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A_comparison between closed form stability functions and finite element
stability functions shows that the former has numerical problems under small
axial forces and the later is inaccurate under large a~ial forces. The least
square fitting technique is applied to improve the finite element solution to
get better accuracy under large axial forces and to solve numerical prebleIT's
under small axial forces.

Introduction

It is custcmarv in design practice to use a first-order analysis to
determine the distribution of bending moment s and internal forces t.hroughou t -51

structure. This type of analysis is cased on the undef orrr.ed conf igura.t.i.cn of
the structure, and 50 it disregards the additional stresses and def crmat ions
that occur due tel changes in ge(~etry. In a second-order analysis the
equilibrium equat ions ere formulated on the def crmed s t.ruct.ure , i. e. the'
second-order effects produced by the loads acting on the displaced st.ruct.ure
are accounted for in the analysis. The second order analysis r-esu l t s i,n
changes in the mernbe'r stiffness matrix ii, . The new stiffness matr-ix is
ccrnposed f rorn the regul ar f i.r-st+o'rde r elastic sti ff ness ma+ri.x ·,·;i:_heach tE-r-n~
being mult ipl ied by a function called -3 st abiLi.t.y function.

The Closed Form Approach

The changes in the member st.i f f ness matrix can be der ive d by el eraer.t.ar y
beam ar.aIys i s and the new stiffness matrix is given by (vleaver and i?eye ~<:;80):
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Where E stands for elastic modulus, I for moment of inertia, L for length of
member and P for axial force in member. E9Ch term in Eq. 1 is expressed as
the product of the first -order stiffness multiplied by the stability function
s. The four stability functions appearing in Eq. 1 are defined in Table 1 for
axial forces which are compression·~tension Notice as the axial
force approaches zero the denominator approaches zero which causes numerical
problems at small axial forces.
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Table 1 Stability functions for a beam subjected to axial force.

The Finite Element Approach (First order)
We can derive the stiffness matrix using the finite element approach

(first order) as is usually done in many classical textbooks. The final
result will be (Weaver and Johnston 198~):
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Where (;i.,. is the regular form of the member stiffness matrix for first-order
analysis and is given by:
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~o is called the seo;netric stiffness matrix and is given by:
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where the axial force P is positive for tensile loading.

Comparison Between the Closed Form Approach and the Finite Element Approach

If we wr i t.e Eq. 2 in the same f orm of Eq . 1, the s t.eb i l i t.y f unct ior.s for
r.ne f i a.i t.e e l emerrt ap!;·r02.ch 1viII be as f011oH~.:
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(5d)

The subscript f is used in the stiffness functions to indicate that these are
found from the finite element approach.

Figs. 2 and 3 show the comp3rison between the stability functions from
the closed form approach (e) and the stability functions from the finite
element approach (f). From these figures it is apparent that the finite
element approach is inaccurate under large axial forces. Therefore. there is
a need to improve this approach.
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Fig. 1 Comparison between closed form stability functions (e) and finite
element stability functions (f) for c0mpression loading.
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Fig. 2 Comparison between closed form stability functions (e) and finite
element stability functions (f) for tensile loading.

Proposed Approach:
To improve the finite element approach, we suggested adding another term

to the stability functions of equations 5a to 5d. As kl was raised to even
powers (0 or 2) in the stability functions, we suggested that the additional
term will be a function of (kl)·. The new form of stability functions (~n)
is:
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Where the values of a are taken from the finite element approach and the
values of B are to be estimated.

Looking at this new form, we can notice that it could be considered a
polynomial Taylor approximation around zero of the original stability
functions.' However, those functions are not defined at zero. Only their
limits as the axial force approaches zero are known and equal to 1.
Therefore, the Taylor approximation should be done around a point near zero.
However, such a Taylor approximation requires evaluating the second and fourth
order derivatives of the original functions (Burden et. al., 1978). Looking
at those functions, we can notice that evaluating such derivatives is
mathematically very tedious and difficult. Therefore, we decided to determine
the values of £ statistically using the least squares approach.

In t,he least squares approach, we define a set of points for vhich we
are interested in estimating ~he be5t fit c~rve. For us, the best fit curv~
Ls a polyncimial given ty equation 6 above with J'3.is unknown fC>T each
3tability function. The set of points are all the ?ossible values of kL that
"",8 have in nature versus their cOlTesponding values c.f stability functions as
gi.venby the closed form approach. The possible values of I:L range f rorn 2[;';:-(1

to approx irnat.ely Ij,. 5 for unbr aced frames. Zero is where \.;e have no axial
force appl ied and lj.. 5 is t.hemaximum probable k L in unbraced f rarnes (Tcuqen ,
1989).

In the method of lea~t squares, WE'
3ugge.sted polyncmi al wh ich minimizes the SOlIn

estimate the ccefficient of a
of squared err-or-s "hich are given

by:

h'nere ,J is the sum of squared errors, 1 13 a point under consideration and n
is the number of points. As kL is a cont.inuous random variable from 0 to ;".5.
-r:heabo'le sum is replaced by an integral which is:

,- - .- -r ", .-.
! 1-~ .;- .~ - ~ ,-'1 -r r - "

'J.. ..- - - ~j c - - - " "
r , ..-- "

-,
"

As cur objective is to find the value of B which minimizes J, the necessary
condition for that is:
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Therefore:
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The integral of S,.*(kLl" cannot be evaluated ane lyt.i cal Iy
stability functions. Therefore, it was eva Iuat.ed nurne ri ceHy . The
from 0 to ~. 5 was divided into '?O t.rapez.o ids with cons t.arrt width
Then t.r ape zo i da I nume r ica l integration vas i:ipplied to evaluate the
The results ;'iereuse d in the ebove equat.i on '::0 es t imet;e the va lue
each 5tability function. The final results are shm~n in table 2.
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Table 2 Proposed stability functions.

The proposed st.abiLity functions shown in table 2 were plotted versus kL
and compared ;'li th those obtained us ing the closed form apprc,3:ch. Figs. 3 anr~\
4 show a compar i son between these two approaches. Erorn those figures, we can
notice that the proposed stability functions fit accurately the functions used
in closed form approach. Also the proposed approach does not have any
n~~erical inaccuracy at low val~es of kL. The following example demonstrates
the power of the technique.
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Fig. 3 Comparison be tveen closed f orrn s teb i I i ty functions tel and
proposed approach stability funct ions t n ) for compres s i.on l oad ing .
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stability functions
for tensile 10adi~g.

(e) '\nd

Example

\Yeare interssted in finding the buckl i.ng load of the braced IElmr;;
st.ruct ure shovn in the figure below. Jill member-s have constant EI. T<:.
simplify analysis '''e'll neglect the effect (.faxial deformat ions in members .
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The stiffness matrix for free displacements is given by

a

BuckI .ing occurs vhen

b

..•. .-

.L ~~ i\ _:J
1..,;.+

='-' =. _0" c

From Eq. c 'tie can determine the ve l ue of KL f rcm Table 1 for closed f orm, Eq,
Sc for f I nit.e element and 'I'ab.l e :: fClI' proposed ,3p~'roach. The value of the
critical load is determined from the value of KL ~c follows

;."' j

"

d

Fol l.oving the above procedure ve get P" equaI to 19.5EI/L· for closed
fOTlTI appr oach , 28.:·EI/L" f or finite element approach and 19.9EI/L' for
proposed. ap[Jr;Jach.

The previous result s.hovs the inaccuracy of finite element approach at
large values of axial forces where the er-ror was of the order ~6"1~, vhi l e the
error lrl the proposed approach was of the or der 2%.

To demonstrate the numerical prob l ems of the closed form o3p?r05ch at
small val ues of KL. ',:e 0:::2:'., Fig. 5 which r el at.es the st i f f ness functions f or
closed form approach ~gainst values of KL. The stiffness functions must be
equal to zero, however Fig. 5 shows fluctuation in their values. Such
rT0blems do not occur in the finite element c'r fn::>fo,Scd approach.
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Fig. 5 Fluctuations of the values of stiffness functions for closed form
approach at small values of KL.

Conclusion

Closed f orm stability f unct.i ons [:.:;5 n: .. me r i.ca l ~~ru')lfm3 unde r ~,m."ll 03::;.,31
f orce s , thus t.he i.r use especially in computer's is re s t.r ict ed . Th:; ,,,ic',"';.,/ Le':,]
finite element stability functions are inaccurate under large axial forces as
was shown in the exarnp l e al.ove . The f Lni t.e e l ernent; 301ut ion !.-lc.:' iraproved by
deriv ing new stabil i ty functions using least squar es t.e chn i.que . The resul ti r.g
functions ar e accurate even under Lar'ge ax i al force. The f ig'lre:3 and examp Le

shown in this paper illustrated that accuracy. ilt t he Sa.7:8 t.irr.e , t ne
sug ge s t.ed f unct ions ar e easy to use without any nurner i.ca.l difficulty. Thi s
makes using them advantageous to ot he r methods.
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