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General design equations are presented for direct calci.tlation of the requi red ten-

sile reinforcement A, in rectangular and flanged concrete sections. The cffect of

compression reinforcement A: behaving elastically or yielding is included. If /( is

required, it may be precisely determined after one trial even if ..{ =0 was ini tially

assumed.

Equations to determine the nomina! moment strength M" in terms of the concrete

dimensions,b, d, areas of tension and compression steel A., A:, and known material

properties I:, Iv are also presented.

These equations eliminate the trial-and-error numerical solution or design aids

needed when analysis equations arc used for design and greatly simplify the solution

of reinforced concrete sections under bending.

Equations are also provided 1.0 determine (b/ b", )mn: I and the rrururnum tension

steel ratio, for singly and doubly reinforced flanged section to work as Tvsect iou.

In beam design of reinforced concrete members under bending, the factored rno-

men t Mu is calculated first, then design is the process by which the cross sectional

climensions and reinforcement are determined. The section effective depth d, area

of tensile reinforcement A. an d area of compression reinforcement ,(, are the most
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common design unknowns.

Investigation of strength IS a reverse process in which the nominal moment

strength Mn is determined, once a cross section is fully defined; that is, the concrete

dimensions, tensile reinforcement area A. and compression reinforcement area A:

and materials are known.

Equations developed for studying rectangular and flanged sections have long been

known and used \2J in both the design and investigation of strength processes: Design

equations of the direct solution of the flexural reinforcement for rectangular sections

with tensile reinforcement only are available in References [4,5,11,12].

When strength equations are used for design, a trial- and-error process, or the

use of design aids, such as tables and diagrams, is needed [5] because the strength

equations are expressed in terms of the design unknowns A., A~, band d, for rect-

angular sections. The number of equations of equilibrium available is less than the

number of unknowns, consequently implying a non-unique solution.

Equations for the direct calculation of A" in terms of concrete section dimensions,

material parameters, loads and compression reinforcement behaving elastically or

yielding.

The investigation equations discussed solve the general case of a flanged sec-

tion with compression reinforcement behaving elastically or yielding. The equations

presented discuss in a unified treatment the design and investigation processes of re-

inforced concrete sections in bending in terms of the depth of the concrete equivalent

stress block a .

These equations are appropriate for either computer or manual calculations.

The selection of reinforcing bars and their distribution is not a topic of concern

in this research.



Assumptions in Ultimate Strength Design

The strength design method is based on the following assumptions in accordance

with the ACI code [1,2J :

1- The strength of a member computed by the strength design method requires

that two basic conditions be satisfied:

(a) static equilibrium.

(b) compatibility of strains.

2- The distribution of strains is linear across a reinforced concrete section, even

near ultimate strength. The strain in both the reinforcements and the concrete is

assumed to be directly proportional to the distance from the neutral "xis. This

assumption is of primary importance in design for determining the strain and cor-

responding stress in the reinforcements.

3- The maximum concrete strain at which ultimate moments are developed IS

usually 0.003 for a member of normal proportions and materials.

4- For deformed reinforcement, it is reasonably accurate to assume that the stress

In the reinforcements, below the yield strength /11' is proportional to the str ain

multiplied by the modulus of elasticity. The increase in strength due to the effect

of strain hardening of the reinforcement is neglected for strength cornput ation. The

stress in the reinforcements is computed as :

when (i) E. <s, (yield strain)

j,=E,E.

(ii) E. ~ Ell

f,=f!l

where 15. is the value from the strain diagram at the location of the reinforcement.

For design, the modulus of elasticity of steel reinforcement, E" may be taken as

(29,000 ksi) (200,000 MPa) [10].
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5-The tensile strength of concrete in flexure is neglected in strength design. For

members with a normal percentage of reinforcement tHis assumption is in good

agreement with test results. For very small percentages of reinforcement, neglecting

the tensile strength at ultimate is usually correct.

6- An equivalent rectangular compressive stress distribution is to replace the

more exact concrete stress distribution. In the equivalent rectangular stress block,

an average stress of 0.85 f~ is used with a rectangle of depth a={31 c. The value of

{31 is 0.85 for concrete with f~~ 30 MPa and reduces by 0.008 for each MPa of f; in

excess of 30 MPa, but {31 2: 0.65 .
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Basic Relationshi ps

The following relationships can be established uSing the provisions of the ACI

code [lJ. From strain compatibility, an ultimate strain in the concrete of Ec=0.003

and

--t>- T

Slr,lnl ft'llCI'

(1) Assuming J <c-c.d and a>hf

E: = 0.003(1 - J Ic)

E. = 0.003(d/c - 1)

...... 1

...... 2

From cq uili bri urn r.H =0

..... 3

In which

T = A'!lI when E. ~Ey ..... .4

...... 5

...... 6

where

then f3J =1.05 - !~/20 (where!; is in ksi)

/31 = l·05 - !~/138 (where !~ is in MPa) ...... 7or
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but 0.65S.61 S 0.85

...... 8

where, = 1 if a > cf otherwise ,=0.0

and f; is the stress in the compressive reinforcement at ultimate strength.

f. = e:E,
= 0.003E,(1 - Ad fa) 9

where E,=29,000 ksi (200,000 MPa) [1].

I; = 87(1 - .6ld fa)ksi

f. = 600(1 - .6ld /a)M Pa 10

f; = Iv if €:~€y and a' < a

where a' is determined by putting I; = I v in Eq 10.

Iv = 87(1 - .6ld fa')

a' = fllJ /(1 - 1.•/87) (where I, is ill ksi)

a' = .61J /(1 - 1v /600) (where Iv is in MPa) 11

f. = Iv if a~a'

from Eq.3 if a> h, the following is obtained:

A,lv = 0.85f;[b",a+ (b - b",)h, -,.A:J + AJ. ......12

Taking EM = 0 with respect to A,

Mu=¢J{0.85f;[f,,,,a(d - a/2) + (b - b",)h,(d - hd2)-

,A:(d - J)] + A:f.(d _oJ)} ..... .13

Alternatively, taking EM=0, with respect to Cw

Mu =~{A,fv(d - a/2) + O.85f;[h,(b - b",)(a - h, )/2-

,A:(a/2 - cf)J + A:';(af2 - J)} 14

where <p is the strength reduction factor =0.9 .

(2) Assuming J «c-cd and aSh,
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'[ 'J ". A,!" = 0.85!. ba+ -I.A, + A,!, ...... 15

Taking ~M = 0, with respect to A,

Alternatively, taking ~M =0, with respect to Cw

...... 17

Many cases can be obtained from equations 12, 13 and 14 for a section with

tension reinforcement only where A: = 0.0, and ct = 0.0

For a singly reinforced rectangular section A: = 0.0, cL. = 0.0, bw = b and hI = 0.0

For a T-section reinforced in tension only and a5,hf A:, ct = 0.0, bw = b, hI = 0.0

For a doubly reinforced rectangular section bw = b and hf = 0.0 .

Balanced Strain Condition

A balanced strain condition, as defined in the ACI code [1], exists when E, = Ey

and E. = 0.003, then c = q,

and we .have E, = 0.003(d/c - 1) = Ey

and q, = d/(l + Ey/0.003) ...... 18

substituting Ey = Iv/E, (E,=29,00D ksi or 200,000 MPa) gives

q, = d/(1 + 1,,/87)

ab = f3td/(l + 111/87) (II/ is in ksi)

ab = f3td/(l + 1,,/600) (III is in MPa) ...... 19

The stress in the compression reinforcement for the balanced condi tion l;b is

obtained from

!; = 87(1 - f3tct fa)
, I {I, = 600(1 - f3ta fa)

ksi

MPa
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by substituting a = Cl6, one can get

f.b = 87 - (/1/ + 87)(d' /d) ksi

f.b = 600 - (/11 + 600)(d' /d) MPa ...... 20

According to the ACI code [11, for sections in flexure without axial load, the

tensile reinforcement provided shall not exceed 0.75 of the reinforcement producing

balanced strain conditions. Therefore we can get A.b by substituting a = Cl6 in Eq.12

A.b = 0.85U;/fll)[bwCl6 + (b - bw)h, -IA~1 + A~f;b/fY

A,(ma",) = 0.75A.b

A.(mao:)=0.6375U;/III)[b w Cl6 + (b - bw )hl-

lA:l + Aj;b/ III ...... 21

and A,(mao:)can be determined for many cases as follows:

- For a section with tension reinforcement only A:=O.O .

...... 22

- For a rectangular section b,., = b and hI = 0.0 .

A.(maz)=0.6375U;/III)(bab) ...... 23

According to ACI code [1], the minimum required positive reinforcement is given

by:

A,(min) = 200bwd/ fll' III in psi

A,(min) = 1.4bwd/ fv. !Y in MPa 24

ANALYSIS OF REINFORCED CONCRETE SECTIONS

Analysis is the process by which the nominal moment strength A1n is determined,

once a cross section is fully defined ; that is, the concrete dimensions and steel

quantities, A., A:, and materials strength are known.

From Eq, 12 for a flanged section with compression reinforcement and
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a = [(A.f" - A~f;)/(0.85f~) - (b - bw)h, + -y,{l/bw 25

\-\Then the Compression Steel has Yielded (a' < a)

a = [(A. -'- A:)lv/(0.85/J - (b - b",)h, + iA:l/bw 26

we have p", = A./b",d and p~ = A~/bwd

Writing a = Xd ...... 27

x = (p", - p~)(J1I/0.85f;) - (b/b", - 1)htfd + -yp~ 28

To have the compression reinforcement at yield

a=Xd>a'={3\d/(1-f,,/600) (where fv is in MPa)

then Xmin={31(d'/d)/(l- f,,/600) (where f" is in MPa)

or Xmin={3\(d'/d)/(l - 1,,/87) (where II} is ill ksi) 29

to get the tension reinforcement area less than the maximum allowable tension

reinforcement area X must satisfy

XS,0.75a./d

then Xrnnr=0.75{3d(1 + f,,/GOO) (where f" is in MPa)

or Xmar=0.75{3\/(1 + 1,,/87) (where f" is in ksi) 30

W11en the Compression Steel has not Yielded (a' > a)

f: = 87(1 - (3\d fa)

substitute f: in Eq.12 to get:

0.85f;bwa2 + [0.85f;(b - bw)hJ + A:(87 - 0.85-yf;)-

A.f,,]a-87A:{3\d=0.0 31

rearrange to get:

a2 + r\ a - "o = 0.0 ......32

r\ =[(b/b", - 1)htfd + (p~/0.85/;)(87 - 0.85ilc')-

Pw/,,/0.85f;]d ......33
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then

. ro = 87p~f31<ld/(0.85/c')

a = -rd2 + J(rU4 + ro).

...... 34

...... 35

then once a is known from either Eq.27 or Eq.35 Mu is determined from either Eq.13

or Eq.14.

DESIGN OF REINFORCED CONCRETE SECTIONS

Design of sections with compression reinforcement

Compression reinforcement complicates the design of a reinforced concrete see-

tion. Usually, its effects are either ignored in flanged section or approximated in

rectangular sections.

Equations are developed for the direct calculation of A. in terms of section di-

mensions, material parameters and compression reinforcement behaving elastically

or yielding.

Calculation of A" when the compression steel is elastic Es <Ey and a< a'

In this case the stress in compression reinforcement is given by:

!.=87(1-f31<l fa) ksi

1.=600(1 - f31<lfa) MPa

substitute the value of I. in Eq.13 we get

a3 - 2da2 + [2S + ~d21a + klrP = 0.0

where S = Mu/(0.85¢lf;bw)

...... 36

...... 37

and

~ =(1 - b/bw)(2 - hdd)hdd + 2Ip~(1 - <I/d)-

174p~(1 - <I/d)/0.85/;

kl = 174p~(1- <I/d)f31(d'/d)/0.85/c'

...... 38

...... 39

solving the cubic equation we get a then A. is determine by Eq.12, rewritten

below
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Calculation of A" for flanged sections in which the compression re-

inforcement has yielded, E~2:Ey therefore f;=fy

Substitute the value of 1.=1" in Eq.14 we get:

a = d - !(I< dl - 2S)

where 5 = Mu/(O.85¢/~bw)

and K =1 - (1 - b/bUJ)hJld(2 - hi/d) - 2p~(1 - r1/d)+

2p~(1 - r1/d)lv/O.85fc'

..... .40

..... .'11

then the tension reinforcement area is given by

A. = {0.85f~[bUJa + (b - bw)h, -I'A:l + A:J,,}/fv

Calculation of A" for doubly reinforced rectangular sections or flanged

sections when a'5}tf

In this case substituting b", = b, the constant K in Eq.41 is given by

I<=l - 2p~(1 - r1/d)+

2p~(1 - r1/d)fy/0.85fc' ..... .42

then a=d-!(Kd2-2S)

then the tension reinforcement area is given by

A. = {O.85f~(ba -I'A:)/ fy} + A:

Design of Singly Reinforced Sections

Calculation of A" for a flanged sections, A~=O.O and a>hf

In this, case the constant I< in Eq.41, is given by

then

I<=1 - (1 - b/bUJ)hJid(2 - hJid)

a=d - !(K d2 - 2S)

..... .43

then the tension reinforcement area is given by

A. = {(O.85/;[bwa + (b - bw)h,J}/fv

Calculation of A" for rectangular sections reinforced in tension only

168



(flanged section A~ = 0.0 and a$.hf)

In this case K = 1.0 since b." = band p' = 0

a=d - /(d2 - 2S)

then the tension reinforcement area is given by

A. = (0.85f;OO)/ f.,J'

Minimum Tension Steel Ratio for Singly Reinforced Flanged Sections

to Work as T-section

To get the section under consideration as T-section a>h,

a = [(A.fl//0.85f;) - (b - b.,,)h,Jlb.,,>h,

A.T>h,b(O.85f;)/ f1/ ..... .44

Dividing equation 44 by bwd the minimum tension steel ratio is

..... .45

Equation 45 gives PT as a function of h,/d, bjb.", f" and f~.

Minimum Tension Steel Ratio for Doubly Reinforced Flanged Sec-

tions to Work as T-section

To get the section under consideration as a T-section a> h,

then

A'T = bh,/{(l - p' jp)f"jO.85/~ + p' jp} ..... .4G

Dividing equation 46 by b."d to get the minimum tension steel ratio for a doubly

reinforced flanged section to work as T-section, PT = A, jbwd, yields

PT = (bjbw)(hJfd)j{(l - p'jp)/"jO.85f; + p' jp} ..... .47

Equation 47 gives PT as a function of bjbw, h,/d, p'/p, I~and Iy•

Maximum Flange Width to Web 'Width b/bw for Singly Reinforced

Flanged section under Consideration as T-section

The maximum area of tension steel from Eq.19 is given by
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A,(mc",,) = 0.6375(J~1 Iv)[bwab + (b - bw)h,]

where ab = d{31I( 1 + t,1600) where t, is in MPa

where ab = d/3d(l + Iv187) where Iv is in ksi

Substitute the value of ab in Eq.19 and dividing by b",dresults in P(maz) = A,(maz)/bwd

P(maz) = 0.6375(1;/lv)[j3d(1 + Iv/600) + hdd(blbw - 1)] ..... .48

To determine the maximum value of blbw to work as T-section equate PT of Eq.45

to P(maz) of Eq.48 then

...... 49

Equation 49 gives the maximum flange width to web width ratio for a singly

reinforced flanged section to work as T-section (neutral axis below flange).

CONCLUSIONS AND RECOMMENDATIONS

The process of designing and analyzing reinforced rectangular and flanged sec-

tions was discussed in terms of simplified general equations," which include most

common encountered cases. Rectangular and flanged sections with tension rein-

forcement only are presented as particular cases of the most general case of flanged

doubly reinforced sections .

• The analysis equations discussed apply to the general case of doubly reinforced

T-section. Analysis equations given in Reference [2] , for flanged and rectangu-

lar sections are special cases of the more general solution provided by Eq.13 or

14 after determining the equivalent rectangular stress block depth a, by Eq.27

when the compression steel has yielded or by Eq.35 when the compression re-

inforcement has not yielded .

• Equations of design as a direct solution of the required tension reinforcement

A" are presented in terms of the ultimate moment Mu , the material parameters

and section dimensions. The area of tension steel is given in terms of the depth
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of the equivalent rectangular stress block a, which is determined by Eq.36, if

the compression reinforcement has not yielded or by Eq.40, if the compression

steel has yielded. Eqs.36 and 40 may also be used to determine the required

compression reinforcement A:, by assuming A: = 0.0 as an initial value and

then calculating K from Eqs.41, 42 and 43. If there is a need for compression

reinforcement the initial value of A: is increased until we get A, < A,(rnoz)'

• The effect of adding compression reinforcement A: on the internal lever arm

and therefore on the area of tension steel A" is considered by the simplified

equations discussed. This effect is usually ignored when analysis equations or

design aids are used in the design process.

• Simple criteria, in terms of hJld gives the maximum flange width to web width

ratio (b/bw)rnoz to get the section work as a T- section; (b/bw)mo: is provided

by Eq.48 .

• The tension steel ratio PT is determined to get the section work as aT-section

for singly and doubly reinforced T-sections; PT is provided by Eqs.45 and 47.

• All equations presented in the thesis are paper programmed, thus simplifying

the repetitive nature of the calculation. Examples in the Appendix illustrate

the application of the equations to typical reinforced concrete problems using

long hand calculations .

• To use the simplified method of design and analysis very shortly, it is recom-

mended to tabulate the constants (K, X, ...etc.) which are presented in the

thesis.
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Example 1 (Examplel,[l])
APPENDIX

For a rectangular section subjected to a factored bending moment Mu =

100lt - kip», determine the reinforcement required for the following condi-

tions: I; = 4.0 ksi, Iv = 60.0 ksi, b = 10 in, d = 17.5 in.

Solution:

the equivalent rectangular stress block depth given by

a = d - J I< d2 - 25

S = Mu/(0.854>I;b)=l200/(0.85 x 0.9 x 4 x 10)=39.216 in'

for rectangular section reinforced in tension only I< = 1.0

a=17.5- .j[(17.5)2- 2(39.216)]=2.4063 in

A. = 0.85/;[abJ/lv = 1.3636 in'

af, = (31d/(1 + Iv/87) =8.8036 in

a < a& then A. < A.(ma:r)

A.(m;n) = (200/60000)17.5 x 10= 0.5833 in'

A.(m;n) < A. < A.(mar) .... ok

Example 2 (Example2,[6])

For the section in the figure below, subjected to a factored moment A1u = 640 It-

kips, determine the tensile reinforcement required if I~ = 5.5 ksi and Iv = 60.0

ksi. .....i~t·I"""""\~i .
"I" ' •. ,•.... "I

Solution:

a=d-.j(d'-2S)

S = Mu/(O.854>I;bw) =100.3922 in'

J( = 1-{(1 - b/bw)hJld(2 - hJld) - 2p~(1 - r1/d)(fv/(0.85f;) - l)}= 0.9539
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a=19.5-/[O.9539(19.5)2 - 2(100.3922)]=6.7744 in

a' = f3tJ /(1 - 111/87)=6.4444 in

a > a' compression reinforcement has yielded.

A. = 0.85U;/fll)[b",a + (b - b,.,)h, - A:] + A: = 8.976 in2

~ = f3td/(l + 111/87) =9.233 in

Since a < ab then A. < A.(mo:)

A.(min)=(200/60000)19.5x20= 1.3 in2

A.(min) < A. < A.(m",,) ....ok

Example 3 (Example4.7,[9])

A T-beam section with b= 30 in, b",=12 in, d=23 ill and h, =4 in is to have a

design flexural strength of 7xl06 lb-in. Using fc =3000 psi and I" =60,000 psi,

calculate the required steel area.

Solution:

a = d - J (d2 - 25)

5 = Mu/(0.85q,I;b",) = 254.175 in2

I< = 1-{(1 - b/b",)hdd(2 - hdd) - 2p~(1- J /d)(fy/(0.85/~) - I)}= 1.4764

a=23-J[1.4764(23)2 - 2(254.175)]=6.7744 in

a~ = f3td/(l + fll/87) =11.57 in

Since a < 0.75ab then A. < A.(m,,:)

.4,(min) = (200/60000)23 x 12= 0.92 in2

A.(Tnin) < A, < A.(moz) .... ok

Example 4 (Example4,[6])

For a Hanged section, determine the ultimate moment Mu, for the following
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conditions: Ic = 4.4 ksi, Iv = 60.0 ksi; h, = 4 in.;bw = 30 in.;d = 16.5 in.; and

b = 70 in.

Solution:

Assume compression reinforcement has yielded

a = Xd

x = [(Pw - p~)(J1I/0.85/c) - (b/bw - l)h,/d + p~J=0.2881

a=O.2881 x 16.5 =4.7539

a' = f31d /(1 - 11i/87)=6.8472 in

Since a < a' compression reinforcement is elastic

I; = 87(1 - f3td /a)= 49.545 ksi

a = -rt/2 + j«rU4) + ro)

l't = {(b/bw - 1)hdd + (p~/(0.85/~))(87 - 0.85!;) - p!!I/(O.85!~}d = -4.318

"o = (87p~/0.85/~)f3td d = 2.9852

a= 4.318/2 + j[( -4.318)2 /4 + 2.9852J = 4.924 in

Since a > h, the section work as aT-section

Mu = 14400 in-kips(1200 ft-kips).
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