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Abstract

In this thesis, I will deal with an application of fixed-point theorem of set
valued map [Let X and Y be two subsets of R* . A set-valued map F from X to
Y, 1s a map that associates with any x € X a subset F'(x) of V', A fixed point x
for F exists ifxef(x) ], and convexity to prox.fe the existence of Walrasian
Equilibrium under sufficient conditions for both pure exchange economy and
private owngrship economy. Then I will show how to modify these theorems

in more general cases under uncertainty and externalities.



Intr luction: .

The goal of general equilibrium theory is to describe and explain economic
phenomena pertaining to markets. The most remarkable of the phenomena are related
to price, the only information shared among all economic agents. Prices have the
sﬁppressing power of enabling individual supplies and demands to coordinate so that
resources in the market arc allocate efficient ; that is, resources are neither in short
supply, nor are they wasted.

Developing a rigorous analysis of this coordination of supply and deinand requires
the formalization of c'ommodities,. prices and economic agents. Thus we bave to

specify the consumption set X as a subset of, R - thenidentify the initial endowment

of each consumer and find his best possible choice within his budget set. We assume
that the prefefence relation c;f the consumer can be represented by a ut_ility function
X >R Finding tlhc appropriate commodity space X especially in case of
exhaustible resonrces is one of the problems discussed in sor-e detail by Geldrop and
(Withager ) [ 6 ] in their, 1999 paper on general equilibrium and resources economic.

Now, we will depend on two principles:

The optimization principle: People try to choose the best bundle - of
consumption set X; , that they can afford given their w :alth and price of commodities
. Firm }j tries to maximize its profit , and The equilibrium principle: Price adjusts
until the amount that people demand of something is equal to the amount that is
supplied .

The optimization prin-iple can be written mathematically as:
i- for every j,y;* maximizes profits in ¥, that is,

py; spy*forally; €F;



ii- for every i, x;*is maximal.for > ; in the budget set
{xie Xi: pxi <pw; + %0, P.y*}
- Zx%= w+ Zy*
where x; €X;the consumption set , y;€¥; the production set ,w; the initial endowment ,
&; the profit share.
To be able to construct a mathematical - model, we need to introduce
‘some microeconomic concepts and definitions , as a background for our work, thus,
in chapter one, we state the definitions for preference relation , and its p;‘operties such
as tﬁe convexity of preference relation . In general under this. circgmstance
{convexity) , the demand is a set valued map and not a function as it is the case
when we require strict convexity . We also define the consumption and production
sets, and then explain both pure exchange economy and private ownership economy,
and other definitions ;md concepts that we need in the next chapters.
In chapter two, we state some theorems and definitions about convexity to be

used in the next chapters ,such as convex set] A subset A4 o1 R” is said to be convex, let
x, y € 4 ,all points ofthe form ax +(7-a}y with 0 <o <1 are in 4 | and separation
theorem [let 4 and B be nonempty convex subset of R” such that AnB=¢ and suppose
A is open. Then (1) there é;(ists a closed hyperpalne H separating 4 and B (2) A lies
strictly to one side of £1. (3) if B is also open then it separates A aﬁd B strictly] . -
In chapter three, we state the definition of the set valued map[Let X and Y be
two subsets of R" . A set-valued map F from Xto Y, isa map that associates with any
x & X a subset F (x) of Y] providing examples. Also we provide the definitions of

two types of set valued maps, the upper and lower semicontinuous maps , with

illustrative examples. We have worked in simplifying the proof of some theorems



related to the vpper and lower semicontinuous set valued maps and provided our
interpretation of these results.

Atthe end of chapter three, we deduce the proof of the fixed point theorem of
the set valued map (Kakutani)- [Let A be a nonempty compact and convex subset of

R and F be convex valued map of A—4 which has a closed graph. Then there exists a
fixed point x for Fie. xeF(x) ]from Brower’s fixed-point theorem for point to point
map (function).

This- thesis deals with the general equilibrium analysis as initiated by Walras
;Debreu and Arrow . The presentation depends mainly on the fixed-point theorem and

its application to the excess demand set valued map( Z(p): P -Z w'.erc Z=X-{W} .

We define Z(p)= 55 =% -2; w.

Then, in chapter four we prove the existence O,f Wai;asia_n_ equilibrium in the case
where the preferences of the consumers are rational ,convex and continuous on the
consumption sets. We depend on the work o French researchers Oki Nomia (1996)
.The proof consists of three steps : In the first step ,we define an auxiliary economy
whose consumption ,production sets are bounded, and convex and the auxiliary
economy has the same equilibrium prices as the original one; in the second one |, we
modify the fixed point theorem , which is used in the third part to show tie existence
of equilibrium in the auxiliary economy, and using therelation between
quasiequilibirium and Walrasian equilibrium to reach the existence through out these
steps.

Throughout, we emphasize how mathematical rigor can be used to prove (under

certain conditions) the existence of Walrasian equilibrium.

Also , inchapter four, we prove mathematically, the properties of demand

and supply se. valued maps, to be used with thé other lemmas and theorems , which



we proved in this chapter, in the proof of the existence of Walrasian equilibrium for
both pure exchange economy and private ownership economy.

In chapter five we provide the definition of Pareto efficiency, and we show the
relationship between the Pareto efficiency (which touch the real world) and Walrasian
equilibrium by providing the proof of the first and the second welfare theorems. Then
we reach to the external effect to show the application on the real world. Thus we start

from the most abstract concepts to end with the noticeable application in life .



Chapter 1
Preliminaries *
1.1Introduction:

In this chapter , we will introduce some concepts and definitions , that we shail
use in the next chapters .We will start first with the history of general equilibrium
theory since we will deal with the existence of two types of it . We will also illvstrate
some concepts and definitions such as commoditiy ,consumption set and production
set.

We wiil‘ study preference relation in some detail to show its relation with the
utility function . In this chapter we study two types of economies the pure exchange
ecoilomy and _private ownership -economy :

1.2 Histor of general equilibrium theory:

Classical economists had a strong notion nf equilibrium. It deals with the idea
of decentralization .The best - known description of how eguilibrium is achieved is
illustrated by Adam Smith’s notation of an invisible hand. The nineteenth-century
economists including Ricuard, Mill, Marx and Je-vo.ns all recognized a notation of
stable equilibrium tendencies in the economy and the importance of the interaction
among markets (general equilibrium) without formalizing these notations
mathematically.

The supply and demand diagram generally presented for partial equilibrium

analysis is known as Marshallion after the treatment of Alfred Marshall (1890).

*This chapter is taken from ch 1,2,3,4,5,15,16,17(Mas — Collcli)



Coumnot and others in the nineteenth century understood the partial equilibrium ,but
they did pot formulate a full general equilibrium model. The existence was first
successfully taken by Leon Walras, a French economist at the school of L. usanne,
Switzerland .His elegant comprehensive treatment appeared in elements of pure
Economics in (1874).

Walras set the problem and principal research agenda for all of the twenticth
century mathematical general equilibrium theory. The Walrasian model represented
the first full recognition of the general equilibrium concept in the literature.

It stated that for N commodities there are N equations
Si @t po) = Di(p1,..., pr) Inthe N unknowns P, to prove the existence .

F.Y Edgworth presented the field with new concepts and new tools to analyze
them mathemtically (1881).

In the early 1950s, three American mathematicians, Kenneth Arrow, Gerend
Deboreu and Lionel Mckenzie, entered the field ; The papers of Arrow and Deboren
end Mikenzie were presented tothe 1952 meeting of Economics Society .They
shared the same essential modeling insight : A fixed point theorem would lead
to a general proof of existence of equilibrium . Additional contributions to the field
in tnis period include Arrow ( 1951), restating the essential ideas- of Welfare
economics in the language of general equilibrium theory ,and Arrow (1953 )
extending the notation of commodity to include allocation under uncertainty .The
_body of work was then summarized by Debreu (1959 ).

The next major step of the general equilibrium theory is the elaboration of the

Edgeworth bargaining model in the contribution by Debreu and Scarf (1963).



The role of large numbers in competitive economy was confirmed
mathematically by Arrow and Debreu who received Nobel prize in economics for
their research in general equilibrium theory (1970) .

Later economists characterized equilibrium as limiting cases of other game
theoretic solution concepts ,e .g with the set of fair net trades by David Schmeidler
and Karl Vind (1972) , with the Shapley value l;y Robert J Aumann and Lloyd S.
Shapley (1974) with the bargaining set by Andreu Mas-Colell (1989) .

Two approaches were developed in the 1980s ; one relying on “non- smooth “
differentials (e. g .Cornet,1982 ) and another involving “ integral “ activity analysis
(e . g. Scarf,1986 ).

The innovations continued , but much remains to be done in this field .
Now we want to state some concepts, and definitions that we will use in our work

1. 3 Prefercnce Relation and Demand
Commdities :
The decision problem faced by the consurier in a market economy is to choose
consumption levels of the various goods and seﬁices that are available for purchase in
the market. We call these gobds and services commodities. We assume for simplicity
that the number of commadities is finite and equal L (index by i=1,2,....L).

A commodity vector (bundle) is a list of amounts of different commodities
x=[xy,...,x.] and can be viewed as a point in R* , the commodity space.
- The Consumption Set:
The consumption set is a subset of the commodity space, denoted by X < R", whose
elements are the consumption bundles that the individual can consume given the

physical constraints imposed by his environment. We will define the following

consumption set.



X=R =f(xeR :x2>0fri=1..1)

The set of all nonnegative bundies of commodities .

Preference Relations:

The objectives of the decision maker are summarized in a prefere-ce relation,
I

denoted by >, which is a binary relation on the set of alternative X, forx,y eX

allowing the comparison of pairs alternatives x,y €X. We read x = y as “x is at least as

good as y” We can derive two other relations on X from >

-1- The :.f?ict preference relation > defined by: x > yiff x >~y but nqty > x. We
read it as “x is preferred to »”.

2- The indifference relation ~ defined by: x ~y fffx > yandy » x. Weread it as “x

is indifferent to y”.
i.l Definition :The preference_ relation > 1S ;ational if it possesses the following
properties:
(i) Completeness: for all x,y X, we have that x > vory > x.
(1) Transitivity: forallx,y,z €X, ifx » yand y > zthenx > =z

(In some presentation, the assumption that » is reflexive defined asx X for
all x €X, is added to the completeness and transitivity assumption.)

The assumption that » is complete says that an individual has a well defined
preference between any two possible alternatives . If the preference relation were not
transitive, there might be sets, which have no best elements.

We also use other assumptions about preferences:

Desirability: we will assume that larger amounts of commodities are preferred to a

smaller one, we assume that the consumption of larger amounts of goods is always

feasible in principle, that is, if x € X and y >x then y eX



1.2 Definition : The preference relation » on X is monotone , if x €X and y>x implies
yrx.
A weaker desirability assumption than monotonicity, known as local

nonsatiation.

1.3 Definition :The preference relation » on X'is locally nonsatiated if for every x
eX and every £>0 there is y €X such that | |x-y| | <eand y =X
Given the preference relation » and a consumption bundle x, we can

define three related sets of consumption bundles.

i~ The indifference set containing the point x is the set of all bundles that -are
indifferent to x: A={y eX: y ~x)}. '7
ii. The upper contour set of bundle x is the set of all bundi.s that are at least as
goodasx: B={fy eX' y > x}.m
1ii, The lower contour set of x, is the svi C={y ea” x = v}
1.4 Definition :The preference relation » on Xis convex if for all x X the upper _
contour set C={y Xy > x} is convex, that is, if y =x and z > x then ay+ (I-¢) z >
x, for all ae[0,1].
1.5 Definition :  The preference relation > on X is strictly convex if for every x E)li’,
we have thaty > x, z = xand y #zthen a y+ (I-g) z > x, for all ae (0,1).
1.6 Definition :The preference relation > on X is continuous if it is preserved under
limits, that is, for any sequence of" pairs {(x", y)}p-1 withx" = y" forall n,x = lirﬁn_,m
x" and y=lim ;)" we have x » y.
The consumer preferring each element in the sequence {x"} to the

corresponding element in the sequence {}.
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An equivalent way to state this notation of continuity is to say that for all x, the
t ~per contour set, and lower contour set are both closed (include their boundaries).
Competitive Budgets:

First, we suppose that the L commodities are all traded in the market at dollar
prices that are publicly qucted. Formally the price vectors represent these prices.
P=[pi,....p1] € R", which gives the dollar cost for a unit of each of the L commodities,
for simplicity, her we assume P>0, that is, Pi>0 for every i=1,2,... L.

Second, we assume that thesc prices are beyond the influence of the consumer.
The affordability ofa consumption bundles depends on two things, the market prices
p, a.d the consunier:s wealth level I, the con;;umption bundles x € R". is affordable
if its total cost does not exceed the consumer’= wealth level W, that is, if P.x = p; x
.t prx <W.

1.7 Definition:The Walrasian or competitive budget set:
. B (pW) = {x eR.:Px<W}isthe set of all feasible consumption bundles
for the consumer who faces market prices and has wealth J¥.

Th¢ set fx &R+ :Px=W}iscalled the budget hyperplane. The Walr.gsian
set B (p,I¥) is convex, that is, if bundles x and x* are in B (p, ) then thc?’ bundle x "= &
x+(lI-a) x eB (p,W), ae [0.1].

To see this ; since a.e[0,1] and x,x-',%() and p.x <W, p. x <W,wehave x"= qx + '(]-
o) x ', therefore P.x"= a P.x + (I-a) Px' <W.

Utility Functions:
In economics , we often describe preference relations by means of a utility
function. A utility function u (x) assigns a numerical value to each element in X (It is

’

labeled the indifference curve):
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1.8Definition:A function - X — R is a utility function represcnting preference
relation > ifforallx,y eX -

x> yifandonly ifu (x) >u ()
1..e utility Maximization Problem: (UMP)

We will study the consumer’s design problem, we assume that the consumer
has a rational, monotone continuous and locally nonsatiated preference relation, and
we take u(x) to be a continuous utility function representing this relation on the
consumption set X=R.%. The consumer’s problem of choosing his most preferred
. consumption bundle given prices p>0 and wealth level >0 can now be stated as the

following utility maximization problem (UMP): Max  u(x)

xe X

such that px<Ww

that is there exists x*e X B(p, W) ,such that u(x;") 2 ufx)for all xeX(\ B(p, V)

In the UMP, the consumer chooses a consumption bunc'e in the Walrasian
budget set B (p,¥) = {x= R.": p.x <W} to maximize his utility level.
Example :_ suppose that the utilitv function (the Cobb Doﬁglas uti 'y function)
u (x1,x2)=x,"x" where ¢,d > 0.
Selution :If we take the natural log of utility , the product of the terms will become
vixpx) =clnx;+dinx;
The indifference curve is just the set of all x; and x; such that

lc—--clnx|

d

k=clnx;+dInx; so x,=e
The marginal rate of substitution (MRS) is given by

ov(x,x))/ ix,  clx, ex,

MRS = = =2
ov(x,x,) 0, dix, dx,




Mow the utility maximization problem can be written as

Maxchx +dinx,
x1=x2

such that p\x, + p,x, <W

Now we should have the MRS = slope of budget line that is
MRS = P;/Pz 50 cxy/ dx;= Py/ Py (1)
prxitprx;=Wooo (2)
By solving (1) and (2) we have

c W d W
XI(W’p)z(,'*{-dp—’ xz(;V:P)':c_!._d p -
1 2

Pemand set-valued map:

The consumer’s demand is l‘a set-valued -map x(p, ) ( see ch 3 for more on set
valued maps) that assigns the ‘set of preferred bonsumption bundles for each price-
wealth })air (. W). 1f x (p, W) is single valued, we refer to it as a demand fu-zm-;:tion.
1.9Definition:The Walrasian demand set valued map x (p, %) satisfies Walras’s law if
for every p>0 and W>0 we lave p.x =W forallx e x (p, W), that is, the consumer
fully expends his resources over his lifetime.

The rule that assigns | the set of optimal consumption vectors in the UMP to
each price-wealth situation (p, #)>0 is denoted by x (p, W) e Ri and is known as the

Walrasian demand set-valued map.
L.10"efinition:The Indirect Utility Function ,for each (p, 1¥)>0, the utility, value of
the UMP is denoted v (p, ) eR. Itis equal to u (x') for any x~ e‘r(p ).
1.4 Production:

A production vector is a vector y=(yy,...,y;) eR" that describes the net output of L
commodities from a production precess. The positive numbers denote the outputs and

the n -ative numbers denotes the inputs. Some element of a production vector may be



zero. The prodnctior set, is the set ofall production vector that constitute feasible
plans for the firm, and is denoted by ¥ < R".
The following are some remarks about production sets:
1- ¥ is nonempty: The firm has something, it can plan to do.
2- Yis closed: The set include its boundary, if " —y and y” €Y'then y eV,
3- Possibility of inaction: This property says that 0 Y.
4- Free disposal: If a total produciion has all its outputs null,. Y-R%, V.
5- Irrever_sibility: Suppose that ye¥ and y=0. Then the irreversibility says that —y Y.
6- Cdnv-cxity: This is one of the fundamental assur.nption of microeconomjps. It
postulates that the production set Y is coavex. That is, if y,y’ e¥ and cte [0,1] then
ay + (l-aly’ €Y.
‘Proﬁt Maximization
Let there is a vector of prices quoted for the L goods denoted by P=(p' ... pL) >
0, and that there prices are independent of the prodﬁétion plans of the firm. The ﬁrﬁ’s
objective is to maximize its profit, We alwavs assume that the firm’s production set ¥’
satisfies the property of nonemptiness, closeness and free disposal.

The profit Maximization Problem states that : Given a price vector p>0 and

L
production vector y<R", the profit generated by implementing yisp.y = Zp‘ Y, .

=]
Given the technological constrains represented by its production set Y, the firm’s

profit maximization problem (PMP) is then

Max py suchthatyeY.

ye¥
Given a production set ¥, the firm’s profit function 7 (P) associates to every P the

amount mF) = Max {py:yel}, the value of the solution to the PMP. We defined the
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firm’s supply set-valued map at p, denoted y (P), as the set of profit-maximizing
vector 5 (P) ={yeX: py = mP)}. The optimizing vector y (P} lies at the point in ¥
associated with the highest level of profit.

More properties of 2{P): P—R and s (P): P—Y will appear inch 4 .
1.5 Pure Exchange: The Edgeworth Box:

A pure exchange economy: is an economy in which there are no production
opportunities. The economic agents of such an economy are consumers who possess
initial endowments of commodities. Economic activiéy consists of trading and

consumption. The two consumers are assumed to act as price takers.

Assume that there are two consumers, indexed by i=1,2 and two commoditics,
indexed by /=1,2, Consumer i’s consumption vector is x,=(x;;, xz, that is, consumer
’s consumption of commodity / is x, the consumer ‘s consumption set is 92 and he

has preference relation > over consumption vector in this set. Each consumer iis

inifial]y endowed with amount .w;i > 0 of good . So consumer i’s endowment vector is
wi=(w,wz). The total endowment of good ! is - wy = wy '_|'_7W[2. An alchation xeR.
is an assignment‘bf nonnegative consumption vector to each consumer x =(x;, xz) = (
(x11, X21), (X12, x23) ), we say that an allocation is feasible if xy, x2<w; ,/=1,2.asin
figure 1.1

1.11 Definition: A Walrasian equilibrium for an economy ¢ is an allocation x* and a

price system p*<R": such that.
i x* ex;(p,p.w foralli(i=1,.m

. % r . . . P m * _m
1. x;* is a redistribution i.e =
y Zl X Z Wi
i= i=l -
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A < w2 > 02
<« 4_._._A_> A
W 12 W22
A
Way A22
Yo+
X2t X
X1
v , v
01 Wi Wt v
Figur 1.1

1.6 Private Ownership

~ Assume that an economy 1s composed of/ >0 consumers and J>0 firms in
which there 7 are L commodities, each consumer i_zl,...,f is Hcharacterized by a
coﬁsumption set X;cR* and a preference felatiﬁn >1idefined on.X;, these p-eferences
relations are rational. Zach firm j=1,...,J is characte;ized by a production set, t; cR-

We assume that every Y} is nonempty and closed. The initial resources of commodities

in the economy, the economy’s endowments are given by a rector w= ( wy,..., wg)

& R, these are summarized by ({(X, =}y, {1}}‘}:; , W

1.12 Definition: An allocation(x, y) = ({xy,...,x1 ),( ys,...,y,) is a specification of
a consumption vector x; € X; for each consumer i =J,... / and a production vector y; &

Y; for each firmj =1,..J Anallocation (x, y) is attainable if Zix ;= w;+ 3 ¥ for

cach commodity 1. that is, if Z; x; =

We denote the set of attainable allocation by

A-{xy)eXy,... XixVix.x ¥, Zx

= w+ L1 R

W2
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Consumers trade in the market to maximize their well being and firms produce
and trade to maximize profit..The weal‘h of the consumers is derived form individual
endowments of commodities and from ownership shares to the profit ¢ the firms, a
share 8; e{0,1] of the profit of firm j such that %; 8;=1.

1.13 Definition : Given a private ownership economy specified by ({(X; > J}'-1,

{yJ}JF;, {f (w8 ..., 9,1)}’;21) an allocation (x*y*) and a price vector p=(ps,...pr)
constitute a Walrasian (or competitive ) equilibrium if:
i- for every j,y;* maximizes profits in ¥j, that is,
DYy Sé.y,-* for ally; €¥;
ii- for every i, x;* is maximal for > in the budget set
B={xie X pxi <pw;+ %8, Py*}

( Sayiflg that xi is maximal for »; in the set B” means that x; is a preference-
maxin »'ing choice for ~onsumer i in the set B, that is, x;eB and x; >, x; for all x§
eB).
ili- Lx* = w+ Gy*

condition (i) says that at a Walrasian equiluibrium, ﬁrms are maximizing their
profit given the equilibrium prices P. (ii) ;says that the consumers are maximizing their
well-being given, first the equilibrium prices and second the wealth derived from their
holdings the commodities and from there shares of profit (iii) says the market must
clear at an equilibrium, that is, all consumers,and firms must be labeled to achieve
their desire trade at the going market prices.
Price Equilibrium with Transfers:We have a situation where a social planner is able to
carry out redistribution of wealth, and where society’s aggregate wealth can therefore

be redistributed a money ccusumers in any desired manner.
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1.14 Deﬁnition:Given an economy specified by ({(X; >}, {};,}Jj-= n W an
allocation (x*y* and a price vector P=(P,... P;) constitute a price equilibrium with
tranfere if there is an assignment of wealth level (Wy,..., Iy with 5, W, =p. w + Py
p-y™* such that:
i For everj,);* maximizes profits in ¥, that is,
Py <p.y*for allyj‘.e)j-
ii- For every 1 x;* is maximal for », in the budget set
B={x; e Xi: px; <p.W;}
iii-  Lx*= w+ Sy¥ .
The \Valfasian equilibrium is a especial case of an equilibrium with transfer.
Quasi equilibrium is identical to price equilibrium except that the preference
7mazgjmization conditions that any thing preferred to x;* must cost than wi (i.e “ifx; >,
x* then p.x; > wy) is replaced by the weaker requirement that anything preferred to x,;*
cannot cost less than w; (i.e “ifx; >, x,*henp.x; = w) .
1.15 Definition: Given =n economy specified by ( {x;, = e, {yj—}ﬂ#, v@ an
cllocatio:: (A *y* and a price vector P=(Py,... Pp) 0.
Constitute a price quasi equilibrium with transfers if there is an assignmer:! of
wealth levels(W),... W) with 5; W;* = p, 1;+2} Py such that:
i- For everyj, y;* maximizes profits in Y}, that is,
py; <py*forally; €¥;
fi- For every i, ifx; »x;* then p.x >w;

iii-  Xxi*= w+X py*



So Any price equilibrium with transfers is a price quisiequilibrium with
transfers
1.16 Proposition!(12)page 555]:

Assume that X; is coxﬁ*ex and 3=, is continuous. Sup; Jse also that the

consumption vector x;* Xj, the price vector p and the wealth w; are such that x; >, x;*
implies p.x; 21V, Then if there is a consumption vector x4 &X; such that p.x% < I¥; [a
cheaper consumption for (p, 77))] it follows that x; > ; x;* implies p.x; > W:
Proof: supposec that, contrary to the assertion of the proposition, there is an x; >, ;x;*
with p.x; = I, By the cheaper consumpt_ion assumption, there exists an x; X such
that p.x7 <J¥;. Then forall a€[0,1) we have ax; + (I-a) x? e X;and . (ax; + (I-a)
x i<W, But if ais closed enough to 1 the continuity of > ; implies than @ x;+ (I-&) x;
>, x;* which cons_‘;itutes a contradiction- because we have then found consumption
bundle that is preferred to x}-* and costs less fhan Wi /
1.17 pr.opositioﬁ[(IZ)page 555}

suppose that for everyi X is convex, 0eX, and » is continu~us. Then any
price quasiequilibrium with transfers that has(i; ... %) >0 is price equilibrium with
transferees.

Proof: let x; »; x;* then p.x; > W.. Because 0&X; let 0=x’ then x/ eX; such that pxi<

Wisince p.x % =0 so by previous proposition if x; > x;* then p.x; > W,



Chapter 2
Convexity

Introduction: A large part of economy especially in microeconomic analysis, which
assumes optimizing behavior on the part of economic agents, relies on theorems dealing
with a particular type of sets, namely convex sets. : _ 5 6 & 7 0 7

As we saw in chapter one, we assume that the preferéﬁce relation is convex. This
assumption corresponds with the idea of diminishing marginal rate of substitutionl (in
which the indifferenc. curves have the. usual 9oﬁ§ex to the origin shapes). The cbnvexity
(not strict convexity) includes the possibility o% the flat segment on the indifference curves
that admits perfect subsfitutability between goods (this opens the possibility of set —valued
rather than | point —valued aeman&). The c‘onvexity on préference can’t hold if the
consumption set X, is nol convex. Conver preference relution and the convexity of
consumpiion and production set are among the suffi~ient conditions for proving the
existence of Walrasian equilibrium. So we will use several theorems related to convexity in
our proof, we define the budget set as: Bp .= {x € X: Px =W}, whicliis called t_he
budget hyperplane. We will use several theorems related to hyperplane in explaining d.f
the relationship between the Walrasian equilibrium and Welfare economy.
2.1 Convex sets: Geometrically, a set is convex if the line segment connecting any two
points in the set lies entirely in the set. More formally, we have the following.
2.1 Definition: Ifx, y € E where E denotes a vector space over R, the line segment frém x
to y is the set of all vectors of the form cx+(/-a@)y where 0 <a < I. Such a vector is called

an internal point of the segment if 0< & <. A subset 4 of £ is said to be convex, if given

x, y € 4 ,all points of the form a x +(I-e)y with 0 <o <[ are in 4
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s

The empty subset and every singleton {x}, x €E are convex.

2.2 Propositiun[ (10): pagel8] Let N and M be convex sets in a vector space then:
(D:aN={x:x=an, n € N} is convex for any scalar c.

(11):N+M is convex.

For proof see[ (10) : page 18]

2.3Proposition  [(10):pagel8] Let J be an arbitrary collection of convex sets .Then ﬂN
Nel

is convex.

For proof'see[ (10} : page 18]

2.4 Definition: Let S be any subset of E, there exist convex superssts of S, the intersection
of the family of all convex supersets of S. is a convex set, called the convex hull of S and

denoted coS.

The convex hull of §'is characterizec; by the properties (i) S < co S (ii) co S is convex (iii)
ScA and A4 is convex, then co S A . Supset 4 of E is convex ifand only 1s if cod = 4

2.5 Theorem [ (3):page99] Let £ and F be vector spaces over R and let u: E—» Fbe a
linear mapping

(DIf 4 is a convex subset of E, then u (4) is a convex subset of F°

(iDIf B is a convex subset of F, then u”'(B) is a convex subset of £

For proof'see [ (3) : page 99]

2.6 Theorem (3):page 100] The Cartesian product of a family of nonempty sets is convex
if and only if each factor is convex. More precisely, let (E);<; be a family of Qector spaces
over R and let E= Il;E; be the product vector space. For each i €], let 4; be a nonempty

subset of E; and let A= IT;z4: Then 4 convex if and only if every Ai is convex.

For proofsee [ (3) : page 100 ]
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2.7 Definition: Let £ be a TVS over R and let S be any subset of E. there exist a closed
convex supersets of §, whose intersection of the family.of all closed convex supersets of §
is itself a closed convex superset of S called the closed convex hull of S.

2.8 Theorem { (16):pagel05] If £isa TVS over R and if 4 is a convex subset of £, then

clA4 is also convex, and so is (intd).

For proof see [ (14): page 105 ]

2.9 Definition: A vector of the form Z;‘ Aixy where Zf Ay = 1 and 0<A, for all £ is

called a convex combination.

2.10 Theorem [(2):page3] If A isaconvexsubset of E and ifx;,...,x, €4 then 4 contain

€VEry convex cc rnbination ofx; ....xn

For proof see [ (2) page 3 ]

2.11 Lemma [(16)page73] If x lies in the convex hull of aset E CR” then x is iri__ﬁhe
convex hull of some subset of £ that contains at most 7+ / points;: 7 _7

For proof see | (16) page 7> ] |

2.12 Theorem (Caratheodary’s theorem) [(2‘:paged4] IfX isa nonempty subset of R”

then every x ecoX can be expressed as convex combination of at most n+/ points 0f X

For proof see [ (2) page 4 ]

2.13 Definition : A subset 4 of F is called a cone with vertex 0, if adc 4 whenever o>0.
More generally a cone with vertex x may be defined as a set of the form x+4, where 4 isa
cone with vertex 0 (cone here means cone with vertex ().

2.14 Theorem [(3):pagel09] A subset 4 of E is a convex cone if and only if (i) adcA for
all @>0 and (i) 4 +4c 4.
For proof see [(3) page 109 ]

2.2  Hyperplane:
As we have seen , the budget hyperplane plays an essential role in the choice of

the consumer, and the hyperplane and the relative theorems .It will be used in the proof of
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the second Welfare theorem which explains the relationship between the Walrasian
equilibrium and Welfare economy.

2.15 Definition : A linear suispace M of E is said to be maximal if ())M= E, and (ii) if V is
a linc .r subspace »f £ such that MV, then either N=M or N=F
2.16 Definition: A linear variety in £ is a set ¥ of the form V= x+N where x eE and Nis a
lincar subspace of E. thus a linear varicty is a transléte of some linear subspace.

2.17 Definition: Ahyperplanc in E is a linear variety H that is maximal in the sense that (i)
H=E (ii) if V'is a linear variety such that H= Vthen either V'=H or V=E,.

2.18 Theorem[ (3):page81] Let // be a linear variety in E. the following condition on H
are equivalent. |
(a) H is a hyperplane
(b)H is a translate of some maximal linear subspace
(c) There exist a nonzero linéar form fand a scalar A such that H = {x: f(x) =4}

For pronf see [(3j page 81]

(Scparation Theorem): The Hahn-Banach theorem is so fundamental for analysis, it is
present in several formuiations. In its classical version it concerns to the extension of }inear
form. Another approach to it exploits the connection between linear forms and
hyperplanes, in which we are interest.

2.19 Theorem (3) :pagell2] Let £ | be a TVS over R let 4 be nonempty open convex
subset E, and let M be a linear variety in £ such that M= ¢ Then there exist a closed
hyerplane /7 in E such that McH and H 4= ¢

For proofsee [ (3) page 112 ]

2.20 Definition: A subset Sofa real vector space E is called a half- space if therz exist a
nonzero linear form g of £ and a real number a such that § may be represented in one of
the following forms:

(D S1 = {x: gx)<a} .(i))S2= { x: gx)> &} .(iiD)Ss = { x: gle)< a.(iv)Ss = { x: g(x)> ¢}
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Let H be a hyperplane determined by g and o that is

H={x: g(x)= &}

81,57 are called the closed half—spaces, S3 and S, the open half spaces determined by H.
2.21 Definition: Let 4 be a subset of E. we say that A lies in one side of H if either 45,
or 4SSy A lies strictly in one side of H if either ASS; or ASS; . Let A4, B be subsets of H,
we. say that f separates 4 and B if either 4S; and BS,0r A= S; and BSS,), we say that H
separates 4 and B strictly if either 4S5 and B<S; or AcS; and B &5;

2.22 Theorem [(3) :pagel23] Let H be a hyperplane in a real vector space E and let £ be a
convex subset of E. Then 4 lies strictly to one side of H if and only if AnH=¢,

For proofse~ [ (3) page 1.23 ]

Since the budget line ithe hypérplane) separation the consumption set into two
sets: the upper setin which the consumer’s wealth does not help him to. buy from it , and
lower set |, w-hich is“achievabl‘e for him. These two sets are considered ,as we have seen R
half spaces.
2.23Theorem (3):agel24] Let £ be a TVS let 4 and B be nonempty convex su.bset of £
such that A~B=¢ and suppose 4 is open. Then (1) there exists a closed hyperpalne H
separating A4 and B (2) 4 lies strictly in one side of H. (3) if B is also open then it separaies
A and B strictly

For proof see [ (3) page 124 ]



Chapter Three

The : ot valued map:

We have seen , when the upper contour set is strictly convex , we deal with
point to point mapping (function) , but if it is convex , there will be a flat area is
tangential with the budget line .This make possible for us to deal with the set valued maps
that  assign point to set . So the demand will not be a function, and the consumer’s
demand will be a subset of A" for a given pri-ce . In this chapter , we will deal with two
types qf set valued maps : upper and lower semicontiauous set valued ( correspondence ).
We will also deduce the proof for the fixed point theorem of set valued maps from
Brower’s fixed point theorem of function , while making use of several thcorems and
lemmas.

A vectorx E‘A is a fixed point of f (.) if x = f (x). {or in the set valued map case if
x € £ (x)]. That is, the vector is mzjapped into iiself and so it remains fixed.
Therefore , we shall first study the set-valued map and the lower and upper -
semicontinuous set-valued map , and prove some related theorems .

The central result we hope to conclude is Kakutani’s ﬁxed point theorem which
states: Let Cbe arn.nempty compact and convex subset of R” | and F be a convex-valued
set valued map of C into C which has a closed graph. Then rthere exis'ts a fixed point x” for
Fie x" e F(x").

3.1 Set-Valued Maps:

We observed at several points in economics, for example in considering demand
rclations, that the actions taken by an individual are determined by the values of those
variables which constitute his economic system . ifthese values uniquely determine the

action to be taken, then are ‘point —to- point’ relations, which is known as a function.
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However, If these values are nct uniquely determined the z -ion to be taken, then are
‘point —to- set’ relation or correspondence.

3.1 Definition:

Let X and ¥ be two subsets of R”. A set-valued map F from X'to ¥, is a map that

associates with any x .. a subset F'(x) of Y. called the image of F at x.

For example, let4 = B = R, we might consider ¢fx) = {y: x-1 <y <x +1}. ¢ (0) =

[-1,1].
We say that a set valued map F is proper if there exists at least an element x .Y
such that F (x) # ¢ The domain of F'is Dom (F) = {x € X | F (¢) = 4}.
A set valued map F'is characterized by its graph, the subset of X x Y defined by
Graph (F) = {(=3) | y €F (x)}
The domain of F is the projection on X of Graph (F) .
The image of F, the subset of Y is defined by -

Im (F) = UX F(x) = U F

xedom(F)
is the projection on Y of Graph (F).
We shall say that a set-valued map F from X to Y is strict if Dom (F) = X .
When K < X isa nonempty subset and when F is a strict set-valued map from K to

Y, we will extend it to the set valued map Fx from X to ¥ is defined by

Fx (x) ={ F(x) whenx ek }
@ when x gK
The domain ( Dom (Fy)) is K .
Let (L) be a property of a subset ( for instance ,closed , convex ,compact ,etc ). As a

general rule , we shall say that a set — valued map F satisfies the property (L) if the graph
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of F satisfie,; this property . For example , we shall speak of closed , convex , compact map
which is a set — valued map whose graph is closed, convex , compact .
When* denotes, an” operation on the subsets ,we use the s me notation for
the operation on set — valued maps which is defined by
Fr*Fox—P»F (x) *F; (x)

We defined in this way £ N Fg,‘F; UF;, F\Fand F; + F;

Similarly, if e is a map from X'to ¥ we define
(F) :x—Fax(F(x)

Forinstance F = cl (F): x—» F (%) |

| Int (F): x—p  int (F(x))

o () x — co(F(9) .

| _c_o (F)..' x —p co(F (x)) an&?ﬁso on.

We have th» féllbwing 'elefheﬁfary properties:
i PK UKy =F&) UF(Ky) |

ii.  F(K () KJCFK) [} F(K)

iii. FE\K)SOFX\F(K)
iv. ifK;cKithen F(K;) cF (K3
In the case of single-valued maps (functions) f from X to ¥, continuous functions
are characterized by two equivalent properties:
a. for any neighborhood N ¢, f(xg)) of f(xp) there exists a neighborhood N (xg) of xo such
that f(N (x¢)) N (f(xy)).
b. For any generalized sequence of elements x, converging to x, the sequence f(x,)
" converges to f(xp).
These two properties can be adapted to the case of stri.: se -valued map from Xto ¥,

and they become.
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a. For any neightorhood N ( F (xp)) of F (xy), there exists a neighborhood N (xg) of xo
such that F/ (N (xp)) <N (F (xy)).

b. For any generalized sequence of elements x, converging to x, and for any yp € F (x,)
there exists a sequence of elements y, € F (x,) that converges to yy .

In the case of set-valued maps, these two properties are no longer equivalent. We
call upper semicontinuous maps those that satisfy property (a), lower semi continuous
maps those that satisfy property (b) and continuous maps those which satisfy both
properties (a) and (b).

2.2 Upper semicontinuous set-valued map_s
3.2 Definition: s '

Let F be-a set-valued map from X to ¥, we say that F is upper semi continuous (in
short U.S.C) at x, e X, if for any neighborhood N (F (x,)) of F (x,), there exists a
‘neighborhood N (xo) of x, such that E
Forallx e N ;) F (x) <N (F (x,))
We say that /'is upper semicontinuous if F is upper semicontinuous at every point x & X,
3.3 Example:
Let ¢ (x) be defined as follows p:R~—» R
x-4sy<x-2 forx <0
o (x)= ‘ 4 <y<4 Jorx=10
x+25y<x+4 forx>0
@ (x) is upper semicontinus
3.4 Example:

Let ¢ (x) be defind much as in Example 3.2. but not u.s .c at 0, as follows

p:R—F 1.
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xd<y<x-2 forx <0
@(x)= 0 forx=10 e
x+2<y<x+4 forx>0 y

¢ (x)is not upper semicontinuous at x={
3.5 Theorem [(1): page 110]

Let F be an upper semicontinuous set-valued map from X to ¥ with closed valued.
Then F has closed gragh .
Proof: suppose: F is U.S.C with closed vaiued i.e. the image of F is closed therefore F (x)
is closed. Want to show that F is closed i.e. its graph is closed.
Now, let us consider a sequence of elements (x,, y,) of the graph of F that converges to
some (%)) € X x Y. since F is ﬁpper semi continuous, we can associate to any closed
neigﬁborhdod N (F(x)) an index n, guch that for all n > n,, ¥, € N (F(x)} . Since N (F(x)) is
closed y Belongs to every neighbcrhood of I (x).
3.6 Theorem [ (1): page 110 ]

Let F and G be two set-valued maps from X to Y such that for all x e X,

Fx) [l G (x) = We suppose that

L Fis upper semicontinuous at x,.
1. F (x,) is compact.
iii. G is closed.

Then the set-valued map F G:x —» F( G (x) is upper semi
P N

continuous at x,.

Proof: Let N: = N (F (x,) (1 G (xo) be an open neighborthood of F'(x,) [ G (xa)

we have to find a neighborhoad N (x,) such that forallx e N (x,), F (x) | G&cN
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Now. If F (x,) © N, since F is upper semi continuous ,we are done. If not, then we

have the subset.
K=Fx)\N
K is compact (since F'(x,) is compact). Let P: = graph of G.Which is closed .
For any y € K, we have y g G (x,). (since y € F (x,)\\N) and thus (x,,) & P. Since P is

closed, there exist open neighborhoods N, (x,) and N (y) such that P ﬂ (Ny (xo) XN (30)

=z

therefore

forall x & N, (x,) G () NG) =P (l)

Since K is compact. It can be covered by n neighborhoods N (3).i=1,2,...,n. The union

M:= U;."z v (vp) 12 neighboyhood of K and MUN is heighﬂborhood of F (x,). Since Fis

upper semicontinuous at x, , therc exists a neighborhood A, fx,)of x, such that for all
x €Ny (x0) Fx) cMUN ...}

We set N(x,):= ﬂ':l No (v)(%,), whenx e N (x,) satisfies properties (1) and (2).

i Fx) c MUN

il. G (x) N M=«
Therefore, F (x) N G (x) cNwhenx e N (x,)

3.7 Corollary [ (1):page 111]

Let & be a closed set-valued map from X to a compact set ¥. Then G is upper .semi
continuous.

Proof: we cantake F'to be defined by F (x}= ¥ forallx X, Since F (x,) is cor.npact, and

F is upper semi continuous since Y is compact, and G.is closed.(by 3.6)



So the set-valued map F* n G: x—p F (x) N G (x) = G {x) is upper semi

continuous.
3.8 Theorem [(9):page 190 ]

let F; be set-valued maps from X'to Y (i=1,...,n) and are upper semicontinuous at x,. Then

their union i.e the set-valued map G(x) x —p U?_IF (x) is upper semicontinuous
. - I

at x,.
proof: suppose F£; i1s upper scmi continuous at x, foralli=/,...,n so for any N, (F; (xo))
neighborhood of F; (x,) there exists N (x,) neighborhood of x, such that for all x e N; (x,).
Fi (5) € N (Fi(x2) |

N=N{ U:."'_IF_(xo))F,- be an open neighborhood of U?_IF_(xG) .We have to
- - =l =17
find a neighborhood N (x,) of x, such that for all x € N (x,) UP_{F.(x) cN.
. ’ = I

Let N =7U;ﬁ”:]j\fﬁ(,l?,-(x,,)) ,50 Nis a neighborhood of F; (x,) for every ii =1,..._,n. Want to

" ,
show that N (x;) = (1A (x.) is the required neighborhood of x,. Now fer any x & N (x,)
i=1; ’

L (x) © U‘;’_IN_(F,-(xO)),therefore, forallx e N (x,) , U;?_l Fi(x) N (Fifx,)).
=1"; =

In most applications the set-valued maps are compact-valued i.e F (x) is compact |

subset of Y for every x e X. In this case the general definition of upper semicontinuous in

terms of neighborhoods has an easy equivalent formulation in terms of sequences. In many

proofs it is easier to work with this alternative definition of upper semi continuous.

3.9 Theorem [ (9):190]

The compact-valued set-valued mayp F from X to Y is upper semi continuous at x, if
and only if for every sequence {x,}! converging to x, € X and every sequence {y,} with y, e

F (x,) there exists a converging subsequence of {y,} whose limit belong to F (x,).
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Proof: suppose that I is upper semi continuous at x,, we want first to show that the
sequence {y»} is bounded cad consequently possesses a convergent subse: :nce. Then we
si.ow that the limit of the subsequence belonrs to F (x,).

Since F (x,) is. compact, so it is closed and bounded. Since F (x,) is bounded, there
exists a bounded and open set B containing F (x,). By the definition of upper semi
continuous, there exists a neighborhood N (x,) of x, such that F (z) < B for every
z € N (x,). since the sequence {x,} converges to x,, there exists an integer n, such that x,, &
N (x,) for n > n, Consequently we havc 7 (x,) < B therefore y, e B for n >n, Thus, the
sequence is bounded. Hence, there exists a converging subsequence, say
{yng} Yy |
As§ume now that y & F (x,). So there exists a closed neighborhood - " F (x,) no* containing
tﬁe point y. For example the closed ball B, around the set F(x,) with radius € > 0, where
the number & is smaller than the distance of y to any point ¢ € F(x,) ie
Bi={v el inf,crpyd(zv) e
Since F' is upper semi continuous it follows that for n large enough we have F (xy) < B,
and consequently y, € B, Since the subsequence {y.,}converges to y and since B;1s by
assumption, closed it follows that the limit point v B, But this' 18a c0ntradicti6n since by
construction y ¢ B,

To prove the converse we assume that F is not upper semicontinuous at x,, i.e there
exists a neighborhood N (F (x,)) of F (x,) such that every neighborhood N (xo) of x,
contains a point z with F (z) czN (F' (x,)). By choosing the sequence of neighborhoods
Bim (xo) (n=1,...) ie the b s with center x, and radius //n, we therefore obtain a sequence
{xn} converging to x, and a sequence {y,} with y, & F (x,) and yn € N (F(xy). By
assumption we know that there exists a converging subsequence of {y,} whose limit

belongs- to F'(x,). But this is imposible since the set Y/N (F(x,)) is closed. Thus, y, e /N (F
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(x,) for every n implies that the limit yoint of no converging subsequence of {ya} will
belongs to N (F (x,)) and a boundary of F’ (x,) which is contained in N (F (x,)).

The following results, are immediate consequenc'esl of the definition of upper semi
continuous in terms of sequences. They show that set-theoretic operations like union,
product, sum and convex hull applied ‘point-wise’, preserve upper semicontinuous.

3.10 Proposition [(2):pagel 92}

Let the set-valued map F from X to Y be compact-valued and upper semi

continuous. Then, the image
| F(K) =Usa F (x)
Of a compact set X is compact.

Proof: let K be compact set, let N, (x;) be a neighborhood of x;, x;e K.

We have K U; =1 Ni (x;) but Kis compact, therefore we can fined finite cover of K such -
that K U?=1 N ; (xj) ,It-:t F be upper semi continuous-;, s0 for any N (F _(x;)) is

neighborhood of F (x;), there exists N; (x;) neighborhocd of x; such that for all x e N; (x))
F)cN(Fx)) Butforallx e K x € U;’ZINI_(x'I-), so we have :

F &) <UL, (FGp).

$o F(K) U?lei(xi) so F(K) C(.)mpact.

3.11 Proposition [(9):192]

Let F, (i=1,...,k) be set-valued mzps from X to ¥ be compact-valued and upper

semi continuous at x. Then the product set-valued map x.—» H?_, F (x) from X into
- I

the product space ¥x...xY is compact-valued and upper semi continuous at x.

Proof: We want to show that for every sequence {x,} converging to x a-d for every

sequenice y,= {y},, s y?, y vees yfg n=1,.. withy, € ﬂf.‘lei(xn) (i=1,...,k), there exists a
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converging subsequence whose limit belongs to the product F; (x) x...x Fy (x) .We know

that the sequence{y,, , ¥, , ..., ' jn=1... inthe product space converges to o'y
..., ¥} ifand only if every sequence { y: } n=1,... of it coordinates converges to y' .

Let {x.} be sequence converging to x in X, and {y.} =)} , 3!, ..., )} Jn=1,... with
vy & Fi(x).

We have for every {x,} converging to x and every sequence { ' } withy " e F; (x,) there
exists a converging subsequence of {j } whose limit belongs to F; (x) since F;for
i=1,...,K is compact-valued upper semicontinuess.

So (by 3.9) and so for the second ), 3 ,.., 3! Jn=I... there exits a converging
subsequence whose limit belongs to H}k:l Fi (x) i.ef yL ., 'yiq J— Ve

1’]1'.%:l Fi (x).since the finite pro'duct of compact sets is cbmp_act.

3.12 Proposition [{2):page 82]

Let F; be a set-valued map from X'into R, (i=1,.... k) he éompact-valued and upper

semi continuous at x, Then the sum set valued mar

x:—» Zf‘z 1 F ; (x) of X into R" is compact valued upper semi continuous at x.

Proof: Let the sequence (x,) be convergent to x and let y,, Z!‘_ 1 F (x,p) n=1,.. Thus the
- I

vector of y, is ofthe formy, = Zf:])’l where y: e F;(x;) (i=1,...). (By 3.9) since F;

is compact valued upper semi continuous there exists for every sequence

{ y Ju=t. (i=1..,K) a converging subsequence whose limit y' belongs to F; (x).
Va q
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cons:quently, there exists a converging subsequence { ynglg-s,. of {y,} such that the

coordinate sequence y,,’ converges to ¥, Hence lim 3y =y +... +yx e (0)+... +Fofx)
3.13 Proposition [(2): page 92]

Let I be aset-valued map from X into R” be upper semi continuous at x. Then the
convex hull set-valued map x: —3-co F (x) of X into R" is compact-valued ana upper semi

continuous at x.

Proof: Let the sequence {x,} be convergent to x and let y,, & co (F (x,)). By Caratheodory

every vector y, €R” can be written as a convex sum of m+ [ vector in F (x,) i.e
Yn = An - zn b 7z Where e F(xy), 55 + ..+ m =[and ;1 20(By3.8)

there exists for every i=0,...m a converging subsequence {;{ }.-;.. whose limit belongs

to F (x). the sequence {3 },.;. is bounded and therefore possesses a converging

subsequence. So there exists a conversing subsequence {y.,} of {y.} such that the

corresponding subsequences { ;! }q=1,. and {A.g},=/.  are convergent say,

2 z'and 7~ 2'so we have 1°+ 1'+... + A™=1 1°>0, Hence |

limyn; =A% +.. + 277" eco F (x)
3.3 Lower-Semi continuous Set-valued maps

3.14 Definition:

The set-valued map F from X into Yis said to be lower semi continuous at x,, in

short L.S.C if for every open set O in Y with F (x,) (1 O = & there exists a

n: -ghborhood N (x,} of x, such that
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Ffx) (| O=&forallx € Nix,)

Tiie set-valued map is called lower semi continuous if it is lower semt continuous .t

every point x € X.

Example 3.14: Let Fix) be defined as follows, £ R —p R. Fo~

( ™

x-4<y<x x70

F) =4 >

-35y<-1 x =0

\, | J

F (x) is lower semi confinuous?
Example: Let F (x) be E{eﬁn:_a_:_d as follows F:R—» R
\

x-4 _<y_<x -2 x<o

Fix)= < -4 <y<4 X=u s

N x+2<y<x+4 x>0 ~

Fix)isUSChutnotlS.Catx=0

As in the case of upper semi continuous, we will study some theorems related to

L.S.C.
3.15 Theorem [(1):pagel97]

Let F; be lower semt continuous from X into Y (i=1,...,n) at x,, Then their union

¢

x: P U:?_l F (x) is also lower semi continuous at x, .
- I
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Proof: Let F; be lower semi contiruous at x,. If ¥ be an open set in Y with

(U;1 1Fi (xo)) N V=Zwe want to find a neighborhood N (x,) of x, such that

-

WP Fi (xo) N V=Iforallx e Nix,)

since F; is lower semi continuous at x,, therefore for all V; open set with F; ﬂ Vi =

there exists V; {x,) of x, such that

Fi(x) N Vi =& for all x € Nj (x,)

7] .
Let V = U?ZIVI- with U?:l Fi (xo) N V #Z% Want to show that N (x,)= N N (x,)

i=1
is a neighborhood of x, which satisfies the conditior_l. Now for gll)f eN (x,),every F; (x)

such that F; (x,) N V = therefor for allx eN (x,), U?:l Fj (xoj N V =

The following result characterizes lower semicontinuous in terms of sequences. No
compactness assumption is needed here.
3.161heorem [(9):197]

The set-valued map F from X into Y ts lower semi continuous at x, if an. only if foi
every sequence f{x,} converging to x, and every y e F (x,) there exists a sequence {y,/
cnverging to y with y, € F (x,).
Le every pointy corresponding to x can be obtained as a limit of point y, corresponding to

points x, near to x.

Proof: Let F be lower semi continuous at x, and let {x,} be convergent to x, and let
y € F(x,). For every integer r, let B, () denote the ball with radius //r and center y. since I
1s lower semi co'itinuous at x, there exists for every r a neighborhood &, (x,) of x, such

that z e N, (%), so F (Z) (| B- ) =< Since {x,} converges to x, there is for every ran
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integer n, such that n >n, implies x, € N, (xo). we can assme that n,<n.; (r=1,2,...). We
now define the desired sequence {y,}. for n with n.< n <nu,.; choose V» 1n the set

F () (| Br (¥ This is possible since n2n, implies x, € N, (x,), which in turn .nplies

that F(x,) n Br () =

The sequence {y.}, constructed in this way, converges to y since with increasing n the
index r also increases and the ball B, () becomes smaller and smaller.

Conversely: assume that [7is not lower semi continuous ai x,,i.¢ there exists an open set V'

with V (1 £ (xo)= such that every neighborhood N (x,) ofx, contains a point z with
FE N V=2

Therefor, there exists a sequence {x,} converging to x, with F (x,) [} V=& Now let

y €V [ Ffx). By assumption, there exists a sequence {y,} ."converging to y with

Vn & Flx,). Gince Vs open and y "<V we have fur large enough that y, < V' thus

Fxo) [ V=& acontradiction.

3.17 Proposition [(9):198)

Let F; be set-valued maps from X into ¥ (i=1,2,..k) which are lower semi

continuous at X,. Then The product set-valued map x: —» H?:I Fj '(x) from X into

the product space ¥x...xY is lower semi continuous at x,.

Proof: Let the sequence {x,} converge to x,, and let y=0" yz,...,yk) € H?_IF(.r) .. we
want to find a sequence {y,} =( y,! + ¥ seees 3 ). Converging to y with Vn

€ My Foen)
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Since F; for i=1,...,kis lower semi contiryus every {x,} converging to x, and every )’ €

Fi (x,) there exists () convergag to y with y, € Fi ).

So (by 3.16) for every for every ('....)" e H?:]‘Ui {xo) there exists

(y,} . Y e yb Jeonverging to (..., ) with =(y3 DY e Y )E M Fi (o)

3.18 Proposition [(2):83]

Let F;be set-valued maps from X into R” (i=1,..., k) be lower semi continuous at X,.

Then the sum_set-valued map x: _,, Zf‘zl Fi(x) from X into R"is lower semi

continuous at x,,.

Prosf: Let the sequénce {xn} be convergent to x, and Let y e Z}k:l F(x,) we want to find
a Sequence {y»} converging to y with y,, & le‘:l F (x,). -

Since v e Z}k_—..] F (x,), for the vector of y of the form ;=y'+... % we have y' € F (x,).

(By 3.16) there exist for every )’ a sequence ./ (i= 1,....k} converging to 3' with
¥ e Fy (x).

Therefore y,= Zf:l y. andlimy, = y’ +... +yk =y
Since y & F; (x,) theny, Zf‘le(xn) .

So (by 3.16) ZleF(xn) is lower semi continuous.

3.19 Proposition [(2):83]
Let F be a set-valued map from X to R” be lower semi continuous at x,. Then the
convex hull set-valued mapx —3 co F (x) is lower semi continuous.

Proof: Let { x, }be a sequence that converge tox,. Lety eco F (x,), iey =2°)° +...+ A"

y" where y' € F (x,), A° >0 (i=0,...,n) and Zf:l A =1 .y caratheodory). Since F is lower
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semi continuous &° x, there exists a sequence { ¥, } converging to y with vy, €F(x,)
Hence y,= A° y-0 +..+ 4"y belongsto co F (x,) and converge to y.

Nute: The intersection of upper semi continzous set-valued maps is upper semi ;. ntinuous.
But the intersection of lower semi continuous set valued maps is, in general not lower semi
continuous.

Example: Let G:R —» R ,be defined as in example 3.14,and F(x) ={ y;xI1<y=x

x+1 } ,which is Ls.c atx=0,wehave F (x)isls.catx =0 ,but G (| #isnotL.S.Cat

x=0
3.20 Proposition [(2):page83] '

Let F be a set-valued map from_X into Y'if F'is lower sem. continuous at x,, Then
the closure set-valued map x— ¢l F (x)is lower semi continuous af X,

Proof: Suppose that F is lower semicontiunus at x,. Let ¥ be open set in ¥ w1th -

cll' (x,) ﬂ Va# we want to find N (xo) nexghborhood of x, such that for alI
x eN(x,), cl F (x) N V=&

Since ' (xo) ccl F(x,). Let V be an open set in ¥ such that ¢/ F (xo). () V=< Since ¥
is lower semi continuous at X5, therefo;e forall x eNix,) , clF (x) ﬂ Ve

3.4 Kakutani’s Fixed Point Theorem:
We now need an extension of the Brouwer’s Fixed-Point Theorem to the context of
the set-valued maps.
We will first state Brouwer’s fixed point theorem for functions.
For proof see Ekeland (1)
3.21 Bro awer’s fixed point theorem(1):

Let 4 be a nonempty compact and convex subset of R and S a continuous  pping

of 4 into 4.
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Then

There exists a fixed point x° for fi.e x° = £ (x°).
3.22 Kakutani’s fixed point t!ic;)rem(9):

Let 4 be a nonempty compact and convex subset of R” and F be a convex-valued
set-valued map of 4 into 4 which has a closed graph. Then
There exists a fixed point x° for F.iex’ € F (x°).
Note: A fixed point x” for a function say that x* = f (x°) while a fixed point x° of set valued
map saya that x° € F (x°).
Before we chow the way to generalize Brouwer’s result to that of kakutani, we will first

prove the folloiving Lemma.

3.23 Lemma [(9):page202] , -

Let F be a convex-valued set-valued map of X'into ¥ where Xand ¥ are compact

subsets of 2" Then_ for every €>0 there ékists a lowe: semi continuous and convex-valued
set-valued map F° of X into 1 such that Graph (F5) < Be (Graph (F)). Where Beis the ball

with radius €.

rroof: For every 8>o define the set-valued map F° by

x—p F () = col) F(z)
d(z,xy<8 ze X

Since x: — U F (2) is lower semi continuous let UF(z) | V=<

Hr<SzeX
Let Na(z) = {x:d (x, z) < &} be the regular neighborhood of z so, for every ¥ e
N,@UFE) (} V=& where Vis open set in 1).

Now (by 3.19) F’is lower semi continuous. We want to show that for & small enough we

have Graph (F’) < Be (Graph (F)).
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Assume on the contrary that there is an £2>0 such that for every 5>0. We have Graph (F°)

& Be (Graph (F)). Then there exists a sequence (Xn.¥s) iIn X x Ywithy, = EII'C:I A
y, where y e Fz,), 1 > z{.;l At =1 and d (zax,) < I/nsuch that the dist [

mXn), Graph (F)) > F for every n Since X and ¥ are assumed to be compact, we can

assume that 37 — 4’
Xn ——» X, .Vrl:. —)y,} v Zn e p ZTX, SOy = Zf_le 'y’ where ' >0,

vk A'=1and (x, V) e clGraph (F).

=l

since F(x) is convex, every combination in it, so {x, y) ‘e ¢l Graph (F) which contradicts
~ that dist [(x,y), Graph (F)]> & 0 for all n,
3.24 Lemma [(9):202] |

(Existence of a contiﬁuous selection). Let /" be a closed ard convex valued lower - -
semi continuous set valued map of X ir*o R”. Then there exists a continuous function f.
such that f(x) e F(x) for every x &X.
Proof: We want first to show 'that for every £>0 there exists a continuous function such
that

dist ff(x), F(x)]< ¢ foreveryx e X
For evéry ¥y € R" consider the set
Uy={xeX:distfy F(x)]< g

The sets U, are open, since the set-valued map F is lower semi continuous, and the set U,
is equal to

{xeX:F(x)} N ZeR:dEy <e}=d



42

The family {U,}ycrn covers the compact set X and therefore there is a finite sub-covering,

say
Uy = Uyl ey Ur = U;'r

Define the function a; (x) = dist (x, X/ U) (i=1,...,r).

i) =@/ 3 a® ,x X
Thus, f; (x}=0 if and onlyifx g U, 0 < (x} <1 and Z‘:{:l G (x)=1. (Since if x g U;

then «i (x} =o i.e dist=0) Now define f (x) = Z‘ll‘zr bi(x)yi x eX.

The functior;}r is continuous since B; (x) (i=1,...,r} are continuous by definition, f(x) is a
convex combination of those points y; (i=1,...,r) for which the corresponding 'set U; contain
poir;t X.

Now, by definition of the sets U; we _have yi € Be {F(x)}.and consequently f{x)} € Be
(F ).

We want to show that there exists a sequence ¢ € functions which converges uniformly to a
selection fof F.

Let f be a continuous function such that dist [f{x}), F(x)J< - co_nsider the set-valued -map

F>defind by

xx F& () ddfix} <y
The set valued map F> is convex-valued and lower semi continuous

Since {y.d (/i (x)} <!} isanopenset with F (x) (\ {y:d (f1 ()}< 12 j=

Since Fis L.8.C so forevery ¥ eN‘ﬂr) veven e (9)

But F(x) N A f1, (x)} <22 So let {y:d (y, fi, (x)} <1} be open set such that

Fifx) N {v/d (v, f1, (x}} < 1 }=2 Let N (x) (*) be neighborhood of x so for everyx’ e N

O EE) (N Gdefi @) <1}22
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By the first part of the proof there exists a continuous function f; such that dist [f2 (x), F>
(x) < I

By this way we define inductively the sequence {f.} given f},..., S we
defined f, as continuous function with property that dist [f, (x), Fa; (x)}< %" where the set

valued map F), is defined by F,(x)=F (x) N yd{ for, (0} < %™

The sequence defined in this way has the property [fu(x), F (x) < %" .and d (fa(x), for1, (X))

< 3/2"" for every x € X. Thus the sequence {f,} is converge f (x) forx € X.

Now

We just proved the existence of a continuous rfunction whose graph in 1 :ar the graph of a

convex-valued set-valued map. Therefore kékutahi’s theorem follows from Brou";ver’s

thcorcm, since we show that for evéry £>0 there exists a continuous functions

Jn: A —» A such that the graph of /', of the function fis contained in the ¢ ball around the

graph of I of the set-valued map F. since as we showed above that for évé?y xelX o
dist [ {xf ()}, Graph (F)] = infoccrapnrd [(xf (3}, 2] <

since f, 1s continuous so ifx, —» xand f; (x,) » ythen(x,y) € Graph F ie €F)

If x, is a fixed point of f, so every limit point of the séquence {xn} is a fixed point of I

Example: Let F:/0, 1] [0,1]

Let F(x)={1-x/2} for 0<x <0.5

F(0.5)=[0.25,0.75]

Fi)={x/2} for1 > x >05

Where F'is u.s.c and convex valued .The fixed point x=0.5



Chapter Feur
't he Existence of YWalrasian Equilibrium

We will show how mathematical concepts introduced in the previous chapters,
can be used to establish the existence of Walrasian equilibrium, in both pure exchange
economy and a private ownership economy , with finite number of agents and
commodities under sufficient conditions of the convexity of a preference relation and
consumption and production sets, and the boundness of attdmable set . The proof
consists of three steps: in the first we define an auxiliary economy, whose
consumption sets and production sets are bounded, and convex , the auxiliary )
economy has the same equilibrium | price as the original one .In the second step {éve

modify the fixed point theorem which is used in the third part to show the existence

of equilibrium in'the auxiliary é_cpr'_idmy. o
4.1Basic Result for Pure Exchange “conomy:

We begin by studying tiie case of a pure exchange economy. We take X; = R%,
and assume at the outset that each consumer’s preferences relation is continuous,
convex and monotone, locally nonsatiaied. We also assume that ?31 w2 0.

The vectorx; (p,p. w) —w eR", lists consumer #’s net or excess demand for
each good over the amount that he possesses in his endowment vector w;.

In fact, we will consider the price space as confined to strictly positive prices
to forbid the unbounded demand by consumer. If a good is desired and price is zero,
consumers would demand 'an unbounded large quantity of this good, if one agent
possess only this good his income will be zero.

Before we prove our main result, we will pave by the following theorems.



4.1 Theorem]|(9): page 151}

suppose that the rational preference relation>; is continuos:s monotonic,
locally non satiated defined on X; = R*+. Then the Walrasian demand set-valued map
xi (p,p.wy possesse the following properties:

I- The demand set x; (p,p.w;) is non-empty and compact for every p>o.

2- The demand set-valued mapx; (p,p.wy) 1shomogeneous of degree zero in prices
(Le for every p>0 and A>0 one has x; (p,p.wy) = xi (Ap, Ap.wy)
3- The demand set-valued map x; (p,p.w) is upper semicontinuous at every p>0.

4- If the preference relation »; is convex then the demand set x; (p,p.wy) is convex.
5- If the preference relation ti“_is strictly convex then x; (p,p.w) is a continuous

function in p.

6- For é’{'-;:r’y pfice vector p>o and x ex; (p,p.wi) ohe has p.x=p.w; (Walrras’ié;v)

Before the plroof c¢ftheorem 4.1 we will prove this' lumma:

4.2lemma [(9):page 43] iet 4 be acompact subset of X and let »-; be a continuous
transitive complete preference relation on X, then there exists a best element x" 4 (i.e
x” »:x for all .- =4) and the set A > of all best elements is compact.

proof: For every aed consider the ‘not worse than a’ set {xed:x>; a}=A, By the

continuity of the preference relation the set A, is closed. The set 4y of best elements

in 4 is then N, A = A»; ,as an intersection of closed sets, thus the set A>is a
aEA a .

closed , since A :is closed , subset of a compact set so A is compact . We now want

to show that it is non empty. For this, we observe that for any finite set { a,,...q; }of

points in A. since Ag= {xed: x »=i af, (i=1,...,q) then.na y . g1ndeed, by
=1 41q,
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transitivity of »; there is a best element in the finite set {ay,... a;}, say a,. But then.
Aoy © Aa for alli=l,..q .Hence N7_, 4,;= 4,, and this set is nonempty since a,
- i

€ A ., Now, since the intersection of any collection of closed subsets of a compact

set is nonempty if the intersection of every finite.part of the collection is nonempty.

Therefore 4 - N..A 1S nonempty.
2 acA a

Now the Proof of theorem 4.1:

1. If p'>é and w;>0 then the budget set B(p,w)={x ERL+.'p.x <Powlis ﬁonerﬁ‘pty,
bounded and closed, thus compact. Since the prefc.erence relation is continuc;m it
follows (by 4.2) that x; (p,p.w) is nonempty and compact since x; (p,p.wy) = {xeB
(p.w):xx:y for all yeB (p,w)).

2. For homogeneity, no'ée that for any scalar A>0.

{xeR" . [ Ap.x <A pwi={x ERE px Spwisoxi (p,p.wy) = xi (Ap, Ap.wy

3. To show thatx; (p, pw,) is upper semicontinuous, at p>0 (by 3.9) we have for _
every sequence {p,}—p and for every x.ex; (Dnpn wy) there is a converging
subsequence of {x,,} whose lirr-ljt belongs to x; (p,p.w) since p>0 we have p,>0 for
r large enough. Let -

¥ =inf {pa;, n> n}
so y>0. since x, B (pn, wy) we have
0<xpy <pw;i, 0<x, <p.w/y
Thus, the sequence {x,} is bounded and therefore there is a convergent subsequence

which we also write {x,}—>x", x"€B (p,w), since p,.x,. <p.w;and p,—p implies p.

x"<p.wi



Now we want to show thatx"ex; (p,p.w) ie for every yeB (p,wi) it follows
that x>, y. Inthe trivial case w;=0 and herice p-w;i=0 the vector 0 is the only element
in the budget set and thus the best element. Now, assume that y is such that p.y<p.w;,
then for n large enough we have p,.. y<p,w:. Since x,ex; (p,p.wy) it follows that x,>; y.
Yet the preference relation is continuous and {x,}— x7, it follows that x">; y. Thus we
have shown that every vector y which costs less than P.w; is not better than x". On the
other hand ,suppose y is such that p.y=p.wi. Since p.w;>0, then we can find a
sequence {x,} converging to y with p.x,<p.w;. Hence by the above discussion, x> x,

and by continuity of >; we obtain x"»-; v..

4 xppw)= [\ (xeBpw):xriz

zeB(p,wi)
. L f
By the definition of convex preference the set {xe R - x»; z}is convex.

Since the budget set s convex; it follows that the set xeB (p, w,-);' xg iz} is convex,
and consequeﬁtly the intersection of all these sets, that is the demand set x; (p,p.w}) is
itself convex.

5. Letx and y ex; (pp.w) with x=y, then x~y. Thus by t}'le assumption of strictly
convex we have 7 (x+y) >x, but since % (x+y) B @,v;f,-) this is a contradiction to
xexi (p,p.w).Therefore, the demand set-valued map is actually a function. But for
a function which is upper semi continuous means continuity.

6. Walras law follows from local nonsatiation. Ifp.x<p.wi for some xex; (p,p.w)

then there must exist another consumption bundle y sufficiently close to x with
both p.y<p.w; and y-x but this would contradict that x is optimal.

Note: all these properties hold for total demand

x(p.p.w) = Z x; (p.p.w) where m stands for consumers.By using Theorem (3.12).
=
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One of the most useful Theorems employed in mathematical economic i:'. the
maximum Theorem which deals with the case where.a continuous real-valued
function is being maximized over a compact set which varies continuously with some
parameter vector. The set of solutions is u.s.c with compact values, and the value of
the maximized function varies continuously with the parameters.

4.3 Theorem|(2):page §4]

(Maximum Theorem) Let XcR™, YcR* and let e:X—Y be a compact-valued set-
valued map, Let f:¥Y—R be a continuous function. Define the set-valued map u: X—>Y
by ux)={yea(x):y max fon afx)}, and the function g-X—R by g(x)=/)) for y@ﬁr).

If « is continuous at x then u is closed and us.c at xand g s a continuous at.x
Furthermore u is a compact-valued.

Proof. since «a is conipact-vaiued, u isnonempty and compact vaiued. anci since f'is
continuous in a ;:ompactiqet so it has amax.imi'zer It suffices to show that u is cIc;sgcf at
¥, for then u=am wand (by3.6), uis u.s.c at x. Let x#,—»x, Va2V, Yn €U(X,). We want
to show that yeu(x) and g(x,)—g (x). since «is u.c.c and corr"zpact-valued (by 2.9)
yeafx). suppose y £ ufx). Thenthere isaz eq (x) withf (z)’> v). since eris Ls.c at x
(by 3.16) there is a sequence {z,} such that z,—z and z, € (z,). Since z,—z, y,—y apd
J(z2)>f{y), the continuity of fimplies that eventually f{z,)>f{y,) contradicting y, & u(x,).

Now g(x,)=f (v ﬁf(y) =g(x), so g is a continuous at x.

4.4 Definition:

Let fbe areal-valued function defined on a convex set Xc=R". Then fis convex

L AEf (At (1-A)y) Aftx) + (1-2) f) for all xy X and all A such that o.<1.<].
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4.5 Theorem [(2): page 17]

Let / be a convex function defined on a convex set XcR” The set of points
defined as : V={xX:f{x)) <e xR}, is a convex set.
Proonf: Lexy eV and consider the point Ax + (1-3)y for A& [0.1] , since fis convex ;
Jx + (1-2)y) Aftx) + (I-2) f{y), butfix)<aand fiy)<a , so that for 0 <1 < I, we
have Affx) + (1-2) f(y) <Aa+ (I-4) a=«a,then f(Ax+ (1-1)y)<ex But this implies
that Ax+ (I-A)y &V for A€ [0.1] and so V'is convex
4.6 Definition: Letfbe a real valued function defined or; a convex set X’ cR". Then f
is concave iff(}bé + (I-A)yzzlf(x). +(1-4) f(y) forallx,y eXand all 1 €]0,1].

Now we want to show that V={x€&X: f{x) 2o, aeR} is convex .
' Let xy eV since fisa gom;a\}e SO +HI-y) 23160 + (I-Ny 2 da + (I-Da
= asof(Ax+ (1-2)y) 2afor 0<i<1 so Vis convex.
4.2 the Existenre of Walrasian Eq-xilibriuin for Pure Exchange:

We  have the following primitive concepts of this model, the commodity space
X= Rf » a set m of agents each has the following characteristics of consumption set

. alw L
X=RL+, preference »; and initial endowment , weX=R. .

From these we derive two concepts .
- The budget set B(p,w) = { xeR"+: px <p.w}
2-  The demand set x(p,w) ={xeB (p,w):x>;y for‘all yeB (p,w))}
The ~bove concepts lead us to introduce the idea of competitive or Walrasian
equilibrium. Recall that the principle is that there is a given price system. At these

prices individual chooses the vectors , that he most prefers in his budget set. If the



total demand equals the total supply of all goods at these prices , then this is said to
be a Walrasian equilibrium.

4.7 Definition: A Walrasian equilibrium for an economy € is an allocationx* and a

price system p*eR"+ such that.

i x*exi(p.p.w foralli(i=1,..m)

as x: N - - - nt R m
1. x;*is a redistribution for £ 1.e T . ¥

i=1 i

4.8 Definition: A set valued map Z(p) from P to Z where Z=X-{w} defined by Z(P) =

n _
n

2xi ( pw) - 7 Wi is called the excéss demand set valued map.

i=l i=1

Note first that i_fp eP and if >0, we have x; (Ip, tw)=x; (p,w) . Inother
wordé, if all prices of a price system in P are multiplicd by the same positive number, -
the sets of optimal actions of various agents are unchanged. ilence ipeP and Z (ip) =
Z ).

Note also thatx; (p,wy) which is chosen by the agents for a price system p in P
satisfies the wealth constraints: | |

pxi(pwy <p.w for every i.

n
Py

xiEw) Py wisop (5 -(u(pw)-w) <0
H = :

H

e PZ(@p)<0

4.9 Example: A price vector P °is an equilibrium price vector if Z(P9 <0, P90, and if
Zy(P9)<0 then P%=0, where Zis a vector of aggregate excess demands. Suppose the
aggregate excess demand function is continuous, homogeneous of degree zero [Z;

(Ap) =Zi(p) for all 2>0] and Walras’ Law holds [ 2:Z; (p) pe=0 for all p>0)].
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Then an equilibrium price vector exists, as we shall now show.

Since the excess demand function ( here the preference relation is strictly
convex )is homogencous we can restrict attention at price vector in the unit simplex
P= {peR": 5 pe=1px 20 for allk}. P is closed, bounded and convex. Now consider
the continuous mapping f:P—P defined by fi (p)= {pr + max [0, zz (p}]} / {1+ 2 max
[0.zx (p)]}, for all k. By Brouwer’s Theorem fhas a fixed point, there exists a p°eP
such that p%=f{P9, iep%={p%+ max [0z (p ]}/ {1+ max [0z (p9]; for all k.
so p% {2 max [0,zi/p 9]} = max [0z (p9]} forallk now Zize (P9 p% {2 max
[0.2:(p9]} = 2 zulp Imax [0.zx(p9]). From Walras Law % z(p 9. p%=0. Thus 5
zi(p 9 max [0,z¢(p 9]}=0.

Each terra in the sum is greater than or equal to zero, since each term is either
Oor [z(p9F. But is any term were strictly gre_a_teg than zero the equality could not
hold. Hence, we have zx(p 9 <0 for alrl k. finally, we need to show the if zi(p ‘3<0 then
P %=0. supnose z(p 9<0, From Walras’law % z,(p9. p°= i zi (p9. pi + zx (P9
p%=0. But z; (p9<0 and (p;9=20 for alli, so that 3.4 z; (g?p,- <0. Hence, we must
have z; (p9. p%=20, otherwisé Walras’Law would be viclated. But if z; (p 9<0 then

P %<0 But p%=>0Hence, p 5=0.

4.1ﬁTheorem [(9): page 162 |

Lete be an economy with aconvex, monotone preference relation and .X; =
RE,, % w>0. Then there exists p*eR" with p*>0such that 0 Z(p*).
Now we want to prove this Lemma.

4.11 Lemma [(9): page 162 |

Let X be a closed and convex subset of the nnit simplex P in R%. assume that

the set-valued map yof X into R” has the following propertics:



1. y is bounded, i.e there exists abounded set B in R such that y (p) <R for every
peX.
2 . the graph of y is closed.
3. y{p) is convex for every peX.
4. forevery peX and every zey (p) we have p.z<0.

Then there exist p*eX and z* < w(p*) such that p.z* <0 for every peX.

Proof: we can assume that the bounded sei B in (i) is convex. For every vector z&B,
we considf:i: the set u(z) of maximizers of p.z in X, i.e uz)={p eX:p.z=maxq€Xé.z}.
Since P is nonempty and corapact, u(z) is nonempty. Thé éet-valued map z—u(z) from
Bto Pisu.s.cand convex. H

Define a function g:P—R by ‘g {p)=z.p which is continuous and define the set-valued

map a.B—P by _ afz)=P. As a c;)nstant mapping o is a continuous set-valued map.
Moreover comp;;ct valuéd éince Pis cofnpacr. we have z'z(z)z{p EX‘p.z = maxy. x 4.z}
which car be expressed as u(z)={pea(z):p maximi;es g on az}}. Then by ;ile
maximum theorem we have u(z) u.s.c.

By theorem (4.5) u(x) is convex for either z=( an& the u(z) is P itself or z=0and then
u(z} is the intersection of P and ’{-Jz:v_p.z:n;'a.xq exq.z}. consider now the correspondence
- XxB—>XxB given by & (p,z) »u(z) X w(p). Then the set XxB is nonerhpty, compact
and convex since X and B have the same properties. The correspondence is & is w.s.c
as well as u and y (by 3.11). For all x= (p,z) eXxB the set &{p,z) is nonempty ,
convex, anc of closed gragh sinces? isu.s.c (by 3.5)as u(z) and w(p) have these
properties. Now all conditions of kakutati’s fixed point theorem satisfies. Therefore
there exists afixed point x*e@(x*) x* =(p*z* eL 9*z* Thus (p*z% e ufz* x

w(p* orp™ e uz*) and z*e tg(p*).
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From p®e u(z*) it foliows that p.z*<p*.z* for all peX. But fromz*ey - (p*) it follows

by assumption (iv) that p.z*<0 for every p eX.
Now

Z(p} is not defined if some pl=0, since demand becomes  infinite .Thus Z(p}
only satisfies the conditions of (4.1) if p>0. Therefore we take a sequence of X, say,
X, with p>0 and apply the (4.11) to each of the X, and show that 0 eZ (»*) where p*
is the limit of the sequence {p,*?.
Since Z is bourded below .We can see from Theorem (4.1)(3) that x, (p,p.w) is u.s.c
at every £>0. We have also Zyp)= x; (p.p.wy)- wi ,s0 Z(p)is us.c. (byd.1) x(p.p. 1in5
clds_ed ,;thus Z; (p) is closed ,now (by 3.5) Z (p) has closed graph.
Since x: (p,p, wyis convex (by4.1)sois Z; (p) . Now for every peB (p,w)}, since the
co‘ﬁsumer is confined to price and wealtil so p.xi { p,p-wy- pw: <0,
SopZ ) <0 .Now the conditions of Theorexﬁ 4.11 are sati>fied .
Proof the Theorem 4.10:

Consider the sequence of sets X, as follows Xo={pePp">1/m L=1,.,L}

(n1). Uan =P. Now the correspondence Z in bounded below , for each X, the

conditions of lemma 4.2.5 are satisfied , since for every zeZ(p) p.z<0. Thus, for eac}'l"
n there exist vectors p,*eX, and z,*<Z (p,*) such that p.z,*<0 for all peX,.

Now assume that the sequence {p.*} converges, say to p* Furthermore the
sequence {z,*} is bounded, since p.z,*<0for some arbitrary peX,, p>0,and Z in
bounded below. Assume without loss of generality, that {z,*} converges to z* But
p*>0 otherwise {z,*! would be unbounded, by the u.s.c of Z we obtain z*&Z(p*).

Thus, we have p*z*=0 (Walras’ Law). Since p.z*<0 for all p P we have z*<and so

p*.z*¥=0and p*>0 implies z*=0 Z(p*).
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4.3Basic Rcsult for Private Ownership Economy:

We consider an economy with a positive finite number L of
commodities, a positive finite number m of consumers and a positive finite number n
of producers. We denote by X; the consumption set of the i.th consumer (i=/,...,m), by

w; eR' his initial endowment vector and by > his prefercnce relation on X;, For all

xieXs, let Pr (x)={xeXi x »; x;} be the set of consumption space which are

m
preferred to x;. We lct w be the total initial endowment vector, that is, w= Y wethe
: i=1

technological possibilities of the j-th producer (=1, ...,n) are represented by a subset

R n
- ¥; of R’ We denote by Y the total production set of the economy, that is, Y= ¥ Y;
J J

J=1
For al (ij) e{l,....m} x {I,....n}, the real number &y denotes the share of the i-th

consumer in the profit of the j-th producer.

An economy € is a collection

e={(Xi =i Wi=t,.om (X j=t,.n (B it nj 1.}

Throughout the rest  of this chapter, we will study economies where
consumers own the resources and control the producers. A complete description of a
private ownership economy ¢ therefore consists of:

For each consumer, his consumption set Xj, his preference relation 7 his endowment
w; (satisfying Zw,:w), and his share . /6i,,... 8;) (satisfying @; >0and Z & =1
= =

for every j). for each producer, his production set ¥
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Consider a private own.rship ecor: - 1y £.Jt is assumed that the firm j chooses
a production space which maXkimizes its profit relative to p eP, that is, firm j chooses
yieY¥; which is a maximum for the set p Y. In general, this determines a point-set
mapping s, P—»Y; defined by s; (p)={y;.y;€t;,p. y=max pYy} s; is the supply set-valued -

map of firm j. for the economy as a whole, the aggregate supply set-valued map is
defind by S(p) = Z.Sj ().
A

A profit function for firmj is a mapping 7;:p—R defined by m(p)=max pY;
4.12 Proposition [{2):page 89]
| suppose that 7 () is the profit function of a production sét Yand s(: ) is the“
associated supply set-valued mab. Assume also that Yis closed and satisfies the free:-"‘
disposal property, }j is cc;mi;act f;_)r evury j and convex. Then.

1 () is'rho'mogfene-qus of degree one.

2 s() is homogeneous of degree zeiv.

3 s;()isus.cand m( )} is continuous for each .
4 S()isus.c.

4  s; () and s/} are convex sets.

Proof:

I np) = max {py:yel}
n(op) = max {ap.y:yelt} = amax {p.y:yel} a§o

an(p) = amax {p.y:;ye¥} = max {op.y:y €Y} nlop)

2 s@)~{ye¥py = m(p)}we have nlap) = an(p)

Then s(ep) = {ye¥-op.y = nfop)} =
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sp)=(yeYpy=np)}
so s(p)=s{a p)

3 Define the ﬁmct-i 'n g:Y—R by g(v) = p.y; which is continuous ,and defines the
set-valued map a-P—Y; by a(p)=1; As a constant mapping « which is cor.t\nuous
and set-valued map. Morcover, a is compact-valued, since Y; is a compact. I;irm
J’s supply set-valued map is 5; (p) ={Y;y;€Y, p.y = max pY;}, whichcanbe
expressed as S; (p)={y;€a(y):y; maximizes g on afp)}. Firm j’s profit function is Fis
(p)=max pY; which can be expressed as 7 (p)=g () for y;&S; (p). Then, from the
Maximum Theorem, we'have S;is a closed and w.s.c and 7 1s a continuos. Further

more $; is a compact valued.

4 By3.12) - | . ' 55&?67

5 (By4s)
we will now formally define the notions of Walrasian equilibrium and juasi-
equilibrium.

4.13 Definition:

A Walrasian equilibrium of the economye is an element (* y* p* of
I{m+n+{) *
R such that p* =0, and

i- foralli=/,...,m x;*is a greatest element of >; in

Bi={x"eXy p* x, <p*( g B,y + wy.

i=1
That is x;*  B;* and x;*>; x; for all x;eB,*

ii- forallj=1,..,n y* € Yjand for all y; €Y, p* y;* >p*y;



e m n
iii- 3y x*=3Yy y*+w
i=] i=|

A quasi-equilibrium of the economy is aneclement (x;* y*p¥ e R ™" such
that p*=0 which satisfies conditions (b) and (c) together with.
(g-a) forall i=/,...,m, x;* & B;* and for all x; € Pi(x;%)

. :
prxi2p*( Y Gy +w).
=

. (xuy) of € is attainable if x; &X; for every iy; €Y} for every g X, -
=1

L}

$ 3 =w. The set of attainable states of ¢ is denoted by A.
j=l

Given an economy g, a consumption x; for the i-th consumer is said to be
- attainable if there is an attainable state whose component corresponding to that

consumer is x. the set of his attainabic cousumption’s is called his attainable

consumption set, and denoted £, . An :ttainable production for the i-the producer -

and his attainable production set ;" are similarly defined. According to the definition

X (resp Y}.) is the projection of 4 on the space R containing X; (resp Y)A4=4(x.,);) e(

n n ’
[T, Xox@@"%): 3 x=(% y*+w).

i=1 i=l
The properties of ¥, and Y7 are immediately derived from those of 4. For example, if

4 is bounded, or compact or convex every ¥, and every Y7 is respectively bounded,

compact convex.

We set the following assumptions which describes the framework here.



Assumption]:

For all i=1,..,m X;is a closed, convex subset of R and »;on.X; which is

rational and closed [for x; € X;, the sets {x*; € Xiv x; > x;} is closed) and convex, and
locally nonstaiated on %, [for x; eX'ixie Pi(x)]
Assumption2:

Y 1s closed and convex, note that the individual production sets are not

assumed to be convex. 1} is closed for all /.

Assumption3:
A 1s bounded. The attainable set.

Assumptiond:

Survival assumption( for alli =/ ..,m ,.X; () ({fwi} + Z;l b, )=

It 1s satisfied if 0 €Y, foreviryj and w; &X; forall i so this implies that 4 is,
not empty. | |
4.4 The existence ofWalrasian Equilibirium For Pravite Ownership Economy:
4.14 Theorem {15:page 4i:

The economy ¢ has a quasi-equilibrium under assumption (1-4). Further more,
the quasi-equilibrium (x;*y;*p* is a Walras equilibrium if it satisfies the following

condition.

n
Infp*X;<p*('3 G,y*+w) foralli=i....m.
i=l

In chapter 1 we see when quasi-equilibrium is Walras equilibriura.



Proof:
.We want to build an auxiliary economy with bounded consumption and production

sets such that one can construct an equilibrium of the original economy from an

equilibrivm of this auxiliary economy. From assumption (4), for every i=1,...,m there

exists (%, Yy )e X x HH;; Y; such that X, =w; + 2, )",’_ Since X; ﬂ w)} +
7

S G Y)=

i=1
From assumption (3) A is bounded and we have X; and ¥;are closed so 4 is

closzd thus 4 is compact, therefore the sets ¥, and y, are b0un£ied for e\;cfy ij. Thus

we can choose a closed ball Bin R of center o and radius >0 sufficiently large so

that the féllowing_holds: X, cint B and x; EB for g?éry i=I....m x; X, but we have

n

n o _ _ o m ™
n=w Y O P by summingupcverionegets ¥ = X (X
ji ’ i=1 j=1 =l
n n _ . n _ -
3 ) t= ¥ (> 6 y Jtw. Butforallyj > 6 y eco Y; (Uee chapter 2).
F j:I I=l 1 le ’J'

n m n .
Consequently > (¥ 6 J“,‘ ) belongs to ¥ co Y,V since Yis convex by
=l Jj=l / j=1 ‘

n ;
assumption (2). Hence there exists ¢; € I_E__[ Yisuchthat "Z~; ( 3 6; ") ="3
j=1

' m m m
. Onegetsthat 3.  x- 3 of + % w; which implies that (x;, @) €4, so for
j=1 Jj=1 j=1

every i, x; € )?
i



“Y;e int B and J‘;‘ eB for every j=1,...,nand every i=1,....m
J

-

We define now an auxiliary economy & having the same commodity space, m
consun s, n producers as the initial economy €. The characteristics of the agents are

as follows. The consumption sets of the i-th consumer is X = X; ﬂ B and his

preferences are the restriction of »; to X®. His initial endowments are w;. The
production set of the j-th producer is ljB =( coty ﬂ B and the share of the i-th
consumer in the proof of the j-th producer is 8.

So the consumption sets and production set are bounded and closed so they are

compact. .

We want now to show the relation ship between equilibrium of ¢ and &

4.15 Proposition|15: pageS}:

Under the assumption; of (Thecrem 4.4.1) if (x*y*p* is a Walrar-r
equilibrium (resp a quasi-equilibrium) of € then it isa Valras equilibrium (resp a
quasi-equilibrium) of . |

Conversely if (x;*y,*%)* isa Walras equilibrium (r;:sp quasi-equilibrium) of
& then tlere exists a* € I_E_] Y; such that (v;* ;¥ p*) is a Walres equilibrium (resp
quasi-equilibrium) of €.

Proof: Let (x;*y*p* bea Walras equilibrium (resp quasi-equilibrium) ofe. Since it
satisfies condition (c) of Definition (4.14) for every ix;*e ¢, and for everyjy*ey,.

From the choice of the ball B, therefore x;*&X; ﬂ B so for every i, x;* eX? and for

: VB o : B B . .
every j,y*e¥,. since ixi*eX” and y*eY and wee then 3" x = w + "Y1y



Hence, for every i, condition (a) (resp (a-q) of Definition (4.13) is satisfied since
PPx®)= Pife®) [} . <P (x?).

So for all i=1,...,m, x;*is a greate. element of »; in

P n *
B = fueXi [} BPra<PY (5 Gy +whh
i=1 '

Now, we want to show that condition (b) is also satisfied . Since for all / and

n .
all e, P*y;pry* for all ye¥. Py %5 3 letj, e{l,...n}and y,, € ¥;,"
i=I

since Y. '

+ n
Is convex yj+ %40 y;*€Y and consequently p*. o+ 40 y) <P* 3 3 * Hence
i=]

P*yio <p typ*

Conversely, let (x; *3*p* be a Walras equilibrium (resp-quasi-equilibrium)

n
of £. Since Yisconvex, % y* €Y. Consequently there exists i*e I_Ewl Y; such
i=1

n m Lo
that ¥  y*= ¥ o™ hence ¥ x*= a;* + w. so condition (c¢) of

J=1 i=l1 i=l ;

RS

Definit'on (4.13) is satisfied
n n
a* Y] for every j, hence aj*eY}?, therefore p* ag*sp*y*But ¥ ag*= 3y y*
one has p* a;*=p*.y;* for every .

We want to show that condition (b) is satisfied. Let j & {J,...,m} and y, Y,

Since aj*e"Yjeint B therc exists £>0 such that (1-f) a* +ty;eco¥j[) B, theizfore p*,

(1-) a*+1y; p*y*=p. o5* so p*y; <p*oy*



Now condition (a) (resp (a-q) is satisfied. x;* is a greater elernent of > in B, *

. n
if and only if x;*eB/* and forallx;eP; (x;*) ,p* ( X Gy +w) <p*x. Letie
J=1

{1,....m } and x;€Pi(x;*) from assumption (1)} P; (x;*) is convex (let x,x;” €Pi (x;*) and
0<2<l. Assume without loss of generality that x;- = ; x, * Since & is convex so ti+(1-
t) xi'ri xi From the transitivity of >, x*%< x; i<t +(1-0)x;" 50 tx; +(1-0)x; " €P;

(xi*).and x* ecl P;i (x;*), therefor |, forall 0st<l, (I-1) x* +tx; €P; (x;*).Since x*;

H
€%, cint B for t small enough, (I-t) x;*+tx; eB sop*( ¥ 0O;y*+w)> (resp
: P

n n
(=) p* I-Yx*+1x) Sincep* x* p* (Y G;y*+w), sop* (.3

by y;*+ws)
J=1 J=1 :

< (resp s} p*x,

Now ihe excess der:and for « brivate ownership economy like the pure

’ n
exchange , the only diffeience is the x; (p.(p.wi+ ¥ 6, 7y (p)) and it< supply is
J=1

Z §; 07) and g Wi
J=1 =l

m H n m
SoZ(p)- % (xi(pp.w)+ Z] m@PH)OJ- ¥ -3 wi
i=l Jj= J=1 i=1

And Z = X-Y-{w).
4.16 Theorem[15: page §):

Let B be a closed ball of center 0 in R’ and let Z be an upper semicontinuous
sct-valued map from B to R with nonempty, convex, compact values such that.

For all p €68, Sup P.Z (p) <0(Walras’Law).



Then there exists p *eB such that 0 eZ(p*).

[let £ be an upper semicontinuous set valued map from B to B with nonempty,

convex, compact values. Let us consider the set-valued map Z defined by Z(x)=F(x) -

{x}. If xelB, then for all zeZ(x), there exists yeF(x) such that z=y-x, Therefore
x.z:x.y-x.x=x.y-r2. sinc'e yeF(x)cB, so Ix—y|_< [x]] yl | <7°. Thus x.zx.y-r'<0.So Z
satisfies the assumption of (4.4.3) which implies that there exists x*eB such that
OeZix*), 0eF(x*)-x* then x* is a fixed point of F].

Proof of Theorem (4.13) :Since Z is upper semicontinuous with compact-values and

B is compact, the set U,z Z(p) is compact by (3.5), and let it contained in some
nonempty, convex, compact st_lbsel K of R’ )

L.et; _u(z) (see proof lemma (4.11) b-t_:the set of p eB which maximize p.;:: on B. Since B
is nonempty compact, -u(z)-; is nonempty and the set-valued map u from KR’ s ws.c

(as s°(p) Now consider the set valued map F from Bxk to itself defined by.

F(p.z)=u(z)xZ(p). The set Bxk is nonempty, compact and convex since B and k have
the same properties-the set-valued map Fip,z) is u.s.c (by 3.1 i)

for all x=(p,z) eBxk, the set F(p,z) is nonembt;' and conv.x und closed graph (by 3.5)
as u(z) and Z(p) have the same properties. Now all the conditions of kakutani’s Fixed
point Theorem satisfied, so that F has a fixed point x* ,sox*<F| (x* .Thus x* =(p*z%)
eF (p*z%) = u(z*) x z(p*) or p*e u(z*) and zez(p*). ‘

From p*e u(z*) then for geB ¢q. z*<p*z*

From z "ez(p*) from Walras’Law p* z*<0



Assume first that p“eint B, then the linear mappir . g—yq.z* reaches its

maximum in the interior of B which implies that this mapping is constant in B i.e
z¥=(.

Assume that p*edB then forall g eB, g.z*<p* z* from Walras’Law, one has
p*.z*<0. hence for all, g.z*<0and p>o for som p then z*=0.

We now want to show that £ has a quasi-equilibrium by using the fact that the
excess demand set-valued map Z% satisfies the previous theorem.

For all j=1,..., let 7;°:B5R be the profit function and let s,° be the supply set
J j ) ply

valued map from B—B’. defined by.
=5 (p)=max {pyiy; € Y}
s P~y €X' :py <py:forally’ e ¥}

4.17 Lemma[l5: page 7]:  For every j=/,...,n the mapping ﬂ.f is continuous and

B . .
the set valued map ° is u.s.c with nonempty, convex, compact values.

Proof: (by Maximum Theorem and by (4.5) and by (4.12).

We now define the quasi-demand set-valued map. For every i=1,...m and for

every (p,W) & R'xR we define the following sets:
BY 0, W) = (xieXf:px; <W}
x" (W) = faeBl W) : for all x; ePP(x), pxi” > W),

4.18 Lemma[15: page 7]:  For every i=I,...,m, the set-valued map x;” is u.s.c with

nonempty, convex, compact values on the set {(p,w) eR'xR:BF (0, W) =
Proof: we want first to show that x;° has nonemgty values. Let (p, W) eR'x R such that

B® (0.W)=& For all x;e X7 , we denote by “pi (x)) the set {x;e ?(;B.'xi’ > ixil. We want
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to prove that (i caispw (Pi (x,-k) N BF (p,w) = Since the sets are closed for all x;
eB (. W) [BP (0, W)={x;eXl~ px;<W}), and th set BF (p,w) is compact (it is closed
and bour ted). It suffices to prove that for all finite subset (x%) kefl,..q3 Of B . W),

0 kett...qp (0i (x5 N BE (0. W)=&1
. Ifg=1, x;belongs to p, (x) N BE (0. W) for allx; eBE (p,W), if g=2, the fact

that >; is complete implies that either xi > xi or x/! > i xi’ Hence either N keft,2 (P

) N B @W) ="pi(")) (\BPW or N =z (p:() N B (p.W). Sothe

interaction is nonempty. In general case, by induction on q, that there exists ko e

{I...,g} such that for allkefl,..q} x =ix} So N repr.. (PIHY N 85 (0. W) =
(pi(x’) N BP (pW) thus the intersection is nonempty. We want to show that the
element x; e ,,,-Eg,-B@,m (pi (x) BN (p,W) belongs to x* (p,W). Indeed for all

xieB® (>, W). x;»;xibut pf (xu,;) = fxieXPox; i %), so pf ( x) BN W)=

We want now to show that x? is convex-valued Letx;, xi'e xf (o, W. Let x/
=tx; +(I-)x;? Since x, x;’c x¥ (p, W) and B (p, W) is convex then x;' ex? (p, W). Thus
ir x/ & x® (p,W) then there exists ae P, (xi) such that p.a,<.W (since x* (p, ) =
{xie x (pW): forallx,’ex” (x):p.x;'2W} (and we have x;' € x¥ (p,W)). Since = is
convex then either a; € ( pf’ (x) or e pf (x;) but together with p. ;< W this

contradicts the fact that x; and x;,’e %% (p, W).
We want to shown now that the graph of x? is closed, which implies that xfis

us.c and compact valued. Let (@, F"s,) eR' x Rx X be sequence converging to
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<

(. o x) suchthat B® (W)= and X ex’(p" ,W") for all n.x; is an element of B
(p,W¥) which is closed. Thus if x;& x? (p, W then there exists a; € p’ (%)) such that p.a

<oz From the closedness of »>;implies that a; & pf (x; (for v large enough. For v

large enough one has p”..o; < W" But this contradicts the fact the x"ex? (- /")

We now consider the excess demand set-valued map Z° from B to R’ defined

o= 3 W) - 5§ -

i=I J=1

n
Where W (p)=p.w+ X 6 5, (p) +1/m(r-p).
j=1

4.19 Lemamal15 : page 8]: . 7 ' - . .
The set valued map Z° is ws.c set valued map from B to R’ with nonempty,

convex compact valqes and satisfies [Walras’law] forallpe B sup Z° (p)so

Proof: since x? (p,W(p)) and S‘; (p) are convex and compaét and u.s.c so that Z” (p).
vie want {0 show that Z° (p) has nonempty values. It sufﬁces' to show that x;? (p.W(p))
hus nonempty values for all i which equivalent to B, P W(p) =& letpeB. Thon

B

. n
from the choice of the ball B, one has ﬂ.f (»)2p.y;. Hence W (p)=pw+ ¥ 6; o
f=

n i ’
(@) + Um(r=/p) 2pw+ T Gp y=px
j=1

- Since *x; X/, one obtains x; €B” (p, Wip))=&



H
We want to show that forall PeB, for all aeZ’(p), p.a<0, a= E Xi- X YW
i=1 J=1

n
with x,e B (p.pwit ¥ & 7rf (p)) for every i and y; est {p) for every j. From the
J=1

) m " n H
definition of x’ one hasp. 3 x< ¥ (pw+ X 6 ﬁf @) =pw+ X ;z-f
i=1 i=1 j=1 j=1

®)(% 6=1.

i=1

From he definition of the mapping 75_7‘ and the set-valued map Sﬁ [ ﬁf (p)=sup

(rybi€l’, S, @)=(ve Y py'pyforallye Yy J],s0p. 1 (p)=p.y, for every)

n
2 y) <0 Thus p.a<0..

- m . T n m
sop. ¥ xi<p.(wt X ysop ¥ xi—-p (w+
; ] =

i=1 : Jj=1 i=1
We now want to apply Theorem (4.14) to the set-valued map Z°. Consequently, there

exists p*eB such that 02 @)

That is (x*¥y;*p¥ e 11~ Xfx T, ¥/ such that
I-foralli=1,...m, x;j € 7 (P*W(p*)

2-for every j=1,..,ny* e 5% (p*).

-3 x*= X yr+w

from (i), (ii), (iii) (x;*),*p* is a quasi-equilibrium of €&, is a consequence of the two

following claims.
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Claim 1: Foralli=1,...,m, p*x* = W(p*)
Proof: from the definition of x| one has prx*<W (p*). Assume on the contrary that

prxi*<W (p*). Since x;*e ¥, cint Band »;is locally nonsatiated on ¥, there exists

x;ePi (x*) N~ B such that p*x,<W (p). This contradicts the fact the x,* ex’(p, W).

Claim2: |p{=r

m n
Proof: fromprevious claimone hasp* 3 x*=p*w+ ¥ ", (p)+1/m (r-|p)).
i=1 J=1

From the definition cf Jrf and Sf’ one has p* y,*= ﬁf (p*) for every j. From (iii) p*

m n n 5
L oxtsprwip*t ¥ oy*=prwt ¥ ()
1:1 _}'”—*1 J:I

Sor-|p¥

4.5 Equilibrium under unceﬁaiuty:
One can investigate tne new problem arising from taking into account
uncertainty with the general equilibrium model. The Stz ‘e — preference approach to

uncertainty was introduced by Arrow (1953)and Deboreu (1959) and itselfis taken

easily to Walrasian general equilibrium theory. In the general context when multiple
agents are endowed with siate — contingent commodities, while they can trade among
themselves . Thus “ a competitive equilibrium “ is a set of state — contihgent prices
and state — contingent commodities which satisfies all agents utility maximizing
choices and clean state ‘contingent markets.

In order to approach the idea of a general equilibrium with — contingent markets. It
might be useful to recall the individual optimum of a single agent. Letting S be the set
of states and assuming the existence oAf stote independent utility functions, then we

have the maximization problem.
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MQIU'-= ZJES Ts u(xs)

st

Zsesp,x:SZap,e:

Where «, is a state — contingent commeodity bundle, P; a set of state — contingent

prices . r, is the probability of even x, to occur . This yields the result that for
any commodity and two state 5, e §

s "(st)/P,, ST U* (Ifs)/pm
Which was termed the fundamental theorem of risk bearing.
All the standard results of Arrow — Debrue general equilibrium theory (i. ¢ the

~ existence of equilibrium, Pareto optimality, etc) apply without fail in this state

economy .
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Chapter 5
Welfare Properties of V/alrasian Equilibrium & Conclusion
Introduction
Since Adam smith’s evocation of an invisible hand, market equilibrium has

been supposed not only to clear markets , but also to achieve an efficient allocation of
resources. Therefore in this chapter, we will define a very general efficiency concept,
Pareto efficiency. Then we are going to state and prove the two major results relating to
market equilibrium and efﬁcient allocation, which are considered to be the most
important results _in welfare economics: The first and the second Fundaméritél Theorems
of welfare Economics. |
5.1 Definitions:
5.1 Déﬁﬁition: o S Lo | _‘ _

: An allocation x in the Edgeworth box is Parete optimal if there is no other

allocation x’in the Edgeworth box with x4 > x; for i=_1,2 and x} >, x; for some i.

0;
2\
4—
! {xi>ixy)
{x! =i Xy N
v >
X O]
x
Figure 5.1 Figure 5.2

figure 5.1 allocation x is Pareto optimal. In figure 5.2 is not Pareto optimal



71

Equilibrium and its basic Welfare properties:

Assume that an economy is composed of I >0 consumers and J>0 firms in which
there are L commodities, each consumer i=1,...,I is characterized by a consumption set .X;
< Rland a preference relation »-; defined on X these preferences are rational. Each firm
j=L,...,J is characterized by a production set, ¥, = R". We assume that every Yjis
nonempty and closed. The initial resources of commodities in the economy, the
cconomy’s endowments are given by a v_éctor w= ( wi,..., w) € RE, these are

summarized by ( {(X; > }r=s, (X} s=1, W).

5.2 Definition:

An allocation (x, y) = (x,v:... X1, ¥1,...,Y) is a specification of a consumption vector
xi € X for each consumer i =1,.../ and a production vector y; € ¥; for éach firmj =1,...J.
An allocation (x , y) is attainable if Zjx ;= wy+ 2; Yy for each commodity 1. that is, if
Lxi= w5y
We denote the set of attainable al—lc'fatir)n by
A={(x}) eXp,.. XixYix..x ¥, 5x =w+ 5 Y} R
5.3Definition:

A attainable allocation (x,)) is Pareto optimal if there is no other allocaton (x‘y )
€A that are Pareto dominates it, that is if there is no at;ainable allocation (x’y) such that
x’»ix;foraliiand x”>; x; for some 7.

An allocation is Pareto optimal if there is no waste :it is impossible to make any one

strictly better off without making other one worse off .
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5.2 Fundamenta] Theorems

We want now to show the relationship between the Pareto optimal and
equilibrium throughout two fundamental theorems ,the first one shows that if there is a
price equilibrium then there is a Pareto optimal and the second shows the conditions
under which the Pareto optimal is price equilibrium |
5.4 Proposition [(14):page 549]

(First fundamental Theorem of Welfare Economics) If preferences are locally
" nonsatiated and if (x*y*p) is a price equilibrium with tran%s.fers, then the allocation
(x*y*) is Pereto optimal. In particular, a;ly Walrasian equilibrium’allocation is Pareto
optimal. |
Proof: suppose that (x*y*p) is a price equilibrium with transfers and that the associated
wealth lé-vels";re (W1,... Wy and that 3; W,-=p.r w3 py*. ‘.: '
(ii) from (1.14) umplics that if x;- > x;* thcnp.x;‘) W, That is any thing that is strictly
preferred by consumer i to x;* must be un affé-dable to him. The significance of the local
nonsatiation condition for the purpose at hand is that with it (1.3) implies an additional
property. | —

If x; > x;* then P.x; >W;
That is, any thing that is at least as good as x;* is at best just affordable. Now

consider an allocation (x,y) that Pareto dominates (x*y*). That is, x; =; x;* for all i and x;
>; x;* for some i, But we have if x; = x;* then p.x; > W, for all 1 and we have if x; > ; x;*
then p.x; > W; for some i, so

Zipxi> 5 W=p w+ Spy*
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Moreever since y;* is profit maximizing for firm j at price vec: .r p, we have p. we have
pow+ Zipy*=2p. 1;—+,¢1}'~p_yj. Thus
Spxi>p wrEpy

So then (x,y) cannot be attainable, Indeed jx; = w + Z; y; implies 2 p.x; = p. w
+ % p.y; which contradict (*)
So we conclude that the equilibrium allocation (x* y*} must be Pareto optimal. At any
frasible allocation (x,y), thetotalc stof the consumption bundles (x;,...,x;) evaluated
at prices P, must be equal to the social wealth at those prices, p. w+ 3 p.y. More over,
because preferences are locally nonsatiated, if (x,)) Pareto dominates (x *y*) then the
total cost of consumption bundle (x/,....,xi)at price p and therefor the social wealth at
these prices must exceed the total cost of the equilibriurn consumption allgcation P (%
v =pw +2; p.y;* But by the profit maximization ther;: are no pf_oduptic;n attainéble
that attainabie v.lue of so—cial wealth at prices p that excess of p. w + Zp.yi*.

The second Fundamental Theorem of Welfare Ecoromics:

This theorem gives conditions under which a Pareto optimal allocation can be
supported as price equilibrium with transfers. We will first show *ﬁat if all prefer;:nces
and technologies are convex any Pareto optimal allocation can be achieved as a price
quasi equilibrium with transfe;.rs.

5.5 Proposition [(14):pageS552]
(Second Fundaméntal Theorem of welfare Economics) consider an economy

specified by (fX, >; Vi-s, it =1, w) and suppose that every Y is convex and every

preference relaticn > is convex [Le the set {x} €Xi: x7 > ; x;} is convex for every x; €X]]



and locally nonstiated. Then, for every pareto optimal allocation (x*y*) there is a price
vector P= (Py,... Pr)=0 such that (x*y* P; is a price quasiequilibrium with transfers.

X, A

Vi={xi eXi xi=ixi*}

".“'-v.. /; x*

Y+ { w

/ __________________ _ > x
2,;1“; \\ ’ |

Figure 5.3 _ )

Proof. we begin b)} deﬁuing, for every i, the set ¥; of consumption prescrred to x;*, that is
Vi={xi eXi xi=ixi*} €R". Then we deﬁne

V-5 Vi {2 xi eRlx; e V;,...x; eV} and

Y-25Y={Zy eR : yie Y.y eY,}.

We want to show that every set V7 is convex: Suppose that x; > ; x;* Take 0 < a <1. We

want to prove that e x; + (I-a) x5 >, x;*

Because preferences are complete, we can assume without loss of generality that x; = x.
Therefore by convexity of preferences, we have ax; + (I-a) xi =; xj which by

transitivity yields the desired conclusion a x; + (1-a) x'; > xi*.
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We want to show that ¥ and ¥ + { w} are convex. Since their sum of convex sets is

convex (see ch.2). Now want to show that ¥ ) ¥}+ 1;} )=/ If there is a vector in both

Vand inY+ { w}, then his will mean that with a given endcwments and technologies it
will be possible to produce an aggregate vector that can be used *o give every consumer i
a consumption bundle that is preferred to xi* Want now to show that there is P=
(P;,...Pr) #0 and a number rsuchthatp.z >rfureveryzeVandp.z o for every zeY+ |
{ »;} (see ch2). .

We want to show If x> x;* forevery I then p. (5 x) >r: suppose that x; > x;* for every
i. By local nonatiation, for é_acil consumer i fhere is a consumption bundle x7 arbitrarily
close to x;-such that x5 »;x; and therefo;'e x"; €Vi Hence 5; x eVand so P. (Zix7) 2r.
geornetricall—y, want we have done here is 7'_srﬁow that the set % {xf;é X xi=ixi*¥}is
contained in the closu.re of V. want to chow now P. (Zix*=P. ( 1;+2} y*)=r : Because in
previous step we have p. (Zix;*) 2r. but Zx;* = Ziy* + w el + { w}then n.(Zixi*) <r
So (p. (i x*)=r. Since Z; x;* = 1;+2} y~=rthusp( w +3; y*)=r. For any firm j and y;
€Y, we have ,; + X5 y.*€Y. therefor p.( w +yi+Zhg yeH)<r=p. ( w +y ¥+ Thy yaM S
' =p. { 1;+yj*+ Zhg yu¥) Hence p. y; <py™ oo (D)

Jet anyx; »;; x;*since we have p. (x; + ( W+ Zpaxi®) o =P. (x;* + i xi*) then p.x;
2Pxi* oo (2).
(3)from the definition of pareto efficiency.

So we showed that the three condition of Walrasian equilibrium are satisfied.
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5.3External effects:-

We say that an economic situation involves a consum;- ion externality if one

consumer cares directly about the other agent production or consumption.

The crucial feature of externalities is that there are goods that people care about that

which not sold in inarkets such as loud music, smoking, and pollution.

Up -until now, we assumed that each agent could make consumption or production

decisions without worrying about what nther agents were doing , so we can achieve

Pareto efficiently.

But in the real woﬂd externalities are present and the market will not necessarily be
Pareto efficient . Hox;éver, there are other social institutions such as the legal system, 01:
government interveéntion that can mimic the market mechanisi to some degree and
thereby achieve Pareto efficiency.

To illustrate some main considerations, we will imagine two roommates, A and B,
who have preferences over money and smoking. We suppose that both consumers like
money, but that A likes to smokhe and B likes clear air.

Let B has a right to clear air; let us suppose that A has $100 and so does B .It
may happen that B would prefer to trade some of his right to clear air for some money .It
looks like an auctioneer calling out prices and asking how much each agent would be
willing to buy at those prices. When he manages to find a price where supply equal

demand, thus the market is then clear, and Pareto efficiency is achieved which reflects the

fact that equilibrium (Walrasian equilibrium) implies Pareto efficiency.
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et ustake an ~xample of a car’s pollution, and how we can deal with the right of
clear environment. Experts estimate the cost of the effect of a car’s pollution or humean: s
about $1450 over the lifetime of the car. This means that every one who busrs a car must
pay an extra $1450.
Now, let us assume that there is a right of pollution.for two firms . Each has a right
to emit 100 tons of nitrogen oxide in a year. If one of .‘them reduces the pollution to 80
tons ,cost will increase as a result . The other firm will have a right of 20 extra tons of this
emissions if the first sells them to it .

There are a lot of examples about externalities ,such as the policy of pollution trading. sea

surface empress oil spill, pollution permits carbon trading, pesticides trust and the

economics of tobacco, taxation .The internet site on externalities deals with such issues.
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Conclusion

In this thesis I presented an application of fixed-point theorems to’ private

ownership firms. The mathematical question asked is whether we could relax the
conditions of these theorems (that of continuity and convexity of the correspondence).

There is a ivt of outgoing research on this field and one can consult the Internet site.

From economic theory, we have shown the conditions under which exchange
equilibrium exists and that under perfect competition; such equilibrium is Pareto
efficient. Can we generalize sucha result to other sectors of economy like the public

sector and if there é_xists equilibrium is it Pareto efficient ?In general we have seen that in

— ~

presence of externalities, such equilibrium is not Pareto efficient.

S .Y .Wu [22 {at University of Iowa generalizes such theorems to three-sector
economy: private profit firm, private ncn— -profit firms and public sector. The model he

selected to carry out the task of obtaining a general equilibrium is a two — period

temporary equilibrium. In our case we studied a static model while his model introduces

the concept of time.

Another generalization of our model introduces uncertainty. The site [23] which
deals with general equilibrium with state contingent markets considers such a model and
its applications to financial market. Such a model can be checked by econometric

methods as done by E. Malinvaud [13] .
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