An-Najah National University
Faculty of Graduated Studies

On The Theory of Convergence
Spaces

By

Raed Juma Hassan Shqair

Supervisor
Dr. Mohammad Abu Eideh

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Mathematics, Faculty of Graduate Studies,
An-Najah National University, Nablus, Palestine.

2015



IT

On The Theory of Convergence Spaces

By
Raed Juma Hassan Shqair

This thesis was defended successfully on 4/2/2015 and approved by:

Defense Committee Members Signature

f

— Dr. Mohammad Abu Eideh (Supervisor) =T - s

— Dr. Bassam Manasrah (External Examiner) ’%?:ﬂ-

— Dr. Abdallah Hakawati (Internal Examiner) ....ccccccnneees




"l
Dedication
To my parents and wife.
To my friends Ahmad Noor , Abdallah Nassar
To the souls of the martyrs of Palestine.



\Y;

ACKNOWLEDGMENTS
First of all , thank God The Almighty for all the blessing He bestowed on
me , and continues to bestow .
I would also like to express my special thanks of gratitude to my supervisor
Dr. Mohammad Abu Eideh for the greatest effort in supervising and
directing me to come with this thesis .
Thanks and appreciations to the defense committee members Dr. Bassam
Manasrah and Dr. Abdallah Hakawati for their time and patience .
Thanks are also due to all faculty members in The Department of
Mathematics at An-Najah National University .
Thanks and appreciations to Dr. Ali Abdel-Mohsen
| would like to express the appreciation for my parents ,my helpful wife
and to all relatives for their fruitful assistance and support to achieve this
thesis .
I would like to thank and appreciate all my friends especially Ahmed
Noor, Abdallah Nassar , Isaam Sabri , Hisham Salahat , Ahamad
Thabaineh, Bassem Mustafa , for their continuous encouragement .

Finally , I would like to thank Horizon bookstore for printing this thesis .



v
A

2 O sl Jan Al A0l ) e sliaf 18 gall Ul
On The Theory of Convergence Spaces

) 3 LaY) cua Le Wl ¢ palal) aga zU sa Laif Al )l oda 4de cubaisl Lo ol il
A in ol gale any o Aa o Al il sy o Lgia o o JSS AL M1 3 5 ¢ 055 Lilia

oAl Ay o adat A e 4

Declaration

The work provided in this thesis , unless otherwise reference , is the
researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification .

~

Student’s name : sate s s der 5,1 oy ]
Signature : ceg-o ', adb gl

Date : Ve [ (e




VI
Table of Contents

No. Contents Page
Dedication. 11
Acknowledgments. v
Declaration . V
Table of contents. Vi
Abstract . VIl
Historical Remarks and Introduction . VIII
Chapter zero : Filter and Filter basis. 1

0.1 | Filter and Filter basis. 2
Chapter One : Convergence Spaces . 5

1.1 | Convergence Structure. 6

1.2 | Interior and Closure Operator in Convergence Spaces . 15

1.3 | Adherence of Filter in Convergence spaces . 21
Chapter Two : Continues Functions in Convergence spaces . 25

2.1 | Continues Functions in Convergence spaces . 26

2.2 | Subspaces and Product Convergence structure . 31
Chapter Three : Separation Axioms in Convergence Spaces . 41

3.1 | Separation Axioms in Convergence Spaces . 42

3.2 | Regularity in Convergence spaces . 51
Chapter Four : Compactness in Convergence Spaces . 64

4.1 | Compactness in Convergence Spaces . 65
Chapter Five : Connectedness in Convergence Space . 74

5.1 | Connectedness in Convergence Spaces . 75
Chapter Six : The Cluster set of Functions in Convergence 84
Spaces.

6.1 | The Cluster set of Functions in Convergence Spaces. 85
References . 89
gaaldl -




Vi
On The Theory of Convergence Spaces
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Abstract
In this thesis we investigate some information about convergence space
concepts such as closure and interior of sets , open sets, closed set, cluster
point of a filter , closed adherences of convergence spaces , separation
axioms, continuity, homeomorphism, compactness, connectedness spaces
and obtain some results about the aforesaid concepts and provide basic
ideas of convergence theory, which would enable One to tackle
convergence -theoretic without much effort . In this thesis some results on

the cluster set of functions in convergence spaces are obtained.
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Historical Remarks and Introduction
The study of topological spaces as a formal subject goes back to Hausdorff
(1914)[26] and Kuratowski (1922) [27]. There were, of course, several
motivations for the introduction and study of general topological spaces
and one of the main reasons for doing so was to provide a setting for the
investigation of convergence.
However, the concept of convergence in topological spaces is not general
enough to cover all interesting cases in analysis, probability theory, etc. In
particular, the following is an example of ‘non-topological’ convergence:
The measure theoretic concept of convergence almost everywhere is well
known to be non-topological. Since topological spaces are inadequate for
the investigation of certain interesting limit operations, the idea of using the
concept of convergence itself as a primitive term arises naturally. As a
matter of fact, even before Hausdorff’s 1914 work , in 1906 [28] Frechet
took the notion of the limit of a sequence as a primitive term and he
explored the consequences of a certain set of axioms involving limits.
Later, in 1926, Urysohn [29] considered more appropriate axioms for
limits of sequences.
But for the study of convergence to reach maturity, the concept of filter
was needed, which Cartan [30] provided in 1937.
In 1948, Choquet [4] presented his theory of ‘structures pseudotopologiques’
and ‘structures pretopologiques’ in which the concept of convergence of a
filter is axiomatized. In 1954, Kowalsky [11] introduced his ‘Limesraume’

which involve also an axiomatization of the concept of convergence of a
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filter, but Kowalsky’s axioms are both simpler and less restrictive than
those of Choquet. Kowalsky, as an example, showed how convergence
almost everywhere is precisely the convergence in a certain Limesraim.
In 1959, Fischer [1] took up the study of Limesraume, but apparently
without knowing about Kowalsky’s paper. In his work, Fischer used
category-theoretical methods and he took a special interest in applications
to analysis. In 1965, Cook and Fischer [31] pushed Limesraume further
into analysis by proving an Ascoli theorem for convergence spaces and
they showed how Hahn’s continuous convergence is always given by a
convergence structure (i.e. structure of a Limesraum) although it is in
general not given by a topology. In 1964,
Kent [32] considered an even more general class of convergence spaces by
having axioms weaker than those of his predecessors.
The basic convergence theory was developed by H.R.Fisher[1] (Zurich) in
1959 introduced a convergence concept for filters, in which he associated
with each element of a set X, a definite set of filters in X which has to
satisfy two conditions of purely algebraic nature .
A convergence space is a generalization of a topological space based on the
concept of convergence of filters as fundamental .
However there are convergence spaces which are not topologies as we
mentioned earlier. Many topological concepts were easily generated in to
convergence spaces.
In this thesis we investigate information about convergence space concepts

such as closure and interior of sets , open sets, closed set, cluster point of a
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filter , closed adherences of filter, the cluster set of functions in
convergence spaces , separation axioms, continuity, homeomorphism,
compactness, connectedness spaces and obtain some results about the
aforesaid concepts and provide basic ideas of convergence theory, which
would enable One to tackle convergence -theoretic without much effort.
The dissertation starts with a review in chapter 0 , of the basic concepts of
the theory of filters and filter basis , which are needed in the later chapters.
In chapter 1 , convergence spaces and the topological modification of the
convergence structure are introduced. Also the concepts of interior , closure
operators , the adherence of a filter , and the closed adherences of a
convergence spaces are studied.
Continuity of functions on convergence spaces and subspaces are
introduced in chapter2.
In chapter 3 ; separation axioms in convergence spaces such as T, ,T, ,
Hausdorff , minimal Hausdorff , regular , strongly regular , weakly regular,
IT-regular , t-regular convergence spaces are discussed .
Compact, relatively compact and locally compact convergence spaces are
introduced in chapter 4.
In chapter 5; connected convergence spaces and their properties are
introduced .
Finally in chapter 6 some results on the cluster set of functions in

convergence spaces are obtained .
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Chapter Zero
Filter and Filter Basis
This preparatory chapter is devoted for preliminaries and
terminological conventions which are used in the subsequent chapters .
In order to make the dissertation self contained , we give brief
exposition of the parts of the theory of filters .
Definition 0.1 :
Let X be a nonempty set , and P(X) be the power set of X . A
nonempty family Fof subsets of X is called a filter , if and only if
a) @ & F, where @ is the empty set .
b) If A,B € FthenANBE F.
c) IfA€F and A S B for some B € P(X),thenB € F.
Let F(X) be the set of all filters in X .1t is a partially ordered set with
respect to the order relation "<" defined as follows G <F means that G C F.
By this definition , G < F, if and only if for each G € G , there exists
some F € F such that F € G. If G <F we say that F is finer than G or G is
coarser than F.
One can arrive at filters by another method.
Definition 0.2:
A filter base f on X is a non empty family of subsets of X satisfying the
following conditions ;
a) O ¢ p,and
b) IFABe€ S,then3C € f suchthatC S ANB

The class of all supersets of sets in a filter base is a filter in X.
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Each nonempty subset A of X defines a filter base {A} in X . Let
[A] denote the filter generated by this base i.e [A] = {F €X :Ac F}.In
particular if A= {x}, then [{x}] is an ultrafilter in X , denote this filter by
[x].
Let { Fi.i el} be a family of filters in X. Then inf F; or i/e\l F,

always exists and it is generated by {H Fi:Fie Fi}.

The supF; or i\e/| F; exists , if and only if whenever each finite

family from { F;.i €l} possesses an upper bound . Then i\e/l Fiis

generated by {(T\ Fi :Fie Fi}

Now let A € X, Fe F(X) . then we say that F has a trace on A if for
eachFe F,FNA#D.Denote FA={FNA :FeF} Itisclear that Fp
is afilterin A .

Let G be a filter in A . Then G generates a filter [G]x in X i.e
[Glx={FS X:G<c FforsomeGeg}.

Images of Filters Under Mappings

Let X and Y be two nonempty sets and f a mapping from X to Y .
Let Fe F(X). Then { f(F) : F € F } is a filter base in Y , which generates a
filter f(F) called the image of F under f . Let G € F(Y) , then
{fY(G): G eg }isafilter base in X if and only if f(G) #0 , ¥ G €G.

We also have f([x]) = [f(x)]. Furthermore , for G <F , f(G) < f(F),
where F, G € F(X).



Ultrafilters
Definition 0.3:

Let X #@ . The maximal elements of F(X) are called ultrafilters in
X . That is, a filter FeF(X) is an ultrafilter if and only if there is no filter
Ge F(X) such that G > F. The filter [x] is an ultrafilter .
Theorem(.1 :

A filter F on X is an ultrafilter if and only if for each E c X, either
Ee For X\E e F.
Theorem 0.2 :
Every filter Fe F(X) is contained in some ultrafilter in X.
Theorem 0.3:
if F is an ultrafilter on X and A U Be F , then either Ae For B € F.
Theorem 0.4 :

If f maps X into Y and F is an ultrafilter in X , then f (F) is an
ultrafilter inY.
Definition 0.4:
Two filters are said to be disjoint if they contain disjoint sets.
Theorem 0.5 :-

let U(F) be the set of ultrafilters on a set X that are finer than the

filter F, then F =Ageyr) G -
Definition 0.5:

let FeF (X) and GeF (Y), then the product filter F X G is the filter on
X X X based on {F X G : FeF,GeG}. Moreover , if FieF(X;) then [];F;
denotes the Tychonoff product of the filters F; , i.e , the filter based on
{I[1F; : F;eF; forall iel , F; # X;for only finitely many iel }.


http://en.wikipedia.org/wiki/Subset#The_symbols_.E2.8A.82_and_.E2.8A.83
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6
Chapter One
1.1 Convergence Structure:

Since the topological structure on a topological space is determined
by the data of the convergence of filters on the space , the convergence
structure has been introduced to generalize the topological structure ([1]) .

For a set X, let P(X) and F(X) denote the power set of X and the set
of all filters on X, respectively .

Definition 1.1.1:

For a set X , amap P : X — P (F(X)) is called a convergence
structure on X if it satisfies the following conditions :

1. Forany xeX, [x]e P(x) , where [x] denotes the principal filter generated
by {x} .

2. If F eP(x),thenforany Ge F(X),if G > FthenGe P(x) .

3. IfF,GeP(x),thenF NG e P(x).
If P is a convergence structure on X , then (X,P) is called a convergence
space .If F € P(x) , then we say that F converges to x in X. ([2])

Notice that axiom (3) , along with the principal of mathematical
induction , actually tells us that any finite intersection of elements from
P(x) is a gain an element of P(x) .

Theorem : 1.1.1:
Every topological structure t on X yields a convergence structure Py

on X . [1].



Proof:-

Define Pyas: ¥x € X, F € Py(x) if and only if F > N(x) , where N(x)

is the neighbourhood filter of x in X.
1) [x] € Py(x) as [x] > N(x) ¥x € X,
2) IfF € P(x) and G > F , then G >F > N(x).Hence § > N(x) .Thus

G € Py(x).

3) IfF,G ePy(x),thenF,G >N(x) .Thus FNG > N(x) . FNG € Py(x).
Hence Py is a convergence structure .
The convergence structure Py in the above theorem is called the natural
convergence structure of the given topology t .

Definition 1.1.2 :

A convergence structure is called topological if the convergence
structure is the natural convergence structure of a topology .i.e it is
produced from a topology and this means if the convergent filters are
precisely those of a topology ([3]) .

For any non empty set X a convergence structure P, may be defined
on X as Pq (x) = {[x]} for each x € X . This convergence structure is called
the discrete topology on X .

Another way of defining a convergence structure on X is to let P be
characterized by each filter on X converges to each x e X and this
convergence is called the indiscrete topology for X .

Note that the above two examples are natural convergence structures

produced from the discrete and indiscrete topologies .
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Now for each convergence space (X , P) we can construct a
topological convergence space (X , Py) on X to do that we need the
following definition.
Definition 1.1.3 :
let (X, P) be a convergence space . A subset A of X is called P-open
if x € A implies that A € F for each F € P(x). ([1]) .
Theorem 1.1.2 :
let (X', P) be a convergence space and let M, be the set of all P-open
sets in X , then Mp satisfies the axioms of open sets in topological spaces.
(1D .
Proof :-
1) @ € M, trivially by logic .
2) XeM,since XeF ,VFeP(x),forany x e X.
3) Let A1, Aye Myand assume that A = AjNA; # @, so let xe A then
xeA; and xeA, this implies A, A, e F ,V F € P(x) .
Hence, A= AiNA e F ,V F € P(x).
4) Let A be any subfamily of M, , and let A, be the union of all A € A.
Let x € A, , then there exists some A € A such that x € A .
But A eF , VFe P(x) and A € A, . Hence A, F ,
V F € P(x).
This means that A, € Mp .
Definition 1.1.4 :
The topology Mp in theorem 1.1.2 is called the topology associated

with the given convergence structure P.



Theorem 1.1.3 :

If P is the natural convergence structure of a topology t on a set X
then M, =t.
Proof :-

let A= @ and Ae Mp , then A e N(x) Vx e A this means that Aet,
LeM,ct.

Let A et and let xe A, then A € N(x) . This means that
AeF VFeP(x)asF = N(x).Then, Ais P-open.Hencet S Mp .

From theorem 1.1.3 we get if (X, P) is a convergence space then Mp
is a topology on X and P; is the natural convergence structure of M, .
Definition 1.1.5:

let (X , P) be a convergence space and let P; be the natural
convergence structure of Mp , then P, is called the topological modification
of P.
Definition1.1.6 :

let (X , P) be a convergence space . For all xe X the filter
U(x) =N {F :FeP(x) } is called the neighbourhood filter of x and its
elements are the neighbourhoods of x . [3]
Definition 1.1.7 :

A convergence space X is called Pretopological if U(x) converges to
x in X for every x in X, i.e , if the neighbourhood filter of each point
converges to this point . [3]

One can associate to each convergence space (X , P) a Pretopological

convergence space (X, I1(P)) in a natural way :
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Define F converges to x in I1(P) if and only if F 2 U(x) .
[1(P) is called the Pretopological modification of X .

It is clear that , the neighbourhood filter of x is the same in (X, P)
and (X, I(P)) .

Note that a set A € X is open if and only if it is a neighbourhood of
each of its points . Hence , A is P-open if and only if A is I1(P)-open .

It is clear that every natural convergence space is pretopological .

The following is an example of a convergence space which is not a
pretopological space and hence not a topological space .
Example 1.1.1 :

let X be an infinite set and let A be an infinite proper subset of X .
Define P on X as follows : for x in A , F P-converges to x if and only if
F =[B] , where B is a finite subset of A and for x in X\A , F p-converges
to x ifand only if F = [x] . [5]
Note that for each x € A, U(x) = [A] which does not converges to x €A.

The following is an example of a pretopological space which is not
a topological space .
Example 1.1.2 :

let X={ x, : ne Z} , and P be the pretopology with neighbourhood
filters defined as follows : for each ne Z , U(x,) is the filter generated
by { Xn-1, Xn » Xn+13-[5]

Note that the topological modification of P is the indiscrete topology .
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Definition 1.1.8 :

Let P and g be any two convergence structures on X , we say that P
is finer than g or that q is coarser than P . "In symbols P > qg" if
P(x) € q(x),Vxe X .[1]

The order relation induced by < on the set of all natural convergence
structures on X agrees with usual order of topologies associated . [1]
Theorem 1.1.4 :

Let (X, P) and (X, q) be two convergence spaces such thatq < P
then Mg € Mp.

Proof :

let Ae Mythen AeF ,VFeq(x) ,Vxe A . Since P(x) € q(x) then
AeF VFeP(x),VxeA.Hence, Ae M,.

Theoreml.1.5 :

Let (X, P) and (X, q) be two natural convergence spaces. q < P if
and only if My € Mp
Proof :

First direction holds by theorem 1.1.4.Conversely assume that My € Mp

Let x € X then Ng(x) S Np(x) , So VFe P(x) we get F = Np(x) as
(X,P) is a topological convergence . But Np(x) = Ng(x) then F = Ng(x) .
Hence , Fe q(x) , 1.e Vx € X, P(x) € g(x) and this means thatq <P .
Definition1.1.9 :

Let P be a convergence structure on X and let F be a filter on X , we

define limp F = { xe X : Fe P(x) } .[7]
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Theorem1.1.6 :

Let (X, P) and (X , q) be two convergence spaces . Then , the
following are equivalent :-

a) P>q.

b) limp F < lim, F , for every Fe F(X).

Proof :-

a=b

Assume that P > g then p(x) € q(x) , Vxe X . Let x € limp F then FeP(x).
This implies that Fe q(x). Hence xe lim, F

b = a

Let Fe P(x) then x elimp F . Clearly x € lim, F .Then Fe q(x) . So
Vxe X, we have P(x) € g(x) . Hence q < P.

Theorem1.1.7 :
Let (X, P) be a convergence space . Then, P > P,
Proof :

Let xe X and FeP(x) . Since Npy(x) is a filter generated by the set of
all P-open sets which contains x , we get Npy(x) € F . This means that
FePyx),1.e P(x) € Py(x),Vx e X.HenceP =P
Theorem1.1.8 :

Let P and q be convergence structures on X such that P> q , then
P:=>0:.[8] .

Proof :
Let P > g then M, 2 My by theorem 1.1.4 but by theorem 1.1.5 and
Mp= My, My = Mg we get P> g
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Theorem 1.1.9 :

Let (X, P) be a convergence space . The topological modification P
of P is the finest topology that is coarser than P .

Proof :-

Assume that P > C where C is a topology on X then P; > C; but
C;=C by theorem 1.1.3..

Theorem 1. 1.7 tells us that P > P, . Hence P, is the finest topology
that is coarser than P .

Since a subset A of X is P-open if and only if A is I1(P)-open we
have Mp = My;(py and Py < T1(P) . But II(P) < P so we get P, < TI(P) <P.
Result :

We can have different convergence spaces which have the same
open sets on the contrary of topologies .

Theorem 1.1.10 :
Let (X, P)and (X, g) be convergence spaces . If q < P then I1(g) < II(P) .
Proof :

Let xe X and g < P. Then P(x) € q(x) . This implies that
Up(x) 2 Uy(x). FF = Up(x) , thenF = U, (x) .

Hence I1(P)(x) < T1(q)(x)
Therefore , T1(q) < TI(P) .

In fact , if we replace the condition 3 in definition 1.1.1 by if Fe P(x)

then FN[x]eP(x) then we call P point deep convergence structure and

hence the set of all point deep convergence structures on the set X and the
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relation < is a complete lattice whose inf and sup are respectively defined
by :-
1. Fe A Pi(x) if and only if Jiel such that Fe Pi(x) .
2. Fe VPi(x) ifand only if Viel, Fe Pi(x) .[7]

The smallest and the largest elements of the set of pont deep
convergence structures on a set X are indiscrete topology and the discrete
topology respectively .

Theorem 1.1.11 :

The set of topologies on X is closed under supremum [9] .
Proof :-

Let {t; : ie/} be a family of topologies on X . The supremum of this
family in the set of convergence spaces is defined by F € V¢, t;(x) if and
only if F e t; (x), Viel . Hence F = Ny(x) foreveryi el .

Define the family B(x)={NZ,; S : S < U N (x),|S| < w} which is
a filter base on X and let N(x) denote the filter generated by B(x) . Itis
clear that F € V¢ ti(x) ifand only if F > N(x).

It remains to show that for every u e N(x) there exists O € N(x) such
thatu e N(y) foreveryye O .

If u e N(x), then there exist iy , i, , .... I,and V4, ...., V,, such that
V) € Nt]i(x) and neighbourhood in ti; and N{L,Vi € u.LetO =N Vi.

IfyeOthenye v, e Ni(y) forevery j e {1,..n}.
J

Hence O=N/L,Vie N(y).Since O S uwe getu e N(y).
Therefore V;¢, ti(x) is the natural convergence structure of a topology

whose neighbourhoods are N(x) , VxeX.
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Theorem 1.1.12 :
Every convergence structure is the infinimum of a set of topologies .[9]
Since we have a convergence space which is not topological and by
theorem 1.1.12 we get in general that the set of topologies on X is not
closed under infinimum .
Theorem1.1.13:

Let (X, P) be a pretopological space . F € P(x) if and only if each
ultrafilter finer than F converges to x . [1] .

Proof :

The conditions is obviously necessary . It is also sufficient because
each filter F is the intersection of all ultrafilters finer than F . So if each
such ultrafilter converges to x , then so does F, as P is a pretopological
structure .

1.2 Interior and Closure Operators in Convergence Spaces.

If P is a convergence structure on a set X, then we can define the
closure and interior operators in the following manner .
Definition 1.2.1 :

Let (X, P) be a convergence space and A € X, then the closure of
A,CL,(A) ={xe X :3Fe P(x)and A € F}.[10]
Definition 1.2.2 :

Let (X , P) be a convergence space , A € X,then the interior of A

int,(A) ={xeA: AeF for all Fe P(x)}.[10] . It is clear that A is

P-open if and only if int(A) = A . [10]
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Note that we will write CL(A) for CLp(A) and so on for interior if
there is no ambiguity .
Theorem 1.2.1 :
Let (X , P) be a convergence space . x e CL(A) if and only if
dFeP(x)and FNA = Qforall Fe F .[1]
Proof :
Ifx e CL(A)thenaF e P(x)and Ae F .Hence A NF # @forall F € F.
Conversely assume that 3F € P(x) such that FNA # @ for all
F eFthen {FNnA:FeF}is a filterbase generating a filter G . It is clear
that AeGand F < G . Hence G € P(x) therefore x € CL(A) .
Theorem 1.2.2 :
Let (X, P) be a convergence space , the map A — CL(A) from P(X)
into itself has the following properties :
1) CL(®) = ©.
2) A S CL(A) .
3) A € B implies CL(A) € CL(B) .
4) CL(ANB) € CL(A) N CL(B).
5) CL(AU B) = CL(A) U CL(B).
Proof :
1) Trivial .
2) Let x € A then [x] € P(x)and A € [x] and this means that xe CL(A).
Hence A € CL(A).
3) Suppose A< B and x € CL(A) , then 3F € P(x) such that
AeF.Since AC B,BeF.Hencex e CL(B).
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4) AnB<S AandANn B < B by (3) we get CL(ANB) < CL(A) and
CL(ANB) € CL(B) . Hence CL(A N B) € CL(A) n CL(B).
5  A,B<SAUB, then CL(A),CL(B) € CL(AUB) by (3) . Hence
CL(A) U CL(B) € CL(AUB).

To prove the other inclusion , let x e CL(AU B) , then 3F € P(x)
such that AUB e F . Since for each filter there exists an ultrafilter
containing it , let ' be an ultrafilter such that /' > F and since P is
convergence structure He P(x) . Since A is an ultrafilter , then eitherAeH
or Be H . Hence xeCL(A) orx € CL(B) . CL(AUB) € CL(A) U CL(B)
Theorem 1.2.3 :

Let (X, P) be a convergence space .Then
1. X\CL(A) = int (X\A) .
2. If A< Bthenint (A) < int(B).
3. int(A)nint(B)=int (AN B) .[10]
Proof :
1) Let x e X\CL(A) then x ¢ CL(A) soxe X\A as A € CL(A) and
VFeP(x),wehave A¢F . ThusX\AeF VF eP(x)as[Pis
a convergence structure and each filter is the intersection of all
ultrafilters finer than it and either A or X\ A € ultrafilters] .
But A ¢ ultrafilters. Hence , x € int (X\A).
Thus , X\CL(A) < int(X\A) .
Conversely let xeint (X\A) then xe X\A and X\AeF
VF € P(x) . This means that there is no Fe P(x) such that A ¢ F .
Hence , x € CL(A).Thus, x € X\CL(A) .
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Therefore , int(X\A4) € X\CL(A).
2) If ACB , then X\B € X\A . Then CL(X\B) S CL(X\A) by
theorem 1.2.2..
Hence X\CL(X\A) € X\CL(X\B). From which it follows that
int (X\(X\4)) € int(X\(X\B)) by part(1) of this theorem .
Thus , int (A) € int (B) .
3) int (AnB) = X\CL(X\(A N B)) by part(1) of this theorem.
= X\CL((X\4) U (X\B))
= X\(CL(X\A) U CL(X\B)) by theorem 1.2.2
= X\CL(X\A4) N X\CL(X\B)
= int(X\(X\4)) n int (X\(X\B))
= int (A) n int (B).
Definition 1.2.3 :
Let (X, P) be a convergence space , we say that A is P-closed or
simply closed if A = CL,(A) .[1]
Theorem 1.2.4 :
Let (X, P) be a convergence space , A is closed if and only if X\A is
open .[1]
Proof:
A is closed if and only if A = CL(A) if and only if X\ A = X\CL(A) =
int(X\A) if and only if X\A is open by theorem 1.2.3
Theorem1.2.5 :
Let (X, P) be a convergence space and A < X, then xe CL(A) if and

only if vnA + @ foreachVv e U(x) .
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Proof :

Let xeCL(A) then 3IFeP(x) and FNA+Q,VFeF by
theoreml1.2.1 . But F >U(x) , therefore vnA # @ for each
VelU(x).

Conversely assume that vn A + @ for each v e U(x) and x & CL(A)
then VFe P(x) we have A € F . Hence VFe P(x) there exists a V¢ such
that v, N A = @ . LetV be the unionof vz, F € P(x) .

Now Ve F , VFe P(x) . Thus Ve U(x) but vn A = @ which is a
contradiction .

Corollary 1.2.1:

The convergence spaces (X , P) and (X , II(P)) have the same
closure operators .[3]
Proof :

Let A+ @ < X then,x e CLp(A) ifand only if vn A = @ for each
V € U(x) if and only if xe CLypy(A) by theorems 1.2.5 and 1.2.1.

The above corollary shows that two different convergence structures
may have the same closure operators . While two topologies are identical
when they have the same closed sets .

Theorem1.2.6 :
Let (X, P) and (X, q) be convergence spaces such that g < P, then

for each A € X,CLp(A) € CL4(A) . In particular , each g-closed subset is

P-closed .
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Proof :

Let xe CL,(A) , then by theorem 1.2.1 3Fe P(x) such that
FnA=+ @forall FeF. ButF € q(x) as P(x) € q(x). Hence , xe CL,(A)
by theorem 1.2.1 . If A is g-closed then A = CL,(A) 2 CLp(A) but
A € CL,(A) . Hence, CL,(A) = A.Thus, A is P-closed .

Theorem 1.2.7 :

Let (X, P) be a convergence space and Fe P(x) for some xe X, then

x€ CL(F) ,VFeF .

Proof :

Follows by definition 1.2.1 .
Theorem 1.2.8 :

A convergence space (X , P) is topological if and only if (X, P) is
a pretopological space and the closure operator is idempotent.[3] .

Proof :

Let U(x) be a neighbourhood filter of x in (X, P) and let N(x) be a
neighbourhood filter of x in (X, Py) .

The first direction is trivial .

Conversely assume that (X , P) is a pretopological space where its
closure operator is idempotent .

Since P < P then P(x) < P,(x) . Hence N(x) € U(x) .

Let ueU(x) , then CL(CL(X\u)) = CL(X\u) . This means that
CL(X\w) is closed . Therefore , X\CL(X\u) = int (u) is P-open .



21

Since x e int(u) S u we get thatu € N(x) . Hence U(x) S N(x) ,
VxeX . Thus , N(x) = U (x) , VxeX. Since both (X,P) and (X, P;)
are pretopological spaces and N(x) = U(x),VxeX , they must coincide .
conclusions :

Theorem 1.2.8 shows that if we have a pretopological space which
Is not topological then the closure operator is not idempotent .

1. In general the closure of a set in convergence space is not closed
so that , CL(CL(A)) is usually larger than CL(A) .

2. From Corollary 1.2.1 and theorem 1.2.8 the closure operator of a
given convergence space P is idempotent if and only if the
topological modification and the pretopology modifications are the
same i.e P, =TI(P) .

1.3 Adherence of a Filter in Convergence Spaces:
Definition 1.3.1 :

Let (X, P) be a convergence space . An element xeX is said to be an
adherent to the filter F if a filter G exists such that § > Fand G € P(x).[1]
Definition 1.3.2 :

Let (X, P) be a convergence space . The set of all points of X which
are adherent to a filter F is called the adherence of F and denoted by
ap(F) , or simply a(F) if there is no ambiguity .[1]

It follows from definition 1.3.1 that a(F) = Ugs¢ lim G . And if
G < Fthena(F) € a(g),andif U is an ultrafilter , then a(U) = limU .
Theorem 1.3.2 :

Let (X, P) be a convergence space , Fand G be two filters on X then :
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1) a(F)V a(G) € a(F n G).
2) If Fvgexiststhen a(F) N a(G) 2 a(F v G) .[1]
Proof :

1) Let x e a(F) U a(G), then either xe a(F) or xe a(G). Assume
without loss of generality that x € a(F), then 3He F(X) such that
F<H and HeP(x). But FngGgcF <cH . Hence
xea(FnNgG).

2) F,G € FvG . Hence a(F VvV G) Ca(F) and a(F v §) <
a(G) . Therefore a(F) N a(g) 2 a(F Vv §G).

Theorem 1.3.3 :
Let (X, P) and (X, q) be two convergence spaces such thatg < P,
then VF € F(X) we have ap(F) € a,(F) .
Proof :Let xeap(F) , then 3IGe F(X) such that F < G and
G e P(x). Since P(x) € q(x), then we get that G € g(x) . Hence
x € ag(F).
Corollary 1.3.1 :
Let (X, P) and (X, q) be convergence spaces and C = P V q, then
for Fe F(X) , we have ac(F) € ap(F) N ay(F) [1]
Proof :
Since C is the supremum convergence structures of P and g we get
by theorem 1.3.3 that ac(F) € ap(F) and ac(F) € a4 (F) .
Hence ac(F) € ap(F) Nay(F) ,VFe F(X) .
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Definition 1.3.3 :

A convergence space (X , P) is said to have closed adherences if for
every filter F on X the adherence ap (F) is a closed subset of (X, P) .[12]
Theorem 1.3.4 :

If (X, P) is a convergence space with closed adherences then (X , P)
has a closure operator which is idempotent .

Proof :

Let A < X . Itis clear that CL(A) = a([A]), where [A] is the filter
generated by A . But since (X , P) with closed adherences we get that
CL(A) is closed . Hence , CL(CL(A)) = CL(A) .

The converse of theorem 1.3.4 is not true .Evalowen gave in [12] an
example of convergence space with an idempotent closure operater but not
with closed adherences .

Definition1.3.4 :

A convergence space (X , P) is said to be diagonal if for every
xeX,FeP(x), for every mapping n from X into F(X) such that n(y)
converges to y for every y € X and for every Fe F we have that the filter
k,F = supger G(n, F) converges to x where
G, F) =Nyep n(y).[11]

Kowalski showed in [11] that each diagonal space has a closure
operator which is idempotent .

EvaLowen weakened the diagonal condition of Kowalsky and
introduced weakly diagonal convergence spaces and showed that these are

exactly the convergence spaces with closed adherences .
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Definition 1.3.5 :

A convergence space (X, P) is said to be weakly diagonal , if VxeX,
vfilter F converges to x , V mapping nfrom X into F(X) such that 7n(y)
converges to y VyeX and VFeF we have that x is an adherence point of the
filter G(n, F) where G(n,F) =N,p ny . [12]

Note that every diagonal convergence space is weakly diagonal .
Theorem 1.3.5 :

A convergence space (X, P) has closed adherences if and only if it is
weakly diagonal .[12]
Proof :

Suppose (X , P) has closed adherences . Let x € X , FeF(X),
Fe P(x) and n : X — F(X) a map such that ny e P(y) for every yeX . For
FeF we have F c a (G(n,F)) since y € F implies ny © G(n, F) and thus
y €a(G(n,F)). It follows that a (G(n,F))e F . Since Fconverges to x
we have xe CL (a(g(n,F))) =a(G(n,F)).

Conversely suppose that (X , P) is weakly diagonal . Let F be a filter
on X . If x e CL(a(F)) , then take a filter 7eP(x) and containing a(F).

For y e a(F) let H, € P(y) and 3{,, 2 F . consider n: X — F(X),
ny =[y] if y€a(F) and ny=H, if yea(F) . Then we have
F < G(n,a(F)) and therefore x € a(F) .

In general , adherences of filters in a convergence space are not
closed. This is one of the essential differences between topological spaces

and general convergence spaces .
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Chapter Two
Continuous Functions on Convergence

Spaces
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Chapter Two
2.1 Continuous Functions on Convergence Spaces
Definition 2.1.1:

Let (X , P) and (Y , q) be convergence spaces . A mapping
f:(X, P) =(Y , q) is called continuous at a point x € X if VF € P(x) the
filter f(F) € q(f(x)) . The mapping f is called continuous on X if it is
continuous at each point of X . f is called a homeomorphism if it is
bijective and both f and £~ are continuous .[3]

Theorem 2.1.1:

Let X be a set equipped with two convergence structures P and q .
Then , P > q if and only if the identity mapping i : (X, P) =(X, q) is
continuous .

Proof :

Suppose that P > q . Let x €e X and Fe P(x).Then i(F) = F € q(x)
because P(x) € g(x). Thus, i is continuous .

Conversely if i is continuous then VFeP(x) we have
I(F) =Fe q(x). Thus, P(x) € q(x) VxeX . Hence ,P > (.

Remark 2.1.1:

It is clear that if (X, t) and (Y , S) are topological spaces , then

(X, 1) =(Y,S)is continuous at a point x € X if and only if

(X, PY)—= (Y, Ps) is continuous at x .
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Theorem 2.1.2:

Let £:(X , P) =(Y , q) be continuous and let (X , P) and (Y , q) be
other convergence spaces such that P < P and q < q , then
f:(X,P)= (Y, q)is also continuous .[1]

Proof :

Let x € X and F € P(x) . Then F € P(x) and f(F) € q(f(x)) as f is
continuous from (X, P)to (Y, q). Since ¢ < q, f(F) € q (f(X)) . Hence
f:(X,P)= (Y, q)is continuous .

Corollary 2.1.1:
Let (X, P) be a convergence space . Then the following hold :
1) The identity mapping i : (X, P) =(X , Py) is continuous . It is a

homeomorphism if and only if (X, P) is a topological space .

2) The identity mapping i : (X, P) =(X, I1(P)) is continuous . It is a

homeomorphism if and only if (X ,P) is a pretopological space .

3) The identity mapping i :(X, I1(P)) =(X, Py) is continuous .
Proof :
Since P, < I1(P) < P, then the proof follows by Theorem 2.1.1.
Theorem 2.1.3:

Let (X, P)and (Y, q) be convergence spaces such that the mapping
f:(X,P)= (Y, q)is continuous , then f*(A) is a P-open subset of X if A
is a g-open subset of Y . [1]

Proof:-

Assume that A is g-open . If f~1(4) = @, then the theorem is true .
Let f~1(A)#= @, x e f~1(A) and let F € P(x) .
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Since f is continuous at x , f (F) € q(f(x)) . But f(x) e A and A is -
open this impiles that A € f(F) .

Thus, 3Fe F such that f(F) € A . ButF < f~1(f(F)) < f*(4).
Thus, f~1(A) e F. Hence , f~1(A) is a P- open subset of X .
Remark 2.1.2

Let (X , P) be any convergence space which is not natural
convergence space and leti (X, P) —(X, P) be the identity map . Then i
is not continuous since P < P and by theorem 2.1.1 . But i*(A) is a
P-open subset of X if A is a P-open subset of X.

Remark 2.1.3:

Remark 2.1.2 shows that the converse of theorem 2.1.3 is not true in
general . But the converse of theorem 2.1.3 is true if f is taken between any
two topological spaces . This is One of the essential differences between
topological spaces and general convergence spaces.

Corollary 2.1.2:

Let (X, P)and (Y, q) be convergence spaces . Then if the mapping
f:(X,P)—-(Y,Qq)iscontinuous , then f: (X, P) = (Y, q) is continuous
3]

Proof:

Follows by theorem 2.1.3 and Remark 2.1.1 .
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Corollary 2.1.3:
Let (X, P) and (Y, g) be convergence spaces .

If f:(X,P)—(Y,q)isahomeomorphism mapping , then a subset
A of X is P-open if and only if f(A) is g-open . In particular , f is a
topological homeomorphism mapping from (X, Py onto (Y, ) .

Proof:
Follows by corollary 2.1.2 and theorem 2.1.3 .
Theorem 2.1.4:

Let (X, P) and (Y, q) be convergence spaces such that the mapping
f1 (X, P)— (Y, q) is continuous , then Uy (f (x)) € f(up(x)) VxeX.
Proof :

Let veU,(f(x)) and FeP(x) . Since f is continuous , then
f(P)eq(f(x)) . Thus , v e f(F) . This implies that f =1 (V) e F, because
f(uw) cvforsome ueF.Thusu S f~1f(u) S 1(V)eF,VFeP(x) .
Therefore , f~'(V) e U,(x) . Since f(f~'(v)) €V implies that
V ef (Uy (x)) . Hence Ug (F () € f (Up ().

Corollary 2.1.4:

Let (X, P) and (Y , g) be convergence spaces . If the mapping
f:(X,P)-=(Y,q)is continuous , then f: (X, II(P))—(Y ,II(q)) is
continuous .[3]

Proof:
Let F € I(P)(x) , then F > Uy, (x) 50 £ (F) = f (Up(x)) .

By theorem 2.1.4 , we get U, (f(x)) < f(‘up(x)) < f(P.
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Thus f(F)ell(q) (f(x)) . Hence f : (X , I(P)) = (Y , (IDq) is
continuous.

The following remark shows that the converse of theorem 2.1.4 is
not true in general .

Remark 2.1.4:

Let (X, P) be any convergence space which is not a pretopological
space , then the identity mapping i : (X, I1(P)) — (X, P) is not continuous
by theorem 2.1.1.. But Up(f(x)) = f (Uncr) (@) .

Theorem 2.1.5:

Let (X, P) and (Y, q) are pretopological spaces , then the converse

of theorem 2.1.4 is true .[10]
Proof :

Let FeP(x) ,then F = Up(x) .

Since F = Up(x), f(F) = f(Up(x)) . Thisimplies that
U (F() < FF). Thus f(F) € q(f(x)).

Hencef is continuous .

Theorem 2.1.6 :

Let (X , P) and (Y , q) be convergence spaces such that
f:(X,P)-(Y,q)iscontinuous . Then, f(CL(A)) < CL(f(A)) for all
AC X.[3]

Proof :

Let y € f(CL(A)) ,then 3x e CL(A) such that y = f(x) . Now
x € CL(A) implies that 3F € P(x) such that A € F . So f(A)e f(F).
Since f is continuous f (F)e q(f(x)) . Thus , y= f(x) € CL(f(4)) .
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Theorem 2.1.7 :

Let (X , P) and (Y , q) be convergence spaces such that
f:(X,P)—(Y,q)is continuous. Then, f(x) € a,(f(F)) if x € ap(F).[1]
Proof :

Letx € ap(F) ,then 3G € F(X) suchthat F < Gand G € P(x) .

Since f is continuous and f(F) < f(G) we have f(§) € q(f (x))
and f(x) € a,(f(F)) .

The following theorem shows that the composition of two
continuous functions is continuous .

Theorem2.1.8 :

Let X, P), (Y, q) and (Z, C) be convergence spaces such that
f:(X,P)-=(Y, q)is continuous at xeXand g: (Y ,q)—=>(Z, C) is
continuous at f(x) € Y, then g of : (X, P)— (Z, C) is continuous at x.[1]
Proof :-

Letx €X and F € P(x) then f(F) € q(f(x)) and g(f(F)) e C (g(f(x)))
as f and g are continuous at x and f(x) , respectively .
so,(gof)(FeC (g(f(x))) . Hence , (g of) is continuous at x .
2.2 Subspaces and Product Convergence Structure
To construct subspaces and product convergence structures we need

to introduce the concept of the initial convergence structure .
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Let X be a set ,(X;, P;);Pe a collection of convergence spaces and
for each iel , f;: X — X; is a mapping . Define P : X =P (F(X)) by
F e P(x)ifand only if f;(F)e Pi(fi(x))vi el.

Claim : P is a convergence structure on X.

Since f;([x]) = [f;(x)] € P,(f;(x)) Viel ,then [x] € P(x).

If FeP(x)and G = F,then f;(F) < f;(G) Viel .

Since f;(F) € P,(f;(x)) , then £;(§) € Pi(f;(x)) Viel. Thus GeP(x).
If F,G € P(x) then f;(F), fi(G) € P,(f;(x)) Viel .

Since f;(F) n f;(§) € fi(FnG), then f;(F nG) € P,(f;(x)), Viel.
Thus F N G e P(x) . Therefore , P is a convergence structure on X . This
convergence structure is called the Initial Convergence Structure.

Itis clear that f;: (X, P) = (X;, P;) is continuous Viel .

Let g be a convergence structure on X making all of the f;
continuous . If Fe q(x) , then f;(F) € P,(f:(x)) , Viel and this implies that
FeP(x) . That is , q(x) € P(x) VxeX.Thus P < q . Hence the Initial
convergence structure P is the coarsest convergence structure on X making
all of the f; continuous .

Note that if we find the Initial convergence structure on X with
respect to f; ,i € I separately then the initial convergence structure on X
with respect to (f;), is equal to the sup of the above convergence

structures .
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Theorem 2.2.1:

Let (Y, g) be a topological space and let f: X —= (Y, q) , then the
initial convergence structure P on X with respect to f and q is a
topology.[7]

Proof :

f: (X, P) = (Y, q is continuous by definition of Initial
convergence structure . f : (X , P) - (Y , Q) is continuous by
corollary 2.1.2 .

Since (Y, q) is a topological space we get (Y, q) = (Y, Q) .

Since P is the initial convergence structure on X with respect to f
and g we get P < P,. But P, < P by theorem 1.1.6 .

Hence P=P,. Thatis, P is a topology .

It is interesting to note that in the proof of theorem 2.2.1 we did not
use any internal description of topologies .

Corollary 2.2.1:

Let fi: X — (Yi, i), iel and each (Y;, q;) is a topological space ,
then the initial convergence structure P with respect to f; and q; , iel is a
topological convergence structure .

Proof:

Follows by theorem 2.2.1 and theorem 1.1.11 .
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Definition 2.2.1 :

Let (X , P) be a convergence space and A € X . The subspace
convergence structure P, on A is the initial convergence structure with
respect to the inclusion mapping e : A— X .[3]

Let F e F(A) and x € A . We say that F € Pa(x) if and only if [F]x € P(x).
Theorem 2.2.2 :

Let (X , P) and (Y , q) be convergence spaces such that
f:(X,P) - (Y, q)is a continuous mapping . Let A< X . Then the
restriction map fja : (A ,Pa) = (f(A) , gty ) is continuous . [1]

Proof :

Let xe A and F e Py(x) . Then , [ F]x € P(x) and therefore
[fa(P)]y = f ([F1x) € Q(f(x)) and so fia(F)eqy a (f(x)) . Hence , fja s
continuous .

Theorem 2.2.3:

Let (X , gq) be a convergence space and let AS X , then

CLga(B) = CLy(B) nAforeachBCS A [1]

Proof :

Letx € CLy4(B) then 3F € F(A) such that B € F and F € ga(x).
Clearly [F]x € q(x) and Be [F]x.

Then x e CL,(B) . This implies that x e CL,(B) N A..
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Conversely let x e CL,(B) N A, then xeA and 3F € F(X) such that

BeF and Feq(x).AeFsolet Fa={FNA :FeF}.
Fa€qux) by definition 2.2.1and B € F, . Thus x € CLy4(B).
Theorem 2.2.4 :

Let (X, P) and (Y, q) be convergence spaces and (Y;, q;); be a
family of convergence spaces such that q is the Initial Convergence
Structure with respect to (fi :Y—= (Y;, g)) thenf: (X, P) - (Y, Q) is
continuous if and only if for eachiel , fiof: (X, P) = (Y¥;,q;) Is
continuous .[3]

Proof :
If f is continuous , then (fiof) is continuous Viel , as f; is continuous

Viel and by theorem 2.1.8 the composition of two continuous functions is

continuous .
Conversely , assume that (fiof) is continuous Viel
Let FeP(x) . Since (fiof) is continuous we  get

fof)( ) = f(FF)eq(fi(F)))Viel .Thus f(Feq (F(x)) by
definition of initial convergence space . Hence f is continuous .
Theorem?2.2.5 :

Let (X , P) be a convergence space which carries the initial
convergence structure with respect to the convergence spaces (X;,P;)e;
and the mappings (f;: X — X;);e - If all the P, are pretopological structures
then P is a pretopological structure .[3]

Proof :

Letid :(X, I1(P)) =(X, P) be the identity mapping .
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fioid = f;: (X, I(P)) - (X;,P;) which is continuous for all iel by
corollary 2.1.4 and since all of the P; are pretopological structures.
id: (X,I1(P)) - (X, P) is continuous by theorem 2.2.4 .

P < II(P) by theorem 2.1.1 . ButI[I(P) < P . Hence ,II1(P) = P.
Therefore P is a pretopological structure on X .

From theorem 2.2.5 we get that any subspace of a pretopological
space is a pretopology , and the sup of the pretopological structures on X is
a pretopological structure on X .

If (X, q) is a pretopology and (A, ga) be a subspace of (X, q) , then
the neighbourhood of x € Ain (A, ga) is Uy(x)|s ={ANu:ueU ()}
Theorem 2.2.6:

Let (X , q) be a convergence space and AS X . Then
1(q4) = [1(q)]aie (A, 1I(q4)) is asubspace of (X, 11(q)) . [3]

Proof:

Let U, (x) denotes the neighbourhood filter of x in (4,11(q,)) and
let U(x)|A denotes the neighbourhood filter of x in (A, [11(q)],4) .

It is sufficient to show that U, (x) = U(x)|[, Vx € A .

Since the inclusion mapping e : (A , 11(qy)) = (X , I1(q)) is
continuous we get by theorem 2.2.2 thate : (A, 11(q4)) = (A, [I1(q)],) is
continuous .

[I1(q)]4 < H(q,) bytheorem 2.1.1 . Hence U, (x) 2 U(x)|4 .

Now if u € U,(x), then let the setv = u U (X \ A) . We show that

VelU(x).
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Take any filter F € g(x) . If F does not have a trace on A , then
X\AeF and so veF . If F has a trace on A , the filter
Fi={FNA:FeF}eqs(x)andsoueF,,i.ethereisaset Fe F such that
FNACu.

Then F cvandsoVeF .HenceVeU(x),sovNAeUx)|y.
ButvnA=u.Uu(x) € U)|, .

Let (X , q) be a convergence space and A< X . We denote the
topological modification of g4 by t(q,) .

Theorem 2.2.7 :

Let (X , g) be a convergence space . Then for each A € X,
1(q4) = [a¢]a -[5]
Proof:

Since the inclusion mapping e : (A, t(q4)) = (X, g;) is continuous
we get by theorem 2.2.2 that e : (A, t(q4)) = (A, [q:]4) IS continuous.
Thus [g:]4 <1(q,) by theorem 2.1.1 .

Theorem?2.2.8 :

Let (X , q) be a convergence space . If A is g-closed then
1(q4) < [q¢]a [5]

Proof:

Let u be t(g,)-closed , then u is g4-closed .

CLy,(u) = u= CLy(u) N Aby theorem 2.2.3.
u=CL,(wnA= CL,(w)NCLy(A) 2 CL,(unA) =CL,(w),

asu € A.u = CL4(u) and this means that u is g-closed .
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u=unA is [q:], -Closed and from theorem 1.1.5 we get

[qe]a = t(qa) -
From theorems 2.2.7 and 2.2.8 it follows that , if A is g-closed subset

of X then [g:]4 = t(q,) .
Example2.2.1 :

Let X={x, : neZ} and g be the pretopology with neighbourhood
filters defined as follows : for each n e Z , Uy(X,) is the filter generated by
{Xn1, Xn , Xn+1} . The topology q; is indiscrete .

Let A = {X,: nis an even integer}. Then q, is the discrete topology on A.
Hence t(q,) = q4 . But[q;], is indiscrete topology on A .
Theorem2.2.9 :

Letf: (X,P) — (Y, q) beamap, where P is the initial convergence
structure on X with respect to f. If (Y, q) is weakly diagonal convergence
space , then (X, P) is weakly diagonal .

Proof:

Let xeX and FeP(x) . Let n: X - F(X) be a map such
that n(z)eP(z) for all zeX . Let FeF . Want to show that
X € a(nzeF n(z)) :

Since f is continuous , then f(F) € q(f(x)) .

Definen:Y - F(Y) as
A {f(n(z)) if 3zeX such thaty = f(z)}
vl if yé&fX)

Since (Y , q) is weakly diagonal , then there exists a filter
%eq(f(x))
suchthat K 2 g(fl,f(F)) = Ng)ef(F) f(n(z)) - f(nze-p n(z)) .
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Let 7€ be the filter generated by the filter base {f~1(k) : keX}. Let
M=H V (N4er n(2)), itis clear that M is well defined .

Now (M) 2 X and hence f(M)e q(f (x)) .
Since P is the initial convergence structure , then M € P(x).

But M 2N, n(z).xea(n,rn(z)). Hence (X , P) is weakly
diagonal convergence space .

Corollary 2.2.2:

Letf: (X,P) — (Y, q) be amap where P is the initial convergence
structure with respect to f. If (Y, q) has closed adherences then (X, P) has
closed adherences too . In particular any Subspace of a space with closed
adherences has closed adherences .

Proof:

(Y, q) is weakly diagonal by theorem 1.3.5 .
(X, P) is weakly diagonal by theorem 2.2.9 .
(X', P) has closed adherences by theorem 1.3.5 .

The particular case holds since any subspace is the initial
convergence space with respect to the inclusion map .

Definition2.2.2 :

Let (X;);c; be a collection of convergence spaces and let [];.; X; be
the product set of the X; . The product convergence structure on [];X; IS
the initial convergence structure with respect to the projection mappings
(P;i: (ITjeyX; — Xi)ier) and the resulting convergence space is called the

(Tychonoff) product of the (X;); - [3]
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A filter F converges to x = (xj)ie In [];¢X; If and only if for each
iel , P;(F) convergesto P;(x) in X; .

Theorem 2.2.10:

Let(X;);c; be a family of convergence spaces . A filter F on [];X;
converges to (xi)ier = x € [[;X; if and only if , for all iel , there are filters
F; converging to x; in X;, such that F > [];F; .

Here [];¢; F; denotes the Tychonoff product of the filters F; , i.e , the
filter based on {[]F; : F;eF; for all iel , F; # X;for only finitely many
iel }.[3]

Proof:

Clearly P;(IT;;F;) = F;forall jel and so the product filter converges
if all components filters do . On the other hand , if F converges to x =(x;)ie
in the product convergence space , then F 2 [];; P;(F) gives the reverse

implication .
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Chapter Three

Separation Axioms in Convergence Spaces
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Chapter Three
3.1 Separation Axioms in Convergence Spaces
Definition 3.1.1 :
let (X,P) be a convergence space and x,y € X. Then, (X, P) is called
a) T,if x#y ,then [y] € P(x),i.elim [y]={y} VyeX.
b) Hausdorff (separated) if x+y , then P(x) N P(y) = @.
c) T, if U(x) and U(y) are disjoint filters whenever x#y.[5]
d) compact if every ultrafilter on X converges in X .
Theorem 3.1.1 :
Let (X,P) be a convergence space . Then ,
a) PisT, ifand only if a([x])={x} ,VxeX.
b) If P is Hausdorff and FeP(x) , then a(F) = {x}.[1]
c) If Pis Hausdorff , then P is T;
d) IfPis T, ,then P is Hausdorff .
Proof :
a) Assume that P is T; then [x] converges only to x and since [x] is an
ultrafilter then a([x])=lim [x] = {x} .
Conversely , if a([x]) ={x} , then [x] & P(y), if x#y . Hence P is
T,.
b) Let F € P(x) then x € a (F) . Now assume that y #x and y € a(F)
, then 3G € P(y) such that G>F . Hence , G € P(x) N P(y) which
contradicts our hypothesis . Hence a(F) = {x}.

c) If P is Hausdorff , then a([x]) = {x} by part(b) . By part (a) P is T;.
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d) suppose (X , P) is T, . Let x,yeX such that x#y . If
FeP(x)NP(y) then F >U(x) and F > U(y) . Hence U(x) and
U(y) are not disjoint filters which is a contradiction . Therefore ,
(X,P) is Hausdorff.
The following theorem shows that the definition of Hausdorff and
T, are equivalent in a pretopological convergence space .
Theorem 3.1.2 :
Let (X , P) be a pretopological space , then (X , P) is Hausdorff if
and only if it is T, space
Proof:-
Let (X , P) be Hausdorff and x,y € X where x#y . Suppose that
U(x) , U(y) are not disjoint filters , then F = U(x) V U(y) exists and
F e P(x) N P(y) since p is a pretopological structure . But this contradicts
the assumption that P is Hausdorff . Hence , P is T, .
The converse follows by theorem 3.1.1 (d).
Note, in general the definitions of Hausdorff and T, are not equivalent .
In topological spaces the axioms T; and T, agree with the separation
axioms of Frechet and Hausdorff respectively.
Theorem 3.1.3 :
Let (X, P) be a convergence space . Then, Pis T, if and only if {x}

is P-closed subset of X, Vx e X .[3]
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Proof :-

Assume that P isT; . Let ye CL({x}) and y#x , then 3F € P(y)
such that {x} e F, and this implies that [x] = F which contradicts the
hypothesis , so CL({x}) ={x} . Hence {x} is P-closed .

Conversely , if {x} is a P-closed subset of X ,VxeX . Then
CL({x}) = a([x]) = {x} so by theorem 3.1.1 () , P is T;.

Theorem 3.1.4 :
Let (X, P) and (X, q) be convergence spaces such that P <q, then :

a) IfPisT, ,thenqisTy.

b) If P is Hausdorff , then g is Hausdorff.

c) IfPisT,,thenqisT, .

Proof :

a) By theorems 133 and theorem 3.1.1(a) we have
{x} € a,([x]) € a,([x]) = {x} ,VxeX .So a,([x]) = x hence qis T; .

b) Since g(x) € P(x) VxeX we have g(x) N q(y) €S P(x) N P(y)=0
if x+y since P is Hausdorff . Hence , q(x)N q(y) = @ if x#y
which means that g is Hausdorff.

c) Let x #+y , since q(x) € P(x) and q(y) € P(y) , we have
Uy(x) EUg(x) and U,(y) €Uy (y) . If Up(x) and Up(y) are
disjoint filters then 3Iu , v such that ueU,(x) and
VelU,(y)and unv=29.

Since u e Uy (x) and ve Uy (y), Then Uy (x) and U,(y) are

disjoint filters . Hence , qis T,
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Theorem 3.1.5 :

Letf: (X, P)— (Y, q) be acontinuous and injective mapping from
a convergence space (X , P) into a Hausdorff convergence space (Y, Q) .
Then, (X ,P) is a Hausdorff space . [14]
proof :-

Let x and y € X with x#y and P(x) N P(y) # @, then 3FeF (X)
such that F e P(x) and FeP(y) .Since f is continuous , we get
fP)eq(f(x)) and f(F)eq(f(y)) . Since f is injective we get
fx) # f(¥).-Soq(f(x) Na(f(y) # 9.

But this contradicts the hypothesis as (Y , q) is Hausdorff . Hence
P(x) n P(y) = @ andthus, (X, P) is a Hausdorff space .

Theorem 3.1.6 :

Letf: (X, P)—(Y,Qq)bea continuous and injection mapping from a
convergence space (X , P) into a T;- convergence space (Y , q) . Then ,
(X, P) isa T,— convergence space .
Proof :-
Let x € X with [x] € P(y) wherex #y,then f([x]) = [f(x)] eq(f(»))
because f is continuous . f(x) # f(y) as f isinjective . Hence, qisnot T,
which is a contradiction . Therefore , (X, P) is T, —space .
Corollary 3.1.1 :

Any subspace of a T;-space , Hausdorff space is T, - space ,

Hausdorff space , respectively .
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Proof :
Follows by Definition 2.2.1 and Theorems 3.1.5, 3.1.6.
Theorem 3.1.7 :
Let hand f: (X, P)=(Y, q) be two continuous mappings from a
convergence space (X, P) into a Hausdorff convergence space (Y, q) .Then,
a) Theset A={x e X: h(x) = f(x)}isaP - closed subset of X.
b) If D is a dense subset of X and h(x) = f(x), VxeD .Then ,
f(x) = h(x) VxeX .
Proof:
a) Let xe CL(A) , then 3F, € F (A) such that [F4]x € P(x).
h([Falx) €q(h(x)) and f([F4lx) € q(f(x)) since f, h are continuous.
Since h([F4]x) and f([F4]x) are generated by the filter bases h(F,)
and f( F4 ) respectively and h(y) = f(y)Vy €A , we have
h([Falx)= f ([Falx)-
Since (Y, Q) is a Hausdorff space we have h(x) = f(x).
Hence,x e A. Thus, Aisap — closed subset of X .
b) D < Athen X = CL (D) € CL (A) = A . Hence X=A .Thus ,
h(x) = f(x) VxeX.
Definition 3.1.2:
A convergence space (X, P) is said to be minimal Hausdorff if
(X, P) is Hausdorff space and every strictly coarser convergence space

(X, q) is not Hausdorff . [15]
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Definition 3.1.3:

A convergence space (X , P) is called a pseudotopological
convergence space if F € P(x) whenever every ultrafilter G finer than F
converges to x in X .[3],[4]

Theorem 3.1.8 :
The following statements about a convergence space (X , P) are
equivalent.
a) (X, P)is minimal Hausdorff .
b) {x} = a(F) if and only if F € P(x).
c) (X, P)is acompact pseudotopological Hausdorff space . [15]
Proof:
a implies b: If FeP(x) , then {x} = a(F) by theorem 3.1.1(b). Conversely ,
assume that a(F) = {x} and F & P(x). Define q on X as follows.

Heq(x)if and only if H >G N F where G € P(x) and He q(y)

if and only if H € P(y) where x #y .
It is clear that g is a convergence structure .

We Claim that g is strictly coarser than P and it is Hausdorff .
Let x,y € X with x # y , then we have q(y) = P(y) . Let G € P(x) then
G>FNGand F>FNG . Hence ,Gand Feq(x), VG eP(x), and since
F & P(x),weget P(x) c q(x) . Therefore g < P.

To show that g is Hausdorff let x # y # =z , then
q(y) N q(z) =P(y) N P(z) =@ as P is Hausdroff.

Assume that He q(x) N q(y) where x#y . Then , 3G € F(X) such that
H>F N Gwhere G e P(x) and He P(y) . Without loss of generality we
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take H to be an ultrafilter , so 3F, € F such that X\F, e H and H can not
be finer than G as P is Hausdorff , so 3g , € G such that X\g, € H . Since
H>FNGand{FU g:FeF and g € G } is a filter base generating F N G
we have (F, U G,) € H . But (X\F, N X\g,) € H . Hence ,
(Fo U go) N (X\F, N X\g,) = @ € H which is a contradiction . Hence, (X, Q)
Is a Hausdorff space and since g < P we get a contradiction as (X , P) is a
minimal Hausdorff space . Hence , F € P(x).

b implies c¢: (X, P) is Hausdorff, as if Fe P(x) N P(y), then
a(F) ={x}={y} Hencex =y.

To show compactness of (X, P) , let F be an ultrafilter . If a(F) =0,
then a(F N [x]) = {x} . We will show that: now, x € a(F N[x]) as
FN[x] S[x] eP(x). Assume that y € a(F N [x]) and y # x , then
3G e P(y) where F N [x] € G.

Now G € F so 3gie G and X\g:e F as F is an ultrafilter , and
G € [x] as a(G) = {y} by hypothesis so 3g, € G and X\g, € [x] as [x] is an
ultrafilter.

But (X\g1) U (X\g2) € FN[x] €G and (g N g,) € G .So
((X\g)U(X\g2)) N (g1 N g») = @ € G which is a contradiction as G is a
filter. Hence , a(F N [x]) = {x} .

Now if a(F) = @, then a(FN[x]) ={x} , then FN[x] € P(x) by
hypothesis , so FeP(x)as F > F N [x] which is a contradiction as
a(F) = @. The final contradiction shows that a(F) #@ . Hence , F
converges in X as a(F) = lim F in X as F is an ultrafilter . Hence , (X, P)

IS @ compact space .
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Finally , we show that (X, P) is a pseudotopological space .

If each ultrafilter 7 finer than G converges to x then lim# = {x} for
all ultrafilter H > G then a(G) = {x}. Hence , G € P(x) by hypothesis .
Thus, (X, P) is a pseudotopological space .

c implies a : Assume that g < P where g is a Hausdorff convergence
structure . Let F e q(x) , then a,(F) = {x} as (X, q) is a Hausdorff space
and by theorem 3.1.1 (b) . a,,(F) # @ as (X, P) is compact space .

Now a,(F) € a4(F) = {x} by theorem 1.3.3 . Hence , a,(F) = {x}.

Now , let H > F where H is an ultrafilter , then
a,(H) € a,(F) ={x}. Since a,(H) # @ as (X, P) is compact , then a,(H)
= {x}. Hence , He P(x). Now Fe P(x) as (X , P) is a pseudotopological
convergence space . Thus , g(x) € P(x) so P < q . Hence , P = q.
Therefore , (X, P) is a minimal Hausdorff .

Corollary 3.1.2 :

A Hausdorff topological space is a minimal Hausdorff if and only

if it is compact.

Proof :

Follows by theorem 3.1.8.
Theorem 3.1.9:

Let f: (X, P)—= (Y, q) be a continuous bijective mapping from a
minimal Hausdorff space (X, P) into a Hausdorff space (Y, q) , then f is a

homeomorphism map .[15]
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Proof :-

Let Feq(y), since f is bijective , then y = f(x) and x is unique
aq(F) = {f(x)} because (Y, q) is a Hausdorff space and by theorem
3.1.2(a) .

Claim: a,(f~*(F)) = {x}.

a,(f~*(F)) # @ as (X, P) is minimal Hausdorff and hence it is
compact by theorem 3.1.8 .Let z e a,(f ~'(F)) , then f(2) € a, f ((f ' (F))
as f is continuous .Since f is bijective , we have f((f 1(F)) = F. Hence
f(2)eag(F)={f(x)}.Thus f(2)=f(x) . Thenx=zasfis1.1.

Therefore , {x} = a,(f~'(F)) . Thus f~'(F)eP(x) as (X, P) is
minimal Hausdorff and by theorem 3.1.8 . Hence , f~1 is
continuous.Therefore , f is a homeomorphism map .

Corollary 3.1.3 :[Fischer]

Letf: (X, P)—- (Y, q) be acontinuous bijection mapping from a
compact pertopological space (X , P) into a Hausdorff space (Y, q) .Then,
f is a homeomorphism .[15] .

Proof :-

(X, P) is Hausdorff by theorem 3.1.5, (X, P) is a pseudotopological
space since every pretopological space is a pseudotopological space.
(X, P) is a compact pseudotopological Hausdorff space .

(X, P) is minimal Hausdorrf by theorem 3.1.8.

f is a homeomorphism map by theorem 3.1.9 .
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3.2 Regularity in convergence spaces

Extending the topological property of regularity to convergence
spaces has created certain interest among mathematicians studying
convergence spaces .see ([19] . [20])

Definition 3.2.1 :

A convergence space (X, P) is regular if CLp(F) € P(x) whenever
Fe P(x).(The filter CLp(F) is generated by the filter base { CLs(F) : FeF }
J19]

Regular convergence space definition , arises from the paper by
Cook and Fischer on regular convergence spaces , [20]. In this paper , the
authors define regularity in terms of an iterated limit axiom for filters .

Biesterfelt [19] has shown that the definition given by Cook and
Fisher is equivalent to definition 3.2.1

Lemma 3.2.1: Let (X , P) be a convergence space and Fe P(x),
then x e CL(F) , VFeF.

Proof:-

Since F € P(x) and F € F we have xeCL(F) .

Theorem 3.2.1:

If (X, P) is a regular T,- convergence space , then it is Hausdorff . [20]
Proof :-

Assume that P is not Hausdorff , then 3F e F(X) such that
FeP(x) N P(y) forsome x, y e Xand x£y .

CL(F) € P(x) and P(y) by regularity of P .
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X € CL(F) , VFeF by lemma 3.2.1 .This means CL(F) < [x] . Hence,
[x] € P(y) which is a contradiction as (X, P) isa T, — space .

Therefore , (X, P) is a Hausdorff space .

Note that the definition of regular convergence space gives the usual
concept for topologies .

Theorem 3.2.2 :

Let (X , P) be the natural convergence space related to the
topological space (X, t) . Then, (X, Py is regular if and only if (X, t) is
regular .
proof :-

Let (X, t) be regular , so it is sufficient to show that for each x € X
we have CL(U(x)) converges to x in (X, Py).

Let Ae U(x), then 3 an open set u such that xe u € A . So by
regularity of (X , t) 3 an open set v such that x € vE CL(v) € u € A.
Hence , A € CL(U(x)) . Thus , U(x)S CL(U(x)) . This means that
CL(U(x)) converges to x in (X, Py) .

Conversely let (X, Py) be regular and let u be an open set containing
x . Then , u € CL(U(x)) . So 3 an open set v containing x such that
x € v € CL(v) € u which means that (X, t) is regular .

Theorem 3.2.3 :

Let X and Y be convergence spaces and f : (X, P) =»(Y , q) be an
initial map , then :

a) If Y isregular, then X is regular .

b) If Xis regular and f is a surjection , then Y is regular .[21]
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Proof :-

a)

b)

Let F converges to x in X . f(F) converges to f(x) as f is an initial
map and hence it is continuous . CL(f (F)) converges to f(x)in Y
Since f(CL(F)) € CL(f(F)) for all F € F by theorem 2.1.6 we have
CL(f(F)) cf (CL(F)) .Therefore , f (CL(F)) converges to f(x) in
Y. Hence , CL(F)converges to x because f is an initial map .
Therefore , X is regular
Let F converges to y in Y and since f is surjective y = f(x) for
some x € X and f(f~1(F)) = F .Thus f ~1(F) converges to x in X as
f is an initial map.

Since X is regular , CL(f~1(F)) converges to x in X .
f(CL(f ~1(F)) converges to f(x) in Y as f is continuous .
We claim that f(CL(f ~*(F)) < CL(F)

At first we show that f~1 (CL(B)) € CL(f1(B)) . Let
b e f~1(CL(B)) , then f(b) € CL(B) , so B € G for some filter G
converges to f(b) in Y . f(f~1(G)) = G as f is surjective .Since f is an
initial map we have f~1(G) converges to b . Since f~1(B) € f ~1(G) ,
we get b e CL(f ~1(B)).

Note that CL(F) = f(f ~1(CL(F))) € f(CL(f1(F))) . Hence
f(CL(f~Y(F))) € CL(F) . Therefore , CL(F) converges to f (x) =y

in Y. Hence Y is regular .

Corollary 3.2.1 :

A subspace of a regular convergence space is regular .
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Proof :
Follows by theorem 3.2.3
Theorem 3.2.4 :

The closure operator for a compact regular Hausdorff convergence
space is idempotent .[22]
Corollary 3.2.2 :

Let (X, P) be a compact regular Hausdorff space , then (X, I1(p)) is
Hausdorff and topological .[22]

Proof :

The closure operators for (X , P) and (X , II1(P)) are the same
corollary 1.2.1 and by theorem 1.2.8 (X , I[I1(P)) is a topological space as
the closure operator of (X, I1(P)) is idempotent by theorem 3.2.4 .

To see that (X , I1(P)) is Hausdorff , let F be an ultrafilter which
converges both to x and y with respect to I1(P) .

By compactness , F converges to some point z with respet to P , and
by regularity of P, Cl,(F) also converges to z with respect to P. But each
neighbourhood of x is in F , so x is in each member of CL,(F) . Since P is
Hausdorff , x = z . similarly , y = z .Therefore x=y .

Corollary 3.2.3 :

If A is a subspace of a compact regular Hausdorff convergence space
(X, P), then I1(P,) is Hausdorff and topological .[22]

Proof :

Since (A, P,) is a subspace of (X, P) , then I1(P,) is the subspace of
(X, I1(p)) by theorem 2.2.6 and since I1(P) is Hausdorff and topological
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and by corollary 3.2.2 we get I1(P,) is Hausdorff and topological as a
subspace of Hausdorff and topological space is Hausdorff and topological
subspace .
Theorem 3.2.5 :

Let X be a compact regular Hausdorff convergence space . Let K be
a closed subset of X and z is a point with z K .Let F be a filter converging
to z ,then there is an open set u containing K such that u ¢ F .[21]

Proof :

X\K is open and z € X\K .Since X is regular , CL(F) converges to z
and so X\K e CL(F) . Hence CL(F) € X\K for some Fe F. By theorem
3.24 CL(F) is closed . Let u= X\CL (F) .Then u is an open set containing
Kwithu ¢ F .

Definition 3.2.2 :

Let (X , q) be a convergence space . For A € X we define
Ug(A) =N {Uy(x): xeA} and U, (A) written simply as U(A) is called the
g-neighbourhood filter of A .[15]

Definition 3.2.3 :

Let (X, q) be a convergence space , then (X, q) is weakly regular if
U(x) and U(A) are disjoint filters whenever A is a q — closed set and
x € X\A .[5],[23]

Definition 3.2.4 :
Let (X, q) be a convergence space , then (X, q) is strongly regular if

U(x) has a base of q — closed sets for each x € X .[5]
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Definition 3.2.5 :
Let (X, g) be a convergence space , then (X, q) is []- regular if U(x)
and U(A) are disjoint for each A € X and x e X\CL(A) .[5]
Definition 3.2.6 :
Let (X, ) be a convergence space .Then (X, q) is t — regular , if
(X', q) is a regular topology. [5]
The following theorems give some relations between these concepts .
Theorem 3.2.6 :
Let (X, ) be a pretopological space .Then the following statements
are equivalent to each other .
a) (X, q)isregular
b) (X, q)is[] - regular
c) U(x) =CL (U(x)) foreach x in X . [5]
Proof :-
For equivalence of (b) and (c) , see [24]
To prove that (a) implies (c) , let q be a regular pretopology then
U(x) € q(x).The regularity of g implies that CL(U(x)) € q(x).
Thus U(x) < CL(U(x)). But CL(U(x)) is always coarser than U(x).
Hence CL(U(x)) = U(x)for each xeX.
To show that (c) implies (a) assume that U(x) = CL (U(x)) for each
xeX If F € q(x) then F > U(x). Thus CI (F) > CL (U(x)) = U(x). Hence

CL(F) € q(x). Therefore (X, q) is a regular space .
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Theorem 3.2.7 :

Let (X , ) be a convergence space . Then q is strongly regular
(weakly regular , [] - regular ) if and only if I1(q) is strongly regular
(weakly regular , ] - regular ).[5]

Proof :

Since the closure operators and U, (x) = Upqg)(x) VxeX are the
same in [1(q) and q , the theorem holds .

Corollary 3.2.4 :

Let (X, q) be a convergence space . Then g is [] - regular if and only
if I1(q) is regular.

Proof :

Follows by theorems 3.2.7 and 3.2.6.
Theorem 3.2.8 :

Let (X, g) be a convergence space . If g is t - regular , then q is
weakly regular .[5]
Proof :

Let g be t — regular and A a g — closed subset of X and x € X\A
Because q; is regular , there are disjoint open sets u and v such that
xeuand ACv. ButueU(x)and v e U(A). Thus U(x) and U(A) are
disjoint filters .

Theorem 3.2.9 :

Let (X, q) be a convergence space . If g is strongly regular , then g is

[1 - regular.[5]
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Proof :

Let g be strongly regular . Then , U(x) has a base of g — closed sets
for each xeX . Hence U(x) = CL(U(x)) for each x € X and therefore I1(q)
IS [] - regular by theorem 3.2.6 .Thus , q is [] - regular by theorem 3.2.7.

Note that if g is [] - regular then it is weakly regular by definitions
3.2.3 and 3.2.5 . Hence , by theorem 3.2.9 every strongly regular space is
weakly regular .

Theorem 3.2.10 :
Let (X, g) be a pretopological convergence space .Then
a) If qis strongly regular , then q is regular
b) If CL+V = L™ for some n € N and q is regular , then q is strongly
regular (where CL**V (4) = CL(CL™ (4)) , CL™ (4) =CL(A)) .[5]
Proof :
a) If g is a strongly regular , then q is [] - regular by theorem 3.2.9.

Since g is a pretopology , then q is regular by theorem 3.2.6.

b) Assume that q is a regular pretopology and there is n e N such that

CL*D(A) = cL™(A4) for each A € X .Then CLM(A) is a

q — closed for each A € X. Since q is a regular pretopologgy ,

U(x) = CL(U(x)) for each xeX . Let u € U(x).To show that q is

strongly regular it suffice to find a v € U(x) such that v is g—closed

and v < u .The set u € CL(U(x)) , so there is a vie U(x) such that

CL(v1) € u. The set v; € CL(U(x)) so there is a v, € U(x), such that

CL(V) c vy . Thus , CL?(v,) € u repeating this argument n times
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shows that there is a v, € U(x) such that CL"(v,) € u. But CL™*(v,) is
g - closed and the proof is complete.
Theorem 3.2.11 :
Let (X, q) be a convergence space and X is a finite set .Then

a) (X, q) is apretopological space

b) Strong regularity , regularity and [] - regularity are equivalent

c) Weak regularity and t — regularity are equivalent.[5]

Proof :

a) Since the set of all filters on a finite set is finite . Then we
have U(x) =N{F:Feq(x)} € q(x) , VxeX. Hence (X , q) is a
pretopological space .

b) Regularity and [] - regularity are equivalent by theorem 3.2.6.

Since X is finite , there is neN such that
CL™ = cL™*D_ Hence regularity implies strong regularity by
theorem 3.2.10(b) . But strong regularity implies regularity by
theorem 3.2.10(a) .

c) t-regularity implies weak regularity by theorem 3.2.8 .

Conversely , assume that q is weakly regular . Let A be a
q — closed set and x an element of X\ A .To show that x and A can be
separated by disjoint g — open sets it is sufficient to show that A is
q —open .

For each z € X\A there exists A, e U(A) and a B, € U(z) such
that B, N A, =0Q .

Claim: N {A;:ze X\A} = A
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Since A;e U(A) , then A, € U(x) for all xeA , and hence x € A, for
allxe A,SOACA,.Hence AcC N {A,:ze X\A }.
If 3xe X such that x e N {A;, :z € X\A } and x € X\A , then
x € Ay and x € Bx € U(x) which is a contradiction as Bx N Ax =0.
Hence N {A,:zeX\A} S A.
The set X\A is finite and so N{A,:z e X\A } e U(A) . Hence
[A] € U(A) . ButU(A) € [A],so U(A) =[A] and A is g — open as
A e U(x)for all xeA .
The following is an example of a pretopological space which
is t — regular and weakly regular but not strongly regular . Hence not
IT - regular and not regular .
Example 3.2.1 :
Let X ={a, b, c} and let g be a pretopology with neighborhood filters
defined as follows .
U(a) ={{a b}, X}, Ub)={{b, c}, X}, and U(c)= { {a, c}, X}.[5]
The only g — closed sets are X and @ . Hence , q; is the indiscrete
topology, g ist—regular . Thus g is also weakly regular by theorem 3.2.11.
Since no g — neighbourhood filter has a base of g — closed sets , g is
not strongly regular .Thus , q is also not ] - regular and not regular by
theorem 3.2.11.
The following example is an example of a convergence space which

is strongly regular and t — regular but not regular .
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Example 3.2.2 [5] :

let g be the convergence structure as in example 1.1.1 , for each
x €A, Ux)=[A], and for each xe X\A , U(x) = [x] .

If D is any non empty subset of A , then CL(D) = A, and if
D c X\ Athen CL(D) =D . Since A and any subset of X\ A is q — closed ,
it follows that g is strongly regular , and thus weakly regular and
[T - regular .

The set A and any subset of X\A are q — open , as well as ,
q—closed . Thus, ;= I1(q) and q is t — regular .

If x € A, then [x] € q(x) . But CL([x]) =[ A] € q(x) . therefore , g is
not regular .

The following is an example of a pretopological space which is not
strongly regular , not ] - regular and not regular . But it is weakly regular
and not t — regular .

Example 3.2.3 :

Let X = {a} U {Xx, :neZ} and let q be the pretopology with

neighbourhood filters defined as follows :

U(a) =[BS X :ae B and X\B is finite]

Uxn) = [{ Xn-1 Xn Xns1}][5]

{ Xn1, Xn» Xne1} IS NOt g — closed because X,.+» € CL({ Xn1 , Xn , Xn+1}).
Hence , q is not strongly regular , not regular and not [] - regular .

CL({a}) ={a} so{a} isq—closed.

ae CL ({X,:neZ}) and if B cX such that 3 x,€& B, X1 Or X,+1 € B, then
X, € CL(B).
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Thus , the only q — closed sets in X are {a} , X and @.
q is weakly regular since U(a) and U(x,), n € Z are disjoint as
{a} U ({ Xn : n €Z P\{Xn-1, Xn, Xn+1}) € U(a) and {Xn.1, Xn, Xn+1} € U(xy)
g is not t — regular as the only q — closed sets are {a} , X and @.
Theorem 3.2.12 :
Let (X, g) be a convergence space and A c X. Then

a) If qis strongly regular , then g, is strongly regular.

b) If qis [[-regular,then gais[[-regular

c) Let t(ga) =[qia . If gist—regular, then qa is t —regular

d) Let t(ga) = [gda - If g is weakly regular , then qa is weakly
regular.[5]

Proof :

a) Letx e Aand v e Uga(x) . Then , v =u N A for some u € Uy(x) .
Since q is strongly regular , there is q — closed set F € Uy(x) such
that F € wu.

The set F N A is qa — closed because F N A is [q¢]a closed
and t(ga) > [qda . The set F N A € Ugplx) and
F N A € v. Therefore , Uga(x) has a base of ga — closed sets.

b) if g is [[-regular , then TI(q) is regular by corollary 3.2.4.
Therefore , [ I1(q)] o is regular by corollary 3.2.1 . But
[71(q)]a = (I1(ga)) .Therefore ga is [[- regular by corollary 3.2.4.

c) Follows from the heredity of regularity for topologies when

t(da) = [Gta -
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d) Let B be a ga — closed subset of A and let x e A\B . ThenB=ANF
for some g — closed set F , because t(qa) = [qi]a - x € Fsince x € B,
therefore Uy(x) and Uy (F) are disjoint filters .
But Uga(x) ={uNA:ueUq(x)}and Uga(B)={u N A:uelU,(B)}
Therefore , Uga(x) and Ugya(B) are disjoint .
Remark 3.2.1 :
weak regularity and t — regularity are not hereditary properties . If we
let (X, q) be the pretopological space of example 3.2.1 and A = {a, b}.
The topology @ is indiscrete , so q ist— regular and weakly regular . The
neighborhood filters of ga are given by Uga(a)=[A] and Uga(b)= [b]a .
Therefore , @ , {a} and A are the only g — closed sets.
Hence the topology t(ga) is not regular . Thus , ga is not t — regular

and by theorem 3.2.11 g, is not weakly regular .
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Chapter Four

Compactness in Convergence Spaces
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Chapter Four
Compactness in Convergence Spaces

Compactness is one of the most important topological property . It is
an important notion in convergence space as well .

Definition 4.1:

A convergence space (X , P) is compact if every ultrafilter on X
converges in X .[16]
Definition 4.2:

A system £ of nonempty subsets of a convergence space (X , P) is
called a covering system if each convergent filter on X contains some
elements of £ .[16]

Theorem 4.1:
Let (X, P) be a convergence space . Then , the following are equivalent :

a) (X, P)iscompact.

b) Every filter on X has a point of adherence .

c) In every covering system there are finitely many members of which

the union is X .[16]

Proof :
a implies b: We use the fact that for every filter F on X there is an
ultrafilter G on X with G > F . So, any limit of G is an adherentto F .
b implies c: Let £ be a covering system allowing no finite subcover .
Hence {X \ S : Sef} generates a filter , say F on X . So , by our hypothesis
F has an adherence point say x .

Then 3GeF (X) such that G > F and G € P(x) for somexeX .
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By definition 4.2, 3Sef such that SegG .
SNX\S =0eGwhich is a contradiction . So , in every covering system
there are finitely many members of which their union is X ..
c implies a: Assume that some ultrafilters on X, say G doesn’t converge in
X , then G cannot be finer than any convergent filter F . Since for any
M < X either M or X \ M belongs to G . So we find in any convergent filter
F a member Mg € F for which X\ Mz belongs to G.
The system {Mz| F is convergent in X} is a covering system of X. So ,
there exists finitely many members of this system that covers X , then G
would have to contain the empty set . So , every ultrafilter on X is a
convergent filter . Hence , (X, P) is compact .
Theorem 4.2:

Let X be a set equipped with two convergence structures P and g
such that P < gq.Then, if (X, q) is compact , then(X , P) is compact .[1]
Proof:,

Since a4 (F) € ap(F) for all FeF(X) and (X, q) is compact we
geta,(F) # @. Hence , a,(F) # @ so by theorem 4.1 we get that P is
compact.

Theorem 4.3:

Let (X , P) be a compact and Hausdroff pretopological

convergence space .Then , a filter Fe F(X) converges in X if and only

ap(F) is a singleton set.
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Proof:

Since every pretopological space is a pseudotopological space,
{x} = a(F) if and only if Fe P(x) by theorem 3.1.8 .

Theorem 4.4:

Let (X, P) be a compact pretopological space and (X, q) be a
Hausdorff convergence space . If g < P, then P=q. [1]

Proof:
(X, P) is Hausdorff, by theorem 3.1.4 .
a,(F) € a,(F),VF e F(X), by theorem 1.3.3.
Let F € q(x) then a,(F) = {x} by theorem 3.1.1.

Since P is compact and a,(F) € a,(F) ={x} we have
a,(F) = {x}.Hence FeP(x). Thus for each xeX we have q(x) € P(x)
which means P < q . Therefore,q="P.

Corollary 4.1 :

Let (X , P) be a compact topological space and q be a Hausdorff
convergence structure on X such thatq < P, then P = q . In particular, q
is a topology .

Proof :
Follows by theorem 4.4 .

Note that theorems 4.3 , 4.4 hold if we replace pretopology by
pseudotopology .

Definition 4.3 :
A subset of a convergence space is compact if it is compact with

respect to the subspace convergence structure .[3]
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Theorem 4.5:
Let (X, P) be a convergence space and A € X be a subspace . Then,
the following hold .
1) If X'is compact and A is P-closed , then A is compact .
2) If X is Hausdorff space and A is compact , then A is closed .[3]
Proof:
1) We know that a filter F converges to a € A in A if and only if [F]y
( the filter generated by the filter base F in X ) converges to ain X .
Let F be an ultrafilter in A then [F]y is an ultrafilter in X
which converges in X as X is compact .
Assume that a([Flxy) NA=0 so a([F]y) € X\ A. Thus,
X\Ae[Flyas X\ AisP-openand lim[F]y = a([Flx) # 9.
But A€[F]y so (X\A)NA=0Qe[F]y which is a
contradiction . This implies that 3a € A such that [F]y converges to
a . Hence , F converges to a . Thus A is compact .
2) Letx e CL(A) then3 F € P(x) suchthat Ae F .
Fao={ANF:FeF}isafilterinA.
Let G be the ultrafilter in A containing 4. So G converges to
some yeA . But [G]y is an ultrafilter converges to y and [G]x = F
this leads [G]x converges to x too .
So x =y as X is a Hausdorff space . Thus , x € A . Therefore ,

CL(A) =A.So, AisP-closed .
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Corollary 4.2 :

A subspace of a compact Hausdorff convergence space is compact if
and only if it is closed .

Proof :
Follows by theorem 4.5 .
Theorem 4.6:

Let f: X — Y be a continuous surjective mapping from a compact
convergence space X onto a convergence space Y . Then, Y is compact .
Proof:

Let G be an ultrafilter on Y, then {f ~1(G): GeG} is a basis of a filter
F on X . Choose a finer ultrafilter H > F .

Then # converges and f(H) = G . Since G is an ultrafilter we get
G = f(H). Since f is continuous , then G converges in Y . Therefore , Y is
compact .

Corollary 4.3 :

Let X and Y be any convergence spaces . If f: X — Y is a continuous
mapping , then the image of a compact subset of X is compactin Y .
Proof :

Let A € X be a compact set .The restriction mapping f,: A = f(4) is
continuous . Hence by theorem 4.6 f(A) is compact .

Theorem 4.7:

Let X and Y be convergence spaces and f: X — Y be a continuous

where X is compact and Y is Hausdorff . Then , if A is a closed set in X ,

then f(A) isaclosed setin Y .
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Proof :

A closed subset A of X is compact by theorem 4.5(1) , f(A) is
compact by corollary 4.3 so f(A) is closed by theorem 4.5(2) .

Theorem 4.8:

Let f: X = Y be a continuous map from a compact convergence
space X onto a Hausdorff convergence space Y .

If B € Y is compact, then f~1(B) is compact . [4]
Proof :

Let B € Y be compact then B is closed set in Y by theorem 4.5 (2).
f~Y(B) is closed since f is continuous . f~1(B) is compact by
theorem 4.5(1).

Theorem 4.9:
If P and q are convergence structures on the set X , with q is
Hausdorff , P is compact and g < P .Then
1) gq(x)NUF(X) =P(x)NUF(X) .where U(F(X) is the set of
ultrafilters on X.
2) The Pretopologies associated to g and P are identical .
3) The topologies associated to g and P are identical . [18]
Proof:
1) P(x) € q(x)as g<P . Hence ,P(x) NUF(X) € q(x) NnUF(X).
Let F € q(x) N UF(X) this means that F is an ultrafilter converges

o x.



71
Since. g is Hausdorff then [lim,F =a,(F)={x} by
theorem 3.1.1(b) . P is compact so ap(F)+# @ and since
ap(F) € a,(F) = {x} by theorem1.3.3 we get
limpF = ap(F) = {x}.Hence, F e P(x).
Thus, q(x) NUF(X) € P(x) NnUF(X) .

2) Since each filter F is the intersection of all ultrafilters finer than
F and by partl of this theorem we get Up(x) = Uy(x) , VxeX .
Hence, I1(q) = II(P).

3) Since the closure operators of q and I1(q) are the same , by
Corollary 1.2.1 and I1(q) = II1(P) we get CL,(A) = CLp(A) for all
A € X . Hence the set of all closed sets in (X, q) and (X, P) are

the same . Therefore, q; = P; .

Definition 4.3 :

A subset A of a convergence space X is called relatively compact if

its closure CL(A) is compact . [3]

Theorem 4.10:

Let X and Y be convergence spaces . Let Y be Hausdorff and

let A € X be a relatively compact set . If f: X = Y is a continuous mapping

then f(A) is relatively compact .

Proof:

Assume that A is relatively compact . Then , CL(A) is compact.

f(CL(A)) is compact and closed by theorems 4.6 and 4.5 .

Now A € CL(A) then f(A) < f(CL(A)).
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So CL(f(4)) € CL (f((:L(A))). CL(f(A)) < F(CL(A))
as f(CL(A)) is closed .
f(CL(A)) < CL(f(A)) by theorem 2.1.6. Hence CL(f(4)) = f(CL(4)).

CL(f(A)) is compact . So f(A) is relatively compact .
Definition 4.4 :

A convergence space (X , P) is said to be locally compact if each
convergent filter contains a compact set .[25]
Lemma 4.1 :

Let G be a filter on the set X , and let {F,: <€ A} denote the family
of all ultrafilters finer than G . For each e A, choose FeF, . Then there is
a finite subset {4, ... ... ,X,}of Asuchthat U {F;:i =1,....,n} € G.[25]
Proof:

If the assertion were false then the collection of all sets of the from
H\ (U{F:i=1,...,n}), for HeG, would constitute a filterbase § with
the property that no ultrafilter containing B could be finer than G , which is
a contradiction .

Theorem 4.11:

A convergence space (X, P) is locally compact if and only if each
convergent ultrafilter contains a compact set.[25]
Proof :

Suppose that each convergent ultrafilter contains a compact
subset, and let G be any filter converging to x in X, Let {F,: xe A} be

the family of all ultrafilters finer than G. For each ultrafilterF, , choose
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a compact subset F,. By lemma 4.1 , G contains a compact subset .
Thus, X is locally compact.
Theorem 4.12:

(Tychonoff) The product [J(X;, g;) is compact if and only if each
(X;, q;) is compact.[1].

Proof :

Let X, q) =JIX;, q;). X; = P,;(X)and P,; is continuous for
eachi.Hence, from compactness of (X, q) , follows the compactness of
each (X;, q;);e - Let U be an ultrafilter on X .P,;(U) is an ultrafilter for
eachi. Hence , by hypothesis it converges , so U converges in X .

Hence, (X, q) is compact.
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Chapter Five

Connectedness in Convergence Spaces
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Chapter Five
Connectedness in Convergence Spaces

Connectedness is a topological property for which the definition may
be extended to convergence spaces . It is known that a topological space is
connected if and only if each continuous function from the space onto a
discrete space is constant .

Definition5.1 :

A convergence space (X , q) is connected if the only continuous
functions from (X , ) onto a discrete topological space are constant
functions.[5]

For subsets of a convergence space , connectedness is defined in a
manner analogous to the topological definition . In this section we denote
the discrete topological space by (T, d) .

Definition 5.2:

If (X, g) is a convergence space and A € X . Then A is a ¢-
connected subset of X if (A, ga) IS a connected convergence space.[5]
TheoremS5.1 :

Let (X, g) and (X, P) be convergence spaces with P > q . If (X, P)
iIs connected , then (X , q) is connected . Furthermore , if A is a
P-connected subset of X, then A is a g-connected subset of X . [5]

Proof :-

To prove the first assertion , assume that f : (X, q) =(T , d) is a

continuous function , then f : (X , P) = (T , d) is continuous by

theorem 2.1.2 and P > ¢ . Hence f is constant as (X , P) is connected .
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This means that (X, q) is a connected convergence space .
The second assertion follows , because P5 = qa Whenever P > q .
TheoremS5.2:

Let (X, g) be a convergence space . Then , the following statements

are equivalent :
a) (X, Q) is connected .
b) (X, I1(q))) is connected .
c) (X, q) is connected .[5]
Proof -

(a) is equivalent (c) Since a function f: (X, q) =(T, d) is continuous
if and only if f: (X, q) =(T , d) is continuous , we get that (X , q) is
connected if and only if (X, qy) is connected . Since q; < I1(q) < q we get
by theorem 5.1 that (b) is equivalent to (c) . Hence , (a) , (b) and (c) are
equivalent statements .

The next theorem shows that the continuous image of a connected set is
connected .
TheoremS.3:

Letf: (X, P)—(Y,q) be acontinuous mapping from the connected
convergence space (X , P) onto the convergence space (Y , q) . Then ,
(Y, q) is connected .

Proof :

Let h : (Y , g — (T , d) be a continuous map, then

(hof): (X, P)—(T,d)is continuous , and since f is onto we get that h is

a constant function . Hence , (Y, q) is connected .
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Definition 5.3:

Two nonempty and proper subsets A and B of X are separated in

(X,q)if CLLA)NB=ANnCL(B) = @.[10]

Theorem 5.4 :

Let (X, q) be a convergence space . Then , the following are equivalent :
a) (X, Q) isconnected .
b) There is no proper subset of X that is both g-open and g-closed .
c) X cannot be represented as the union of two disjoint g-open sets .
d) X cannot be represented as the union of two disjoint g-closed sets .
e) X cannot be represented as the union of two separated sets .[10]

Proof :-

Follows by theorem 5.2 and theorems from topology .

TheoremS.5 :

Let (X , q) be a convergence space and A € X , then A is
g-connected if and only if A can not be written as the union of two
separated sets in X, each of which has a nonempty intersection with A.[14]
Proof :-

Assume that A is g-connected and A = D U B where An D # ¢ and
AnNB# @andCL,(D)NB=DNCL,(B)= 0.
CLy,(D)NB=DnNCL,,(B) = @ bytheorem2.2.3.

But B and D are complementary sets relative to A . Hence ,

CLga(D) €D and CLyu(B) S B . Hence D and B are ga-closed and

ga-open which is a contradiction as A is g-connected if and only if (A, qa)



78
is connected if and only if there is no proper subsets of A that is both
ga-open and ga-closed by theorem 5.4 .

Conversely , assume that A is not g-connected . Hence there is a
nonempty proper subset B of A which is ga-open and qa-closed by
theorem 5.4 and definition 5.2 . Hence , CLy (B)=B and
CLga(A\B)=A\B . Thus CL,(B) N (A\B) =CL,(A\B) nB = 0.
Hence , B and A\B are separated sets in X each of which has a nonempty
intersection with A which is a contradiction of the assumption .Therefore ,
A is a g-connected .

TheoremS.6:

Let A be a g-connected subset of X and B € X such that

Ac B c CLy(A). Then, B is g-connected .[14]
Proof:
Assume that A € B  Cl,(A) and that A is g-connected .

If B is not g-connected then there is a discrete space (T , d) and a
function f from B onto T which is continuous with respect to gg and d and
which is not constant .

Let f, Dbe the restricion of f to A , then

fa: (A, q4) = (f(A) ,ds(a)) is continuous . The function f, is constant
because A is g-connected and (f(A),dr)) is a discrete space . Let
f(4) ={s}.

The function f is not constant , so there isa b € B such that f(b) # s .

The point b € Cl,(A) ; therefore , there is Feq(b) such that AeF .



79
Let B={BNF:FeF}. The collection B is a filterbase because
A e F andA € B . The filter generated by B on X = F . Hence , the filter
generated by B on B, gg-convergesto b .
Let H denote the filter generated by B on B .
f(#H) =|s] as the set Ae X . But Hqp -converges to b and
f(b) #s and the topology d is discrete , therefore f(H) does not
converge to f(b) .
This contradicts the continuity of f . Therefore , B is g-connected .
TheoremS.7 :
Let (X, q) be a convergence space and A € X . Then,
a) If Ais g-connected then A is gs-connected .
b) If t(ga) = [gia and A is g; —connected then A is g-connected .[5]
Proof:
a) Since g = g,we get by theorem 5.1 that if A is g-connected , then A
IS gq;-connected .
b) If [q:]a = t(ga) and A is g,-connected then (A, [g.]) IS connected ,
Hence (A, t(ga)) is connected . Therefore , (A, qa) IS connected by
theorem 5.2. Consequently , A is g-connected by definition 5.2
Theorem 5.8:

Let (X , q) be a convergence space and A € X . Then if A is
g-connected , then CL,4, (A) is g-connected .
Proof:

If A is g-connected then A is g,-connected by theorem 5.1 which

implies that CL,4, (A) is q.-connected by theorem 5.6 and since CL,, (A) is
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closed we have CL4 (A) is g-connected by theorem 5.7 (b) and
theorems 2.2.7,2.2.8 .
The following example and theorem 5.1 show that in general the set of
connected subsets of a convergence space may be strictly subset of the set
of connected subsets of its topological modification space .
we can have A c B c CL, (A) and A is g-connected but B is not g-
connected .
ExampleS.1:

Let X={x, :neZ} and q be the pretopology with neighbourhood

filters defined as follows : for eachn e Z, U,(x,) is the filter generated by
{xn1, %0, Xnea} [O]

1. The topology g, is indiscrete .
Proof:

Let A be a nonempty g-open subset of X such that A # X . Then
there exist ieZ such that x;eA and x;_; or xj..€ X \ A . But A is g-open then
AeF ,VF = U(x;) . This implies that {xi; , xi, xi+1 } S A which is a
contradiction as xj; or xj;; € X\A . Hence , A cannot be g-open .
Therefore , g, is indiscrete topology .

2. Let A = { x, : nis an even integer} . Then , ga is the discrete

topology on A
Proof:

Let xj € A then F € q4(x;) if and only if [F]x € q(x;) .



81
Since A, {xi.1 ,xi, xi+1} € [F]xwe have ,
AN {xi1, xi , xi.1}={x; } € [F]x and this means [F]x = [x;] on X .
Hence F=[x;] on A . Hence (A, ga) is the discrete topology .
3. t(ga) = ga since ga is the discrete topology on A . The topology
[g:]a 1s the indiscrete topology on A . So [g;]a < t(ga) and
(A, [gda) is connected but (A, t(ga)) is not connected . Hence , A is
gr-connected subset of X but not a g-connected subset of X.

4. If B € A where B is the set containing One element . Then B is

g-connected also CL4, (B) = X is g-connected by theorem 5.8 and

since q, is an indiscrete topology . But B c A ¢ X = Cl,,(B) . But

A is not g-connected .
TheoremS5.9 :

If H and K are separated in the convergence space (X, g) and Eisa
g-connected subsets of HUK .then , EC HorEC K .
Proof:

Assume that EC HUK and E £ H and E € K then E N H and
E N K are separated in (X, Q) .

Since CL(ENH)N(ENK) €SCL(E)NCL;(H)NENK = Q.
And (ENH)NCL(ENK)S (ENH)NCL(E)NCLy(K)=0asH, K
are separated .

But (ENH)U (ENK)=Eso E is not g-connected by theorem 5.5

which is a contradiction as E is g-connected . Hence ,E C HorE € K .
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TheoremS5.10 :

Let {C. : < €A} be a family of connected subsets of the convergence
space (X , q) . If for every ,Be A, C.,NCg # @ , then Ug Cy IS
g-connected .

Proof:
Follows by theorem5.5 and 5.9 .
Definition 5.4:

A set K is a g-component of the convergence space (X, q) if K is a
maximal g-connected subset of X .[5]

Since the union of two non-disjoint g-connected sets must be
g-connected it follows that each element of X is in one and only one of g-
component .

Hence , the g-components of X form a partition of X . This is also
true of the g--components of X .

The following theorem shows that these two partitions are identical .
TheoremS5.11 :

Let (X, q) be a convergence space , x eX and let C denote the
gi-component containing x and let K denote the g-component containing x,
then C =K .[5]

Proof:

The set K is g-connected and hence by theorem 5.1 , K is
gi-connected . Thus, K € C .

The set C is gi-closed and hence it is g-closed and C is gi-connected.

Therefore , by theorem 5.7 (b) C is g-connected . Thus CS K .
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Hence K=C.

Note that from theorem 5.11 we can conclude that g-components are
g-closed .
Theorem5.12 :

If X'is finite and (X, q) is weakly regular and if there exists a proper
subset A of X which is g-closed , then (X, q) is disconnected .
Proof:

By the proof of part C of theorem 3.2.11 we get that A is g-open .
Hence by theorem 5.4 (b) , (X, q) is disconnected .
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Chapter Six
The Cluster Set of Functions in Convergence

Spaces
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Chapter Six

The Cluster Set of Functions in Convergence Spaces

Let X and Y be topological spaces and f be a map from the space X
into the space Y , then the cluster set of f at xeX , denoted ¢(f;x) , is
defined in [13] as yef(f; x) if there exists a filter F on X such that F
converges to x and f(F) convergestoy .

In this chapter we generate the above definition into convergence spaces .
Definition 6.1:

Let f: (X,P) = (Y,q) be a map from a convergence space (X , P)
into a convergence space (Y , q) . A point yeY is an element of the cluster
set ¢(f;x) of fat x if there exists a filter FeF (X) such that FeP(x) and
fF)eqy).

It is clear that £(f;x) # @ ([x]eP(x)and f([x]) = [f(x)]e q(f (x)), so
fx) et(f;x)) .

Let £*(f; x) be the cluster set of f at x when P and q are replaced by
the associated topologies P; , q; respectively . Then , it is clear that
2(f;x) € €°(f;x). It is proved in [13] that £*(f; x) is a closed subset of
(Y, qo) . Also it’s known that q and q; have the same closed sets , then
£*(f; x) isag-closed setin 'Y .

Theorem 6.1:
Let f: (X,P) = (Y,q) be amap from a convergence space (X, P)

into a convergence space (Y, q) . Then the following are equivalent :

a) yef(f;x).
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b) 3 a filter Ge F(Y) such that Geq(y) and xea(f~1(§))
provided f~1(G) exists .

Proof :
a implies b: Let yef(f;x) then IF e F(X) such that FeP(x)
and f(F) € q(y). Let G = f(F), clearly f~1(G) < F and exists .
Since FeP(x) , we get x € a(f~1(g)) .
b implies a: Let x € a(f~(G)) then 3F e P(x) such that F = f~1(G) .
Itis clear that f(F) = Gand f(F) e q(y) . Hence , y € £(f; x) .
Theorem 6.2:

Let f: (X,P) - (Y,q) be a map from a convergence space X into
the convergence space Y . If ye?(f;x) , then 3F € F(X) such that
Fe P(x)and y € Nper CLq(f(F)) :

Proof:

Let yef(f;x) then 3IFeF(X) such that FeP(x) and
f(F)eq(y).Clearlyye CLq(f(F)) ,VFeF . Thus, y € Ngr CLq(f(F))
Theorem 6.3:

Let f: (X,P) — (Y,q) be a map from a convergence space (X , P)
into a pretopological space (Y , q) .Then the following are equivalent :

a) yet(f;x).

b) 3 a filter GeF(Y) such that Geq(y) and xea(f 1(Q)

provided f~1(G) exists .

c) 3 afilter Fe F(X) such that Fe P(x) and y € Nper CL,(f(F)) .

Proof:

a implies b follows by theorem 6.1.
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b implies c follows by theorem 6.1 and 6.2 .
¢ implies a given y e CL,(f(F)), VFeF , for some filter F € P(x) . This
implies that VFeF , 3 a filter G € F(Y) such that Gz € q(y) and f(F) € Gg.
Let H = Aper GF
Let i = H Vv f(F) then it is clear that  is well defined and f~1 (%K) too .
LetM = F vV f~1(X) then it is clear that M is well defined and f(M) > K.

Now since (X, q) is a pretopological then He q(y) . Thus Ke q(y)
and f(M)eq(y)asf(M) = X .
MeP(x)as M = F and F € P(x). Hence , yef(f; x).
Theorem 6.4:

Let f: (X,P) = (Y,q) be a continuous map from a convergence
space (X, P) into a Hausdorff space (Y, q) , then £(f; x) is a singleton .
Proof :

Let y € £(f; x) such that f(x) # y . Then 3FeP(x) such that
f(F) e q(y) . Since f is continuous , f(F) € q(f(x)).

q(y) N q(f(x)) # @ which is a contradiction as g is Hausdorff.
Therefore, f(x) = y.
Theorem 6.5:

Let f:(X,P) - (Y,q) be a 1-1 map from a convergence space
(X, P) into a compact pretopological convergence space (Y , q) . If 2(f; x)

is singleton , then f is continuous at x .
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Proof:
Suppose ¢(f;x) = {f(x)}. Let FeP(x) . We have to prove that
f(F)eq(x). Since q is a pretopological structure , it is sufficient show
that f(F) = U, (F(x)) .

Let ueU,(f(x)) , we have to show that IF e F such that
f(F)Yn(Y|u) =@ .Assume that f(F) n (Y|u) + @,VFe F.
Let G be a filter on Y generated by {f(F) n (Y|u): Fe F}.

Since (Y, q) is compact , a(§) # @ . Lety € a,(G) , then 3 a filter
Heq(y)suchthat H = G .
But # =U,(y) . Thus Gnv# @ , YVveU,(y) and VGe G . Claim

y#f(x).

Suppose y = f(x) , this means that (f(F)nY|luNnu=0eH
which is impossible . Thus , y # f(x) .
SinceH =G = f(F),then f~1(H)>Fasfisl-1.

This implies that f~1(#) € P(x) . Since f(f~1(H)) = H we have
F(f7Y(H)) € q(y) . Hence , yef(f; x) which is a contradiction .
Thus £ (F) € q(f (x)) .Therefore , f is continuous .
Corollary 6.1:

Let f:(X,P) - (Y,q) be a 1-1 map from a convergence space
(X, P) into a compact Hausdorff pretopological convergence space (Y , Q) .
Then, f is continuous if and only if (f; x) is singleton .
Proof :

Follows by theorem 6.4 and 6.5 .
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