Spaces $H^+_{\phi}(\Omega)$ and $H^-_{\phi}(\Omega)$

 $H^{\,\scriptscriptstyle +}_{\,\scriptscriptstyle \phi}(\Omega)$ فضاءات $H^{\,\scriptscriptstyle +}_{\,\scriptscriptstyle \phi}(\Omega)$ و

Mahmud Masri

Mathematics Department, Faculty of Science, An-Najah National University, Nablus, Palestine. Received: (4/12/2000), Accepted: (13/6/2001)

Abstract

Let Ω be an open connected subset of the complex plane \mathbb{C} , $H(\Omega)$ the space of all analytic functions in Ω , and ϕ is a modulus function such that $\phi(|f|)$ is subharmonic in Ω for all $fH(\Omega) \in$. In this paper we define $H_{\phi}(\Omega)$ to be the space of all $f H(\Omega) \in$ such that $\phi(|f|)$ has a harmonic majorant and $H_{\phi}^{+}(\Omega)$ is the space of all $f H_{\phi}(\Omega) \in$ such that $\phi(|f|)$ has a quasi-bounded harmonic majorant.

This extends the special cases $H^p(\Omega)$ when $0 <math>\phi(x) = x^p$, and $N(\Omega)$ and $N^+(\Omega)$ when $\phi(x) = \log(1+x)$. It also extends N^p from $p\ge 1$ to p>0 where $\phi(x) = (\log(1+x))^p$ and Ω is the open unit disc D and includes N_p where $\phi(x) = \log(1+x^p)$, $0 . We show that <math>H_{\phi}(\Omega)$ is a complete metric space and $H_{\phi}^+(\Omega)$ is an F-space which generalizes the special case $\Omega = D$. Also we show that many results for= H_{ϕ} $H_{\phi}(D)$ and $H_{\phi}^+(D) = H_{\phi}^+$ carry over to $H_{\phi}(\Omega)$ and $H_{\phi}^+(\Omega)$. Different characterizations of H_{ϕ} and H_{ϕ}^+ are given and it is shown that $H_{\phi}(\Omega)$ and $H_{\phi}^+(\Omega)$ can be identified with closed subspaces of H_{ϕ} when ϕ is a strictly increasing unbounded modulus function. This result is used to give an other proof of the completeness of $H_{\phi}(\Omega)$ and $H_{\phi}^+(\Omega)$.

and $H^+_{\phi}(\Omega)$ is given. Also, a necessary and sufficient integrability condition for functions $fH^+_{\phi}(\Omega) \in as$ well as a formula for the least harmonic majorant of $\phi(|f|)$ are given.

ملخص

$$\begin{split} \Omega & \text{Litter of the series of the series of the entropy of the series of the seri$$

1. Introduction and Preliminaries

If ϕ is a real-valued function on $[0, \infty)$ such that ϕ is increasing, subadditive, $\phi(x)=0$ iff x = 0, and continuous at zero from the right (hence uniformly continuous on $[0, \infty)$), then ϕ is called a modulus function. Examples of modulus functions are $x^p, 0 , and <math>\log(1+x)$. We note

that if ϕ is a modulus function, then so is $c \phi$ where c > 0. Also, the composition of two modulus functions is a modulus function.

Let $T = \partial D$ be the boundary of the open unit disc D in the complex plane C and H(D) the space of analytic functions in D. Let $H^+(D)$ be the set of all functions $f \in H(D)$ such that

$$\lim_{r \to 1} f(re^{i\theta}) = f^*(e^{i\theta}) \text{ exists a.e.}\sigma$$

where σ is the normalized Lebesgue measure on T. f^* is called the radial

limit of f. When there is no ambiguity we denote the function f and its radial limit by f. Throughout this paper we assume that ϕ is a modulus function such that $\phi(|f|)$ is subharmonic in D for all $f \in H(D)$. We define the Hardy-Orlicz spaces $H_{\phi}(D) = H_{\phi}$ and $H_{\phi}^+(D) = H_{\phi}^+$ by

$$H_{\phi} = \{ f \in H(D) : \sup_{0 \le r < 1} \int_{T} \phi(|f_r|) d\sigma < \infty \}$$

and

$$H_{\phi}^{+} = \{ f \in H^{+}(D) : \sup_{0 \le r \le 1} \int_{T} \phi(|f_{r}(z)|) d\sigma(z) = \int_{T} \phi(|f(z)|) d\sigma(z) \le \infty \}$$

where $f_r(z) = f(rz), z \in T$.

For each $f \in H_{\phi}(D)$, define the quasi-norm of f by

$$\|f\|_{\phi} = \sup_{0 \le r < 1} \int_{T} \phi(|f_r|) d\sigma = \lim_{r \to 1} \int_{T} \phi(|f_r|) d\sigma$$

where the last equality follows from the subharmonicity of $\phi(|f|)$. The quasi-norm $|| ||_{\phi}$ induces a translation invariant metric d on H_{ϕ} given by

d(f,g)= $|| f - g ||_{\phi}$ for all $f, g \in H_{\phi}$. We note that $H_{\phi} = H(D)$ when ϕ is bounded. Also if ϕ is unbounded and strictly increasing ,then (H_{ϕ}^+, d) is an F-space ,i .e .,a topological vector space with complete translation invariant metric (see [1] and [4]).Moreover, if $\phi(x) = x^p, 0 \le p < 1$, then $H_{\phi} =$ H^p and if $\phi(x) = \log(1 + x^p)$, then for $p = 1, H_{\phi} = N, H_{\phi}^+ = N^+$ and for 0 < p $< 1, H_{\phi}^+ = N_p$ (see [2] ,[3] and [4]). In [6], N^p spaces are defined for $p \ge 1$. If we let $\phi(x) = (\log(1 + x))^p, 0 , then we get an extension of$ these spaces for p>0.

In this paper we give different characterizations of the quasinorm $|| ||_{\phi}$ similar to those in N and N^+ and a different characterization of H_{ϕ} (see [6]). Furthermore, we generalize these spaces to $H_{\phi}(\Omega)$ and $H_{\phi}^+(\Omega)$ where Ω is a domain ,i.e., an arbitrary open connected subset of **C** .For that purpose we use harmonic functions as in $H^p(\Omega)$, p > 0, $N(\Omega)$ and $N^+(\Omega)$ (see [2],[3],and [7]). Also, we consider the special case Ω being finitely connected and give a factorization theorem for functions in $H_{\phi}(\Omega)$ and $H_{\phi}^+(\Omega)$. If $H(\Omega)$ is the space of analytic functions in Ω , then we define the Hardy-Orlicz space $H_{\phi}(\Omega)$ to be the space of $f \in H(\Omega)$ such that $\phi(|f|)$ has a harmonic majorant in Ω , i.e., there is a function u harmonic in Ω and $\phi(|f(z)|) \leq u(z)$ for all $z \in \Omega$.

As in $H^{p}(\Omega)$ or N (Ω) for each $f \in H_{\phi}(\Omega)$ there is a least harmonic majorant u_{f} of $\phi(|f|)$, i.e., $\phi(|f(z)|) \leq u_{f}(z)$ for all $z \in \Omega$ and $u_{f}(z) \leq v(z)$ for all $z \in \Omega$ for any harmonic majorant v of $\phi(|f|)$ (see [8,p.52]).

A non-negative harmonic function on Ω is called quasi-bounded if it is the pointwise increasing limit of non-negative bounded harmonic functions on Ω . We define the Hardy-Orlicz space $H_{\phi}^{+}(\Omega)$ to be the space of all $f \in H_{\phi}(\Omega)$ such that $\phi(|f|)$ has a quasi-bounded harmonic majorant on Ω . If $\phi(x) = x^{p}$, $0 , then <math>H_{\phi}(\Omega) = H^{-p}(\Omega)$ and if $\phi(x) = \log(1+x)$, then $H_{\phi}(\Omega) = N(\Omega)$ and $H_{\phi}^{+}(\Omega) = N^{+}(\Omega)$ (see [2] and [8]). The special case $H_{\phi}^{+} = H_{\phi}^{+}(D)$ is considered in [1] and [4]. We note that $H^{\infty}(\Omega)$, the space of bounded analytic functions in Ω , is contained in $H^{p}(\Omega)$ for p > 0.

If z_0 is a fixed point of Ω , which we call the point of reference ,then we define the quasi-norm $\| \|_{\phi}$ on $H_{\phi}(\Omega)$ by

$$\|f\|_{\phi} = u_f(z_0)$$

for all $f \in H_{\phi}(\Omega)$. The minimum principle for harmonic functions, the subadditivity of ϕ , and the sum of two harmonic functions is harmonic imply that the quasi-norm $\| \|_{\phi}$ has properties similar to those for the case $\Omega = D$ and $\phi(x) = \log(1+x)$ (see [6]). Hence, if $d(f, g) = \| f - g \|_{\phi}$ for all $f, g \in H_{\phi}(\Omega)$, then d is a translation invariant metric on $H_{\phi}(\Omega)$. By an easy exploitation of the analogy with $H^{p}(\Omega)$ and $N(\Omega)$ one can give an integrability condition on $H_{\phi}(\Omega)$ which is equivalent to the least harmonic majorant condition and prove that $(H_{\phi}(\Omega), d)$ is a complete metric space (see [8,pp.53,54]).

When ϕ is a strictly increasing unbounded modulus function we show that $(H_{\phi}^{+}(\Omega), d)$ is an F-space. This generalizes the corresponding result in [1] where $\Omega = D$ and in [2]where $\phi(x) = \log(1+x)$.Also, as in $H^{p}(\Omega)$, $N(\Omega)$, and $N^{+}(\Omega)$ we show that $H_{\phi}(\Omega)$ and $H_{\phi}^{+}(\Omega)$ can be identified with closed subspaces of H_{ϕ} (see [2],[7],and [8]).For that purpose we need to mention the uniformization theorem for planar domains in [7,p.180].It says that if Ω has at least three boundary points ,then there exists a function φ analytic and locally 1-1 in D whose range is exactly Ω and which is invariant under a group G of linear fractional transformations of D onto itself, i.e., $\varphi \circ g = \varphi$ for all $g \in G$.Furthermore, if z_0 is an arbitrary point in Ω , φ may be chosen so that $\varphi(0) = z_0$ and $\varphi'(0) > 0$. These conditions determine φ uniquely. In other words the pair (D, φ) is the universal covering surface of Ω , and G is the automorphic group of Ω .

2. H_{ϕ} and H_{ϕ}^+

In order to give different formulations of $|| ||_{\phi}$ on H_{ϕ} and give other characterizations of H_{ϕ} and H_{ϕ}^+ we make some definitions and quote some results in [9] .Let μ be a positive measure on a measure space X.A set $\Lambda \subseteq L^1(\mu)$ is said to be uniformly integrable if $\int_X |f| d\mu \le K < \infty$ for some constant K and $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\int_E |f| d\mu < \varepsilon$ when $f \in \Lambda$ and $\mu(E) < \delta$. A function γ is called strongly convex if γ is convex on $(-\infty,\infty), \ \gamma \ge 0, \ \gamma$ is non-decreasing, and $\frac{\gamma(t)}{t} \to \infty ast \to \infty$.

Theorem 2.1 ([9,p. 37])

A bounded set $\Lambda \subseteq L^{1}(\mu)$, μ is a positive measure on a measure space X, is uniformly integrable iff \exists a strongly convex γ and a constant M such that

$$\int_{X} \gamma(|f|) d\mu \le M < \infty \text{ for all } f \in \Lambda$$

Theorem 2.2 ([9, p. 41])

Suppose that ψ is a subharmonic function in D, ψ is not identically $-\infty$, and C< ∞ is such that

$$\int_{T} \psi_r^+ d\sigma < C \quad (0 \le r \le 1)$$

where for z in T, $\psi_r^+(z) = 0$ if $\psi_r(z) < 0$ and $\psi_r^+(z) = \psi_r(z)$ if $\psi_r(z) \ge 0$. Define

$$h^{(r)}(z) = \int_{T} P(r^{-1}z,\zeta)\psi(r\zeta)d\sigma(\zeta), z \in r\mathbf{D}.$$

Then

- a. $h^{(r)} \ge \psi$ in rD
- b. $h^{(r)} \le h^{(s)}$ in rD and $\int \psi_r \le \int \psi_s$ if r < s
- c. $\lim_{r \to 1} h^{(r)}(z) = h(z)$ exists for all $z \in D$, and h is the least harmonic majorant ψ .
- d. h^* exists a.e. σ , $h^* \in L^1(T)$ and \exists a singular real measure υ on T such that $h = P[h^* + d\upsilon]$
- e. If ψ^* exists a.e. σ , then $\psi^* = h^*$ a.e. σ .
- f. If $\{\psi_r^+\}$, $r \in [0,1)$, is uniformly integrable, then $\upsilon \le 0$, hence $h \le P[h^*]$

Theorem 2.3 ([10,p.85])

Let $g \in L^1(T)$, $g \ge 0$. Then $\forall \varepsilon > 0 \exists \delta > 0$ such that

$$\sigma(E) < \delta, E \subseteq T \text{ implies } \int_{E} g(x) dx < \varepsilon.$$

i.e., {g} is uniformly integrable.

Now we give other characterizations of H_{ϕ}^+ and different ways of representing the quasi-norm on H_{ϕ} which motivated the definition of $H_{\phi}^+(\Omega)$ because [3, p.391] the quasi-bounded harmonic functions in D are exactly the Poisson integral of non-negative integrable functions on T.

Theorem 2.4

Let $f \in H^+(D) \cap H_{\phi}$. Then $f \in H_{\phi}^+$ iff $\{\phi(|f_r|)\}, r \in [0,1)$, is uniformly integrable.

Proof: Suppose that $f \in H^+(D) \cap H_{\phi}$. Then

$$\|f\|_{\phi} = \sup_{0 \le r < 1} \int_{T} \phi(|f_r|) d\sigma = \lim_{r \to 1} \int_{T} \phi(|f_r|) d\sigma < \infty$$

$$(2.1)$$

Applying theorem 2.2 with $\psi = \phi(|f|)$ we get $h = P[h^* + dv_f]$ where h is the least harmonic majorant of ψ , i.e., $h = u_f$. Also,

$$h(0) = u_f(0) = \lim_{r \to 1} h^{(r)}(0) = \lim_{r \to 1} \int_T \phi(|f_r|) d\sigma = ||f||_{\phi} = \int_T \phi(|f|) d\sigma + v_f(T) \quad (2.2)$$

If $f \in H_{\phi}^{+}$, then (2.1) and (2.2) imply that $\upsilon_{f}(T) = 0$, hence $h = P[\psi^{*}]$ and

$$\phi(|f(z)|) \le P[\phi(|f(z)|)], z \in D$$

An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002 -

8 -

Therefore, for $E \subseteq T$ we have

$$\int_{E} \phi(|f_{r}(e^{i\theta})|) d\theta \leq \frac{1}{2\pi} \int_{E}^{2\pi} \int_{0}^{2\pi} P_{r}(\theta - t) \phi(|f(e^{it})|) dt d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{E} P_{r}(\theta - t) |\phi(|f(e^{it})|) d\theta dt$$
$$= \frac{1}{2\pi} \int_{\theta - 2\pi}^{\theta} P_{r}(s) (\int_{E} \phi(|f(e^{i(\theta - s)})|) d\theta ds$$

where $s = \theta - t$. Since for each fixed s, $0 \le \phi(|f(e^{i(\theta-s)})|) \in L^1(T)$ theorem 2.3 and translation invariance of σ imply that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that

$$\sigma(E) < \delta, E \subseteq T \text{ implies } \int_{E} \phi(|f_r|) d\sigma < \varepsilon, r \in [0,1)$$
(2.3)

Thus, $\{\phi(|f_r|)\}, r \in [0,1)$, is uniformly integrable.

Conversely, suppose that $f \in H^+(D) \cap H_{\phi}$ and, $\{\phi(|f_r|)\}, r \in [0,1)$, is unifomly integrable .Then (2.3) holds .By Egoroff 's theorem (see [10]) there exists a set $E \subseteq T$ such that

 $\phi(\mid f_r \mid) \rightarrow \phi(\mid f \mid)$ as $r \rightarrow 1$ uniformly on E,

and $\sigma(T - E) < \delta$.Hence,(2.3) gives

$$\int_{T} \phi(|f_{r}|) d\sigma \leq \int_{E} \phi(|f_{r}|) d\sigma + \varepsilon$$

Now uniform convergence on E implies

$$\lim_{r\to 1}\int_{T}\phi(|f_{r}|)d\sigma\leq\int_{E}\phi(|f|)d\sigma+\varepsilon\leq\int_{T}\phi(|f|)d\sigma+\varepsilon.$$

—An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002

9

Since $\varepsilon > 0$ is arbitrary we have

$$\lim_{r \to 1} \int_{T} \phi(|f_{r}|) d\sigma \leq \int_{T} \phi(|f|) d\sigma$$
(2.4)

Also, Fatou's lemma gives

$$\int_{T} \phi(|f|) d\sigma \leq \lim_{r \to 1} \int_{T} \phi(|f_r|) d\sigma$$
(2.5)

Thus (2.4) and (2.5) give $f \in H_{\phi}^+$.

Now we give the following corollaries.

Corollary 2.5

Let $f \in H^+(D) \cap H_{\phi}$. Then $\phi(|f|) \in L^1(T)$ and there exists a real singular measure v_f such that

$$h = P[\phi(|f|) + dv_f]$$

where h is the least harmonic majorant of $\phi(|f|)$. Moreover, the following are equivilant

1. $f \in H_{\phi}^+$

2.
$$h = P[\phi(|f|)]$$
, i.e., $v_f = 0$.

3. $\int_{T} \gamma(\phi(|f_r|)) d\sigma, r \in [0,1) \text{ is bounded for some strongly convex } \gamma.$

Proof: We show that (2) implies (3) and the rest is an easy cosequence of theorems 2.1 and 2.4.So assume that (2) holds .Since $\phi(|f|) \in L^1(T)$ theorems 2.1 and 2.3 imply that there exists a strongly convex γ such that $\gamma(\phi(|f|)) \in L^1(T)$. Hence, using Jensen's inequality it follows that

An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002

10

Mahmud Masri -

$$\gamma(\phi(\mid f \mid)) \leq \gamma(P[(\phi(\mid f \mid)]) \leq P[\gamma(\phi(\mid f \mid))])$$

Therefore, using the properties of the Poisson kernel we have

$$\int_{T} \gamma(\phi(|f_r|)) d\sigma \leq \int_{T} P[\gamma(\phi(|f_r|))] d\sigma \leq \int_{T} \gamma(\phi(|f|)) d\sigma < \infty.$$

Which establishes (3).

Corollary 2.6

Let $f \in H^+(D) \cap H_{\phi}$. Then $f \in H_{\phi}^+$ iff there exists a strongly convex γ and a harmonic function h, both non-negative such that $\gamma(\phi(|f|)) \leq h$ in D.

Proof: If $f \in H_{\phi}^{+}$, then corollary 2.5 implies that

$$\int_{T} \gamma(\phi(|f_r|)) d\sigma$$

is bounded for some strongly convex γ . Since $\gamma(\phi(|f|)) = \psi$ is subharmonic theorem 2.2 gives the required h. The converse follows from the harmonicity of h and corollary 2.5 since

$$\int_{T} \gamma(\phi(|f_r|)) d\sigma \leq \mathbf{h}(0) < \infty.$$

Finally, from above we obtain the following representations of $|| f ||_{\phi}$ for $f \in H^+(D) \cap H_{\phi}$

- $1. \quad \sup_{0 \le r < 1} \int_{T} \phi(|f_r|) d\sigma$
- $2. \quad \lim_{r\to 1} \int_{T} \phi(|f_r|) d\sigma$

- 3. $u_f(0)$, where u_f is the least harmonic majorant of $\phi(|f|)$.
- 4. $\eta_f(T)$ where $u_f = P[d\eta_f]$ and

$$d\eta_f = \phi(|f|)d\sigma + d\upsilon_f$$

where v_f is singular with respect to σ .

5.
$$\int_{T} \phi(|f|) d\sigma + v_f(T).$$

Moreover, $f \in H_{\phi}^+$ iff $v_f = 0$ iff $u_f = P[\phi(|f|)]$ which is a quasi-bounded harmonic majorant. This motivated the definition of $H_{\phi}^+(\Omega)$.

3. The spaces $H_{\phi}(\Omega)$ and $H_{\phi}^{+}(\Omega)$

We start by a generalization of some results in [1] from D to Ω .

Lemma 3.1

$$\bigcup_{p>1} H^p(\Omega) \subseteq H^1(\Omega) \subseteq H_{\phi}(\Omega)$$
(3.1)

Proof: The first inclusion in (3.1) follows from $H^p(\Omega) \subseteq H^q(\Omega)$ whenever p>q>0(see [8, p.75]) .For the second inclusion in (3.1) if [x] is the greatest integer in x it is easy to show that

$$\phi(\mathbf{x}) \le \phi(1) \, (1+\mathbf{x}), \, \mathbf{x} \ge 0 \tag{3.2}$$

using the properties of ϕ and $x \le 1 + [x]$ for $x \ge 0$.

Thus (3.2) implies that if u is a harmonic majorant of |f|, then $\phi(1)(1+u)$ is a harmonic majorant of $\phi(|f|)$. Hence, $H^1(\Omega) \subseteq H_{\phi}(\Omega)$.

Mahmud Masri -

Theorem 3.2 If $\liminf_{x\to\infty} \frac{\phi(x)}{x} = \alpha > 0$, then $H^1(\Omega) = H_{\phi}(\Omega)$.

Proof: Suppose that $\liminf_{x \to \infty} \frac{\phi(x)}{x} = \alpha > 0$. Then there exists $x_0 > 0$ such that

$$\mathbf{x} \le \frac{2}{\alpha} \phi(\mathbf{x}), \, \mathbf{x} \ge x_0 \tag{3.3}$$

If $f \in H_{\phi}(\Omega)$, then by (3.3)

$$|f(z)| \leq x_0 + \frac{2}{\alpha}\phi(|f(z)|) \leq x_0 + \frac{2}{\alpha}u(z)$$

for all $z \in \Omega$ where u is a harmonic majorant of $\phi(|f|)$ on Ω . Thus $H_{\phi}(\Omega) \subseteq H^{1}(\Omega)$ and the proof is complete by lemma 3.1.

Theorem 3.3 If
$$\liminf_{x \to \infty} \frac{\phi(x)}{\log x} = \alpha > 0$$
, then $H_{\phi}(\Omega) \subseteq N(\Omega)$ and $H_{\phi}^{+}(\Omega)$
 $\subseteq N^{+}(\Omega)$.

Proof: Let $g(x) = \inf\{\frac{\phi(t)}{\log t} : t \ge x\}$. Then $\lim_{x \to \infty} g(x) = \alpha$ implies that there exists $x_0 \ge 1$ such that

$$\log x \le \frac{2}{\alpha} \phi(x), x \ge x_0 \tag{3.4}$$

Since $\log (1+x) \le 1 + \log x$ for all $x \ge x_0$ using (3.4) we get

$$\log(1+x) \le K' + \frac{2}{\alpha}\phi(x), x \ge 0$$
 (3.5)

where K'=1+ log (1+ x_0). Hence , for $f \in H_{\phi}(\Omega)$ by (3.5) we have for all $z \in \Omega$

$$\log(1+|f(z)|) \leq \mathbf{K}' + \frac{2}{\alpha}\phi(|f(z)|) \leq \mathbf{K}' + \frac{2}{\alpha}\mathbf{u}(z)$$

where u is the least harmonic majorant of $\phi(|f|) \text{ on } \Omega$. Thus $f \in N(\Omega)$ and hence $H_{\phi}(\Omega) \subseteq N(\Omega)$. The other inclusion follows from above by replacing harmonic majorant by quasi-bounded harmonic majorant.

Next we state the following result in [2,p.261] which is found to be useful for establishing certain properties of $H_{\phi}(\Omega)$.

Proposition 3.4 Let Ω be a domain in C,K a compact subset of Ω and $z_0 \in \Omega$. Then there exist positive numbers α and β (depending on z_0 , K , and Ω) such that

$$\alpha \operatorname{u}(z_0) \le \operatorname{u}(z) \le \beta \operatorname{u}(z_0)$$

for all $z \in K$ and for all $u \ge 0$ with u harmonic in Ω .

Clearly proposition 3.4 implies that different points of reference induce equivalent metrics on $H_{\phi}(\Omega)$. Moreover, letting $u = u_f$ in proposition 3.4 gives the following corollary as a generalization of lemma 3 in [1].

Corollary 3.5 Let K be a compact subset of Ω and $z_0 \in \Omega$. Then there exists a

positive constant $\beta = \beta(z_0, K, \Omega)$ such that

$$\phi(|f(z)|) \leq \beta ||f||_{\phi}$$
, for all $f \in H_{\phi}(\Omega)$ and for all $z \in K$.

Moreover, if ϕ is strictly increasing and unbounded, then

$$|f(z)| \le \phi^{-1}(\beta ||f||_{\phi}), \text{ for all } f \in H_{\phi}(\Omega) \text{ and for all } z \in K$$
(3.6)

where ϕ^{-1} is the inverse of ϕ .

Let $\{f_n\}$ be a sequence in $H_{\phi}(\Omega)$ and $f \in H_{\phi}(\Omega)$. We say that $f_n \to f$ in $H_{\phi}(\Omega)$ as $n \to \infty$ if $d(f_n, f) = ||f_n - f||_{\phi} \to 0$ as $n \to \infty$. Also, we say that $f_n \stackrel{uc}{\to} f$ as $n \to \infty$ if $f_n \to f$ uniformly on compact subsets of Ω as $n \to \infty$.

Corollary 3.6 Let ϕ be a strictly increasing unbounded modulus function. If $f_n \to f$ in $H_{\phi}(\Omega)$ as $n \to \infty$, then $f_n \stackrel{uc}{\to} f$ as $n \to \infty$.

Proof: Use continuity of ϕ^{-1} and (3.6).

In analogy with $H^{p}(\Omega)$ and $N(\Omega)$ we state an integrability condition on $H_{\phi}(\Omega)$ which is equivalent to the least harmonic majorant condition. We omit the proof of this result as well as the proof of completeness of $H_{\phi}(\Omega)$ and a corollary of it because easy modification of the $H^{p}(\Omega)$ or $N(\Omega)$ cases gives the required results. We refer the reader to [8,pp.53,54] for definitions and proofs.

Theorem 3.7 Let ϕ be a strictly increasing unbounded modulus function and $f \in H(\Omega)$. Then $f \in H_{\phi}(\Omega)$ iff for all regular exhaustions $\{\Omega_n\}$ of Ω

there exists a constant C such that

$$\int_{\partial \Omega_n} \phi(|f|) d\omega_{n,z} \leq C < \infty , n = 1,2,3...,$$

where $\omega_{n,z}$ is the harmonic measure on $\partial \Omega_n$, the boundary of Ω_n , and for some point $z \in \Omega_1$.

Theorem 3.8 Let ϕ be a strictly increasing unbounded modulus function. Then($H_{\phi}(\Omega)$,d) is a complete metric space. Moreover, the topology in $H_{\phi}(\Omega)$ is stronger than that of uniform convergence on compact subsets of Ω .

Corollary 3.9 Let ϕ be a strictly increasing unbounded modulus function and $\{f_n\}$ is a sequence in $H_{\phi}(\Omega)$. If $\{||f_n||_{\phi}\}$ is bounded, then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \xrightarrow{u_c} f$ as $k \to \infty$ where $f \in H_{\phi}(\Omega)$.

As in $H^{p}(\Omega)$ and $N(\Omega)$ the uniformization theorem can be used to identify $H_{\phi}(\Omega)$ and $H_{\phi}^{+}(\Omega)$ with closed subspaces of H_{ϕ} . Let $\varphi: D \to \Omega$ and G be as in the uniformization theorem. Define the following subspaces of H_{ϕ} by

$$H_{\phi}/G = \{ f \in H_{\phi} : f \circ g = f \text{ for all } g \in G \}$$

and

$$H_{\phi}^{+}/G = \{ f \in H_{\phi}^{+} : f \circ g = f \text{ for all } g \in G \}$$

Also, define A: $\to H_{\phi}/G H_{\phi}(\Omega)$ by Af = f $\circ \phi$ for all $f \in H_{\phi}(\Omega)$. Then as in $H^{p}(\Omega)$ and $N(\Omega)$ we have the following results.

Theorem 3.10 Let ϕ be a strictly increasing unbounded modulus function. Then H_{ϕ}/G and H_{ϕ}^+/G are closed and hence complete subspaces of H_{ϕ} .

Proof: Since by theorem 3.8, or from the definition, H_{ϕ} is complete it suffices to show that H_{ϕ}/G and H_{ϕ}^+/G are closed subspaces of H_{ϕ} . So let $\{f_n\}$ be a sequence in H_{ϕ}/G such that $f_n \to f$ in H_{ϕ} as $n \to \infty$ and

 $f \in H_{\phi}$. We prove that $f \in H_{\phi} / G$. For each $g \in G$ Harnack's inequality gives

$$\| f_n \circ g - f \circ g \|_{\phi} = \| (f_n - f) \circ g \|_{\phi} = u_{(f_n - f) \circ g}(0) \le (u_{f_n - f} \circ g)(0) = u_{f_n - f}(g(0))$$

$$\le \frac{1 + |g(0)|}{1 - |g(0)|} u_{f_n - f}(0) = \frac{1 + |g(0)|}{1 - |g(0)|} \| f_n - f \|_{\phi}$$

Thus $f_n = f_n \circ g \to f \circ g$ in H_{ϕ} as $n \to \infty$. Corollary 3.6 implies that $f_n \xrightarrow{uc} f \circ g$ as $n \to \infty$ and $f_n \xrightarrow{uc} f$ as $n \to \infty$. Thus $f \circ g = f$ for all $g \in G$ which proves that $f \in H_{\phi} / G$.

The completeness of H_{ϕ}^+ and the above argument imply that H_{ϕ}^+/G is a closed subspace of H_{ϕ} .

The proof of the next result is similar to that in case of $H^p(\Omega)$ and $N(\Omega)$ and we omit it (see [8,p.63]).

Theorem 3.11 Let ϕ be a strictly increasing unbounded modulus function. Then A: $H_{\phi}(\Omega) \rightarrow H_{\phi}/G$ where Af = f ϕ ofor all $f \in H_{\phi}(\Omega)$ is an onto isometric isomorphism.

The isometry A can be used to prove the following results.

Corollary 3.12 Let ϕ be a strictly increasing unbounded modulus function. Then

- 1. $H_{\phi}(\Omega)$ is a complete metric space and $H_{\phi}^{+}(\Omega)$ is an F-space.
- 2. $\bigcup_{p\geq 1} H^{p}(\Omega) \subseteq H^{+}_{\phi}(\Omega) \ H_{\phi}(\Omega) \subseteq$ (3.7)

Proof: The general form of Lebesgue dominated convergence theorem (see [10,p.89])and (3.2) imply that $H^1 \subseteq H_{\phi}^+$. Therefore,

$$\bigcup_{p>1} H^p \subseteq H^1 \subseteq H_{\phi}^+ \subseteq H_{\phi}$$

and

$$\bigcup_{p\geq 1} H^p / G \subseteq H^1 / G \subseteq H_{\phi}^+ / G \subseteq H_{\phi} / G$$
(3.8)

where $H^p/G = \{f \in H^p : f \circ g = f \text{ for all } g \in G\}$, p > 0. Since [3, p.392] a non-negative harmonic function $u \text{ on } \Omega$ is quasi-bounded iff $u = u \circ \varphi$ is quasi-bounded on D, it follows that A: $H^+_{\phi}(\Omega) \to H^+_{\phi}/G$ is an onto isometric isomorphism. Therefore, $A^{-1}(H_{\phi}/G) = H_{\phi}(\Omega)$ is complete and $A^{-1}(H^+_{\phi}/G) = H^+_{\phi}(\Omega)$ is an F- space . Moreover, since [8] A restricted to $H^p(\Omega)$ is an isometric isomorphism onto H^p/G , p > 0, (3.8) implies (3.7).

We note that corollary 3.12 is an improvement of lemma 3.1.

4. Ω is a multiply connected domain

We start by noting that in analogy with $H^p(\Omega)$ and $N(\Omega)$, $H_{\phi}(\Omega)$ is conformally invariant, i.e., if φ is a 1-1 holomorphic mapping of a domain Ω^* onto a domain Ω , the point of reference in Ω is z_0 , and the point of reference in Ω^* is $w_0 = \varphi^{-1}(z_0)$, then $f \circ \varphi \in H_{\phi}(\Omega^*)$ for each $f \in H_{\phi}(\Omega)$ and $||f||_{\phi} = ||f \circ \varphi||_{\phi}$. This is a consequence of the fact that φ carries the least harmonic majorant of $\phi(|f|)$ to the least harmonic majorant of $\phi(|f \circ \varphi|)$, i.e., $u_{f \circ \varphi} = u_f \circ \varphi$. Thus if Ω is simply connected,

An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002 -

18 -

then $H_{\phi}(\Omega)$ and H_{ϕ} are isometrically isomorphic. Also, when Γ , the boundary of Ω , is a rectifiable Jordan curve each $f \in H_{\phi}^{+}(\Omega)$ has boundary values f^{*} see ([8,p.88]). Moreover, the following decomposition theorem for functions in $H_{\phi}(\Omega)$ is a generalization of those for $H^{p}(\Omega)$ and $N(\Omega)$ (see [2.p.236],[3,p.86], and [5,p.512]).

Theorem 4.1 Let Ω be a finitely connected domain whose boundary Γ consists of disjoint analytic simple closed curves $\Gamma_1, \Gamma_2, ..., \Gamma_n$. Let U_k be the domain with boundary Γ_k which contains Ω , $1 \le k \le n$. Then for all $f \in H_{\phi}(\Omega)$ there exists $f_k \in H_{\phi}(U_k)$ such that

$$f = \sum_{k=1}^{n} f_k \quad on \, \Omega$$

Moreover, if $f \in H_{\phi}^{+}(\Omega)$, then $f_{k} \in H_{\phi}^{+}(U_{k})$, $1 \le k \le n$.

Let the pair (D, φ) be the universal covering surface of Ω with $\varphi(0) = z_0 \text{ in } \Omega$ and ω is the harmonic measure on Γ for z_0 . We point out that, as in $H^p(\Omega)$ [8,p.88], theorem 4.1 implies that each $f \in H^+_{\phi}(\Omega)$ has boundary values f^* and $\phi(|f^*|) \in L^1(\Gamma, \omega)$.

If $a = re^{i\theta} \in D$ and $z = \varphi(a)$, then [8,p.50]

$$\int_{\Gamma} u d\omega_z = \frac{1}{2\pi} \int_{0}^{2\pi} (u \circ \varphi^*) (e^{it}) P_r(\theta - t) dt \quad , \ u \in L^1(\Gamma, \omega)$$
(4.1)

where P is the Poisson kernel, φ^* is the boundary values of φ , and ω_z is the harmonic measure on Γ for z. In particular, if a = 0, then

——" $H_{_{\phi}}(\Omega)$ and $H_{_{\phi}}^{_{+}}(\Omega)$ Spaces"

$$\int_{\Gamma} u d\omega = \int_{T} u \circ \varphi^* d\sigma , \ u \in L^1(\Gamma, \omega)$$
(4.2)

Now we are ready to give an integrability condition for functions in $H_{\phi}^{+}(\Omega)$ which is a generalization of the special case $\Omega = D$. Moreover, we give a formula for u_{f} when $f \in H_{\phi}^{+}(\Omega)$.

Theorem 4.2 Let Ω be a finitely connected domain whose boundary Γ consists of disjoint analytic simple closed curves .Then $f \in H_{\phi}^{+}(\Omega)$ iff

$$\|f\|_{\phi} = \int_{\Gamma} \phi(|f^*|) d\omega$$
(4.3)

Moreover, if $f \in H_{\phi}^{+}(\Omega)$, then

$$u_{f}(\mathbf{z}) = \int_{\Gamma} \phi(|f^{*}|) d\omega_{z}, \mathbf{z} \Omega \in$$
(4.4)

Proof: Suppose that $f \in H_{\phi}^{+}(\Omega)$. Then by (4.2) we have

$$||f||_{\phi} = ||Af||_{\phi} = ||f \circ \varphi||_{\phi} = \int_{T} \phi(|(f \circ \varphi)^*|)d\sigma = \int_{T} \phi(|f^* \circ \varphi^*|)d\sigma = \int_{\Gamma} \phi(|f^*|)d\omega.$$

Thus (4.3) holds.

Conversely, suppose that (4.3) holds .Then

$$\|f \circ \varphi\|_{\phi} = \|f\|_{\phi} = \int_{\Gamma} \phi(|f^*|) d\omega = \int_{T} \phi(|f^* \circ \varphi^*|) d\sigma = \int_{T} \phi(|(f \circ \varphi)^*|) d\sigma$$

Thus $f \circ \varphi \in H_{\phi}^+ / G$ and $f \in H_{\phi}^+(\Omega)$ by the isometry A.

Next if $f \in H_{\phi}^{+}(\Omega)$, then $f \circ \varphi \in H_{\phi}^{+}/G$ and by corollary 2.5 we have

$$u_{f \circ \phi} = P[\phi(|(f \circ \phi)^*|)d\sigma].$$

Hence, if $\zeta = \varphi^{-1}(z)$, then (4.1) and $u_f = u_{f \circ \phi} \circ \varphi^{-1}$ imply that

$$u_f(z) = (u_{f \circ \phi} \circ \phi^{-1})(z) = u_{f \circ \phi}(\zeta) = \int_T \phi(|(f \circ \phi)^*(e^{it})|) P_r(\theta - t) d\sigma = \int_\Gamma \phi(|f^*|) d\omega_z$$

where $\zeta = re^{i\theta}$.

References

- W.Deeb andM. Marzuq,"H(φ) spaces ",*Canad.Math.Bull*.Vol.29(3), pp.295-301, (1986)
- 2] M.Masri, "The $N(\Omega)$ and $N^+(\Omega)$ Classes and Composition Operators ", *Dirasat*, **21** B (5), pp. 257-268, (1994).
- 3] J. Shapiro and A. Sheilds, "Unusual Topological Properties Of the Nevanlinna Class", *Amer. J. of Math.*, Vol. **97**, No. 4, pp. 915-936, (1976).
- 4] W. Deeb, R. Khalil and M.Marzuq,"Isometric Muliplication of Hardy-Orlicz Spaces", *Bull. Austral. Math. Soc.*, Vol **34**, pp. 177-189, (1986).
- 5] M. Masri, "R (Ω) is dense in " $N^+(\Omega)$, *Dirasat*, pp. 512-513, (1997).
- 6] M. Masri, "Compact Composition Operators on the Nevanlinna and Smirnov Classes, "Dissertation, Univer. of North Carolina at Chapel Hill, (1985).
- 7] P.L, Duren, Theory of- H^{p} spaces, Academic Press, New York, (1970).
- 8] S. D. Fisher, Function Theory on Planar Domains, John Wiley and Sons, Inc., (1983).
- 9] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, (1969).
- 10] H. L. Royden, Real Analysis, 2nd ed., Macmillan Company, New York, (1968).