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Abstract
In this thesis, we study finite simple continued fractions, convergents, their
properties and some examples on them. We use convergents and some
related theorems to solve linear Diophantine equations. We also study
infinite simple continued fractions, their convergents and their properties.
Then, solving Pell’s equation using continued fractions is discussed.
Moreover, we study the expansion of quadratic irrational numbers as
periodic continued fractions and discuss some theorems. Finally, the

relation between convergents and best approximations is studied and we

apply continued fractions in calendar construction and piano tuning.



Introduction

Continued fraction is a different way of looking at numbers. It is one of the
most powerful and revealing representations of numbers that is ignored in
mathematics that we’ve learnt during our study stages.

A continued fraction is a way of representing any real number by a finite
(or infinite) sum of successive divisions of numbers.

Continued fractions have been used in different areas. They’ve provided us
with a way of constructing rational approximations to irrational numbers.
Some computer algorithms used continued fractions to do such
approximations. Continued fractions are also used in solving the
Diophantine and Pell's equations. Moreover, there is a connection between
continued fractions and chaos theory as Robert M. Corless wrote in his
paper in 1992.

The use of continued fractions is also important in mathematical treatment
to problems arising in certain applications, such as calendar construction,

astronomy, music and others.


http://en.wikipedia.org/wiki/Pell%27s_equation

History of Continued Fractions

Mathematics is constantly built upon past discoveries. In doing so, one is
able to build upon past accomplishments rather than repeating them. So, in
order to understand and to make contributions to continued fractions, it is
necessary to study its history.

The history of continued fractions can be traced back to an algorithm of
Euclid for computing the greatest common divisor. This algorithm
generates a continued fraction as a by-product. L34j

For more than a thousand years, using continued fractions was limited to
specific examples. The Indian mathematician Aryabhata used continued
fractions to solve a linear indeterminate equation. Moreover, we can find
specific examples and traces of continued fractions throughout Greek and
Arab writings. |34 |

From the city of Bologna, Italy, two men, named Rafael Bombelli and
Pietro Cataldi also contributed to this branch of mathematics. Bombelli
was the first mathematician to make use of the concept of continued
fractions in his book L’Algebra that was published in 1572. His
approximation method of the square root of 13 produced what we now
interpret as a continued fraction. Cataldi did the same for the square root of
18. He represented /18 as 4. &81_&83_&83_ with the dots indicate that the
following fraction is added to the denominator. It seems that he was the
first to develop a symbolism for continued fractions in his essay Trattato

del modo brevissimo Di trouare la Radici quadra delli numeri in


http://mathworld.wolfram.com/ContinuedFraction.html
http://archives.math.utk.edu/articles/atuyl/confrac/intro.html#def9
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1613 . Besides these examples, however, both of them failed to examine
closely the properties of continued fractions. |34,35,36,37 |

In 1625, Daniel Schwenter was the first mathematician who made a
material contribution towards determining the convergents of the
continued fractions. His main interest was to reduce fractions involving
large numbers. He determined the rules we use now for calculating
successive convergents. |35

Continued fractions first became an object of study in their own in the
work which was completed in 1655 by Viscount William Brouncker and
published by his friend John Wallis in his Arithmetica infinitorum

written in 1656.
4__1x3x3x5x5x7xm

Wallis represented the identity —= and Brouncker
T 2x2x4x4Ax6x6xX...
. 4 1
converted it to the form —=1+ 9
4 2+
2+L
2+479

2+,

In his book Opera Mathematica (1695), Wallis explained how to
compute the n" convergentand discovered some of the properties of
convergents. On the other hand, Brouncker found a method to solve the
Diophantine Equation x? — Ny? = 1. [34,36 |

The Dutch mathematician Huygens was the first to use continued fractions
in a practical application in 1687. His desire to build an accurate

mechanical planetarium motivated him to use convergents of a continued

fraction to find the best rational approximations for gear ratios. |_38j


http://archives.math.utk.edu/articles/atuyl/confrac/intro.html#def6
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Later, the theory of continued fractions grew with the work of Leonard
Euler, Johan Heinrich Lambert and Joseph Louis Lagrange. Euler laid
down much of the modern theory in his work De Fractionlous
Continious (1737). He represented irrational and transcendental quantities
by infinite series in which the terms were related by continuing division.
He called such series fractions continuae, perhaps echoing the use of the
similar term fractions continuae fractae (continually broken fractions) by
John Wallis in the Arithmetica Infinitorum. He also found an expression
for e in continued fraction form and used it to show that e and e are
irrationals. He showed that every rational can be expressed as a finite
simple continued fraction and used continued fractions to distinguish
between rationals and irrationals. Euler then gave the nowadays standard
algorithm used for converting a simple fraction into a continued fraction.
Moreover, he calculated a continued fraction expansion of V2 and gave a
simple method to calculate the exact value of any periodic continued
fraction and proved a theorem that every such continued fraction is the root
of a quadratic equation. |34,36 |

In 1761, Lambert proved the irrationality of & using a continued fraction of
tan x. He also generalized Euler work on e to show that both e* and tan x
are irrationals if x is nonzero rational. |34,38,40 |

Lagrange used continued fractions to construct the general solution
of Pell's Equation. He proved the converse of Euler's Theorem, i.e., if x is a
quadratic irrational (a solution of a quadratic equation), then the regular

continued fraction expansion of x is periodic. In 1776, Lagrange used


http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Pell%27s_equation
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continued fractions in integral calculus where he developed a general
method for obtaining the continued fraction expansion of the solution of a
differential equation in one variable. |41,42,43]

In the nineteenth century, the subject of continued fractions was known to
every mathematician and the theory concerning convergents was
developed. In 1813, Carl Friedrich Gauss derived a very general complex -
valued continued fraction by a clever identity involving the hypergeometric
function. Henri Pade defined Pade approximant in 1892. In fact, this century
can probably be described as the golden age of continued fractions. Jacobi,
Perron, Hermite, Cauchy, Stieljes and many other mathematicians made
contributions to this field. |34,39 |

During the 20th century, continued fractions appeared in other fields. In
1992, for instance, the connection between continued fractions and chaos

theory was studied in a paper written by Rob Corless.


http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Henri_Pad%C3%A9
http://en.wikipedia.org/wiki/Pad%C3%A9_approximant
http://en.wikipedia.org/wiki/Pad%C3%A9_approximant
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Chapter One

Definitions and Basic Concepts

Definition 1.1: [15]

Let p and g be two integers where at least one of them is not zero. The
greatest common divisor of p and q, denoted by gcd(p, q), is the positive
integer d satisfying:

1) d divides both p and g.

2) If cdivides both p and g, then ¢ <d.

Definition 1.2: [15]

Two given integers p and q are called relatively prime if gcd(p, q) = 1.

Theorem 1.1: |15, p.4]

Let p, g & s be integers. If p divides both g and s, then p divides gx + sy
forevery x&yeZ.

Theorem 1.2: |15, p.7 | (The Division Algorithm)

Given integers p and g, with g > 0, there exists unique integers m and r
such that p = g.m + r, with 0 <r» < ¢g. p is called the dividend, g the

divisor, m the quotient and r is the remainder.

Lemma 1.1: [15, p.30]

Let p and g be two integers. If p = g.m+r, then gcd(p, g) = gcd(q, r).

The Euclidean Algorithm:
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Euclidean algorithm is a method of finding the greatest common divisor of
two given integers. It consists of repeated divisions. In this algorithm we
apply the Division Algorithm repeatedly until we obtain a zero remainder.
Since the gcd(p, ) = gcd(xp, £qg), we may assume that both p and q are

positive integers with p > q.

Theorem 1.3: L15, p.29j (Euclidean algorithm)

Let p and g be two positive integers, where p > q and consider the

following sequence of repeated divisions:
p=qa+n, 0<r<q
b=ra,+r, 0<r,<r
n=ra+r,0<rn<r,

r,=r;a,+r,0<r, <r,

r.,=r_a,+r,0o<r, <r,,

r,=r,a,,+0

n = n+

Then gcd(p, q) = r,, the last non-zero remainder of the division process.

Proof:

We need to prove that the greatest common divisor of p and q is r,.

Using Lemma 1.1 repeatedly, we get the following:

gcd(p, g)=gcd(q, ry)=gcd(ry, rz)=gcd(ry, r3) =...=gcd(rp.1, rn)=gcd(r,, 0)
=

Hence, the greatest common divisor of p and q is r,,.

Theorem 1.4: |15, p.13]
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Given two integers p and g not both zero. Then the greatest common
divisor of p and q is a linear combination of them. i.e. there exist two

integers m and n such that gcd(p, gq)=mp+nq.

Theorem 1.5: |15, p.16 |

P o 4
ged(p,g)  ged(p,q)

Given two integers p and ¢, then are relatively

prime.

Theorem 1.6: L15, p.18J (Euclid’s Lemma)

If p and g are relatively prime and p divides gs then p divides s.

Definition 1.3: |_17J(Algebraic and Transcendental Numbers)

A complex number vy is said to be algebraic if y is a root of a non-zero

polynomial P(x) =a, x" +a,,x"* +...+a, with integer coefficients ao, a;,

..., @, . The number which is not algebraic is transcendental.

Binomial Theorem:

For any positive integer n, the expansion of (X + y)"is given by:

n n n,,0 n n-1,,1 n 1,,n-1 n 0,,n (N n-i,,i
X = X X X X = X
o <{ges e[t acsl et e -El e

n n!
where | . |== — 1S called the binomial coefficient.
I i(n—1i)!
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Chapter Two

Finite Simple Continued Fractions

Section 2.1: What is a Continued Fraction? |1,3,4,6 |

Definition 2.1:
A continued fraction (c.f.) is an expression of the form
a, + b, S
a, + 1
b,
a, +
b3
a, +
a, +

where ay, ai, a,, ..., by, by, by, ... can be either real or complex numbers.

Definition 2.2:
A simple (regular) continued fraction is a continued fraction of the form
1
a, + 1
a, + 1
a, + 1
a, +
a, +
where a;is an integer for all i with a4, a, as.... . >0.

The numbers a;, 1=0, 1, 2, .... are called partial quotients of the c.f.
A simple continued fraction can have either a finite or infinite

representation.

Definition 2.3:
A finite simple continued fraction is a simple continued fraction with a

finite number of terms. In symbols:



It is called an n™-order continued fraction and has (n+1) elements (partial
quotients).

It is also common to express the finite simple continued fraction as

g+t 11 orsimplyas [a,a,8,,..a,]
° a1+az+83+"“a ply 0191, 3y, A, |

n

Definition 2.4:
An infinite simple continued fraction is a simple continued fraction with

an infinite number of terms. In symbols:

1
a, + 1
a + 1
a, + 1
a, +
a, +
1 1 1 .
It can be also expressed as a,+ ... or simply as
a+a,+a,+
[a,,a,,8,,....].
Example 2.1:
a) 6+ : and 3+ 1111 are infinite simple
) 1+11 7+15+1+ 292+ P
5+ 1
1+
S+...

continued fractions.
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b) 1+ 1 and [-1,2,6] are finite simple continued fractions.

Definition 2.5:

A segment of an n"™-order simple continued fraction is a continued fraction

of the form [a,,a,,a,,....,a, ]Jwhere 0 < k < n and arbitrary £ > 0 if the

continued fraction is infinite.

A remainder of an n™-order finite simple continued fraction is a continued

fraction of the form [a,,a, ,,...,a,] where 0 <7 <n. Similarly, [a,,a,,,,..]

Is a remainder of an infinite simple continued fraction for arbitrary » >0 .

Example 2.2:

a) [01,2] is a segment of the finite simple continued fraction [0,1,2,1,4]
and [2,1,4] is a remainder of it .

b) [6151] is a segment of the infinite simple continued fraction

[6,1,51,5,15,...]and [5,1,5,1,5,...] is a remainder of it .
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Section 2.2: Properties and Theorems

Every rational number can be expressed as a finite simple continued
fraction. Before we prove it and explain the way of expansion, we will
introduce the continued fractions by studying the relationship between
Euclidean algorithm, the jigsaw puzzle (splitting rectangles into squares)
and continued fractions. Jigsaw puzzle uses picture analogy to clarify how

to convert a rational number into a continued fraction. The explanation of

the puzzle’s steps is through the following example. |7.8]

Example 2.3:
Suppose we are interested in finding the greatest common divisor of 64

and 17. Using Euclidean algorithm, we have:

64 =3x17+13 (2.1)

17 =1x13+4 (2.2)

13=3x4+1 (2.3)

4=4x1+0 (2.4)

Then gcd(64, 17) = 1. 64

Now, consider a 64 by 17 rectangle. .

In terms of pictures, we split the rectangle 17 17 17 13
into 3 squares each of side length 17 and 17

only one 17 by 13 rectangle.

13 rectangle into one square of side length 17

Next, it is clear that we can split the 17 by 17 17 17 13

13 and only one 13 by 4 rectangle.
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Similarly, split the 13 by 4 rectangle into 3 17-j
squares each of side length 4 and a 4 by 1
rectangle.

13

Finally, we can place 4 squares, each of side 171

length 1, inside the 4 by 1 rectangle with no

remaining rectangles.

We can notice that each divisor g in the Euclidean algorithm represents the
length of the side of a square. For instance, the divisor 17 in equation (2.1)
represents the length of the sides of the squares that we obtain from the
first splitting step. Moreover, gcd(64, 17) is the length of the side of the

smallest square which equals 1.

Now, divide equation (2.1) by 17 to get: % =3+ g
Also, divide equation (2.2) by 13 to obtain: % :1+%

Repeat in the same way for equations (2.3) and (2.4): ? = 3+% and % =4

Then, write each proper fraction in the previous equations in terms of its

reciprocal as follows:

64 _, 1

17 t17 (2.5)
(E)

17 _,, 1

13 +ﬁ (2.6)
4

13 1 1

VIR N 2.7)
(I)

Substitute equation (2.7) into equation (2.6) to obtain the following:



14

17 1
1+ —— (2.8)

13 3+ 1
4
Then, substitute equation (2.8) into equation (2.5) to get:

8 5,1 _ai34
17 1 1
T
3+—
4

This is the continued fraction representation of the rational number i—j :
.. 64 . i
Note that by writing E:[B,l, 3,4], we do not mean an equality, but just a

. . 64 . . .
representation of the rational number 7 by its continued fraction [3,1,3,4] .

This expression relates directly to the geometry of the rectangle as squares
with the jigsaw pieces as follows:

3 squares each of side length 17, 1 square of side length 13, 3 squares each
of side length 4 and 4 squares each of side length 1.

So, it’s clear that the partial quotients of the continued fraction [3,1,3,4]
represent the number of squares that result from the splitting steps.
However, there is no need to use picture analogy each time we want to
express a rational number as a continued fraction. The expansion of
rational numbers into continued fractions is related to Euclidean algorithm
as we’ve shown in the previous example. This relation will be studied

closely in the proof of Theorem 2.2.

Now, to express any rational number g as a continued fraction, we

proceed in this manner. We split the rational number into a quotient “a,”

: a :
and a proper fraction, say b Ifa=1orb =1, stop. Otherwise, repeat the
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. . . a .
process by considering the reciprocal %of the proper fraction b instead
)
a
p : 1. : , a
of a Again, split Tmto a quotient “a,” and a proper fraction, say b
)
a

1
again. Repeat this process until we get a proper fraction b which is

always the case for any rational number.

It is clear that if the rational number Ep Is positive and less than 1, then the

continued fraction begins with zero, i.e., a, =0. Moreover, if the rational
number is negative, then the continued fraction is [a,,a,,a,,....,8,] where

a, <0 and a,,a,,..a, >0,

Example 2.4:

: 14 . . .
Expand the rational number 9 into a continued fraction.

Solution:

) 14 .
Since 9 is less than 1,

14 1
then a, =0 and E_0+E,
14
19 5 14 1
But —=1+— 50 —==0+—+-.
14~ 14’7 19 1.5
14
Al -
SO, = =771~
14 E 2+i
5 5
14 1
Therefore, ——=0+
19 1 1
T4
24—
5
: 4 4 1 1
Repeating the same steps for —, we obtain: =% =—"7
> 5 2 1+1
4 4
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14 1
—=0+——7-—=[0,1,214

Thus, 19 . 1 [ ]

+7
1

2+ "1

1+~

4

. . 1
We stop here since the last proper fraction 2 has a numerator of 1.

However, looking at the last partial quotient “4” of the continued fraction,
it can be written as 4= 3+%. So, the continued fraction expansion

[0,1,2,1,4] can be also written as:

¥ o4 ! ~[01,2131]

19 1+ L
1
2+
1
l+—1
3+
1

. . . i 14
As a result, the continued fraction expansion of the rational number 19 has

two forms which are obtained by changing the last quotient.

Example 2.5:

i 59 i .
Express the rational number 6 as a continued fraction.

Solution:
Applying the previous steps, we get:

§:1+E:1+i:1+izl+ L =1+ L =1+ L =1+ L
46 46 46 7 1 1 1 1
— 3+ — 3+E 3+—6 3+—1 3+ 1
13 13 — 1+- 1+7 1+—1
! — 1+—
6
=[13116].

Example 2.6:
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) ) 7 ) )
Write the rational number 13 as a continued fraction.

Solution:
LA I S S D S Y
13 13 13 o1

PR +7

6 6

The Continued Fraction Algorithm: | 4,9 |

This algorithm is a systematic approach that is used to find the continued

fraction expansion of any rational number.

Let y be any non-integer rational number. To find its continued fraction

expansion, we follow the next steps.

Step 1: Set Y=1Y,. The first partial quotient of the continued fraction is

the greatest integer less than or equal Y,. (i.e., a,=[[Y,1]), where [[ . ]] is

the greatest integer function.

Step 2: Define y, = and set & =[[vy,]].

1
Yo — [[yo ]]

As long as Y is non-integer, continue in this manner:

Y2 a, = [[y.1l,

__
Y1 _[[yl]] ’

1

:m’ a, =[[y. 1], where vy, -[[y]]=0.

Yk

Step 3: Stop when we find a value Yy, €N.

Note 2.1:
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This algorithm is also true for any real number. In this case, the process

may continue indefinitely. This idea will be illustrated in Chapter Three.

Example 2.7:

i . . 315 . .
Calculate the continued fraction expansion of 01 using the continued

fraction algorithm.

Solution:
315 315
L === ~1.567164179. Then a, = 22211 =1,
1 1 1 201
Y1 = =11q ~ 1763157895 a, =[[y,]]=1

“yo-llyoll 315_ 315, 7315
201 201" 201
1 1 1 114

= = = = ~1.310344828 = —
114 114 114
1 1 1 87
y, = = = =—=3.222222222 , = =3
Tyl 14414, T TIa T o7 % =[Lyll
87 87 87
1 1 1 27
Y, = = = 2—24.5, a, = =4
A VA | ﬂ_[[ﬂ]] g_g 6 + =yl
27 27 27
Ys = - = 1 = L :§:2135:[[y5]]:2
Y. —[ly.ll g_[[g]] 5_4 3
6 6 6
We stop here sinceys;=2eN . Thus, [1,1,1,3,4,2] is the continued

fraction representation of %.

What about the converse? |8 |

Given a continued fraction representation of a number y, we find y by
using the following relationship repeatedly:

1
[a,,8,,8,,....,a,,,8,]=[a,,8,,8,,....,8, ; +a—]

n

Example 2.8:
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Find the rational number who has the continued fraction representation

[2,2,1,21].

Solution:
1 1 4 1
[2,21,21]=[2,21,2 + i] =12,21,3]=[2,21+ 5] = [2,2,5] =[2,2+ E]
3
3 11 1 4. 26
2[2,2+Z]Z[Z,Z]Z[ZJFE]:[ZJFE]:E
4

Theorem 2.1: | 2, p.553 |

Every finite simple continued fraction represents a rational number.

Proof:

Let [a,,8,,,,....,a,] be a given n™- order finite simple continued fraction.

We show that this continued fraction represents a rational number using

induction on the number of partial quotients.

_ B i_ a,a, +1
If n=1, then [a,,a,] = <’:10+a1 _—31 .
a,a, +1

Since aq and a, are integers, then = is a rational number.

Now assume any finite simple continued fraction with k < n partial

quotients represents a rational number. Then:

[a,,8,,a,,....a,]=2a, +

Where
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Y =a + 1 =[a1,a2,....,ak].'

a , + 1
1+ —
1 a,

Since [a;,a,,....,a,] is a finite simple continued fraction with k partial

. ) ) d
quotients, it represents a rational number, say %. So, Y = f#0.

f ad+f

=a, +— . which is

1
Thus, [a,,a,,8,,....,a,]1=a, +? —a, +

a rational number since a,, d and f are integers.

So, any finite simple continued fraction [a,,a,a,,....,a,] represents a

rational number for any n e N.

Theorem 2.2: | 2, p.553|&|3, p.10 |

Every rational number can be represented as a finite simple continued
fraction in which the last term can be modified so as to make the number

of terms in the expansion either even or odd.

Proof:

Let Ep g > 0 be any rational number. By the Euclidean algorithm

p=0ga,+r,0<r<q (2.9)
q=r.a,+L0<r,<r (2.10)
n=r.a,+r0<rn<r,
r,=r.a,+r,0<r, <

rs;="r.,4a,;+r

n— n-1?

O<r._,<r,
r,=a,r,+0
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The quotients a,,a,,a,,...a, and the remainders r,,r,,r;,...,I,_; are positive
integers, while a; can be a positive integer, negative integer or zero.

Now, dividing equation (2.9) by g and then taking the reciprocal of the
proper fraction we get: §= a, +;—1 =a, +%,0 <r<q

r
Also divide equation (2.10) by r; and take the reciprocal of the proper
fraction to get:

ﬂ:az+r_2:a2+i,0<r2<rl (2.11)

r1 r1 1

Repeating the same process to each equation in the above Euclidean

algorithm, we have:

I ry 1
r—=a3+r—=613+—,0<r3<r2 (2.12)
2 2 -2
Iy
r—Z—a +r—4—a +i O<r,<r
=4, =4, ’ 4 <13 (2.13)
3 I‘3 -3
Iy
r-nf?, n-1
; = an—l + [ = an 1 + 10 < I’n—l < rn—2 (214)
n-2 n-2 n-2
rn—l
rn—2 =a
n
rn—l

Now, substituting 9 and each of Y=t pack into equations (2.11) through

rl 1

(2.14) yields:



LLEP L =a, + L =a, + L
q a +l 1 a, + L l a, + L
2 2 2
r, 1 1
a,+—— a, +
r, 1
(?) a T
3 (i)
r4
Continue in the same manner to get:
P_oa+ L =a, + L
q -t 1 -t 1
a, + 1 a, + 1
a; + 1 a; + 1
a, + . 1 a, + ) 1
1 .
it a, , +
(LZ) n
rn—l
= [a,,a,,...,a,].

Thus, every rational number can be represented as a finite simple
continued fraction.
In fact, we can always modify the last partial quotient a, of this

representation so that the number of terms is either even or odd.

If a,=1, th L L
a,= 1, then = =
a  + an71+} a,,+1
N 1
and §=[al,az,...,anl,an]:[al,az,...,anl+1]_
: 1 1 ~ 1
Else, if a,> 1, then 1= 1 = 1

a,, + g a,, +

@-n Mt 1
(@, -1+ (an—1)+1

and gz[apaz’""an—l’an] =[a,,a,,..,8,,,8, —11].
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Theorem 2.3: |3, p.12 |

Let p and q be two integers such that p > q > 0. Then [8,,8,8,,...,8,4,8,]

IS a continued fraction representation of qﬂ if and only if % has

[0,8y,8,8,,...,8,_1,8,] as its continued fraction representation.

Proof:
1
Since p >q >0, P> 1and equals @ + 1 where a,
q a, +
a, + L
2
1
a; +
4t
an
IS the greatest integer less than g :[[E]] > 0.
The reciprocal of Ep IS
9. L 1 =0+ L 1 =[0,a,,a,,a,,...,4,]
P a, + 1 a, + 1
a + 1 a + 1
a, + . 1 a, + 1
s+ 1 a; + 1
+— +—
an an
Conversely, sincep>q>0,0< % < 1 and equals
104 : 1 = 1 1
P
a, + o 1 a, + 1
' 1 At 1
a, + 1 a, + 1
az + 1 a; +
L= 1
.
a, a

The reciprocal of % IS



24

p 1 1
r_ =a, + =[a,,a,,8,,...,8,]
g L a, + L
1 ! 1
a, + 1 a, + 1
a, + 1 a, +
a, + +—
1 a
a; + "
.
a

Theorem 2.4: |5, pp.82 —83|
The continued fraction [a,,a,4a,,...,8,,,8,] and its reversal

[a,.a,,.a, ,,...,8,8,] with a; > 0 have the same numerators.

Proof:

This theorem is proved by Euler. See LSJ
For example, the continued fractions [5,3,2,4] and [4,2,3,5] have the same

numerator “164”.
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Section 2.3: Convergents

In order to have a thorough understanding of continued fractions, we must
study some of their properties in details.

Consider the continued fraction representation [2,2,7] of the rational

7 . . .
numberi—5 . The segments of this continued fraction are:
1

[2]1=2,[2,2] = 2+£, [2,2,7]=2+
2 2+
7
Since each segment is a finite simple continued fraction, it represents a
rational number. These segments are called convergents of the continued

fraction [2,2,7].

Definition 2.6: | 4,9 |

Let [a,,&,...,a,] be a finite simple continued fraction representation of a

rational number g Its segments:

Coz[ao]:ao; Cl=[a0,al]=a0+é, C. :[ao’ai’a2]2a0+ 1 >

c, =[ay,,a,a,,.,a,]=a,+ 1

are all called convergents of the continued fraction with ¢, is the k™

convergent,k=0,1,. . . ,n.



26

Note that we have n+1 convergents and each convergent c, represents a

rational number of the form c, =%, where p, and gy are integers with

k

6P
q

n

We shall use the representation of a convergent ¢, =[a,,a,,...,&,] and %
k

interchangeably to mean the same thing.

Example 2.9:

Find all of the convergents for the continued fraction [3,5,1,7].

Solution:
Co:[3]:3
1 16
c, =[35]=3+-—=—
, =[39] -
C, =351 =3+ 7 =3+ 7=
5+= 6 6
1
C, =[3,5,1,7]=3+ 11 =3+ 11 :3-}-%:34.4_17:34_&:&
5+71 5+§ 5+ - — 47 47
1+= - 8 8
7 7

Note that the 3™ convergent c, = % represents the fraction itself.

The following theorem gives a recursion formula to calculate the

convergents of a continued fraction.

Theorem 2.5: |1, p.21|&|4, p.7| (Continued Fraction Recursion

Formula)

Consider the continued fraction [a,,a,,...,a,] of a given rational

=1p,=0 =a, P+ P
number. Define ** = 27" Then Pe= APa ¥ Pz fork=0,1,2,
q,=009,=1 Ok = 0yy + Oy
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..., N, where pq, p1, P2, ..., Pn are the numerators of the convergents of the

given continued fraction and qo, q1, 0, ..., 4, are their denominators.

Proof:
We prove this theorem using induction on k.

For k =0, we have:

¢, :&:ao _ % a,.1+0 _8.p,+ P,
o 1 4a,0+1 a,q,+q,

Therefore, p, =a,p,+ P, and g, =a,.0+1

For k=1, we have:

& & & a.1+0 a.q,+0a,

Then, p,=a,.p,+ P, and @, =a,.0, + 0,

=a +
Thus, the formula Pk = 3Bs ¥ P is true for k =0, 1.
O = 0y + 0k

Assume the theorem is true fork =2, 3, ..., j, where j <n.

anp, . +
e == AP Per gy ns (2.15)
O 0y + 0k

So, Py =& Py t+ Py, and g, = a0y 4 + 0,

Now, we prove that the formula is true for the next integer j+1.



Cin=[ag,a,...a;,8;,]=a, +

1.

1
=[ay,a,...,a; + "
j+1

This suggests that we can calculate cj., from the formula of c; obtained
from equation (2.13) after replacing k by j. Before we continue, we must
make sure that the values of p;,,p;,.q;5,0;, won’t change if & in
equation (2.13) is replaced by another number. To do this, first replace k in

the equation by j-1, and then by j-2, j-3 to get:

c. = Pjx  @51-PjotPjs c. .= Pj2 8j2:Pj3tPjy
1= = ' j-2 = =
i 2542052 +0j3 Q- ;2 0; 3104
c .= Pjs  aj3-Pja+tPjs
i3~ =

Qs a;30j4 t0js

We notice that p;; and gj; depend only on aj; while the numbers

P2 Pjs:0;,.0;5 depend upon the preceding a’s, p’s and ¢’s. Thus, the

numbers p;;,P;,,d;4,0d;, depend only on a,,a,..,a;;, and not on a;

This implies that they will remain the same when we replace a; by

1
aj + .
a'j+1
Back to equation (2.13), replace ajby a; + al to get:
j+1
1 a;a;,, +1
(aj +a7)'pj—1+ pj—z (7)'pj—1+ pj—Z
_ i+ _ j+1
Cin = 1 ~aa, 1 (2.16)
(aj + ai)'qul +4j (7)-%_1 +Q;,
j+l j+1

Multiply the numerator and denominator of equation (2.14) bya. and

j+l

rearrange the terms to obtain:
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_ (ajaj+1 +1) pjfl + aj+1 pj72 _ aj+1(aj pjfl + pj72) + pjfl
j+H1 T -
(ajaj+l +l)'qj—l +38;,0; a'j+1(ajqj—l + qj—z) +d;

But from our assumption, a;p,, + p,, = p, and a;q;, +d;, =q;.
j+1pj+ pj—l
j+1qj+qj—l

Then, ¢,

Thus, the formula is true for k = j+1. So, by induction, the theorem is true

for0 <k <n.

Note 2.2:
1) P and P2 are not convergents. p.;, P, 9.1 and g., are just initial

q. g
values used to calculate ¢, and c;.
2) g«>0,k=0,1,...,n
3) Since ay >0 forl<k<nandgqgx>0 for 0 <k <n, it follows that

qk >qk—11 k=2: 9n

Example 2.10:

Find the convergents of the continued fraction representation of the
rational number % using Continued Fraction Recursion Formula.

Solution:
First of all, the continued fraction representation of ﬁ is [1,1,61,3,2,2]

and we have a, =1,a =la,=6,a, =18, =3,a, =2,a, = 2.

,=Lp,=0 _ _
With 5 1_ 0 g ? 1 calculate py and g, using the recursion formula.
-1 — Vi1 M2 —

Py = Pyy + Py
TR T fork=0,1,2, ..., 6.
O = 04 t Uy
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For k =0: For k = 1:
Po=8,P,+Pp,=1x1+0=1 p,=a,p,+p,=1x1+1=2

0o =8,0,+q,=1x0+1=1 o =a0,+9,=1x1+0=1

Fork =2: Fork =3:

P, =a,p,+ P, =6x2+1=13 P, =a,p, + P, =1x13+2=15

g, =a,0, +q, =6x1+1=7 0, =a,0, +0, =1x7+1=8

For k = 4: For k =5:

p,=a,p;+ P, =3x15+13=58 Ps =a.p, + P, =2x58+15=131
q,=a,0,+0, =3x8+7=31 Qs =a.0,+0,=2x31+8=70
For k = 6:

Ps =35 Ps + P, =2x131+58 =320
Js =05 +0, =2x70+31=171

1 2 13 15
ThUS, CO:&:_:]_,(a:&:_:Z’CZZ&:_’03:&:_’
qO 1 a, 1 q2 7 q3 8
¢, =P 58 b 131 . _ P 320
‘Tq, 31 ° g 70 ° g 171

The last convergent, cg in this example, must be equal to the rational
number the continued fraction represents.
However, a convergent table can be used to save time in calculating py and

gk Table 2.1 explains the manner.
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Table 2.1
Kk -2 -1 0 1 2 n
ak , do i a a
pd / / "
Pk Po= 0<f—p.1= 1€—po/ P1 P2 .o« | Pn
A
Ok go=1 g-1=0 < qo o1 o ! cer | On
Ck Co C1 Co Ch

The first row of the table is filled with the values of k that always range
from -2 to n. In the second row, we write the partial quotients of the given
continued fraction. Now, to fill the 3" and 4™ rows, we write the values
P>=0,9,=1,p1=1, 0971 =0underk =-2, k =-1, respectively. Then we
compute the values of p¢’s and qy’s using the recursion formula. For

example, to find p; and g, , we follow the arrows, (look at the table):
a; a
e e
p_ld Po q-lé Jo
This manner gives us the following equations which we obtain when we set
k =1 in the recursion formula:
P1=aPp+P_4
d; =ado +q_,

In the same process we find px and gy for each value of k.

The last row contains the convergents c,’s, where ¢, = P o<k <n.

Uk
Back to our example, the table is filled in the same manner and the result

iS:
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Table 2.2
k -2 -1 0 1 2 1314 |5 6
ay 1 1 6 |1 |3 |2 2
/ / ¢
P 0 1 < 1/ 2 13/ 15 |58<131 | 320
v
Ok 1 0 1 1<—7 |8 | 31|70 |171
1 2 . |13 |15 |58 | 131 |320
C, To1 |5=2 |22 |22 |28 2 |24k
1 1 7 |8 [31| 70 |171

Theorem 2.6: |10, p.358 ] (Difference of Successive Convergents

Theorem)

To prove this theorem we need the following lemma.

Lemma 2.1: |4, p.7]

Let % be the k™ convergent of the continued fraction [a,,4a,,...,a,],
k

where py and gy are defined as in Theorem 2.5. Then:

Pk a9k — POk = (<D ,—-1<k <n.

Proof:

This lemma will be proved by induction on k and using the formula that
we’ve proved in the previous theorem. Direct calculations show the
theorem is true for k = -1, 0 and 1.

Fork=-1: p,0,-p,0,=00-11=-1=(-1)"

Fork=0: p,d,— P9, =1.1-a8,0=1=(-12)°
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Fork =1: pot, — P,y = a3, —(3pa, +1).1=a5a, —aa, —1=-1=(-1)’
Assume the lemma is true for some integer s <n, i.e. p,,0q, — P4, = (-1)°.
Now, for k = s+1, we have:
Py — Psuas = Ps (@405 + s 4) — (@1 Py + Py 1)
= Pe8 0 + Pyl — 81 PsOs — PoyCs = POy — Pe a0 = —1.(Pe 40, — PG, 4)
=-1.(-1° = (-)**.
Therefore, the formula is true for k = s+1 and so by induction the lemma is

true for 1<k <n.

Proof of Theorem 2.6:

Forl<k<m:
_ _ P Pea - Pl = Peale - Peale — Plia
Ck G = = —
dc  Ga O L e 0y Ok

~ (_1)k _ (_1)k+1 _ (_1)k—l
qqufl qqufl qqufl .

Using Lemma 2.1, ¢ —C, =

Example 2.11:

Verify Lemma 2.1 using the convergents of the continued fraction

[1161,32,2].

Solution:

Using the values of p’s ={1, 2, 13, 15, 58, 131, 320} and qi’s ={1, 1, 7,
8, 31, 70, 171} obtained in Example 2.10, we get:

Fork=-1: p,Q,-p,q,=0x0-1x1=-1=(-1)"

Fork=0: p,0,— P,d, =1x1-1x0=1=(-1)°

Fork=1: p,0,—p,g, =1x1-2x1=-1=(-1°

Fork=2: p,g,— p,0 =2x7-13x1=1=(-1)°
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Fork=3: p,0,— ps0, =13x8-15x7 =-1=(-1)°
Fork=4: p,q,-p,g, =15x31-58x8=1=(-1)*
Fork=5: p,0, — psd, =58x70-131x31=(-1)°
Fork=6: p.g, — Pes =131x171—320x 70 = (-1)°

Thus, p,_d, — PG, = (D" for-1 <k <B6.

Corollary 2.1: |10, p.358 |

~D¥a
Ck_Ck—2:( )8, 2 <k<n.
0k k-2
Proof:
(-D** (-1~
By Theorem 2.6, C —Cy =————and G —C, =

k*k-1 qk—lqk—Z

Adding these two equations, we get:

C. —C _ (_l)kil n (_1)k72 _ (_1)k_lqk72 + (_1)k_2qk _ (_1)k_2 (qk — qk—z)
k k-2 — = =
0Ok 040k Ok Ak 1k Ok Ak 10k

But from the continued fraction recursion formula, 9, — 9, , =&,0, 4,

k-2 k-2 1k
s o~ (V@A) _(D7@)_(D'@)
Ok A1k 0y k-2 0k

Corollary 2.2: | 2, p.561 |

For 1 <k <n, pxand gy are relatively prime.

Proof:

Let d = gcd(py, qy). Then d divides p, 40, — PGy = (D) 1<k <n.

Hence, d=1=gcd(py, qi). S0, px and gy are relatively prime forall 1<k <n,
To illustrate this property, consider the convergents of the continued

fraction in Example 2.10. We find that
ged(py, qu) = ged(2, 1) = 1; ged(pz, 02) = ged(13, 7) = 1,
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gcd(ps, gs) = gcd(15, 8) = 1; gcd(ps, 94) = gcd(58, 31) = 1,
ged(ps, s) = ged(131, 70) = 1; ged(ps, Gs) = ged(320, 171) = 1.

Thus, px and g, are relatively prime for each value of k, where 1 <k <6.

Example 2.12:

Given [111,31,2] is the continued fraction representation of the rational

39
numberg , find the convergents.

Solution:
Applying Theorem 2.5, we find the convergents of [1,1,1,312]:
3 . _11  _14 39

Co=1,¢c1=2,C==,C3==",C4=—,C5 =—.
0 1 2 2 3 7 4 9 5 o5

Notice that:
1) The even convergents 1, g % form an increasing sequence and

approach the actual value % from below, i.e. cp<cy<C4.

11 39

2) The odd convergents 2, = 5 form a decreasing sequence and

approach the actual value 2—2 from above, i.e. c;> C3> Cs.

3) The convergents c, approach the actual value % as k increases, where

0 <k < 5. Moreover, they are alternatively less than and greater than %

except the last convergent cs. Therefore, we conclude that ¢ < ¢; < ¢4 <

% = C5 < C3 < C;. Figure 2.1 illustrates these notes.

Figure 2.1
These notes lead to the following theorem.
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Theorem 2.7: | 2, p.562 |

Let co, Cy, ..., Cy be the convergents of the continued fraction [a,,a,,...,a,].

Then even—numbered convergents form an increasing sequence and odd-
numbered convergents form a decreasing sequence. Moreover every odd-
numbered convergent is greater in value than every even-numbered
convergent. In other words:

Com < Com+2, Com+3 < Com+z @Nd Cpj < Cor+1, M, j, ¥ > 0.

Proof:
-1 2k a

By Corollary 2.1, Co —Cox =()—2", k21, (2.17)
U2k Qok -2

Since ay, gy, k2 > 0, then ¢, —C,, _, =0. Hence,
Cok ZCox 2 (2.18)

Thus, the even—numbered convergents form an increasing sequence
C, <C, <C, <....
(_1)2k+1a
_ 2k +1
Similarly, by Corollary 2.1, Coxy —Coxy=——"-,k 21
Aok 4192k 1

and so Cy; > Cyey (2.19)

Thus, the odd-numbered convergents form a decreasing sequence

C,>Cy >Cy > ...

Finally, putk =2s + 1, s >0 in Theorem 2.6, we obtain

_ _ (_1)25 0 . 2s
Cosr1 —Cys = >0, With d,.,,,0,. (D~ >0, we get

25+1q25

Cos < Cyey (2.20)
From (2.18), (2.19) & (2.20):
Co<Cr<Cs<..<Cok <Cot1 <Cok1<..<C3<Cyifn=2k+1
and

Co<Cr<Cs<..<Cou <Coi<Cxs3<..<C3<Cyifn=2k
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Section 2.4: Solving Linear Diophantine Equations

Many puzzles, enigmas and trick questions lead to mathematical equations
whose solutions are required to be integers. Such equations are called
Diophantine equations, named after the Greek mathematician Diophantus

who wrote a book about them.

Definition 2.7: 1,212 |

Diophantine Equation is an algebraic equation in one or more unknowns
with integral coefficients such that only integral solutions are sought. This
type of equations may have no solution, a finite number or an infinite

number of solutions.

Example 2.13:
The following equations are Diophantine equations, where integral

solutions are required for x, y and z.

3X+5y=7, X’ +y* =1, x¥*+y*=7%, xX* =3y’ =1.

Definition 2.8: |_2J

Linear Diophantine Equation “LDE” in two variables x and y is the

simplest case of Diophantine equations and has the form ax+by=c where

a, b and c are integers.

Example 2.14:

3x+5y=1, 6x—4y=2, -5x+5y =8 are linear Diophantine equations in

two variables.
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In this section, we are interested in solving linear Diophantine equations in
two variables. i.e., finding integral solutions of ax+by=c. If aand b are
both zeros, then the equation is either trivially true when ¢ = 0 or trivially
false when ¢ # 0. Moreover, if one of a or b equals zero, then the case is
also trivial. So we omit these two cases and assume that both a and b are
nonzero integers.

Geometrically, this equation represents a line in the Cartesian plane that is
not parallel to either axis. Solutions of the equation ax+by=c are the
points on the line with integral coordinates. Points with integral
coordinates are called lattice points.

However, does every linear Diophantine equation ax+by=c have an
integral solution? If not, what are the conditions necessary for a LDE to

have a solution? The following theorem answers these questions.

Theorem 2.8: |14, p.12 |

Let a, b & c be integers with ab # 0. The linear Diophantine equation

ax+by=c is solvable if and only if gcd(a, b) divides c. If (Xo, Yo) is a

particular solution of the LDE, then all its solutions are given by:

(X, y) = (X, + t,y, - Lt), where t is an arbitrary integer.

ged(a, b) ged(a, b)

Proof:

First, we show that if the LDE ax+by =c is solvable, then gcd(a, b) divides

C.

Suppose (X1, Y1) is a solution of ax+by=c. Then, ax, +by, =c.
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But gcd(a, b) divides both a and b, then , by Theorem 1.1, gcd(a, b)
divides ax, +by,. i.e. gcd(a, b) divides c.

Next, we want to prove that if gcd(a, b) divides c, then the LDE ax+by=c
is solvable.

Suppose that gcd(a, b) divides c. Then ¢ = k. gcd(a, b) for some integer k.
Now, by Theorem 1.4, there exists two integers m and n such that
ma+ nb =gcd(a,b).

Multiply both sides of this equation by k to get: kma+knb =k gcd(a,b) =c.
Thus xo = km, yo = kn is a solution of the LDE ax+by =c. Therefore, the

LDE is solvable.

Now assume that (Xo, Yo) is a particular solution of ax+by =c, then

X=X, +

tand Y=Y, - a
gcd(a, b) ° ged(a,b)

a
sodan) PV sedan)

t,te Z also satisfy the LDE:

=ax +by =a(x,+ t)=ax,+ t+by, - t

ab
gcd(a,b) gcd(a,b)

= ax, + by, =cC.

Thus, (X, + Yo t) is a solution for any integer t.

b, a
ged(a,b) "7 god(a,b)

Finally, we want to prove that any solution (x’, y’) of the LDE ax+by=c

is of the form (X, + t) for some integer t.

b a
t,y, —
ged(a, b) ged(a, b)

Since (Xo, Yo) and (x’, y’) are solutions of ax+by=c, then:
ax, +by, =c and ax'+by'=c. Thatis ax, + by, = ax'+by".
Hence, a(x'—x,) =b(y, - V') (2.21)

Dividing both sides of this equation by gcd(a,b), we have:
(X Xg) = (YY)
gd(a b)) ged(ab) ° Y
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a &b

Note that =a
gcd(a,b) gcd(a,b)

=h, ez are relatively prime by

Theorem 1.5. So, we obtain a (x"—x,) =b;(y, -y ")
This shows that b, divides a (x"—x,). But, since gcd(a;,b,) =1, then by

Theorem 1.6, b, divides (X'—X,) .
b

X=X, =bt=—-—-tteZ, ,

Hence, 0 == d(aD) € (2.22)

IS X'=X, + t.
That is o * sed(ab)

a

imi is Y=y, ————t.
Similarly, is y'=Y, ocd(a.b)
Thus, every solution (x, + t, ¥, a t),t ez of the linear

ged(ab) 7% ged(a,b)

Diophantine equation is of the desired form.

Note 2.3:
We conclude from this theorem that every solvable linear Diophantine

equation ax+by =c has infinitely many solutions. They are given by the

general solution:

X =X +Lt and y=Yy —Lt where t is an arbitrar
° " ged(a,b) ° " ged(a,b) Y

integer.
By giving different values to t, we can find any number of particular

solutions.

Corollary 2.3: |14, p.13]
Suppose that gcd(a,b) = 1. Then the LDE ax+by=c is solvable for all

integers c. Moreover, if (Xo, Yo) IS a particular solution, then the general

solutionisx =X+ bt, y=y, —at,teZ.
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Example 2.15:
Determine whether the following LDE’s are solvable.
a) 6x+18y=30
b) 2x+3y=7
c) 6x+8y=15
d) 59x-29y=-5

Solution:

a) gcd(6,18) = 6 which divides 30, then the LDE 6x+18y =30 is solvable.
b) gecd(2,3) = 1, so 2x+3y =7 is solvable.

C) gcd(6,8) = 2, but 2 does not divide 15, then 6x+8y =15 is not solvable.
d) gcd(59,29) = 1, so 59x —29y = -5 is solvable.

How to find a particular solution to the LDE ax+by=c?

It is not difficult to find a particular solution. One of the methods that are

used is the Euclidean Algorithm method. | 2,16 |
To find a particular solution to a solvable LDE ax+by=c, we follow

these steps.
1) Step 1: Write (a,b) as a linear combination of aand b. That is:

ar, +bs, =gecd(a,b), ro and sy are integers.

2) Step 2: multiply both sides of this equation by ¢ and then divide it by

_ r,xC SyXC |
gcd(a, b): a(gcd(a,b))+ (gcd( b))

3) Step 3: we obtain (%, = Xy =0 E
P °~ ged(ab)’7°  ged(a,b)

of the linear Diophantine equation.

) as a particular solution
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LDE’s were known in ancient China and India as applications to
astronomy and puzzles. The following puzzle is due to the Indian

mathematician Mahavira (ca. A.D. 850).

Example 2.16:

Twenty-three weary travelers entered the outskirts of a lush and beautiful
forest. They found 63 equal heaps of plantains and seven single fruits, and
divided them equally. Find the number of fruits in each heap and the

number of fruits received by each traveller.

Solution:
Let x denote the number of fruits in a heap and y denote the number of
fruits received from each traveller.

Then we get the linear Diophantine equation:

63X +7 =23y
i.e. 63x — 23y =7
X and y must be positive, so we are looking for positive integral solutions
of the LDE.
Since gcd(63, 23) =1, then, by Corollary 2.3, the LDE is solvable.

To find a particular solution, we apply the Euclidean Algorithm:

63=2x23+17 (2.23)
23=1x17+6 (2.24)
17=2x6+5 (2.25)
6=1x5+1 (2.26)

5=5x1
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Now, use equations (2.21), (2.22), (2.23) and (2.24) in reverse order to get:

1=6-1x5
=6-1(17—-2x6)
=3x6-1x17
=3x(23-1x17)-1x17
=3x23-4x17
=3x23-4x(63—-2x23)
=11x23-4x63

Thus, 63(—4)—23(-11) =1. Multiplying both sides of this equation by -7,
we have: 63(—4x—7)—23(-11x-7)=—-7,

That is: 63(28) —(23)(77) =—7.

Therefore, (28, 77) is a particular solution of 63x—23y =—7.

By Corollary 2.3, the general solution of the LDE is:

(X,y) =(28—-23t,77—-63t) , t is arbitrary integer.

Finally, since x > 0 and y > 0, then:

28—23t>0 and 77-63t>0

t< 28 ~1.217 and t< i ~1.222
23 63

So, (x,y)=(28—-23t,77—-63t), where t is an integer less than or equal 1, is

a positive integral solution of the LDE 63x +7 =23y,

Continued Fractions and Linear Diophantine Equations L1,2,13J
Another way to find a particular solution to a solvable LDE ax+by=c is
the continued fraction method. Our approach to explain this method will

be a step-by-step process until we’ll be able to find integral solutions to

any solvable LDE of the form ax+by=c. This method depends on the

formula stated in Lemma 2.1.
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> Solving the LDE ax +by =1; a & b are positive relatively prime

integers.

To solve this LDE, we express % as a finite simple continued fraction.

a
B :[ao,ai,...,an,]_’an]

Then we calculate the convergents ¢y, Ci, Cp, ..., Ch1 ,Co. The last two
convergents cn,lzhand C, =% with the relation stated in Lemma 2.1
n-1 n

are the key to the solution: p,,q, — p,d,, =(-1"
With p,=aand g,=b we have: bp, , —aq, , =(-1"
Or

a(-)""'q,,+b(-)"p,, =1
Comparing this equation with the LDE ax +by =1, we conclude that:
Xo=(CD""q,.1, Y, =(-1"p,_,) is a particular solution of ax +by =1.
Therefore, if n is even, then (Xo,Yo) =(-d,4, P,_y)and if n is odd, then
(X0:Y0) =@na:—Pna)-

We have four cases +ax by =1 according to the sign of both a and b:

Casel: a>0&b >0
Equation: ax +by =1

Solution: (X4,Yo)=((-1)""dy, (D" P,)

Case 2. a>0&b <0
Equation: ax —by =1
Solution: (x4,Y,) :((_1)n_1qn—11(_1)n_lpn—1)

Case 3: a<0&b >0
Equation: —ax +by =1

Solution: (xg,Y) =((-1"d,4,(-1)" p,4)
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Case4: a<0&b <0
Equation: —ax —by =1
Solution: (Xq,Y,)=((-)"dy4, (-D""p, )

Example 2.17:
Solve the LDE 204x —91y =1using continued fraction method.

Solution:

First of all, gcd(204, 91) = 1, then the LDE is solvable.
To find a particular solution, we represent % as a finite simple continued

] 204
fraction. oL =[2,4,7,3]

Then we construct the convergent table as shown in Table 2.3. From this

table: n=3,p,1=p,=65and g,1=0, = 29.

Table 2.3
k -2 -1 0 1 2 3
dy 2 4 7 3
Pk 0 1 2 9 65 204
Qx 1 0 1 4 29 91
o 2_,[ 9 & | 2:
1 4 29 91

Thus, a particular solution to the LDE 204x—-91y =1is:
X, = (—1)2x 29 =29
Y, = (-1)? x 65 =65

Finally, by Corollary 2.3, the general solution is:
X =29+ (=91t =29 91t

, tis an arbitrary integer.
y = 65— 204t
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Now, what if we replace the number 1 in any LDE in the cases above by

another integer “c”? In other words, what is the particular solution of the

LDE ax+by=c, ged(a,b)=1?

> Solving the LDE ax+by =c, where a, b and c are integers, gcd(a,b) =1.
The first step in solving this LDE is to find a particular solution(x,, y,) of

the LDE ax+by=1 using the formulas we’ve studied and derived

according to the case we have.
From ax, +by, =1, we have: a(cx,)+b(cy,)=c

Thus, (cx,,Cy,) is a particular solution of the LDE ax+by=c.

> Solving the LDE Ax+By=C, where A, B and C are integers,
gcd( A B) #1.
As we have proved in Theorem 2.8, the LDE Ax+ By =C is solvable if
and only if gcd(A, B) divides C. If so, divide both sides of the LDE by
gcd(A, B) to reduce it to the equation of the form:

ax+hby=c, (2.27)
where a, b and c are integers, gcd(a, b)=1.
The solution of equation (2.27) has been discussed and is easy to solve.

Finally, any solution of this equation is automatically a solution of the

original equation Ax+ By =C.

Example 2.18:
Solve the LDE 65x —182y =299 using continued fraction method.

Solution:
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gcd(65,182) = 13, and 13 divides 299. So, the LDE 65x-182y =299 is
solvable.

Divide both sides of the equation 65x-182y =299 by 13 to get the LDE
5x —14y =23,

Now, we find a particular solution to the LDE 5x -14y =1.

%:[0,2,1, 4]. The following table is the convergent table.

Table 2.4
k -2 -1 0 1 2 3
ax 0 2 1 4
Dk 0 1 0 1 1 5
Ok 1 0 1 2 3 14
1 1 o
Ck 0 2 3 14

From this table:n=3, p, =1and g, = 3.
Thus, a particular solution to the LDE 5x—-14y =1 is:

X, =(-1)*x3=3

Yo =(-1)*x1=1
So, (23x%o, 23yo) = (69, 23) is a particular solution to the LDE 5x —14y =23
Finally, the general solution of 5x —14y = 23is:
=09+ -14=69-14 " | is an arbitrary integer
y =23-5t ’ y Integer.
Note 2.4:
The continued fraction method for finding a particular solution for a

solvable LDE is equivalent to the Euclidean algorithm method. This is due
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a
to the fact that the continued fraction of b is derived from the Euclidean

algorithm as we have already studied in Chapter Two. However,
generating the convergents using the recurrence relations to solve a LDE is
quicker than to find Euclidean algorithm equations and then use them in

reverse order.
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Chapter Three
Infinite Simple Continued Fractions
Section 3.1: Properties and Theorems
Irrationals are numbers that cannot be written as a ratio of two integers.

A++B
C

Some irrationals are of the form , Where A and C are integers, B is a

positive no-perfect square integer. Irrationals of this form are the roots of
the quadratic equation C*X°-2ACX +(A’-B)=0, so they are called
guadratic irrationals or quadratic surds. However, there are irrational
numbers which are not quadratic surds such as m, e, cube roots, fifth roots,
etc. Our discussion will concentrate on the continued fraction expansions
of quadratic irrationals.

The numbers m and e are examples of transcendental numbers. The
expansion of transcendental numbers into continued fractions is not easy,
but using decimal approximations to them, such as w = 3.141592..... and

e = 2.7182818...., we can find some of the first terms of their continued
fraction expansions:

e=[2121141161181....] and 7 =[3,7151,292111,21,.....]

As we can see, e has apparent pattern occurs in its expansion, but the
expansion of the irrational number 7 does not appear to follow any pattern.
However, mathematicians found the expansions of  and e using methods
which are beyond the scope of this thesis.

In Chapter Two, we’ve defined the infinite simple continued fraction that

has the form



But, in that chapter, our study of continued fractions has been limited to
the expansion of rational numbers. In this chapter, we study the continued
fraction expansion of irrational numbers, state their properties and some

related theorems.

The Continued Fraction Algorithm: | 4, p.3]

For the continued fraction expansion of irrational numbers, we’ll use the
same algorithm as in the continued fraction expansion of rational numbers.

Let y be an irrational number.

Sety =Y, and leta, =[[y,]l;

1 J— .
T a =[[y:]l;
1
yZ - yl _[[yl]] y a2 _[[yZ]]’
1
yk - yk_l _[[yk_l]] ’ak - [[yk]]l

We continue in this manner. Here, the process will continue indefinitely
but the expansion exhibit nice periodic behavior for quadratic irrationals.

We’ll prove this algorithm in Theorem 3.5.
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Example 3.1:

Find the continued fraction expansion of J2.

Solution:
Lety, =+/2, 1<~2 <2, a, =[[y,]l=[[V2]]=1;

1 : . :
¥, =—=— Rationalize the denominator of y;:
V2-1

L2+ 241 B e
V1= aonaiD - 1 =V2+1 & =[[V2+1]=2;

1 1
= = =2+1= , Ay = \/§+1 :2.
Yo \/54_1_2 \/—_1 Y, & =[[ 1]
Since y;=V,, itisclearthat y,=Y;=Yy,=Ys=..=v2+1 and
=== =....=2
Hence,
1 _
J2=1+ 1 =[12,2,2,..]=[L2], where the bar over 2 indicates that
1

24+ —
the number 2 is repeated over and over.

Example 3.2:
Using the continued fraction algorithm, find the first 6 terms of the infinite

continued fraction expansion of e.

Solution:
Let y, =€ =2.7182818285..., a, =[[y ]I =[[e]]=2;
1
_ —1.3922111911..., a, = =1
Y17 57182818285.._ 2 2 =lly.ll
v 1 — 2.5496467788..., a, =[[y,]] = 2

T 1.3922111911...-1
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1
_ —1.8193502419..., a, = ~1-
Y37 5 5496467788... 2 s =[lyall=1;
1
_ —1.2204792881... a, = ~1-
Y4~ 18193502419, 1 «=lly.Il=1;
Ve : — 4.5355734255..., a, =[[y5]]=4.

T 1.2204792881..—1
Thus, e=[212114,..].

Convergents: [1,2,6,9 |
The corresponding convergents to any infinite continued fraction form an
infinite sequence:

Co=to,c =P =P

do 0, g
These convergents are evaluated in the same way as convergents of finite
simple continued fractions since each convergent is finite and represents a

rational number. So we calculate them using the formula:

—ap.,+ _ _
P =& Prs + Py k>0and p,=1p,=0 |
Ok = &0k T Ok q,=0,09,=1

They also have the same properties of convergents of finite simple

continued fractions, and we can summarize them as follows:

* Pl — Pulky = (_1)k, k >-1

(D

*C —C, = k>1.
R N I
(-D)“a,

*C —C_, = k>2.
© S

* For k>1, pxand g are relatively prime.

FCo<Cr<(Cs< ... <Cx<..<Cxp+t1<..<C3<C.
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The proofs of these properties are the same as before since the proofs given

there were independent of whether the continued fraction is finite or
infinite.
Moreover, it is important to note here that since a, and 0y, are positive

integers for S=>1 & k>0 | it follows from the equation d, =a,d, ; +0,_,

that {g, .,k =0, 1, 2,...}is an increasing unbounded sequence.

Theorem 3.1: | 4, p.10 |

a) P =[a, 8 12801 k 20,3, >0

Py 1

b) M =[a 8 4,...a]k >1.

k-1
Proof:
We only prove a). The proof of b) is similar.

Using induction on k:

Fork=0: Do _ %o _a —[a]
Py Pa
Pr _ &P+ Py Py
Fork=1 —=————=a+—=a+_—=[a,a]
o Py Po cH °
Suppose the statement is true for k =n > 1. That is,
P =[a,,a, ;.- 8,8,]
pn—l

Now, P,,=2,,P, + P,,. Divide both sides by p, to get:
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pn+l — an+1 + pn—l — an+1 +
pn pn pn
pn—l
1
= a‘n+1 + 1 = [an+l’ a‘n’
a, + 1
a,; + 1
o+ —
a‘0

Thus, the statement is true for k > 0.

Example 3.3:

ey 8y, 8]

Find the first seven convergents of the continued fraction expansion of 7.

Solution:

We can find some of the first terms of the infinite continued fraction for :

r=[3,7,151292,1,112,1..].

We want to find ¢; for each 0 < i < 6, so we construct the following

convergent table:

Table 3.1
k 2 |-1/0 |1 2 3 4 5 6
ay 3|7 15 1 292 1 1
pk | O 113 [22 | 333 | 355 | 103993 |104348 | 208341
ac | 1 0|1 |7 |106 |113 | 33102 | 33215 | 66317
22 | 333 | 355 | 103993 | 104348 | 208341
Ck 3 |7 |106 | 113 | 33102 33215 66317
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Now, ¢, =3

, = % ~ 3.1428571428571429

¢, = 33 L 3.1415004339622642
106

¢, =3 | 31415020203539823
113

¢, = 103993 _ 5 1415026530119026
33102

¢, — 104348 3 141502653921421
33215

¢, = 298341 5 1415026534674367
66317

and = 3.1415926535897932....

Notice that the convergents c,,c,,...,C; are good approximations for r to 0,
2,4,6,9,9, 9 decimal places, respectively. Hence, they give successively
better approximations to .

Now, from the property cp< €, < C4<...<Con < ... <Com1 <. . . <C3<Cy,
the sequence of even convergents {C,n} IS an increasing sequence that is
bounded above by ci, so it is a convergent sequence. Moreover, the
sequence of odd convergents {con+1} IS a decreasing sequence that is
bounded below by ¢, so it is also a convergent sequence. Hence as m

approaches oo, the sequence {c,} approaches a limit M, and the sequence

{Coms1} approaches a limit M,. That is, lim,,_ . Com= M. and
lim,, oo Comir =M.

Since even convergents are less than all odd convergents, then the limit M,
is less than all odd convergents. Similarly, the limit M, is greater than any

even convergent.



56

These two limits are equal according to the following theorem:

Theorem 3.2: |1, pp.68—70j&L2, p.568 |

Let [a,,8,,a,,....] be an infinite simple continued fraction expansion of a
number y and let ¢, =[a,,a,,....a] denotes the i" convergent of the
continued fraction, then:

1) lim,, Com=1lim,,_ e Comi .

2) lim,, e Cn=Y.

Proof:
(_1)k71
e )

1) Using the property Cx —C,; = , k>1, we obtain:

B (_1)2m B 1

sz+1 - sz -

m > 0.

q2m+1q2m q2m+1q2m ’
1 1
<

But we know that Q,,.; > d,,, , then 5
q2m+1q2m q2m

Now, as m increases, 0, and q§m both increase and so {iz} is a bounded

2m

decreasing positive sequence, hence it is convergent to 0.

So, lim, . (C,y.1 —Cyy) =0and hence, limy, o Comua = lim Cpp.
m—oo
2) Now, {c,n} and {c,m+1} are subsequences of the sequence {c} and they

both have a common limit, say M. Then lim,,,_,, Cp= M.

Hence, we can say that every infinite simple continued fraction converges
to a limit M. This limit is greater than all even convergents and less than

all odd convergents. We prove that the limit M equals the number y.



57

. 1
Given y=a, + 1 ,
a, +
1
a, + 1
Lt 1
a,; + 1
a, +
an+:L +. .
. 1 1
definey, =a, + T You =&t , ... and so on.
A t— Ao t
an+2 +-. amg +.'
. 1 1
Then, we can write Y =38, + 1 and y,=a, +—.
al + yn+1
1
a, + 1
L+
a, ., +
It is clear that y,.+; > 0. So, y,> a, for all n>0.
1
Hence, a, <y, <a, +—. (3.1)
n+1
Now, comparing the three following expressions:
1
Cn = a'O =+ 1 (3.2)
a, + . 1
2
Lt 1
1
a,; +—
1
a, + . 1
2
Lt 1
1
a,; +—

and



58

1
Chy =y + 1 (3,4)
a, + 1
a, + . 1
) 1
a,. + 1
a,+——
a'n+1
1 -
We can see that they have the term @ + 1 in common and
ay+——
1
a, + 1
o
an—l
i i 1 1 1 i
differ in the terms—, —, — respectively.
an yn a + —
" an+1
Using inequality (3.1), we get:
1 1 1
— 1 <o <7 (3.5)
an +7 yn an
a

n+1

Thus, from equations (3.2), (3.3), (3.4) and inequality (3.5), we conclude
that y must lie between two consecutive convergents ¢, and Cn.;. That is:

C, <Y<C,, or C. <Y<C,
But we know that even convergents are less than odd convergents. Thus,
we conclude that

Con <Y <Cyri, m=0,1,2, ...

and in expanded form, we write:
Cy <C, <€y <...<Cyy <.a <Y << Cyppyy <. <Cg <C3 <Cy
Thus, as m increases, even convergents approach y from the left and odd

convergents approach y from the right. Hence, the limit M obtained in the

previous proof is the same as the number y. In symbols, lim,,,_,., C =Y.



59

Definition 3.1: | 20 |
Given an infinite simple continued fraction [a,.a,,a,,3,,...], the term

Yy, =la,.a,.5,a,,,...] is called the (n+1)-st complete quotient of the

continued fraction.

Theorem 3.3: | 2, p.569 |

Any infinite simple continued fraction represents an irrational number.

Proof: (by contradiction)
Let y=[a,,a,,8,,....] be an infinite simple continued fraction. Then, by
Theorem 3.2, y = lim,,,_,o, Cry and C,,, <Y <Cyppiy.

1

ThUS, 0 < y _C2m < CZm+1 - C2m . But, C2m+1 - sz = .
q2m+lq2m

p2m < 1

So, O<y-
q2m q2m+1q2m

I
Now, suppose by contradiction that y is a rational number, SayY=g,

where s > 0.
Then,
o<t Pom 1 |
S q2m q2m+1q2m
That is,

0<|q2m_sp2m <L.

2m+1

S
So, 19,, —sp,, is a positive integer less than :

2m+1

As we studied before, as m increases, Q,,.; also increases. Thus, there is

an integer i such that q,,, >S.
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S
Then, —— <1. This implies that 0<Iq,, —sp, <1. Hence lg, —sp, is a
2i+1

positive integer less than one, which is a contradiction. So, y is an

irrational number.

Theorem 3.4: |4, p.7 ]

Let {%,k:o,l,z,...} be the sequence of convergents of an irrational
k

number y. Define yy as in the continued fraction algorithm,

1 Then: y = Yi P + Py k=0.

Vi [yl Yilia + Oz

i.e., yk =

Proof:
We prove this theorem using induction on k. First, remember that
P =1 P, = O, d, =0, q. =1, P« =3Py + P, and

Oy = a0 0y .

Fork=0:
YoPa+ P, _ Y140
Yol +0, Y.0+1 °°
Fork =1:

( 1 )a, +1
y1p0+p—1:y1-ao+1: Y~ & =y
y1Qo+CI—1 y1'1+0 ( 1 )

y —a

So, the statement is true fork =0 and k = 1.

Assume that the statement holds for an arbitrary number j > 2. That is,
yj pj—l + pj—2

Yidjs +0j-
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Now,
( )P+ P
YiPj * Pia _ Yi—a, _ P+ pi—l(yi _aj) _ a;Pjat+ P+ pj—l(yj _aj)
Yialj +0js ( )q. +0; q; +qj—l(yj _aj) a;0;, +q;-, +qj,1(yj —aj)
Yj—a, SR
_ YiPjat P _
Yidja+ Q-

So, the statement is true for j+1. Thus, the theorem is true for k> 0.

Note 3.1: [ 3,4 ]

The property considered in Theorem 3.4 is also true for rational numbers.

That is [8y,8,,...,a,] = YePa ™ Pis 0<k<n.
Yelis + k2

The following theorem shows that any irrational number can be written as

an infinite simple continued fraction.

Theorem 3.5: |2, p.570 |

Let y =y, be an irrational number. Define the sequence{a, },_, of integers

ay recursively as follows:
1

aQ :[[yk]] v Yea =

Kk~ &

Then y =[a,,a,,a,,a,,...].

Proof:

It is clear that, for any k > 0, a is an integer.

By induction, we prove that yy is an irrational number for every k > 0.

Note that y, is an irrational number and a, =[[Y,]]1# Y,- Then, y,-3a, is

irrational and so vy, = is irrational.

0 a0
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Assume that yy is an irrational number for an arbitrary integer k > 0. This

implies that y, —a, and are also irrationals, which means that yy.1

k ak
is irrational. So, by induction, y is an irrational number for every k> 0.
Next, we show that ax > 1 for every k> 1. yj is an irrational number and
a, =[[y 1] is an integer, then a, # y,and Yy, —a, >0.

But, v, —a, =Y, —[[y.]1<1. Then, 0<y, —a, <landso

Vi = >1. Therefore, a,,; =[[Y.,]1=1. It means that

k _ak
a,, a,,a,,...are all positive integers.
Finally, we prove thaty=[a,,a,,a,,...].

Using the recursive formula:

we find that

1
Yy, =a, + , k=>0.
“ “ yk+l

1 . o .
Now, Y, =a, +—. Successively substituting for yy, y», s, ... yields:
1

1
Yo =8, +— =[a,, ]
1

1
=a, + 1 :[aO’a1:Y2]
a +—
Y,
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:a0+—1:[a0,a1,a2,y3]

=[a,,8,,8,,85,...,8,, Y] » M>0.

ym+1

Using Theorem 3.4, we get:
— ym+1 pm + pm—l
ym+1qm + qm—l

Yo

Let C, = P be the k™ convergent of the continued fraction [a,,a,,3,,8;,--.].

k

Then
yo _Cm — ym+1 pm + pm—l _&
ym+lqm + qm—l qm
_ pm—lqm B pmqm—l
(ym+1qm + qm—l)qm

BUta Pmalm = Prlma = (_1)m . Then;

Yo —=Cn = (_1)m
(Yol + A1)
B 1
SO, ‘yo _Cm‘ - (ym+1qm +qm—1)qm .

1 1
(am+1qm +qm—l)qm qm+1qm .

But, Yma > @npig s SO ‘yo _Cm‘ <

As m approaches oo, gy, gets larger and larger, and so, approaches

m+1+1m

zero. It meansthat ¢, Y, as m— oo,



64

Hence, y=y,=Ilim___c. =[a,,a,a,,..]

We conclude that we can approximate any irrational number by a rational

number.

Theorem 3.6: | 20, p.253 |

The infinite simple continued fraction expansion of an irrational number is

unique.

Proof:

Let x be an irrational number. Suppose that there are two infinite simple

continued fractions representing the irrational number x.
X :[do,dl,dz,...] :[ho,hl,hz,...]
It is clear that d, =[[x]] and h, =[[x]]. So, d, =h,.

Next, using the continued fraction algorithm, we find that d, =[[

1
x—=[[x1]

Suppose that d, =h, for all k <n. We’ll prove thatd, =h, .

and h, =[[ 1. So, d, =h,.

Using the complete quotient, we can write:
x=[d,,d,,d,,..d ;,x,]1=[d,,d,,d,,..d ,,x']

Now

P .
Xn qn—l + qn—2 ann—l + qn—2

!
X = Xn pnfl + pn—2 _ Xn pnfl + pn—2

So

(Xn pn—l + pn—2)(Xr,1qn—1 + qn—2) = (ann—l + qn—Z)(Xr: pn—l + pn—Z) '

This implies that

' '
Xn pn—2qn—1 + Xn pn—lqn—z = ann—l pn—z + Xn pn—lqn—Z

1

X —[[X]]]]
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Then
(X =X, Pr_glos = (X =%, ) Ppsd, =0
(X, =X, )[Pr-2Gns = Pral ] =0
But
Prolns = Praln, = (D"
Thus

X, —x, =0,
Asaresult, X =x.. So, d. =[[x, ]1=[[x.11=h,.
Thus, we deduce that d, =h,.
Therefore, we’ve proved by induction that the simple continued fraction

representation of an irrational number is unique.
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Section 3.2: Periodic Continued Fractions

In the previous section, we studied the representation of irrational numbers
as infinite simple continued fractions. We also discussed their convergents

and some related theorems. In this section, we study quadratic irrationals

A++B
C

in details, i.e., irrationals of the form , where A and C are integers,

B is a positive non-perfect square integer.

Definition 3.2: | 3,6,9,18 |

The infinite continued fraction [a,,a,,a,,a,,...] is periodic with period d
if there exists a smallest positive integer d and a nonnegative integer f such
that a,,=a, for all n > f . It can be represented as
AT VP P T ¢

The quotients a,,a,,...,a;, are called non-repeating quotients and the

quotients a;,a; ,,....a;,4., are called the repeating quotients of the fraction.

A continued fraction is called purely periodic with period d if it is

periodic with f = 0, that is if there is no non-repeating quotients. It can be

represented as [a,,a,,...,8,4 4]

Example 3.4:

Find the continued fraction expansion of 1+;/£.

Solution:

Let y, :“F,ao ~[ly,11=3

y, - 1 1 _ 2 :2(\/£+5):\/£+5’a1:2_
Yo—8 1++35 , 35-5 35-25 5

3

2
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1 1 5 _5(\/£+5)_\/£+5a

yz_yl—al_\/%w_z_\/%—s_ ®_25 2
5
1 2  _V¥s+5_ .,
y3_\/£+5_5_\/£—5_ 5 rRkTa=s
2

Sinceyz =y, itisclearthaty, =VY,, Ys =Y, ..., Yo« = Y2, Yo = Y1, and

the corresponding partial quotients alternate between 2 and 5 indefinitely.

1+;/£ =[3.2,5,2,5.2,..] =[3,2,5].

Hence,

The continued fraction expansions of the irrational numbers 2 (in

1+\/£

Example 3.1) and 5

are periodic but not pure.

Example 3.5:

Find the continued fraction expansion of 3++/11.

Solution:

Lety, =+11+3,a, =[[y,]]=6

PO SN S S 1(V11+43) V1143 0 -3

C Yo—a, 3+411-6 J11-3 (V11-3(11+3) 2 ]

1 1 2 2(+11 +3) i
= = = = =+11+3 , a,=6
#Tyma Vi3, VI3 11-9 :
2

Since Y, =Y,, it is clear thaty, =Y., Ys=VYo, ---s Yo = Yo, Yoxsa = Y1, and

the corresponding partial quotients alternate between 6 and 3 indefinitely.

Therefore, v11+3=[6,3,6,3,6,...1=[6,3] is purely periodic with period 2.

Now, if we want to convert a periodic continued fraction to a quadratic

irrational, what shall we do? [111]

We’ll explain the method by the following example.
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Example 3.6:

A++/B

Convert the continued fraction [2,3,1,2,1] to the form

Solution:
Let x=2+ L 1 and y represents the repeating quotients of the
3+
1
1+
1
2+ 1
1+
1+,_
continued fraction.
Thatisy =1+ ! 1
2+
1
1+
1
1+ 1
2+
1+,.
Now, y=1+ =1+ L =1+ y+1 :4y+3.
oLt LY 3y+2 3y+2
1 1
1+— y+
y
And so, 3y*—2y-3=0. Solving this quadratic equation, we get:
1+410
3
i . .. 1++/10
Since y is positive, theny = +;/_ :
But, x=2+ Substitute the value of y in this equation to find the
3+—
y
value of x:
v, L o, 1 _ 7410 +13
3, 1 3J10+6 3J10+6

1++/10 1+4/10
3
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Rationalize the denominator to get:
X = 132-3J10 _ 44—\@. Hence, [2,3,1,21] = 44_‘/E.
54 18 18

Definition 3.3: | 3,21

An irrational number is called a quadratic irrational if it is a root of a

quadratic equation ay’ +by+c=0where a, b, ¢ are integers, a # 0 and its

discriminant b —4ac is a positive non-perfect square integer.

Lemma 3.1: | 22, p.281 |

o ax+b
Let x be a quadratic irrational and let )bm, where a, b, c and d are

integers, ¢ and d are not both zeros. Then x is a quadratic irrational if and

only if ad —bc 0.

Proof: see [22].

Theorem 3.7: |3, p.20 |

If the continued fraction expansion of y is purely periodic, then y is a

quadratic irrational.

Proof:

Let y be represented by a purely periodic continued fraction. That is

y=[a,,a,..,8,]
Then
1
y=a,+ 1 =[a,,8,,...,a44, Y]
a + 1
a, + 1
L+
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and Y=Yo=Yq=Yog =,
ypdfl + pd—z )
yqd—l +qd—2

So, qd_1y2 +(0y_z = Pyg_1)Y = Py, =0.

Using Theorem3.4, Y =

Hence y is a root of a quadratic equation. If y is rational, then it has a finite
simple continued fraction representation, not an infinite pure periodic
continued fraction presentation. Thusy is a quadratic irrational.

Corollary 3.1; | 21, p.168 |&| 22, p.281 |

A periodic continued fraction represents a quadratic irrational.

Proof:

Let y be a real number represented by a periodic continued fraction. That

IS y=[a5,8,,....,8_,8;,8¢ 5,00 81,44]-

Let x be represented by the periodic part of y. That is

x=[a;,a;,,-.8;,44]- Then, by Theorem 3.7, x is a quadratic irrational.

1
y=a,+ 1
a, +
1
a, + 1
o+ 1
af71+ 1
a; +
1
af+1+ l
So, +
af+d—1 +i
1
=a, + 1 =[a,,8,,.-.,a; 4, X]
a, +
1
a, + 1
4
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XPi g+ Piy

.Then, by Lemma 3.1, y is a quadratic
Xqi4 +0¢

Using Theorem 3.4, y=

irrational since p; ,q; , + P;_,0, =(-1)" #0.
The quadratic equation ay’+by+c=0, where a # 0, b and ¢ are integers

with a positive non-perfect square discriminant has two roots.

w_—b+\/b2—4ac _A+yB

24 C

The first one is and the second is

e ~b-+b?’-4ac A-B
C

2a

,where A=-bh, B=bh?-4ac, C=2a are

. i i 2A Db
integers. @ and o' are conjugates. Notice thata)+a)’=?:?and

, A°-B ¢
ww =

c: a’
For instance, —+/5 is the conjugate of +/5 and 14++/7 is the conjugate of

1447,

Definition 3.4: [1,23
Let @ be a quadratic irrational satisfying the quadratic equation
ay>+by+c=0, where a, b and c are integers. Then @ is called a reduced

quadratic irrational if @>1 and -1< ' <0.

Example 3.7:

The quadratic irrational 3++/10 is greater than 1 and satisfies the quadratic
equation (x—3)?=10, that is x> —6x—1=0.also, its conjugate 3-+10 lies
between -1 and 0. Thus, 3++/10 is a reduced quadratic irrational.

In general, we know that if B is a positive non-perfect square integer, then

0<+VB-[[VB]]<1 and so, —-1<[[VB]]-VB<0. Thus, vB+[[VB]]>1 is a

reduced quadratic irrational.
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Theorem 3.8: | 24, p.405 |
If y has a purely periodic continued fraction expansion, then y is a reduced

quadratic irrational.

Proof:
Let y=[a, a,,..a,,] be the value of a purely periodic continued fraction.
In Theorem 3.7, we’ve proved that y is a root of the quadratic equation:
Gg1Y *+(@—2 —Pg1)y —Py—r =0,

hence y is a quadratic irrational. Now, we shall prove that y is reduced.
Since ay’s are positive integers for kK > 1 and y is purely periodic,
a, =8, =a,, =..=21 and soy > 1. Also, notice that py’s and qi’s are positive
for all k.
y and its conjugate Y’ are the roots of the quadratic polynomial:

9(X) =0y X* + (g = Pus) X~ Pus
Now,
9(=1) = (G441 —94-2) +(Py_s — Pa—) >0 since Py > Py,anddy, >0y,
and g(0)=-p,,<0.
By the Intermediate VValue Theorem, there is a root of g(x) between -1 and

0. Buty is greater than 1, so the root is its conjugate Y'. Thus, —1< Yy’ <0.

As aresult, y is a reduced quadratic irrational.

Theorem 3.9: |1, p.93 |&| 23, p.169 |

Letw=[a,,4&,..,a,] be apurely periodic continued fraction. Then:

-1 ) )
i [a,,8,,,...&,8,], where W' is the conjugate of w.
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Proof:

w represents the purely periodic continued fraction [a,,a,,..,a,]. Then, it

can be written as
w=[a,,a;,...,a,, W]
Using Theorem 3.4,

WP, + Pns
WO, + Ony

where % and % are the n™ and (n-1)* convergents of the continued
n n-1

W=

fraction [a,,a,,...a,], respectively.
This implies that (by Theorem 3.7),

0aW* + (Qyy = P)W =P,y =0 (3.6)
Next, let v be the purely continued fraction representation of of w but in

reverse order,

V=[a,,8, 18y, 8]

i.e.,
=[a,,a, ;... &,a,V]

Again, using Theorem 3.4,
L

VS, +S,4 (3.7)

where ™ and ™1 are the n™ and (n-1)* convergents of the continued

Sn Sn—l

fraction [a,,a,,,...,&,,8,], respectively.

We have:
Py I
=|a ,an7 yeey Ao | =—
pn—l [ " ' O] Sn
qn rn—l
and _:[an1an_ 1"'1a1]:
Qs 1 S

Then



since convergents are in their lowest terms. Substituting these results in

equation (3.7), we get:
v=_"P.*+ 0,
Vpn—l + qn—l

So, P,V +(q,,—p,)vV—0, =0
Dividing both sides of this equation by —v* (v > 1)
)+ o = P~ Py =0
Thus, _71 Is a root of equation (3.6) and since v and w are positive, _71 IS

: : -1 :
negative and different from w. so, ~ must be the conjugate w’ of w.

-1 -
Hence, W' =7and o) V:W =[a,,a, 1, a].

Theorem 3.10: | 23, p.169 |

Let w be a quadratic irrational and w’ be its conjugate. If d and | are

rational numbers, then d-+Iw' is the conjugate of d+Iw. Moreover,

!

| . : I
d + — is the conjugate of d + —.
W w

Proof: see [ 23].

Theorem 3.11: LS, p.21j (Lagrange’s theorem)

If w is a quadratic irrational number, then it has a periodic continued

fraction expansion.

Proof: see | 3].
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Theorem 3.12: | 24, p.405 |&| 25, p.45 |

If w is a reduced quadratic irrational number, then it has a purely periodic

continued fraction expansion.

Proof:

LetW=W,be a reduced quadratic irrational. So, w>1 and its conjugate

W' lies between -1 and 0.

First, we prove that each complete quotient w,,k >1 is a reduced quadratic

irrational.

w=a0+Wi, a, =[[w]]. So, w, = >1. By Theorem 3.10, w’=a0+i,
1 % 1

and so w; =

!

w-a,

w; lies between -1 and 0 since -1<w <0. So, W, is a reduced quadratic
irrational.

Suppose W, is reduced. Thatis, w, >1 and -1<w/ <0.

1 1
Now, W, =2, +W—, a, =[w,]]. So, we have WM:W— >1 and

n+l n an

a, =[[w,]]>1 since w, >1. So, W;] —a, <-a,<-1and —1<W . <0,

n+l

Hence, W,,, is a reduced quadratic irrational and by induction, W is

reduced for k > 0.
Next, we complete the proof using contradiction. Suppose that the

continued fraction expansion of w is not purely periodic and has the form

[a,.a,,....,a,4,8,,8,,,.-.8,.44], Where a_is the first repeating quotient.
1
).

1
Wy =Wogq = (anfl + W_) - (an+d71 +

n n+d
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But w,=w,,,. So, W, ,—W,,,,=a,,—a,44 IS a non-zero integer since

otherwise a,, and a,,4_, would be equal and hence the period would begin

one position sooner.

!

This implies that w,, -w/,,, is also a non-zero integer. But, -1<w,, <0

and -1<w.,,<0.So, -1<w ,—W,

n

.44 <1, a contradiction.

As a result, the continued fraction expansion of a reduced quadratic

irrational is purely periodic.

Theorem 3.13: |1, p.112|&|25, p.47| (The continued fraction

expansion for ﬁ)

Let T be a positive integer, not a perfect square. Then

ﬁ:[ao,ai,az,a3,...,an71,an,280]

where a,,,_; =a;, ] =12,...,n.

ie., T =[a,,2,8,,85,...,8,,3, 23]

Proof:
At first, notice that ~T >1and so—~T <—-1. Thus, /T is not a reduced

quadratic irrational.

1
Let ﬁ:[ao’aliazv"]:ao"'—l (3.8)

Since a, =[[VT]], a,+~T >land its conjugate —1l<a,—~T <0. Then,

a,++Tis a reduced quadratic irrational and has a purely periodic

continued fraction.

Add a, to both sides in equation (3.8) to get:
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a0+ﬁ:2ao+

But the expansion of a reduced quadratic irrational is

purely periodic.

Then,
a, +«/?=2aO + L 1 =[2a,,a,,a,,...,4,]
a, + » 1
| a, + L
2a, + L
a +—
So,
ﬁ:a0+ L 1 =[a,,a,,d,,...,a,,28,]
a, + - 1
| a, + L
" 1
2a, + 1
a, + . 1
' 1
a, +
28y +— (3.9)
Now, using Theorem 3.9,
-1 1
= =[a,,a, ., 8,,28,] 3.10
a,—JT T -a P (3.10)

Moreover, using equation (3.9), we can find

1
JT-a,

both sides to get:

Subtract ap from
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ﬁ—a0=0+ ! 1 =[0,a,,a,,...,a,,28,]
a, + . 1
| a, + !
" 1
2a, + 1
a, + . 1
' 1
a, +
28, + . —
Thus, by Theorem 2.3,
1 1 B >
N =a + 1 =[a,,a,,..,a,,28,] (3.11)
0 ot
a, + L
" 1
2a, + 1
a, + . 1
| a, + L
2a0+,i

However, since the continued fraction expansion is unique and comparing
both equations (3.10) & (3.11), we find:

an = ai’an—l = a2""’a2 = an—l’ai = an

So, JT =[a,,3,,8,,...8,,8,,2a,].
In other words, the periodic part is symmetrical except for the term 2a,. It
may or may not have a central term.

For instance, the symmetrical part of the periodic expansion for

V29 =[5,211,210] has no central term. But, in the periodic expansion for

J31=[5113531110], 5 is the central term.

Example 3.8:

Find the continued fraction expansion of +/11.
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Solution:

Lety, =+11,a, =[[v11]]=3.

y, = 1 _J1_1+3

-3 2
1 2

= = =J11+3, a,=6
2T s . Vi3 ’

3
2
yo= 1 _«/1_1+3_y a,—a -3
P 11+3-6 2 b

Since yz3 =y, itisclearthaty, =y;=ys=...anda; =az=as = ... = 3. S0,

a =3

Yo=Ya=Ys=..and @y == =...=6

1 — .
Hence, v11=3+ 1 =[3,3,6,3,6,...] =[3,3,6]. Notice that

3+

S . —

6=2(3) = 2a,.

For more examples, look at Table 3.2.
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Table 3.2

T The continued fraction expansion for ﬁ
2 [L2]

3 [L12]

5 [2,4]

6 [2,2,4]

! [2,1114]

8 [2,14]

10 [3, 6]

11 [3,36]

12 [3,2.6]

13 [3,11116]
14 [3.1,2,1,6]
15 [3,16]

17 [4,8]

18 [4,4.8]

19 [4,21,31,2,8]
20 [4,2,8]

21 [4,11,2,11,8]
22 [4,1,2,4,21,8]
23 [4,1,318]
24 [4,18]

26 [5,10]

27 [5,5.10]

28 [5,3,2,310]
29 [5,21,1,2,10]
30 [5,2,10]
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Section 3.3: Solving Pell’s Equation
In this section, we study the solution of one type of Diophantine equations,
called Pell’s equation, using continued fractions method. The continued

fraction expansion of VT plays an important role in our discussion.

Definition 3.5: | 5,9,12 |

Pell’s equation is a Diophantine equation of the form X*-Ty?=+M
where T is a positive non-perfect square integer and M is a fixed natural
number.

Indian mathematicians Brahmagupta and Bhaskara are the first to study
Pell’s equation. This equation appears in problems in mathematics. One of
these problems is “The Cattle Problem” of Archimedes. In this problem,
there are eight unknowns represent the number of cattle in different kinds.
After many steps, one can reduce the problem to x* —4729494y? =1.

In this section, we are interested in solving the Pell’s equation X* —Ty? =1
, Where T is not a perfect square since if T is a square natural number, i.e.
T =s° for some natural number s, then we get a linear system of equations

and so the case is trivial.

For the case of x*-Ty*=1:
x> -Ty? =1
x> —s’y* =1
(x=sy)(x+sy)=1
X—sy=1 X—sy=-1

Th r
us, X+sy=1 0 X+sy=-1

Solving these two linear systems, we get (x,y)=(10) or (x,y)=(-10),

respectively.
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And for the case of x*-Ty* =-1:
x?-Ty> =-1
X2 —s?y? =1

(X—=sy)(x+sy)=-1
X—sy=1 X—sy=-1

X+sy=-1 or X+sy=1
Solving these two linear systems, we get (x, y)=(0,_?l) or (x, y)=(0,%),
respectively. So, we have the trivial solutions (x,y)=(0,-1) or (x,y)=(0,)
ifs=1.
Another note about Pell’s equation is that if (m,n) is a solution, then there

are three other solutions located at the vertices of the rectangle centered at

the origin and having (m,n) as one of its vertices, i.e., the other three
solutions are (m,—n),(—m,n) &(-m,—n). Thus, it is enough to consider

positive solutions only, i.e., m & n are positive integers.

Remark 3.1:
If (a,b) is a solution of the equation x*-Ty®>=+1, then gcd(a,b) =1.
Otherwise if gcd(a,b) = c # 1 then c*(r*-Ts®)=+1. Butc, r,sand T are

all integers. So c = 1.

Theorem 3.14: |14, p.88 |&| 26, p.332

a
If (a,b) is a positive solution of the equation x*-Ty®=+1, then b is a

convergent of the continued fraction expansion of T .

Before we write the proof of this theorem, we need the following lemma:

Lemma 3.2: | 26, p.326 |
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u
Let y be an irrational number. If V’VZl and gcd(u,v)=1 satisfies

1 u
<— o2 , then " Is one of the convergents of the continued fraction

-
expansion of y.

Proof: see |26 |.

Proof of Theorem 3.14:

First, if (a,b) is a positive solution of x*-Ty’=1, thena®-Tb?*=1and
a>byT .

Now,
a’-Tb? =1
(a—bJT)(@+bvJT) =1
a 1 1 1 1

S0, O<E_ﬁ: b(a+bvT) bovT +byT) 20°yT  2b%

a . i . i
By Lemma 3.2, — is a convergent of the continued fraction expansion of

b
JT .
Second, if (a,b) is a positive solution of x*-Ty*=-1, thena®-Tb*=—1
. . , 1 , 1
Rewrite the equation as b —?a =T
Now (b—ia)(b+ia)——
T JT T
Notice that 0 and so b i
?> ﬁ
Therefore. 0<2 - < 1 g 1 1 __1
R a T Ta(b+—a) Ta(—= a+ia) Zazﬁ 2a*
JT JT AT
This implies that
1 b 1
- — <_
‘ﬁ a| 2a’
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b 1
and thus, by Lemma 3.2, — is a convergent of ——.
y a J JT

Let VT =[a,,a,,a,...]. Then, by Theorem 2.3, %:[o,ao,ai,az,...]. Since

b 1 b
i — —=[0,a,,a,a,,...,a .
" |saconvergentofﬁ,then " [0,8,,8,4a, +] for some n

a a
But, Ez[ao,al,az,...,an]_ Therefore, Y is a convergent of JT .

Definition 3.6: |14 |

The positive solution (X,,Y,) to Pell’s equation x> -Ty® =+1 is called the
least positive solution or the fundamental solution if x, < fand y, <g
for every other positive solution (f, g).

It is easy to find the solution of Pell’s equation X*-Ty’=1 using the

continued fraction expansion of VT =[a,,a,,a,,a;,...a, ,,a,,28,].

Now, — =[a,,&,,..,a,4,a,] and Pra

n n-1

=[ay,,,...a,,] are the n""and  (n-

1)* convergents of the continued fraction expansion of JT

Using Theorem 3.4, T = aPn® Poy

tn+1(:1n + qn—l
where t_, =[2a,,a,,...a,]1=2a, +/T .
(3 +T) P, +Pyy

Thus, VT =
(@ +VT)a, + s

If we multiply and rearrange the terms we obtain:
ﬁ(aoqn + qn—l) +an = aO pn + pn—l + pnﬁ

But~/T is an irrational number and 89,0,.1,%0: Py P, T are all integers.
ann + qn—l = pn

This implies that
p an = aO pn + pn—l

So
Jhq = Pp — 244,

3.12
Pra = an —a,P, ( )
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Remember that
PrsCn — Prlny = (=1)" (3.13)

Substitute equations (3.12) in equation (3.13) to get:

(Td, —2,P,)G, — Pn(Py —290,) = (-1)"
Then Tq, — p, = (-D)"
or pr —Td, = (D"
Therefore, (p,,q,) is a solution to the equation x* —Ty* = (-1)"*.
We have two cases. If nis odd, then (p,,q,)is a particular solution to the
equation x> —Ty® =1. Notice that the period length “ d ” of the continued
fraction expansion of JT is n+1. So, we can write the particular solution
(Pn:0,) as (Pg:Gg-a) -
However, if n is even, then (p,,d,) is a particular solution to the equation
x> —Ty®> =—1. So, we try to use convergents of the second period to find
a particular solution to x* —Ty® =1,

Now, the term that occurs for the second time is the term a,,,,. So,

p2n — [ao’ aj""an—l’ an ,2a01 ai,-..an—l]
U2n
and 22n+1 — [ao’ a~1!"'an—l’ an,ZaO, al""’ an—l’ an]
2n+l

ﬁ _ Loni2 Ponia + Pon
Ln202ns1 + O2n
\/f _ (ao + ﬁ) Pani + Pon
(@ + VT )Gy + Gy

,where t,, , =[2a,,8,,...a,]=t_, =a, +~/T .

Continuing as before yields:
U2n = Pania — @lann
Pan = Tl — 89 Pani

NOW1 p2nq2n+1 - p2n+1q2n = (_1)2n+1 (315)

(3.14)
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Substituting equation (3.14) in equation (3.15) and then dividing the
resulting equation by -1 yield

Pznia = TOn = (D" =1
Thus, (Paniss Gonis) = (Pag 1, Uog.1) IS @ particular solution to x* —Ty* =1

where either n is even and d is odd or vice versa. Notice that whatever the

case is, we can always find an integral solution to the equation x* -Ty* =1.

The following theorem gives us the set of all positive solutions of

X —Ty® =+1.

Theorem 3.15: |14, p.89 |

Let T be a non-perfect square positive integer and B is the i™ convergent

of VT =[a,,a,4,,..,a,,,8,], where d is the period length. Then:

(a) All positive solutions of x> —Ty? =1 are given by
(pkd—lide—l)’ keN if d is even
(Xv y) = . .
(Pokd-1: dokaa)- K €N if d is odd

(b) On the other hand, all positive solution of x*> —Ty* = -1 are given by

(X, Y) :{ ( P2k-1yd-1> q(2k—1)d—1)1 keN if d is odd
no solution if d is even

Moreover, (py,,dy.4) is the fundamental solution of
x*-Ty*=1 if diseven
x*-Ty’=-1 if disodd

and (P,g1,0,4.1) is the fundamental solution of x> -Ty® =1 if d is odd.

Proof: see [14 |.

Example 3.9:
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Find the fundamental solution to the equation:
(a) x*-19y* =1
(b) x* —13y° =1

Solution:
() First, 18 —[4,2.13,12.8] [ 2,2,8,,8, 8.5 |.

The period length d = 6. So, the fundamental solution is (ps,q:).

The first six convergents of V13 are:
9 13 48 61 170

Thus, (170,39) is the fundamental solution to x> —19y* =1.
In addition, the set of all positive solutions of x*—19y* =1 is

(X y)= {( Pek_1s A1), K € N}

The following table shows solutions fork=1, 2, ..., 5.

Table 3.3
K (Pok1» Yok 1)
1 (Ps, 05) = (170,39)
2 (py1,9;4) = (57799,13260)
3 (Py7,0y;) = (19651490, 4508361)
4 (P,3, 0,5) = (6681448801,1532829480)
5 (P,9,0,0) = (2271672940850,521157514839)

(b) \/fg = [3,1,1,1,1:6] = [ao1avp a,, a3’a4’a5]
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The period length d = 5. So, the fundamental solution of x*-13y* =1
is (P, ).

The first ten convergents of V13 are:
4 7 11 18 119 137 256 393 649

"’2’3'5733738" 71 '109°180

So, the fundamental solution is (649,180).

Notice that (p,,q,) = (18,5) is the fundamental solution of x* -13y* =-1.

Moreover, we can find all other positive solutions of Pell’s equation using

the fundamental solution as the following two theorems illustrate.

Theorem 3.16: | 26, p.339 |&| 28, p.354 |
Let (X,,Y,) be the fundamental solution of Pell’s equation x> —Ty* =1.

Then, all other positive solutions (X,,Y,) can be obtained from the
equation
X, + Y NT =(X, + Yo T)",neN.

Proof: see [ 28].

Theorem 3.17: |18, p.63]

Let (X,,Y,) be the fundamental solution of the negative Pell’s equation
x> —Ty? =—1. Then, all positive solutions (X,,y,) of x*—Ty* =+lare
given by x, + Yy, ~T =(X, + Y,vT)".,neN

where odd values of n gives all positive solutions to x* —Ty? =-1and even

values of n gives all positive solutions to x* —Ty? =1,

Proof: see [18].

Remark 3.2:
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We find the values of (X,,Y,) by expanding

X, +Y,~T =(X +Y,vT)",ne N by the Binomial Theorem and equating

rational parts and purely irrational parts of the resulting equation. For

example, for n = 3, we have:

3 3 3 3
Xy + Yo VT = (% + YoIT)* = (OJXS " [Jx(? Yo T +[2]X$y§T + @ySTﬁ

So,

= X3 +3x; YT + ﬁ(Bxé Yo + YoT)

(X5, ¥3) = (X5 +3% Yo T.3%5 Yo + YoT)

Example 3.10:

1)

(2)

In Example 3.9, the fundamental solution of x*—13y® =1 is (649, 180).
Set n = 2, we have: X, + Y,13 = (649 +180+13)? = 842401 + 233640+/13
So, (842401, 233640) is the second solution of x* —13y* =1,

Set n =3, we get:

X, + Y,+/13 = (649 +180+/13)° =1093435849 + 303264540+/13

So, (1093435849, 303264540) is the third solution of x* —13y* =1,

By Theorem 3.17 and using convergents in Example 3.9, we find that

the fundamental solution of x> —13y* =-1is (18, 5).

To find the second solution of this equation, set n = 3:
X, + Y;+/13 = (18 + 513)° = 23382 + 6485+/13

So, (23382, 6485) is the second solution of x* —13y* =-1,
If we set n = 2, we get a solution of x* —13y°* =1:
X, + Y,~/13 = (8+5+/13)? =169 +180~/13

Notice that we get the fundamental solution (169, 180) of x* -13y* =1,
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Chapter Four

Best Approximation and Applications
We discuss in the first section the best approximation and its relation with
convergents. In the second section we study some interesting applications

of continued fractions in different fields.

Section 4.1: Continued Fractions and Best Approximation

A very important use of continued fractions is the approximation of
irrational numbers by rational numbers.

The problem of approximation includes determining which of the rational
numbers that have a difference “no more than a specific value” from a
given irrational number has the lowest positive denominator. This way is
also used to approximate rational numbers whose numerators and
denominators are extremely large by a fraction with smaller numerator and
denominator.

Convergents have an important role in solving the problem of best
approximation of a real number since, from our study of them, they are
completely determined by the number represented and closely connected

with it.
Definition 4.1: | 30 |

i a . i i i .
A rational number — is a best approximation of a first kind of a real

b
: _ c a
number x provided that, for every rational number Eig such that
a c
O0<d<b, we have [x——|<|Xx——].
b d
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a
In other words, b Is a best approximation of the first kind if we cannot

find a different rational number closer to x with denominator <b.

Definition 4.2: LSJ

. a . . . i
A rational number o Is a best approximation of a second kind of a real

: _ c a
number X provided that, for every rational number Eig such that

0<d <b, we have |bx—a| <|dx—¢|

Theorem 4.1: | 30, p.386 |

Every best approximation of a second kind of a real number x is a best

approximation of a first kind of x.

Proof:
a c
Let o be a best approximation of a second kind of x. Let q be a rational

number with 0<d <b. Then

bx —a| < |dx —c|

a| |bx—al |dx—c| [|dx—c] c
Now, |X ——| = < = X—=
R Y I d [
a c a . : . . .
So, X_E < X_H" Thus, p s best approximation of a first kind.

Remark 4.1: |30, p.386 |
The converse of Theorem 4.1 is not true. The following example shows
that a best approximation of a first kind may not be a best approximation

of a second kind.
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Example 4.1:

. 13 . .. . . .
The rational number i Is a best approximation of the first kind to  since

there are no rational numbers closer to = with denominator < 4.

10 7 3 . i )
—, — and 1 are the closest distinct rational numbers to m with

32
denominators 3, 2 and 1 respectively.

T— 13 _ 0.108407346...

T— % =0.191740679...

T — %‘ =0.358407346...

T — %‘ =0.141592653...

c 13
Thus, for every rational number — # Zwith 0<d <4, weget

d

13 c
T——<|m——
‘ 4 d

13
However, 7 IS not a best approximation of the second kind to m since
3 13
7 and 0<1<4 but lz-3<[4r-13,

The following theorem is a generalization of the idea in Example 3.3,

Theorem 4.2: |3, p.31|&[11, p.404 |
For an infinite simple continued fraction representing an irrational number

y, each convergent is nearer to y than the preceding convergent.

Proof:

Let [ay,&,,...,a,,...] be the infinite simple continued fraction representation

ofy. Then y=[a, a,...a,,Y¥,,] where y,, =[a,,,2,,,].
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By Theorem 3.4,
— yn+1 pn + pn—l
yn+1qn + qn—l -

y

This implies that
yn+lqn Y=Y pn = _qn—ly + pn—l
Thus yn+1(qny_ pn) = _qn—l(y_h) for n 21

n-1

Dividing both sides by Y,.1d, yields:

y_& _ — 0o (y_ pn—l)
qn yn+1Qn qn—l

Then, take absolute value to both sides to obtain:

y— Pu| _| G y_ Pl
qn yn+1qn qn_l‘
But g, >0, >0and Y,, >1 for n>1. Therefore 0< —yqn_é <1
n+1+n
— pn _ pnfl _ _
Thus, 1y al~l g ly —c,| <]y —¢,4| for n>1.
n n-1

So, y is closer to the n™ convergent than to the (n —1)® convergent.

Theorem 4.3: |30, p.387 |

Let y be a real number and let ¢, B be the n™ convergent of the simple

n

continued fraction representation of y. Then

‘y - Cn‘ < .
qnqn+1

Proof:

We’ll prove the theorem for irrational numbers. The proof of rational
numbers is in the same manner provided that c,.; exists (that is y # cp).

First, we use the inequalities:
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C, <Cn, <Y<C,,,ifniseven
C.,<Y<C,,<C,,ifnisodd

(-1"
qnqn+l

and the property c

,n>0.

na—Ch =

Now, from the inequalities, we conclude:

‘y_cn‘ <‘C _Cn‘

n+l

(=D
qnqm—l

1

and Chu—C,l= =
| ™ n| qnqn+1

1
qnqn+1

Thus, \Y—Cn\ <

Theorem 4.4: | 25, p.20 |

Every best approximation of the second kind of a real number x is a

convergent of the simple continued fraction representation of x.

Proof:

We prove this theorem with the assumption that x is an irrational number.

When x=[a,,a,,..,a,,,8,] is a rational number, the proof is in the same

manner but assume that the last partial quotienta, #1.
a

Let x=[ay,a,,a,,...] and let b

be a best approximation of x of a second

kind.

. a .
By contradiction, suppose that b 'S not a convergent. \We have only three

cases to consider.

a
P

Casel: —
b q

Po _

g This implies that [x —a,| <
0

a ) a
Now,6<a0<xsmce X_E'
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Then, [1.x —ay| <b|x—a,|<b

x——‘ lbx—al,0<1<b which

. a . i . i
contradicts that — is a best approximation of a second kind.

b
Thus,3>&.
b q,
Case Il: 3>&
b q,
Recallthat&<p— Paocx<.<Ps <&<&.
d 9, a4 d 0Oa; Qq
P _

Then, x<-—=2 E' Multiply this inequality by b and then subtract a from

1

the result to get:

bx—a<b&—a<0.

0,
Thus,
b _
O<M<‘bx_a‘.
O,
bp. —
Note that bp,—ag, is an integer and since |plq—a%|>0 then
1
lbp, —ag,|>1. Therefore,
i<\bx al.
G

1
But g, =&, so g<|bX—a|-
1
Remember that x = a0+z, where X, =[a,,a,,8;,...]and a, =[[x ]]1 <X,

1 1
So, |x —a,| == <= <|box —alwhich contradicts the assumption that that

X &
a . i : i
b Isa best approximation of a second kind.
Case lll: — Iles between Po and > and is not a convergent, then

b o 9,
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n a n+ n+ .oa
p—<—<h<x<h if —is to the left of x
qn b qn+2 qn+1 b
n+. n+ a' n - a - - B 4-1
or P oy Po 2Py if —isto the right of x (4.1)
qn+1 CIn+2 b qn b
Now B
0<|aqn_pnb|:E_ pn < pn+1_ pn :|Cn+l_Cn|: l .
bqn b qn ‘ ‘qn+l qn qnqn+1
Then
1 1
< .
bqn qnqn+l
This is since %;t % and therefore the integer|aq, — p,b|>1.
So,
1 1
— < .
b qn+1
That is
qn+1 < b ' (42)
Moreover, the inequalities (4.1) imply that
|a-CIn+2 - pn+2b| _ E_ Phi2 <|Ix _E‘
bqn+2 b qn+2 b
_ H a pn+2
But [ad,,, — P,..0| =1 since — =2,
n+2
Thus
1 a
<|IX——
bqn+2 b
That is
<|bx—a| (4.3)
qn+2
Next,
|qn+1x - pn+1| = (pa|X _%

By Theorem 4.3,
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X — pn+1| < 1
CIn+1 ‘ Qn+lCIn+2

1
So, ‘qn+1x - pn+1‘ <—

n+2

From (4.2) and (4.3), we get:
‘Qn+lx _pn+1‘<‘bx _a‘, O<qn+1<b
a

which contradicts the fact that b

Is a best approximation of a second kind.

a : : :
Hence b must be a convergent of the continued fraction expansion of x.

Theorem 4.5: | 25, p.21 |

1
Let x be a real number not of the form a, + > Then every convergent of

the simple continued fraction expansion of x is a best approximation of a

second kind to x.

Proof: see [ 25].

Remark 4.2: | 25 |

If the real number x lies in the middle between two integers (i.e.

1 _ _ : :
X =a, +§, ao is an integer), then \x—(ao +1)‘:‘X—ao‘ since both sides

a, a;+1 .
equal to a half, where TO # OT So, the convergent C, =@, is not a best

approximation of a second kind.
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Section 4.2: Applications

4.2.1 Calendar Construction |3,31,33]

There are many activities whose success depends on accurate planning.
Some of them should be done during a certain period of a year, such as
sowing and plowing. So, calendar construction is an important issue since
ancient times and calendars are found in every old civilization.

By counting the days, calendars help us to determine the seasons which
depend on the rotation of the Earth around the sun.

A tropical “solar” year is the time it takes the Earth to make one

i 315569259747
revolution around the sun = =365.24219878125 days.
864000000

Remark 4.3:

There are 365 days, 5 hours, 48 minutes and 45.9747 seconds in a year. So,
there are (365*24+5+48/60)*3600 + 45.9747 = 31556925.9747 seconds
in one year. On the other hand, there are 24*3600 =86400 seconds a day.
Babylonian Calendar “the oldest” contained 12 months with 29 and 30
days alternately. One year in this calendar had 354 days. After that, the
Babylonian calendar was replaced by the Egyptian Calendar which
consisted of 12 months, each month contained 30 days. One year in this
calendar consisted of 360 days. Then, five days were added to adjust the
calendar in Pharaonic times. This calendar was effective for more than
3000 years. However, it led to an error of quick accumulation and
therefore a noticeable shift of seasons. Next, a sixth day was introduced

every fourth year to give a calendar called the Alexandrian Calendar.
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Our calendar comes from the ancient Roman calendar. A year in Roman

calendar consisted of 365 days until an Alexandrian astronomer advised

S e

Romans to create the Julian calendar in  iiisssemanes

AR 2 AT

: CALENDARIVM
which every year divisible by 4 was a leap GREGORIANVM

PERPETYVM
Orbt Chrithiano vanwiio 3 Guevonso XIEHL P M. pro-

year “Consisting Of 366 days” and every pofiam,. Asoo M, DV EXXXIL

o.le

other year was a common year GREGORIVS EPISCOPVS

SERVVS SERVORVM DEI

AD PERESLZTIVAM AL SLMOAIAN

“consisting of 365 days”. Julian calendar
was a good calendar as it accumulated a
small error in a hundred years. However,
over the next millennium, the discrepancy

was noticed.

Finally, a new more precise calendar
construction was created by Pope

Figure 4.1: The first page of the
Gregory XI1I. He decreed to omit a leap  Papal bull "Inter Gravissimas™ by

which Pope Gregory XIlII
year every century except those years introduced his calendar.
that are divisible by 400. The Gregorian calendar is both accurate and easy
to remember.
The question now is what is the science behind this construction? In fact,
continued fractions provide such a science.
The idea of constructing a modern calendar is to have a cycle of q years
such that p of them are leap years. So, g — p are common years. When p
and q are chosen, we should take into consideration that the mean year

length is very close to the tropical year. Moreover, the rule for selecting p

leap years should be convenient and simple to use.
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During the g-cycle with p leap years, there are 365q + p days. Thus, the

mean year length is 365+ Ep

Recall that a tropical year consists of
315569259747 _ 365+ 209259747 365 7750361

= + = 365.24219878125
864000000 864000000 32000000
days.
Now, our purpose is to find a good approximation P for M The
W, our purp i i g pproximati . 32000000 °

last fraction represents the error between a tropical year and a common
year.

Representing this fraction as a continued fraction yields

P _10,4,7,1,3,5,611317,7,L1112)
32000000

The first 8 corresponding convergents are

1
c.=0 c, =—=0.25
0 1 4
C, = l =0.24137931034 C, = E =0.24242424242
29 33
C, = ﬂ =0.2421875 C; = @ =0.24219910846
128 673
Cq = @ =0.24219875180 C, = % =0.24219880141
4166 4839

The Julian Calendar is realized by the first convergent C, which gives a 4-

year cycle with one leap year in it.

The annual error considered in Julian Calendar is

1 7750861| _ 4 10780121875
4 32000000

which means that the calendar accumulates about 8 extra days in 1000

years. That is a bit less than a day in 100 years.
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Looking at the denominators next convergents, we realize that the numbers
29, 33, 128, 673, ... provide uncomfortable lengths of a cycle. For

31
example, the fourth convergent 128 determines a 128-year cycle with 31

leap years in it. We can construct a corresponding calendar in which there
Is a leap year every fourth year in the cycle with the thirty-second leap year

deleted and this construction gives an annual error

SL_ 7750861] | 00001128125 = 000001128125
128 32000000

which means a loss of about one day every 100000 years. This
construction is more accurate than Julian Calendar but it is uncomfortable
to use. So, no one used this calendar.

Now, we try to find a cycle several centuries long with easy and simple
selection rule of leap years. Suppose that g = 100t, t is an integer lies

between 1 and 9. This assumption matches with the problem of
7750361 7750361

32000000 320000 °

approximating the fraction 100 x

7750361 =[24,4,1,1,4,1,2,2,6,11,2,1,1, 2]
320000
The first corresponding 6 convergents are
C, =24 C, = %7 =24.25
C, = %l =24.2 C; = % = 24.22222222222
C, = 993 _ 24.21951219512 Cs = 1211 24.22
41 50

The first convergent c, = % gives a 400-cycle with 97 leap years in it.

The selection rule of leap years in the cycle is that every year divisible by 4
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is a leap year except 100", 200", 300" years. This calendar is called
Gregorian Calendar which is used nowadays in most countries.

The error results in a century from this calendar is

97 7750361
4 320000

‘ =0.030121875

That is an accumulation of about one extra day every 3320 years.

121
Another calendar could be constructed using the convergent C, =

which gives a 500-year cycle with 121 leap years in it. The selection rule
of leap years in this cycle is that every year divisible by 4 is a leap year
except 100", 200", 300", 400" years.

The error results from this calendar in a century is

121 7750361 _
5 320000 |

|-0.019878125 = 0.019878125

which implies that there is a loss of nearly a day every 5031 years.
Moreover, we can construct a calendar using a 900- year cycle with 218
leap years in it. The selection rule of leap years in this calendar implies 7
exceptions to the fourth year rule since (900+4)-7=218. This calendar is
accurate since it accumulates only one day in about 42660 years.
However, it is more complicated than the previous calendars and the 900-
year cycle is long and therefore inconvenient. So, we reject this calendar
and prefer the simpler ones.

A small correction can be done in future to the Gregorian Calendar to
make it more accurate. Continued fractions give an easy method to carry

out his correction. The idea is to find a longer cycle length g consisting of
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a number of 400- year cycles. Suppose g = 400s, where s is the number of

400 year cycles in the new longer cycle.

7750361 7750361
32000000 80000

Represent 400x as a simple continued fraction to get

7750361 =[96,1,7,3,2,1, 252,15, 2]
80000
The first corresponding four convergents are
C, =96 c, =97
775 2422
C,=— Ca=—rn
8 25

775
The second convergent C, = e provides us with a 3200- year cycle with

775 leap years in it.

The error of this construction is

775 7750361]
8 80000 |

|— 0.0045125| =0.0045125

which implies that there is a loss of about one day every 88643 years.

Remember that in Gregorian Calendar, there are 97 leap years in every
400- year cycle. So, we get 97x8 = 776 leap years within every 3200
years. Therefore, omitting one leap year every 3200 years will provide us
with a modified Gregorian Calendar which has nearly the same

construction as Gregorian Calendar but is more accurate.
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4.2.2 Piano Tuning | 3,30,32 ]
Musicians know that we cannot tune a piano perfectly. In this discussion,
we study the role of continued fractions in piano tuning.
The keyboard of a piano consists of white and black keys. The standard
white keys are A, B, C, D, E, F and G. A black key is called sharp and
flat. It is a sharp key “#” of the white key that precedes it and a flat key

“b” of the white key that follows it as Figure 4.2 shows.

(@ I> Bl)
F# AR

C D EF GAB|C

L J 2:1

3:2 Figure 4.2

Sounds that have frequencies with small integer ratios are consonant and
harmonious. Musical intervals represent the ratios of frequencies of two
notes. For example, an octave, which represents the ratio 2:1, is the
interval between two notes, one having double the frequency of the other.
A perfect fifth is an interval represents the ratio 3:2. There are many other
intervals such as perfect fourth “4:3”, whole step “9:8”, etc. In fact, our
study here is about the first two intervals which are the most consonant
intervals.

Pythagorean scale used only octaves and perfect fifths. The problem we

are trying to solve comes from trying to find an integer solution to the
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o (3. . . .
equation 2 :(5) in order to keep the scale finite. This equation has no

integer solution except x =y = 0. So, we need to approximate the solution

using continued fractions.

X 3 y- - xly 3
Now, 2 2(5) implies that 2 =5

S0, X Zlog,(>) = log, (3) — 1~ 0.5849625007211562 and its continued
y 2 2 2

fraction expansionis [0,1, 1, 2,2,3,1,5, 2, 23, 2,...]

. 13 7 24 31
2<k<6 A E'15' A1 'Ea
The k™ convergents, are. 5 512" 2153
3
Taking the fourth convergent, we get > ~ 2719 =1.4983070768766815 .

i . 7
The approximation 12 implies that the octave consists of 12 semitones with

a perfect fifth equal to 7 semitones, “a semitone is the musical interval
between two adjacent notes in a 12-tone scale”. In fact, in western music,
they use this approximation, i.e., the octave is divided into 12 semitones.

24 31
Other approximations are inconvenient since 7 and 53 give 41 and 53

notes within an octave, respectively which are too many notes. Moreover,

1 3
5 and g give 2 and 5 notes within an octave, respectively which are too

. 7
few notes. The percentage error results from choosing o asan

[(log,(3) 1) - 5|
log,(3) -1

approximation is: .100% = 0.278508% < 0.3%.
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Appendix
Would it be possible to find convergents for a continued fraction without
finding first all of the preceding convergents? It can be done using
determinants.

Consider the continued fraction expansion [a,,a;,a,,....] of a real number.

Using the continued fraction recursion formula:

P =Pyt pk—zj k>0 and p,=Lp,=0
Ok = 01t Uk 0,=00,=1
We have
Po = &
pp=ap, +1
P, =a,P; + Py
Ps=3a3P, + P

Pys =1 Py n + Py_s
Py =& Pys T Py

To compute pg, we find the following system of linear equations in k + 1

unknowns, po through py:

— Po =—a,
Py — Py =-1
Pota P — P, =0
Pr+330, — Py =0
Pis T A1 Pyz — Py =0

Py taPa— P =0

To solve for py, we may use Cramer’s Rule:



P«
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-1 O . 0 —a,
a —1 0 -1
1 a -1 : 0
0O 1 a -1

1 :
: 0
. 1 a,_, -1 .
0 . 0 1 a, 0]
-1 o0 . 0 O
a —1 O 0
1 a, -1 . 0
0O 1 a, -1
1 :
: 0
: 1 a , —1 .
0 0 1 a, —1

In the denominator we have a lower triangular matrix, so its determinant is
(-1)***. For the numerator, we interchange successively k™ columns until

we get the last column in the first position and then multiply its entries by

-1to get:
a —1 O 0]
1 a -1
O 1 a -1
(_1)k+1 ' 1
0
: 1 a, -1
_ 0] : : 0O 1 a,
P« = (—D<

Then,
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a -1 O 0]

1 a -1

O 1 a -1
1
Pk =

: 0
1 a, -1
0 O 1 a

Again to find the value of g, we have:

—Uo -1
&0, — 0, =0
Jo +a,0, — 0, =0
0, +a50, — 0, =0
Oz + 40k, — Ok =0

O +,0y, — 0 = 0

Applying Cramer’s Rule to find g and proceeding in the same way as we
did for p, we get:

1 -1 O : .. . 0
O a -1
O 1 a, -1
: 1
A =

. 0
: : 1 a, -1
o . : : . 0 1 a,

This determinant can be simplified to get:
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a -1 O : C : 0
1 a, -1 .
O 1 a -1
1
aw =
: : 0
1 a, -1
0 0O 1 a,
Therefore,
a, -1 O : . : 0]
1 a -1
O 1 a -1
1
: 0
1 a, -1
0 : : : . 0 1 a,
C, = k=1
“ " laa -1 0 . . . . 0
1 a -1 .
O 1 a -1
1
: : 0]
. : .1 a,; -1
0 : . : . 0 1 a,
Example:

Using determinants find the 4™ convergent of the continued fraction for

each of the following:

1+\/ﬁ
2

a)
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6211

b) 215
Solution:
a) 1+\/ﬁ:[2’@]
2
2 -1 O O O
1 6 -1 0 O
0] 1 3 -1 0O
O O 1 6 O
. _lo o o 1 3 18
7 6 —1 0 0] 379
1 3 -1 O
0] 1 6 —1
O O 1 3
6211

——==[281,7123
b) — & =I ]

28 -1 O 0 0
1 1 -1 O 0
0] 1 7 -1 O
0] 0 1 1 -1
0] 0 0 1 23 6211

-1 O 0] 215

O O P P
=
N
|
N
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Note:

Py and {; are determinants of tridiagonal matrices which can be

calculated inductively as follows:

Given the tridaigonal matrix A,,n >3:

'a, b O . . : : 0 |
Cl a2 b2
O ¢, a; Db
A = -
b,, O
) Cnfl anfl bn
0 Co Ay

Then, det A, =a,,,det A —b, ,c,.,,detA ,,k=2,3,...,n-1
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