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ABSTRACT:

In this thesis, cyclic codes, their generators, their idempotents,
and their dual have been studied. Also, coding and decoding of cyclic

codes and Algorithm for decoding linear cyclic codes were under
focus.

Moreover, cyclic Z,. codes, their generators, their dual and their

idempotents have been deeply discussed.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



INTRODUCTION:

The beginning of coding theory goes back to the middle of this
century with the work of Golay, Hamming and Shannon. Although it
has its origins in engineering and applied problems, the subject has
been developed by using more mathematical techniques.
Mathematical background was at the beginning very little, but as time
passes, many mathematical tools, such as group theory, ring theory,
and linear programming have been applied to coding theory. Thus,
coding theory has now become an active part of mathematical
research.

In many cases, the information to be sent is transmitted by a
sequence of zeros and ones called binary codes, which means that the

code is defined on the field {0, 1}. In other cases, we can define
codes over finite rings such as Z,, Zs, ....
Z. Qian and V. Pless in [12] have studied cyclic Z, codes, their

dual generators, and their idempotents. In [7], Kanwar and

Lopez-Permouth generalized the results of Pless and Qian from

cyclic Z~codes to cyclic Z,.-codes.
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In this thesis, we discuss cyclic codes and cyclic Z,. codes

where p is prime and m is an integer. The material of this thesis lies

in three chapters.

CHAPTER I: includes basic concepts, definitions, an introduction to
detecting -and correcting of error patterns, dual of linear codes, and

some algebraic topics that we need in this thesis such as finite fields.

CHAPTER 1II: includes a study of a class of codes called cyclic
codes. In particular, generating polynomials, check polynomials,
idempotents and dual cyclic codes have been studied. Also, some
important families of cyclic codes like Harnming codes and quadratic

residue codes have been studied in this chapter.

CHAPTER II: includes some basic definitions and properties of the
ring Z,/<x"-I1>. Local rings, regular polynomials, basic irreducible
polynomials, primary ideals and other concepts that will be used in
proving theorems for cyclic Z, codes have been discussed.

Properties of cyclic Z,. codes, their generator polynomials, the dual

and self-dual of Z,. cyclic codes and their idempotents have also been

discussed.
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CHAPTER1

PRELIMINARIES

1.1 Introduction to Coding Theory:

Coding theory is one of the sciences that have been developed
recently to suit the increasing need for the safe and pure
communications. As some say, coding theory is the science of
studying information integrity. It entered the scene to ensure the
correction of messages transmitted from one place to another,
whether it is inside a computer, compact disk or outside to make our
radio and television work properly as communication devices. The
subject of error-correcting codes arose originally in response to
practical problems in the reliable communication of digitally encoded
information. Claude Shannon’s paper “A mathematical theory of
communication”, written in 1948 was the starting of error correcting
codes.

We think of a message as a block of symbols from a finite
alphabet. A commonly used alphabet is the set of two symbols, 0
and 1. The word is a sequence of digits. 529514

The following diagram shows the steps for sending a message:
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Received
Message |”|{ Encoder

message

> Channel | »| Decoder |”| Message

The first box contains the message, the message enters the encoder,
and in the channel, it changes by noise (may be) then it is received.
Then the received message enters the decoder, so the original
message can be recovered. To specify what happens:

Suppose that our receiver knows all messages that can be
transmitted, say they are C={0000, 1011, 0111, 1100} and we know
that in sending the message, one error can happen at most. Then by
looking at the received message 1001 we can tell immediately that
one error happened since the received message is not in C, and by
checking all possible one error message of 1001 we see that the only
message that could be sent is 1011. This means that we have detected

the error and then we can correct this error.

1.2. Basic definitions for coding theory:

Here, we will define the terminology we will use throughout this
thesis.
1.2.1. Definition [5]

A 0 or a1 is called a digit. A word is a sequence of digits; the

length of the word is the number of digits in the word.
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1.2.2. Example

0110101 is a word of length 7.

1.2.3. Definition [3]

A code C is a nonempty set of words.
1.2.4. Example
C = {00, 10,01, 11} is a code.
1.2.5. Definition [5]
e A block code is a code having all its words of the same length;
this number is called the length of a code.
e All codes used in this thesis are block codes.
e The words that belong to a given code C will be called
codewords. We shall denote the number of codewords in a code C
by {C].
1.2.6. Example
Let C= {000, 011,010,001}, then |C]|=4.
1.2.7. Definition [3]
A code of length », which contains M words will be denoted by
C(n, M).
1.2.8. Definition [5]
Let v be a word of length n. The weight of v, denoted by wt(v) is

the number of times the digit 1 occurs in v.
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1.2.9. Example
wt(110101) =4, wt(00000} =0.

1.2.10. Definition [5]

Let v and w be words of length ». The distance between v and w,
denoted by d(v, w), is the number of positions in which v and w
disagree.

1.2.11. Example

Letv=11010 and w= 01101, then d (v, w)=4.

1.2.12. Definition [15]

e Let K" be the set of all binary words of length »# with addition of
words defined componentwise (mod2). ie. 0+ 0=1+1=0,
0+1=1+0=1.

e The scalar multiplication of K" is defined componentwise and the
only scalars are 0 and 1.

e Clearly, K" is closed under scalar multiplication.

e In the general case, we let F be GF(g) the finite field with ¢
elements.

1.2.13. Theorem [5]

Let v, w and u be words of length nand a < {0, 1}, then:
1) 0swt(v)<n.
2) wt(v)=0 iff visthe zero word.

3) 05d(v,w)<n.
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4) d{v,w)=0 iff v=w.

5) dv,w)y=d(w,v).

6) d(v,w)=wt(v+w)

7y wt(v+w) Swt(v)+wt(w).
8) d,w)<d(v,u)+d(u,w).
9) wt(av)=a.wt(v).

10) d(av, aw)=ad (v, w).
Proof:

The proofs of (1 — 5) follow immediately from the definition.
For (6 — 10), it follows from the fact that 1 + 1 = 0 in the binary
system, so the number of 1’s in the word (v + w) is < the number of
1’s in v + the number of 1’s in w.

1.2.14. Definition [15]

A code C is called linear if v +w is a word in C whenever v
and w are in C. That is to say a linear code is a code that is closed
under addition of words.

Note that a linear code is a subspace of K.
1.2.15. Examples
1) C,={000,111} is a linear code,
since 000+ 000=000 ¢ C.
000+111=111¢ C.

111 +111=000 ¢ C.
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2) C,= {000, 001, 101} is not a linear code, since 001 and 101 are
in C,but 001 + 101 =100 ¢ C,.
1.2.16. Theorem [5]
A linear code must contain the zero word.
Proof:
The proof follows immediately from the fact that v + v = the
zero word Vv e C.
1.2.17. Definition [5]
The distance of a code C where {C] > 1 is defined to be
d (C) = min {d (u, v): where u and v are distinct codewords in C}.
1.2.18. Example
Let C={01011, 10101, 11101, 10000, 01100}, then d{C) = 1.

1.2.19. Theorem [35]

If C is a binary linear code, then
d(C)=min {wt(x)|x eCandx #0}.

Proof:

Let w# y e C such that d(C) = d(w, y).
d(C)=min {d(w,y)|w,ye Candw+y = 0},
Then by Theorem 1.2.13 (6)

d(C) =min{wt(w+y)lw,y€Candw+y = 0}.

= min {wt (x) | for some x = 0}.
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1.3. Error -detecting and error- correcting:

1.3.1. Definition [5]

Let Cbeacode of K". Ifve Cissentand w € K" is received,
then w = v+ w is called an error pattern. The code C is said to
detect the error pattern « if v+ u is not a codeword, Vv e C.

1.3.2. Example
Let C= {001, 101, 110}.
For the error pattern u = 010, we calculate v+ 010 forallv e C.
001 + 010=011,
101 +010=111,
110 + 010 = 100.
None of the three words 011, 111 or 100 is in C, so C detects the
error pattern 010.
1.3.3. Example
Let C= {001, 101, 110}.
For the error pattern # = 100, we calculate v+ u, Vv e C.
001 + 100 =101,
101 + 100 = 061,
110+ 100=010,
since one of these sums is in C, so C does not detect the error pattern

100.
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1.3.4. Definition [15]

A code Cis t - error detecting if whenever at most ¢, but at least
one error is made in a code word, the resulting word is not a code
word. A code C is exactly t-error-detecting if it is t-error detecting
butnot (¢ + 1) error-detecting.

1.3.5. Theorem: [15]
A binary code C is exactly t-error detecting if and only if d (C) =¢ + 1.
Proof:

Let u be a nonzero error pattern with wt (1) < d- [ and let v €
C. Then,d(v,v+uw)y=wt(v+v+u)=wr(u)<d
Since C has distance d, v+ u is not in C,
hence C detects u. From the definition of d there are codewords x and
yinCwithd (x,y)=d.

Consider the error pattern u =x + y.

Now y = x + u is in C, so C will not detect the error pattern u of
weight 4. Hence t=d - 1
1.3.6. Example

Let C= {000, 111}, then d(C)=3.

By theorem 1.3.5, C detects all error patterns of weight 1,2 and C

does not detect the error pattern of weight 3.
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1.3.7. Definition [15]

A code C is t-error- correcting if the minimum distance
decoding is able to correct all errors of size ¢ or less in any codeword,
assuming that all ties are reported as errors. A code C is exactly ¢-
error correcting if it is f-error correcting, but not (¢ + ) —error
correcting.

1.3.8. Definition [15]

We say that C corrects the error pattern u, if for allvin C, v + u
is closer to v than to any other codeword in C.
1.3.9. Example

Let C= {000, 111}.
Let the error pattern u =010
Forv =000
d(000,v+u)=d(000,010)=1,d(11l,v+u)=4d(111,010)=2.
Forv=111
d (000,v+u)=d (000, 101)=2,d (111, v+u)=d(111,101)=1.
Thus C corrects the error pattern 010.
Now take the error pattern # = 110,
For v=000,d (000, v+ u)=d (000, 110) =2,
d(11l,v+u)=d(111,110)=1
Since v + u is not closer to v = 000 than to 111, C does not correct

the error pattern 110.
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We describe a procedure called maximum likelihood decoding
or MLD for deciding which word v in C was sent.
1.3.10 Definition (MLD) [8]

If there is only one word v in C closer to the received word w
than any word in C, we decode w as v. If there are more than one
word v in C at the same distance from w, we then choose one of these
words arbitrary.

1.3.11. Theorem [15]

A code C is t-error-correcting if and only if d =d(C) =2t + 1 or
2t + 2.

Proof:

Suppose that d (C) = 2t + 1 or 2t + 2. And suppose that the
received word v differs from the original codeword ¢ in at most ¢
positions, that is d (v,c) < . Then v is closer to ¢ than to any other
codeword, for if d (v, u) < ¢, for some u e C, then we have, by the
triangle inequality. d (c, v} < d (c,v) +d (v, u) < t +t =2t < d(C)
which contradicts the minimality of 4. Hence minimum distance
decoding will correct ¢ or fewer errors. Furthermore, if d(C) =2t + 1,
then there are codewords ¢ and « for which d(c, u) =2t + 1.

So ¢ and u differ in exactly 2¢ + 1 positions. Suppose that the
codeword ¢ is sent and that the received word v differs in exactly

t + 1 positions, all of which are located in the aforementioned 2¢ + 1
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positions, and that v now agrees with « in those ¢ + 1 error positions.
Thusd (v,c)=¢t+1,butd(v,u)=2t +1 -+ 1)=t¢

And so maximum likelihood decoding would decode v as # which is
incorrect. Hence C is not (¢ + 1) error —correcting and similarly for if
d(C) = 2t + 2. For the converse, if C is ¢ —error-correcting, we could
not have d (¢, u) < 2¢, then it would be possible for the received
word v to have precisely ¢ errors, placing it as close to u as to the
codeword ¢, that was originally sent. Henced(C) 2 2¢+ 1.

On the other hand, if d(c¢) = 2t+3=2(¢+1)+ 1, then the code C
would be (¢ + 1) error correcting. Hence d(C) = 2¢+ 1 or 2t + 2.
1.3.12. Corollary

For any code C,d (C)=d if and only if C is exactly [(d — 1)/2] —
error-correcting, where the [x] means the greatest integer of x.

Proof:

Follows from Theorem 1.3.11.

1.4. Generator and parity check matrices:

1.4.1. Definition [5]
If u = (u;, uz, ..., uy,) and v= (v, v, ..., v,) are two vectors in a
vector space V over GF (p), p: Prime, then the inner product of u

and v 1s
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”'szuivf(m()d P). If uv =0, we say that u and v are
i=1

orthogonal to each other. Note for p = 2, (orthogonality) means that
u, v have an even number of 1’s in common.
1.4.2. Definition [5]
Note that a linear code C spans a subspace of K" with dimension %.
Any matrix whose rows form a basis for C is called a generator
matrix for C.

The generator matrix for C is k x »n matrix, and it must have rank £.
Proof:

Follows from the definition of the generator matrix.

1.4.3. Theorem [15]

A k x n matrix G is a generator matrix for some linear code C if
and only if the rows of G are linearly independent, that is, if and only
if the rank (G) = k.

Proof:

The proof follows immediately from the definition.
1.4.4. Theorem [11]

If G is a generator matrix for a linear code C, then any matrix
row equivalent to G is also a generator matrix for C.

Proof: Follows from the properties of row operations.
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1.4.5. Example
C= {0000, 1110,0111, 1001}.

To find the generator matrix for C we change 4 to RREF by

elementary row operations:

- P - -

0000 1 110 1 110
1 11 0 01 11 01 11
A= —> —>
0111 1 0 0 1 01 11
1 0 0 1] 0 0 0 0] 0000
1 1 1 0] [1 0 0 1]
» (01 11 '0111
60 0 00 0 00 0
0 0 0 0 0 0 0 o]
1 0 0 1. .
SoG= 0111 1s a generator matrix for C.

1.5 Dual of linear codes:

1.5.1. Definition [8]

Let C be a (n, k) code. Then the dual code (CJ‘) of C is
Clt={ucK'|u.w=0,Vwe C}.
1.5.2. Algorithm

We illustrate an algorithm for finding C+ for the code C.
1) Form the matrix 4 whose rows are the words in C.

2} Use elementary row operations to write 4 in RREF.

* RREF: Reduced Row Echolon Form.
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3) Let G be the & x n matrix consisting of all the nonzero rows of the

RREF of A.

4) Let X be the & x (n—k) matrix obtained form G by deleting the

leading k columns of G.

5) Form the following n x (n—k) matrix H= LX }
n-k

6) The columns of H form a basis for ct.
1.5.3. Example

If §= {11101, 10110, 01011, 11010}. To find ct we apply

algorithm 1.5.2.

1 110 1 11101 11 010
1 0110 01011 01 01 1
A= —> —>
01011 001 11 0 01 11
1101 0 00000 00000
1 0 0 0 1]
10 1 0 1 1
001 11
0 0 0 0 0
0 0

= G=|0 1 0|,k=3andX =

-
ek e e

The leading columns of & are columns 1, 2 and 3, so the rows of x

are placed in rows 1,2 and 3 respectively of the 5§ x 2 matrix A.
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So H=

D = e e O

— D b e

— The basis for Cis the columns of H, or the rows of H'.
1.5.4. Theorem [8]
a)  If Gis a generator matrix for C, then C 1 {x eK"|xG" =0}
b} Thedual C L of the linear (n, k) code is a linear (n, n-k) code.
c) (CJ')i = (C forany linear code C.
Proof:
a) Since x is orthogonal to every codeword in C if and only if it
is orthogonal to every codeword in a basis for C.
b) Follows from the definition of dual code.
c) Let weC=xw=0 VxeC*,then
w e (CH)t = C <(CH)but Cand (CH) have the same
dimension, and so they must be equal.
1.5.5. Definition [8]
A linear code C for which C= C is said to be self-dual.
1.5.6. Example
C = {0000, 1100, 0011, 1111}.
C is self-dual. Note that C is a C(4, 2) code, since C ¢ CTand Ct is

also (4,2) code. So ct=c
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1.5.7. Definition [11]
A matrix H is called a parity-check matrix for a linear code C if
the columns of H form a basis for the dual code C*.
1.5.8. Theorem [11}
If H is a parity-check matrix for a linear code C of length », then
C consists precisely of all words v in K such that v/ = 0.
Proof:
The proof follows immediately from the fact that the columns of
the parity check matrix form a basis for C 1
1.5.9. Theorem [15]
If matrices G and H are generator and parity-check matrices
respectively for some linear code C then:
1) The rows of G are linearly independent.
2) The columns of H are linearly independent.
3) The number of rows of G + the number of columns of H = the
number of columns of G which equals the number of rows of H.
4) GH=0.

Proof: Follows from the definition of G and H.
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1.5.10. Theorem [5]

If H is a parity check matrix of C then H' (transpose of H) is a
generator matrix for ct.
Proof:

Let G and H be the generator matrix and the parity check matrix
respectively for C, then H'G" = (GH)"= 0. Thus (GH)" = 0. Hence H"
is a generator matrix for ct.

1.5.11. Definition [15]

If C is any code of length n, then the code L of length n which
is obtained by choosing a particular permutation of » digits and then
consistently rearranging every word in C in the chosen way. L is said
to be equivalent to C.

1.5.12. Example
LetC={11111,01111,00111, 00110, 00010}, n=>5
We choose to rearrange the digits in the order 2, 1, 4, 5, 3 then

L={11111,10111,00111, 00101, 00100}. L is equivalent to C.
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1.6 Syndrome decoding:

1.6.1. Definition [8]
If Cis a linear code and if u is a code word in K", then the coset
of C determined by u is the set of all words of the form v+ u as v
ranges over all codewords in C. We denote this coset by C + v, thus
Cru={v+u|ve C}.
1.6.2. Example
Let C={000,111}. Andletu=10l.
Then C+ 101 = {000+ 101, 111 + 101} = {101, 010}.
1.6.3. Theorem [5]
Let C be a linear code of length n. Let ¥ and v be words of
length ».
1}  Ifuisinthe coset C+ v, then C+ u=C +v, that is each word
In a coset determines that coset.
2)  The word u is in the coset C + u.
3) Ifu+visinC,then u and v are in the same coset.
4) Ifu+visnotin C, then » and v are in different cosets.
5)  If Chas dimension £, then there are exactly 2" different cosets
of C, and each coset contains exactly 2* words.
6) Two cosets are either disjoint or coincide.

Proof: Follows from the properties of cosets.
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1.6.4. Definition [5]

If C is a linear code, and v is a word then the word of the least
weight in the coset is called a coset leader.
1.6.5. Definition [15]

Let C be a linear code of length » and dimension k. Let A be a
parity check matrix for C. For any word w in K", the syndrome of
w(denoted by syn(w)) is the word wH in K™*.

1.6.6. Example
Let C= {0000, 1011,0101, 1110}. Let w= 1101

By algorithm 1.5.2, we can find H to be

11
H=01
1 0
0 1
1 1
0 1
= wH=1101] Lo =11 =syn (w)
0 1

1.6.7. Theorem [11]
Let C be a linear code of length #. Then
1) Every word in a fixed coset has the same syndrome.

2) Words in different cosets have different syndromes.
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Proof:

1y

2)

Let v + Cbe acoset of C, let v + ¢, v + ¢; be any two words in
the coset C for some ¢, ¢; e C and suppose the parity check
matrix for Cis H,then (v + ¢ )H=vH = (v + ¢;)H.

= The two words have the same syndrome.

Let # and v be two different words in two cosets and have the
same syndrome, then uH =vH = (uv)}H=0 = uve C.Sov

and u are in the same coset, which is a contradiction.

1.6.8. Theorem: [8]

1) The syndrome of w, syn(w) = wH is zero if and only if w is a
code word of C. |

2) Thereisal -1 correspondence between syndromes and cosets.

3) If no errors occur, and if w is the received word, then the
syndrome of w is zero but not conversely.,

Proof:

1.  Follows from Theorem 1.5.8.

2. Follows from the properties of syndromes and cosets.

3. Suppose no errors occur, then w will be a codeword and by (1),

syn(w)=wH= 0.

Notice that (from Theorem 1.6.7.) we can identify a coset by its

syndrome; the syndrome of a coset is the syndrome of any word in

the coset.
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We are now ready to define syndrome decoding. We choose a
set of coset leaders of an (n, k) code C and list them with their
syndromes. Since all the words in a coset have the same syndrome,
this list contains all possible 2™ syndromes.

In practice, we do not have to write down a standard array. The code
itself has the zero word as its syndrome, and we can use the zero
word as coset leader. We can then choose words of weight 1 as coset
leaders. We compute their syndromes, whenever we get a new
syndrome, we have a new coset leader, we go on to see if words of
weight 2 can be coset leaders. Thus, each time we get a new
syndrome, we put it in the list with the coset leader of weight / that
gave rise to it. After we complete the words of weight i, we continue
with words of weight i + 1 until we reach our 2™* syndromes.

To decode a received word w, compute syn (w); locate this in the
syndrome list, subtract the coset leader u corresponding to this

syndrome from w. decode w as w — u =x.
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1.6.9. Example

Let C = {0000, 1011, 0101, 1110}, we calculate the parity check

matrix H to be

(=
— O =

And we find the syndromes for the coset leader in the following

table:
Coset leader u | Syndrome uH
0000 00
1000 11
0100 01
0010 10

Assume that w = 1101 is received. Then the syndrome is wH = 11,
which gives a coset leader # = 1000 (see the table). We conclude that

x=w+ u=0101 was sent.
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1.7 Finite Fields:

1.7.1. Definition [10]

A commutative ring with unity is called a field if every nonzero
element is a unit.
1.7.2. Definition [10]

The order of a field is the number of elements in the field. If the
order is infinite, we call the field an infinite field, and if the order is
finite, we call the field a finite field.

1.7.3. Example:

1) Zsis a finite field.

2) R is infinite field.
1.7.4. Definition: [10]

If F is a field and a is an element in F, the least positive integer
n for which a" = 1 is called the order of a.
Now, we state the following theorems without proofs.
1.7.5. Theorem [10]

If p is a prime number and » is a positive integer, then there is
(up to isomorphism) exactly one field of order g = p" which is
denoted by F, or GF (g). Furthermore, all finite fields have size p”,

for some prime number p and positive integer n.
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1.7.6. Theorem [11]

Let a be an element in a field F. If a has order n, then o™ = 1, if
and only if m is a multiple of n.

1.7.7. Theorem [1]

If a is an element of order » in a field F, then &’ has order
vl g.c.d (s, r). where g.c.d (s, ) is the greatest common divisor of s
and r.

1.7.8. Theorem [1]

If a is an element that has order » in a field F and & has order m
with g.c.d (m, n) = 1, then ab has order mn.
1.7.9. Definition [1}

We say that a is a primitive #n” root of unity if and only if the
order of a is »n. In a field of order ¢, we say a is a primitive field
element if and only if the order of ais g — 1.

1.7.10. Theorem [11]

Every finite field has a primitive element.

1.7.11. Theorem [11]

Every element in a field of order ¢ satisfies the equation x? —x = 0.
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CHAPTER 11

CycLIC CODES OVER FINITE FIELDS

2.1 Introduction:

One of the most important classes of linear codes is the class of
cyclic codes. These codes have great practical importance and they
are also of considerable interest from an algebraic point of view since
they are easy to encode. They also include the important family Bose-
Chadhuri-Hocquengham (BCH) codes which is of great practical
importance for error correction, particularly the number of errors is
expected to be small compared with the length of the code. Also
cyclic codes are considered important since they are the building
blocks for many other codes.

2.1.1 Definition [5]

Let v be a word of length », the cyclic shift 7 (v) of v is the
word of length » obtained from v by taking the last digit of v and
moving it to the beginning, all other digits moving one position to the

right. i.e. (vg...... Vo) Ty (VegsVores v,.2)-

2.1.2 Example

Letv=10110, then 77 (v)=01011.
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2.1.3 Definition [5]

A code C is said to be cyclic if the cyclic shift of each

codeword is also a codeword, i.e. whenever (v, v;, v, ......, v,;) € C,
then so is (vs, Vg, ..., s Vi2)s
2.1.4 Example

Let C, = {000, 110, 101, 011}
C;isalinearcycliccodesince 7 (vye C, VveC(C
Let C; = {000, 100,011, 111}
C; is not cyclic code since 7 (100)=010 ¢ C.
2.1.5 Lemma [5]
The cyclic shift (77 ) is a linear transformation over {0, 1}, that
is if v, w are two words, then 7 (v+w)= 7T (v)+ 7 (w)and
T (avy=a T (v) Vae {01}

Proof: Trivial.

If we wish to construct a cyclic linear code, then we pick a
word v and form a set S consisting of v and all of its cyclic shifts, i.e.
S={v, TW), T W), ..., T " (v)}, where T"(W) = 7 (T(T ...
7T (v)) n times, and define C to be the linear span of § that is

C=<5
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2.1.6 Example

Letn=3,v=100. Thus S={v, Z (v), 7 *v)}
S = {100, 010, 001} generates a cyclic code.
2.1.7 Definition [2]

A polynomial of degree n over a field Kisay + gx + .... +
a,x", where the coefficients ay,....,a, are elements of K. The set of al|
polynomials over K is denoted by K [x].
Polynomials over K are added and multiplied in the usual fashion
except that since 1 + 1 = 0, we have x* + x*= 0. Note that the degree
of f{x) + g(x) need not be max {deg f(x), deg g(x)}.
2.1.8 Example

Letn=8,andflx)=1+x+x+x’, g(x) =x +x* +x’. Then,

) +gx)=1+x°+x fix) gx) =(1 +x + P+ x7) x+x’+x)=x+x".

2.2 Generator polynomial for a cyclic code:

Cyclic codes have a good representation in terms of
polynomials. If the word v corresponds to the polynomial v(x), then
the cyclic shift of v ,7Z(v), corresponds to the polynomial
xv(x) mod (1+x").

Ifv=_(v ... , Vn.z), we define the polynomial v(x) coresponding to v

by v(x) = vy + vix + ... + Xt
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Note that v = (v, 4, vy, ......, v,.3) corresponds to v,; + vox + ... +
VX" = v+, + v, X mod (1 + x") = xv(x) mod (1 + x").
2.2.1 Example

v, = 100, corresponds to v, (x) = 1, 7 (v;) = 010 corresponds to
xv)(x) =x. v;= 1101 corresponds to vy(x) =1 +x + x’, 7 (v2)=1110
corresponds to xvy(x) mod (1 +x*) =1 +x +x
2.2.2 Lemma [5]

Let C be a cyclic code, and let v € C, then for any polynomial

a(x), c(x) = a(x) v(x) mod (1+x") is a codeword in C.

Proof:
Clearly, if c(x) € <{¥(x), xv(x), ...... , X" 1(x)}> (mod 1+x"). then this
means that: ¢(x) = (apv(x) + apxev(x) + ...... + . x"v(x)) mod 1+x".

=(gp+ax+ax’+..... + @ X v(x) mod 1+x".
= a(x)v(x) mod 1+x". Thus the proof is complete.
2.2.3 Definition [11]
A nonempty subset / of aring R is called an ideal of R if:
MNa,bel impliesa—b eI
(iDaelandre R imply ar € Tand ra € 1.
2.2.4 Definition [10]
All polynomials in K[x] of degree less than » with

multiplication modulo (x" — 1) will be denoted by:
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R, ie R, =K}x]/<x"-1>

2.2.5 Theorem [11]
A set of elements S in R, corresponds to a cyclic code C if
and only if § is an ideal in R,,.
Proof:
Suppose S is a set of elements in R, that generates a cyclic
code. Then if a;(x) and a,(x) are in S, so are a,(x) £ ax(x).
Recall that the cyclic shift corresponds to multiplication by x, so that
if a(x) is in S, then a(x)x is in §, as is (a{x)x)x = a(x)xz, and so on.
Consider a(x) b(x) for a(x) in S and b(x) = by + bx + byx*... + b, x™
some polynomial in R,. Then a(x) b(x) = by a(x) + b; a(x) + ...
v T by a(x) xis again in S. Hence S is an ideal. Suppose, now,
S is an ideal in R,, then clearly the polynomials in S correspond to
the words in a cyclic code.
2.2.6 Theorem [11]
Let S be an ideal in R, and let <S> = C, then
1. There is a unique monic polynomial g(x) of minimal degree in C
such that C = <g(x)> and it is called the generator polynomial for C.
2.  The generator polynomial g(x) divides x"— 1.

3. If deg (g(x)) = r, then C has dimension #n-r and C = <g(x)>

= {s(x)g(x) | deg s(x) < n-r}
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4. If g(x)=gp+ gix +----+ gx’, then gy # 0 (gp = 1) and C has the
following generator matrix.

(8 & & - & 0 0 0]
0 g & 0
G= 0 0 & & 0
0

(00 0 .. g & & - &]

Proof:

1. Suppose that C contains two distinct monic polynomials g;(x)
and g;(x) of minimum degree r. Then their difference g;(x) —
£:(x) would be a non zero polynomial in C of degree less than r
which is not possible. Hence there is a unique monic polynomial
g(x) of degree r in C. Since g(x) € C and C is an ideal, we have
<g(x)> < C. On the other hand, suppose that p(x) € C, and let
p(x) = q(x) g(x) + r(x), where deg (r(x)) < r, then r(x) = p(x) -
g(x) g(x) € C has degree less than r, which is possible only if
r(x) = 0. Hence p(x) = q(x) g(x) € <g{x)>, and so C < <g(x)>.
Thus C = <g(x)>.

2. Dividing x"-1 by g(x) gives x"-1 = g(x)g(x) + r{x)

where deg (r(x)) < r. Sincein R,, x"-1=0 € C.

We see that r(x) € C, and so r(x) = 0, which means that

2(x)] ¥'-1.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



33

3. The ideal generated by g(x) is<g(x)> ={fix)g(x) | Ax) € R,}.

With the usual reduction modulo x" - 1,

and we must show that it is sufficient to restrict fx) to
polynomials of degree less than n — r. We know that g(x) | x"~1,
and so x"™-1 = h(x) g(x) for some A(x) of degree n—r. Divide f(x)
by A(x) so flx) = g(x)h(x) + s(x) where deg (s(x)) < n-r, then
fx)gx) = g(x)h(x)g(x) + s(x)g(x) = g(x)(x"-1) + s(x)g(x) and so
fx)g(x) = s(x)g(x) in M, and this shows that the set {g(x),

n-r-1

xg(x),....,x" " g(x)} spans C and since it is linearly independent,

it forms a basis for C. Hence dim (C) = n—r.

4. If gp= 0, then g(x) = xg,(x), where deg(g,(x)) < r. But then we
would have g;(x) = 1.g;(x) = x"g;(x) = x"'g(x)
Hence g/{x) e C, which contradicts the fact that no nonzero
polynomial in C has degree less than r.
Thus go # 0. Finally, G is a generator matrix of C since {g(x),

n-r-1

xg(x),....,x " g(x)} is a basis for C.

2.2,7 Theorem [11]

A monic polynomial p(x) in R, is the generator polynomial
for an ideal if and only if p(x) | x"-1.
Proof:

(=) Done by theorem 2.2.6 (2)
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(<) Suppose that p(x) |x"—l, and let g(x) be the generator
polynomial for C = <p(x)>. Assume that p(x) # g(x).

Since p(x) and g(x) are both monic, we must have

deg (p(x)) > deg (g(x)). By assumption, x"-1 = p(x)f(x) for some
polynomial f{x). Furthermore, since g(x) € <p(x)>, we have g(x) =
a(x)p(x) for some a(x) € R,. Multiplying both sides by f{x) we get
gE)x) = alx)p(x) fx) = a(x)(x"-1) = 0.

But deg (g(x)f(x)) < deg (p(x)f(x)) = n, and so g(x)A(x) =0,

which is impossible. Hence p(x) = g(x)

2.2.8 Corollary [5]

The generator polynomial g(x) for the smallest cyclic code of
length #» containing the word v (polynomial v(x)) is the greatest
common divisor of v(x) and 1 + x". (That is g(x) = g.c.d (v(x), 1+x™)).
Note: By smallest cyclic code, we mean less numbers of codewords.
Proof:

If g(x) is the generator polynomial then g(x) divides both v(x)
and 1+x". But g(x) is in <{¥(x), xv(x),....x"'v(x)}>. Thus we have
g(x) = a(x)v(x) mod 1+x*, or g(x} = a(x}v(x) + b(x) (1+x") (by
division algorithm). Thus any common divisor of v(x) and 1 + x”

must divide g(x), and thus g(x) is the greatest common divisor.

329514
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2.2.9 Example
Letn=8and v=11011000. Sov(x) =1 +x + x° + x*.
The g.c.dof v(x) and 1 +x%is 1 +x%,

2

Thus g(x) = 1 + x°. And the smallest linear cyclic code containing

v(x) has dimension 6 and g(x) is the generator polynomial.
2.2.10 Theorem [11]

Let €y, C; be cyclic codes with generator polynomials g,(x),
g:Ax), respectively, then:
1. The generator polynomial for C; N C; equals Le.m. (g;(x), g2(x)).
2. The generator polynomial for C; + C; equals g.c.d (g,(x), g2(x)).
3. CcCifandonly if gix) | g:i(x).
Proof:

We’ll only prove (3).

It follows, since C;  C; iff gx(x) divides g,(x) iff <g,(x)> < <g:(x)>.

2.3 The Check Polynomial:

2.3.1 Definition [15]
Let C be a cyclic (n, n-r) code with generator polynomial g(x)
so  x"—1=g(x) h(x). Then A(x) is called the check polynomial of

C with degree i - r.
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2.3.2 Theorem [15]

Let A(x) be the check polynomial for a cyclic code C in R, then

1) The code C can be described by C = {p(x) € R, | p(x)h(x) = 0}

2)  Ifh(x)=hy +hx + hpx’+...+h,x"", then the parity check matrix

for C is given by:
[h B, 0 O o7
B B, O 0
0 h_ .. b 0 0
H=
hn-r ho
0 0 o k0 hy |
Proof:

Let g(x) be the generator polynomial of C.
1. Ifp(x) € C, then p(x) = fix)g(x) for some polynomial fx) € R,
Hence p(x)h(x) = flx)g(x)h(x) = fx) (x"-1) = 0.
On the other hand, if p(x) € R, such that p(x)A(x) = 0, then
we write p(x) = g(x)g(x) + r(x), where deg (r(x)) < r. Multiplying by
h(x) gives p(x)h(x) = g(x)g(x)h{x) + r(x)h(x). Hence, r(x)h(x) = 0.
However deg (r(x)h(x)) < r + (n - r) = n, and so we deduce that
r(x)h(x) =0, hence r(x) =0 and p(x) = g(x)g(x) € C.
2. If e(x) € C then c(x)h(x) = 0. Thus deg (c(x)h(x)) < 2n-r, and

n-r+/ n-1

from this we deduce that the coefficients of x™", x"',..., x

(r times) in the product c(x)#(x) must be 0, that is:
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Cgh,,_,. + C;h,,_,..; +...+ C,,_,-hg =

Clhn-r + CZhn-r-l +...t Cn-r+]h0 =0

Crothpr + €y +oit Cojhy =0
which is equivalent to (¢, c,....c,,_;)HT = 0. And so, H is the parity
check matrix for C.
2.3.3 Example

Let C be a cyclic code of lengthn=9
X~ 1 factors over F; as X’—1 =) -1=(-1)+>+ 1)
=@x-1DE+x+ D+ 2+ 1) Take C = <x® + x* + 1> with
generator polynomial

g(x) =x*+x’+ 1. Then C has dimension 9 — 6 =3. And generator

matrix
1 0 01 0 O1 00
G=l101 001001 0
0O 01 001 0 01

9

And C has check polynomial A(x) = Z ~!
g(x)

(x=Dx*+x+D(x*+x* +1)
= S+ x+1 = (x-Dx*+x+1)=x> -1,

So C has the parity check matrix
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1 001 00O0CO0O0
01001 0O0GOCODO
H= 001001000
000100100
000011 O0OCGTI1 O
00000100 1

2.4 Finding Cyclic Codes:

2.4.1 Definition [5]

A polynomial f{x) in K[x] where K is a field, and degree of
Six)=1 is irreducible if it is not the product of two polynomials in
K[x], both of which have degree at least one.

To construct a linear cyclic code of length », and dimension &
we must find factors of 1+x".

2.4.2 Example

For n = 3, we factorize 1 +x* = (1 + x)(1 + x + x?). Thus there

are two proper cyclic codes of length 3 one has generator

g/(x) =1+ x and generator matrix.

G,=[(l) i ?] and the code is C, = {000, 110, 011, 101},

The other code has generator g,(x) = 1 + x + x* and the generator

matrix G;=[1 1 1], with C;={000,111}.
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2.4.3 Definition [10]

An ideal I in R, is called principal ideal if every element in /
is a multiple of a fixed polynomial g(x) i.e: If I is principal, then
I={c(x)g(x) ; c(x) in R,}. We denote this by I = <g(x)>
2.4.4 Definition [10]

A ring is called a principal ideal ring (P.LR) if every ideal in it
is principal.

The next theorems tell us how to find cyclic codes and they were
proved in 2.2.6.
2.4.5 Theorem [11]

If C is an ideal (i.e a cyclic code of length n),
in M, = K[x] / <x"-1>, and g(x) is the monic polynomial of smallest
degree in C. Then g(x) is uniquely determined and C = <g{x)>.

Proof:

We show in this theorem that R, is a P.LR and that the monic

generator of smallest degree of an ideal is unique even though an

ideal can have other generators. First, we show that R, isa P.LR. Let
g(x) be the monic ploynomial of smallest degree in C, and let a(x) be
any other polynomial in C. By division algorithm in F[x], a(x) =
g(x)b(x) + r(x) where the degree of r(x) is less than the degree of g(x).

by the definition of an ideal, #(x) is in C. But this contradicts the
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choice of g(x) unless r(x) is identically zero, so that a(x) = g(x)b(x).
Hence M, is a P.LR. If g(x) and Ah(x) are monic polynomials of the
same degree and both are in C, then g(x) — A(x) is a polynomial in C
of lower degree than either. This can’t happen if g(x) has the smallest
degree. Thus, g(x) is the unique monic polynomial of smallest degree
in C, and C = <g(x)>. And hence the proof is complete.

The following theorem tells us explicitly how to find the
generator of a cyclic code,

2.4.6 Theorem [11]

If C is an ideal in R, the unique monic generator, g(x) of C of
smallest degree divides x"-1 and conversely if a polynomial g(x) in C
divides x"-1, then g(x) has the lowest degree in <g(x)>.

Proof:

Suppose, first that g(x) is monic polynomial of smallest degree
in C. By division algorithm in K[x], x" — I = a(x)g(x) + r(x) where the
degree of r(x) is less than the degree of g(x).

Now, r(x) = — a(x)g(x) mod (x" — I), and so r(x) is in <g(x)>. This is a
contradiction unless r(x) is identically zero. Thus g(x) divides x" — 1.
Conversely, suppose that g(x) divides x" — 7 and that b(x) is in <g(x)>

but has lower degree than g(x). Then, b(x) = c(x)g(x) + (x" — Dd(x) in
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K[x] because b(x) is in C. However, since g(x) divides x" — 1, g(x)

divides b(x), which is a contradiction. Thus, the proof is complete.

2.5 Encoding and decoding of cyclic codes:

Usually we encode the code as a polynomial generator. The

simplest is the & x » generator matrix in which the rows are the

codewords corresponding to the generator polynomial and its first k-7

cyclic shifts,
[ g(x) ]
xg(x)
1e. G=
| x* g (x)]

2.5.1 Example
Let C= {0000, 1010, 0101, 1111} be a linear cyclic code. The
generator polynomial for Cis g(x) = 1+x% n=4,k=2. So a basis

of Cis g(x) =1+ x* =1010, xg(x) =x + x° = 0101. Hence the

2
generator matrix for Cis G= [g(x)} = [1+x3] - [1010}
xg(x) X+x 0101

2.5.2 Definition [15]
Let C be a cyclic code. If ¢(x) € C is the codeword sent and
u(x) is the received polynomial, then err(x) = u(x) — c(x) is the error

polynomial.
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2.5.3 Definition {15]

Let C = <g(x)> be a cyclic (n,n-r) code, the syndrome of a
polynomial u(x), denoted by syn(u(x)), is the remainder upon dividing
u(x) by glx), that is u(x) = gx)glx) + syn(u@),

and deg (syn(u(x)) < r, where r = deg (g(x)).

A received polynomial u(x) is a codeword if and only if its
syndrome is the zero polynomial.
2.5.4 Example

Let n=7 and g(x) = 1+x+x’ , so n-k=3

We produce the syndrome as follows

Cosets Leader Syndrome
0 0
1 1
x X
x* x*
x* x+1
x* x*+x
x X+x+1
x° P+
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If u(x) = 1 + x + x°is received, we compute its syndrome polynomial
SHx+1=0G+x+ 1 + &+ x).  So, Syn(u(x)) = x* + x. Then
from the above table the coset leader is a(x) = x*. And so we decode
u(x)as e(x)=u(x)—a(x)=x+x*+x+1
2.5.5 An algorithm for decoding linear cyclic codes
Here we state an alogorithim for decoding linear cyclic codes.
1. Calculate the syndrome polynomial s(x) = w(x) mod g(x),
where w is the received word.
2. For each i 2 0, calculate s/(x) = x's(x) mod g(x)
(the syndrome polynomial of the cyclic shift of w)
until a syndrome s, is found with wt (s;) < ¢, then the most likely error
polynomial is: e(x) = x"Is,(x) mod(1 + x")
2.5.6 Example
Let n=15,and let g(x) =1 + x* + x* + x” + x® be the generator
polynomial for a cyclic code with distance 4 = 5. Thus all error
patterns at weight £ = 2 or less are correctable. We want to decode
the received word w=110011100111000
Here w(x)=1+x+x*+ X+ x5+ 7+ "0+ x'1,
The syndrome polynomial s(x) = w(x) modg(x) is

s)=1+x+x+x +x°+ x5+ %7
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six) =xs(x) =x + x>+ x*+ 2° + x5+ x"+ 5 modg(x)
=l+x+x’+x

s:(x) =x%s(x) = x + x*+ X+ x° (modg(x))

s3(x) =x’s(x) =2+ P+ x*+ x7 (modg(x))

ssx)=xsx) =1+ + X+ x5+ %7 (modg(x))

55(x) = x’s(x) = 1 + x (modg(x)) which has weight 2 <7

So, e(x) = x'>s5(x) mod (1+x'*) = x'% + x'. Therefore,

cx)=wx)+e(@) =w@) +x+x"Y=1+x+x*+x +x0+%°

Thus ¢=110011100100000.

2.6 Idempotents for linear cyclic codes:

We note that all cyclic codes can be obtained from a
factorization of x™-1 into monic irreducible factors F,.However
factoring x"-1 is not so easy in general. In fact there are other
generators that can be found without factoring x"-1, and they give
another approach to describe cyclic codes. These are called
idempotent generators.

2.6.1 Definition [15]

A polynomial e(x) € R, is said to be idempotent in R, if e’(x) = e(x)
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2.6.2 Example

5 is an

In R; = K[x}/<x’-1> the polynomial x* + x° + x
idempotent since (X’ +x’+x%)?=x'+x"+x°,
2.6.3 Definition [15]
A generator e(x) of an ideal in R, is called an idempotent
generator if it is an idempotent.
2.6.4 Lemma [15]
Let C be a cyclic code, then
1. The idempotent acts as a unit.
2. If ei(x), exx) are idempotents, then so is e;{(x) + e;(x) and
e/(x)ex(x) (mod (x" + 1)).
Proof:

Follows from the definition of the idempotent.
2.6.5 Theorem [8]

Let C be a cyclic code in R, with generator polynomial g(x)
and check polynomial A(x). Then g(x) and A(x) are relatively prime,
and so there exist polynomials a(x) and b(x) for which
a(x) glx) + b(x) h(x) =1
The polynomial e(x) = a(x)g(x)mod(x"-1) has the following
properties:

1. e(x)is the unique identity in C, that is p(x)e{x) =p(x) V p(x}) € C
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2. e(x) is the unique polynomial in C that is both idempotent and

generates C, that is C = <e(x)>
Proof:

If e/(x) and e;(x) are both identities in R, then,

e;(x) = e)(x) exx) = ex(x). And so0 e;(x) = e)(x). Thus if an indentity
exists, it is unique since g(x)4(x) = x"-1 has no multiple roots in any
extension field, g(x) and A(x) are relatively prime so
3 a(x), b(x) such that a(x)g(x) + b(x)h(x) =1 ..ocvvnn... .. *
If p(x) e C, then p(x)h(x) = 0, and so (*) gives a(x)g(x)p(x) = p(x),
which says that e(x) = a(x)g(x)mod(x"-1) is indeed the identity in C
and also that e(x) generates C since any polynomial in C is a multiple
of e(x) and since e(x) is an identity, then e(x) is idempotent. To
complete the proof, we need only to show that an idempotent f{x) that
also generates C must be equal to e(x). Since f{x) generates C, there
exists g(x) € R, for which e(x) = g(x)A(x). Hence, f{x) = e(x)fix) =
q(x) f(x) = g(x)fx) = e(x), thus fix) = e(x).
The previous theorem shows that we can compute e(x) from g(x)

using the Euclidean algorithm.

The next Theorem shows how to compute g(x) from e(x).
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2.6.6 Theorem [11]

If e(x} is the idempotent generator of C, then the generator
polynomial of C equals g.c.d (e(x), (x"-1)).

Proof :

By the previous theorem, since x™-1 = g(x)A(x) and e(x) =
a(x)g(x), we have g.c.d (e(x), x"-1) = g.c.d (a(x)g(x), h(x)g(x)). But
according to the previous theorem a(x), #(x) are relatively prime and
so g.c.d(e(x), x"-1) = g.c.d (a(x)g(x), h(x)g(x)) = g(x).

2.6.7 Theorem [11]

Let C; and C; be cyclic codes with corresponding generator
polynomials g;(x) and gy(x), and corresponding idempotent
generators e(x) and e,(x), then
1. C; N C; has idempotent generator equals e;(x)e;(x).

2. C;+ C;has idempotent generator e,(x) + e;(x) — e,(x)e,(x)

3. C;c C;ifand only if e;(x)e,(x) = e/{x) where all polynomials are
taken modulo x"-1.

Proof :

We prove only (1) and (2):

. Clearly e)(x) ex(x) is in C; N C; and (e,(x)e(x))* = ,(x)* ex(x)?

= e/(x)es(x). So e)(x)ex(x) is an idempotent in C; N C,.

If e(x) is in C; N C;, then e/(x)e;(x)c(x) = e;(x)c(x) = c(x).

So e/(x)ex(x) is a unit for C; N C; and so generators C; N C,.
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2. Clearly efx) + eix) — efx)exx) is in C; + C, and

(e/(x) + ex(x) ~ e)(x)ex(x))” = e/(x) + ex(x) — e,(x)ex(x).

So e;(x) + ex(x) — e)(x)ey(x) is an idempotent in C; + C,.

If c(x) is in C; + Cy, then c(x) = ¢/(x) + cx(x) for some ¢,(x) in

C; and for some ¢5(x) in C,.

Hence (c,(x) + ca(x))(e(x) + exx) — e (x)ex(x))

= clxex) + cix)exx) — cix)ei(x)exx) + cix)e)(x) +

cax)exx) — cxD)ex)ex(x) = ci(x) + ci(x)exx) — cix)exx) +

cx(x)es(x) + cxAx)efx) = cix) + cxx). So, e)x) + exx) -

e;(x)ex(x) acts as a unit for C; + C; and this generates it.
2.6.8 Definition [11]

An ideal M in aring R is called a minimal ideal if 0 is the only
ideal strictly contained in M.

2.6.9 Theorem [11]

If x"-1 = (x-1) fi(x)...... Wx) is a factorization of x"-1 into
irreducible factors, then there are £+ 1 minimal ideals c;,....,ci+; With
generator polynomial £ (x)....., £ (x),(x" ~1), and idempotent
generators e;(x),....,e;-;(x). These efx) satisfy the following
conditions:

1. e{x)e(x)=0 ifi#j

k+]

2. Yle(x)=1
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Furthermore, any cyclic code C is a sum of minimal ideals C;. And its
idempotent e is the sum of the idempotents e; for the C..
Proof :

Since the C; are minimal ideals, C; N C; = 0 for i # j so that
e, = 0 for i # j because eg; is in C; N C;. Now C; + C, had
idempotent e;+e;—ee;=e;+ e, and it can be shown that C; +
Cy+....... + Ci+; has idempotent ¢; + e, +.....+ e,.;. We know that
C; + C; has a generator polynomial equals g.c.d (f"(x), fy(x). It
follows by finite induction that the generator polynomial of C,+ C,
....... + Crerequals ged (f"(x),., £ (x),(x" = 1)) . But this g.c.d can
only be 1 since that factors are distinct, hence 1 =¢; + e, +.....+ ;..
If C is any ideal, then C has idempotent generator e(x).
Hence e(x) = e(x) e)(x) + ..... + e(x) e;.;(x). The ideal C N C; is
contained in C; and so is either 0 or C. If C N C; = C,, then C;c C
and ee; = g;, Otherwise ee; = 0. Hence e(x) is the sum of the g,(x) of
those i such that C; < C and C itself is the sum of the C; that are
contained in it.
2.6.10 Theorem [11]

Let x"-1 = g(x)h(x) and let C be a cyclic code with generator
polynomial g(x) and idempotent generator e(x). Then the code with

generator polynomial /(x) has idempotent generator 1-e(x).
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Proof:

Since A(x)(1 - e(x)) = h(x)(1 - a(x)g(x)) = h{x), we see that

1 — e(x) is the identity in <A(x)>, and so generates <h(x)>.

2.7 Dual Cyclic Codes

Recall that the dual code (C l) of Cis:

C'L= {ueV|uw=0,vweC}.

2,7.1 Theorem [8]

If C is a linear cyclic code of length # and dimension & with
generator g(x) and if 1 +x" = g(x) A(x), thén:
Clisa cyclic code of dimension » — k with generator x*h(x"y
Proof:
Since C has dimension k, g(x) has degree n — k and thus A(x) has
degree k. Since g(x) A(x) =1 + x", we have gy h(x! )=(1+x7
and so, x"g(x") A(x”") =x"(1 + x™)
x* o(x!) *h(xy=1+x". Thus x* h(x") is a factor of 1 + x" having
degree k£ and hence the generator polynomial for the linear cyclic
code, C of dimension  — & containing x" A(x").
2.7.2 Example

Letn=7, and g(x) = 1 +x + x’ is a generator for code C,

Sok=7-3=4,
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Since g(x) is a factor of 1 + x’, we can find A(x) where 1 + x’ =
g(x) h(x) by long division. In this case, A(x) = 1 + x + x’ + x*. The
generator for C Lis g'L ) =x"hx)=x" 1 +x +x7+x)=1+x"+
x* + x*. which corresponds to 1011100 = w,
Noteg. w=0and =*“(g)w=0. (7 isthe cyclic shift).
2.7.3 Theorem [13]
Let x* — 1 = g(x)h(x), and let C be a cyclic code with idempotent
generator e(x). Then C 1 hasan idempotent generator 1 — e(x™).
Proof:

It is clear that e(x) is orthogonal to (I — e(x”’)) and hence

l—e(x")isinCt,

2.8 Families of Codes

In this section, we want to list briefly some of the most
important families of codes.
2.8.1 Hamming Codes [15]

The Hamming Codes F(r) are probably the most famous of all
error-correcting codes. The codes were discovered independently by
Marcel Golay in 1949 and Richard Hamming in 1950. They are
perfect, linear codes that decode in a very elegant manner. In
addition, all binary Hamming codes are equivalent to cyclic codes,

and some but not all, non-binary Hamming codes are equivalent to
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cyclic codes. Also, Hamming codes are important family of codes
since they are easy to encode and decode.
2.8.2 Definition [15]

A code of length n=2"— 1, r > 2, having parity check matrix
H whose rows consist of all nonzero vectors of length r is called a
Hamming code of length 2" — 1.
2.8.3 Example:

One possibility for a parity check matrix for a Hamming code
of length 7 (» = 3) is:

(11 1]

O O = O e
fan B = T R s B S Y
— Y D e = (D)

2.8.4 Definition [15]

Two binary (n, m) codes C;, C, are equivalent if one can be
turned into the other by permuting the coordinate positions of each
codeword, and by permuting the code symbol in each position of
each codeword.  “Recall definition 1.5.11".

2.8.5 Theorem [15]
The binary Hamming Code Hx(r) is equivalent to a cyclic code.

Proof: See [15].
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2.8.6 BCH Codes [15]

An important class of multiple-error-correcting codes is the
class of Bose-Chaudhuri-Hocquengham codes or BCH codes.
BCH codes are important for two reasons: First, they admit a
relatively easy decoding scheme, and, secondly, the class of BCH
codes is quite extensive.
2.8.7 Definition [15]
Let w be a primitive n-th root of unity over F,, and let g(x) be the
monic ploynomial over F, of smallest degree that has & — 1 numbers:
w, w' L w*®2 among its zeros, where 5 > 0and & > 1.
Thus g(x) = Le.m. = {my(x), my1(x), ..., Mprga(x)}.
where x" —1=1r,m,(x).
The g-ary cyclic code B, (1, d, w, b) of length n, with generator
polynomial g(x), is called a BCH code with designed distance ©

(Note that the designed distance is one greater than the number of zeros).

2.8.8 Quadratic Residue Codes

The quadratic residue codes are another class of cyclic codes
that have prime length p.
2.8.9 Definition [15]

An integer a is quadratic residue mod p if the equation x* = a

mod p has a solution.
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Note that since 2 is quadratic residue mod p if and only if p has the
form 8m + I, the binary quadratic residue codes must have prime
length of the formp = 8m + 1.
2.8.10 Definition [15]

The binary quadratic residue codes have prime length of the
form p =8m + I and generator polynomial g(x) may be either:

X)= 7w (x—-w or nixy= 1 (x-w" where
Q( ) reQR( ) ( ) uENQR( )’

OR < {1, ...., p-1} is the set of quadratic mod p
NQRc {1,...,p-1}is the set of quadratic non residues mod p.

Note: Since there are precisely (’%_1)

elements in each set OR and

NQR, the quadratic residue codes have dimension

(p=1)_p+l
2 2

k=n—deg(g(x)=p-
2.8.11 Example:
Letp=7, the OR={1,2,4} and NOR = {3, 5, 6}. Hence, if
w is a primitive 7" root of unity over Fs, then:
g(x)=(x-wix-wx-wh)=x'+x+1

and n(x)=(x-w)x-w)x-w®)=x" +x? +1

Thus QR(7) =< x* + x+1> is a binary c¢yclic code.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



55

CHAPTER 1

CYCLIC CODES OVER INTEGERS MODULO p™.

3.1 Basic concepts

In this section, we write some basic definitions and notations.

3.1.1 Definition [10]

Let R be a ring, M an additive abelian group and
(r, m) —» rm be a mapping from R x M into M, such that:

1) r(m; + my) = rm; + rm,.

2)(r) +rym=rm+ rym.

3) (riry)dm = ri(ram).

Him=m ifl e N,
vr, r, r> eR and vm m;, my e M. Then M is called a left
R ~module.
3.1.2 Example

Let 4 be any additive abelian group, then 4 is left Z-module.

3.1.3 Definition [10]
A nonempty subset N of an R-module M is called an
R—submodule of M if:

Da-beN vV a belN. 2)rae N VYaeNre®R.
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3.1.4 Definition

A subset C of Z",. is called a Z, - code if Cis a Z, -

submodule of Z",..
3.1.5 Notation

In this chapter R, will denote the ring Z,. [x] / (x"-1) and the

elements of R, will be identified with polynomials of degree < n-1.
Also, an n-tuple (ay, aj,.....,a.;) in Z, will be identified with the
elementapy+a;x+....... +a, x"of R,

3.1.6 Definition [6]

For a polynomial f of degree k, f/* will denote its reciprocal
polynomial x*7 (x™").
3.1.7 Definition [10]

A polynomial fe Z, [x] is called nilpotent if there exists

a positive integer » such that /* = 0.

3.1.8 Definition [7]

A polynomial f e Z,. [x] is called regular if it is not a zero
divisor, i.e. if for g € Z,. [x], fg=0, then g =0,
3.1.9 Definition [7]

A commutative ring R is called local if it has a unique

maximal ideal.
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3.1.10 Example
Z,. is a local ring with unique maximal ideal pZ,.
3.1.11 Lemma [7]
A commutative ring R (with 1) is local if and only if for every
a e M either a or 1 —a is invertible.
3.1.12 Definition [7]
By y: Z, [x] - Z,[x], we will denote the ring homomorphism
that maps a + (p™) to a + (p) and the variable x to x.
3.1.13 Definition [9]
If fis in R [x], then fis a unit if there is a polynomial 4 with
fh=1.
3.1.14 Lemma [7]
Iffe Z, [x], then
1. fisaunitifand only if xfis a unit.
2. fisregularif and only if uf =0.
3. f isregular if and only if fis not nilpotent.
Proof: See [7].
3.1.15 Definition [9]
Iffe R [x], then fis irreducible if fis not a unit and whenever

f=gh, then g or X is a unit for some 4, g in R [x].
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3.1.16 Definition [10]

A commutative integral domain R with unity is called a unique
factorization domain (or briefly, a UFD) if it satisfies the following

conditions.

(i) Every nonunit of R is a finite product of irreducible factors.
(i1) Every irreducible element is prime.

3.1.17 Example

The ring of integers Z is a UFD.

3.2 Thering R,

In order to find generator polynomials of a Z,. — code, we need

to know the structure of the ring R, = Z.[x)/ (x"-1).

3.2.1 Definition [14]
Anideal [in aring is a primary ideal if xy ¢ /implies  x e I
or )*e I, for some integer k.

3.2.2 Definition [9]
Two polynomials f and g in Z, [x] are called coprime
if Z, [x] = () + (2).

3.2.3 Lemma [7]

If fand g are coprime and f/gh then f/A.
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3.2.4 Theorem [7]
Iff, g €Z,. [x] are regular then £, g are coprime if and only if

ufs p g are coprime.

Proof:

Let fand g be coprime, then there exist £}, g1 € Z, [x] such
that 1=ffi+gg. Also uf#0 = pygand 1= ufufi+ ugug andso
1fs 1 g are coprime. Conversely, if 4fand g are coprime, then
there exist £, g and r in Z. [x] such that
S [1) + g(x) g1(x) = 1 + pr (x), for some positive integer k.

Since 1 + p*r(x) is invertible in Z,. [x], it follows that 1€(f) + (g) and

so fand g are coprime.

3.2.5 Definition [9]

We say that a polynomial fin Z,. [x] is basic irreducible if xf
is irreducible in Z, [x].
3.2.6 Definition [7]

We say fis primary if (f) is a primary ideal. Thatis if gh e (f)

implies that either g e (f) or &* & (f) for some positive integer k.
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3.2.7 Definition [9]
J will denote the set of all those f e Z,. [x] such that 4 fhas no
repeated roots in the algebraic closure of Z,.

Now we state Hensels’ Lemma to use it in proving the next theorem.

3.2.8 Theorem (Hensels’ Lemma) [9]

Let fbe in R, and uf= g,.....g,, where g,......g, are pair-

wise coprime. Then there exist g, ......g, in R, such that:
l. g,....g,are pair-wise coprime.

2. ugi=g ,l<is<n

3. f=g e g,

3.2.9 Theorem [9]
Suppose fis a regular polynomial in Z,. [x], then:

1. If fis basic irreducible then fis irreducible.

2. If fis irreducible then uf= ug", where u is a unit, g is a monic
irreducible polynomial in Z, [x], andneZ’.

3. Iff e Jthenfis irreducible if and only if fis basic irreducible.

Proof:
1. Suppose that fis regular in Z,. [x], and f'is basic irreducible

(uf is irreducible). Then, if f= gh either ug or ph is a unit by
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Lemma 3.1.9 g or 4 is a unit. Thus if xf is irreducible (f is basic
irreducible) then fis irreducible.
2. Let f be irreducible in Z,. [x], and suppose xf= ug,*,....g",

where « is a unit and the g; are monic irreducible coprime
polynomials in Z,[x]. Then, unless ¢t = 1, By Hensels’ Lemma f

factors non-trivially. That is, if fis irreducible then uf= ug" where u
is a unit in Z, [x] and g is irreducible.
3.2.10 Theorem [7]

If fis a basic irreducible polynomial in Z, [x], then f is

primary.
Proof:

Suppose g(x) h(x) e (f(x)). Since f'is basic irreducible, so x f{x)
is irreducible in Z,[x], so g.c.d (ufix), pg(x)) =1 or uf(x). If g.c.d
(uf(x), 12g(x)) =1 then by (theorem (3.2.4)) fand g are coprime.

Thus 1 = fix) fi(x) + g(x) gi(x) for some fi(x), gi(x) me [x], so that

h(x) = f)h(x)fi(x) + g(x)h(x)g (x). Since g(x)h(x) e (f{x)) it follows

that f{x)| A(x). If g.c.d (uflx), ug(x)) = uflx), then there exist u(x),
v(x) e me [x] such that g(x) = fx) u(x) + p*v(x) for some positive

integer k <m. But then g"(x) e (f{x)), and hence fis primary.
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We know that, if R is a local ring, the polynomial ring R [x] may
not be a unique factorization domain. But some special polynomials
R[x] may have the unique factorization property. An example of
such polynomials is regular polynomials.

For regular polynomials in a polynomial ring R[x] over a local ring

R, we have the following theorem.

3.2.11 Theorem [9]

Let f'be a regular polynomial in R{x]. Then

1. f= ugg....8, where v is a unit and &1,82-...gx are regular,
primary, pair-wise —~ coprime polynomials.

2. Iff=ugg...... g =Vhihy...... h, where u, v are units and {g;},
{h;} are families of regular primary, pairwise—coprime
polynomials, then k=L after renumbering (%) =(g), 1< i< k.

Proof:

For (1) Let fbe regular in R[x]. Then xf =0

bk, B} i -
Thus uf = um ...m» , where » is a unit and =x,,...7, are

irreducible coprime polynomials in k[x] -(Z,[x])-.

By (theorem 3.2.8) — (Hensels’ Lemma) — 329514

hl
Sf=u mm,, where yu=u and ur, =1,

So 7, are regular primary coprime polynomials.
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For (2) Interms of principal ideals if (g})...... (g) =(h))...... (hp)
where the {(gi)} and {(4;)} are regular primary coprime ideals, then r
=m after a suitable ordering (g)=(k), 1<i<n.

In our case the local ring is Z,., and so any polynomial has at

least one coefficient that is not divisible by p is regular. In particular
x"-1 is regular and hence by (theorem 3.2.8) — (Hensels’ Lemma) x"-1
is the product of basic irreducible polynomials and such polynomials
are primary (by theorem 3.2.10). Hence by theorem 3.2.11 we
immediately get the following.
3.2.12 Corollary

If x-1 = fifs....f,, where the f are basic irreducible and
pairwise coprime, then this factorization is unique.

Proof: Follows from Theorem 3.2.11.

3.3 Ideals of the ring Z,. [x] / <f{x)>

In this section we discuss the structure of the ideals of the ring
Z,» [x] / <fix)> for a basic irreducible polynomial fin Z,..
We start by the following theorem which will play a crucial role in

the characterization of generators for cyclic Z,. — codes.
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3.3.1 Theorem [7]

If ix) € Z, [x] is a basic irreducible polynomial then the

ideals of Z,. [x] / <Aix)> are precisely (0), (1 + (Ax)), (p + (Ax)), .....,
™ + (fx)).
Proof :

Let I be a nonzero ideal of Z,. [x] / <Ax)>. Let g(x) + (f{x)) be a

nonzero element of 1. By hypothesis, xfis an irreducible polynomial

and, hence, g.c.d (uflx), pg(x)) =1 or pfix). If g.c.d (ufix)), ug(x))
= 1 then, by (Theorem 3.2.4), fand g are coprime. Hence, there exist
u(x) and v(x) such that: fix)u(x) + g(x)v(x) = L. But then (g(x) + fx))
(v(x) + fix)) = 1 + (fIx)). Therefore g(x) + (f(x)) is invertible.

Consequently, I = Z,. [x] / <f{x)>. On the other hand, if g.c.d (xf{x),

1 g(x)) = uf(x) then, there exist u(x), v(x) e Z, [x] such that g(x) =

Soxyu(x) + p"v(x), where g.c.d (ufix), uv(x)) = 1 and &k is some
positive integer less than m. Thus g(x) + f{x) e (p* + ().

Hence, there exists 1 < /< m such that I ¢ (p' + (fx))). Let k, be the
largest positive integer / less than m such that I ¢ (¢' + (Ax))). In
particular, there exist a nonzero element A(x) + f{x) in I such that 4(x)
= flx)u(x) + pko r(x) and ge.d (uflx), ur(x)) = 1. Thus, pko r(x) +

(Ax)) e I and g.c.d (uf(x), pr(x))=1. But then by theorem 3.2.4, f,
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r, are coprime. Hence, there exist a(x), b(x) € Z, [x] such that
r(x)a(x) + flx)b(x) = 1. Thus, p*+ (flx)) = (0" r(x)) + (Ax)) (a(x)) +
(fx)) e I Consequently, I= (p* + (fx)). And this concludes the

proof of the theorem.

3.3.2 Corollary [14]

If fix) is in Z,[x] and is basic irreducible, then the only ideals
of Z[x] / f{x) are (0), (1), and (2).

Proof:

The proof follows immediately by the previous theorem with
p=2,m=2,

Now we state the following theorem to use it in proving the next
theorem.
3.3.3 Theorem (Chinese Remainder Theorem) [6]

Let A;, ....., 4, be ideals in a ring R, such that R?* + 4,= R
foralli and A4;+4;=R for all i #j. Ifb;, .., b, e R, then
there exists b ¢ R such that b = b; (mod 4;) (=1, 2, ..., 0.
Furthermore, b is uniquely determined up to congruence modulo the
ideal 4, N A4,N ... N A4,.

3.3.4 Remark [1]
In the last theorem, if R has an identity, then R’= R, so R’

+ A =R for every ideal 4 of ‘R.
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3.3.5 Theorem [7]
Let p be a prime such that p does not divide ». Let x™-1 =

J1f2- .. /: be the representation of x"-1 as a product of basic irreducible

pairwise — coprime polynomials in Z,. [x]. Then any ideal in R, is a
sum of ideals of the type (p"},+(x" -1}, where0 < j < m-1,1<i<

r. And for ISiSr,}, =" "% =11,.. /,-
Proof:

Since the fi’s are pairwise—coprime, we have (x"-1) =
MNEN ... And for L < i,j <1,i % j, Z,n [x] = (£) + (f).

Thus by (theorem 3.3.3), Chinese Remainder Theorem,

_ 2 M &7
LUy~ S )

n

Consequently, IfI is an ideal of R, then/= o ZI,. , where [; is
an ideal of the ring Z,. [x]/(f)). By (theorem 3.3.1), for each i, 1 <i <
r, L=(0). Or(p*+ (f)) for some k, 0 < k < m-1. But then [, will
correspond to (p* },+(x" ~1)) in R,. Hence, 7 is a sum of ideals of
the type (p’ },+(x" -1).

3.3.6 Corollary [14]

Let x"-1 = fif.... f; be a product of basic irreducible and pair-

wise co-prime polynomials for odd n, and let f , denote the product
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of all f; except fi. Then any ideal in the ring R, is a sum of some
(/) and (21)).

Now we’ll state the following theorem, which will be used in
dual codes.
3.3.7 Theorem [11]

Leta(x)=ap+ax+....+a,; P sand b(x)=by+ byx + ... +

bn.] xn-l

Then a(x) b(x) = 0 in R, if and only if the vector (ap, aj,.....a,,) is
orthogonal to the vector (b,.;, b,.,....,by) and all its cyclic shifts.
Proof: See chapter II.

3.3.8 Theorem [7]
The number of cyclic Z,.-codes of length » is (m + 1), where r

is the number of factors in a factorization of x” — 1 as a product of
basic irreducible pairwise—coprime polynomials.
Proof:

The proof follows immediately from theorem (3.3.5). Recall

that a code over Z,.. is cyclic if and only if it is an ideal in the ring

R, =Z,. [x]/ "= 1).
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3.3.9 Corollary [14]

The number of Z, cyclic codes of length # is 3" where r is the

number of basic irreducible polynomial factors in x" ~ 1.

Proof: Follows from Theorem 3.3.8 with m = 2.

3.4 Generator polynomials

From this point on, in order to simplify the notation when

dealing with the elements of the ring R, =Z. [x}/ (x"— 1), we will

use the polynomials in Z,. [x] of degree less than # to represent their

corresponding cosets in R,
3.4.1 Theorem [7]

Suppose p is a prime not dividing #, and C is a cyclic Z,. code.
Then there exists a collection of pairwise-coprime polynomials F,
Fy, ....., F,, (possibly equal to 1) such that FyF,... F,=x"—1and C
is generated by {F,, pF,......p" ' F.}:ie., C= (£, pF;y,..... ,p"'"ﬁ',,,).
The polynomials £y, F, ....., F,, are unique in the sense that if
C=(H,.pH,,...p""H )  where Hy, H, ..... H, =x"— l thenfor 0
< i<m, F;is an associate of H;. In particular, if we require the F;’s to

. . . . k
be monic then the representation is unique. Moreover, |C| =p,

where k£ = E(m —i)degF,,,

i=0

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



69
Proof:
Let x" — 1 = fifs ... f,, where f, £, ....., . are unique basic
irreducible pairwise—coprime polynomials. £, f2 <ee., fr may be
chosen to be monic. For each #, 1<i < r, let f, denote the product of

all f’s different from f. Then, from (theorem 3.3.5) C is a sum of

ideals of the type (p’/,). By reordering, if necessary, we can assume

that C is the sum of:

Letky=0and, for0<i<m,

{1 ifk. =0
F =

i
f;rc,+k|+k2+,.‘+kl,, "".f}:,,+k,+k:+...+k,,, itk #0

So C= (F,pFy .. ,p"'F). Observe that if for 0 <j < m,
Aj={i|1<i<r,p™ [ eC,p™ j & C}. Then F,=1l,, f.

The uniqueness of the F’s follows from this observation and the
uniqueness of the f’s. If each F; # 1 (1< i < m) then they are pairwise-

coprime and thus C = (£)® (pF,)®...... ®(p™'F.). Therefore,

G = 1ED(PF) ] e | (p™ F,)|
— pm(n-deg.ﬁ)p(m-n(n-degﬁz) .......... p(m—degﬁ_) =pk,

m-1
where k=3 (m-i)degF,, asdesired. If F;= 1 for some i, a slight

1=

modification will yield the result and the formula for I C| still holds.
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And hence the proof is complete.
3.4.2 Remark

Some of the generators above may be equal to zero. Namely, if

for some & 1 < k < m f = 1, then
Fy = FyF,u...F,F,....F, = 0(mod(x" 1))
3.4.3 Corollary [14]

Suppose C is a Z, cyclic code of odd length ». Then there are

unique monic polynomials £, g and % such that C = (th, 2fhg), where

feh=x"-1, and | C l — [r-deg/-degh pr-degf-degg

When h=1,C=(f) and | C| = 4%
Wheng=1,C=(2f) and | C| =27

Proof: Follows immediately from the previous theorem.

3.4.4 Theorem [7)

Suppose p is a prime not dividing » and C is a cyclic Z, code.

Then there exist polynomials f5, £, ....., fo1 such that:

St Fnz e [ ol X*= 1. And C=(fy, pfs, pFor o0 D™ frne1).
Proof:

By Theorem 3.4.1, C = (£, pF,........... " EYy. For0<i<m-—
2, let fi=FypFiij....Fpand 1fy ;= Fp. Then fo; ] fonz] oe.... | folx"-1.

Alsoforall ,0<i<m-1, p'F,, = p'F,F,....F,F,,,....F, = p' f F,F,..F..
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Hence C c (Fy, pfi, < P"fo01). To prove the reverse inclusion first
observe that f,eC. Since F, and F, are coprime, there exist
polynomials a(x), b(x) € Z,. [x] such that 1 = a(x) F,(x) + b(x)Fx(x).
Thus pF; — pFyFs...F,, = pa(x) FoFF3...Fy + pb(x)fy = pa(x) £, +
pb(x)fy € C. Proceeding like this we get p'f; € C forall i, 0 <i < m-1.

Thus C =/, pf s 2™ f0))

3.5 Dual and self-dual Z... cvclic codes

Recall that, for a me code C, a code is called self-dual if it is its
owndual. (ie. C=C").
Before we go on to produce generators for the dual codes, we need to

state the following well-known Lemma.

3.5.1 Lemma [7]
The number of elements in any nonzero linear code C over Z,,.

is of the form p*. Furthermore, the dual code C* has p' codewords

where &+ 1= mn.
3.5.2 Theorem [7]
Suppose p is a prime not dividing » and C = (£}, p#,......p""E.),

where FyF... ... Fn=x"—1. Then C* = (£}, pE}, p*F; s " F))
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Proof:

We assume that F; # 1 for all i, 1 < i < m. The case when some
F;= 1 can be dealt with similarly. Let C, = (£}, pE, p*£,..... 0™ E}).
First observe that 0 < i, j <m — 1. (P'F Xp'F._.) is divisible by
x"—1ifi+ 1#m—j+1,and is divisible by p™ if i + ] = m—j+]1.
In any case (p'F,)(p'F,_,.) =0(modx"-1). Thus C, =C*. Also,

. =p', where ¢ = Zideg}iﬂ , with F,,;

i=|

ICII — pmdegi-‘"‘p(rn-l)degF_' ........ D

= Fj On the other hand by lemma 3.5.1, l | =p', where / + k = n.

m

m-1
By theorem 3.4.1, k=Y (m-i)deg F,, . It follows that / = Y idegF, =t

i+l
i=0 i=]

(with F,,.,=F,). Hence C* = C,, and the proof is complete.

3.5.3 Theorem [12]
Let C = (th,2z) be a Z, cyclic code of odd length n, where f, g

and 4 are monic polynomials such that fgh = x" — 1. And |C|=
4%22)%Eh Then, Ct=(g*h* 2g*f*).
If A= 1, then C= (f) and C* = (g*).
Ifg=1, then C=(2f) and C* = (h* 2*)
Proof:
By Theorem 3.3.7, we know that (g*h*) < (fh, 2fg) *. And

similarly (2g**) c (fh, 2fg)". Therefore (g*h* 2g**) < (fh, 2f2) ™.
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Since [(g*h*, 2g*f*)| = 4" ea@)-deg() yn-deg(g)-deg()_ | (%, 2f2) L | )
So we have: (g*h* 2g**) = (fh, 2fz)~.
In the next theorem we characterize self-dual Z,. —codes.
3.5.4 Theorem [7]

Suppose C = (£}, pF,e., p™E.), where FoF,....F, = x" — ] and
p does not divide n. Then C is self-dual if and only if for 0 <, j<m
whenever i + j =1 (mod m+1), Fis an associate of F;*.

Proof:

Iffor 0 <i,j <m, i +j = 1(mod m+1), F, is an associate of F;*
then obviously C is self-dual. To prove the other direction, let G, =
F;* whenever 0 <i, j <m are such that { + j = I (mod m+1).

Then we have G,G,.....G,, = x"-1 = FyF,....F,, and since C = Ch, we
have from uniqueness in theorem 3.4.1, that for all i, 0 <i < m,

F; is an associate of G, In other words F, is an associate of Fi*
whenever 0 <j <m are such that i + j = I (mod m+1).

3.5.5 Corollary [13}

Let C be a cyclic code over Z,, C = (fh, 2fg) where fgh = x"-1,
n odd.

Then C is self-dual if and only if F= ug* and k= uh*, where u is

aunitand g* is the reciprocal of g.
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The following theorem provides a criterion that determines the

existence of nontrivial self-dual cyclic Z. codes.

3.5.6 Theorem [7]
If p is a prime that does not divide » and m is even, then

nontrivial self-dual cyclic Z,.-codes exist if and only if there exists a

basic irreducible polynomial ' € Z,. [x] such that f1x"= I and fis not

an associate of f*.

Proof:
Suppose C = (£, pFy,.....,p™'E.), where FyF,....F, = x"— 1.
If, for every f € Z,. [x] such that f] x"— ], fis an associate of /* then,

for 0 <i <m, F, is an associate of F/*. Now if C is self-dual, then
whenever 0 <'i, j <m and i + j = I(mod m+1), F, is an associate of

F;*, and hence, of F}. Thus, since x"— ] has no repeated roots,

Fi#lonlyifi= ~';1+1 . Consequently, F_ ’=x”— Tand C=(p?),is

the trivial self-dual cyclic Z,. - code.

Conversely, if there exists a basic irreducible polynomial f e Zy [x],

such that f| x"— I and fis not an associate of f* then, there exists
h € Z, [x] such that x" — | = ff*h. Writing m = 2k, then the cyclic

code (P*'f*h, p** p**' M) is not trivial and self-dual.
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Proof: Follows from the previous theorem.

3.5.7 Corollary

Non-trivial cyclic, self-dual codes of length » exist if and only

if -1 # 2'(mod n) for any i.

3.6 Idempotents

Recall that e(x) € R, is called idempotent if [e(x)]’ = e(x),
equivalently, as polynomials, [e(x)]’ = e(x) (mod (x" - 1)).
3.6.1 Example

e(x) =x + x* + x” is an idempotent element of Z,[x]/(x — 1),
but it is not idempotent element of Z,.[x)/(x” — I} when m > 2.
3.6.2 Theorem [7]
1. Suppose p is a prime not dividing # and C is an ideal of R,. If

C is generated by a divisor f of x* — I then C has an idempotent

generator e. Furthermore, whenever 0 <k <m-/, then (p*f) = (Ple).
2. Suppose p is a prime not dividing » and fis adivisor of x"— 1.

Then for each k such that 0 <k <m — 1, there exist an idempotent
ex € Zp k[x)/(x" — 1) such that (p*f) = (pen).
Indeed, if g, : Z,. [x] - Z,[x] is the ring homomorphism that maps

a+(p™ toa+ (p™*) and x to x, then ¢, is the generator of (g, f).
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3. I pisa prime not dividing , fis adivisor of x*— / and e(x) is
the binary idempotent generator of ( 4 ) £ Z[x]/(x" - 1), then (2™'f
=(2™e).
Proof:
1. Since p does not divide n and £ divides x" — 7, there exists

g € R such that fg = x"~ 1 and JSand g are coprime. Thus, there
exist a(x), b(x) € Z, [x] such that af + bg = I. Lete R be

congruent to f (mod x"— 1), then e = 1 — bg. Thus, ¢’ = (1 - bg)=¢e
~ebg = e — abfg =e. It follows that fe = f— fbg =f{mod x"-1). Thus e
is an idempotent and (f) = (e). Clearly, this also implies that, for
1 <ksm-1, (p'H = (pke).

2. For 0 <k <m-I, Let u,: Z,. — Z,.[x] be the ring
homomorphism that maps a + (p™) to @ + (p™*) and x to x.

Since f| x"~ 1 in Z,.[x], p,f divides X"~ I in Z,..[x].
By (1), there exists ek € Z,..[x)/(x"~ 1), such that (u, /) = (ek).

Since p'f = p* . f; it follows that (/) = (p'e,).
3. Follows from (2).

3.6.3 Corollary [14]

Let C be Z, cyclic code of odd length 7.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



77

. If C=(f), where fg = x"-Ifor some g, then C has an idempotent

generator in Z,.

2. IfC=(2f) and fdivides x"-1, then C = (2¢), where e is a binary
idempotent generator of (4, ).

3. U C=(m 2fg), where fgh = x"-1, then C = (e, 2v), where e is
an idempotent in Z,, v is an idempotent in Z,.

Proof: Follows from theorem 3.6.2.

Recall that If C; and C, are cyclic Zp,-codes with idempotent

generators e; and e; respectively, then ee; and e, + e — eje; are
idempotent generators of C;NC; and Cs, respectively. (Theorem 2.6.7)
If C;N C; = (0) then e, + e, is an idempotent generator of C; ® C,.
Using this fact with theorem 3.6.2, we get the following corollary.

3.6.4 Corollary [7]

Suppose C=(F,pF,,...p""'F,), where F,, F, .., F, are
pairwise ~ coprime polynomials in Z,.[x] such that Fy, F,, ......, F, =

x"— 1. Then C = (e, pey, ..., pP"e,.;), where for each & such that
0 <k <m-1, e is an idempotent in Z,..[x}/(x"— I).
3.6.5 Lemma [8]

If e(x) is the idempotent generator of a cyclic Z-code, then ]

—e(x’) is the idempotent generator f C*.
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Proof: See chapter II.
3.6.6 Example (cyclic Z,-codes of length 4).
InZole), '~ 1= =8 (s + 8 (" + 1) = fi

where fy =x~8 fi=x+8 fi=x° + 1. Observe that f;, f;, f> are

basic irreducible, pair-wise-coprime and f;* = f;, £;* = ~f1, =1
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their duals and length.

79

‘e | Order of the code
3fo (Frf2 310 EY
3fi (2.311) Y
3f2 (ff1. 312 3
Joi /2 o
Ji2 fo 9
Jof2 Ji 9
3 (2. 3fof ) 3
3t (fo 3112 3
3fof> 01.3fof2) 3
2310 31 9.3
(2.3 3f 9.3’
(of1, 312 3t 9°.3
(2 3fof) 3 9.3
(fo. 3/of2) 3fof> 9.3
(fo. 311/ 32 9.3
(2 31 (2. 31 9.3°
(fof1. 31/ 231 9.3
(2311 (Fof2. 3fof) 9.3
(Ffo. 3/ (2. 31 93
023102 Oof 1. 3fof>) 9.3
(2o 31112 (. 35 9.3
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