Oral Presentation

WO₃ Nanoparticle Single Doped With Ti and Co-Doped With Ti And Zn Thin Films: Enhancement of Electrochromic Properties

M. Qabaha^a, I. Saadeddin^a, M. Suleiman^b.

^aDepartment of physics, An-Najah National University, Palestine.

Abstract

WO₃ nanoparticles doped with Ti (W_{1-x}Ti_xO₃) and co-doped with Ti and Zn (W_{1-x}Ti_x- $_{v}Zn_{v}O_{3}$) have been prepared, on FTO/glass substrate, using wet chemical method (dipping in a sol-gel). The Ti molar concentration into W_{1-x}Ti_xO₃ ranges from 0-30 %. Best electrochromic properties were observed for composition that has Ti nominal concentration of 5 % $(W_{0.95}Ti_{0.05}O_3)$. This was evidenced from measurements of cyclic voltammetry (CV), chronoamperometry (CA), and transparency during CA. The composition that gives best electrochromic properties (W_{0.95}Ti_{0.05}O₃) was chosen to prepare WO₃ nanocrystallite films codoped with Zn for the first time (W_{0.95}Ti_{0.05-v}Zn _vO₃). The Zn molar concentration in these films varied from 1-5%. From CV and CA measurements, Co- doped WO₃ films showed better electrochromic performance than Ti single doped films. From co-doped films, the best electrochromic properties were observed for films that contains 4% of Zn (W_{0.95}Ti_{0.01}Zn_{0.04}O₃). The transparency spectrum of W_{0.95}Ti_{0.01}Zn_{0.04}O₃ electrode shows a high improvement in coloration efficiency compared to the coloration efficiency of W_{0.95}Ti_{0.05}O₃ electrode. The stability of the samples is also tested in 0.125 M H₂SO₄ electrolyte though cycling electrodes for at least 5000 cycles.

^bDepartment of chemistry, An-Najah National University, Palestine.