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Analytical and Numerical Methods for Solving 

Heat Conduction problems Transient 

By 

Abdullah Edwan Abdullah Nassar 

By 

Supervisor 

Prof. Naji Qatanani 

Abstract 

The modeling of systems involving heat conduction problems is widely 

spread among scientists and engineers due to their wide range of 

applications in science and technology. 

In this work, we will present some important analytical and numerical 

results concerning heat conduction problems and their applications. 

First, we will use the Fourier law of heat conduction to derive the 

composition equation of heat transfer for different regions. The concept of 

boundary and initial conditions will also be illustrated. The heat conduction 

problems subject to some boundary and initial conditions for various 

domains will be solved analytically using the separation of variables, 

Laplace transforms, Duhamel's and Green's function methods. Numerical 

approach based on the finite difference method (FDM) has been analyzed 

and implemented to solve some heat conduction problems. A comparison 

between the analytical and numerical results have been drawn. Numerical 

results have shown to be in a close agreement with the exact ones. In fact, 

the FDM is one of the most efficient numerical methods for solving heat 

diffusion problems.         
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Introduction 

 Many heat conduction problems encountered in engineering applications 

involve time as independent variable. The effects of heat exchange are 

subject to constant laws cannot be discovered without the mathematical 

analysis of heat exchange models. The object of the theory is to 

demonstrate these laws. Jean Biot (1774-1862) has studied the heat 

conduction equation but was unsuccessful at dealing with the problem of  

incorporating external convection effects in heat conduction analysis, see 

[13]. Joseph Fourier (1768-1830) determined how to solve the problem of 

Biot's work in 1807 and gave the well-known Fourier's law of cooling. 

Ernst Schmidt (1892-1975) was a German scientist and pioneer in the field 

of Engineering thermodynamic, especially in heat and mass transfer, see 

[6]. He published papers on the now well-known "Graphical Difference 

Method for Unsteady Heat Conduction" and on "Schieren and Shadow 

Method" to make thermal boundaries visible and to obtain local heat 

transfer coefficients. He was the first to measure the velocity and 

temperature field in a free convection boundary layer and the large heat-

transfer coefficients occurring in doplet conduction. In recent years, many 

researchers have worked on the mathematical analysis of the heat 

conduction equation (see for example [1, 2, 3, 7, 11, 12]). For heat 

conduction equation there are two main research areas in the solution of 

transient problems: One of these areas is the analysis of transient well-

posed problems such as direct heat conduction problems for which all 

required information such as the boundary and initial conditions as well as 
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the coefficients of the transient heat equation and the geometry of the 

solution domain are given prior to the solution process. The second 

important topic is concerned with the analysis of the so called inverse 

problems. These inverse heat conduction problems arise when not all 

necessary conditions are given, see [12]. In this case, the numerical 

solution for the temperature and the heat flux must be recovered with the 

aid of auxiliary measurements inside the domain. It is important to note 

that inverse heat conduction problems are widely used in the modeling of 

industrial problems including atmospheric (for example see [15]), and also 

in the spray cooling for the quenching of iron ingots, see [20]. The goal of 

the analysis is to determine the variation of the temperature as a function of 

time and position        in one dimension. In general, we deal with 

conducting bodies in a three-dimensional Euclidean space in a suitable set 

of coordinates       and the goal is to predict the evolution of the 

temperature field for future times          Here we investigate 

specifically solutions to selected special cases of the transient heat 

conduction equation: 

                                                  
   

  
                                               (*)                                                             

where    = ( 
  

  
  ⃗ +  

  

  
    ⃗⃗⃗ + 

  

  
  ⃗⃗),     is source of strength for a 

homogeneous heat,    is heat capacity or specific heat,              

is the temperature and   is the density. Equation (*) must be solved on 

different domains, subject to suitable initial and boundary conditions. 

Solutions to equation (*) involving analytical and numerical methods, see 
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[14, 8, 9], will be investigated. In chapter one we study the main 

characteristic features of heat conduction problems and their inherent 

complexities. The governing partial differential equation of heat conduction 

with some types of associated boundary conditions will be presented. In 

chapter two, we present some analytical methods for the transient heat 

conduction equation (*) on various domains. This involves separation of 

variables method, Laplace transform method, Duhamel's method and 

Green's function method. In chapter three, we investigate the numerical 

handling of the one-dimensional transient heat conduction equation (*) for 

plane wall, cylinder, and sphere. This can be a achieved by implementing 

the finite difference method (FDM). The main idea of the FDM is to 

replace the partial derivatives equation by finite difference approximations. 

FDMs are thus discretization methods. Some numerical test cases on heat 

conduction problems have been solved and the numerical and exact results 

have been compared.   
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1.1. Introduction                                                                   

Heat conduction is one of the three basic modes of thermal energy 

transport; convection, radiation and conduction. It is involved in virtually 

all process of     –          operations. Many routine process-

engineering problems can be solved with acceptable accuracy using simple 

solutions of the heat conduction equation for plane wall, cylindrical, and 

spherical geometries. This chapter gives an introduction to the macroscopic 

theory of heat conduction and presents the mechanism of the heat 

conduction equation and its characteristics. 

1.2. Fourier's Law of Heat Conduction 

Joseph Fourier developed the mathematical theory of heat conduction early 

in the nineteenth century. The theory was based on the results of 

experiments similar to that illustrated in figure(1.1) in which one side of a 

plane wall solid is held at temperature   , while the opposite side is held at 

a lower temperature    .The other four sides are insulated so that heat can 

flow only in the x-direction, it is found  that the rate;   , at which heat 

(thermal energy) is transferred from the hot side to the cold side is 

proportional to the   cross-sectional area  , across which the heat flows; the 

temperature difference,      ; and inversely proportional to the 

thickness,  , that is: 

                                                           . 
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Writing this relationship as an equality, we have:  

                                 = 
           

 
                                                       (1.1)  

 

Figure 1.1: one-dimensional heat conduction in a solid. 

The constant of proportionality   is called the thermal conductivity; it is a 

property of the material , as such, it is not really a constant, but rather it 

depends on the nature of material, i.e., on the temperature and pressure of 

the material, but usually negligible. when the temperature dependence must 

be taken into account, a linear function is often adequate, particularly for 

solids, in this case: 

                                                                                       (1.2) 

where   and   are constants. Thermal conductivities of a number of a 

materials found in many physical References including, see [12]. Methods 

of estimating thermal conductivities of fluids when data are unavailable can 

be found in the authoritative book by Polingetal, see [1]. The form of 

Fourier's law given by equation (1.1) is valid only when the thermal 

conductivity can be assumed constant, more general result can be obtained 

by writing the equation for an element of differential thickness. Thus, let 
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the thickness be △  and let △       –     substituting in equation (1.1) 

gives: 

                                     =  
      △  

△ 
                                               (1.3) 

now in the limit as △   approaches to zero,  
△ 

△ 
  ⟶ 

  

  
 ,   

and equation (1.3) becomes :                         

                                                  
  

  
                                             (1.4) 

Equation (1.4) is not subject to the restriction of constant  , furthermore, 

when   is constant, it can be integrated to yield equation (1.1). Hence, 

equation (1.4) is the general    –             form of Fourier's law, the 

negative sign is necessary because heat flows in the positive x-direction 

when the temperature decreases in the   direction. Thus, according to the 

standard sign convention that    is positive when the heat flows in the 

positive x-direction,    must be positive when  
   

  
 is negative. It is often 

convenient to divide equation (1.4) by the cross–sectional area to give: 

                                      ̅   = 
   
 

 =     
  

  
                                     (1.5) 

where  ̅x is the heat flux, see [8], equations (1.1), (1.4) and (1.5) are 

restricted to the situation in which the heat flows in the x- direction only. In 

the general case in which heat flows in all three coordinate directions, the 

total heat flux obtained by adding vector ally the fluxes in the coordinate 

directions, thus:  

                                      ⃗⃗̅ =  ̅x  ⃗ +  ̅y  ⃗+ ̅z  ⃗⃗                                 (1.6) 
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where  ⃗⃗̅ is the heat flux vector and   ⃗,   ⃗,  ⃗⃗ are unit vectors in the x-,y-, z- 

directions, respectively. Each of the component fluxes is given by a one- 

dimensional Fourier's expression as follows: 

                     ̅x  = - 
  

  
 ,  ̅y = - 

  

  
  ,  ̅z= - 

  

  
                       (1.7) 

partial derivatives are used here since the temperature now varies in all 

three directions. Substituting above expressions for all fluxes into equation 

(1.6) gives: 

                             ⃗⃗̅= -   ( 
  

  
  ⃗ +  

  

  
    ⃗⃗⃗ + 

  

  
  ⃗⃗)                           (1.8) 

the vector in parenthesis is the temperature gradient vector, and is denoted 

by  ⃗⃗T. Hence:           

                                         ̅⃗⃗ ⃗⃗ = -    ⃗⃗                                           (1.9) 

Fourier's law states that heat flows in the direction of greatest temperature 

decrease, see [20]. 

1.3. One-dimensional Heat Conduction Equation 

Heat conduction in many geometries shapes, as plane wall, cylinder and 

sphere can be approximated as being one-dimensional since heat 

conduction through these geometries is dominant in one direction and 

negligible in other directions. 
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1.3.1. Heat Conduction Equation in Plane Wall 

Consider a plane wall of thickness△  , as shown in figure (1.2), see [4]. the 

density of the wall  , specific heat is   , and the area of the wall normal to 

the direction of heat is  . Therefore, the energy balance during the interval 

time △   it can be formulated, see [18]: 

 Rate of heat conduction at    

- Rate of heat conduction at   △    

+ Rate of heat generation inside the element  

= Rate of change of the energy content of the element  

Or 

        –     △                  =
△         

△ 
                         (1.10) 

 

Figure 1.2: one-dimensional heat conduction through a volume element in a large plane wall.  

but the change in the energy content of the element and the rate of heat 

generation with in the element can be expressed as: 
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△         =     △   –    =      △        △    –T(t)       (1.11) 

             = .                    = . .△                    (1.12) 

where   is source of strength for a homogeneous heat, see [17], substituting  

into equation (1.11), we get: 

     –     △         △  =       △  .( 
     △       

△ 
)        (1.13) 

dividing by  △    we obtain: 

  
  

 

    △       

△ 
 +  =      (

     △       

△ 
 )                              (1.14)  

taking the limit as △   ⟶    and △   ⟶   , the result: 

                          
  

 

 

  
      +  =      

  

  
                                   (1.15) 

substituting      from equation (1.4) in equation (1.15), we get: 

                                         

 

 

 

  
(  

  

  
)         

  

  
                             (1.16)  

Because area   is constant, equation (1.16) becomes: 

                              
 

  
( 

  

  
)        

  

  
                                    (1.17) 

where the thermal conductivity   is variable, but   in most practical 

applications is constant, so equation (1.17) becomes: 

                             
   

   
 + 

 

 
 = 

   

 

  

  
                                                     (1.18) 
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where        is a function of   and  , and         is known as  ; the 

thermal  diffusivity, see [4], it represents heat quickly spread through the 

material. 

1.3.2. Heat Conduction Equation in Cylinder 

Consider a cylinder with thickness △   as shown in figure (1.3), see [4], 

with density  , specific heat     and length  , the area of the cylinder is 

        , where   is radius of cylinder, an energy balance of cylinder 

shell during  small time interval △  , it can be described as: 

 Rate of heat conduction at    

- Rate of heat conduction at   △    

+ Rate of heat generation inside the element  

= Rate of change of the energy content of the element  

or 

             –     △                   =
△        

△ 
                      (1.19) 

 

Figure 1.3: one-dimensional heat conduction through a volume element in a long cylinder. 
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The change in energy content of the element and the rate generation within 

the element can be expressed as: 

△         =     △   –    =      △        △    –T (t)      (1.20) 

           =           =    △                                         (1.21) 

substituting equation (1.21) into equation (1.19), we get: 

     –     △         △  =         △  ( 
    △   –     

△ 
          (1.22) 

now dividing equation (1.22) by   △  , we obtain: 

 
  

 

    △       

△ 
 +   =      ( 

     △       

△ 
  )                              (1.23) 

taking the limit as △   ⟶    and △   ⟶   , equation (1.23) becomes: 

                                        

 

 

 

  
(  

  

  
)        

  

  
                               (1.24) 

where         where   is a variable ,so equation (1.24) becomes: 

                          
 

 

 

  
(  

  

  
)         

  

  
                             (1.25) 

where   is a variable. On the other hand if   is a constant then equation 

(1.25) becomes:  

                         
 

 
 
 

  
( 

  

  
)  

 

 
  

   

 
 
  

  
                                                        (1.26) 

1.3.3. Heat Conduction Equation in Sphere 

Consider a sphere with density  , specific heat    , and outer radius   and 

area          where   is the radius of sphere, note the heat transfer area 
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  depends on radius    so it varies with location, by considering a thin 

sphere shell element of thickness △   and repeating the approach described 

for the cylinder by using         instead of       , the one–

dimensional transient heat conduction equation for sphere is determined to 

be figure (1.4), see [18]: 

                                  
 

  
 

  
(   

  

  
)        

  

  
                        (1.27) 

where   is variable, on the other hand if   is a constant then equation (1.27) 

becomes:  

                                 
 

  
 

  
(  

  

  
)  

 

 
  

   

 

  

  
                            (1.28) 

where         is the thermal diffusivity of the material, see [16]. 

 

Figure 1.4: one-dimensional heat conduction through a volume element in sphere. 

1.3.4. Combined One–dimensional Heat Conduction Equation  

All of the one–dimensional transient heat conduction equations for the 

plane wall, cylinder and sphere can expressed in compact form as:           

                             
 

  
 

  
(   

  

  
)        

  

  
                            (1.29) 
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where     for a plane wall, with change   to       for a cylinder and 

    for a sphere, equation (1.29) can be simplified under specified 

conditions, when   is constant, see [20], these conditions are: 

1) Steady–state: In the sense that the temperature inside the steel body 

does not change with time, but vary by location and despite the fact that 

this assumption is not realistic, but an essential starting point for dealing 

to simplify matters for the novice, so equation (1.29) becomes: 

                                      
 

  
 

  
(  

  

  
)  

 

 
                       (1.30) 

2) Transient without heat generation: There is an emerging energy 

inside the body and that the thermal energy is transferred through the 

body of steel from the source only         equation (1.29) becomes: 

                                 
 

  
 

  
(  

  

  
)   

   

 

  

  
                    (1.31) 

3) Steady–state without heat generation: In this case  
  

  
    and 

    , equation (1.29) becomes: 

                           
 

  
(  

  

  
)       or       

   

   
 +  

  

  
 = 0      (1.32) 

1.4. Initial and Boundary Conditions 

In order to obtain a unique solution for a differential equation one needs to 

specify additional conditions–usually one for every derivative  . Since the 

one dimensional heat equation contains  
  

  
 , so we will add an initial 

condition such as:  
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             ,           (initial temperature distribution), and the 

heat equation contain  
   

   
 , so we usually add two boundary conditions. 

There are many types of boundary condition, see [5], for example: 

1) Specified Temperature Boundary Condition: 

                                 and                   , 

where    and     are the specified temperatures. The specified temperatures 

can be constant, which is the case for steady heat conduction. 

2) Specified Heat Flux Boundary Condition: 

                 
  

  
         and     

  

  
         ,      .   

A Special Case: 

                     
  

  
         

  

  
       ,       , 

called insulated boundary conditions. 

3) Convection Boundary Condition: 

                
  

  
                        

and 

               
  

  
                       

where    and    are the convection heat transfer coefficients and     and    

are the temperatures of the surrounding mediums on the two sides.  
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2.1. Introduction  

In this Chapter, we will solve the heat conduction equation (*) in one 

dimension subject to some specific boundary and initial conditions for 

plane wall, cylinder and sphere. 

Moreover, the thermal conductivity   is considered to be constant in all 

these cases. 

2.2. One–dimensional Heat Conduction Equation  

2.2.1. Steady–State  

1) Plane Wall 

Consider 
  

  
   in equation (1.18), we get: 

               
   

   
 + 

 

 
 =  ,   constant ,                                          (2.1) 

Where   is a function of  , with boundary conditions:    

                                               

then by integrating equation (2.1) with respect to   twice, we obtain:  

                              = - 
 

  
   +                                        (2.2)                                                                                                          

Applying the boundary conditions, we get:  

             and         - 
 

  
            

So, we get:                       
     

 
 + 
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substituting   and    into equation (2.2), we get : 

                 - 
 

  
    

 

  
  

       

 
   +                             (2.3) 

where            equation (2.3) is the general formula for one-dimensional 

heat conduction of plane wall with steady-state condition. 

2) Cylinder: 

Consider 
  

  
   in equation (1.26), we obtain: 

 

 

 

  
( 

  

  
)  

 

 
  ,   constant,                                            (2.4) 

where   is a function of  , with boundary conditions:  

                                            ,            

then integrating equation (2.4) with respect to  , we get : 

                                 
  

  
  - 

   

  
                                (2.5) 

Again we integrate equation (2.5) with respect to  , to obtain:  

                                 
    

  
                                     (2.6)  

Applying the above boundary conditions gives: 

                             = 
    

 

  
               

and  

                            = 
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this gives: 

                       = 
       

    
  
  
 
 

 

  

   
    

  

    
  
  
 

                              (2.7) 

and        

            =                    + 
 

  

   
          

        

    
  
  
 

        (2.8) 

 If we need to determine       at any          , first we find     from 

equations (2.7) and (2.8), then we find       from equation (2.6). 

3) Sphere 

Consider 
  

  
   in equation (1.28), we obtain: 

 

  
 

  
(  

  

  
)+ 

 

 
   ,   constant,                                    (2.9) 

Where   is a function of  , with boundary conditions:  

                                                   

Then by integrating equation (2.9) with respect to   twice, we obtain: 

                                  = 
    

  
   

 

 
 +                                             (2.10)                  

Apply the above boundary conditions, we obtain: 

                               = 
    

 

  
 

 

  
   =    

 and                        

                              = 
    

 

  
 

 

  
   =     
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This yields:     

                       
    

     
 

 

  
                                 (2.11)   

and 

              (
         

     
) + 

 

  
   

         
                                (2.12) 

If we to need determine       at any          , first we find     from 

equations (2.11) and (2.12), then we find       from equation (2.10). 

2.2.2. Steady–State without Heat Generation  

1) Plane wall: 

Consider 
  

  
   and     in equation (1.18), we get: 

                       
   

   
 = 0 ,                                                   (2.13) 

with boundary conditions:     

                                         

by integrating equation (2.13) with respect to   twice, we obtain:  

                                                                                            (2.14)  

Using the above boundary conditions, we get:  

                              and             
     

 
  

Substituting   and   in to equation (2.14) gives:              

           T( ) = 
     

 
       ,                                       (2.15) 
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2) Cylinder: 

Consider 
  

  
 =   and     in equation (1.26), we obtain: 

                   
 

  
( 

  

  
)= 0,                                              (2.16) 

with boundary conditions:   

                                            

then by integrating equation (2.16) with respect to   twice, we have: 

                                                                               (2.17) 

subject to boundary conditions gives: 

                                         

and  

                                       

hence:   

               = 
       

    
  
  
 

      and       =
                   

    
  
  
 

  

substituting   and   in equation (2.17), we obtain the general solution: 

            = 
       

    
  
  
 
        

                   

    
  
  
 

                (2.18) 

where          . 
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3) Sphere: 

Consider 
  

  
   and     in equation (1.28), we get: 

               
 

  
(  

  

  
)    ,                                                  (2.19) 

with boundary conditions: 

                               and            

integrating equation (2.19) with respect to   twice, we obtain: 

                                  
  

 
                                               (2.20) 

subject to boundary conditions gives: 

              = 
  

  
         and         = 

  

  
       

This yields: 

                    = 
       

       
         and       = 

           

       
 

substituting   and   in to equation (2.20), we obtain:  

                           = 
            

        
 

           

       
                               (2.21) 

where             

2.2.3. Transient without Heat Generation 

Equation (1.31) can be rewritten as:  

                                 
 

  
 

  
(  

  

  
)= 

 

 

  

  
                                      (2.22)   

where   (
 

   
) is called the thermal diffusivity. 
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This equation subject to some specific boundary and initial conditions will 

be solved analytically when       and   for plane wall, cylinder and 

sphere, respectively.  

1) Separation of Variables Method 

The method of separation of variables (sometimes called the method of 

Fourier) is a convenient method for solving the heat conduction equation, 

basically, it entails seeking a solution which breaks up into a product of 

functions, each of which involves only one variable. For example, in two 

variables, the solution of        in general can be written as, see [1]: 

                                                           

this separates out the partial differential equation into two or three ordinary 

differential equations, which related by a common constant, see [1], we 

begin for transient one-dimensional heat conduction equation for: 

1) Plane Wall 

Consider     in equation (1.18), we get: 

                             
   

   
= 

 

 

  

  
                                                     (2.23)  

Subject to the boundary conditions: 

                                                         

and the initial condition: 
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Using separation of variables method: 

                                                                                 (2.24)  

set equation (2.24) into equation (2.23),  we get: 

                                         = 
 

 
                                        (2.25) 

hence:               

                                =              =                          (2.26) 

  is negative constant because physical reasons of a temperature function 

that either increases or decreases monotonically depending on the initial 

conditions and the imposed boundary conditions, the general solutions for 

the two equations in (2.26) becomes: 

                                                                         (2.27) 

 where      , and: 

                                                                                               (2.28) 

where     and   are constants, substituting equations (2.27) and (2.28) 

into equation (2.24), we get: 

                                                              (2.29) 

now we introduce the boundary conditions: 

                             , implies:             
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necessarily    , we obtain:  

                                               

then:                 

                               , implies             

Necessarily,           , hence:  

                            
  

 
 ,         

we get to:             

                           
  

 
 ,          

   are the eigenvalues and           are the eigenfunctions of the Stumm- 

Liouville problem, see [13], satisfied by       Each value of      yields an 

independent solution satisfying the heat equation  as well as the two 

boundary conditions, we have an infinite number of independent solutions 

               
 , then we obtain: 

          =              
    ,                                        (2.30)  

Where           and      
  = -   . 

Hence the general solution is: 

      = ∑        
 
    ∑               

    
   

    

                                      ∑         
  

 
       

  

 
    

            (2.31) 
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then by the initial condition, we have: 

                  =      ∑         
   

 
  

                             (2.32) 

then by Fourier cosine series, gives: 

              
 

 
∫     (   (

  

 
)  )   

 

 
 ,                           (2.33) 

2) Cylinder 

Consider     in equation (1.26), we get: 

                     
 

 
 
 

  
  

  

  
)= 

 

 
 
  

  
                                                 (2.34) 

subject to the boundary conditions: 

                           

and the initial condition: 

                                                       

Using separation of variables method:  

                                                                               (2.35) 

set equation (2.35) into equation (2.34), we obtain: 

          

 
 + 

         

 
 =  

 

 
           

hence: 
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where     is negative constant for the same reason of   in the plane wall 

previously, we get the following equivalent system of ordinary differential 

equations:  

     

    
              and         

       

     
 

     

     
     

the general solutions to these equations are: 

                                              
                                         (2.36) 

and     

                                                                   (2.37)         

since             and          ,  then equation (2.37) is a special 

case of Bessel's equation, see [9], therefore, the only bounded solution is:     

                                                                                   (2.38) 

where   is a constant and         is the Bessel function of first kind of 

order zero of the argument given by, see [6] : 

                                 = ∑
           

          
 
    ,                              (2.39) 

since          this requires that           0, which defines the 

eigenvalues and eigen functions for this problem. The eigenvalues are thus 

the roots of: 

                                                                                    (2.40)  
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The particular solution of equation (2.37) becomes: 

                                                                                   (2.41) 

then equation (2.35) takes the form: 

                           =           

                                 =             
                                      (2.42) 

where             . 

Hence the general solution is: 

       =  ∑        
 
      

            = ∑          
 
      

            =∑             
     

    
                                              (2.43)         

for determine the      , we use the initial condition:  

                    =     =∑            
 
                                  (2.44)  

this is the Fourier –Bessel series representation of      and one can use 

the orthogonality property of the eigen- functions to write: 

∫               
  
 

 =∑   
 
   ∫                    

  
 

                                        

=   ∫            
     

  
   

 
     

          
       

  
 

                  

                                              
   
   

 
   
                                      (2.45) 
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Where       =  
      

  
 is the Bessel function of first kind of order one of 

argument, therefore:  

                   
 

  
   

       
 ∫                             

  
 

               (2.46) 

Hence the general solution is: 

       = 

 
 

  
 ∑

       

          
     

  ∫               
  
 

 
                            (2.47) 

3) Sphere 

Consider     in equation (1.28), we obtain: 

                          
 

  
 

  
(  

  

  
)  

 

 

  

  
                                           (2.48)   

subject to the boundary conditions: 

                                                                                   

and the initial condition:  

                                 ,     r ≤     

using separation of variables method: 

                                        )                                       (2.49) 

set equation (2.49) into equation (2.48), we get:                                 

                  
  

  
     

    
 + 

      

    
 = 

 

 
 
     

    
 =      
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where      is negative constant again. Thus, we have: 

                                            
                                                 (2.50) 

                          =  
        

 
  

        

 
                                (2.51)  

but         and necessary bounded at     , equation (2.51) 

becomes: 

                                   
        

 
                                          (2.52) 

where   and   are constants and     since the temperature must be 

bounded at    . Moreover, the boundary condition at      yields the 

eigenvalues: 

                                 
  

  
         

and the eigenfunctions: 

                            
  

 
              

the particular solution of equation (2.48) becomes: 

                          
  

 
         

    
                           (2.53) 

where                . Adding all these fundamental solutions 

of the problems gives:                                                                       

       

             ∑         
 
   ∑

  

 
         

    
     

                       (2.54) 
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using the initial condition, we have: 

                                         ∑
  

 
        

 
            

then by Fourier sine series, gives: 

                                   
 

  
 ∫          (

    

  
)   

  
 

                    (2.55) 

2) Laplace Transform Method 

The Laplace transform method converts the heat conduction equation into 

an ordinary differential equation. Then the solution of the ODE must be 

inverted to give the general solution of the original problem. 

Definition(1), see [21]: The Laplace transform of      is: 

                           =      = ∫           
 

   
                       (2.56) 

and the inverse transform is: 

                                   =                                                (2.57)  

where   is the Laplace transform variable. The conditions for the existence 

of the Laplace transform may be summarized as follows: 

1)      is continuous or piecewise continuous. 

2)          is bounded as    +
for some number  , such that     . 

3)      is of exponential order.   
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Now, we can use the Laplace transform method to solve the following heat 

conduction problems: 

1) Plane Wall 

Consider a plane wall, we can solve: 

                                           
        

   
  

 

 

        

  
                       (2.58) 

where        , and times        

subject to the boundary conditions: 

                                                        ,   t > 0  

and the initial condition: 

                                                  ,      . 

Taking the Laplace transform for the equation (2.58), we get:  

          

                              
        

   
 =  

 

 
        ,                        (2.59) 

the laplace transform for the boundary conditions: 

                                                        =  
 

  
 

 

 
            

Hence, the general solution for equation is:                                                                                                                                                                                                 

                                          √
 

 
         √

 

 
         (2.60) 

then by the boundary conditions, we have:  

                           and               √
 

 
    

 

  
 

 

 
    

implies  

                                          = 
    

      √
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then the general solution of equation (2.60) becomes: 

                                     =  
    

      √
 

 
  
    √

 

 
                         (2.61)   

taking the inverse transform for equation (2.61) gives: 

      =     [
    √

 

 
  

       √
 

 
  
]      [

    √
 

 
  

      √
 

 
  
]                      (2.62) 

then by using tables for inverse transform, see [13], we obtain: 

       =   *
 

 
 

 

 
∑

     

 
        

    
   

   + 

                  *
  

 
 

 

  
∑

     

  
                

    
   +            (2.63)  

where      
  

 
 . 

Given the nature of the time–dependent boundary condition, we note that 

there is no steady–state solution to this Problem, see [13]. 

2) Cylinder 

Consider a cylinder with radius  , we can solve:                            

                     
 

 

  

  
( 

        

  
)  

 

 

        

  
                        (2.64) 

or                       

                       
        

   
  

 

 

        

  
  

 

 

        

  
                          (2.65) 

where 0  ˂                ,  
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subject to the boundary conditions: 

                                                       

and the initial condition: 

                                           

Taking the Laplace transform for equation (2.65) we have:    

              
        

   
  

 

 

       

  
 

 

 
       

      

 
           (2.66)  

with boundary conditions: 

                                           = 
  

 
   

Hence, equation (2.66) becomes: 

               
        

   
  

 

 

       

  
 =  

 

 
       

  

  
                   (2.67) 

multiplying equation (2.67) by   , we obtain:  

       
        

   
 +  

       

  
 -( √

 

 
)
 

        =  
    

  
         (2.68)  

equation (2.68) is a modified Bessel equation of order zero, see [6], let 

  =    we obtain:  

           

    +  
       

  
 +(  √

 

 
)
 

      = 
    

   
       (2.69)  

equation (2.69) is a nonhomogeneous modified Bessel equation of order 

zero, with general solution:  
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                                                                         (2.70) 

where         is the homogeneous solution of modified Bessel equation 

of order zero, get as:                                                                                                  

                                     (√
 

 
 )      (√

 

 
 )          (2.71) 

and         is the nonhomogeneous solution of modified Bessel 

equation of order zero, get as:  

                                                                       (2.72) 

implies: 

                                    
   

  
 =                                              (2.73) 

and      

                               
    

    =                                                     (2.74) 

Substitute equations (2.72), (2.73) and (2.74) into equation (2.69), we 

obtain:  

                                        = 
  

  
                                                (2.75)  

hence:  

                         (√
 

 
 )+     (√

 

 
 )+ 

  

  
              (2.76)  

Where: 

                          (√
 

 
 )=∑

(
 

 
  )

 

       
 
    ,                              (2.77)  
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and         , see [9], now we have:                                                                                                

  (√
 

 
 ) = 

 

 
[    (√

 

 

 

 
)]    (√

 

 
 )-

                           ∑
   

 

 
    

       
       

                                       (2.78) 

Where          , see [10],     
 

 
 

 

 
    

 

  
 and   is the 

Euler–Mascheroni constant defined by:  

                         Then by BC's, we have: 

                                and          
  

  
 .  

Hence, the general solution of equation (2.70) is: 

                                
  

  
   (√

 

 
 )   

  

  
                         (2.79)  

Taking      , the general solution of equation (2.64) is:  

               = 
  

   
 ∫   

  

  
   (√

 

 
 )          

    

    
            (2.80) 

3) Sphere 

Consider a sphere of radius  , we can solve: 

                         
 

 
 
           

   
  

 

 

        

  
                                (2.81) 

where 0  ˂                ,  

subject to the boundary conditions:                                 
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and the initial condition:                       . 

First, let                   , so equation (2.81) becomes: 

                                 
         

   
  

 

 

        

  
                       (2.82) 

then taking the Laplace transform for the equation (2.82), we obtain:          

                
          

   
 -  

 

 
       = 

    

 
 ,                      (2.83) 

this solution requires superposition forms, see [21], we obtain:  

                           √
 

 
         √

 

 
   

   

 
           (2.84)   

then using the boundary conditions, we get:  

                                  = 
   

 
 - 

       √
 

 
  

      √
 

 
  
                            (2.85)                      

Taking     , the general solution of equation (2.82) is: 

         =     -    *
 

 
 

 

 
∑

     

 
          

    
   

   +        (2.86)  

where     
  

 
 , 

hence, the general solution of equation (2.81) is: 

                 = 
     

 
∑

     

 

        

 
      

   
                   (2.87) 
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3) Duhamel's Methods  

Duhamel's theorem provides one of extending an analytical solution that 

derived assuming a time invariant term in order to consider the temperature 

response to an arbitrary time variation of that term. It is somewhat easier to 

state Duhamel's theorem than it is understand it; Duhamel's theorem says, 

see [13]: 

If         is the response of a linear system with a      initial temperature 

to a single , constant nonhomogeneous term with magnitude of unity , then 

the response of the same system to a single , time varying nonhomogeneous 

term with magnitude      can be obtained from the fundamental solution 

according to: 

            ∫          
     

  
  

 

   
                        (2.88)             

where      must be continuous in time. In order to apply Duhamel's 

theorem , it is necessary to have a problem with a      initial temperture 

and a single nonhomogeneous term that varies in time. The problem must 

be divided into sub problems. Once this has been accomplished, it is 

necessary to obtain the fundamental solution        to the sub problem 

with the time varying term replaced by a constant value, 1. Finally, 

Duhamel's theorem can be applied to the fundamental solution according to 
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equation (2.88). Now, we can use Duhamel's theorem to solve the 

following heat conduction problems: 

1) Plane Wall   

Consider a plane wall satisfying: 

                                         
        

   
  

 

 

        

  
                    (2.89) 

where 0  ˂                ,  

subject to the boundary conditions: 

         , which is necessary restriction for Duhamel's theorem as 

presented, 

                      { 
                      
                            

  

and initial condition:  

                                         . 

 

The appropriate auxiliary problem here is: 

                                     
        

   
  

 

 

        

  
                                   (2.90) 

subject to boundary and initially conditions:    

                                          

and  

                                                   



41 

The desired function          is obtained from the general solution of 

equation (2.90), see [13]:  

          
 

 
 

 

 
∑      

   
     

  
                 

 
                   (2.91) 

where     
  

 
 , then for          we obtain:  

      = ∫          
     

  
  

 

   
   

           = 
  

 
  + 

  

 
 ∑  

     

   
 (        

  )          
 
          (2.92)  

and for      , we obtain: 

       ∫          
     

  
   

  

   

 

           + ∫          
     

  
   

 

    
+                        (2.93) 

where 
  

  
   when        , 

  

  
   when       and        , 

hence, the general solution of equation (2.93) is: 

      =  
    

 
 

  

 
∑

     

   
 (        

   )        
 
       

              –  
    

 
 

    

 
∑

     

  
        

 
         

              (2.94) 

2) Cylinder 

Consider the heat conduction problem: 

                        
        

   
  

 

 

        

  
   

 

 

        

  
                     (2.95)    

where            ,   
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subject to the boundary conditions:  

                                 and              )   

assume that      has no discontinuities, and initial condition: 

                                                

The appropriate auxiliary problem here is: 

                    
        

   
  

 

 

        

  
   

 

 

        

  
                           (2.96) 

subject to boundary and initially conditions: 

                                     and             

the described function           is obtained from the general solution 

of equation (2.96), see [9]: 

                     =  
 

 
∑

       

         
 
         

  
               (2.97) 

where         are the Bessel's functions of first kind of order zero, one 

respectively, see [6],  and     is the eigenvalues of the positive roots of  

            

Hence, by Duhamel's method and integration equation (2.88) by parts, the 

general solution for equation (2.95) becomes:  

      =

               
  

 
∑      

   
         

       
 ∫      

            
 

   
 
     (2.98)  
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Integrating by parts and using BC's and IC, we obtain: 

      =     
 

 
∑

       

         
  

   

                          
   ∫      

           

  
    

 

   
                 (2.99) 

2.2.4 Non-Homogeneous Transient Heat Conduction Problem 

In this section we will solve some of the nonhomogeneous heat conduction 

equation, i.e., the heat generation        is source of strength. For solving 

these equations, we use Green's function method. While the method of 

separation of variables is applicable to a broad class of problems, the 

method is not often applicable for solving nonhomogeneous we consider 

the following one dimensional, non-homogeneous boundary value problem 

of heat conduction for plane wall and cylinder. 

Definition (2), see [15]: Suppose that we want to solve a linear   

inhomogeneous equation of the form: 

                                         (    )       

where   is a differential operator,       and      are functions whose 

domain is  , it happens that differential operations often have inverses that 

are integral operators, so for previous equation, we might expect a solution 

of the form: 

                                   ∫      
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if such a representation exists, the kernel of this integral operator        

is called the Green's function. 

1) Plane wall 

Consider a one dimensional plane wall over the domain          , for 

      , the non-homogeneous boundary value problem of heat conduction 

problem, given as:  

                              
        

   
 +  

 

 
       =  

 

 

        

  
                 (2.100) 

where            and        is heat generation, subject to the 

boundary conditions: 

                                           and                 

and initial condition: 

                                                      

To obtain the temperature distribution       , for     by the Green's 

function technique, see [8], we consider the homogeneous version of the 

problem defined above over the same region:  

                
        

   
  

 

 

        

  
 ,                         (2.101) 

subject to the boundary conditions:  
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and initial condition: 

                                                 

the general solution for equation (2.101) is, see [8]: 

       =                                                                    

            ∫   
 

 

 

 
∑                     

    
      

            (2.102) 

where the eigenvalues are given by the expression   = 
  

 
 ,          , 

then by comparing this solution by Green's function method, we obtain: 

                                  =∫       
 

 
                               (2.103) 

from the kernel, which becomes, see[21]: 

                

                             
 

 
∑ (                    

    
      ) 

          (2.104) 

Hence, the general solution of the nonhomogeneous problem for equation 

(2.100) is given in terms of the Green's function as, see [8]: 

       

 ∫       
 

 
                 

                   
 

 
∫ ∫       

 

 
               

 

 

                   ∫
           

  

 

 
             

                    ∫
           

  

 

 
                                             (2.105)    
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However, depending on the boundary and initial conditions, we obtain: 

         
  

  
                 implies    

  

  
     

 

 
       

and  

        
  

  
                 implies      

  

  
     

 

 
       

where we have used our sign convention of matching positive conduction 

and convection at each boundary and have set   to unity. Introducing the 

Green's function of equation (2.105) into (2.106), we obtain, see [8]: 

        *
 

 
∑           

    
    

   ∫               
 

 
 +  

   
  

  
∑          

    
    

   ∫ ∫                
    

   
 

 

 

 
  dτ ] 

+ 
  

 
∑             

    
    

   ∫      
            

 

 
 

- ∑      
             

    
    

   ∫      
            

 

 
       (2.106) 

2) Sphere 

Consider a one-dimensional sphere over the domain       that is 

initially at a temperature     , for     . We use Green's function 

method for solving nonhomogeneous heat conduction problem given as: 

               
 

 

  

   
      

 

 
      = 

 

 

   

  
  ,                  (2.107) 

subject to the boundary conditions: 

                                           and                  
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and initial condition:     

                                                            . 

To determine the desired Green's function, we consider the homogeneous 

version of the problem for the same region as, see [8]: 

             
 

 

  

   
    =  

 

 

   

  
  ,                              (2.108) 

subject to the boundary conditions: 

                                                           

and initial condition:         

                                                   

this homogeneous problem has a solution given as: 

        

∫   ∑
                          

        
     

     
   

 

 
                 (2.109) 

where   = 
  

   
 ,             and      is a trivial eigenvalue and 

has been dropped from the summation, then we seek a solution to the 

homogeneous problem of the form: 

       ∫       
 

   
             

                                (2.110)                

where: 

               = 

                       ∑
                     

        
     

   
            (2.111)                            
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now replacing   with       into equation (2.111), we obtain: 

            

                      ∑
                     

        
     

        
        (2.112)                             

then by using Green's function and boundary conditions the general 

solution of the nonhomogeneous equation (2.107) is, see [8]: 

      = ∫       
 

 
             

    

                 
 

 
∫ ∫       

 

 
                  

 

   

                  ∫     
           

  

 

   
                                      (2.113)                     

with the first term accounting for the initial temperature distribution, the 

second term accounting for the internal energy generation and the third 

term accounting for the non-homogeneity at    , we have: 

           
  

  
               and   

  

  
     

 

 
        

The general solution for equation (2.107) is, see [8]: 

      = 

            * ∑
           

      
     

   
    ∫                  

 

 
 + 

            +[ 
  

 
∑

           

      
     

    
    

             ∫ ∫         
 

 
        

                 
 

 
 

              ∑
                                     

      
  

   

                  
   ∫     

   

   
                                                    (2.114) 
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3.1. Introduction  

In this chapter, we will solve the one-dimensional heat conduction equation 

for plane wall, cylinder and sphere, using finite difference method FTCS 

(Forward-Time Central-Space). These equations are: 

1) Plane Wall: 

                    
   

   
     

 

 

   

  
                                           (3.1) 

2) Cylinder: 

                 
 

 

  

  
( 

   

  
)    

 

 

   

  
                                 (3.2) 

 3) Sphere: 

                               
 

  
  

  
(   

   

  
)    

 

 

   

  
                       (3.3) 

 these solutions will be subject to some boundary and initial conditions. 

3.2. Finite Difference Method 

The finite difference method is one of the methods used to obtain numerical 

solutions to solve heat conduction equation. The idea of finite difference 

methods is to replace the partial derivatives equation using finite difference 

approximations with       errors (where        = the local distance 

between adjacent points), see [10], it is involves using discrete 

approximations like: 

                       
       

  
  =    

      
             

 
                   (3.4)  

where                 . This procedure converts the region to a 

mesh grid of points where the dependent variables approximated.  
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The replacement of partial derivatives with difference approximations 

formulas depends on some theories and definitions we will mention them 

first. 

3.2.1. Taylor's Theorem  

Let      has     continuous derivatives under the interval      , then 𝑁

for        and        , we can write the value of      and it's 

derivatives near the point        as:  

         

      +    
 
     + 

  

   
       +   

  

   
         +   

                                            

                    ∑
  

  
 
                

                                         (3.5) 

where: 

1)          Is the      derivative of   with respect to   at the point   . 

2)       ( pronuned as order   to the  n ) is an unknown error term that 

satisfies the property : for              then       
    

  
   , for 

any non-zero constant  , see [11]. When we eliminate the error term, 

     , from the equation (3.5), we get an approximation to          .     

3.2.2. First Order Forward Difference Method 

When solve the equation (3.5) for   
       we get: 

  
      

             

 
 - 

 

   
   

     -…  

               - 
      

       
           -   

                                      (3.6) 
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notice that the powers of   multiplying the partial derivatives have been 

reduced by one. Substitute the approximate solution for the exact solution, 

we obtain: 

  
      ≈ 

             

 
- 
 

   
   

     -…  

              - 
      

       
           -   

                               (3.7) 

then by the mean value theorem, see [15], can be used to replace the higher 

order derivatives as: 

 

   
   

     + …  + 
      

       
            

 

   
   

                  (3.8)  

where           , where the right hand side of equation (3.8) is 

called the truncation error of the finite difference approximation, see [18]. 

So equation (3.7) becomes: 

                   
      ≈ 

             

 
   

  

   
    

                     (3.9) 

In general,   and      are unknown so,    
     cannot be computed, 

although the exact magnitude of the truncation error cannot be known 

(unless the analytical solution of      known). The truncation error 

simply written as: 

                           
  

  
    

                                       (3.10)  
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equation (3.10) means the truncation error is a product of an unknown 

constant and   , so this term approaches      as    is reduced, equation 

(3.9) can be written as: 

                                      = 
             

 
 +                        (3.11) 

This equation is called the forward difference formula, because it involves 

nodes    and      . The forward difference approximation has a truncation 

error that is     . The size of the truncation error is mostly under our 

control, because we can choose the mesh size   . 

3.2.3. First Order Backward Difference Method 

Replace      in equation (3.5) and similarly the steps in first order 

forward difference, we have: 

                                   = 
             

 
 +                       (3.12) 

this equation is called the backward difference formula, because it involves 

the values of      at    and      . 

3.2.4 First Order Central Difference Method 

When we write the Taylor's series expansions for         and              

we obtain: 

         

     +    
 
     + 

  

   
       +   

  

   
         +   

            (3.13) 

         

     -    
 
     + 

  

   
       -   

     

   
         +   

         (3.14) 
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 Subtracting equation (3.14) from (3.13), we obtain:  

                 

                    
      

   

   
    

      … … +                       (3.15) 

solving for   
     , we get:  

                      
      

               

  
                         (3.16) 

this equation is called the central difference approximation to   
     . 

3.2.5. Second Order Central Difference Method 

When we add equations (3.13) and (3.14), we get: 

                                    

               
      

   

   
          …                    (3.17) 

solving for    
     , we obtain:  

                
     = 

                      

  
 +                        (3.18) 

this equation called the central difference approximation to the second 

derivative (   
      , see [16]. 

3.2.6. The Discrete Mesh  

The finite difference method obtains an approximation solution for        

at a finite set of   and  . The discrete   are uniformly spaced in the interval 

      such that                        where   is the 
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total number of spatial nodes. Similarly, the discrete   are uniformly spaced 

in             where                            where   

is the number of time steps and    is the size of a time step where: 

     
 

   
   and      

     

   
 , see figure (1) where used for solution 

to the one-dimensional heat equation. 

 

Figure 3.1: finite difference mesh or grid. 

3.3. Difference Equations Forms 

We use central difference approximation for space derivative and forward 

difference approximation for time derivative. 

3.3.1. Plane Wall: 

Consider the heat conduction problem: 

                        
        

   
          

 

 

        

  
                                 (3.19)  

where                       ,        is heat genaration with  
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boundary conditions: 

                                                       

and initial condition: 

                                                       

then by use finite difference method we have: 

 (       )   (     )  (       )

     
 +       +  (     ) 

  
 

 
 
 (       )  (     )

  
 +                                                           (3.20) 

where the discrete domain is: 

                        and              

            , subject to the boundary and initial conditions:  

 (     )    (    )                 , 

 (     )    (    )                 

and 

                                    

then solving equation (3.20) for approximate  (       ), we have: 

 (       )   

  (       )         (     )     (       )           (3.21) 
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where   
   

     
                               

This result with local truncation error (               , see [18], 

which has the symbol Terror. 

3.3.2 Cylinder: 

Consider the heat conduction problem: 

         
        

   
 

 

 

        

  
        

 

 

        

  
                   (3.22) 

where                          and        is heat generation, 

subject to the boundary conditions: 

                           

and initial condition: 

                                                           

then by (FDM), we have: 

 (       )   (     )  (       )

     
 + 

 

  
 
 (         )  (     )

  
  

+      + (     ) = 
 

 
 
 (       )  (     )

  
 +                 (3.23)  

where,                         and             

           , then the boundary and initial conditions becomes: 

 (    )      (    )                   

and 
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Solving equation (3.23) for approximate  (       ), we obtain: 

 (       )=  (  
 

     
) (       )+(    

 

     
 )  (     ) 

                                   +   (       )    (     )                    (3.24) 

Or           

 (       )=  (
 

     
) (       )+   (       )  

                   +(    
  

   
) (     )+  (     )                         (3.25) 

where     
   

     
 ,      ,                               

this result with        = (                 

3.3.3 Sphere: 

Consider the heat conduction problem: 

              
        

   
 

 

 

        

  
        

 

 

        

  
                  (3.26)  

where                         and        is heat generation, 

subject to the boundary conditions: 

                                                       

and initial condition: 
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then by use the finite difference method, we have: 

 (       )   (     )  (       )

     
 +       + (     ) 

+ 
 

  
 
 (         )  (     )

  
 = 

 

 
 
 (         )  (       )

  
 +          (3.27) 

where                         , and              

           , the boundary and initial conditions becomes:  

 (    )       (    )                   

and  

                                           

then solving equation (3.27) for approximate  (       ), we get: 

 (       ) =     
 

   
   (       ) + κ   (       ) +  

                              
  

   
  (     )+   (     )                    (3.28)    

or    

 (       ) =  (
   

   
)  (       )   (   - 

      

   
  (     )+       

                                   κ  (       )+  (     )                           (3.29) 

where    
   

     
                                   ,            

this result with         = (                  
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Note that: To determine Truncation error;          when the Exact 

solution is known, we find Exact solution for any (       , then Truncation 

error:    

      =                –                             (3.30)   

Note that: The FTCS method, see [17], for one-dimensional equations is 

numerically stable if and only if the following condition is satisfied:  

                      
   

     
 ≤   

 

 
     and     

   

     
   ≤   

 

 
                      (3.31)      

 

 

 

 

 

 

 

 

 

 

  



61 

 

 

 

 

 

 

 

 

 

 

Chapter four 
Numerical Examples 

 

 

 

 

 

 

 

 

 



61 

In this chapter, we will implement the finite difference method FTCS 

(Forward-Time Central-Space) to solve some heat conduction problems. 

4.1 Plane Wall: 

Example (4.1): Consider the homogeneous heat conduction problem: 

                                
        

   
  

 

 

        

  
                                (4.1) 

where        ,          .   

Subject to BC's:                       

and IC:        =    +  +        -         +            

we have the Exact solution, see [17]:                                                                                            

       

            
                                  

           

      
                            (4.2) 

then by using equation (3.21), we have:                                                             

 (       )   

  (       )         (     )    (       )                       (4.3) 

where   
   

     
                          

subject to BC's:  (     )      (     )                  
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and IC:           

                                                   

where                

The exact solution at each grid point is given by: 

 (     )   

             
            

                           
                   

                       (4.4) 

where                           

We use     language to solve equation (4.3), we get tables (4.1), (4.2) 

and (4.3). 

Note that: To simplify we will write             (     )  

             and         (     )          . 

Table (4.1): Numerical results for example (4.1) with 

N= 5 , M= 49 , Tmax.= 4,   = 0.0833 ,    = 1.25 and   = 0.4267. 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

:       

2 10 1.2500 0.7500 30.001834738 30.000000000 0.001834738 

2 11 1.2500 0.8333 29.999162206 30.000000000 0.000837794 

2 12 1.2500 0.9167 30.000382833 30.000000000 0.000382833 

2 13 1.2500 1.0000 29.999825 30.000000000 0.000174705 

Table (4.1): Numerical results for example (4.1) with   = 0.426 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

2 14 1.2500 1.0833 30.000080 30.000000000 0.000079904 

2 15 1.2500 1.1667 29.999964 30.000000000 0.000036411 

2 16 1.2500 1.2500 30.000017 30.000000000 0.000016693 

2 17 1.2500 1.3333 29.999992 30.000000000 0.000007577 

2 18 1.2500 1.4167 30.000003 30.000000000 0.000003496 

: 

: 

      

3 25 2.5000 2.0000 50.000000025 50.000000000 0.000000025 

3 26 2.5000 2.0833 49.999999994 50.000000000 0.000000006 

3 27 2.5000 2.1667 50.000000007 50.000000000 0.000000007 

3 28 2.5000 2.2500 50.000000000 50.000000000 0.000000000 

3 29 2.5000 2.3333 50.000000002 50.000000000 0.000000002 

3 30 2.5000 2.4167 50.000000001 50.000000000 0.000000001 

3 31 2.5000 2.5000 50.000000000 50.000000000 0.000000001 

: 

: 

      

Table (4.1): Numerical results for example (4.1) with   = 0.4267 

 

Table (4.2): Numerical results for example (4.1) with 

                  ,   = .0154,    =1 and   = 0.1231. 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

2 135 1.0000 2.0615 26.000000 26.000000000 0.000000008 

2 136 1.0000 2.0769 26.000000 26.000000000 0.000000007 

2 137 1.0000 2.0923 26.000000 26.000000000 0.000000007 

Table (4.2): Numerical results for example (4.1) with   = 0.1231 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

2 138 1.0000 2.1077 26.000000 26.000000000 0.000000007 

2 139 1.0000 2.1231 26.000000 26.000000000 0.000000006 

2 140 1.0000 2.1385 26.000000 26.000000000 0.000000006 

2 141 1.0000 2.1538 26.000000 26.000000000 0.000000006 

: 

: 

      

3 25 2.5000 2.0000 50.000000025 50.000000000 0.000000025 

3 26 2.5000 2.0833 49.999999994 50.000000000 0.000000006 

3 27 2.5000 2.1667 50.000000007 50.000000000 0.000000007 

3 28 2.0000 0.4154 41.999999998 42.000000000 0.000002111 

3 29 2.0000 0.4308 41.999999998 42.000000000 0.000002013 

3 30 2.0000 0.4462 41.999999998 42.000000000 0.000001920 

3 31 2.0000 0.4615 41.999999998 42.000000000 0.000001831 

3 32 2.0000 0.4769 41.999999998 42.000000000 0.000001745 

3 33 2.0000 0.4923 41.999999998 42.000000000 0.000001664 

3 34 2.0000 0.5077 41.999999998 42.000000000 0.000001586 

3 35 2.0000 0.5231 41.999999998 42.000000000 0.000001512 

: 

: 

      

4 90 3.00 1.3692 58.0000000 58.000000000 0.000000107 

4 91 3.00 1.3846 58.0000000 58.000000000 0.000000102 

4 92 3.00 1.4000 58.0000000 58.000000000 0.000000097 

4 93 3.00 1.4154 58.0000000 58.000000000 0.000000093 

4 94 3.00 1.4308 58.0000000 58.000000000 0.000000088 

4 95 3.00 1.4462 58.0000000 58.000000000 0.000000084 

4 96 3.0000 1.4615 58.0000000 58.000000000 0.000000080 

4 97 3.0000 1.4769 58.0000000 58.000000000 0.000000077 

4 98 3.0000 1.4923 58.0000000 58.000000000 0.000000073 

4 99 3.0000 1.5077 58.0000000 58.000000000 0.000000070 

Table (4.2): Numerical results for example (4.1) with   = 0.123 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

5 53 4.0000 0.8000 74.000000 74.000000000 0.000000394 

5 54 4.0000 0.8154 74.000000 74.000000000 0.000000375 

5 55 4.0000 0.8308 74.000000 74.000000000 0.000000358 

5 56 4.0000 0.8462 74.000000 74.000000000 0.000000341 

5 57 4.0000 0.8615 74.000000 74.000000000 0.000000325 

5 58 4.0000 0.8769 74.000000 74.000000000 0.000000310 

5 59 4.0000 0.8923 74.000000 74.000000000 0.000000295 

5 60 4.0000 0.9077 74.000000 74.000000000 0.000000281 

5 61 4.0000 0.9231 74.000000 74.000000000 0.000000268 

5 62 4.0000 0.9385 74.000000 74.000000000 0.000000255 

5 63 4.0000 0.9538 74.000000 74.000000000 0.000000243 

5 64 4.0000 0.9692 74.000000 74.000000000 0.000000232 

5 65 4.0000 0.9846 74.000000 74.000000000 0.000000221 

: 

: 

      

Table (4.2): Numerical results for example (4.1) with   = 0.1231 

 

Table (4.3): Numerical results for example (4.1) with 

                     =1.25,   =0.5556 and   = 32.4 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

2 2 0.5556 1.2500 -373.436685 18.888888889 392.325574138 

2 3 0.5556 2.5000 37931.849367 18.888888889 37912.960477670 

2 4 0.5556 3.7500 -3901330.180 18.888888889 3901349.0698076 

2 5 0.5556 5.0000 424466780.59 18.888888889 424466761.709 

Table (4.3): Numerical results for example (4.1) with   = 32.4 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

2 6 0.5556 6.2500 -48274350151 18.888888889 48274350170.0 

: 

: 

      

4 2 1.6667 1.2500 -200.287807 36.666666667 236.954473540 

4 3 1.6667 2.5000 39262.3390 36.666666667 39225.6723988 

4 4 1.6667 3.7500 -5617550.7 36.666666667 5617587.338244 

4 5 1.6667 5.0000 754990994 36.666666667 754990957.8125 

4 6 1.6667 6.2500 -98233421484 36.666666667 98233421520.7 

: 

: 

      

Table (4.3): Numerical results for example (4.1) with   = 32.4 

Note that: Exact solution and approximate solution in tables (4.1) 

and (4.2) are very close agreement with  
   

     
 ≤   

 

 
  and table (4.3) 

is not close agreement with  
   

     
  >   

 

 
 .  

Example (4.2): Consider the homogeneous heat conduction 

problem: 

                                      
        

   
  

        

  
                            (4.5) 

where                   

subject to BC's:                     

and IC:                                  
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where the Exact solution is, see [5]: 

                                                                  (4.6) 

We use     language to solve equation (4.3), we get tables (4.4), (4.5) and 

(4.6). 

Table(4.4): Numerical results for example (4.2) with                                        

                   =0.  ̅̅̅̅ ,   = 0.7854 and   = 0.442 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

3 5 1.5708 1.0909 0.734215 1.343263 0.609047831 

3 6 1.5708 1.3636 1.134046 1.022884 0.111162191 

3 7 1.5708 1.6364 0.539724 0.778744 0.239019531 

3 8 1.5708 1.9091 0.553108 0.592860 0.039752230 

3 9 1.5708 2.1818 0.331814 0.451345 0.119530504 

3 10 1.5708 2.4545 0.285641 0.343609 0.057967899 

3 11 1.5708 2.7273 0.191401 0.261590 0.070188421 

3 12 1.5708 3.0000 0.152153 0.199148 0.046995324 

4 1 2.3562 0.0000 5.778178 5.778178 0.000000000 

4 2 2.3562 0.2727 -0.657605 1.906655 2.564259984 

4 3 2.3562 0.5455 2.811289 1.450147 1.361141553 

4 4 2.3562 0.8182 0.492987 1.175327 0.682340148 

4 5 2.3562 1.0909 1.186022 0.924905 0.261117030 

4 6 2.3562 1.3636 0.461891 0.714781 0.252889863 

4 7 2.3562 1.6364 0.554855 0.547786 0.007069008 

4 8 2.3562 1.9091 0.302848 0.418250 0.115402399 

  

 Table (4.4): Numerical results for example (4.2) with   = 0.44 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

4 9 2.3562 2.1818 0.279597 0.318825 0.039227410 

4 10 2.3562 2.4545 0.179066 0.242859 0.063793336 

4 11 2.3562 2.7273 0.147016 0.184935 0.037919508 

4 12 2.3562 3.0000 0.101640 0.140807 0.039166836 

5 1 3.1416 0.0000 0.000000 -0.000007 0.000007275 

5 2 3.1416 0.2727 0.000000 -0.000001 0.000001214 

5 3 3.1416 0.5455 0.000000 -0.000001 0.000000700 

5 4 3.1416 0.8182 0.000000 -0.000001 0.000000563 

5 5 3.1416 1.0909 0.000000 -0.000000 0.000000448 

5 6 3.1416 1.3636 0.000000 -0.000000 0.000000348 

5 7 3.1416 1.6364 0.000000 -0.000000 0.000000268 

5 8 3.1416 1.9091 0.000000 -0.000000 0.000000205 

5 9 3.1416 2.1818 0.000000 -0.000000 0.000000156 

5 10 3.1416 2.4545 0.000000 -0.000000 0.000000119 

5 11 3.1416 2.7273 0.000000 -0.000000 0.000000091 

5 12 3.1416 3.0000 0.000000 -0.000000 0.000000069 

Table (4.4): Numerical results for example (4.2) with   = 0.442 

  
 

Table(4.5): Numerical results for example (4.2) with                                              

                    =0.038,   = 0.349 and  =0.312 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

:       
2 1 0.3491 0.0000 8.715834 8.715834 0.000000000 

2 2 0.3491 0.0380 6.587602 6.728747 0.141144837 

2 3 0.3491 0.0759 5.077469 5.277128 0.199658827 

Table (4.5): Numerical results for example (4.2) with  =0.312 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

2 4 0.3491 0.1139 3.997862 4.210237 0.212374066 

2 5 0.3491 0.1519 3.218987 3.420418 0.201430512 

2 6 0.3491 0.1899 2.650917 2.830705 0.179788915 

2 7 0.3491 0.2278 2.231249 2.386003 0.154754208 

: 

: 
      

4 1 1.0472 0.0000 5.196150 5.196150 0.000000000 

4 2 1.0472 0.0380 4.813350 4.822980 0.009629865 

4 3 1.0472 0.0759 4.472279 4.489018 0.016739094 

4 4 1.0472 0.1139 4.167381 4.189238 0.021856315 

4 5 1.0472 0.1519 3.893891 3.919301 0.025409758 

4 6 1.0472 0.1899 3.647720 3.675465 0.027745219 

4 7 1.0472 0.2278 3.425355 3.454496 0.029140931 

4 8 1.0472 0.2658 3.223781 3.253601 0.029819876 

4 9 1.0472 0.3038 3.040402 3.070362 0.029959946 

4 10 1.0472 0.3418 2.872986 2.902689 0.029702320 

4 11 1.0472 0.3797 2.719611 2.748769 0.029158363 

4 12 1.0472 0.4177 2.578618 2.607034 0.028415309 

4 13 1.0472 0.4557 2.448578 2.476119 0.027540915 

4 14 1.0472 0.4937 2.328255 2.354842 0.026587282 

4 15 1.0472 0.5316 2.216578 2.242172 0.025593973 

4 16 1.0472 0.5696 2.112622 2.137213 0.024590565 

: 

: 

      

6 70 1.7453 2.6203 0.280040 0.286695 0.006655510 

6 71 1.7453 2.6582 0.269514 0.276014 0.006499940 

6 72 1.7453 2.6962 0.259384 0.265731 0.006346639 

6 73 1.7453 2.7342 0.249635 0.255831 0.006195661 

6 74 1.7453 2.7722 0.240252 0.246299 0.006047054 

6 75 1.7453 2.8101 0.231222 0.237122 0.005900856 

Table (4.5): Numerical results for example (4.2) with  =0.312 
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Table(4.6): Numerical results for example (4.2) with                                               

                    =0.0556,   =0.349 and  = 4.56 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

2 10 0.3491 5.0000 -556101 0.009218 556101 

3 1 0.6981 0.0000 10.603 10.602943 0.0000 

3 2 0.6981 0.5556 -22.653 1.729496 24.383 

3 3 0.6981 1.1111 79.857 0.869810 78.987 

3 4 0.6981 1.6667 -276.02 0.488136 276.51 

3 5 0.6981 2.2222 976.47 0.278902 976.1 

: 

: 

      

4 4 1.0472 1.6667 -2.206016 0.656489 2.862504238 

4 5 1.0472 2.2222 3.000135 0.375637 2.624498148 

4 6 1.0472 2.7778 -3.174407 0.215412 3.389818217 

4 7 1.0472 3.3333 3.761217 0.123581 3.637636250 

4 8 1.0472 3.8889 -7.528046 0.070904 7.598949404 

: 

: 

      

Table (4.6): Numerical results for example (4.2) with  = 4.56 

 
Note that: Exact solution and approximate solution in tables (4.4) and (4.5) 

are very close agreement with  
   

     
 ≤   

 

 
  and table (4.6) is not close 

agreement with  
   

     
  >   

 

 
 .  
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Example (4.3): Consider the nonhomogeneous heat conduction problem: 

                         
        

   
         

        

  
                            (4.7) 

where                   and                  . 

subject to BC's:                        

and IC:                            

where the Exact solution is :                                                                                          

        

        
   

  

    
        

    

      
            

                      (4.8) 

then by using equation (3.21), we have:  

 (       )     (       )         (     ) 

                                        (       )                                      (4.9) 

where   
   

     
 ,                                

        =                 ,                                     

subject to BC's:  (     )   (     )                 

and IC:                                       
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where the Exact solution: 

 (     )  

 
     

    
         

 
   

      
         

                                                          
                                   (4.10) 

where                           

We use     language to solve equation (4.9), we get tables (4.7), (4.8) and 

(4.9). 

Table (4.7): Numerical results for example (4.3) with 

N= 5 , M= 101 , Tmax.=3 ,   =0.03  ,    = 0.25 , and   =0.48 . 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

3 8 0.5000 0.2100 0.084820 0.077199 0.007620423 

3 9 0.5000 0.2400 0.085288 0.078135 0.007152988 

3 10 0.5000 0.2700 0.084906 0.078218 0.006687387 

3 11 0.5000 0.3000 0.083934 0.077686 0.006247436 

3 12 0.5000 0.3300 0.082558 0.076714 0.005844319 

3 13 0.5000 0.3600 0.080912 0.075431 0.005481590 

3 14 0.5000 0.3900 0.079092 0.073933 0.005158501 

: 

: 

      

Table(4.7): Numerical results for example (4.3) with   =0.48 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

4 22 0.7500 0.6300 0.044818 0.042301 0.002517619 

4 23 0.7500 0.6600 0.043514 0.041086 0.002427864 

4 24 0.7500 0.6900 0.042243 0.039899 0.002344181 

4 25 0.7500 0.7200 0.041005 0.038740 0.002265657 

4 26 0.7500 0.7500 0.039801 0.037610 0.002191557 

4 27 0.7500 0.7800 0.038630 0.036509 0.002121285 

4 28 0.7500 0.8100 0.037493 0.035438 0.002054363 

4 29 0.7500 0.8400 0.036387 0.034397 0.001990403 

4 30 0.7500 0.8700 0.035314 0.033385 0.001929094 

4 31 0.7500 0.9000 0.034272 0.032402 0.001870183 

4 32 0.7500 0.9300 0.033260 0.031447 0.001813462 

: 

: 

      

4 90 0.7500 2.6700 0.005838 0.005521 0.000317387 

4 91 0.7500 2.7000 0.005666 0.005358 0.000308007 

4 92 0.7500 2.7300 0.005498 0.005199 0.000298904 

4 93 0.7500 2.7600 0.005336 0.005046 0.000290070 

4 94 0.7500 2.7900 0.005178 0.004897 0.000281497 

4 95 0.7500 2.8200 0.005025 0.004752 0.000273177 

4 96 0.7500 2.8500 0.004877 0.004611 0.000265104 

4 97 0.7500 2.8800 0.004732 0.004475 0.000257269 

4 98 0.7500 2.9100 0.004593 0.004343 0.000249665 

4 99 0.7500 2.9400 0.004457 0.004215 0.000242287 

4 100 0.7500 2.9700 0.004325 0.004090 0.000235126 

4 101 0.7500 3.0000 0.004197 0.003969 0.000228177 

: 

: 

      

Table(4.7): Numerical results for example (4.3) with   =0.48 
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Table (4.8): Numerical results for example (4.3) with 

                  ,   = .005,    = 0.1 , and   = 0.5. 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

4 302 0.3000 1.5050 0.020431 0.020251 0.000180633 

4 303 0.3000 1.5100 0.020329 0.020150 0.000179732 

4 304 0.3000 1.5150 0.020228 0.020049 0.000178836 

4 305 0.3000 1.5200 0.020127 0.019949 0.000177943 

4 306 0.3000 1.5250 0.020027 0.019850 0.000177056 

4 307 0.3000 1.5300 0.019927 0.019751 0.000176172 

4 308 0.3000 1.5350 0.019827 0.019652 0.000175293 

4 309 0.3000 1.5400 0.019729 0.019554 0.000174419 

4 310 0.3000 1.5450 0.019630 0.019457 0.000173549 

4 311 0.3000 1.5500 0.019532 0.019360 0.000172683 

4 312 0.3000 1.5550 0.019435 0.019263 0.000171822 

4 313 0.3000 1.5600 0.019338 0.019167 0.000170964 

4 314 0.3000 1.5650 0.019241 0.019071 0.000170112 

4 315 0.3000 1.5700 0.019146 0.018976 0.000169263 

: 

: 

      

10 370 0.9000 1.8450 0.005555 0.005506 0.000049112 

10 371 0.9000 1.8500 0.005527 0.005478 0.000048867 

10 372 0.9000 1.8550 0.005499 0.005451 0.000048624 

10 373 0.9000 1.8600 0.005472 0.005424 0.000048381 

10 374 0.9000 1.8650 0.005445 0.005397 0.000048140 

10 375 0.9000 1.8700 0.005418 0.005370 0.000047900 

Table (4.8): Numerical results for example (4.3) with   = 0.5 
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i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

10 376 0.9000 1.8750 0.005391 0.005343 0.000047661 

10 377 0.9000 1.8800 0.005364 0.005316 0.000047423 

10 378 0.9000 1.8850 0.005337 0.005290 0.000047187 

10 79 0.9000 0.3900 0.023098 0.022846 0.000251019 

10 80 0.9000 0.3950 0.023013 0.022765 0.000248561 

10 81 0.9000 0.4000 0.022928 0.022682 0.000246151 

10 82 0.9000 0.4050 0.022841 0.022597 0.000243787 

10 83 0.9000 0.4100 0.022754 0.022512 0.000241468 

10 84 0.9000 0.4150 0.022666 0.022426 0.000239194 

10 85 0.9000 0.4200 0.022577 0.022340 0.000236964 

10 86 0.9000 0.4250 0.022487 0.022252 0.000234777 

10 87 0.9000 0.4300 0.022396 0.022164 0.000232631 

10 88 0.9000 0.4350 0.022305 0.022075 0.000230526 

10 89 0.9000 0.4400 0.022214 0.021985 0.000228461 

10 90 0.9000 0.4450 0.022122 0.021895 0.000226436 

10 91 0.9000 0.4500 0.022029 0.021804 0.000224448 

10 92 0.9000 0.4550 0.021936 0.021713 0.000222498 

10 93 0.9000 0.4600 0.021843 0.021622 0.000220584 

10 94 0.9000 0.4650 0.021749 0.021530 0.000218706 

10 95 0.9000 0.4700 0.021655 0.021438 0.000216863 

10 96 0.9000 0.4750 0.021561 0.021346 0.000215054 

10 97 0.9000 0.4800 0.021466 0.021253 0.000213278 

10 98 0.9000 0.4850 0.021372 0.021160 0.000211535 

10 99 0.9000 0.4900 0.021277 0.021067 0.000209823 

10 100 0.9000 0.4950 0.021182 0.020974 0.000208141 

: 

: 

      

Table (4.8): Numerical results for example (4.3) with   = 0.5 
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Table (4.9): Numerical results for example (4.3) with 

                    = 0.25 ,    = 0.25 , and   = 4 

i j xi tj Tappx.(i,j) E.T(i,j) Terror(i,j) 

: 

: 

      

2 2 0.2500 0.2500 -6.82 0.055379 6.878603454 

2 3 0.2500 0.5000 48.9 0.047781 48.85247550 

2 4 0.2500 0.7500 -342.759 0.037610 342.7966406 

2 5 0.2500 1.0000 2400.76 0.029324 2400.733337 

2 6 0.2500 1.2500 -16806.65 0.022841 16806.67469 

2 7 0.2500 1.5000 117649.03 0.017788 117649.0170 

2 8 0.2500 1.7500 -823548 0.013854 823548.7415 

2 9 0.2500 2.0000 5764881 0.010789 5764881.13 

2 10 0.2500 2.2500 -40354631 0.008403 40354631.29 

2 11 0.2500 2.5000 282488227 0.006544 282488227.6 

2 12 0.2500 2.7500 -1977491035 0.005096 1977491035.9 

2 13 0.2500 3.0000 13843366700 0.003969 13843366700 

2 14 0.2500 3.2500 -96915330664 0.003091 96915330664 

: 

: 

      

Table (4.9): Numerical results for example (4.3) with   = 4 

 
Note that: The exact solution and approximate solutions in tables (4.7) and 

(4.8) are in a close agreement, with  
   

     
 ≤  

  

 
. However, the results in table 

(4.9) are not close agreement, with  
   

     
  >   

 

 
 . 
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4.2 Cylinder: Consider heat conduction problem: 

                  
        

   
 

 

 

        

  
        

 

 

        

  
           (4.11) 

where                          and        is heat generation, 

subject to the boundary conditions: 

                                                      

and initial condition: 

                                            

then by using equation (3.25), we have:  

 (       )   (
 

     
) (       )      (       )  

                       (    
  

   
) (     )+  (     )                                (4.12) 

where     
   

     
                          

          . This result with        = (                 

Example(4.4): Consider equation (4.11) for the homogeneous case, 

subject to BC's:   (     )      (     )                  

and IC:                                            

use equation (4.12), we have tables (4.10) and (4.11). 
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Table (4.10): Numerical results for example (4.4) with          

                    =2.5,   = 2.5 , and   = 0.4. 

i j ri tj f(ri) R(i,j) 

1 1 0.0000 0.0000 10.000000 10.000000 

1 2 0.0000 2.5000 10.000000 10.000000 

1 3 0.0000 5.0000 10.000000 10.000000 

1 4 0.0000 7.5000 10.000000 10.000000 

1 5 0.0000 10.0000 10.000000 10.000000 

2 1 2.5000 0.0000 11.000000 11.000000 

2 2 2.5000 2.5000 11.000000 9.799999 

2 3 2.5000 5.0000 11.000000 9.880000 

2 4 2.5000 7.5000 11.000000 32.967999 

2 5 2.5000 10.0000 11.000000 29.903467 

3 1 5.0000 0.0000 9.999998 9.999998 

3 2 5.0000 2.5000 9.999998 9.800000 

3 3 5.0000 5.0000 9.999998 38.679999 

3 4 5.0000 7.5000 9.999998 40.621333 

3 5 5.0000 10.0000 9.999998 56.915022 

4 1 7.5000 0.0000 9.000000 9.000000 

4 2 7.5000 2.5000 9.000000 57.933333 

4 3 7.5000 5.0000 9.000000 61.115556 

4 4 7.5000 7.5000 9.000000 72.879703 

4 5 7.5000 10.0000 9.000000 74.440514 

5 1 10.0000 0.0000 0.000000 100.000000 

5 2 10.0000 2.5000 0.000000 100.000000 

5 3 10.0000 5.0000 0.000000 100.000000 

5 4 10.0000 7.5000 0.000000 100.000000 

5 5 10.0000 10.0000 0.000000 100.000000 

Table (4.10): Numerical results for example (4.4) with   = 0.4 
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Table (4.11): Numerical results for example (4.4) with        , 

                                = 0.7, and  =0.251 

i j ri tj f(ri) R(i,j) 

: 

: 

     

7 256 4.2000 3.9231 10.587786 85.130317 

7 257 4.2000 3.9385 10.587786 85.133979 

7 258 4.2000 3.9538 10.587786 85.137552 

7 259 4.2000 3.9692 10.587786 85.141039 

7 260 4.2000 3.9846 10.587786 85.144443 

7 261 4.2000 4.0000 10.587786 85.147764 

8 1 4.9000 0.0000 10.309015 10.309015 

8 2 4.9000 0.0154 10.309015 10.017320 

8 3 4.9000 0.0308 10.309015 9.995559 

8 4 4.9000 0.0462 10.309015 12.035551 

8 5 4.9000 0.0615 10.309015 14.885237 

8 6 4.9000 0.0769 10.309015 17.981194 

: 

: 

     

10 250 6.3000 3.8308 10.809018 96.880474 

10 251 6.3000 3.8462 10.809018 96.881599 

10 252 6.3000 3.8615 10.809018 96.882698 

10 253 6.3000 3.8769 10.809018 96.883770 

10 254 6.3000 3.8923 10.809018 96.884816 

10 255 6.3000 3.9077 10.809018 96.885837 

: 

: 

     

Table (4.11): Numerical results for example (4.4) with  =0.251 
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Example(4.5): Consider equation (4.11) for the nonhomogeneous case, 

 subject to BC's:     (     )    (     )                

and IC:                        (
   

 
)              ,  

where the                  (     )       
      (

   

 
)    

      ,N,           , use equation (4.12), we have tables (4.12) and 

(4.13). 

Table (4.12): Numerical results for example (4.5) with           

                     = 2.5 ,    = 2.5 , and   = 0.4. 

i j ri tj        f(ri) R(i,j) 

: 

: 

      

2 1 2.5000 0.0000 0.500000 0.500000 0.500000 

2 2 2.5000 2.5000 0.000000 0.500000 0.457179 

2 3 2.5000 5.0000 0.000000 0.500000 -1.183486 

2 4 2.5000 7.5000 0.000000 0.500000 1.448718 

2 5 2.5000 10.0000 0.000000 0.500000 -0.859503 

3 1 5.0000 0.0000 -0.866025 -0.866025 -0.866025 

3 2 5.0000 2.5000 -0.000000 -0.866025 -1.365063 

3 3 5.0000 5.0000 -0.000000 -0.866025 1.515026 

3 4 5.0000 7.5000 -0.000000 -0.866025 -0.712199 

3 5 5.0000 10.0000 -0.000000 -0.866025 0.927173 

4 1 7.5000 0.0000 1.000000 1.000000 1.000000 

4 2 7.5000 2.5000 0.000000 1.000000 2.220257 

4 3 7.5000 5.0000 0.000000 1.000000 -0.398008 

: 

: 

      

Table (4.12): Numerical results for example (4.5) with   = 0.4 
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Table (4.13): Numerical results for example (4.5) with         

                     = 0.0154 ,  =1, and    = 0.123 

i j ri tj        f(ri) R(i,j) 

: 

: 

      

5 12 4.0000 0.1692 -0.001086 -0.866026 -0.032845 

5 13 4.0000 0.1846 -0.000592 -0.866026 -0.018457 

5 14 4.0000 0.2000 -0.000322 -0.866026 -0.007575 

5 15 4.0000 0.2154 -0.000176 -0.866026 0.000588 

5 16 4.0000 0.2308 -0.000096 -0.866026 0.006644 

5 17 4.0000 0.2462 -0.000052 -0.866026 0.011069 

5 18 4.0000 0.2615 -0.000028 -0.866026 0.014234 

5 19 4.0000 0.2769 -0.000015 -0.866026 0.016428 

5 20 4.0000 0.2923 -0.000008 -0.866026 0.017874 

5 21 4.0000 0.3077 -0.000005 -0.866026 0.018748 

5 22 4.0000 0.3231 -0.000003 -0.866026 0.019186 

5 23 4.0000 0.3385 -0.000001 -0.866026 0.019295 

5 24 4.0000 0.3538 -0.000001 -0.866026 0.019158 

5 25 4.0000 0.3692 -0.000000 -0.866026 0.018838 

5 26 4.0000 0.3846 -0.000000 -0.866026 0.018386 

5 27 4.0000 0.4000 -0.000000 -0.866026 0.017841 

5 28 4.0000 0.4154 -0.000000 -0.866026 0.017233 

5 29 4.0000 0.4308 -0.000000 -0.866026 0.016584 

: 

: 

      

Table (4.13): Numerical results for example (4.5) with   = 0.123 
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4.3. Sphere  

Consider heat conduction problem: 

                 
        

   
 

 

 

        

  
        

 

 

        

  
               (4.13)  

where                         and        is heat generation, subject 

to the boundary conditions: 

                                               

and initial condition:                    

then by using equation (3.29), we have: 

 (       ) =  (
   

   
)  (       )   (1-κ-

      

   
  (     )   

                                  (       )+   (     )                             (4.14) 

where    
   

     
                           =       . 

This result with         = (                 

Example (4.6): Consider equation (4.13) for the homogeneous case, 

subject to BC's:  

                    (     )     (     )                 

and IC:                                        

where              , use equation (4.14), we have tables (4.14) and 

(4.15). 
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Table (4.14): Numerical results for example (4.6) with            

                      = 2.5 ,    = 2. and   = 0.45   

i j ri tj f(ri) R(i,j) 

1 1 0.0000 0.0000 5.000000 5.000000 

1 2 0.0000 2.5000 5.000000 5.000000 

1 3 0.0000 5.0000 5.000000 5.000000 

1 4 0.0000 7.5000 5.000000 5.000000 

1 5 0.0000 10.0000 5.000000 5.000000 

2 1 2.5000 0.0000 6.000000 6.000000 

2 2 2.5000 2.5000 6.000000 4.399998 

2 3 2.5000 5.0000 6.000000 4.880002 

2 4 2.5000 7.5000 6.000000 11.343997 

2 5 2.5000 10.0000 6.000000 5.697070 

3 1 5.0000 0.0000 4.999998 4.999998 

3 2 5.0000 2.5000 4.999998 4.600000 

3 3 5.0000 5.0000 4.999998 10.226665 

3 4 5.0000 7.5000 4.999998 8.752890 

3 5 5.0000 10.0000 4.999998 13.469806 

4 1 7.5000 0.0000 4.000000 4.000000 

4 2 7.5000 2.5000 4.000000 11.733333 

4 3 7.5000 5.0000 4.000000 11.057778 

4 4 7.5000 7.5000 4.000000 13.353481 

4 5 7.5000 10.0000 4.000000 12.610924 

5 1 10.0000 0.0000 0.000000 15.000000 

5 2 10.0000 2.5000 0.000000 15.000000 

5 3 10.0000 5.0000 0.000000 15.000000 

5 4 10.0000 7.5000 0.000000 15.000000 

5 5 10.0000 10.0000 0.000000 15.000000 

Table (4.14): Numerical results for example (4.6) with   = 0.4 
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Table (4.15): Numerical results for example (4.6) with          

                    =0.0154,   =1and   = 0.123 

i j ri tj f(ri) R(i,j) 

: 

: 

     

3 258 2.0000 3.9538 5.000001 13.000000 

3 259 2.0000 3.9692 5.000001 13.000000 

3 260 2.0000 3.9846 5.000001 13.000000 

3 261 2.0000 4.0000 5.000001 13.000000 

4 1 3.0000 0.0000 4.999999 4.999999 

4 2 3.0000 0.0154 4.999999 5.000000 

4 3 3.0000 0.0308 4.999999 5.378698 

4 4 3.0000 0.0462 4.999999 5.895282 

4 5 3.0000 0.0615 4.999999 6.444860 

4 6 3.0000 0.0769 4.999999 6.982270 

4 7 3.0000 0.0923 4.999999 7.489387 

4 8 3.0000 0.1077 4.999999 7.960413 

4 9 3.0000 0.1231 4.999999 8.395042 

4 10 3.0000 0.1385 4.999999 8.795253 

4 11 3.0000 0.1538 4.999999 9.163812 

4 12 3.0000 0.1692 4.999999 9.503596 

4 13 3.0000 0.1846 4.999999 9.817309 

4 14 3.0000 0.2000 4.999999 10.107391 

4 15 3.0000 0.2154 4.999999 10.375999 

: 

: 

     

Table (4.15): Numerical results for example (4.6) with   = 0.123 
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Example(4.7): Consider equation (4.13) for the nonhomogeneous case, 

subject to BC's:   (     )    (     )                

and IC:                           (
   

 
)               

where the                   (     )  =        (
   

 
)  

                         , use equation (4.14), we have tables 

(4.16) and (4.17). 

 

Table (4.16): Numerical results for example (4.7) with         , 

                   =2.5 ,   = 2.5  and    = 0.4 

i j ri tj        f(ri) R(i,j) 

: 

: 

      

2 1 2.5000 0.0000 1.000000 1.000000 1.000000 

2 2 2.5000 2.5000 0.082085 1.000000 1.900000 

2 3 2.5000 5.0000 0.006738 1.000000 -1.414788 

2 4 2.5000 7.5000 0.000553 1.000000 -0.462282 

2 5 2.5000 10.0000 0.000045 1.000000 -0.329617 

3 1 5.0000 0.0000 -0.000000 -0.000000 -0.000000 

3 2 5.0000 2.5000 -0.000000 -0.000000 -0.400001 

3 3 5.0000 5.0000 -0.000000 -0.000000 -1.106667 

3 4 5.0000 7.5000 -0.000000 -0.000000 -0.506974 

3 5 5.0000 10.0000 -0.000000 -0.000000 -0.440301 

4 1 7.5000 0.0000 -1.000000 -1.000000 -1.000000 

4 2 7.5000 2.5000 -0.082085 -1.000000 -2.433333 

Table (4.16): Numerical results for example (4.7) with   = 0.4 
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i j ri tj        f(ri) R(i,j) 

4 3 7.5000 5.0000 -0.006738 -1.000000 -0.202991 

4 4 7.5000 7.5000 -0.000553 -1.000000 -0.445979 

4 5 7.5000 10.0000 -0.000045 -1.000000 -0.174441 

5 1 10.0000 0.0000 0.000001 0.000000 0.000000 

5 2 10.0000 2.5000 0.000000 0.000000 0.000000 

5 3 10.0000 5.0000 0.000000 0.000000 0.000000 

5 4 10.0000 7.5000 0.000000 0.000000 0.000000 

5 5 10.0000 10.0000 0.000000 0.000000 0.000000 

Table (4.16): Numerical results for example (4.7) with   = 0.4 

 
Table (4.17): Numerical results for example (4.7) with           

                    =0.0154,   =1 and  = 0.123 

i j ri tj        f(ri) R(i,j) 

: 

: 

      

2 254 1.0000 3.8923 0.011990 0.587785 0.043256 

2 255 1.0000 3.9077 0.011807 0.587785 0.042596 

2 256 1.0000 3.9231 0.011626 0.587785 0.041945 

2 257 1.0000 3.9385 0.011449 0.587785 0.041305 

2 258 1.0000 3.9538 0.011274 0.587785 0.040674 

2 259 1.0000 3.9692 0.011102 0.587785 0.040053 

2 260 1.0000 3.9846 0.010933 0.587785 0.039442 

2 261 1.0000 4.0000 0.010766 0.587785 0.038840 

3 1 2.0000 0.0000 0.951057 0.951057 0.951057 

3 2 2.0000 0.0154 0.936537 0.951057 1.023399 

Table (4.17): Numerical results for example (4.7) with  = 0.123 
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i j ri tj        f(ri) R(i,j) 

3 2 2.0000 0.0154 0.936537 0.951057 1.023399 

3 3 2.0000 0.0308 0.922239 0.951057 1.094223 

3 4 2.0000 0.0462 0.908159 0.951057 1.157886 

3 5 2.0000 0.0615 0.894294 0.951057 1.213661 

: 

: 

      

4 252 3.0000 3.8615 0.020006 0.951056 0.044641 

4 253 3.0000 3.8769 0.019701 0.951056 0.043959 

4 254 3.0000 3.8923 0.019400 0.951056 0.043288 

4 255 3.0000 3.9077 0.019104 0.951056 0.042627 

4 256 3.0000 3.9231 0.018812 0.951056 0.041976 

4 257 3.0000 3.9385 0.018525 0.951056 0.041335 

4 258 3.0000 3.9538 0.018242 0.951056 0.040704 

4 259 3.0000 3.9692 0.017964 0.951056 0.040083 

4 260 3.0000 3.9846 0.017689 0.951056 0.039471 

4 261 3.0000 4.0000 0.017419 0.951056 0.038868 

5 1 4.0000 0.0000 0.587785 0.587785 0.587785 

5 2 4.0000 0.0154 0.578811 0.587785 0.596324 

5 3 4.0000 0.0308 0.569975 0.587785 0.606366 

5 4 4.0000 0.0462 0.561273 0.587785 0.616840 

5 5 4.0000 0.0615 0.552704 0.587785 0.627225 

5 6 4.0000 0.0769 0.544266 0.587785 0.637201 

5 7 4.0000 0.0923 0.535957 0.587785 0.646546 

5 8 4.0000 0.1077 0.527774 0.587785 0.655109 

5 9 4.0000 0.1231 0.519717 0.587785 0.662790 

5 10 4.0000 0.1385 0.511783 0.587785 0.669535 

Table (4.17): Numerical results for example (4.7) with  = 0.123 
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4.4 Conclusion 

In this work, we have presented one of the most important topic in thermal 

engineering, namely; heat conduction and diffusion processes. 

The main focus is to solve heat conduction problems in some specific 

domains. These include plane wall, cylinder and sphere. 

Analytical methods involving separation of variables, Laplace transform, 

Duhamel and Green function methods have been introduced to solve these 

problems. For the numerical handling of heat conduction problems, we 

have implemented the finite difference method (FTCS). Numerical results 

have shown to be in a close agreement with the exact ones. In fact, we 

strongly believe that the FTCS is an efficient methods for solving these 

types of problems. On the other hand, we note that the exact and the 

approximate solutions are in very close agreement with the stability 

condition 
   

     
 ≤   

 

 
 . 
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Appendix 

Appendix A 

C
++

 code for example (4.1):  

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() 

{ 

    printf("Example_3!\n\n"); 

    int N ,M ,Tmax; 

    int L = 5 , a =8 ; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = %d\n",L); 

    printf("a = %d\n",a); 

    double Xi; // Xi = (i-1) * delta_X 

    double Tj; // Tj = (j-1) * delta_T 

    double delta_X = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double Lamda = a * ((double) delta_T/pow(delta_X, 2.0)); 

    double R[N+1][M+2]; 

    double g[N][M]; 

    double Te[N][M];  
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    printf("delta_X = %.4lf\n",delta_X); 

    printf("delta_T = %.4lf\n",delta_T); 

    printf("Lamda = %.4lf\n",Lamda);  

    // At j = 1 

    for(int i = 2 ; i<N ; i++) 

    { 

        Xi = (i-1) * delta_X; 

        R[i][1] = 10 + 16 * Xi + 2 * sin(PI * Xi) - 4 * sin(2 * PI * Xi) + sin(PI 

* Xi) ; 

    }     

    // At i = N OR i = 1 then 

    for (int j = 1 ; j<=M+1 ; j++) 

    { 

        R[1][j] = 10 ; 

        R[N][j] = 90 ; 

    }     

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 

            R[i][j+1] = Lamda * R[i-1][j] + (1-2*Lamda) * R[i][j] + Lamda *  

R[i+1][j];      

    } 

    printf("i       j         Xi             Tj                       T(i,j)                      ET(i,j)               

Te(i,j)\n"); 

    printf("----------------------------\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 



94 

            Xi = (i-1) * delta_X; 

            // find the function of G 

            double Exp1 = -8  * pow(PI, 2.0) * Tj ; 

            double Exp2 = -32 * pow(PI, 2.0) * Tj ; 

            double Exp3 = -288 * pow(PI, 2.0) * Tj ;           

            g[i][j] = 10 + 16 * Xi + 2 * exp(Exp1) * sin(PI * Xi) - 4 * 

exp(Exp2) * sin(2 * PI * Xi) + exp(Exp3) * sin(PI * Xi) ; 

            // 

            // Find the Error 

            Te[i][j] = g[i][j] - R[i][j] ; 

                         abs(g[i][j] - R[i][j] ); 

            printf("%d     %d     %.4lf     %.4lf       %lf        %.9lf       

%.9f\n",i,j,Xi,Tj,R[i][j],g[i][j],Te[i][j]); 

            printf("----------------------------\n"); 

        } 

    }   

    return 0; 
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Appendix B 

C
++

 code for example (4.2):  

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Example_2!\n"); 

    int N ,M ,Tmax  ; 

    int a = 1; 

    double L = PI; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = %lf\n",L); 

    printf("a = %d\n",a); 

    double delta_X = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double Lamda = a * ((double) delta_T/pow(delta_X, 2.0)); 

    double R[N+1][M+2]; 

    double g[N][M]; 

    double Te[N][M]; 

    double Xi; 

    printf("delta_X = %.4lf\n",delta_X); 
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    printf("delta_T = %.4lf\n",delta_T); 

    printf("Lamda = %.4lf\n",Lamda); 

    // At j = 1 

    for(int i = 2 ; i<N ; i++) 

    { 

        Xi = (i-1) * delta_X; 

        R[i][1] = 4*sin(Xi) + 2*sin(2*Xi) + 7*sin(3*Xi); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M+1 ; j++) 

        R[1][j] = R[N][j] = 0.0; 

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 

            R[i][j+1] = Lamda * R[i-1][j] + (1-2*Lamda) * R[i][j] + Lamda *  

R[i+1][j] ; 

    } 

    printf("i     j       Xi         Tj           T(i,j)          ET(i,j)          Te(i,j)\n"); 

    printf("----------------\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            double Tj = (j-1) * delta_T; 

            double Xi = (i-1) * delta_X; 

            g[i][j] = 4*sin(Xi)*exp(-1*Tj) + 2*sin(2*Xi)*exp(-4*Tj) + 

7*sin(3*Xi)*exp(-9*Tj); 

            Te[i][j] = g[i][j] - R[i][j] ; 

                      abs(g[i][j] - R[i][j] ); 

            printf("%d     %d     %.4lf     %.4lf       %lf        %lf       
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%.9f\n",i,j,Xi,Tj,R[i][j],g[i][j],Te[i][j]); 

            printf("---\n"); 

        } 

    } 

    return 0; 

} 
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Appendix C 

C
++

 code for example (4.3):  

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Example_5!\n"); 

    int N ,M ,Tmax  ; 

    int a = 1; 

    int L = 1; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = %d\n",L); 

    printf("a = %d\n",a); 

    double delta_X = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double Lamda = a * ((double)delta_T/pow(delta_X, 2.0)); 

    double b = a * delta_T; 

    double R[N+1][M+1]; 

    double g[N+1][M+1]; 

    double Texact[N][M]; 

    double Terorr[N][M]; 
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    double Xi,Tj; 

    printf("delta_X = %.4lf\n",delta_X); 

    printf("delta_T = %.4lf\n",delta_T); 

    printf("Lamda = %.4lf\n",Lamda); 

    // At j = 1 

    for(int i = 2 ; i<N ; i++) 

    { 

        Xi = (i-1) * delta_X; 

        R[i][1] = sin(2*PI*Xi); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M ; j++) 

        R[1][j] = R[N][j] = 0.0; 

    //Function OF G(Xi,Tj) 

    for(int i=1 ; i<=N ; i++) 

    { 

        for(int j=1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Xi = (i-1) * delta_X; 

            double ex = -1 * Tj; 

            g[i][j] = exp(ex) * sin(PI * Xi); 

        } 

    } 

    printf("\n\n\n"); 

    //Whole Function 

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 
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        { 

            R[i][j+1] = Lamda * R[i-1][j] + (1-2*Lamda) * R[i][j] +Lamda *  

R[i+1][j] + b * g[i][j] ;} 

    } 

    printf("i     j       Xi        Tj          T(i,j)          Tex(i,j)        Terr(i,j)\n"); 

    printf("\n"); 

    //Exact Function 

    for(int i=1 ; i<=N ; i++) 

    { 

        for(int j=1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Xi = (i-1) * delta_X; 

            double exp1 = -1 * pow(PI, 2.0) * Tj; 

            double exp2 = -4 * pow(PI, 2.0) * Tj; 

Texact[i][j] = ((1.0/(1-pow(PI, 2.0))) * exp(exp1) * sin(PI * Xi)) - ((exp(-

1*Tj)/(double)(1-pow(PI, 2.0))) * sin(PI*Xi)) + ((exp(exp2)) * sin(2 * PI 

*Xi)) ;   

            Terorr[i][j] = Texact[i][j] - R[i][j]; 

                        abs ( Texact[i][j] - R[i][j] ); 

            printf("%d     %d     %.4lf     %.4lf       %lf        %lf       

%.9f\n",i,j,Xi,Tj,R[i][j],Texact[i][j],Terorr[i][j]); 

            printf("\n"); 

        } 

    } 

    return 0; 

} 
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Appendix D 

C
++

 code for example (4.4): 

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Cylinder Example_1!\n"); 

    int N ,M ,Tmax  ; 

    double a,L; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = "); 

    scanf("%lf",&L); 

    printf("a = "); 

    scanf("%lf",&a); 

    double delta_R = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double Mue = a * ((double) delta_T/pow(delta_R, 2.0)); 

    //double b = a * delta_R; 

    printf("delta_R = %lf\n",delta_R); 

    printf("delta_T = %lf\n",delta_T); 

    printf("Mue = %lf\n",Mue); 
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    double Ri,Tj; 

    double R[N+1][M+2]; 

    double F[N+1]; 

    // At j = 1 

    for(int i = 1 ; i<N ; i++) 

    { 

        Ri = (i-1) * delta_R; 

        R[i][1] = F[i] = 10 + sin(PI *Ri); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M+1 ; j++) 

    { 

        R[1][j] = F[1] = 10; 

        R[N][j] = 100; 

    } 

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 

            R[i][j+1] = Mue * ((double)i/(i-1)) * R[i+1][j] + Mue * R[i-1][j] + 

(1-Mue-(Mue * i/(double)(i-1))) * R[i][j]; 

    } 

    printf("i     j       Ri        Tj            F[ri]          R(i,j)\n"); 

    printf("\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Ri = (i-1) * delta_R; 
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            printf("%d     %d       %.4lf        %.4lf         %lf      

%lf\n",i,j,Ri,Tj,F[i],R[i][j]); 

            printf("\n"); 

        } 

    } 

    return 0; 

} 
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Appendix E 

C
++

 code for example (4.5): 

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Cylinder Example_2!\n"); 

    int N ,M ,Tmax  ; 

    double a,L; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = "); 

    scanf("%lf",&L); 

    printf("a = "); 

    scanf("%lf",&a);  

    double delta_R = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double Mue = a * ((double) delta_T/pow(delta_R, 2.0)); 

    double b = a * delta_T; 

    printf("delta_R = %lf\n",delta_R); 

    printf("delta_T = %lf\n",delta_T); 

    printf("Mue = %lf\n",Mue); 



115 

    double Ri,Tj; 

    double R[N+1][M+2]; 

    double F[N+1]; 

    double G[N+1][M+1]; 

        // At j = 1 

    for(int i = 1 ; i<=N ; i++) 

    { 

        Ri = (i-1) * delta_R; 

        R[i][1] = F[i] = sin(PI * Ri / 3.0); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M+1 ; j++) 

        R[1][j] = R[N][j] = F[1] = F[N] =0; 

    //Find G[i][j] 

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 1 ; i<=N ; i++) 

        { 

            Ri = (i-1) * delta_R; 

            Tj = (j-1) * delta_T; 

            G[i][j] = exp(-4 * pow(PI, 2.0) *Tj) * sin(PI * Ri / 3.0); 

        } 

    }  

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 

            R[i][j+1] = Mue * ((double)i/(i-1)) * R[i+1][j] + Mue * R[i-1][j] + 

(1-Mue-(Mue * i/(double)(i-1))) * R[i][j] + b * G[i][j]; 

    }    
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    printf("i     j       Ri              Tj                G[i][j]        F[ri]          R(i,j)\n"); 

    printf("--------\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Ri = (i-1) * delta_R; 

            printf("%d     %d       %.4lf        %.4lf            %lf       %lf          

%lf\n",i,j,Ri,Tj,G[i][j],F[i],R[i][j]); 

            printf("-----\n"); 

        } 

        return 0; 

    } 
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Appendix F 

C
++

 code for example (4.6): 

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Sphare Example_1!\n"); 

    int N ,M ,Tmax  ; 

    double a,L; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = "); 

    scanf("%lf",&L); 

    printf("a = "); 

    scanf("%lf",&a); 

    double delta_R = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double K = a * ((double) delta_T/pow(delta_R, 2.0)); 

    //double b = a * delta_T; 

    double Ri,Tj; 

    double S[N+1][M+1]; 

    double F[N+1]; 
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    // At j = 1 

    for(int i = 1 ; i<N ; i++) 

    { 

        Ri = (i-1) * delta_R; 

        S[i][1] = F[i] = 5 + sin(PI*Ri); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M ; j++) 

    { 

        S[1][j] = F[1] = 5; 

        S[N][j] = 15; 

    } 

    for(int j = 1 ; j<M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 

            S[i][j+1] = K * ((double)(i+1)/(i-1)) * S[i+1][j] + K * S[i-1][j] + (1-

K-(K * (i+1)/(double)(i-1))) * S[i][j]; 

    } 

    printf("i     j       Ri            Tj            F[ri]          S(i,j)\n"); 

    printf("\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Ri = (i-1) * delta_R; 

            printf("%d     %d       %.4lf        %.4lf         %lf       

 

%lf\n",i,j,Ri,Tj,F[i],S[i][j]); 
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            printf("\n"); 

        } 

    } 

    return 0; 

} 
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Appendix G 

C
++

 code for example (4.7): 

#define _USE_MATH_DEFINES // Define the value of pi 

#include <stdio.h> 

#include <math.h> 

#define PI 3.141593 

int main() { 

    // insert code here... 

    printf("Sphare Example_2!\n"); 

    int N ,M ,Tmax  ; 

    double a,L; 

    printf("Enter these values \n"); 

    printf("N = "); 

    scanf("%d",&N); 

    printf("M = "); 

    scanf("%d",&M); 

    printf("Tmax = "); 

    scanf("%d",&Tmax); 

    printf("L = "); 

    scanf("%lf",&L); 

    printf("a = "); 

    scanf("%lf",&a); 

    double delta_R = (double) L/(N-1); 

    double delta_T = (double) Tmax/(M-1); 

    double K = a * ((double) delta_T/pow(delta_R, 2.0)); 

    double b = a * delta_T; 

    double Ri,Tj; 
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    double G[N+1][M+1]; 

    double S[N+1][M+1]; 

    double F[N+1]; 

    // At j = 1 

    for(int i = 1 ; i<N ; i++) 

    { 

        Ri = (i-1) * delta_R; 

        S[i][1] = F[i] = sin(PI * Ri /5.0); 

    } 

    // At i = N OR i = 1 then R = 0 

    for (int j = 1 ; j<=M ; j++) 

    { 

        S[1][j] = S[N][j] = 0; 

    } 

    // Find Function Of G 

    for(int j = 1 ; j<=M ; j++) 

    { 

        for(int i = 1 ; i<=N ; i++) 

        { 

            Tj = (j-1) * delta_T; 

            Ri = (i-1) * delta_R;       

            G[i][j] = exp(-1*Tj) * sin(PI * Ri / 5.0) ; 

        } 

    } 

    for(int j = 1 ; j<M ; j++) 

    { 

        for(int i = 2 ; i<N ; i++) 
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            S[i][j+1] = K * ((double)(i+1)/(i-1)) * S[i+1][j] + K * S[i-1][j] + (1-

K-(K * (i+1)/(i-1))) * S[i][j] + b * G[i][j]; 

    } 

    printf("i     j         Ri            Tj            G[i][j]         F[ri]        S(i,j)\n"); 

    printf("-\n"); 

    for(int i = 1 ; i<=N ; i++) 

    { 

        for(int j = 1 ; j<=M ; j++) 

        { 

            Tj = (j-1) * delta_T; 

            Ri = (i-1) * delta_R; 

            printf("%d     %d       %.4lf        %.4lf         %lf       %lf      

%lf\n",i,j,Ri,Tj,G[i][j],F[i],S[i][j]); 

            printf("\n"); 

        } 

    } 

    return 0; 

} 
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 الطرق التحميمية والعددية لحل معادلة التوصيل الحراري

 

 

 إعداد

 عبدالله عدوان عبدالله نصار 

 

 إشراف 

 أ.د. ناجي قطناني

 

 

 

 
     قدمت هذه الأطروحة استكمالا لمتطمبات الحصول عمى درجة الماجستير في الرياضيات 

 .فمسطين–نابمس، لنجاح الوطنيةبكمية الدراسات العميا في جامعة ا
1027 



 ب 

 الطرق التحميمية والعددية لحل معادلة التوصيل الحراري
 إعداد

 عبدالله عدوان عبدالله نصار 
 إشراف 

 أ. د. ناجي قطناني
 الممخص

وفي  ،الكثير من الظواىر الفيزيائية واليندسية تظير عمى شكل معادلات تفاضمية جزئية تصفيا
 ،والأسطوانة ،ىذه الرسالة أخذنا معادلة التوصيل الحراري في عدة أوساط ىي: السطح المستوي

ثم قمنا بحل ىذه الصيغ بعدة طرق تحميمية  ،والكرة, وقمنا بكتابة الصيغة الرياضية ليذه المعادلة
 وفق شروط حدودية معينة وىذه الطرق ىي: 

Separation Of Variables Method )طريقة فصل المتغيرات(, Laplace Transform 

Method )طريقة تحويل لابلاس(   , Duhamel's Method 

دوىمل()طريقة  , and Green's Function Method طريقة اقتران غرين() . 

 ثم قمنا بحل معادلة التوصيل الحراري عدديا معتمدين عمى الطريقة: 

 Finite Difference Method )طريقة الفروق الحدودية(   

,   ++Cوطبقناىا عمى مجموعة من الأمثمة وأوجدنا حمولا تقريبية ليا اعتمادا عمى لغة البرمجة
( فييا يكون        وخرجنا منيا ببعض النتائج التي تؤكد عمى أن ىذه الطريقة مقدار الخطأ)

قميل جدا عند مقارنة الحل الحقيقي عند نفس القيم مع الحل التقريبي  مع  الأخذ بعين الاعتبار 
  :أن

   

     
 ≤    

 
     and        

     
   ≤    

 
 

   مقدار الخطأ غير معقول في حال إىمال ىذا الشرط .ويكون 


