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The Exact and Asymptotic Parameters of the First Canonical Weight Vector 
where the Rank of (∑ ∑ ∑ ∑− −1

11 12

1

22 21
) Equal One 

 

By 
Muiad Muhammad Muhammad Al-Surakhi 

 

Supervisor 
Dr. Farouk Al-Saad 

 
Abstract 

This research discusses the stability of the first canonical 
weight vector from the one-factor structure derivation of the 
exact formula for the weight’s variance and the asymptotic 
distribution of the weight are emphasized to give theoretical 
robustness to the concept of stability. The closeness of the exact 
and asymptotic variances points to the precision of the derivation.  

It was proven that the weight ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−12

1,1~1
n

N
s

, where the 

asymptotic variance is ( )12
1
−n

. The greater sample size the less 

variance of the weight will be, and hence more stable weight.  
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Modes of Convergence 
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1.1 Introduction  

The most important theoretical results in probability theory are limit 

theorems of these the most important are those that are classified under the 

heading of “Central Limit Theorems” which are concerned with determining 

conditions under which the sum of a large number at random variables has a 

probability distribution that is approximately normal. 

In many problems of probability and statistics we are faced with sequence 

of random variables like x1, x2,…xn,…(e.g. estimators depending on sample, 

size n in statistics) and we are expected to find the limit of this sequence and 

also the distribution (asymptotic distribution) of the limit random variable. 

1.2. Limiting distribution  

Consider a distribution that depends upon the positive integer n, clearly the 

distribution function F of that distribution will also depend upon n, we denote 

this fact by writing the distribution function as Fn and the corresponding P.D.F 

as Fn. Moreover, to emphasize the fact that we are working with sequences of 

distribution functions, we place a subscript n on the random variables. 

1.2.1. Example 

 dwe
n

xF nw
x

n
2/2

21
1)( −

∞−
∫=

π
 

Is the distribution function of the mean nx of a random sample of size n 

(x1,…, xn) from a normal distribution with mean zero and variance 1. 

  ))1,0(~(
n

Nxn  
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1.2.2. Definition  

The sequence { }nx  converges to x in distribution ( nx xD⎯→⎯  as ∞→n ) if 
)()( xFxFn →  as ∞→n ( )()(lim xFxFn

n
=

∞→
) for every point x at which F(x) is 

continuous (we call F(x) the asymptotic distribution of xn). 

1.2.3. Definition 

A distribution of the discrete type that has a probability of 1 at a single 

point has been called a degenerate distribution (a random vector nx ℜ∈ is 

degenerate at point nc ℜ∈ if 1)( == cxp ). 

1.2.4. Example 

    Let nY  denote the nth order statistic(1)  of X1, X2, …Xn from a distribution 

having p.d.f  

( )
⎪⎩

⎪
⎨
⎧ ∞<<<<=

whereelse

xxf
0

0,01 θθ
θ  

Then the P.D.F of nY  is  

n

n

n
nyyg
θ

1

)(
−

= , θ<< y0  

And the distribution function of nY  is  

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤

<≤⎟
⎠
⎞

⎜
⎝
⎛=

<

= ∫
−

y

yydznz
y

yF
y n

n

n

n

θ

θ
θθ

1

0

00

)(
0

1

 

Then 
⎩
⎨
⎧

≥
<

=
∞→ θ

θ
y
y

yFn
n 1

0
)(lim  

                                                 
(1) See reference 7. 
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Now, 
⎩
⎨
⎧

∞<≤
<<∞−

=
y
y

yF
θ

θ
1
0

)(  

Is a distribution function and )()(lim yFyFn
n

=
∞→

 

At each point of continuity of )( yF . 

1.2.5. Example 

Let X n have the distribution function  

dwe
nn

xF nw
x

n
2/2

21
1)( −

∞−
∫=  

By making the change of variable wnv = we get  

∫
∞−

−=
xn

v
n dvexF 22

2
1)(
π

 

Then ,  

⎪
⎩

⎪
⎨

⎧

>
=
<

=
∞→

01
021
00

)(lim
x
x
x

xFn
n

 

Now the function 
⎩
⎨
⎧

≥
<

=
01
00)(

x
xxF  

Is a distribution function and )()(lim xFxFn
n

=
∞→

 at every point of continuity of 

)(xF . 

Notice:  

21)0(lim =
∞→

n
n

F ≠ 1)0( =F  But )(xF isn’t continuous at 0=x . 
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1.3. Stochastic convergence 

1.3.1. Definition 

A distribution that has a probability of 1 at a single point is said to be 

degenerate and we say that the distribution converges stochastically to the 

constant that has a probability of 1. 

1.3.2. Theorem 

Let )( yFn be the distribution function of a random variable ny and let   c be a 

constant independent of n then yn converges stochastically to c iff for every ∈>0 
the  1)Pr(lim =<∈−

∞→
cyn

n
 

Proof:  

First assume  

1)Pr(lim =<∈−
∞→

cyn
n

 for every ∈>0 want to show 
⎩
⎨
⎧

>
<

=
∞→ cy

cy
yFn

n 1
0

)(lim   

Now,  

)()()Pr( ∈−−∈+=<∈− − cFcFcy nnn  

Where −∈+ )(cFn is the left-hand limit of )( yFn at ∈+= cy  

Thus we have: 

[ ])()(lim)(lim1 ∈−−∈+=<∈−= −

∞→∞→
cFcFcyP nnnnn

 

Because 1)(0 ≤≤ yFn for all values of y and for every n it must be that  

0)(lim =∈−
∞→

cFnn
And 1)(lim =∈+ −

∞→
cF nn

 0∈>∀  

=> 
⎩
⎨
⎧

>
<

=
∞→ cy

cy
yFnn 1

0
)(lim  
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On the other hand, assume: 

⎩
⎨
⎧

>∈
<∈

=
∞→ y

y
yFnn 1

0
)(lim  

Want to show 1)(lim =<∈−
∞→

cyP nn
 0∈>∀  

)()()( ∈−−∈+=<∈− − cFcFcyP nnn  

But 1)(lim =∈+ −

∞→
cFnn

 

and 0)(lim =∈−
∞→

cFnn
 0∈>∀  

So ( ) 101lim =−=<∈−
∞→

cynn
 

1.3.3 Example 

Let x1,…,xn  ~ ),( 2σµN  => )/,(~ 2 nNxn σµ  

)()(
n

kxPxP nn
σµµ ≥−=≥∈−  

Where 0>∈=
n

kσ  

0limlim 2

2

=
∈

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥−

∞→∞→ nn
kxP

nnn

σσµ  

By Chebyshev's inequality (1) and 2

2

2
1

∈
=

nk
σ  

=> 1)( =<∈− µnxP  for every 0∈>  

Hence, nx converges stochastically toµ . 

Remark:  

When 1)(lim =<∈−
∞→

cyP nn
, we say ny converges in probability to c  which is 

equivalent to stochastic convergence. 
                                                 
(1) See reference 4. 
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1.3.4 Definition 

If 1)lim( ==
∞→

cyP nn
 then we say ny  converges to c  with probability 1 (w.p.1) 

or strong converges. 

1.4. Limiting moment - generating functions 

1.4.1. Definition  

The moment generating function of a random variable denoted by ( )tM and 

is defined for every real number t  by ( ) )( txeEtM = . 

Remark: 

( ) )()( txnn exEtM = also ( ) )()0( nn xEM =  

)()0( xEM =′ , ( ) )()0( 22 xEM =  

1.4.2. Taylor’s theorem 

Let )(xf  be a function on interval I such that ( ) )(cf n exists for some real c 

in I, let )(xRn be the remainder for the nth degree Taylor polynomial at c  then 
)(xRn is continuous at c , that is 0)()(lim ==

∞→
cRxR nnn

 

)(xRn = nth degree Taylor polynomial of )(xf  at c  

         = ∑
=

−n

J

JJ

J
cfcx

0

)(

!
)()(  

[ ]
n

n
n cx

xPxfnxR
)(

)()(!)(
−
−

= , cx ≠  

!
)()()()(

n
xRcxxPxf n

n

n
−

+=  

= )]()([
!

)()(
)!1(

)(...)( )()1(
1

xRcf
n

cxcf
n

cxcf n
n

n
n

n

+
−

+
−
−

++ −
−
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1.4.3. Theorem [1]   

Let the random variable ny  has distribution function )( yFn and the moment-

generating function ( )ntM ; that exists for ntn <<− for all n . If there exists a 

distribution function )( yF , with corresponding moment-generating function 
)(tM , defined for hht ≤≤ 1 , such that )();(lim tMntM

n
=

∞→
then ny has a limiting 

distribution with distribution function )( yF . 

Remark:  

bc
cn

n

cn

n
e

n
b

n
n

n
b

=⎟
⎠
⎞

⎜
⎝
⎛ +=++

∞→∞→
1lim])(1[lim ψ  

Where b and c do not depend on n  and where 0)(lim =
∞→

n
n

ψ  

1.4.4. Example  

2

2322

23

32
2

1lim1lim t

n

n

n

n
e

n
nt

n
t

n
t

n
t

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−

∞→

−

∞→
 

for every fixed value of t   

here 2tb −= , 21−=c and 
n

tn
3

)( =ψ  

1.4.5. Example 

let )(
2~ nnZ χ , find the limiting distribution of 

n
nZy n

n 2
)( −

= . 

)(
2~ nnZ χ  => 2/)21(),( n

z tntM
n

−−=   ,     
2
1

<t  

we find ),(),( ntMntM
ny = = 

⎟
⎠
⎞

⎜
⎝
⎛ − tnZ

n n

eE
)(

2
1

( ) = )( )21(2 tZnntn neEe−  

              = 

2
)

2
21()

2
2(

n

n
tnnt

e
−

−⎟
⎠
⎞

⎜
⎝
⎛ −

, 
2
2nt <  
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              = 
2/

/2/222//2 2)
2
21()(

n

ntntnnnt e
n

te
n
te

−

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=− , 2/nt < . 

In accordance with Taylor’s formula, there exists a number )(nC between 0 

and nt /2 such that 3
)(

2/2 )/2(
6

)/2(
2
1/21 ntentnte

nC
nt +++=  

Substituted we get: 

2/
2

))(1(),( n

n
n

n
tntM −+−=

ψ
 

where 
n

ett
n

e
n
tn

nC
nC

3
22

3
2)(

)(4
3)(

3

−−=ψ  

since 0)( →nC  as ∞→n then 0)(lim =
∞→

n
n

ψ , for every fixed value of t  

hence 22

),(lim t

n
entM =

∞→
 

so ( ) )1,0(2/ NnnZy D
nn ⎯→⎯−= . 

1.5. Central limit theorem (C.L.T) 

1.5.1. Theorem 

Let x1,x2,…,xn denote the item of a random sample from a distribution that 

has mean µ  and positive variance 2σ , then 

σµσµ /)(/)(
1

−=−= ∑ n

n

in xnnnxy has a limiting distribution that is )1,0(N  

( )( ))1,0(/ Nxn D
n ⎯→⎯− σµ  

Proof: 

Let )()( txeEtM = , -h< t< h  exists. 
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The function )()()( )( tMeeEtm txt µµ −− == also exists 

for –h < t < h, since m(t) is the moment generating function for )( µ−x  

m(0) = 1, 0)()0( =−=′ µxEm  and 22 ])[()0( σµ =−=′′ xEm . 

By Taylor’s formula there exists a number C between 0 and t such that 

2
)()0()0()(

2tcmtmmtm
′′

+′+=  

        
22

)(
2

1
2

)(1
222222 ttcmttcm σσ

−
′′

++=
′′

+=  

        2
222

2
)(

2
1 tcmt σσ −′′

++=  

                                 consider 
nn

n
xt

n
nx

t

n
tmeEeEntM

i

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

σ
σ

µ
σ

µ

)((),(
2

,    

h
n

th <<−
σ

. 

In m(t) replace t by 
n

t
σ

to obtain  

[ ]
2

222

2
)(

2
1

σ
σ

σ n
tcm

n
t

n
tm −′′

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  where 
n

tc
σ

<<0 with nhtnh σσ <<−  

Accordingly,  
n

n
tcm

n
tntM

⎭
⎬
⎫

⎩
⎨
⎧ −′′

++= 2

222

2
])([

2
1),(

σ
σ  

since )(tm ′′ is continuous at 0=t  and  0→c  as ∞→n  

we have [ ] 0)(lim 2 =−′′
∞→

σcm
n

 

so 22

)),((lim t

n
entM =

∞→
 for all values of t . 

So )1,0(/)( Nxny D
nn ⎯→⎯−= σµ  
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Remark:  

On the central limit theorem (C.L.T) 

),0()( 2σµ Nxn D
n ⎯→⎯−  

1.5.2. Example  

If x1, x2,…, xn are bin(r, p) and Sn= x1+ x2…+xn 

Find the asymptotic distribution of nrpq
nrpSn −  

E(Sn ) = nrp, Var(Sn) = nrpq , 0< p <1 

Hence, by C.L.T )1,0(N
nrpq

nrpS Dn ⎯→⎯
−  and ),0()( rpqNrpxn D

n ⎯→⎯−  

1.6. Some theorems on convergence 

1.6.1. Theorem 

Let un converge stochastically to c, if h(u) is a continuous function at  

u = c, then h(un) converges stochastically to h(c). 

Proof: 

Since h(u) is continuous at c, then for each 0∈>  

0>∃δ  Such that if δ<− cu => <∈− )()( chuh  

Then if <∈− )()( chuh  => δ<− cu  

So ( ) 0lim))()((lim =>−≤>∈−
∞→∞→

δcuPchuhP nnnn
  

So ( ) 0)()(lim0 ≤>∈−≤
∞→

chuhP nn
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0∈>∀ . => ( ) 0)()(lim =>∈−
∞→

chuhP nn
,       

1.6.2. Theorem  

Let un converges stochastically to c, then un/c converges stochastically to 1. 

Proof: 

Let h(u) = u/c then h(u) cont. 

=> 1/)(/cu  )h(u S
nn ==⎯→⎯= ccch . 

Note that: un ⎯→⎯S  u means that un converges stochastically to u. 

 

1.6.3. Result 

Let cu S
n ⎯→⎯ and let 0)0( =<nuP   ,     n∀  

And c>0 

Then cu S
n ⎯→⎯ . 

1.6.4. Theorem: (Cramer) [9] 

If XaXn D
n ⎯→⎯− )(  and let g(x) be a function which is differentiable at 

ax = then, 

Xagagxgn D
n )())()(( ′⎯→⎯− . 

In particular if ),0()( 2σNaxn D
n ⎯→⎯−  

=> )))((,0()]()([ 22σagNagxgn D
n ′⎯→⎯− . 

1.6.5. Example 

By C.L.T, ),0()( 2σµ Nxn D
n ⎯→⎯−  
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What is the asymptotic distribution of 
2
nx . 

Solution: let  x  g(x) 2=  => 2x  (x)g =′   => µµ 2)(g =′  

                                          => ( ) )4,0( 2222
σµµ Nxn D

n ⎯→⎯− . 

 

 

 



 

 

 

 

 

 

Chapter Two 

The Exact and Asymptotic Parameters of the  

First Canonical Weight Vector 
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2.1. Canonical correlations 

We shall be interested in measures of association between two groups 

of variables. The first group of  p  variables is represented by the (p×1) 

random vector X(1) the second group of  q  variables is represented by the 

(q×1) random vector X(2) and let p ≤ q  also,  

)1()1( )( µ=XE  COV( )1(X ) = ∑11
 

)2()2( )( µ=XE   COV( )2(X ) = ∑22
 

         COV( )2()1( , XX ) = ∑12
= ∑21

 

Let 

( )

( )

( )

( )

( )

( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=×+

2

2
1

1

1
1

2

1

1)(

.

.

.

.

q

p
qp

X

X
X

X

X
X

X   

So,  

( )

( )

( )

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
==×+ 2

1

2

1

1)( )(
)()(

µ
µµ

XE
XEXEqp  

And the covariance matrix  

]))([(
)()(

T
qpqp

XXE µµ −−=∑ +×+
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−−−−
−−−−

∑∑
∑∑

××

××

qqpq

qppp
TT

TT

XXEXXE
XXEXXE

2221

1211
22221122

22111111

))(())((
))(())((

µµµµ
µµµµ

Now let ( )1XaU T=  , ( )2XbV T=  then  
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( ) ∑==
11

1 )()( aaaXCovaUVar TT  

( ) ∑==
22

2 )()( bbbXCovbVVar TT  

( ) ( ) ∑==
12

21 ),(),( babXXCovaVUCov TT  

We shall seek coefficient vectors a & b such that 

bbaa

ba
VUCorr

TT

T

∑∑
∑=

2211

12),( …………….. (1) 

is as large as possible. 

2.1.1. Definition 

The first pair of canonical variables are the pair of linear 

combinations U1, V1 having unit variances which maximize the correlation 

(1). 

The second pair of canonical variables are the pair of linear 

combinations U2, V2 having unit variances which maximize the correlation 

(1). Among all choices which are uncorrelated with the first pair of 

canonical variables. 

 at the kth step. 

The kth pair of canonical variable are the linear combinations Uk, Vk 

having unit variance, which maximize the correlation (1) among all 

choices which are uncorrelated with the previous (k-1) canonical variable 

pairs. 

The correlation between the kth pair of canonical variable is called the 

kth canonical correlation. 
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2.1.2. Result 

Suppose qp ≤  and let the random vectors 
( )1

1×pX  and 
( )2

1×qX  have  

( ) ∑ ×
=

)(11
)1(

pp
XCov , ( ) ∑ ×

=
)(22

)2(
qp

XCov  

& ( )( ) ∑ ×
=

)(12
)2(1 ,

qp
XXCov  

for coefficient vectors ( )1×pa  & ( )1×qb  , form the linear combinations  

( )1XaU T=  and ( )2XbV T=  then  

*
1,

),(max ρ=VUCorr
ba

 

attained by the linear combination (first canonical variate pair) 

( )12/1

1111 XeU T∑−
=  and ( )22/1

2211 XfV T∑−
=  

the kth pair of canonical variates k = 2,3...p 

( )12/1

11
XeU T

kk ∑−
=  and ( )22/1

22
XfV T

kk ∑−
=  

maximizes 

*),( kkk VUCorr ρ=  

Among those linear combinations uncorrelated with the preceding 

1,2,...k-1 , the canonical variables [ ( )2*2*
2

2*
1 .... pρρρ ≥≥≥  are the Eigen 

values of ∑ ∑ ∑ ∑ ∑− − −2/1

11 12

1

22 21

2/1

11
] & e1,...,ep are the associated (p×1) eigen 

vectors.  

(The quantities **
2

*
1 ,.....,, pρρρ are also the p largest eigen values of the 

matrix ∑ ∑ ∑ ∑ ∑− − −2/1

22 21

1

11 12

2/1

22
 with corresponding (q×1) eigen vector 

f1,...fp each fi is proportional to ∑ ∑ ∑− −2/1

22 21

2/1

11 ie ). 
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The canonical variates have the properties: 

Var(Uk) = var(Vk) = 1 

Cov(Uk,UL) = Corr(Uk,UL) = 0 , k ≠ L  

Cov(Vk,VL) = Corr(Vk,VL) = 0 , k ≠ L  

Cov(Uk,VL) = Corr(Uk,VL) = 0 , k ≠ L  

Where k,L = 1,2,…p. 

Proof: 

We assume that ∑11
& ∑22

are non singular (if ∑11
or ∑22

is 

singular, variables(s) may be deleted from the appropriate set, and the 

linear combinations ( )1XaT  and ( )2Xb′  can be expressed in terms of the 

reduced set. The reduced set has a non singular covariance matrix). 

Introduce the symmetric square-root matrices ∑ 2/1

11
and ∑ 2/1

22
 with 

∑ ∑∑ =
2/1

11

2/1

1111
, ∑ ∑∑ − −−

=
2/1

11

2/1

11

1

11
 

Let ac ∑= 2/1

11
, bd ∑= 2/1

22
 => ca ∑−

=
2/1

11
 and db ∑−

=
2/1

22
, then  

( ) ( ) .),(
2/1

11 12

2/1

22

2211

1221

ddcc

dc

bbaa

ba
XbXaCorr

TT

T

TT

T
TT ∑ ∑ ∑

∑∑
∑ − −

== ……(2) 

By the Cauchy-Schawarz inequality (1) 

( ) ( ) 2/12/12/1

11 12

1

22 21

2/1

11

2/1

11 12

2/1

22
ddccdc TTT ∑ ∑ ∑ ∑ ∑∑ ∑ ∑ − − −− −

≤ ……..…(3) 

Since is a (p×p) symmetric matrix, then by maximization(2) yields  

cccc TT
1

2/1

11 12

1

22 21

2/1

11
λ≤∑ ∑ ∑ ∑ ∑− − − …………….… (4) 

                                                 
(1) See reference 5. 
(2) See reference 5. 
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Where λ1 is the largest eigen value of ∑ ∑ ∑ ∑ ∑− − −2/1

11 12

1

22 21

2/1

11
 

(Equality occurs in (4) for c = e1, a normalized eigen value associated with 
λ1, equality also holds in (3) if d is proportional to ∑ ∑ ∑− −2/1

22 21

2/1

11 1e . 

                        Thus ( ) ( )( ) 1
21

,
,max λ=XbXaCorr TT

ba
………………(5)                       

with equality occurring for 1
2/1

11

2/1

11
eca ∑∑ −−

==  & with b proportional to 

∑ ∑ ∑ ∑− − −2/1

22

2/1

22 21

2/1

11 1e , where the sign is selected to give positive 

correlation. We take 1
2/1

22
fb ∑−

=  this last correspondence follows by 

multiplying both sides of  

( ) 111
2/1

11 12

1

22 21

2/1

11
ee λ=∑ ∑ ∑ ∑ ∑− − −  

By ∑ ∑ ∑− −2/1

22 11

2/1

11
 yielding  

( ) ( )1
2/1

22 21

2/1

111
2/1

22 21

1

11 12

2/1

22

2/1

22 21

2/1

11 1 ee ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ − −− − − − −
= λ ……….. (6) 

Thus if (λ1,e1) is an eigen value-eigen vector pair for 

∑ ∑ ∑ ∑ ∑− − −2/1

11 12

1

22 21

2/1

11
or ∑ ∑ ∑ ∑− −1

11 12

1

22 21
. 

 (λ1,f1) with f1 the normalized form of ∑ ∑ ∑− −2/1

22 21

2/1

11 1e  is an eigen value-

eigen Vector pair for ∑ ∑ ∑ ∑ ∑− − −2/1

22 21

1

11 12

2/1

22
. 

The sign for f1 is chosen to give a positive correlation. We have 
demonstrated that ( )12/1

1111 XeU T∑−
=  and 

( )22/1

2211 ∑−
= XfV T  are the first pair 

of canonical variable and their correlation is 1
*
1 λρ = . 

Also, 

1)( 11

2/1

11 11

2/1

1111 === ∑ ∑ ∑− − eeeeUVar TT  

Similarly,  
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1)( 111
2/1

22 22

1

2211 === ∑ ∑ ∑− − ffffVVar TT . 

Continuing, we note that U1 and V1 an arbitrary linear combination 
( ) ( )12/1

11
1 XcXa TT ∑−
=  are uncorrelated if  

( )( ) ceceXcUCov TTT
11

12/1

111 ,0 === ∑−  or e1 ┴ c.  

At the kth stage we require c ┴ e1,e2…ek-1   

So by maximization yields:  

cccc T
k

T λ≤∑ ∑ ∑ ∑ ∑− − −2/1

11 12

1

22 21

2/1

11  for c ┴ e1,e2…ek-1. 

By (3): 

( ) ( )

( ) ( ) ( )
kT

T
k

TT

TT

T
TT

cc
cc

ddcc

ddcc

ddcc

dc
XbXaCorr

λλ
=≤

≤
′′

=

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

− − −

− −

2/12/12/12/1

11 12

1

22 21

2/1

11

2/1

11 12

2/1

2221 ),(

      

With equality for kec =  or ∑−
=

2/1

11 kea and ∑−
=

2/1

22 kfb  

Thus, ( )∑−
=

2/1

11
1XeU T

kk  and ( )∑−
=

2/1

22
2XfV T

kk are the kth canonical pair, & 

have correlation *
kk ρλ = . 

Now,  

( ) 0, 2/1

11 11

2/1

11
=== ∑ ∑ ∑− −

L
T
kL

T
kLK eeeeUUCOV      if pLk ≤≠  

( ) 0, 2/1

22 22

2/1

22
=== ∑ ∑ ∑− −

L
T

kL
T

kLK ffffVVCOV    if pLk ≤≠  

( ) 0, 2/1

11 12

2/1

22
== ∑ ∑ ∑− −

L
T
kLK feVUCOV          if pLk ≤≠  

Since T
Lf  is a multiple of ∑ ∑ ∑− −2/1

11 12

2/1

22
T
Le . 
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2.2. Gamma distribution 

2.2.1. Definition 

( ) ∫
∞

−−=Γ
0

1 dxexn xn  , x > 0 

This function is called Gamma function and its domain is the set of 

positive real number. 

( ) ( ) )1()1(!1
0

1 −Γ−=−==Γ ∫
∞

−− nnndxexn xn    

2.2.2. Definition 

A random variable X is said to have a Gamma distribution if  

( )
⎪⎩

⎪
⎨
⎧ ≥
Γ=

−−

otherwise

xexxf
x

0

0
)(

1
)(

/1 βα
αβα  

Now we find the expectation & the variance of the Gamma distribution… 

( ) ( ) ( ) dxeexeEtM txxtx β
α

α

βα
/

0

11 −
∞ −

∫ Γ==  

        ( ) dxex tx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∞ −

∫ Γ= β
α

α

βα

1

0

1

  

        ( ) dxex
tx

∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−

Γ
=

0

1
11 β

β
α

αβα       

let dxtdytxy ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

β
β

β
β 11  

and y
t

x ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
β
β

1
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( ) ( ) dye
tt

tM y−
−∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−Γ

=∴ ∫ β
β

β
β

βα

α

α 11
1

1

0
 

                ( ) ∫
∞

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ

=
0

1

1
1 dyey

t
yα

α

α β
β

βα  

But ( )∫
∞

−− Γ=
0

1 αα dyey y  

( ) ( ) α
α

β
β

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=∴ t
t

tM 1
1

1
 

( ) ( )( ) ( ) )1(1 11 +−−− −=−−−=′ αα βαβββα tttM  

( ) EXM ==′ αβ0  

( )02 MEX ′′=  

( ) ( )( )( ) ( ) αβββα α 1111 −+−−−+−=′′ ttM  

( ) ( )10 2 +=′′ ααβM  

( )22)( EXEXXVar −=∴  

                     ( ) ( ) αβαααββαααβ 22222 11 =−+=−+= . 

2.2.3 Definition 

A random variable X is said to have chi-square distribution 

( ( )nX 2~ χ ) with n degrees of freedom if  

( )
⎪⎩

⎪
⎨
⎧ ≥
Γ=

−−

otherwise

xex
nxf

xn
n

0

0
2)2/(

1
)(

2/12/
2/  
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Remark: 

( )n2χ  is gamma distribution with 
2
n

=α  and 2=β  so ( ) nE ==αβχ and 

( ) n2var 2 ==αβχ . 

2.2.4. Theorem [1]  

Let x1,x2…xn be a random sample from a distribution that is ( )2,σµN  

then: 

a. x  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

N
2

,σµ  

b. 2

2

σ
ns  is ( )

2
1−n

χ  

c. x and 2S  are independent random variable where ∑
=

=
n

i

i

n
x

x
1

, and 

( )∑
=

−
=

n

i

i

n
xx

S
1

2
2  

2.3. The exact and asymptotic parameters of the first 
canonical weight vector where the rank of (∑ ∑ ∑ ∑− −1

11 12

1

22 21
) = 1 

Let       
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

pnpp

n

xxx

xxx

X

.
....
....

.

21

11211

 

Then sample mean  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

px

x

x

X
.

1

1

, ∑
=

=
n

j
iji x

n
x

1

1
,  i =1,2,…………p. 
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Sample variance and covariance  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ppp

p

n

ss

ss
S

.
...

.

1

111

 

( )( )kkj

n

j
iijik xxxx

n
S −−= ∑

=1

1
, i, k =1,2,…………p. 

Suppose that p + q variates 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ ∑ ∑∑
∑∑

+

2221

1211

2

1 ,~
µ
µ

qPN
Y
X

 

and that from this normal population n observation vectors have been 

randomly drawn and their covariance matrix has been partitioned as 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

ss
ss

S  

The stability of the canonical weight vectors ∂ resulting from the solution 

to the homogeneous linear equations 

  ( ) 01121
1

2212 =∂−− ssss λ  

Is the focus of this study? This study encompasses one underlying 
population structure where the matrix (∑ ∑ ∑ ∑− −1

11 12

1

22 21
) assumes a unit 

rank. 

A more elaborate and scientific assessment of the one-factor weight 

stability is the establishment of a concrete and theoretical formulation of 

the weight's variance in question. Central to this formulation is the 
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derivation of the exact variance and the asymptotic distribution of the 

weight. 

Suppose that we have a one-factor population structure and that the 

observation vectors have been transformed so that their distribution has 

mean vector 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
.
0

µ and variance-covariance matrix ∑ ⎥
⎦

⎤
⎢
⎣

⎡
∆

∆
=

*

q
T
p

I
I

 , 

nxn

n

qp

I

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=∆

×
1.00
....
0.10
0.01

,

0.00
....
0.00
0.01

 

The one-factor solution resulting from the canonical correlation analysis 

on ∑*
is 11 =ρ and its corresponding canonical weight vector is 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
.
1

1A . 

The sample estimate of Ai resulting from the canonical correlation analysis 

on S* the estimate of ∑*
is 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡∂

=∂

pε

ε
.
1

11

*
1 where pii .,.........1, =ε are 

infinitesimal. But since 1*
1

*
11

*
1 =∂∂ ST

, then 1. 22*
11 =∂ s  or 

s
1*

11 =∂ where s is the standard deviation of the sample drawn.  Knowing 

that ( ) ( )1
22 ~1 −− nsn χ , it is of interest to derive the exact variance and the 

asymptotic distribution of s
1

as a theoretical evidence for assessing the 

stability of the weight of the first variable on the first canonical variate. 
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2.3.A.  Derivation of the exact formula for Var (1/s): 

Consider ( ) ( )1
22 ~1 −−= nsnw χ            so     

2/111
⎟
⎠
⎞

⎜
⎝
⎛ −

=
w

n
s  

1111
2/1

2
1

−⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −

=⎟
⎠
⎞

⎜
⎝
⎛ n

w
E

w
nE

s
E  

           dwew
nw

n w
n

n
2/

1
2

1

2
1

0
2/1

2
12

111 −
−⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

∞

⎟
⎠
⎞

⎜
⎝
⎛ −Γ

−= ∫  

          dwewww
n

n w
n

n
2/

1
2

1
2/3

02
1

2
12

1 −
−⎟
⎠
⎞

⎜
⎝
⎛ −

−
∞

⎟
⎠
⎞

⎜
⎝
⎛ − ∫

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

−
=  

          

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛ −∞

⎟
⎠
⎞

⎜
⎝
⎛ − ∫

2
4

2
4

2/2
4

02
1

2
2

4

2
2

4

2
12

1
n

n

w
n

n n

n

dweww
n

n
 

          ( )*

2
4

2
4

2
12

2
2

41
wE

n

nn

n

n

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

 

Where   ( )4~ 2* −nw χ  

So   
( )

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

−⎟
⎠
⎞

⎜
⎝
⎛ −

Γ−
=⎟

⎠
⎞

⎜
⎝
⎛

2
1

2
4

2
2

1

42
2

41
1

n

n

n

nnn

s
E  
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⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ
−

=

2
1

2
2

2
1

n

n
n

 

Similarly,  

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛

w
En

s
E 111

2  

              ( ) dwew
nw

n w
n

n
2/

1
2

1

2
1

0 2
2

1
111 −

−⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

∞

⎟
⎠
⎞

⎜
⎝
⎛ −Γ

−= ∫  

              
( ) dwew

n
n w

n

n
2/

0

1
2

3

2
1

2
12

1 −
∞ −⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ − ∫

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

−
=  

( )
3
1

2
3

2
3

2
3

2
1

2
1

2
3

2
1

−
−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

Γ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ⎟
⎠
⎞

⎜
⎝
⎛ −

=
⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ
−

=
n
n

nn

nn

n

n
n

 

so Var ⎟
⎠
⎞

⎜
⎝
⎛

s
1

= E
21
⎟
⎠
⎞

⎜
⎝
⎛

s - 

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

s
E  

Var ⎟
⎠
⎞

⎜
⎝
⎛

s
1

 = ⎟
⎠
⎞

⎜
⎝
⎛

−
−

3
1

n
n

- 

2

2
1

2
2

2
1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ
−

n

n
n

 

2.3.B.  Derivation of the asymptotic distribution of 
s
1  

The following result and its proof are essential to the asymptotic 
distribution of 

s
1 . 
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2.3. B1  Lemma 

let ( )
2~ nnX χ    then the limiting distribution of the random variable     

( )
σ

µ−
= n

n
XY     is  N(0,1), where the mean )( n=µ  and the variance 

( n2=σ ). 

Proof:  

The moment-generating function of Yn is  

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
=

n
nXtEntM n

2
exp;  

              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝
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The expression for the moment-generating function of Yn can be written as  

( )
2

,2exp22exp;
2/

nt
n

t
n

t
n

tntM
n

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

−

 

By using the Taylor expansion, there exists a number C(n) between 0 and 

nt /2 , such that  
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Substituting this expression for n
t

e
2

in the last expression for M(t;n), it is 

seen that 
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=  has a limiting normal 

distribution with mean zero and variance 1. 
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So by Cramer Theorem, 
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So the asymptotic variance of s
1

 is ( )12
1
−n

 

Although the stability of the one-factor structure can be explained 

parsimoniously on the grounds that almost all variation could be explained 
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along a single continuum rather than in a multidimensional space, the 

above is a theoretical as well as a concrete empirical evidence of stability.  

A look at the distribution of s
1

 the sample weight of the one-factor 

structure reveals that ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−12

1,1~1
n

N
s

 

Where the mean is one and the variance is inversely proportional to sample 

size. This points to the fact that the larger the sample, the more stable the 

prediction. 

In this situation where the rank of ( ∑ ∑ ∑ ∑− −1

11 12

1

22 21
) =1 is sufficient 

to account for the variation between the variants, the weights are uniquely 

determined.  

But when the rank is greater than 1 neither the varieties nor their 

weights are defined uniquely and hence instability arises .In this situation 

researchers resort to rotational techniques to get fair solution.      
 

2.3.C. Comparison between the exact variances and the asymptotic 

variances of ( s
1

) . 
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 Asymptotic variances of 
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       31 0.016627 0.0166667 
       62 0.0081664 0.0081967 
      124 0.004056 0.0040650 
      248 0.0020301 0.0020243 
      296 0.0010141 0.00010101 
      992 0.0005075 0.0005045 

1984 0.0002524 0.0002521 
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  جامعة النجاح الوطنية

  الدراسات العليا كلية

  

  

 
  

  

للوزن الاول )  Asymptotic(المعلمات المنضبطة والتقاربية 

∑(بحيث ان رتبة المصفوفة  ∑ ∑ ∑− −1

11 12

1

22 21
  تساوي واحد   )

  
  

  

  إعداد

  مؤيد محمد محمد السرخي
  

  إشراف

  فاروق السعدالدكتور 

  
 
  

بكلية الدراسات العليا في  رياضياتبات درجة الماجستير في الاستكمالا لمتطل طروحةقدمت هذه الا

 .فلسطين ،جامعة النجاح الوطنية في نابلس

  

2003  



 

  

ب

ب

  
 للوزن الاول بحيث ان رتبة المصفوفة  )Asymptotic( المعلمات المنضبطة والتقاربية

)∑ ∑ ∑ ∑− −1

11 12

1

22 21
  تساوي واحد   )

  إعداد

  مؤيد محمد محمد السرخي
  إشراف

  فاروق السعدالدكتور 

  

  لخصالم

. مستخرج من بنية العامل الواحدال )Canonical(شرح ثبات الوزن الاول  هو  هدف هذا البحث

للوزن لتعطي قـوة  ) Asymptotic( تقاربياستخراج المعادلة المضبوطة لتباين الوزن  والتوزيع ال

  . الى دقة الاستخلاصالتباين المضبوط والتقاربي يشبر  بقر.  نظرية لمبدأ الثبات

) يسـاوي  وتباينه التقـاربي  1سطه يساوي موزع طبيعي و s/1 لقد برهن بان الوزن )12
1
−n

  .

  .فكلما كبر حجم العينة يقل تباين الوزن وبذلك يكون ثابتاً

 


