s} \sim N\left(1, \frac{1}{2(n-1)}\right)$

Where the mean is one and the variance is inversely proportional to sample size. This points to the fact that the larger the sample, the more stable the prediction.

In this situation where the rank of $\left(\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}\right)=1$ is sufficient to account for the variation between the variants, the weights are uniquely determined.

But when the rank is greater than 1 neither the varieties nor their weights are defined uniquely and hence instability arises. In this situation researchers resort to rotational techniques to get fair solution.
2.3.C. Comparison between the exact variances and the asymptotic variances of $\left(\frac{1}{s}\right)$.

n	Exact variances of $\left(\frac{1}{s}\right)=$ $\left(\frac{n-1}{n-3}\right)-\left(\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right)^{2}$	Asymptotic variances of $\begin{aligned} & \left(\frac{1}{s}\right)= \\ & \left(\frac{1}{2(n-1)}\right) \end{aligned}$
31	0.016627	0.0166667
62	0.0081664	0.0081967
124	0.004056	0.0040650
248	0.0020301	0.0020243
296	0.0010141	0.00010101
992	0.0005075	0.0005045
1984	0.0002524	0.0002521

References

1. Hogg, V. Robert and Craig, T. A., Introduction to Mathematical Statistics, Macmillan Publishing Co., Inc. New York, 1978.
2. J.K. Lindsey. Parametric Statistical Inference. Clarendon Press. Oxford 1996.
3. Milton Abramowitz and Irene A. Stegun. Hand Book of Mathematical Functions With Formula, Graphs, and Mathematical Tables. Dover Books Mathematical Inc. New York, 1970, (p.272-273).
4. Morris H. Degroot. Probability \& Statistics. Addison Wesley Publishing Company. Second edition (p. 227, 286-289).
5. Richard A. Johnson Dean W. Wichern. Applied Multivariate Statistical Analysis. Second edition 1988. Prentice Hall International Inc. (p.35-65, 438-445).
6. Richard Askey. Special functions. Academic Press New York. 1975.
7. Robert V. Hoog, Elliot A. Tains. Probability and Statistical Inference. Collier Macmillan international editions 1977 (p.123-124, 171).
8. Thomas Finney. Calculus and analytic geometry. $7^{\text {th }}$ Edition.
9. Thomas S. Ferguson. A course in Large Sample Theory. First Edition 1996 Published by Chapman \& Hall (p.3-5, 13-21, 39-45).
10.William G. Cochran. Sampling Techniques. Third Edition 1977. Published by John Wiley \& Sons Inc.

Appendices

جالمة النجاح الولنية
كلية الررلست العليا

المعامل المنضجلة والقاريبة (Asymptotic) الوزن الط بحيث لن رتبة المصفوفة (

إعدلد

مؤبـمحد.محمد اللسرشي

إلثرف
الكتورفاروق اللمع

قهت هن الالروحة الستكمالا لمظالبت درجة المابسنير في الرباضيلت بكلية الرلسلست العليا في جالمة النجاح الولنية في نلبس،فلطلن.

المعالمت المنضجة والقارسية (Asymptotic) للوزن للط بحيث لن رتبة المصفوة إعداد
 مؤبدمحمدمحمد اللسرشي
 إشرف
 الككتورفاروق للسعد

الملخص

ههف هذا البهث هوشرح شبت الوزن الاول (Canonical) الهستخرج من بنية العلمل الولحد. لستخراج المعادلة المضبوطة لتباين الوزن والتوزيع القاربي (Asymptotic) للوزن لتططي ق ـوة ظرية لمبدأ الثبت. قاهِ التباين المضبوط والقاربي يشبر اللى ققة الاستخلاص. لقد برهن بان الوزن 1/s موزعطبيي وسطه يساوي 1 وتباينه الق اربي يس اوي فكلما كبر حهم العينة يقل تباين الوزن وبذك يكون ثابتاً.

[^0]: Submitted in Partial Fulfillment of Requirements for the Degree of Master in Mathematics, Faculty of Graduate Studies, At An-Najah National University, Nablus, Palestine

[^1]: ${ }^{(1)}$ See reference 4.

[^2]: ${ }^{(1)}$ See reference 5 .
 ${ }^{(2)}$ See reference 5 .

