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Abstract
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A _comparison between closed form stability functicns and finite element
stability functions shows that the former has numerical problems under small
axial forces and the later is inaccurate under large axial forces. The least
sguare fitting technique is applied to improve the finite element solution to
get better accuracy under large axial forces and to solve numerical problems
under small axial forces.

Introduction

It is customary in design practice to wuse a first-order analysis to
determine the distribution of bending moments and internal foreces throuvghout =z

structure. This type of analysis is tased on the undeformesd configurzticn of
the structure, and sc it disregards ths additional stresses and deformations
that occur due to changes in  geometry. In a seccnd-order analysis the

equilibrium equations are formulated on the deformed structuve, i.e. the
second-order effects producsd by the loads acting on the displaced structurs
are accounted for in the analysis. The szcond order analysis results in
changes in the member stiffness matrix &, . The new stiffness matrix is
composed from the regular first-order elastic stiffness matrix with sach tsm
being muiticlied by a function called a3 stabilizy function.

The Closed Form Approach

The changzes in the member stiffness matrix can be derived by eleme
beam analysis and the new stiffress matrix is given by (Weaver znd fRere 1%
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Where E stands for elastic mcdulus, I for moment of inertia, L for length of
member and P for axial force in member. E&ch term in Eq. 1 1is expressed as
the product of the first -order stiffness multiplied by the stability function
s. The four stability functions appearing in Eq. 1 are defined in Table 1 for
axial forces which are compression’“ tension = Notice as the axial
force approaches zero the denominator approaches zero which causes numerical
problems at small axial forces.
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Table 1 Stability functions for a beam subjected to axial force.

The Finite Element Approach (First order)

We can derive the stiffness matrix wusing the finite element approach

(first order) as 1is usually done in many classical textbooks. The final
result will be (Weaver and Johnston 1984):
_Sn=§-r;§ -o (2 )
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Where 5., is the regular form of the member stiffness matrix

for first-order
analysis and is given by:
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whers the azial feorce P is positive for tensile loading.

Comparison Between the Closed Form Approach and the Finite Element Approach

If we writz Eq. 2 in the sams form cof Ea.

1, the stashility functisns for
ihe finite =lement aprroach will he as follows:

£ g FEL T._hi;:_,;._ (5a)
BEV TR o {5k}
B prhoetti2 A0 (5¢)
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The subscript f is used in the stiffness functions to indicate that these are
found from the finite element approach.

Figs. 2 and 3 show the comparison between the stability functions from
the closed form approach (e) and the stability functions from the finite
element approach (f). From these figures it is apparent that the finite
element approach i1s inaccurate under large axial forces. Therefore, there is
a need to improve this approach.
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Fig. 1 Comparison between closed form stability functions (e) and finite
element stability functions (f) for compression loading.
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Fig. 2 Comparison between closed form stability functions (e{ and finite
element stability functions (f) for tensile loading.

Proposed Approach:

To improve the finite element approach, we suggested adding another term
to the stability functions of equations 5a to Sd. As kl was raised to even
powers (0 or 2) in the stability functiens, we suggested that the additional
term will be a function of (kl)*. The new form of stability functions (§.)
is:
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Where the wvalues of a are taken from the finite element approach and the
values of B are to be estimated.

Looking at this new form, we can notice that it could be considered a
polynomial Tayleor approximation around =zero of the original stability
functions.” However, those functions are not defined at zero. Only their
limits as the axial force approaches zero are known and equal to 1.
Therefore, the Taylor approximation should be dore around a point near zero.
However, such a Tayvlor approximstion reguires evaluating the second and fcurth
order derivatives of the original functions (Burden et., al., 1978). Looking
at those functions, we can notice that evaluating such derivatives 1is
mathematically very tedious and difficult. Therefore, we decided to determine
the values of £ statistically using the least squares approach.

In the least sguares aprroach, w

e define a zet of points for vhich we
e interested in estimating the hest | ok T US
(=]

ar it carve. For us, the best fit curve
is a oolynomial given by equatien 6 zbove with £ is unknown for each
ztability function. The set of zeints are all the possible values of kL that
w= have in nature versus iheir corresponding values of stability functions as
ziven by the closed form apprecach. The possible values of kL ranze from zero
*¢ approximately 4.5 for unbraced frames. Zerc is whera we have no axial
force applied and 4.5 is th2 maximum probable kL in unbraced frames (Tcusan,
1282)

ITn the methed of least sguares, we estimate the ccefficient of &
suzgasted polynemial which minimizes the sum ¢f sguared errors which are given
L.
by

Where J is the sum of squared errors, 1 is a point under consideration and n
iz the number of points. 2As kL is a continuous random variable from 0 to 4.5,
wne above sum is replaced by an intesgral which is:
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As cur objective 1is to find the value of § which minimizes J, the necessary
condition for that is:
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The integral of &,*(kl) " cannot be evaluated =znalytically for the
stability functions. Therefore, it was evaluzted numerically. The interval
from 0 to L.5 was divided inte 20 trapezoids with constant width of 0.05.
Tren +trapezoidal numerical integration was applied to evaluate the integral.
The results were used in the above equaticn %o estimate the value of 3 fer
sach stability function. The final results are shown in table 2.
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Table 2 Proposed stability functions.

The proposed stability functions shown in table 2 were plotted versus kL
and compared with those obtained using the closed form zpprozch. rFigs. 3 and
4 show a comparison between these two approaches. From those figures, we can
notice that the proposed stability functions fit accurately the functions used
in clesed form appreach. Llso the proposed approach does not have any
numerical inaccuracy at low values of kL. The following sxzample demonstrates
the power of the technique.
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Fig., 31 Comparison between
proposed approach stability

closed form stability functicaz (=)
functions (n) for compressicn loading.
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I3 % Compariscn between cleosed ferm stability functions (e) and
vroposed zperosch stabilitv functions (n) for tensile leoadirng

We are 1interested in finding the bucklinz lecad of the braced frame
structure shown in ths figure below. A1l members have constant EI. Ta
simplify analysis we'll neglect the effect «f axial deformations in members.
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From Fa. ¢ we can determine the value of KL from Table 1 for closed form, Eq.
5c for finite element and Table 2 for proposed aprreoach.,  The value of the
critical load is determined from the value of AL az fzllcws

Bus=BT (KL )2 a

LT3 4 - -

Followinz the above precedure we get P, eqgual to 19.5FI/L %2 for closed
form approach, 28.5EI/L® for finite element approach and 19.%EI/LF for
proposed approach.

The previous result szhows the inaccuracy of finite element approcach at
large values of axial forces where the errcr was of the order 46%, while the
errcr in the proposed approach was of the crder 2%.

To demonstrate the numerical problems of the closed form approach at

am=1l values of KL, we graw Fis., 5 which r=lates the stiffress functions for
closed form approach zgainst values of KL, The stiffness functions must be
equal to zero, however Fig. 5 shows fluctuation 1in their wvalues. Such

freblems do not occur in the finite elemsnt or rﬂbfajtd approach.
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Fig. 5 Fluctuations of the values of stiffness functicns for closed Fform
acpreoach at small values of KL.

Conclusion

Closed form stability functions has numerical problemsz un
forces, thus their use especially In computers is rsstricted.
finite element stability functions are inaccurate under larze
was shown  in the example above. The finite 2l 5

ent sclution
deriving new stability functions using least zquares

ares technigue., The
functions are accurate even under large axial fores. The figures and
shown in this paper illustrated that accuracy. it the zanes Time, the
suggested functions are easy to use without any numerical difficulty. Thisz
makes using them advantageous to cther methods.
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