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On The Theory of Convergence Spaces 

By 

Raed Juma Hassan Shqair 
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Dr. Mohammad Abu Eideh 

 

Abstract 

In this thesis we investigate some information about convergence space 

concepts such as closure and interior of sets , open sets, closed set, cluster  

point of a filter , closed adherences of convergence spaces , separation 

axioms, continuity, homeomorphism, compactness, connectedness spaces 

and obtain some results about the aforesaid concepts and provide basic 

ideas of convergence theory, which would enable One to tackle 

convergence -theoretic without much effort . In this thesis some results on 

the cluster set of functions in convergence spaces are obtained. 
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Historical Remarks and Introduction 
The study of topological spaces as a formal subject goes back to Hausdorff 

(1914)[26] and Kuratowski (1922) [27]. There were, of course, several 

motivations for the introduction and study of general topological spaces 

and one of the main reasons for doing so was to provide a setting for the 

investigation of convergence. 

However, the concept of convergence in topological spaces is not general 

enough to cover all interesting cases in analysis, probability theory, etc. In 

particular, the following is an example of ‘non-topological’ convergence: 

The measure theoretic concept of convergence almost everywhere is well 

known to be non-topological. Since topological spaces are inadequate for 

the investigation of certain interesting limit operations, the idea of using the 

concept of convergence itself as a primitive term arises naturally. As a 

matter of fact, even before Hausdorff’s 1914 work , in 1906 [28]  Frechet  

took the notion of the limit of a sequence as a primitive term and he 

explored the consequences of a certain set of axioms involving limits. 

Later, in 1926, Urysohn [29]  considered more appropriate axioms for 

limits of sequences. 

But for the study of convergence to reach maturity, the concept of filter 

was needed, which Cartan [30] provided in 1937. 

In 1948, Choquet [4] presented his theory of ‘structures pseudotopologiques’ 

and ‘structures pretopologiques’ in which the concept of convergence of a 

filter is axiomatized. In 1954, Kowalsky [11]  introduced his ‘Limesraume’ 

which involve also an axiomatization of the concept of convergence of a 



IX 

 
 

filter, but Kowalsky’s axioms are both simpler and less restrictive than 

those of Choquet. Kowalsky, as an example, showed  how convergence 

almost everywhere is precisely the convergence in a certain Limesraüm. 

In 1959, Fischer [1]  took up the study of Limesraume, but apparently 

without knowing about Kowalsky’s paper. In his work, Fischer used 

category-theoretical methods and he took a special interest in applications 

to analysis. In 1965, Cook and Fischer [31] pushed Limesraume further 

into analysis by proving an Ascoli theorem for convergence spaces and 

they showed how Hahn’s continuous convergence is always given by a 

convergence structure (i.e. structure of a Limesraum) although it is in 

general not given by a topology. In 1964, 

Kent [32] considered an even more general class of convergence spaces by 

having axioms weaker than those of  his predecessors.  

The basic convergence theory was developed by H.R.Fisher[1] (Zurich) in 

1959 introduced a convergence concept for filters, in which he associated 

with each element of a set X, a definite set of filters in X  which has to 

satisfy two conditions of purely algebraic nature . 

A convergence space is a generalization of a topological space based on the 

concept of convergence of filters  as fundamental . 

However there are convergence spaces which are not topologies as we 

mentioned earlier. Many topological concepts were easily generated in to 

convergence spaces. 

In this thesis we investigate information about convergence space concepts 

such as closure and interior of sets , open sets, closed set, cluster point of a 
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filter , closed adherences of filter, the cluster set of functions in 

convergence spaces , separation axioms, continuity, homeomorphism, 

compactness, connectedness spaces and obtain some results about the 

aforesaid concepts and provide basic ideas of convergence theory, which 

would enable One to tackle convergence -theoretic without much effort. 

The dissertation starts with a review in chapter 0 , of the basic concepts of 

the theory of filters and filter basis , which are needed in the later chapters. 

In chapter 1 , convergence spaces and the topological modification of the 

convergence structure are introduced. Also the concepts of interior , closure 

operators , the adherence of a filter , and the closed adherences of a 

convergence spaces are studied. 

Continuity of functions on convergence spaces and subspaces are 

introduced in chapter2.  

In chapter 3 ; separation axioms in convergence spaces such as T1 ,T2 , 

Hausdorff , minimal Hausdorff ,  regular , strongly regular , weakly regular, 

Π-regular , t-regular convergence spaces are discussed . 

Compact, relatively compact and locally compact convergence spaces are 

introduced in chapter 4. 

In chapter 5; connected convergence spaces and their properties are 

introduced .  

Finally in chapter 6 some results on the cluster set of functions in 

convergence spaces are obtained . 
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Chapter Zero  
Filter and Filter Basis 

This preparatory chapter is devoted for preliminaries and 

terminological conventions which are used in the subsequent  chapters . 

In order to make the dissertation self contained , we give brief 

exposition of the parts of the theory of filters .
 

Definition 0.1 : 

Let X be a nonempty set , and 𝒫(X) be the power set of X . A 

nonempty family  of subsets of X is called a filter , if and only if  

a)    , where   is the empty set . 

b) If                 . 

c) If                         𝒫( )        . 

Let F(X) be the set of all filters in X .It is a partially ordered set with 

respect to the order relation "≤" defined as follows   ≤   means that      . 

By this definition ,   ≤   , if and only if for each G ∊   , there exists 

some F ∊    such that F   G. If   ≤   we say that   is finer than   or   is 

coarser than  . 

One can arrive at filters by another method. 

Definition 0.2:  

A filter base   on X is a non empty family of subsets of X satisfying the 

following conditions ; 

a)    , and  

b) If A,B                               

The class of all supersets of sets in a filter base is a filter in X. 
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Each nonempty subset A of  X defines a filter base {A} in X . Let 

[A] denote the filter generated by this base i.e [A] = {F  X :A  F}.In 

particular if A= {x}, then [{x}] is an ultrafilter in X , denote this filter by 

[𝑥].  

 Let {  i :i ∊I} be a family of filters in X. Then 
Ii

inf   i or 
Ii
   i 

always exists and it is generated by {
Ii

 Fi :Fi∊   i}. 

 The 
Ii

sup  i  or 
Ii
   i exists , if and only if whenever each finite 

family from  {   i : i ∊I} possesses  an upper bound . Then 
Ii
   i is 

generated by {


n

i 1

Fi  : Fi ∊   i }.  

 Now let A   X ,  ∊ F(X) . then we say that   has a trace on A if for 

each F ∊    , F ∩ A ≠  . Denote  A ={ F ∩ A  : F ∊  }. It is clear that  A 

is a filter in A . 

 Let   be a filter in A . Then   generates a filter [ ]X in X i.e          

[ ]X = {F   X : G   F for some G ∊   }. 

Images of Filters Under Mappings  

 Let X and Y be two nonempty sets and   a mapping from X to Y . 

Let  ∊ F(X). Then {  (F) : F ∊   } is a filter base in Y , which generates a 

filter  (  ) called the image of    under   . Let   ∊ F(Y) , then                      

{  -1
(G) : G ∊  } is a filter base in X if and only if  -1

(G) ≠  , ⩝ G ∊ .  

 We also have  ([𝑥]) = [ (𝑥)]. Furthermore , for   ≤   ,   ( ) ≤  ( ) , 

where  ,   ∊ F(X). 
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Ultrafilters 
Definition 0.3: 
 Let X ≠  . The maximal elements of  F(X) are called ultrafilters in 

X .  That is, a filter  ∊F(X) is an ultrafilter if and only if there is no filter 

 ∊ F(X) such that   ˃  . The filter [𝑥] is an ultrafilter . 

Theorem0.1 : 

A filter   on X is an ultrafilter if and only if for each    , either 

     or X\E    . 

Theorem 0.2 :   

Every filter  ∊ F(X) is contained in some ultrafilter in X.  

Theorem 0.3:  

if   is an ultrafilter on X and        , then either       or      . 

Theorem 0.4 :  

If   maps X into Y and   is an ultrafilter in X , then   ( ) is an 

ultrafilter inY. 

Definition 0.4:  

Two filters are said to be disjoint if they contain disjoint sets. 

Theorem 0.5 :-  

 let U( ) be the set of ultrafilters on a set X that are finer than the 

filter  , then       ( )   . 

Definition 0.5:  

 let    ( )        ( )  then the product filter     is the filter on 

    based on *           +. Moreover , if  i∊F(Xi) then        

denotes the Tychonoff product of the filters    , i.e , the filter based on 

{           for all      ,      for only finitely many     +. 

  

http://en.wikipedia.org/wiki/Subset#The_symbols_.E2.8A.82_and_.E2.8A.83
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Chapter One  

Convergence Spaces 
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Chapter One  

1.1 Convergence Structure: 

Since the topological structure on a topological space is determined 

by the data of the convergence of filters on the space , the convergence 

structure has been introduced to generalize the topological structure ([1]) . 

For a set X , let 𝒫(X) and F(X) denote the power set of X and the set 

of all filters on X , respectively . 

Definition 1.1.1: 

For a set X , a map P : X → 𝒫 (F(X)) is called a convergence 

structure on X if it satisfies the following conditions :  

1. For any 𝑥 X , [𝑥]  P(𝑥) , where [𝑥] denotes the principal filter generated 

by {𝑥} . 

2. If     P(𝑥) , then for any   ∊ F(X) , if      then      (𝑥) . 

3. If         (𝑥) , then        (𝑥) . 

If P is a convergence structure on X , then (X,P) is called a convergence 

space  .If      (𝑥) , then we say that   converges to 𝑥 in X. ([2]) 

 Notice that axiom (3) , along with the principal of mathematical 

induction , actually tells us that any finite intersection of elements from 

P(𝑥) is a gain an element of P(𝑥) .  

Theorem : 1.1.1: 

Every topological structure t on X yields a convergence structure Pt 

on X . [1]. 

 

 



7 

 
 

Proof:- 

Define Pt as :  ⩝𝑥 ∊ X ,   ∊ Pt(𝑥) if and only if   ≥ N(𝑥) , where N(𝑥) 

is the neighbourhood filter of 𝑥 in X. 

1) [𝑥] ∊ Pt(𝑥) as [𝑥] ≥ N(𝑥) ⩝𝑥 ∊ X. 

2) If   ∊ Pt(𝑥) and   ≥   , then   ≥  ≥ N(𝑥).Hence   ≥ N(𝑥) .Thus          

  ∊ Pt(𝑥). 

3) If  ,    ∊ Pt(𝑥) , then   ,    ≥ N(𝑥) .Thus     ≥ N(𝑥) .     ∊ Pt(𝑥). 

Hence Pt is a convergence structure . 

The convergence structure Pt in the above theorem is called the natural 

convergence structure of the given topology t . 

Definition 1.1.2 : 

A convergence structure is called topological if the convergence 

structure is the natural convergence structure of a topology .i.e it is 

produced from a topology and this means if the convergent filters are 

precisely those of a topology ([3]) .  

For any non empty set X  a convergence structure Pα may be defined 

on X as Pα (𝑥) = {[𝑥]} for each 𝑥   X . This convergence structure is called 

the discrete topology on X . 

Another  way of defining a convergence structure on X is to let P be 

characterized by each filter on X converges to each  𝑥   X and this  

convergence is called the indiscrete topology for X .  

Note that the above two examples are natural convergence structures 

produced from  the discrete and indiscrete topologies . 
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Now for each convergence space (X , P) we can construct a 

topological convergence space (X , Pt) on X to do that we need the 

following definition.  

Definition 1.1.3 : 

let (X , P) be a convergence space . A subset A of  X is called P-open 

if 𝑥   A implies that A     for each     P(𝑥). ([1]) . 

Theorem 1.1.2 :  

let (X , P) be a convergence space and let Mp be the set of all P-open 

sets in X , then Mp satisfies the axioms of open sets in topological spaces. 

([1]) . 

Proof :- 

1)       Mp trivially by logic . 

2)  X   Mp since X ∊   ,       P(𝑥) , for any 𝑥 ∊ X .  

3) Let A1 , A2   Mp and assume that A = A1 A2    , so let 𝑥  A then 

𝑥 A1 and 𝑥 A2 this implies A1 , A2     ,       P(𝑥) .  

Hence , A = A1 A2 ∊   ,       P(𝑥).  

4)  Let   be any subfamily of Mp , and let Ao  be the union of all A      

Let 𝑥   Ao , then there exists some A     such that 𝑥   A . 

But A     ,      P(𝑥) and A   Ao . Hence Ao∊    , 

      P(𝑥). 

This means that Ao   MP . 

Definition 1.1.4 : 

The topology MP in theorem 1.1.2 is called the topology associated 

with the given convergence structure P. 



9 

 
 

Theorem 1.1.3 : 

If P is the natural convergence structure of a topology t on a set X 

then Mp = t . 

Proof :- 

let A   and A   MP , then A   N(𝑥)   𝑥   A this means that A   t , 

i.e Mp   t . 

Let A    t and let 𝑥   A , then A   N(𝑥) . This means that                   

A     ,      P(𝑥) as    N(𝑥) .Then , A is P-open . Hence t   MP . 

From theorem 1.1.3 we get if (X , P) is a convergence space then MP 

is a topology on X and Pt is the natural convergence structure of  Mp . 

Definition 1.1.5 : 

let (X , P) be a convergence space and let Pt be the natural 

convergence structure of  MP , then Pt is called the topological modification 

of P .  

Definition1.1.6 :  

let (X , P) be a convergence space . For all 𝑥 X the filter              

 (𝑥) =   {   :    P(𝑥) } is called the neighbourhood filter of 𝑥 and its 

elements are the neighbourhoods of 𝑥 . [3]  

Definition 1.1.7 :  

A convergence space X is called Pretopological if  (𝑥) converges to 

𝑥 in X for every 𝑥 in X , i.e , if the neighbourhood filter of each point 

converges to this point . [3]  

One can associate to each convergence space (X , P) a Pretopological 

convergence space (X ,  (P)) in a natural way :  
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Define   converges to 𝑥 in  (P) if and only if     (𝑥) . 

 (P) is called the Pretopological modification of X . 

It is clear that , the neighbourhood filter of 𝑥 is the same in (X , P) 

and (X ,  (P)) . 

Note that a set A   X is open if and only if it is a neighbourhood of 

each of its points . Hence , A is P-open if and only if A is  (P)-open . 

It is clear that every natural convergence space is pretopological . 

The following is an example of a convergence space which is not a 

pretopological space and hence not a topological space . 

Example 1.1.1 : 

let X be an infinite set and let A be an infinite proper subset of X . 

Define P on X as follows : for 𝑥 in A ,   P-converges to 𝑥 if and only if    

  =[B] , where B is a finite subset of A and for 𝑥 in X\A ,    p-converges 

to 𝑥 if and only if   = [𝑥] . [5]  

Note that for each 𝑥   A ,  (𝑥) = [A] which does not converges to 𝑥  A. 

The following is an example of a pretopological space which is not   

a topological space . 

Example 1.1.2 :  

 let X={ xn : n   Z} , and P be the pretopology with neighbourhood 

filters defined as follows : for each n   ℤ ,  (xn) is the filter generated        

by { xn-1 , xn , xn+1}.[5]  

Note that the topological modification of  P is the indiscrete topology . 
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Definition 1.1.8 :  

Let P and   be any two convergence structures on X , we say that P 

is finer than    or that   is coarser than P . "In symbols P   " if             

P(𝑥)    (𝑥) ,  𝑥   X .[1]  

The order relation induced by   on the set of all natural convergence 

structures on X agrees with usual order of topologies associated . [1] 

Theorem 1.1.4 : 

Let (X , P) and (X ,  ) be two convergence spaces such that    P 

then Mq    MP . 

Proof : 

let A   Mq then A     ,     q(𝑥) ,  𝑥   A . Since P(𝑥)   q(𝑥) then  

A     ,      P(𝑥) ,  𝑥   A . Hence , A   Mp . 

Theorem1.1.5 : 

Let (X , P) and (X ,  ) be two natural convergence spaces.    P if 

and only if  Mq   MP . 

Proof : 

First direction holds by theorem 1.1.4.Conversely assume that Mq   MP . 

Let 𝑥   X then Nq(𝑥)    NP(𝑥) , So     P(𝑥) we get    NP(𝑥) as 

(X,P) is a topological convergence . But NP(𝑥)   Nq(𝑥) then    Nq(𝑥) . 

Hence ,    q(𝑥) , i.e  𝑥   X , P(𝑥)   q(𝑥) and this means that q   P . 

Definition1.1.9 : 

Let P be a convergence structure on X and let   be a filter on X , we 

define       = { 𝑥  X :    P(𝑥) } .[7] 
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Theorem1.1.6 : 

Let (X , P) and (X ,  ) be two convergence spaces . Then , the 

following are equivalent :- 

a) P   q . 

b)               , for every     F(X) . 

Proof :-  

     

 Assume that P   q then p(𝑥)   q(𝑥) ,  𝑥  X . Let 𝑥        then   P(𝑥). 

This implies that     (𝑥)       𝑥       

      

Let    P(𝑥) then 𝑥                𝑥         Then     (𝑥) . So 

 𝑥  X, we have P(𝑥)   q(𝑥) .        q   P. 

Theorem1.1.7 : 

Let (X , P) be a convergence space . Then , P   Pt. 

Proof : 

Let 𝑥  X and   P(𝑥) . Since NPt(𝑥) is a filter generated by the set of 

all P-open sets which contains 𝑥 , we get NPt(𝑥)    . This means that 

   Pt(𝑥) , i.e P(𝑥)   Pt(𝑥) ,  𝑥   X . Hence P   Pt . 

Theorem1.1.8 : 

Let P and q be convergence structures on X such that P   q , then  

Pt   qt .[8] . 

Proof : 

Let P    q then Mp    Mq by theorem 1.1.4 but by theorem 1.1.5 and      

Mp  Mpt , Mq = Mqt we get Pt  qt. 
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Theorem 1.1.9 : 

Let (X , P) be a convergence space . The topological modification Pt 

of P is the finest topology that is coarser than P . 

Proof :- 

Assume that P   C where C is a topology on X then Pt   Ct but      

Ct = C by theorem 1.1.3 . 

Theorem 1. 1.7 tells us that P   Pt . Hence Pt is the finest topology 

that is coarser than P . 

Since a subset A of X is P-open if and only if A is  (P)-open we 

have MP =   ( ) and Pt   (P) . But  (P)   P so we get Pt   ( )   P . 

Result : 

We can have different convergence spaces which have the same 

open sets on the contrary of  topologies .  

Theorem 1.1.10 : 

Let (X , P) and (X , q) be convergence spaces . If q   P then  (q)   (P) . 

Proof : 

Let 𝑥 X and q   P. Then P(𝑥)   q(𝑥) . This implies that         

  (𝑥)    (𝑥). If      (𝑥) , then      (𝑥) .  

Hence  (P)(𝑥)    (q)(𝑥)  

Therefore ,  (q)    (P) . 

In fact , if we replace the condition 3 in definition 1.1.1 by if  ∊ P(𝑥) 

then  ∩[𝑥]∊P(𝑥) then we call P point deep convergence structure and 

hence the set of all point deep convergence structures on the set X and the 
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relation   is a complete lattice whose inf and sup are respectively  defined 

by :- 

1.       Pi(𝑥) if and only if      such that     Pi(𝑥) . 

2.          ( )  if and only if          Pi(𝑥) .[7] 

The smallest and the largest elements of the set of pont deep 

convergence structures on a set X are indiscrete topology and the discrete 

topology respectively . 

Theorem 1.1.11 : 

 The set of topologies on X is closed under supremum [9] .  

Proof :- 

 Let {ti : i  } be a family of topologies on X . The supremum of this 

family in the set of convergence spaces is defined by            ( )  if and 

only if        (𝑥) ,      . Hence    Nti(𝑥) for every  ∊   .  

 Define the family Ɓ(𝑥)={⋂       ⋃   (𝑥)  | |
 
     + which is 

a filter base on X and let N(𝑥) denote the filter generated by Ɓ(𝑥)    . It is 

clear that        (𝑥)    if and only if      (𝑥). 

 It remains to show that for every      (𝑥) there exists O   N(𝑥) such 

that      ( ) for every y     . 

 If      (𝑥) , then there exist i1 , i2 , …. in and            such that 

         
 
( ) and neighbourhood in     and ⋂     

         Let O = ⋂     
   . 

If       then               
 
( ) for every     *    +.  

Hence O = ⋂    
      ( ) . Since O    we get      ( ). 

Therefore    (𝑥)    is the natural convergence structure of a topology 

whose neighbourhoods are N(𝑥)    𝑥 X. 
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Theorem 1.1.12 : 

Every convergence structure is the infinimum of a set of topologies .[9]  

Since we have a convergence space which is not topological and by 

theorem 1.1.12 we get in general that the set of topologies on X is not 

closed under infinimum . 

Theorem1.1.13: 

 Let (X , P) be a pretopological space .      (𝑥) if and only if each 

ultrafilter finer than   converges to 𝑥 . [1] . 

Proof : 

 The conditions is obviously necessary . It is also sufficient because 

each filter   is the intersection of all ultrafilters finer than   . So if each 

such ultrafilter converges to 𝑥 , then so does   , as P is a pretopological 

structure .  

1.2  Interior and Closure Operators in Convergence Spaces. 

If P is a convergence structure on a set X, then we can define the 

closure and interior operators in the following manner .  

Definition 1.2.1 :  

Let (X , P) be a convergence space and A   X ,  then the closure of 

A     ( )  * 𝑥         (𝑥)         +  [10] 

Definition 1.2.2 :  

Let (X , P) be a convergence space ,    ,then the interior of A 

in   ( )  * 𝑥                      (𝑥)+ [10] . It is clear that  A is        

P-open if and only if int(A) = A . [10] 
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Note that we will write CL(A) for CLP(A) and so on for interior if 

there is no ambiguity . 

Theorem 1.2.1 : 

Let (X , P) be a convergence space . 𝑥     ( )  if and only if 

     (𝑥) and         for all        . [1]  

Proof : 

If 𝑥     ( ) then       (𝑥) and        . Hence          for all  ∊  . 

Conversely assume that        (𝑥)  such that         for all 

 ∊   then {         } is a filterbase generating a filter   . It is clear 

that       and      . Hence      (𝑥) therefore 𝑥 ∊   ( ) . 

Theorem 1.2.2 :  

Let (X , P) be a convergence space , the map A   CL(A) from 𝒫(X) 

into itself has the following properties : 

1)   ( )    . 

2)      ( ) . 

3)               ( )    ( ) . 

4)   (   )    ( )    ( )  

5)   (   )    ( )    ( )  

Proof : 

1) Trivial . 

2) Let 𝑥     then ,𝑥-    (𝑥)and     ,𝑥- and this means that 𝑥    ( ). 

Hence     ( )  

3) Suppose     and  𝑥 ∊   ( )  , then       (𝑥)  such that          

     . Since    ,      . Hence 𝑥 ∊   ( ) .  
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4)       and       by (3) we get   (   )    ( ) and 

  (   )    ( ) . Hence   (   )    ( )    ( )  

5)          , then    ( )   ( )     (   ) by (3) . Hence 

  ( )    ( )      (   )  

To prove the other inclusion , let 𝑥     (   )  , then       (𝑥) 

such that         . Since for each filter there exists an ultrafilter 

containing it , let ℋ be an ultrafilter such that ℋ ≥   and since P is 

convergence structure ℋ∊ P(𝑥) . Since ℋ is an ultrafilter , then either   ℋ 

or B   ℋ . Hence 𝑥   ( ) or 𝑥 ∊   ( ) .   (   )    ( )    ( ) 

Theorem 1.2.3 : 

Let (X , P) be a convergence space .Then 

1. X⧵CL(A) = int (X⧵A) . 

2. If     then int (A)   int (B) . 

3. int (A)   int (B) = int (   ) .[10] 

Proof : 

1) Let  𝑥       ( ) then 𝑥    ( )  so 𝑥       as     ( )  and 

      (𝑥) , we have     . Thus  ⧵           ∊  (𝑥) as [P is 

a convergence structure and each filter is the intersection of all 

ultrafilters finer than it and either A or       ultrafilters] . 

But    ultrafilters. Hence , 𝑥       (   )   

Thus ,     ( )     (   ) .  

Conversely let 𝑥       (   )  then 𝑥       and           , 

      (𝑥) . This means that there is no     (𝑥) such that       . 

Hence , 𝑥    ( ).Thus , 𝑥 ∊     ( ) .  
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Therefore ,     (   )      ( )   

2) If A      , then         . Then   (   )    (   )  by 

theorem 1.2.2 .  

Hence      (   )      (   ) . From which it follows that 

     (  (   ))     (  (   ))  by part(1) of this theorem . 

Thus , i   ( )      ( ) .  

3)     (     )        (  (   )) by part(1)  of this theorem.  

                            ((   )  (   ))

   (  (   )    (   ))                   

     (   )      (   )

    (  (   ))      (  (   ))  

     ( )      ( )   

Definition 1.2.3 :  

Let (X , P) be a convergence space , we say that A is P-closed or 

simply closed if A = CLp(A) .[1]  

Theorem 1.2.4 : 

Let (X , P) be a convergence space , A is closed if and only if X⧵A is 

open .[1]  

Proof: 

A is closed if and only if A = CL(A) if and only if  ⧵       ( )  

   (   ) if and only if X\A is open by theorem 1.2.3 

Theorem1.2.5 : 

Let (X , P) be a convergence space and     , then 𝑥    ( ) if and 

only if         for each      (𝑥) .  
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Proof : 

Let 𝑥     ( )  then        (𝑥)  and              by     

theorem1.2.1 . But     (𝑥) , therefore        for each                       

    (𝑥) .  

Conversely assume that       for each     (𝑥) and 𝑥    ( ) 

then      (𝑥) we have     . Hence      (𝑥) there exists a    such 

that          . Let   be the union of    ,      (𝑥) .  

Now      ,      (𝑥)  . Thus     (𝑥)  but       which is a 

contradiction . 

Corollary 1.2.1 : 

The convergence spaces (X , P) and (X ,  ( )) have the same 

closure operators .[3]  

Proof :  

Let         then , 𝑥 ∊    ( ) if and only if        for each 

     (𝑥) if and only if 𝑥     ( )( ) by theorems 1.2.5 and 1.2.1. 

The above corollary shows that two different convergence structures  

may have the same closure operators . While two topologies are identical 

when they have the same closed sets .  

Theorem1.2.6 : 

Let (X , P) and (X , q) be convergence spaces such that     , then 

for each        ( )      ( ) . In particular , each q-closed subset is 

P-closed . 
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Proof : 

Let 𝑥     ( )  , then by theorem 1.2.1      (𝑥)  such that             

       for all    . But      (𝑥) as  (𝑥)   (𝑥). Hence , 𝑥     ( ) 

by theorem 1.2.1 . If A is q-closed then      ( )     ( )  but 

     ( ) . Hence ,    ( )      Thus , A is P-closed . 

Theorem 1.2.7 : 

Let (X , P) be a convergence space and     (𝑥) for some 𝑥   , then 

𝑥    ( ) ,      . 

Proof : 

Follows by definition 1.2.1 . 

Theorem 1.2.8 : 

A convergence space (X , P) is topological if and only if    (X , P) is 

a pretopological space and the closure operator is idempotent.[3] . 

Proof : 

Let  (𝑥) be a neighbourhood filter of 𝑥 in (X , P) and let N(𝑥) be a 

neighbourhood filter of 𝑥 in (X , Pt) .  

The first direction is trivial . 

Conversely assume that (X , P) is a pretopological space where its 

closure operator is idempotent .  

Since Pt   P then  (𝑥)    (𝑥) . Hence  (𝑥)   (𝑥) . 

Let    (𝑥)  , then CL(CL(X\ )) = CL(X\ ) . This means that 

CL(X\ ) is closed . Therefore ,     (   ) = int ( ) is P-open .  
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Since 𝑥   int( )     we get that   ∊   (𝑥) . Hence   (𝑥)   N(𝑥) , 

 𝑥   . Thus , N(𝑥) =  (𝑥) ,  𝑥  . Since both (X,P) and (X,   )               

are pretopological spaces and  ( )    ( )   𝑥     they must coincide . 

conclusions : 

Theorem 1.2.8 shows that if we have  a pretopological space which 

is not topological then the closure operator is not idempotent . 

1. In general the closure  of  a  set in convergence space is not closed 

so that , CL(CL(A)) is usually larger than CL(A) .  

2. From Corollary 1.2.1 and theorem 1.2.8 the closure operator of a 

given convergence space P is idempotent if and only if the 

topological modification and the pretopology modifications are the 

same i.e Pt =  (P) . 

1.3 Adherence of a Filter in Convergence Spaces: 

Definition 1.3.1 : 

Let (X , P) be a convergence space . An element 𝑥   is said to be an 

adherent to the filter   if a filter   exists such that      and      (𝑥).[1] 

Definition 1.3.2 : 

Let (X , P) be a convergence space . The set of all points of X which 

are adherent to a filter   is called the adherence of   and denoted by 

  ( ) , or simply  ( ) if there is no ambiguity .[1] 

It follows from definition 1.3.1 that  ( )             . And if 

      then  ( )    ( ) , and if   is an ultrafilter , then  ( )        . 

Theorem 1.3.2 :  

Let (X , P) be a convergence space ,  and   be two filters on X then : 
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1)  ( )    ( )    (     )   

2) If      exists then  ( )    ( )    (     )  [1] 

Proof : 

1) Let 𝑥    ( )    ( ) , then either 𝑥   ( )  or 𝑥   ( ) . Assume 

without loss of generality that 𝑥 ∊  ( ), then   ℋ   ( ) such that 

  ℋ  and ℋ   (𝑥)   But           ℋ . Hence                

𝑥 ∊  (   ). 

2)           . Hence   (     )    ( )  and  (     )   

 ( )    Therefore  ( )    ( )    (     )   

Theorem 1.3.3 :  

Let (X , P) and (X , q) be two convergence spaces such that     , 

then       ( ) we have   ( )    ( ) .  

Proof :Let 𝑥     ( )  , then       ( )  such that       and 

     (𝑥) . Since  (𝑥)   (𝑥) , then we get that  ∊   (𝑥) . Hence 

𝑥 ∊    ( ) . 

Corollary 1.3.1 :  

Let (X , P) and (X , q) be convergence spaces and        , then 

for     ( ) , we have   ( )    ( )    ( ) .[1] 

Proof : 

Since C is the supremum convergence structures of P and q we get 

by theorem 1.3.3 that   ( )    ( ) and   ( )    ( ) .  

Hence   ( )    ( )    ( )       ( ) . 
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Definition 1.3.3 : 

A convergence space (X , P) is said to have closed adherences if for 

every filter   on X the adherence   ( ) is a closed subset of (X , P) .[12] 

Theorem 1.3.4 :  

If (X , P) is a convergence space with closed adherences then (X , P)  

has a closure operator which is idempotent . 

Proof : 

Let     . It is clear that   ( )    (, -) , where [A] is the filter 

generated by A . But since (X , P) with closed adherences we get that 

  ( ) is closed . Hence ,   (  ( ))     ( ) . 

The converse of theorem 1.3.4 is not true .Evalowen gave in [12] an 

example of convergence space with an idempotent closure operater but not 

with closed adherences . 

Definition1.3.4 : 

A convergence space (X , P) is said to be diagonal if for every  

𝑥            (𝑥) , for every mapping   from X into F(X) such that  ( ) 

converges to y for every       and for every      we have that the filter 

           (    ) converges to 𝑥 where  

 (    )       ( ).[11] 

Kowalski showed in [11] that each diagonal space has a closure 

operator which is idempotent . 

EvaLowen weakened the diagonal condition of Kowalsky and 

introduced weakly diagonal convergence spaces and showed that these are 

exactly the convergence spaces with closed adherences . 
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Definition 1.3.5 : 

A convergence space (X , P) is said to be weakly diagonal , if   𝑥    

 filter   converges to 𝑥 ,   mapping  from X into F(X) such that  ( ) 

converges to y      and      we have that 𝑥 is an adherence point of the 

filter  (    ) where  (    )         . [12]  

Note that every diagonal convergence space is weakly diagonal . 

Theorem 1.3.5 : 

A convergence space (X , P) has closed adherences if and only if it is 

weakly diagonal .[12]  

Proof : 

Suppose (X , P) has closed adherences . Let 𝑥 ∊ X ,     ( ) , 

    (𝑥) and   : X   F(X) a map such that       ( ) for every     . For 

    we have     ( (    )) since       implies     (    ) and thus 

  ∊  ( (    )) . It follows that   ( (    ))    . Since  converges to 𝑥 

we have 𝑥    . ( (    ))/ =  ( (    )) . 

Conversely suppose that (X , P) is weakly diagonal . Let   be a filter 

on X . If 𝑥     ( ( )) , then take a filter ℋ  (𝑥) and containing  ( ). 

For      ( ) let ℋ     ( ) and ℋ    . consider       ( ) ,  

   , -  if    ( )  and    ℋ  if    ( )  . Then we have                

    (    ( ))  and therefore 𝑥    ( ) . 

In general , adherences of filters in a convergence space are not 

closed. This is one of the essential differences between topological spaces 

and general convergence spaces . 
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Chapter Two  
2.1 Continuous Functions on Convergence Spaces 

Definition 2.1.1: 

Let (X , P) and (Y , q) be convergence spaces . A mapping            

f:(X , P)  (Y , q) is called continuous at a point 𝑥     if        (𝑥) the 

filter f( )   q( (𝑥)) . The mapping   is called continuous on X if it is 

continuous at each point of X .   is called a homeomorphism if it is 

bijective and both   and     are continuous .[3] 

Theorem 2.1.1: 

Let X be a set equipped with two convergence structures P and q . 

Then , P   q if and only if the identity mapping i : (X , P)  (X , q) is 

continuous . 

Proof : 

Suppose that P   q . Let 𝑥     and     (𝑥).Then i( ) =      (𝑥) 

because P(𝑥)   q(𝑥). Thus , i is continuous . 

Conversely if i is continuous then       (𝑥)  we have                    

i( ) =     (𝑥).  Thus , P(𝑥)   q(𝑥)  𝑥   . Hence , P   q .  

Remark 2.1.1:  

It is clear that if (X , t) and  (Y , S) are topological spaces , then       

  : (X , t)  (Y , S) is continuous at a point 𝑥     if and only if 

 : (X , Pt)  (Y, Ps) is continuous at 𝑥 . 
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Theorem 2.1.2:  

Let  :(X , P)  (Y , q) be continuous and let (X , P̀) and (Y , q ) be 

other convergence spaces such that P   P̀ and q    q , then                          

 : (X , P̀)   (  , q ) is also continuous .[1]  

Proof :  

Let 𝑥     and      ̀(𝑥) . Then      (𝑥) and   ( )   q( (𝑥)) as   is 

continuous from (X , P) to (Y , q). Since q    q ,  ( )   q  ( (x)) . Hence 

 : (X , P̀)   (  , q ) is continuous . 

Corollary 2.1.1:  

Let (X , P) be a convergence space . Then the following hold : 

1) The identity mapping i : (X , P)  (X , Pt) is continuous . It is a 

homeomorphism if and only if (X , P) is a topological space .  

2) The identity mapping i : (X , P)  (X ,  ( )) is continuous . It is a 

homeomorphism if and only if (X ,P) is a pretopological space . 

3) The identity mapping i :(X ,  ( ))  (X , Pt) is continuous . 

Proof : 

Since Pt   ( )   P , then the proof follows by Theorem 2.1.1. 

Theorem 2.1.3:  

Let (X , P) and  (Y , q) be convergence spaces such that the mapping 

 : (X , P)   (Y , q) is continuous , then  -1
(A) is a P-open subset of X if A 

is a q-open subset of Y . [1]  

Proof:- 

 Assume that A is q-open . If     ( ) =   , then the theorem is true . 

Let    ( )   , 𝑥      ( ) and let      (𝑥) . 
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Since   is continuous at 𝑥  , f ( )   q(f(𝑥)) . But f(𝑥)   A and A is q-

open this impiles that      ( ) .  

Thus ,       such that  (F)    . But F     ( ( ))     ( ). 

Thus ,    ( )    . Hence ,    ( ) is a P- open subset of X . 

Remark 2.1.2 

Let (X , P) be any convergence space which is not natural 

convergence space  and let i :(X , Pt)  (X , P) be the identity map . Then i 

is not continuous since Pt   P and by theorem 2.1.1 . But i
-1

(A)  is a         

Pt-open subset of  X if A is a P-open subset of  X . 

Remark 2.1.3:  

Remark 2.1.2 shows that the converse of theorem 2.1.3 is not true in 

general . But the converse of theorem 2.1.3 is true if   is taken between any 

two topological spaces . This is One of the essential differences between 

topological spaces and general convergence spaces. 

Corollary 2.1.2:  

Let (X , P) and  (Y , q) be convergence spaces . Then if the mapping 

f : (X , P)   (Y , q) is continuous , then f : (X , Pt)   (Y , qt) is continuous 

.[3]  

Proof: 

Follows by theorem 2.1.3 and Remark 2.1.1 . 
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Corollary 2.1.3:  

Let (X , P) and (Y , q) be convergence spaces .  

If   : (X , P)   (Y , q) is a homeomorphism mapping , then a subset 

A of X is P-open if and only if  (A) is q-open . In particular ,   is a 

topological homeomorphism mapping from   (X , Pt)      (Y , qt) . 

Proof: 

Follows by corollary 2.1.2 and theorem 2.1.3 . 

Theorem 2.1.4:  

Let (X , P) and (Y , q) be convergence spaces such that the mapping 

 : (X , P)   (Y , q) is continuous , then   ( (𝑥))   .  (𝑥)/  𝑥     . 

Proof : 

Let      ( (𝑥))  and      (𝑥)  . Since   is continuous , then 

  ( )   ( (𝑥)) . Thus ,     ( ) . This implies that    ( )    , because 

 ( )      for some   ∊   . Thus         ( )     ( )         (𝑥)  . 

Therefore ,    ( )     (𝑥)  . Since   (   ( ))     implies that                

   (  (𝑥)) . Hence   ( (𝑥))   .  (𝑥)/ . 

Corollary 2.1.4:  

Let (X , P) and  (Y , q) be convergence spaces . If the mapping          

f : (X , P)   (Y , q) is continuous , then  f : (X ,  ( ))  (Y ,  ( )) is 

continuous .[3]  

Proof: 
Let      ( )(𝑥) , then       (𝑥) so  ( )   .  (𝑥)/ .  

By theorem 2.1.4 , we get    ( (𝑥))    .  (𝑥)/    ( ).  
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Thus   ( )    ( ) ( (𝑥))  . Hence f : (X ,   ( ))  (Y ,  ( ) )  is 

continuous. 

The following remark shows that the converse of theorem 2.1.4 is 

not true in general .  

Remark 2.1.4: 

Let (X , P) be any convergence space which is not a pretopological 

space , then the identity mapping i : (X ,  ( ))   (X , P) is not continuous 

by theorem 2.1.1 . But   ( (𝑥)) =   .  ( )(𝑥)/ . 

Theorem 2.1.5: 

Let (X , P) and (Y , q) are pretopological spaces , then the converse 

of theorem 2.1.4 is true .[10]  

Proof : 

Let    (𝑥) , then       (𝑥) . 

Since       (𝑥) ,  ( )    (  (𝑥)) .  This implies that  

  ( (𝑥))     ( ) . Thus  ( )    ( (𝑥)). 

Hence  is continuous . 

Theorem 2.1.6 : 

Let (X , P) and  (Y , q) be convergence spaces such that                     

f : (X , P)   (Y , q) is continuous . Then ,   (  ( ))     ( ( )) for all 

    . [3] 

Proof : 

Let       (  ( ))  ,then  𝑥     ( )  such that y =  ( 𝑥 ) . Now 

𝑥     ( )  implies that        (𝑥)  such that A ∊    . So   ( )   ( ) . 

Since   is continuous  ( )   ( (𝑥)) . Thus , y  (𝑥)     ( ( )) .  
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Theorem 2.1.7 : 

Let (X , P) and (Y , q) be convergence spaces such that                       

f : (X , P)   (Y , q) is continuous. Then ,  (𝑥)     ( ( )) if 𝑥     ( ).[1]  

Proof : 

Let 𝑥     ( ) , then       ( ) such that     and      (𝑥) . 

Since   is continuous and  ( )   ( )  we have  ( )    ( (𝑥)) 

and  (𝑥)     ( ( )) .  

The following theorem shows that the composition of two 

continuous functions is continuous . 

Theorem2.1.8 : 

Let (X , P) , (Y , q) and (Z , C) be convergence spaces such that          

f : (X , P)   (Y , q) is continuous at 𝑥   and  : (Y , q)   (Z , C) is 

continuous at  (𝑥)   Y, then   o  : (X , P)  (Z , C) is continuous at 𝑥.[1] 

Proof :- 

Let 𝑥 ∊X and      (𝑥) then  ( )     ( (𝑥))  and  ( ( ))    . ( (𝑥))/ 

as   and   are continuous at 𝑥 and  (𝑥) , respectively .  

    ( o )( )   . ( (𝑥))/ . Hence , (  o ) is continuous at 𝑥 . 

2.2 Subspaces and Product Convergence Structure 

To construct subspaces and product convergence structures we need 

to introduce the concept of the initial convergence structure . 
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Let X be a set ,(      )   be a collection of convergence spaces and 

for each     ,   : X   Xi is a mapping . Define P : X  𝒫 (F(X)) by 

 ∊  (𝑥) if and only if    ( )    (  (𝑥))⩝i ∊ I . 

Claim : P is a convergence structure on X . 

Since   (,𝑥-)  ,  (𝑥)-     (  (𝑥))       , then ,𝑥-    (𝑥). 

If      (𝑥) and        then   ( )    ( )      .  

Since   ( )     (  (𝑥)) , then   ( )     (  (𝑥))     . Thus     (𝑥). 

If        (𝑥) then   ( )    ( )     (  (𝑥))      . 

 Since   ( )    ( )     (   ) , then    (   )     (  (𝑥))     . 

Thus        (𝑥) . Therefore ,   is a convergence structure on X . This 

convergence structure is called the Initial Convergence Structure. 

It is clear that   : (X , P)  (      ) is continuous      . 

 Let q be a convergence structure on X making all of the    

continuous . If     (𝑥) , then   ( )     (  (𝑥))       and this implies that 

   (𝑥) . That is ,  (𝑥)   (𝑥)   𝑥      Thus    q . Hence the Initial 

convergence structure    is the coarsest convergence structure on X making 

all of the    continuous . 

Note that if we find the Initial convergence structure on X with 

respect to  i ,      separately then the initial convergence structure on X 

with respect to (  )    is equal to the sup of the above convergence 

structures . 
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Theorem 2.2.1: 

Let (Y , q) be a topological space and let  : X    (Y , q) , then the 

initial convergence structure P on X with respect to   and q is a 

topology.[7] 

Proof : 

f : (X , P)    (Y , q) is continuous by definition of Initial 

convergence structure . f : (X , Pt)    (Y , qt) is continuous by         

corollary 2.1.2 . 

Since (Y , q) is a topological space we get (Y , q) = (Y , qt) . 

Since P is the initial convergence structure on X with respect to   

and q we get P   Pt . But Pt   P by theorem 1.1.6 . 

Hence P = Pt . That is , P is a topology . 

It is interesting to note that in the proof of theorem 2.2.1 we did not 

use any internal description of topologies . 

Corollary 2.2.1:  

Let fi : X    (Yi , qi) ,     and each (Yi , qi) is a topological space , 

then the initial convergence structure P with respect to fi and qi ,     is a 

topological convergence structure .  

Proof: 

Follows by theorem 2.2.1 and theorem 1.1.11 . 
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Definition 2.2.1 : 

Let (X , P) be a convergence space and     . The subspace 

convergence structure PA on A is the initial  convergence structure with 

respect to the inclusion mapping e : A  X .[3] 

Let      ( ) and 𝑥 ∊   . We say that   ∊ PA(𝑥) if and only if [ -X ∊ P(𝑥). 

Theorem 2.2.2 : 

Let (X , P) and (Y , q) be convergence spaces such that                       

f : (X , P)    (Y , q) is a continuous mapping . Let A   X . Then the 

restriction map f/A : (A ,PA)   (f(A) , qf(A) ) is continuous . [1]  

Proof : 

Let  𝑥     and       (𝑥)  . Then , [  - X     (𝑥)  and therefore       

[f/A( )]Y = f ([ ]X)    ( (𝑥)) and so f/A( )   ( )( (𝑥)) . Hence , f/A is 

continuous . 

Theorem 2.2.3: 

Let (X , q) be a convergence space and let      , then      

    ( )      ( )    for each B   A .[1] 

Proof : 

Let 𝑥       ( ) then       ( ) such that  ∊   and   ∊ qA(𝑥).  

Clearly [ ]X   q(x) and    [ ]X.  

Then 𝑥      ( ) . This implies that 𝑥      ( )    . 
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Conversely let 𝑥      ( )      then 𝑥   and       ( ) such that 

      and      (𝑥) .       so let  A={F A :F    } .  

 A     (𝑥) by definition 2.2.1 and        . Thus 𝑥 ∊     ( ). 

Theorem 2.2.4 : 

Let (X , P) and (Y , q)  be convergence spaces and (      )    be a 

family of convergence spaces such that q is the Initial Convergence 

Structure with respect to (fi :Y  (Yi , qi)) then f : (X , P)    (Y , q) is 

continuous if and only if for each       , fi o : (X , P)   (      ) is 

continuous .[3] 

Proof : 

If f is continuous , then (fi o ) is continuous       , as fi is continuous 

     and by theorem 2.1.8 the composition of two continuous functions is 

continuous .   

Conversely , assume that (fio ) is continuous      .               

Let       (𝑥) . Since (fio ) is continuous we get                                                        

(fio )(  )  =   ( ( ))     .  ( (𝑥))/            ( )   ( (𝑥))  by 

definition of initial convergence space . Hence   is continuous . 

Theorem2.2.5 : 

Let (X , P) be a convergence space which carries the initial 

convergence structure with respect to the convergence spaces (      )    

and the mappings (         )    . If all the    are pretopological structures 

then P is a pretopological structure .[3] 

Proof : 

Let id :(X ,  ( ))  (X , P) be the identity mapping . 
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     id =   : (X ,  ( ))   (      ) which is continuous for all     by 

corollary 2.1.4 and since all of the    are pretopological structures.  

   (   ( ))   (X , P) is continuous by theorem 2.2.4 . 

     ( ) by theorem 2.1.1 . But  ( )    . Hence ,  ( )    . 

Therefore P is a pretopological structure on X . 

From theorem 2.2.5 we get that any subspace of a pretopological 

space is a pretopology , and the sup of the pretopological structures on X is 

a pretopological structure on X . 

If (X , q) is a pretopology and (A , qA) be a subspace of (X , q) , then 

the neighbourhood of  𝑥     in (A , qA) is   (𝑥)|  {          (𝑥)}  

Theorem 2.2.6:  

Let (X , q) be a convergence space and     . Then                           

 (  )  , ( )-  i.e (A ,  (  )) is a subspace of (X ,  ( )) . [3] 

Proof: 

Let   (𝑥) denotes the neighbourhood filter of 𝑥 in (   (  )) and 

let  (𝑥)|  denotes the neighbourhood filter of 𝑥 in (A , , ( )- ) . 

It is sufficient to show that   (𝑥)    (𝑥)|   𝑥 ∊    . 

Since the inclusion mapping e : (A ,  (  ) )   (X ,  ( ) ) is 

continuous we get by theorem 2.2.2 that e : (A ,  (  ))    (A , , ( )- ) is 

continuous . 

, ( )-     (  ) by theorem 2.1.1 . Hence   (𝑥)   (𝑥)|  . 

Now if   ∊   (𝑥), then let the set        ( ⧵  ) . We show that 

    (𝑥) . 
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 Take any filter      (𝑥) . If   does not have a trace on A , then 

 ⧵       and so      . If   has a trace on A , the filter                          

 A *         +     (𝑥) and so      A , i.e there is a set      such that 

      . 

Then      and so      . Hence     (𝑥) , so        (𝑥)|  . 

But       .   (𝑥)   (𝑥)|  .  

Let (X , q) be a convergence space and A   . We denote the 

topological modification of    by t(  ) . 

Theorem 2.2.7 : 

Let (X , q) be a convergence space . Then for each A    ,        

t(  )  ,  -  .[5]  

Proof: 

Since the inclusion mapping e : (A , t(  ))    (X ,   ) is continuous 

we get by theorem 2.2.2 that e : (A , t(  ))   (A , ,  - ) is continuous. 

Thus ,  -    t(  ) by theorem 2.1.1 . 

Theorem2.2.8 : 

Let (X , q) be a convergence space . If A is q-closed then          

t(  )   ,  -  .[5]  

Proof: 

Let   be t(  )-closed , then   is   -closed .  

    
( )        ( )                                                    

      ( )        ( )     ( )      (   )     ( )         

as           ( ) and this means that   is q-closed . 
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       is  ,  - -closed and from theorem 1.1.5 we get         

,  -   (  ) . 

From theorems 2.2.7 and 2.2.8 it follows that , if A is q-closed subset 

of X then ,  -    (  ) . 

Example2.2.1 : 

Let X={xn :    } and q be the pretopology with neighbourhood 

filters defined as follows : for each       ,  q(xn) is the filter generated by 

{xn-1 , xn , xn+1} . The topology qt is indiscrete . 

Let A = {xn: n is an even integer}. Then    is the discrete topology on A.  

Hence  (  )      . But ,  -  is indiscrete topology on A . 

Theorem2.2.9 : 

Let f: (X , P)    (Y , q) be a map , where P is the initial convergence 

structure on X with respect to f . If (Y , q) is weakly diagonal convergence 

space , then (X , P) is weakly diagonal . 

Proof: 

Let  𝑥     and      (𝑥)  . Let       ( )  be a map such 

that    ( )    ( )  for all       . Let      . Want to show that                    

 𝑥 ∊  (     ( )) .  

 Since   is continuous , then   ( )    ( (𝑥)) . 

Define  ̀      ( ) as  

 ̀( ) {
 ( ( ))                      ( )

, -             ( )                         
} 

Since (Y , q) is weakly diagonal , then there exists a filter 

   ( (𝑥))                                                                                                    

such that       ( ̀  ( ))     ( )  ( )  ( ( ))    (     ( )) . 
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Let ℋ be the filter generated by the filter base {   ( )     +. Let 

Ϻ= ℋ  (     ( )), it is clear that Ϻ is well defined .  

Now  ( )    and hence  ( )   ( (𝑥)) . 

Since P is the initial convergence structure , then      (𝑥)  

But          ( ) . 𝑥    (     ( )) . Hence (X , P) is weakly 

diagonal convergence space .  

Corollary 2.2.2: 

Let f : (X , P)    (Y , q) be a map where P is the initial convergence 

structure with respect to f . If (Y , q) has closed adherences then (X , P) has 

closed adherences too . In particular any Subspace of a space with closed 

adherences has closed adherences . 

Proof: 

(Y , q) is weakly diagonal by theorem 1.3.5 . 

(X , P) is weakly diagonal by theorem 2.2.9 . 

(X , P) has closed adherences by theorem 1.3.5 . 

The particular case holds since any subspace is the initial 

convergence space with respect to the inclusion map . 

Definition2.2.2 : 

Let (  )    be a collection of convergence spaces and let        be 

the product set of the    . The product convergence structure on        is 

the initial convergence structure with respect to the projection mappings             

(  : (         )   ) and the resulting convergence space is called the 

(Tychonoff) product of the (  )    . [3]  
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A filter   converges to 𝑥 = (𝑥i)i∊I in        if and only if for each 

       ( ) converges to   (𝑥) in    . 

Theorem 2.2.10: 

Let(  )    be a family of convergence spaces . A filter   on        

converges to (𝑥i)i∊I = 𝑥          if and only if , for all     , there are filters 

   converging to 𝑥i in   , such that          . 

Here        denotes the Tychonoff product of the filters    , i.e , the 

filter based on {           for all      ,      for only finitely many 

    +  , - 

Proof: 

Clearly   (      )    for all     and so the product filter converges 

if all components filters do . On the other hand , if   converges to 𝑥 =(𝑥i)i∊I 

in the product convergence space , then         ( ) gives the reverse 

implication . 
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Chapter Three 

3.1 Separation Axioms in Convergence Spaces 

Definition 3.1.1 : 

let (X,P) be a convergence space and 𝑥 ,   ∊     T    , (X , P ) is called  

a)   if 𝑥   , then , -   (𝑥) , i.e lim , -= { }     . 

b) Hausdorff  (separated) if 𝑥    , then  (𝑥) ∩  ( ) =  . 

c)    if  (𝑥) and  ( ) are disjoint filters whenever 𝑥  .[5] 

d) compact if every ultrafilter on X converges in X . 

Theorem 3.1.1 : 

Let (X,P) be a convergence space . Then , 

a) P is    if and only if  (,𝑥-)= {𝑥} , 𝑥  . 

b) If P is Hausdorff and    (𝑥) , then  ( )   {𝑥}.[1]  

c) If P is Hausdorff , then P is    

d) If P is    , then P is Hausdorff . 

Proof : 

a) Assume that P is    then [𝑥] converges only to 𝑥 and since [𝑥] is an 

ultrafilter then  (,𝑥-)= lim [𝑥] = {𝑥} . 

Conversely , if  (,𝑥-) ={𝑥} , then ,𝑥-   ( )   if 𝑥   . Hence P is 

  . 

b) Let      (𝑥) then 𝑥     ( ) . Now assume that     𝑥 and       ( ) 

, then       ( ) such that   ≥   .  Hence ,      (𝑥) ∩  ( ) which 

contradicts our hypothesis . Hence  ( ) = {𝑥}. 

c) If P is Hausdorff , then  (,𝑥-)  *𝑥+ by part(b) . By part (a) P is   . 
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d) suppose (X , P) is    . Let 𝑥, ∊X such that 𝑥   . If 

     (𝑥) ∩   ( ) then   ≥  (𝑥)  and   ≥  ( )  . Hence  (𝑥)  and 

 ( ) are not disjoint filters which is a contradiction . Therefore , 

(X,P) is Hausdorff. 

The following  theorem shows that the definition of Hausdorff and    

T2 are equivalent in a pretopological convergence space . 

Theorem 3.1.2 : 

Let (X , P) be a pretopological space , then (X , P) is Hausdorff if 

and only if it is T2 space 

Proof:- 

Let (X , P) be Hausdorff and 𝑥,    X where 𝑥   . Suppose that 

 (𝑥) ,  ( )  are not disjoint filters , then   =  (𝑥)   ( )  exists and 

     (𝑥) ∩  ( ) since p is a pretopological structure . But this contradicts 

the assumption that P is Hausdorff . Hence , P is    . 

The converse follows by theorem 3.1.1 (d). 

Note , in general the definitions of Hausdorff and    are not equivalent . 

In topological spaces the axioms    and    agree with the separation 

axioms of Frechet and Hausdorff respectively. 

Theorem 3.1.3 : 

Let (X , P) be a convergence space . Then , P is    if and  only if {𝑥} 

is P-closed subset of  X ,  𝑥     . [3] 
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Proof :-  

Assume that P is    . Let     CL({x}) and   𝑥 , then       ( ) 

such  that {𝑥}     , and this implies that [𝑥] =   which contradicts the 

hypothesis , so CL({𝑥}) ={𝑥} . Hence {𝑥} is P-closed . 

Conversely , if {𝑥} is a P-closed subset of X , 𝑥      . Then   

CL({x})   (,𝑥-)  *𝑥+ so by theorem 3.1.1 (a) , P is   . 

Theorem 3.1.4 : 

Let (X , P) and (X , q) be convergence spaces such that P ≤ q , then :  

a) If P is    ,then q is   . 

b) If P is Hausdorff  , then q is Hausdorff. 

c) If P is   , then q is    . 

Proof : 

a) By theorems 1.3.3 and theorem 3.1.1(a) we have                             

{𝑥}    ([𝑥])    ([𝑥]) = {𝑥} , 𝑥   .So   ([𝑥]) = 𝑥 hence q is T1 . 

b) Since  (𝑥)   (𝑥)  𝑥    we have  (𝑥) ∩  ( )   (𝑥) ∩  ( )=   

if 𝑥   since P is Hausdorff . Hence ,   (𝑥)∩  ( )     if 𝑥   

which means that q is Hausdorff. 

c) Let 𝑥    , since  (𝑥)   (𝑥)  and  ( )   ( )  , we have          

   (𝑥)    (𝑥)  and   ( )    ( )  . If   (𝑥)       ( )  are 

disjoint filters then     ,    such that       (𝑥)  and 

     ( )        ∩     . 

Since       (𝑥) and       ( ) , Then   (𝑥) and     ( )  are 

disjoint filters . Hence , q is    
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Theorem 3.1.5 : 

 Let f : (X , P)   (Y , q) be a continuous and injective mapping from 

a convergence space (X , P) into a Hausdorff convergence space (Y, q) . 

Then , (X ,P) is a Hausdorff space . [14]  

proof :-  

 Let 𝑥 and   ∊ X with 𝑥   and   (𝑥)   ( )    , then     ( ) 

such that      (𝑥)  and    ( )  .Since f is continuous , we get 

 ( )    ( (𝑥))  and  ( )    ( ( )) . Since   is injective we get     

 (𝑥)   ( ). So q( (𝑥)) ∩ q( ( ))    . 

 But this contradicts the hypothesis as (Y , q) is Hausdorff . Hence 

 (𝑥)   ( )     and thus , (X , P) is a Hausdorff space . 

Theorem 3.1.6 : 

 Let f : (X , P)  (Y , q) be a continuous and injection mapping from a 

convergence space (X , P) into a   - convergence space (Y , q) . Then ,     

(X , P) is a T1 – convergence space . 

Proof :- 

Let  𝑥            ,𝑥-    ( )       𝑥            (,𝑥-)   [ (𝑥)]   q( ( ))   

because f is continuous .  (𝑥)   ( )  as   is injective . Hence , q is not T1 

which is a contradiction . Therefore , (X , P) is  T1 – space . 

Corollary 3.1.1 : 

 Any subspace of a T1-space , Hausdorff space is T1 - space , 

Hausdorff space , respectively . 
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Proof : 

Follows by Definition 2.2.1 and Theorems 3.1.5 , 3.1.6. 

Theorem 3.1.7 : 

 Let h and f : (X , P)  (Y , q) be two continuous mappings from a 

convergence space (X, P) into a Hausdorff convergence space (Y, q) .Then,  

a) The set A ={𝑥    :  (𝑥)    (𝑥)} is a P - closed subset of X. 

b) If D is a dense subset of X and  (𝑥)   (𝑥) ,  𝑥  .Then ,       

 (𝑥)   (𝑥)   𝑥   . 

Proof: 

a) Let  𝑥   CL(A) , then Ǝ    ϵ   (A) such that ,  -   ϵ    (𝑥) .  

h(,  - ) ϵ ( (𝑥)) and  (,  - ) ϵ  ( (𝑥)) since f , h are continuous. 

Since h(,  - ) and  (,  - ) are generated by the filter bases h(  ) 

and f(   ) respectively and  ( )    ( )    ϵA , we have     

h(,  - )=  (,  - ). 

 Since (Y, q) is a Hausdorff space we have  (𝑥)    (𝑥) . 

Hence , 𝑥 ϵ A . Thus , A is a p – closed subset of X .  

b) D    then X = CL (D)   CL (A) = A . Hence X=A .Thus ,        

 (𝑥)   (𝑥)   𝑥ϵX. 

Definition 3.1.2: 

 A convergence space (X, P) is said to be minimal Hausdorff  if      

(X, P) is Hausdorff space and every strictly coarser convergence space    

(X, q) is not Hausdorff . [15]  
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Definition 3.1.3: 

 A convergence space (X , P) is called a pseudotopological 

convergence space if   ϵ   (𝑥) whenever every ultrafilter   finer than   

converges to 𝑥 in X .[3],[4]  

Theorem 3.1.8 : 

 The following statements about a convergence space (X , P) are 

equivalent. 

a) (X , P) is minimal Hausdorff . 

b) {𝑥} =  ( ) if and only if   ϵ  (𝑥). 

c) (X , P) is a compact pseudotopological Hausdorff space . [15] 

Proof: 

  implies b: If  ϵ (𝑥) , then {𝑥} =  ( ) by theorem 3.1.1(b). Conversely , 

assume that  ( ) = {𝑥} and    (𝑥). Define q on X as follows. 

 ℋϵ  (𝑥) if and only if  ℋ  ≥   ∩   where   ϵ  (𝑥) and ℋϵ  ( )     

if and only if ℋ ϵ  ( ) where 𝑥 ≠   . 

It is clear that   is a convergence structure . 

 We Claim that    is strictly coarser than P and it is Hausdorff .        

Let 𝑥,  ∊ X with 𝑥 ≠   , then we have  ( )   ( ) . Let   ϵ  (𝑥) then            

  ≥   ∩   and   ≥  ∩   . Hence ,   and  ϵ  (𝑥) ,    ϵ  (𝑥) , and since 

   (𝑥) , we get  (𝑥)   (𝑥) . Therefore    . 

 To show that   is Hausdorff let 𝑥 ≠   ≠ z , then                         

 ( ) ∩  ( ) =  ( ) ∩  ( ) =   as P is Hausdroff. 

Assume that ℋϵ  (𝑥) ∩  ( ) where 𝑥≠   . Then , Ǝ  ϵ  ( ) such that       

ℋ ≥   ∩   where   ϵ  (𝑥) and ℋϵ  ( ) . Without loss of generality we 
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take ℋ to be an ultrafilter , so ƎFₒ ϵ   such that X⧵   ϵ ℋ and ℋ can not 

be finer than   as P is Hausdorff , so Ǝ    ϵ   such that X⧵gₒ ϵ  ℋ . Since        

ℋ ≥   ∩   and {F   g : Fϵ   and g ϵ   } is a filter base generating    ∩    

we have (Fₒ    ₒ) ϵ  ℋ  . But (X⧵Fₒ ∩ X⧵gₒ) ϵ  ℋ . Hence ,                             

(Fₒ   gₒ) ∩ (X⧵Fₒ ∩ X⧵gₒ) =   ϵ ℋ which is a contradiction . Hence, (X, q) 

is a Hausdorff space and since q < P we get a contradiction as (X , P) is a 

minimal Hausdorff space . Hence ,   ϵ  (𝑥)  

b implies c: (X, P) is Hausdorff, as if  ϵ   (𝑥) ∩  ( ) , then                   

 ( ) = {𝑥} = { }. Hence 𝑥 =  . 

 To show compactness of (X, P) , let   be an ultrafilter . If  ( ) =     

then    (  ∩ [𝑥]) = {𝑥} . We will show that: now, 𝑥 ϵ   (  ∩[𝑥]) as                          

  ∩ [𝑥]    [𝑥] ϵ  (𝑥) . Assume that y ϵ   (  ∩ [𝑥]) and   ≠ 𝑥 , then 

Ǝ  ϵ  ( ) where   ∩ [x]   . 

 Now     so Ǝg1ϵ    and X⧵g1ϵ    as   is an ultrafilter , and  

  ,𝑥- as  ( ) = { } by hypothesis so Ǝg2 ϵ   and  X⧵g2 ϵ [𝑥] as [𝑥] is an 

ultrafilter. 

  But ((X⧵g1)     (X⧵g2)) ϵ     ∩[𝑥]    and (g1 ∩ g2) ϵ    .So 

((X⧵g1) (X⧵g2)) ∩ (g1 ∩ g2) =   ϵ   which is a contradiction as   is a 

filter. Hence ,  (  ∩ [𝑥]) = {𝑥} . 

 Now if  ( ) =   , then  ( ∩[𝑥]) ={𝑥} , then  ∩[𝑥] ϵ   (𝑥) by 

hypothesis , so  ϵ (𝑥) as   ≥   ∩ [𝑥]  which is a contradiction as        

 ( ) =      The final contradiction shows that  ( )    . Hence ,   

converges in X as  ( ) = lim   in X  as   is an ultrafilter . Hence , (X, P) 

is a compact space . 
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Finally , we show that (X, P) is a pseudotopological space . 

 If each ultrafilter ℋ finer than   converges to 𝑥 then limℋ= {𝑥} for 

all ultrafilter ℋ  ≥   then  ( ) = {𝑥}. Hence ,   ϵ  (𝑥) by hypothesis . 

Thus, (X , P) is a pseudotopological space . 

c implies a : Assume that     ≤ P where   is a Hausdorff convergence 

structure . Let   ϵ  (𝑥) , then   ( )  *𝑥+ as (X, q) is a Hausdorff space 

and by theorem 3.1.1 (b) .   ( ) ≠   as (X, P) is compact space . 

Now   ( )    ( ) = {𝑥} by theorem 1.3.3 . Hence ,   ( ) = {𝑥}. 

 Now , let ℋ  ≥   where ℋ is an ultrafilter , then                                       

  (ℋ)    ( ) = {𝑥}. Since   (ℋ) ≠   as (X, P) is compact , then   (ℋ) 

= {𝑥}. Hence , ℋϵ  (𝑥). Now  ϵ  (𝑥) as (X , P) is a pseudotopological 

convergence space . Thus ,  (𝑥)    (𝑥)  so P ≤ q . Hence , P = q. 

Therefore , (X , P) is a minimal Hausdorff . 

Corollary 3.1.2 : 

 A Hausdorff  topological space is  a minimal Hausdorff  if and only 

if it is compact. 

Proof : 

Follows by theorem 3.1.8. 

Theorem 3.1.9: 

 Let f : (X , P)   (Y , q) be a continuous bijective mapping from a 

minimal Hausdorff space (X , P) into a Hausdorff space (Y, q) , then   is a 

homeomorphism map .[15] 
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Proof :-  

 Let   ϵ  ( ) , since   is bijective , then   =  (𝑥) and 𝑥 is unique 

  ( ) = { (𝑥)} because (Y, q) is a Hausdorff space and by theorem 

3.1.2(a) . 

Claim      (   ( )) = {𝑥}. 

   (   ( )) ≠   as (X, P) is minimal Hausdorff and hence it is 

compact by theorem 3.1.8 .Let z ϵ   (   ( )) , then  ( ) ϵ    ((   ( )) 

as   is continuous .Since   is bijective , we have  ((   ( )) =  . Hence 

 ( )ϵ  ( ) = { (𝑥)+ . Thus  ( )=  (𝑥) . Then 𝑥 = z as f is 1.1 . 

 Therefore , {𝑥} =   (   ( )) . Thus    ( )ϵ (𝑥) as (X, P) is 

minimal Hausdorff and by theorem 3.1.8 . Hence ,     is 

continuous.Therefore , f is a homeomorphism map . 

Corollary 3.1.3 :[Fischer] 

 Let f : (X , P)   (Y , q) be a continuous bijection mapping from a 

compact pertopological space (X , P) into a Hausdorff space (Y, q) .Then , 

  is a homeomorphism .[15] . 

Proof :-  

 (X, P) is Hausdorff  by theorem 3.1.5 , (X, P) is a pseudotopological 

space since every pretopological space is a pseudotopological space.  

(X , P) is a compact pseudotopological Hausdorff space . 

(X , P) is minimal Hausdorrf by theorem 3.1.8. 

  is a homeomorphism map by theorem 3.1.9 . 
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3.2 Regularity in convergence spaces 

 Extending the topological property of regularity to convergence 

spaces has created certain interest among mathematicians studying 

convergence spaces .see ([19] . [20]) 

Definition 3.2.1 : 

 A convergence space (X, P) is regular if CLP( ) ϵ  (𝑥) whenever 

 ϵ  (𝑥).(The filter CLP( ) is generated by the filter base { CLP( ) :     } 

.[19] 

 Regular convergence space definition , arises from the paper by 

Cook and Fischer  on regular convergence spaces , [20]. In this paper , the 

authors define regularity in terms of an iterated limit axiom for filters . 

Biesterfelt [19] has shown that the definition given by Cook and 

Fisher is equivalent to definition 3.2.1 

Lemma 3.2.1: Let (X , P) be a convergence space and  ϵ  (𝑥) , 

then 𝑥 ϵ CL( ) ,  Fϵ . 

Proof:- 

Since   ∊ P(𝑥) and F ∊   we have 𝑥∊CL(F) . 

Theorem 3.2.1: 

If (X, P) is a regular T1- convergence space , then it is Hausdorff . [20]  

Proof :-  

Assume that P is not Hausdorff , then Ǝ  ϵ   ( )  such that     

 ϵ  (𝑥) ∩  ( ) for some 𝑥 ,   ϵ X and 𝑥≠   . 

CL( ) ϵ  (𝑥) and  ( ) by regularity of  P . 
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x ϵ CL( ) ,  Fϵ  by lemma 3.2.1 .This means CL( )   [𝑥] . Hence, 

[𝑥] ϵ  ( ) which is a contradiction as (X, P) is a T1 – space . 

Therefore , (X , P) is a Hausdorff space . 

Note that the definition of regular convergence space gives the usual 

concept for topologies . 

Theorem 3.2.2 : 

 Let (X , Pt) be the natural convergence space related to the 

topological space (X , t) . Then , (X , Pt) is regular if and only if (X , t) is 

regular . 

proof :-  

 Let (X , t) be regular , so it is sufficient to show that for each 𝑥 ϵ X 

we have CL( (𝑥)) converges to 𝑥 in (X , Pt). 

Let Aϵ   (𝑥) , then Ǝ an open set   such that 𝑥ϵ     A . So by 

regularity of (X , t) Ǝ an open set v such that 𝑥 ϵ v   CL(v)     A. 

Hence , A ϵ CL( (𝑥)) . Thus ,  (𝑥)  CL( (𝑥)) . This means that 

CL( (𝑥)) converges to 𝑥 in (X , Pt) . 

 Conversely let (X , Pt) be regular and let u be an open set containing 

𝑥 . Then , u ϵ CL( (𝑥)) . So Ǝ an open set v containing 𝑥 such that                   

𝑥 ϵ v   CL(v)    which means that (X , t) is regular . 

Theorem 3.2.3 : 

Let X and Y be convergence spaces and f : (X , P)  (Y , q) be an 

initial map , then : 

a) If Y is regular , then X is regular . 

b) If X is regular and f is a surjection , then Y is regular .[21] 
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Proof :-  

a) Let   converges to 𝑥 in X .  ( ) converges to  (𝑥) as   is an initial 

map and hence it is continuous . CL( ( )) converges to  (𝑥)in Y 

Since f(CL(F))    CL( ( )) for all F ϵ   by theorem 2.1.6 we have 

CL( ( ))   f (CL( )) .Therefore , f (CL( )) converges to  (𝑥) in 

Y. Hence , CL( )converges to 𝑥 because f is an initial map . 

Therefore , X is regular  

b) Let   converges to y in Y and since   is surjective y =  (𝑥) for 

some 𝑥 ϵ X and  (   ( )) =   .Thus    ( ) converges to 𝑥 in X as 

  is an initial map. 

 Since X is regular , CL(   ( )) converges to 𝑥 in X . 

f(CL(   ( )) converges to  (𝑥) in Y as   is continuous . 

We claim that f(CL(   ( ))   CL( )  

 At first we show that    (CL(B))   CL(    (B)) . Let             

b ϵ     (CL(B)) , then f(b) ϵ CL(B) , so B ϵ   for some filter   

converges to f(b) in Y .  f(   ( )) =   as f is surjective .Since f is an 

initial map we have    ( ) converges to b . Since    (B) ϵ    ( ) , 

we get b ϵ CL(   (B)). 

 Note that CL(F) =  (   (CL(F)))   (CL(   (F))) . Hence 

 (CL(   ( )))   CL( ) . Therefore , CL( ) converges to f (𝑥) = y 

in Y. Hence Y is regular . 

Corollary 3.2.1 : 

A subspace of a regular convergence space is regular . 
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Proof : 

Follows by theorem 3.2.3  

Theorem 3.2.4 : 

 The closure operator for a compact regular Hausdorff convergence 

space is idempotent .[22] 

Corollary 3.2.2 : 

 Let (X, P) be a compact regular Hausdorff space , then (X ,  (p)) is 

Hausdorff and topological .[22]  

Proof : 

The closure operators for (X , P) and (X ,  ( ))  are the same 

corollary 1.2.1 and by theorem 1.2.8 (X ,  ( )) is a topological space as 

the closure operator of (X ,  ( )) is idempotent by theorem 3.2.4 . 

 To see that (X ,  ( )) is Hausdorff , let   be an ultrafilter which 

converges both to 𝑥 and   with respect to  ( ) . 

 By compactness ,   converges to some point z with respet to P , and 

by regularity of P , CIp( ) also converges to z with respect to P. But each 

neighbourhood of 𝑥 is in   , so 𝑥 is in each member of CLp( ) . Since P  is 

Hausdorff , 𝑥 = z . similarly ,   = z .Therefore 𝑥=   . 

Corollary 3.2.3 : 

If A is a subspace of a compact regular Hausdorff convergence space 

(X, P) , then  (  ) is Hausdorff and topological .[22]  

Proof : 

Since (A, PA) is a subspace of (X , P) , then  (  ) is the subspace of 

(X ,  ( )) by theorem 2.2.6 and since  ( ) is Hausdorff and topological 
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and by corollary 3.2.2 we get  (  ) is Hausdorff and topological as a 

subspace of  Hausdorff and topological space is Hausdorff and topological 

subspace . 

Theorem 3.2.5 : 

 Let X be a compact regular Hausdorff convergence space . Let K be 

a closed subset of X and z is a point with z   K .Let   be a filter converging 

to z ,then there is an open set u containing K such that     .[21]  

Proof : 

X⧵K is open and z ϵ X⧵K .Since X is regular , CL( ) converges to z 

and so X⧵K ϵ CL( ) . Hence CL( )   X⧵K for some Fϵ  . By theorem 

3.2.4 CL( ) is closed . Let  = X⧵CL ( ) .Then u is an open set containing 

K with     . 

Definition 3.2.2 : 

 Let (X , q) be a convergence space . For A   X we define          

  ( ) = ∩ {  (𝑥): 𝑥ϵA} and   ( ) written simply as  ( ) is called the 

q-neighbourhood filter of A .[15]  

Definition 3.2.3 : 

Let (X, q) be a convergence space , then (X, q) is weakly regular if 

 (𝑥) and  ( ) are disjoint filters whenever A is a q – closed set and          

𝑥 ϵ X⧵A .[5],[23] 

Definition 3.2.4 : 

 Let (X, q) be a convergence space , then (X , q) is strongly regular if 

 (𝑥) has a base of q – closed sets for each 𝑥 ϵ X .[5]  
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Definition 3.2.5 : 

Let (X, q) be a convergence space , then (X , q) is  - regular if  (𝑥) 

and  ( ) are disjoint for each A   X and x ϵ X⧵CL(A) .[5] 

Definition 3.2.6 : 

 Let (X , q) be a convergence space .Then (X , q) is t – regular , if    

(X , qt) is a regular topology. [5] 

The following theorems give some relations between these concepts . 

Theorem 3.2.6 : 

 Let (X, q) be  a pretopological space .Then the following statements 

are equivalent to each other . 

a) (X , q) is regular  

b) (X , q) is   - regular  

c)  (𝑥) = CL ( (𝑥)) for each 𝑥 in X . [5]  

Proof :-  

For equivalence of (b) and (c) , see [24]  

 To prove that (a) implies (c) , let q be a regular pretopology then 

 (𝑥) ϵ  (𝑥).The regularity of   implies that CL( (𝑥)) ϵ  (𝑥). 

Thus  (𝑥) ≤ CL( (𝑥)). But CL( (𝑥)) is always coarser than  (𝑥). 

Hence  CL( (𝑥)) =  (𝑥)for each 𝑥ϵX. 

 To show that (c) implies (a) assume that  (𝑥) = CL ( (𝑥)) for each 

𝑥ϵX .If   ϵ  (𝑥) then   ≥   (𝑥). Thus CI ( ) ≥ CL ( (𝑥)) =  (𝑥). Hence 

CL( ) ϵ  (𝑥). Therefore (X, q) is a regular space . 
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Theorem 3.2.7 : 

 Let (X , q) be a convergence space . Then q is strongly regular 

(weakly regular ,    - regular ) if and only if  ( )  is strongly regular 

(weakly regular ,   - regular ).[5] 

Proof : 

 Since the closure operators and   (𝑥) =   ( )(𝑥)  𝑥   are the 

same in  ( )         the theorem holds . 

Corollary 3.2.4 : 

Let (X, q) be a convergence space . Then q is   - regular if and only 

if  ( ) is regular. 

Proof : 

Follows by theorems 3.2.7 and 3.2.6. 

Theorem 3.2.8 : 

 Let (X, q) be a convergence space . If q is t - regular , then q is 

weakly regular .[5] 

Proof : 

 Let q be t – regular and A a q – closed subset of X and x ϵ X⧵A 

Because qt is regular , there are disjoint open sets u and v such that             

𝑥 ϵ u and A    . But   ϵ  (𝑥) and v ϵ   ( ). Thus  (𝑥) and  ( ) are 

disjoint filters . 

Theorem 3.2.9 : 

Let (X, q) be a convergence space . If q is strongly regular , then q is 

  - regular.[5] 
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Proof : 

Let q be strongly regular . Then ,  (𝑥) has a base of q – closed sets 

for each 𝑥ϵX . Hence  (𝑥) = CL( (𝑥)) for each 𝑥 ϵ X and therefore   ( ) 

is   - regular by theorem 3.2.6 .Thus , q is   - regular  by theorem 3.2.7. 

Note that if q is   - regular then it is weakly regular by definitions 

3.2.3 and 3.2.5 . Hence , by theorem 3.2.9 every strongly regular space is 

weakly regular . 

Theorem 3.2.10 : 

Let (X, q) be a pretopological convergence space .Then  

a) If q is strongly regular , then q is regular  

b) If   (   ) =   ( ) for some n ϵ Ν and q is regular , then q is strongly 

regular (where   (   )( ) = CL(  ( )( )) ,   ( )( ) =CL(A)) .[5] 

Proof : 

a) If q is a strongly regular , then q is   - regular by theorem 3.2.9. 

Since q is a pretopology , then q is regular by theorem 3.2.6. 

b) Assume that q is a regular pretopology and there is n ϵ Ν such that 

  (   )( )  =   ( )( ) for each A   .Then   ( )( )  is a                

q – closed for each A   . Since q is a regular pretopologgy ,          

  (𝑥) = CL( (𝑥)) for each 𝑥ϵX . Let u ϵ  (𝑥).To show that q is 

strongly regular it suffice to find a v ϵ  (𝑥) such that v is q–closed 

and v    .The set u ϵ CL( (𝑥)) , so there is a v1ϵ  (𝑥) such that 

CL(v1)   . The set v1 ϵ CL( (𝑥)) so there is a v2 ϵ  (𝑥), such that 

CL(v2)   v1 . Thus , C  (v2)    repeating this argument n times 
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shows that there is a vn ϵ  (𝑥) such that C  (vn)   . But C  (vn) is 

q - closed and the proof is complete. 

Theorem 3.2.11 : 

Let (X, q) be a convergence space and X is a finite set .Then  

a) (X, q) is a pretopological space  

b) Strong regularity , regularity and   - regularity are equivalent  

c) Weak regularity and t – regularity are equivalent.[5] 

Proof : 

a) Since the set of all filters on a finite set is finite . Then we 

have   (𝑥)    { : ϵq(𝑥)} ϵ q(𝑥) ,  𝑥  . Hence (X , q) is a 

pretopological space . 

b) Regularity and    - regularity are equivalent by theorem 3.2.6.  

 Since X is finite , there is nϵΝ such that                         

  ( )     (   )  Hence regularity implies strong regularity by 

theorem 3.2.10(b) . But strong regularity implies regularity by 

theorem 3.2.10(a) . 

c) t-regularity implies weak regularity by theorem 3.2.8 . 

 Conversely , assume that q is weakly regular . Let A be a        

q – closed set and 𝑥 an element of X⧵A .To show that 𝑥 and A can be 

separated by disjoint q – open sets it is sufficient to show that  A is   

q – open . 

 For each z ϵ X⧵A there exists Az ϵ  (A) and a Bz ϵ  (z) such 

that Bz ∩ Az =   . 

 Claim : ∩ {Az : z ϵ X⧵A } = A.  
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Since Az ϵ   ( ) , then Az ϵ  (𝑥) for all 𝑥ϵA , and hence 𝑥 ϵ Az for 

all 𝑥 ϵ A , so A  Az . Hence A   ∩ {Az :z ϵ X⧵A }.  

If  𝑥ϵ X such that 𝑥 ϵ ∩ {Az :z ϵ X⧵A } and 𝑥 ϵ X⧵A , then              

𝑥 ϵ A𝑥 and 𝑥 ϵ B𝑥 ϵ  (𝑥) which is a contradiction as B𝑥 ∩ A𝑥 = . 

Hence ∩ {Az : zϵX⧵A }   A .  

 The set X⧵A is finite and so ∩{Az : z ϵ X⧵A } ϵ  ( ) . Hence 

[A]   ( ) . But  ( )   [A] , so  ( )   [A] and A is q – open as 

A ϵ  (𝑥)for all 𝑥ϵA . 

 The following is an example of a pretopological space which 

is t – regular and weakly regular but not strongly regular . Hence not 

  - regular and not regular . 

Example 3.2.1 : 

Let X = {a, b, c} and let q be a pretopology with neighborhood filters 

defined as follows . 

 ( ) = { {a, b} , X} ,  ( )= { {b, c} , X}, and  ( )= { {a, c} , X}.[5] 

The only q – closed sets are X and   . Hence , qt is the indiscrete 

topology , q is t – regular . Thus q is also weakly regular by theorem 3.2.11. 

Since no q – neighbourhood filter has a base of q – closed sets , q is 

not strongly regular .Thus , q is also not   - regular and not regular by 

theorem 3.2.11. 

The following example is an example of a convergence space which 

is strongly regular and t – regular but not regular . 
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Example 3.2.2 [5] : 

let q be the convergence structure as in example 1.1.1 , for each        

𝑥 ϵ A ,  (𝑥)= [A] , and for each 𝑥ϵ X⧵A ,  (𝑥) = [𝑥] . 

If D is any non empty subset of A , then CL(D) = A , and if              

D   ⧵   then CL(D) = D . Since A and any subset of X⧵A is q – closed , 

it follows that q is strongly regular , and thus weakly regular and               

  - regular . 

The set  A and any subset of X⧵A are q – open , as well as ,               

q – closed . Thus , qt =  (q) and q is t – regular . 

If 𝑥 ϵ A , then [𝑥] ϵ q(𝑥) . But CL([𝑥]) = [ A]   q(𝑥) . therefore , q is 

not regular . 

The following is an example of a pretopological space which is not 

strongly regular ,  not   - regular and not regular . But it is weakly regular 

and not t – regular . 

Example 3.2.3 : 

Let X = {a}  {xn :nϵΖ} and let q be the pretopology with 

neighbourhood filters defined as follows : 

 ( ) = [ B   : a   B and X⧵B is finite] 

 (𝑥 ) = [{ xn-1 ,xn ,xn+1}] ,[5] 

{ xn-1 , xn , xn+1} is not q – closed because xn+2 ϵ CL({ xn-1 , xn , xn+1}).  

Hence , q is not strongly regular , not regular and not   - regular .  

CL({a}) = {a} so{a} is q – closed . 

 ϵ CL ({xn : n ϵΖ}) and if B  X such that  Ǝ xn   B , xn-1 or xn+1   B , then 

xn ϵ CL(B). 
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Thus , the only q – closed sets in X are {a} , X and  . 

q is weakly regular since  ( )  and  (𝑥 ) , n ϵ Ζ are disjoint as                

{a}   ({ xn : n ϵΖ }⧵{xn-1, xn, xn+1}) ϵ  ( ) and {xn-1, xn, xn+1} ϵ  (𝑥 ) 

q is not t – regular as the only q – closed sets are {a} , X and  . 

Theorem 3.2.12 : 

Let (X, q) be a convergence space and  A   . Then 

a) If q is strongly regular , then qA is strongly regular. 

b) If q is  –        , then qA is  –         

c) Let  t(qA) = [qt]A . If q is t – regular , then qA is t – regular  

d) Let t(qA) = [qt]A . If q is weakly regular , then qA is weakly 

regular.[5] 

Proof : 

a) Let 𝑥 ϵ A and v ϵ  qA(𝑥) . Then , v =   ∩ A for some u ϵ  q(𝑥) . 

Since q is strongly regular , there is q – closed set  F ϵ  q(𝑥) such 

that  F   . 

The set  F ∩ A is qA – closed because F ∩ A is [qt]A closed 

and t(qA) ≥ [qt]A . The set  F ∩ A ∊  qA(𝑥) and                                   

F ∩ A   . Therefore ,  qA(𝑥) has a base of  qA – closed sets.  

b) if q is  –        , then  (q) is regular by corollary 3.2.4. 

Therefore , [  ( )- A is regular by corollary 3.2.1 . But                  

[ ( )-A = ( (qA)) .Therefore qA is  –        by corollary 3.2.4. 

c) Follows from the heredity of regularity for topologies when          

t(qA) = [qt]A . 
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d) Let B be a qA – closed subset of A and let 𝑥 ϵ A⧵B .Then B = A ∩ F 

for some q – closed set F , because t(qA) = [qt]A . 𝑥   F since 𝑥    , 

therefore  q(𝑥) and  q(F) are disjoint filters . 

But  qA(𝑥) = {u ∩ A : u ϵ  q (𝑥)} and  qA(B) = {u ∩ A : u ϵ  q (B)} 

Therefore ,  qA(𝑥) and  qA(B) are disjoint . 

Remark 3.2.1 : 

weak regularity and t – regularity are not hereditary properties . If we 

let (X , q) be the pretopological space of example 3.2.1 and A = {a , b}. 

The topology  qt  is indiscrete ,  so q is t – regular and weakly regular . The 

neighborhood filters of qA are given by  qA(a)=, - and  qA(b)= [b]A . 

Therefore ,   , {a} and A are the only qA – closed sets. 

 Hence the topology t(qA) is not regular . Thus , qA is not t – regular 

and by theorem 3.2.11 qA is not weakly regular . 
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Chapter Four 

Compactness in Convergence Spaces 
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Chapter Four 
Compactness in Convergence Spaces 

Compactness is one of the most important topological property . It is 

an important notion in convergence space as well . 

Definition 4.1: 

 A convergence space (X , P) is compact if every ultrafilter on X 

converges in X .[16] 

Definition 4.2: 

 A system   of nonempty subsets of a convergence space (X , P) is 

called a covering system if each  convergent filter on X contains some 

elements of   .[16]  

Theorem 4.1: 

Let (X , P) be a convergence space . Then , the following are equivalent : 

a) (X , P) is compact .  

b) Every filter on X has a point of adherence . 

c) In every covering system there are finitely many members of which 

the union is X .[16] 

Proof : 

a implies b: We use the fact that for every filter   on X there is an 

ultrafilter   on X with     . So , any limit of    is an adherent to   . 

b implies c: Let   be a covering system allowing no finite subcover . 

Hence  * ⧵      + generates a filter , say   on X . So , by our hypothesis 

  has an adherence point say 𝑥 . 

Then     ( ) such that     and      (𝑥) for some𝑥∊X .  
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By definition 4.2 ,        such that     .   

    ⧵         which is a contradiction . So , in every covering system 

there are finitely many members of which their union is X . 

c implies a: Assume that some ultrafilters on X , say   doesn’t converge in 

X , then   cannot be finer than any convergent filter   . Since for any 

    either   or  ⧵   belongs to   . So we find in any convergent filter 

  a member     ∊   for which X⧵    belongs to  .                         

T           *  |    is convergent in X} is a covering system of X. So , 

there exists finitely many members of this system that covers X , then   

would have to contain the empty set . So , every ultrafilter on X is a 

convergent filter . Hence , (X , P) is compact . 

Theorem 4.2: 

Let  X be a set equipped with two convergence structures   and   

such that    .Then , if (X , q) is compact , then(X ,  ) is compact .[1]  

Proof:, 

Since   ( )    ( ) for all    ( ) and (X ,  )  is compact we 

get   ( )    . Hence ,   ( )    so by theorem 4.1 we get that P is 

compact . 

Theorem 4.3: 

Let (X , P) be a compact and Hausdroff pretopological 

convergence space .Then , a filter  ∊ F(X) converges in X if and only 

  ( ) is a singleton set . 
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Proof: 

Since every pretopological space is a pseudotopological space, 

*𝑥+   ( ) if and only if     (𝑥) by theorem 3.1.8  . 

Theorem 4.4: 

Let (X , P) be a compact pretopological space and (X , q) be a 

Hausdorff convergence space . If q   P , then P= q. [1] 

Proof: 

 (X , P) is Hausdorff , by theorem 3.1.4 . 

  ( )      ( ) ,       ( ) , by theorem 1.3.3 . 

Let      (𝑥) then   ( )  *𝑥+ by theorem 3.1.1 . 

Since P is compact and   ( )      ( )  *𝑥+  we have 

  ( )  *𝑥+   Hence     (𝑥) . Thus for each 𝑥   we have  (𝑥)   (𝑥) 

which means P   q . Therefore , q = P . 

Corollary 4.1 : 

 Let (X , P) be a compact topological space and q be a Hausdorff 

convergence structure on X such that q   P , then P = q . In particular , q 

is a topology . 

Proof : 

Follows by theorem 4.4 . 

 Note that theorems 4.3 , 4.4 hold if we replace pretopology by 

pseudotopology . 

Definition 4.3 : 

 A subset of a convergence space is compact if it is compact with 

respect to the subspace convergence structure .[3] 
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Theorem 4.5: 

 Let (X , P) be a convergence space and A   X be a subspace . Then , 

the following hold . 

1) If X is compact and A is P-closed , then A is compact . 

2) If X is Hausdorff space and A is compact , then A is closed .[3] 

Proof: 

1) We know that a filter   converges to       in A if and only if , -    

( the filter generated by the filter base   in X ) converges to a in X .  

Let   be an ultrafilter in A then , -  is an ultrafilter in X 

which converges in X as X is compact . 

Assume that  (, - )      so  (, - )       Thus, 

       , -  as     is P-open and     , -   (, - )     

But    , -  so (   )        , -  which is a 

contradiction . This implies that        such that , -  converges to 

a . Hence ,   converges to a  . Thus A is compact . 

2) Let 𝑥     ( ) then Ǝ      (𝑥) such that A ∊   .  

   *         + is a filter in A .  

Let   be the ultrafilter in A containing   . So   converges to 

some     . But , -  is an ultrafilter converges to y and , -    

this leads , -  converges to 𝑥 too .  

So 𝑥 = y as X is a Hausdorff space . Thus , 𝑥     . Therefore , 

  ( )    . So , A is P-closed . 
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Corollary 4.2 : 

A subspace of a compact Hausdorff convergence space is compact if 

and only if it is closed . 

Proof : 

Follows by theorem 4.5 . 

Theorem 4.6: 

 Let       be a continuous surjective mapping from a compact 

convergence space X onto a convergence space Y . Then , Y is compact . 

Proof: 

 Let   be an ultrafilter on Y, then *   ( )    + is a basis of a filter 

  on X . Choose a finer ultrafilter ℋ    .  

Then ℋ converges and  (ℋ)    . Since   is an ultrafilter we get 

   (ℋ). Since   is continuous , then   converges in Y . Therefore , Y is 

compact . 

Corollary 4.3 : 

Let X and Y be any convergence spaces . If       is a continuous 

mapping , then the image of a compact subset of X is compact in Y . 

Proof : 

 Let     be a compact set .The restriction mapping       ( ) is 

continuous . Hence by theorem 4.6  ( ) is compact . 

Theorem 4.7: 

 Let X and Y be convergence spaces and       be a continuous 

where X is compact and Y is Hausdorff . Then , if A is a closed set in X , 

then  ( ) is a closed set in Y .  
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Proof : 

A closed subset   of X is compact by theorem 4.5(1) ,   ( )  is 

compact by corollary 4.3 so  ( ) is closed by theorem 4.5(2) .  

Theorem 4.8: 

 Let       be a continuous map from a compact convergence 

space X onto a Hausdorff convergence space Y . 

If     is compact , then    ( ) is compact . [4]  

Proof : 

Let      be compact then   is closed set in Y by theorem 4.5 (2).  

   ( )  is closed since   is continuous .      ( )  is compact by        

theorem 4.5(1).  

Theorem 4.9: 

If P and q are convergence structures on the set X , with q is 

Hausdorff , P is compact and q   P .Then  

1)  (𝑥)    ( )   (𝑥)    ( )  .where U(F(X) is the set of 

ultrafilters on X. 

2) The Pretopologies associated to q and P are identical . 

3) The topologies associated to q and P are identical . [18] 

Proof: 

1)  (𝑥)   (𝑥) as q   P . Hence ,  (𝑥)    ( )   (𝑥)    ( ) .  

Let      (𝑥)     ( ) this means that   is an ultrafilter converges 

to 𝑥 . 
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Since q is Hausdorff then         ( )  *𝑥+  by               

theorem 3.1.1(b) . P is compact so    ( )    and since      

  ( )    ( )  *𝑥+ by theorem1.3.3 we get  

         ( )  *𝑥+ . Hence       (𝑥) .   

         (𝑥)    ( )   (𝑥)    ( ) . 

2) Since each filter   is the intersection of all ultrafilters  finer than 

  and by part1 of this theorem we get   (𝑥)    (𝑥)     𝑥     

Hence ,  ( )    ( ) .  

3) Since the closure operators of q and  ( ) are the same , by  

Corollary 1.2.1 and  ( )   ( ) we get    ( )     ( ) for all 

    . Hence the set of all closed sets in (X , q) and (X , P) are 

the same . Therefore ,        .  

Definition 4.3 : 

A subset A of a convergence space X is called relatively compact if 

its closure   ( ) is compact . [3] 

Theorem 4.10: 

 Let X and Y be convergence spaces . Let Y be Hausdorff  and 

let     be a relatively compact set . If       is a continuous mapping  

then  ( ) is relatively compact . 

Proof: 

 Assume that A is relatively compact . Then ,   ( )  is compact. 

 (  ( )) is compact and closed by theorems 4.6 and 4.5 . 

Now     ( )  then   ( )   (  ( ))  
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     ( ( ))    . (  ( ))/      ( ( ))   (  ( ))  

    (  ( )) is closed . 

 (  ( ))    ( ( ))    theorem 2.1.6.         ( ( ))   (  ( )) . 

    ( ( ))    compact . So   ( ) is relatively compact . 

Definition 4.4 : 

 A convergence space (X , P) is said to be locally compact if each 

convergent filter contains a compact set .[25] 

Lemma 4.1 : 

 Let   be a filter on the set X , and let {    ∊  } denote the family 

of all ultrafilters finer than   . For each  ∊   , choose       . Then there is 

a finite subset {        + of   such that  *            +    .[25] 

Proof: 

 If the assertion were false then the collection of all sets of the from 

 ⧵ ( *           +) , for    , would constitute a filterbase 𝔓 with 

the property that no ultrafilter containing 𝔓 could be finer than   , which is 

a contradiction . 

Theorem 4.11: 

A convergence space (X , P) is locally compact if and only if each 

convergent ultrafilter contains a compact set .[25]  

Proof : 

Suppose that each convergent ultrafilter contains a compact 

subset , and let    be any filter converging to x in X , Let {    ∊  } be 

the family of all ultrafilters finer than  . For each ultrafilter   , choose 
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a compact subset    . By lemma 4.1 ,   contains a compact subset . 

Thus,  X is locally compact . 

Theorem 4.12: 

 (Tychonoff) The product  (      ) is compact if and only if each 

(      ) is compact . [1] . 

Proof : 

Let (X , q) =  (      ).         ( ) and     is continuous for 

each   . Hence , from compactness of (X , q) , follows the compactness of 

each (      )    . Let   be an ultrafilter on X  .   ( ) is an ultrafilter for 

each   . Hence , by hypothesis it converges , so   converges in X .  

Hence , (X , q) is compact .   
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Chapter Five 
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Chapter Five 
Connectedness in Convergence Spaces 

Connectedness is a topological property for which the definition may 

be extended to convergence spaces . It is known that a topological space is 

connected if and only if each continuous function from the space onto a 

discrete space is constant . 

Definition5.1 : 

A convergence space (X , q) is connected if the only continuous 

functions from (X , q) onto a discrete topological space are constant 

functions.[5] 

For subsets of a convergence space , connectedness is defined in a 

manner analogous to the topological definition . In this section we denote     

the discrete topological space by (T , d)  . 

Definition 5.2:  

If (X , q) is a convergence space and A   X . Then A is a q-

connected subset of X if (A , qA) is a connected convergence space.[5]  

Theorem5.1 : 

Let (X , q) and (X , P) be convergence spaces with P   q . If (X , P) 

is connected , then (X , q) is connected . Furthermore , if A is a                 

P-connected subset of  X , then A is a q-connected subset of  X . [5] 

Proof :-  

To prove the first assertion , assume that f : (X , q)  (T , d) is a 

continuous function , then f : (X , P)  (T , d) is continuous by         

theorem 2.1.2 and P   q . Hence   is constant as (X , P) is connected . 
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This means  that (X , q) is a connected convergence space . 

The second assertion follows , because PA   qA whenever P   q .  

Theorem5.2:  

Let (X , q) be a convergence space . Then , the following statements 

are equivalent : 

a) (X , q) is connected . 

b) (X ,  ( ))) is connected . 

c) (X , qt) is connected .[5] 

Proof -  

(a) is equivalent (c) Since a function f : (X , q)  (T , d) is continuous 

if and only if f : (X , qt)  (T , d) is continuous , we get that (X , q) is 

connected if and only if (X , qt) is connected . Since      ( )    we get 

by theorem 5.1 that (b) is equivalent to (c) . Hence , (a) , (b) and (c) are 

equivalent statements . 

The next theorem shows that the continuous image of a connected set is 

connected . 

Theorem5.3:  

Let f : (X , P)  (Y , q) be a continuous mapping from the connected 

convergence space (X , P) onto the convergence space (Y , q) . Then ,       

(Y , q) is connected .  

Proof : 

Let h : (Y , q)    (T , d) be a continuous map, then                            

(h o ) : (X , P)   (T , d) is continuous , and since f  is onto we get that h is 

a constant function . Hence , (Y , q) is connected . 
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Definition 5.3:  

Two nonempty and proper subsets A and B of  X are separated in   

(X , q) if   ( )        ( )    . [10] 

Theorem 5.4 : 

Let (X , q) be a convergence space . Then , the following are equivalent : 

a) (X , q) is connected .  

b) There is no proper subset of X that is both q-open and q-closed . 

c) X cannot be represented as the union of two disjoint q-open sets . 

d) X cannot be represented as the union of two disjoint q-closed sets . 

e) X cannot be represented as the union of two separated sets .[10] 

Proof :- 

Follows by theorem 5.2 and theorems from topology . 

Theorem5.5 : 

Let (X , q) be a convergence space and A    X , then A is                  

q-connected if and only if A can not be written as the union of two 

separated sets in X , each of which has a nonempty intersection with A.[14] 

Proof :-  

Assume that A is q-connected and A = D   B where A  D     and 

A  B     and    ( )         ( )     . 

    
( )          

( )      by theorem 2.2.3 . 

But B and D are complementary sets relative to A . Hence , 

    ( )    and     ( )    . Hence D and B are qA-closed and       

qA-open which is a contradiction as A is q-connected if and only if (A , qA) 
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is connected if and only if there is no proper subsets of A that is both       

qA-open and qA-closed by theorem 5.4 .  

Conversely , assume that A is not q-connected . Hence there is a 

nonempty proper subset B of A which is qA-open and qA-closed by  

theorem 5.4 and definition 5.2 . Hence ,     ( )    and                  

    (   )      . Thus    ( )   (   )     (   )        

Hence , B and A B are separated sets in X each of which has a nonempty 

intersection with A which is a contradiction of the assumption .Therefore , 

A is a q-connected . 

Theorem5.6:  

Let A be a q-connected subset of X and     such that                 

         ( ). Then , B is q-connected .[14]  

Proof:  
Assume that          ( ) and that A is q-connected . 

If B is not q-connected then there is a discrete space (T , d) and a 

function  f  from B onto T which is continuous with respect to qB and d and 

which is not constant . 

Let    be the restriction of   to A , then                           

   (     )  ( ( )    ( ))  is continuous . The function    is constant 

because A is q-connected and  ( ( )    ( ))  is a discrete space . Let 

 ( )  * + .  

The function   is not constant , so there is a       such that  ( )      

The point        ( ) ; therefore , there is    ( ) such that     . 
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Let   *       +  . The collection   is a filterbase because 

      andA    . The filter generated by   on X    . Hence , the filter 

generated by   on B ,   -converges to b . 

Let ℋ denote the filter generated by   on B . 

  (ℋ)  , - as the set     ℋ  . But ℋ  -converges to b and     

 ( )    and the topology d is discrete , therefore    (ℋ)  does not 

converge to  ( ) .  

This contradicts the continuity of    . Therefore ,   is  -connected . 

Theorem5.7 : 

Let (X , q) be a convergence space and     . Then , 

a) If A is q-connected then A is qt-connected . 

b) If t(qA) = [qt]A and A is qt –connected then A is q-connected .[5] 

Proof:  

a) Since     we get by theorem 5.1 that if A is q-connected , then A 

is   -connected . 

b) If [  ]A = t(qA) and A is   -connected then (A , [  ]A) is connected , 

Hence (A , t(qA)) is connected . Therefore , (A , qA) is connected by 

theorem 5.2. Consequently , A is q-connected by definition 5.2  

Theorem 5.8:  

Let (X , q) be a convergence space and     . Then if A is            

q-connected , then     
( ) is q-connected . 

Proof:  

If A is q-connected then A is   -connected by theorem 5.1 which 

implies that     
( ) is   -connected by theorem 5.6 and since     

( ) is 
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closed we have     
( )  is q-connected by theorem 5.7 (b) and         

theorems 2.2.7 , 2.2.8 . 

The following example and theorem 5.1 show that in general the set of 

connected subsets of a convergence space may be strictly subset of the set 

of connected subsets of  its topological modification  space . 

we can have         
( )  and A is q-connected but B is not q-

connected . 

Example5.1: 

Let X={𝑥n :      } and q be the pretopology with neighbourhood 

filters defined as follows : for each          (𝑥 ) is the filter generated by 

{𝑥n-1 , 𝑥n , 𝑥n+1} .[5] 

1. The topology    is indiscrete . 

Proof:  

Let A be a nonempty q-open subset of X such that       Then 

there exist     such that 𝑥    and 𝑥i-1 or 𝑥i+1   ⧵   . But A is q-open then 

    ,     (𝑥 ) . This implies that {𝑥i-1 , 𝑥i , 𝑥i+1 }   A which is a 

contradiction as 𝑥i-1 or 𝑥i+1 ∊ X⧵A . Hence , A cannot be q-open .  

Therefore ,  qt is indiscrete topology . 

2. Let A = { 𝑥n :   is an even integer} . Then , qA is the discrete 

topology on A  

Proof:  

Let 𝑥i     then       (𝑥i) if and only if  , -     (𝑥 ) . 
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Since A , {𝑥i-1 ,𝑥i , 𝑥i+1}   , - we have                                              , 

    {𝑥i-1 , 𝑥i , 𝑥i+1}={𝑥 }    , -  and this means , -  = [𝑥 -  on X . 

Hence  = [𝑥 - on A . Hence (A , qA) is the discrete topology . 

3. t(qA) = qA since qA is the discrete topology on A . The topology 

[   ]A is the indiscrete topology on A . So [   ]A    t(qA) and              

(A , [qt]A) is connected but (A , t(qA)) is not connected . Hence , A is 

qt-connected subset of  X but not a q-connected subset of X. 

4. If     where B is the set containing One element . Then B is       

q-connected also     
( )    is q-connected by theorem 5.8 and 

since    is an indiscrete topology . But           
( )  . But 

A is not q-connected . 

Theorem5.9 : 

If H and K are separated in the convergence space (X , q) and  E is a 

q-connected subsets of     . then , E    or E    . 

Proof:  

Assume that E       and E     and E     then E     and 

E    are separated in (X , q) .  

Since     (   )  (   )      ( )     ( )       . 

And (   )     (   )  (   )     ( )     ( )    as H , K 

are separated . 

But (   )  (   )    so E is not q-connected by theorem 5.5 

which is a contradiction as E is q-connected . Hence ,     or     . 
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Theorem5.10 : 

Let *       + be a family of connected subsets of the convergence 

space (X , q) . If for every        ,         , then        is            

q-connected .  

Proof:  

Follows by theorem5.5 and 5.9 . 

Definition 5.4:  

A set K is a q-component of the convergence space (X , q) if K is a 

maximal q-connected subset of X .[5] 

Since the union of two non-disjoint q-connected sets must be               

q-connected it follows that each element of X is in one and only one of q-

component . 

Hence , the q-components of  X form a partition of X . This is also 

true of the qt-components of X . 

The following theorem shows that these two partitions are identical . 

Theorem5.11 : 

Let  (X , q) be a convergence space , 𝑥    and let C denote the        

qt-component containing  𝑥 and let K denote the q-component containing 𝑥, 

then C =K .[5]  

Proof:  

The set K is q-connected and hence by theorem 5.1 , K is                

qt-connected . Thus ,      . 

The set C is qt-closed and hence it is q-closed and C is qt-connected. 

Therefore , by theorem 5.7 (b)  C is q-connected . Thus C    .  
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Hence K = C . 

Note that from theorem 5.11 we can conclude that q-components are    

q-closed . 

Theorem5.12 : 

If X is finite and (X , q) is weakly regular and if there exists a proper 

subset A of X which is q-closed , then (X , q) is disconnected . 

Proof: 

By the proof of part C of theorem 3.2.11 we get that A is q-open . 

Hence by theorem 5.4 (b) , (X , q) is disconnected . 
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Chapter Six 

The Cluster Set of Functions in Convergence 

Spaces 
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Chapter Six 
The Cluster Set of Functions in Convergence Spaces 

Let X and Y be topological spaces and   be a map from the space X 

into the space Y , then the cluster set of   at 𝑥   , denoted  (  𝑥) , is 

defined in [13] as    (  𝑥) if there exists a filter   on X such that   

converges to 𝑥 and  ( ) converges to   . 

In this chapter we generate the above definition into convergence spaces . 

Definition 6.1: 

Let   (    )    (    ) be a map from a convergence space (X , P) 

into a convergence space (Y , q) . A point     is an element of the cluster 

set   (  𝑥) of  at 𝑥  if there exists a filter    ( ) such that    (𝑥) and  

 ( )    ( ). 

It is clear that   (  𝑥)    (,𝑥-  (𝑥)     (,𝑥-)  , (𝑥)-   ( (𝑥))   so 

 (𝑥)    (  𝑥)) . 

Let   (  𝑥) be the cluster set of   at 𝑥 when P and q are replaced by 

the associated topologies Pt , qt respectively . Then , it is clear that                 

 (  𝑥)    (  𝑥). It is proved in [13] that   (  𝑥) is a closed subset of      

(Y , qt) . Also it’s known that q and qt have the same closed sets , then 

  (  𝑥) is a q-closed set in Y .  

Theorem 6.1:  

Let   (    )    (    )  be a map from a convergence space (X , P) 

into a convergence space (Y , q) . Then the following are equivalent : 

a)    (  𝑥)   
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b)    a filter      ( )  such that      ( )  and 𝑥    (   ( )) 

provided    ( ) exists . 

Proof : 

a implies b: Let      (  𝑥) then       ( )  such that    (𝑥) 

and  ( )    ( ). Let     ( ), clearly    ( )    and exists . 

Since    (𝑥) , we get 𝑥    (   ( )) . 

b implies a:     𝑥    (   ( )) then       (𝑥) such that      ( ) . 

It is clear that  ( )     and  ( )    ( ) . Hence ,      (  𝑥)   

Theorem 6.2:  

Let   (    )  (    ) be a map from a convergence space X into 

the convergence space Y . If      (  𝑥)  , then        ( )  such that 

    (𝑥) and           ( ( )) . 

Proof: 

Let      (  𝑥)  then        ( )  such that      (𝑥)  and 

 ( )    ( )   Clearly        ( ( )) ,      . Thus ,           ( ( ))  

Theorem 6.3:  

Let   (    )  (    ) be a map from a convergence space (X , P) 

into a pretopological space (Y , q) .Then the following are equivalent : 

a)    (  𝑥)   

b)   a filter      ( )  such that      ( )  and 𝑥    (   ( )) 

provided    ( ) exists . 

c)   a filter     ( ) such that     (𝑥) and           ( ( )) . 

Proof: 

a implies b follows by theorem 6.1. 
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b implies c follows by theorem 6.1 and 6.2 . 

c implies a given         ( ( )) ,      , for some filter      (𝑥) . This 

implies that      ,   a filter       ( ) such that       ( ) and  ( )     . 

Let ℋ          .  

Let   ℋ   ( ) then it is clear that   is well defined and    ( ) too . 

Let        ( ) then it is clear that   is well defined and  ( )   . 

Now since (X , q) is a pretopological then ℋ   ( ) . Thus     ( ) 

and  ( )    ( ) as  ( )    . 

     (𝑥) as      and      (𝑥)  Hence ,    (  𝑥). 

Theorem 6.4: 

Let   (    )  (    )  be a continuous map from a convergence 

space (X , P) into a Hausdorff space (Y , q) , then  (  𝑥) is a singleton .  

Proof : 

 Let      (  𝑥) such that  (𝑥)    . Then     (𝑥) such that 

 ( )    ( ) . Since   is continuous ,  ( )    ( (𝑥)). 

  ( )   ( (𝑥))    which is a contradiction as   is Hausdorff. 

Therefore ,  (𝑥)    . 

Theorem 6.5: 

Let   (    )  (    )  be a 1-1 map from a convergence space        

(X , P) into a compact pretopological convergence space (Y , q) . If  (  𝑥) 

is singleton , then   is continuous at 𝑥  . 
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Proof: 

Suppose  (  𝑥)  * (𝑥)+          (𝑥)  . We have to prove that 

 ( )    (𝑥) . Since q is a pretopological structure , it is sufficient show 

that  ( )     ( (𝑥)) . 

Let       ( (𝑥))  , we have to show that        such that         

 ( )  ( | )    . Assume that  ( )  ( | )         . 

Let   be a filter on Y generated by * ( )  ( | )     + .  

Since (Y , q) is compact ,  ( )    . Let       ( ) , then   a filter 

ℋ    ( ) such that ℋ    . 

But ℋ    ( )  . Thus G      ,        ( )  and        . Claim 

   (𝑥) . 

Suppose     (𝑥)  , this means that ( ( )   | )        ℋ 

which is impossible . Thus ,    (𝑥) .  

Since ℋ     ( ) , then     (ℋ)    as   is 1-1 . 

This implies that    (ℋ)    (𝑥) . Since  (   (ℋ))   ℋ we have 

 (   (ℋ))    ( ) . Hence ,    (  𝑥) which is a contradiction . 

Thus  ( )    ( (𝑥)) .Therefore ,   is continuous . 

Corollary 6.1: 

Let   (    )  (    )  be a 1-1 map from a convergence space       

(X , P) into a compact Hausdorff pretopological convergence space (Y , q) . 

Then ,   is continuous if and only if  (  𝑥) is singleton . 

Proof : 

Follows by theorem 6.4 and 6.5 . 
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 الملخص

انًفٕٓو ٔعلالخّ ٛث حيٍ  ًخماسبانفضاء انخصائص  بذساست بعضفٙ ْزِ انشسانت لًُا  

 بانخبٕنٕخٛا . حٛث حُأنُا خصائص الاَغلاق ٔالاَفخاذ نهًدًٕعاث َٔماط انخدًع نهفلاحش .

خاصٛت انخدًع انًغهك نهفلاحش ٔكزنك يدًٕعت انخدًع نلالخشاَاث  دسسُا اٚضا ٔلذ  

 . انًخماسبتانًعشفت عهٗ انفضاءاث 

ٔحى سبظ رنك  انًخماسبت اث خصائص يسهًاث الاَفصال فٙ انفضاءبعض ثى حُأنُا  

خصائص انخشابظ دساست بعض . حٛث حى  انًخماسبتباحصال الالخشاَاث انًعشفت بٍٛ انفضاءاث 

حصهُا عهٗ بعض انُخائح انًخعهمت بانًدًٕعاث انًخدًعت  ٔ لذ .انًخماسبتٔانخشاص نهفضاءاث 

س سئٛسٛت نهذاسسٍٛ ٔانباحثٍٛ ٔرنك بٓذف حمذٚى افكا . انًخماسبتنلالخشاَاث انًعشفت عهٗ انفضاءاث 

 فٙ َظشٚت انخماسب بطشٚمت حٕفش اندٓذ عهٛٓى .

 




