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Abstract 

In this thesis, we study finite simple continued fractions, convergents, their 

properties and some examples on them. We use convergents and some 

related theorems to solve linear Diophantine equations. We also study 

infinite simple continued fractions, their convergents and their properties. 

Then, solving Pell’s equation using continued fractions is discussed. 

Moreover, we study the expansion of quadratic irrational numbers as 

periodic continued fractions and discuss some theorems. Finally, the 

relation between convergents and best approximations is studied and we 

apply continued fractions in calendar construction and piano tuning. 
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Introduction 

Continued fraction is a different way of looking at numbers. It is one of the 

most powerful and revealing representations of numbers that is ignored in 

mathematics that we’ve learnt during our study stages. 

A continued fraction is a way of representing any real number by a finite 

(or infinite) sum of successive divisions of numbers. 

Continued fractions have been used in different areas. They’ve provided us 

with a way of constructing rational approximations to irrational numbers. 

Some computer algorithms used continued fractions to do such 

approximations. Continued fractions are also used in solving the 

Diophantine and Pell's equations. Moreover, there is a connection between 

continued fractions and chaos theory as Robert M. Corless wrote in his 

paper in 1992.  

The use of continued fractions is also important in mathematical treatment 

to problems arising in certain applications, such as calendar construction, 

astronomy, music and others. 

 

  

http://en.wikipedia.org/wiki/Pell%27s_equation
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History of Continued Fractions  

Mathematics is constantly built upon past discoveries. In doing so, one is 

able to build upon past accomplishments rather than repeating them. So, in 

order to understand and to make contributions to continued fractions, it is 

necessary to study its history.   

The history of continued fractions can be traced back to an algorithm of 

Euclid for computing the greatest common divisor. This algorithm 

generates a continued fraction as a by-product.   34  

For more than a thousand years, using continued fractions was limited to 

specific examples. The Indian mathematician Aryabhata used continued 

fractions to solve a linear indeterminate equation. Moreover, we can find 

specific examples and traces of continued fractions throughout Greek and 

Arab writings.   34  

From the city of Bologna, Italy, two men, named Rafael Bombelli and 

Pietro Cataldi also contributed to this branch of mathematics. Bombelli 

was the first mathematician to make use of the concept of continued 

fractions in his book L’Algebra that was published in 1572. His 

approximation method of the square root of 13 produced what we now 

interpret as a continued fraction. Cataldi did the same for the square root of 

18.  He represented 18  as 4. &
 

    
&
 

    
&
 

    
 with the dots indicate that the 

following fraction is added to the denominator. It seems that he was the  

first to develop a symbolism for continued fractions in his essay Trattato 

del modo brevissimo Di trouare la Radici quadra delli numeri  in 

http://mathworld.wolfram.com/ContinuedFraction.html
http://archives.math.utk.edu/articles/atuyl/confrac/intro.html#def9
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1613 .  Besides these examples, however, both of them failed to examine 

closely the properties of continued fractions.   37,36,35,34  

 In 1625, Daniel Schwenter was the first mathematician who made a 

material contribution towards determining the convergents of the 

continued fractions. His main interest was to reduce fractions involving 

large numbers. He determined the rules we use now for calculating 

successive convergents.   35  

Continued fractions first became an object of study in their own in the 

work which was completed in 1655 by Viscount William Brouncker and 

published by his friend John Wallis in his Arithmetica infinitorum 

written in 1656.   

Wallis represented the identity 
...664422

...7553314







 and Brouncker 

converted it to the form 












2

49
2

25
2

9
2

1
1

4


.   

In his book Opera Mathematica (1695), Wallis explained how to 

compute the n
th

 convergent and discovered some of the properties of 

convergents. On the other hand, Brouncker found a method to solve the 

Diophantine Equation x
2
 – Ny

2
 = 1.   36,34  

The Dutch mathematician Huygens was the first to use continued fractions 

in a practical application in 1687. His desire to build an accurate 

mechanical planetarium motivated him to use convergents of a continued 

fraction to find the best rational approximations for gear ratios.   38  

http://archives.math.utk.edu/articles/atuyl/confrac/intro.html#def6
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Later, the theory of continued fractions grew with the work of Leonard 

Euler, Johan Heinrich Lambert and Joseph Louis Lagrange.  Euler laid 

down much of the modern theory in his work De Fractionlous 

Continious (1737). He represented irrational and transcendental quantities 

by infinite series in which the terms were related by continuing division.  

He called such series fractions continuae, perhaps echoing the use of the 

similar term fractions continuae fractae (continually broken fractions) by 

John Wallis in the Arithmetica Infinitorum. He also found an expression 

for e in continued fraction form and used it to show that e and e
2
 are 

irrationals. He showed that every rational can be expressed as a finite 

simple continued fraction and used continued fractions to distinguish 

between rationals and irrationals. Euler then gave the nowadays standard 

algorithm used for converting a simple fraction into a continued fraction.  

Moreover, he calculated a continued fraction expansion of √2 and gave a 

simple method to calculate the exact value of any periodic continued 

fraction and proved a theorem that every such continued fraction is the root 

of a quadratic equation.   36,34  

In 1761, Lambert proved the irrationality of π using a continued fraction of 

tan x. He also generalized Euler work on e to show that both    and tan x 

are irrationals if x is nonzero rational.   40,38,34  

Lagrange used continued fractions to construct the general solution 

of Pell's Equation. He proved the converse of Euler's Theorem, i.e., if x is a 

quadratic irrational (a solution of a quadratic equation), then the regular 

continued fraction expansion of x is periodic. In 1776, Lagrange used 

http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Pell%27s_equation
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continued fractions in integral calculus where he developed a general 

method for obtaining the continued fraction expansion of the solution of a 

differential equation in one variable.   43,42,41  

In the nineteenth century, the subject of continued fractions was known to 

every mathematician and the theory concerning convergents was 

developed. In 1813, Carl Friedrich Gauss derived a very general complex - 

valued continued fraction by a clever identity involving the hypergeometric 

function. Henri Pade defined Pade approximant in 1892. In fact, this century 

can probably be described as the golden age of continued fractions. Jacobi, 

Perron, Hermite, Cauchy, Stieljes and many other mathematicians made 

contributions to this field.  39,34  

During the 20th century, continued fractions appeared in other fields. In 

1992, for instance, the connection between continued fractions and chaos 

theory was studied in a paper written by Rob Corless.   
 

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Gauss%27s_continued_fraction
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Hypergeometric_function
http://en.wikipedia.org/wiki/Henri_Pad%C3%A9
http://en.wikipedia.org/wiki/Pad%C3%A9_approximant
http://en.wikipedia.org/wiki/Pad%C3%A9_approximant
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Chapter One 

Definitions and Basic Concepts 

Definition 1.1:  15  

Let p and q be two integers where at least one of them is not zero. The 

greatest common divisor of p and q, denoted by gcd(p, q), is the positive 

integer d satisfying: 

1) d divides both p and q.   

2)  If c divides both  p and q, then c ≤ d.   

Definition 1.2:  15  

Two given integers p and q are called relatively prime if gcd(p, q) = 1.   

Theorem 1.1:  4.,15 p  

Let p, q & s be integers. If p divides both q and s, then p divides qx + sy 

for every .& Zyx    

Theorem 1.2:  7.,15 p  (The Division Algorithm)  

Given integers p and q, with q > 0, there exists unique integers m and r 

such that p = q.m + r, with 0 ≤ r < q.  p is called the dividend, q the 

divisor, m the quotient and r is the remainder.   

Lemma 1.1:  30.,15 p  

Let p and q be two integers. If p = q.m+r , then gcd(p, q) = gcd(q, r).   

The Euclidean Algorithm: 
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Euclidean algorithm is a method of finding the greatest common divisor of 

two given integers. It consists of repeated divisions. In this algorithm we 

apply the Division Algorithm repeatedly until we obtain a zero remainder.  

Since the gcd(p, q) = gcd(±p, ±q), we may assume that both p and q are 

positive integers with p > q.   

Theorem 1.3:  29.,15 p  (Euclidean algorithm) 

Let p and q be two positive integers, where p > q and consider the 

following sequence of repeated divisions: 

1 1 1

1 2 2 2 1

1 2 3 3 3 2

2 3 4 4 4 3

2 1 1

1 1

. , 0

. , 0

. , 0

. ,0

.

.

.

. ,0

. 0

n n n n n n

n n n

p q a r r q

b r a r r r

r r a r r r

r r a r r r

r r a r r r

r r a

  

 

   

   

   

   

   

 

 

Then gcd(p, q) = rn, the last non-zero remainder of the division process.   

Proof:  

We need to prove that the greatest common divisor of p and q is rn.   

Using Lemma 1.1 repeatedly, we get the following: 

gcd(p, q)=gcd(q, r1)=gcd(r1, r2)=gcd(r2, r3) =…=gcd(rn-1, rn)=gcd(rn, 0) 

=rn.   

Hence, the greatest common divisor of p and q is rn .  

Theorem 1.4:  13.,15 p  
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Given two integers p and q not both zero. Then the greatest common 

divisor of p and q is a linear combination of them. i.e. there exist two 

integers m and n such that gcd(p, q)=mp+nq.   

 

Theorem 1.5:  16.,15 p  

Given two integers p and q, then 
),gcd(

&
),gcd( qp

q

qp

p

 
are relatively 

prime.   

Theorem 1.6:  18.,15 p  (Euclid’s Lemma)  

If p and q are relatively prime and p divides qs then p divides s.   

Definition 1.3:  17 (Algebraic and Transcendental Numbers) 

A complex number y is said to be algebraic if y is a root of a non-zero 

polynomial 0

1

1 ...)( axaxaxP n

n

n

n  

  with integer coefficients a0, a1, 

…, an . The number which is not algebraic is transcendental.   

Binomial Theorem: 

For any positive integer n, the expansion of 
nyx )(  is given by: 






















































n

i

iinnnnnn yx
i

n
yx

n

n
yx

n

n
yx

n
yx

n
yx

0

011110

1
...

10
)(  

where 
)!(!

!

ini

n

i

n











is called the binomial coefficient.   
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Chapter Two 

Finite Simple Continued Fractions 

Section 2.1: What is a Continued Fraction?  6,4,3,1  

Definition 2.1:  

A continued fraction (c.f.) is an expression of the form         

                                    












4

3
3

2
2

1
1

0
0

a

b
a

b
a

b
a

b
a

 

where  0,  1,  2, …, b0, b1, b2, … can be either real or complex numbers.   

Definition 2.2:  

A simple (regular) continued fraction is a continued fraction of the form  

                                      












4

3

2

1

0

1

1

1

1

a

a

a

a

a
 

where  i is an integer for all i with  1,  2,  3….  .  > 0.   

The numbers  i , i = 0, 1, 2, …. are called partial quotients of the c.f.       

A simple continued fraction can have either a finite or infinite 

representation.   

Definition 2.3: 

A finite simple continued fraction is a simple continued fraction with a  

finite number of terms. In symbols:  
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n

n
a

a

a

a

a

1

1

1

1

1

1

2

1

0















 

It is called an n
th

-order continued fraction and has (n+1) elements (partial 

quotients).     

It is also common to express the finite simple continued fraction as  

naaaa
a

1
....

111

321

0


  or simply as ].,....,,,[ 210 naaaa  

Definition 2.4:  

An infinite simple continued fraction is a simple continued fraction with 

an infinite number of terms. In symbols:  

                                       












4

3

2

1

0

1

1

1

1

a

a

a

a

a
 

It can be also expressed as ....
111

321

0



aaa

a  or simply as 

,....].,,[ 210 aaa  

Example 2.1:   

       a)  

...5

1
1

1
5

1
1

1
6








  and ....
292

1

1

1

15

1

7

1
3


  are infinite simple  

          continued fractions.   
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      b) 

6

1
1

1
1

1
3

1
1








 and ]6,2,1[  are finite simple continued fractions.   

Definition 2.5:  

A segment of an n
th
-order simple continued fraction is a continued fraction 

of the form ],....,,,[ 210 kaaaa where 0 ≤ k ≤ n and arbitrary k ≥ 0 if the 

continued fraction is infinite.   

A remainder of an n
th
-order finite simple continued fraction is a continued 

fraction of the form ],...,,[ 1 nrr aaa   where 0 ≤ r ≤ n. Similarly, ,...],[ 1rr aa  

is a remainder of an infinite simple continued fraction for arbitrary r ≥ 0 .   

Example 2.2:   

a) ]2,1,0[  is a segment of the finite simple continued fraction ]4,1,2,1,0[  

and ]4,1,2[  is a remainder of it .   

b) ]1,5,1,6[  is a segment of the infinite simple continued fraction

,...]5,1,5,1,5,1,6[ and ,...]5,1,5,1,5[  is a remainder of it .   
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Section 2.2: Properties and Theorems  

Every rational number can be expressed as a finite simple continued 

fraction. Before we prove it and explain the way of expansion, we will 

introduce the continued fractions by studying the relationship between 

Euclidean algorithm, the jigsaw puzzle (splitting rectangles into squares) 

and continued fractions. Jigsaw puzzle uses picture analogy to clarify how 

to convert a rational number into a continued fraction. The explanation of 

the puzzle’s steps is through the following example.   8,7  

Example 2.3: 

Suppose we are interested in finding the greatest common divisor of 64 

and 17. Using Euclidean algorithm, we have: 

1317364                                                                                     (2.1)     

413117                                                                                        (2.2) 

14313                                                                                           (2.3) 

0144                                                                                            (2.4) 

Then gcd(64, 17) = 1.   

Now, consider a 64 by 17 rectangle.   

 

In terms of pictures, we split the rectangle 

into 3 squares each of side length 17 and 

only one 17 by 13 rectangle.   

Next, it is clear that we can split the 17 by 

13 rectangle into one square of side length 

13 and only one 13 by 4 rectangle.   
 

64 

17 

17 17 17 

17 

13 

17 

17 17 17 13 

4 
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Similarly, split the 13 by 4 rectangle into 3 

squares each of side length 4 and a 4 by 1 

rectangle.   
 

 

Finally, we can place 4 squares, each of side 

length 1, inside the 4 by 1 rectangle with no 

remaining rectangles.   

We can notice that each divisor q in the Euclidean algorithm represents the 

length of the side of a square. For instance, the divisor 17 in equation (2.1) 

represents the length of the sides of the squares that we obtain from the 

first splitting step. Moreover, gcd(64, 17) is the length of the side of the 

smallest square which equals 1.   

Now, divide equation (2.1) by 17 to get: 
17

13
3

17

64
  

Also, divide equation (2.2) by 13 to obtain: 
13

4
1

13

17


 

Repeat in the same way for equations (2.3) and (2.4): 
4

1
3

4

13
  and 4

1

4


 

Then, write each proper fraction in the previous equations in terms of its 

reciprocal as follows: 

)
13

17
(

1
3

17

64
                                                                                         (2.5) 

)
4

13
(

1
1

13

17
                                                                                         (2.6) 

4

1
3

)
1

4
(

1
3

4

13
                                                                                (2.7) 

Substitute equation (2.7) into equation (2.6) to obtain the following: 

 

17 

13 

44 4

 .
44 4

1

13 

17 



14 

4

1
3

1
1

13

17



                                                                                       (2.8) 

Then, substitute equation (2.8) into equation (2.5) to get: 

]4,3,1,3[

4

1
3

1
1

1
3

17

64








 

This is the continued fraction representation of the rational number 
64

17
.   

Note that by writing 
64

[3,1,3,4]
17

 , we do not mean an equality, but just a 

representation of the rational number 
64

17  
by its continued fraction ]4,3,1,3[ . 

This expression relates directly to the geometry of the rectangle as squares 

with the jigsaw pieces as follows:  

3 squares each of side length 17, 1 square of side length 13, 3 squares each 

of side length 4 and 4 squares each of side length 1. 

So, it’s clear that the partial quotients of the continued fraction ]4,3,1,3[

represent the number of squares that result from the splitting steps.   

However, there is no need to use picture analogy each time we want to 

express a rational number as a continued fraction. The expansion of 

rational numbers into continued fractions is related to Euclidean algorithm 

as we’ve shown in the previous example. This relation will be studied 

closely in the proof of Theorem 2.2.   

Now, to express any rational number 
q

p

 
as a continued fraction, we 

proceed in this manner. We split the rational number into a quotient “ 0a ” 

and a proper fraction, say 
b

a
.  If a = 1 or b = 1, stop. Otherwise, repeat the 
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process by considering the reciprocal 
)(

1

a

b
of the proper fraction 

b

a
 instead 

of  
q

p
. Again, split 

)(

1

a

b
into a quotient “ 1a ” and a proper fraction, say 

b

a
 

again.  Repeat this process until we get a proper fraction 
b

1
, which is 

always the case for any rational number.   

It is clear that if the rational number 
q

p
 is positive and less than 1, then the 

continued fraction begins with zero, i.e., 00 a . Moreover, if the rational 

number is negative, then the continued fraction is ],....,,,[ 210 naaaa  where 

00 a  and 0,..., 21 naaa .   

Example 2.4:   

Expand the rational number 
19

14
 into a continued fraction.   

Solution:  

Since 
19

14
 is less than 1,  

then 00 a
 and 

14

19

1
0

19

14
 .                                                                                      

But 
14

5
1

14

19
 , so  

14

5
1

1
0

19

14



 .   

Also, 

5

4
2

1

5

14

1

14

5



                                                                                                 

Therefore, 

5

4
2

1
1

1
0

19

14





                                              

Repeating the same steps for 
5

4
, we obtain: 

4

1
1

1

4

5

1

5

4



              
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Thus,  ]4,1,2,1,0[

4

1
1

1
2

1
1

1
0

19

14








                                                    

We stop here since the last proper fraction 
4

1

 
has a numerator of 1.  

However, looking at the last partial quotient “4” of the continued fraction, 

it can be written as 
1

1
34  . So, the continued fraction expansion 

]4,1,2,1,0[ can be also written as:  

                            
]1,3,1,2,1,0[

1

1
3

1
1

1
2

1
1

1
0

19

14











   

As a result, the continued fraction expansion of the rational number 
19

14

 
has 

two forms which are obtained by changing the last quotient.   

Example 2.5:  

Express the rational number 
46

59

 
as a continued fraction.   

Solution:  

Applying the previous steps, we get: 

 

6

1
1

1
1

1
3

1
1

6

7

1
1

1
3

1
1

7

6
1

1
3

1
1

7

13

1
3

1
1

13

7
3

1
1

13

46

1
1

46

13
1

46

59





























= ]6,1,1,3,1[ . 

Example 2.6:  
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Write the rational number 
13

7
  as a continued fraction.   

Solution:  

]6,2,1[

6

1
2

1
1

6

13

1
1

13

6
1

13

7




  

The Continued Fraction Algorithm:  9,4  

This algorithm is a systematic approach that is used to find the continued 

fraction expansion of any rational number.   

Let y be any non-integer rational number.  To find its continued fraction 

expansion, we follow the next steps.   

Step 1: Set 0yy  .  The first partial quotient of the continued fraction is 

the greatest integer less than or equal 0y . (i.e., ]][[ 00 ya  ), where [[ . ]] is 

the greatest integer function.   

Step 2: Define 
]][[

1

00

1
yy

y


  and set ]][[ 11 ya  .   

As long as jy  is non-integer, continue in this manner: 

 

]][[

1

11

2
yy

y


 , ]][[ 22 ya  ,  

                            .   

                            .    

]][[

1

11  


kk

k
yy

y , ]][[ kk ya  , where  0]][[  kk yy .   

Step 3: Stop when we find a value .Nyk   

Note 2.1:  
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This algorithm is also true for any real number.  In this case, the process 

may continue indefinitely.  This idea will be illustrated in Chapter Three.   

Example 2.7: 

Calculate the continued fraction expansion of 
201

315

 
using the continued 

fraction algorithm.   

Solution: 

Let 0

315
1.567164179

201
y   .  Then 0 0

315
[[ ]] [[ ]] 1

201
a y   .   

1

0 0

1 1 1 201
1.763157895

315 315 315[[ ]] 114
[[ ]] 1

201 201 201

y
y y

    


 

, 1]][[ 11  ya  

310344828.1
87

114

1
114

201

1

]]
114

201
[[

114

201

1

]][[

1

11

2 











yy

y , 1]][[ 22  ya  

222222222.3
27

87

1
87

114

1

]]
87

114
[[

87

114

1

]][[

1

22

3 











yy

y , 3]][[ 33  ya  

5.4
6

27

3
27

87

1

]]
27

87
[[

27

87

1

]][[

1

33

4 











yy

y , 4]][[ 44  ya  

2
3

6

4
6

27

1

]]
6

27
[[

6

27

1

]][[

1

44

5 











yy

y , 2]][[ 55  ya  

We stop here since 5 2y N  . Thus, [1,1,1,3,4,2]  is the continued 

fraction representation of 
315

201
.   

What about the converse?  8  

Given a continued fraction representation of a number y, we find y by 

using the following relationship repeatedly: 

                    

]
1

,....,,,[],,....,,,[ 12101210

n

nnn
a

aaaaaaaaa    

Example 2.8: 



19 

Find the rational number who has the continued fraction representation 

]1,2,1,2,2[ .   

Solution: 

]

)
3

4
(

1
2,2[]

3

4
,2,2[]

3

1
1,2,2[]3,1,2,2[]

1

1
2,1,2,2[]1,2,1,2,2[ 

11

26
]

11

4
2[]

)
4

11
(

1
2[]

4

11
,2[]

4

3
2,2[   

Theorem 2.1:  553.,2 p  

Every finite simple continued fraction represents a rational number.   

Proof:  

Let ],....,,,[ 210 naaaa
 be a given n

th
- order finite simple continued fraction.  

We show that this continued fraction represents a rational number using 

induction on the number of partial quotients.   

If n = 1, then ],[ 10 aa  = 
1

0

1

a
a   = 

1

10 1

a

aa 
.   

Since  ₀ and    are integers, then 
1

10 1

a

aa 
 is a rational number.   

Now assume any finite simple continued fraction with k < n partial 

quotients represents a rational number. Then: 

Y
a

a
a

a

a

a

aaaaa

k

k

k

1

1

1
...

1

1

1

1
],....,,,[ 0

1

3

2

1

0210 















 ,  

Where 
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].,....,,[

1

1
...

1

1

1
21

1

3

2

1 k

k

k

aaa

a
a

a

a

aY 













. 

Since ],....,,[ 21 kaaa
 is a finite simple continued fraction with k partial 

quotients, it represents a rational number, say 
f

d
.  So, .0,  f

f

d
Y

  
 

Thus, 
d

fda

d

f
a

f

d
a

Y
aaaaa k


 0

000210

11
],....,,,[

 

which is 

a rational number since  ₀, d and f are integers.   

So, any finite simple continued fraction ],....,,,[ 210 naaaa
 represents a 

rational number for any .Nn  

Theorem 2.2:  553.,2 p &  10.,3 p  

Every rational number can be represented as a finite simple continued 

fraction in which the last term can be modified so as to make the number 

of terms in the expansion either even or odd.   

Proof:  

Let 
q

p
, q > 0 be any rational number. By the Euclidean algorithm 

                                   qrraqp  111 0,.
                               (2.9) 

                                   12221 0,. rrrarq 
                               (2.10) 

                                  
0.

0,.

.

.

0,.

0,.

12

211123

344432

233321













nnn

nnnnnn

rar

rrrarr

rrrarr

rrrarr
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The quotients naaaa ,...,, 432  and the remainders 1321 ,...,,, nrrrr  are positive 

integers, while  1 can be a positive integer, negative integer or zero.   

Now, dividing equation (2.9) by q and then taking the reciprocal of the 

proper fraction we get: qr

r

q
a

q

r
a

q

p
 1

1

1

1

1 0,
1

 

Also divide equation (2.10) by    and take the reciprocal of the proper 

fraction to get:  

12

2

1

2

1

2
2

1

0,
1

rr

r

r
a

r

r
a

r

q


                                                (2.11) 

Repeating the same process to each equation in the above Euclidean 

algorithm, we have: 

23

3

2

3

2

3

3

2

1 0 ,
1

rr

r

r
a

r

r
a

r

r


                                                          (2.12) 

34

4

3

4

3

4
4

3

2 0,
1

rr

r

r
a

r

r
a

r

r


                                                                                        (2.13) 

           .   

           .   

21

1

2

1

2

1

1

2

3 0,
1

















  nn

n

n

n

n

n

n

n

n rr

r

r
a

r

r
a

r

r
                                                      (2.14) 

n

n

n a
r

r






1

2

 

Now, substituting 
1r

q

 
and each of 1i

i

r

r



 
back into equations (2.11) through 

(2.14) yields: 
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)(

1

1

1

1

)(

1

1

1

1

1

4

3
4

3

2

1

3

2
3

2

1

1

2

1

r

r
a

a

a

a

r

r
a

a

a

r
a

a
q

p


















 

Continue in the same manner to get: 

n

n

n

n
n

a
a

a

a

a

a

r

r
a

a

a

a

a
q

p

1

1
...

1

1

1

1

)(

1

1
...

1

1

1

1

1

4

3

2

1

1

2
1

4

3

2

1
































 

= ],...,,[ 21 naaa .   

Thus, every rational number can be represented as a finite simple 

continued fraction.   

In fact, we can always modify the last partial quotient  n of this 

representation so that the number of terms is either even or odd.   

If  n = 1, then 
1

1

1

1

1

1

1

1
11








 


n
n

n

n

a
a

a
a

   

and ]1,...,,[],,...,,[ 121121   nnn aaaaaaa
q

p
.   

Else, if  n > 1, then 

1

1
)1(

1

1

1)1(

1

1

1

1

111












 

n

n

n

n

n

n

a

a
a

a
a

a
 

and ]1,1,,...,,[],,...,,[ 121121   nnnn aaaaaaaa
q

p
.   
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Theorem 2.3:  12.,3 p  

 Let p and q be two integers such that p > q > 0. Then 0 1 2 1[ , , ,..., , ]n na a a a a

is a continued fraction representation of 
p

q
 if and only if 

q

p  
has 

0 1 2 1[0, , , ,..., , ]n na a a a a  as its continued fraction representation.   

Proof: 

Since p > q > 0, 
q

p
> 1 and equals 

na

a

a

a

a

1
...

1

1

1

1

3

2

1

0









  where  ₀ 

is the greatest integer less than 
q

p
 = ]][[

q

p
 > 0.   

The reciprocal of  
q

p
 is  

],...,,,,0[

1
...

1

1

1

1

1
0

1
...

1

1

1

1

1
210

3

2

1

0

3

2

1

0

n

nn

aaaa

a

a

a

a

a

a

a

a

a

a
p

q
























  

Conversely, since p > q > 0, 0 < 
p

q
 < 1 and equals  

 
0

1

2

3

1
0

1

1

1

1

1
...

n

q

p
a

a

a

a

a

 











 = 

na

a

a

a

a

1
...

1

1

1

1

1

3

2

1

0










 

The reciprocal of 
p

q
 is 
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].,...,,,[

1
...

1

1

1

1

1
...

1

1

1

1

1

1
210

3

2

1

0

3

2

1

0

n

n

n

aaaa

a

a

a

a

a

a

a

a

a

a

q

p






















  

 

Theorem 2.4:  8382.,5 pp  

The continued fraction ],,...,,,[ 1210 nn aaaaa   and its reversal 

],,...,,,[ 0121 aaaaa nnn 

 
with a0 > 0 have the same numerators.   

Proof: 

This theorem is proved by Euler. See  5 .   

For example, the continued fractions ]4,2,3,5[  and ]5,3,2,4[  have the same 

numerator “164”.   
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Section 2.3: Convergents 

In order to have a thorough understanding of continued fractions, we must 

study some of their properties in details.   

Consider the continued fraction representation ]7,2,2[  of the rational 

number
15

37
. The segments of this continued fraction are: 

7

1
2

1
2]7,2,2[,

2

1
2]2,2[,2]2[



  

Since each segment is a finite simple continued fraction, it represents a 

rational number. These segments are called convergents of the continued 

fraction ]7,2,2[ .   

Definition 2.6:  9,4  

Let ],...,,[ 10 naaa
 be a finite simple continued fraction representation of a 

rational number 
q

p
.  Its segments:  

000 ][ aac  , 
1

0101

1
],[

a
aaac  , 

2

1

02102 1

1
],,[

a
a

aaaac



 ,  

…, 

n

nn

a

a

a

aaaaac

1
...

1

1

1
],...,,,[

2

1

0210








 

are all called convergents of the continued fraction with ck is the k
th

 

convergent, k = 0, 1, .  .  .  , n.   
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Note that we have n+1 convergents and each convergent ck represents a 

rational number of the form 
k

k
k

q

p
c  , where pk and qk are integers with 

n

p
c

q
 .   

We shall use the representation of a convergent ],...,,[ 10 kk aaac 

 
and 

k

k

q

p

interchangeably to mean the same thing.   

Example 2.9: 

Find all of the convergents for the continued fraction ].7,1,5,3[   

Solution: 

3]3[0 c  

5

16

5

1
3]5,3[1 c  

6

19

6

1
3

1

1
5

1
3]1,5,3[2 



c  

47

149

47

8
3

8

47

1
3

8

7
5

1
3

7

8

1
5

1
3

7

1
1

1
5

1
3]7,1,5,3[3 













c  

Note that the 3
rd

 convergent 3

149

47
c 

 
represents the fraction itself.   

The following theorem gives a recursion formula to calculate the 

convergents of a continued fraction.   

Theorem 2.5:  21.,1 p &  7.,4 p  (Continued Fraction Recursion 

Formula) 

Consider the continued fraction ],...,,[ 10 naaa of a given rational  

number.  Define 
1,0

0,1

21

21









qq

pp
. Then 

21

21









kkkk

kkkk

qqaq

ppap
, for k = 0, 1, 2,  
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…, n, where  p0, p1, p2, …, pn are the numerators of the convergents of the 

given continued fraction and q0, q1, q2, …, qn are their denominators.   

Proof: 

We prove this theorem using induction on k.   

For k = 0, we have:  

210

210

0

00
0

0

0
0

.

.

10.

01.

1 













qqa

ppa

a

aa
a

q

p
c   

Therefore, 2100   ppap
 and 10.00  aq  

For k = 1, we have: 

101

101

1

01

1

10

1

0

1

1
1

.

.

01.

1.11


















qqa

ppa

a

aa

a

aa

a
a

q

p
c   

Then, 1011 .  ppap
 and 1011 .  qqaq  

Thus, the formula 
21

21









kkkk

kkkk

qqaq

ppap
 is true for k = 0, 1.   

Assume the theorem is true for k = 2, 3, …, j, where j < n.   

i.e. 
21

21










kkk

kkk

k

k
k

qqa

ppa

q

p
c , for k = 2, 3, …, j                                  (2.15) 

So, 21   kkkk ppap  and 21   kkkk qqaq  

Now, we prove that the formula is true for the next integer j+1.   
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)
1

(

1

1

1

1

1

1

1
],,...,,[

1

1

0

1

1

01101





















j

j

j

j

jjj

a
a

a

a

a
a

a

aaaaac



]
1

,...,,[
1

10




j

j
a

aaa .   

This suggests that we can calculate cj+1 from the formula of cj obtained 

from equation (2.13) after replacing k by j. Before we continue, we must 

make sure that the values of 2121 ,,,  jjjj qqpp  won’t change if aj in 

equation (2.13) is replaced by another number. To do this, first replace k in 

the equation by j-1, and then by j-2, j-3 to get: 

321

321

1

1

1
.

.















jjj

jjj

j

j

j
qqa

ppa

q

p
c , 

432

432

2

2

2
.

.















jjj

jjj

j

j

j
qqa

ppa

q

p
c

543

543

3

3

3
.

.















jjj

jjj

j

j

j
qqa

ppa

q

p
c  

We notice that pj-1 and qj-1 depend only on aj-1 while the numbers 

3232 ,,,  jjjj qqpp  depend upon the preceding a’s, p’s and q’s. Thus, the 

numbers 2121 ,,,  jjjj qqpp
 
depend only on 110 ,...,, jaaa  and not on aj.  

This implies that they will remain the same when we replace aj by

.
1

1


j

j
a

a  

Back to equation (2.13), replace aj by 
1

1




j

j
a

a  to get: 

21

1

1

21

1

1

21

1

21

1

1

).
1

(

).
1

(

).
1

(

).
1

(





































jj

j

jj

jj

j

jj

jj

j

j

jj

j

j

j

qq
a

aa

pp
a

aa

qq
a

a

pp
a

a

c                           (2.16) 

Multiply the numerator and denominator of equation (2.14) by 1ja and 

rearrange the terms to obtain: 
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1211

1211

2111

2111

1
)(

)(

).1(

).1(




















jjjjj

jjjjj

jjjjj

jjjjj

j
qqqaa

pppaa

qaqaa

papaa
c  

But from our assumption, jjjj pppa   21  and jjjj qqqa   21 .   

Then, 
11

11

1











jjj

jjj

j
qqa

ppa
c .   

Thus, the formula is true for k = j+1. So, by induction, the theorem is true 

for 0 ≤ k ≤ n.   

Note 2.2:   

1) 
1

1





q

p

 
and 

2

2





q

p
 are not convergents. p-1, p-2, q-1 and q-2 are just initial 

values used to calculate c0 and c1.   

2) qk > 0 , k = 0, 1, …, n.     

3) Since ak  > 0 for 1 ≤ k ≤ n and qk > 0 for 0 ≤ k ≤ n, it follows that

1 kk qq , k = 2, …, n .   

Example 2.10: 

Find the convergents of the continued fraction representation of the 

rational number 
171

320
 using Continued Fraction Recursion Formula.   

Solution: 

First of all, the continued fraction representation of 
171

320

 
is ]2,2,3,1,6,1,1[

and we have .2,2,3,1,6,1,1 6543210  aaaaaaa  

With 
1,0

0,1

21

21









qq

pp
, calculate pk and qk using the recursion formula.          

                            
21

21









kkkk

kkkk

qqaq

ppap
, for k = 0, 1, 2, …, 6.   
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For k = 0:                                              For k = 1: 

1101

1011

2100

2100









qqaq

ppap

               
1011

2111

1011

1011









qqaq

ppap

                  

For k = 2:                                              For k = 3: 

7116

13126

0122

0122





qqaq

ppap

               
8171

152131

1233

1233





qqaq

ppap

 

For k = 4:                                              For k = 5: 

31783

5813153

2344

2344





qqaq

ppap

            
708312

13115582

3455

3455





qqaq

ppap

 

For k = 6: 

17131702

320581312

4566

4566





qqaq

ppap

 

Thus, 1
1

1

0

0
0 

q

p
c , 2

1

2

1

1
1 

q

p
c , 

7

13

2

2
2 

q

p
c , 

8

15

3

3
3 

q

p
c , 

31

58

4

4
4 

q

p
c , 

70

131

5

5

5 
q

p
c , 

171

320

6

6
6 

q

p
c .   

The last convergent, c6 in this example, must be equal to the rational 

number the continued fraction represents.  
 

However, a convergent table can be used to save time in calculating pk and 

qk. Table 2.1 explains the manner.   
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Table 2.1 

    k        -2    -1     0     1    2    …    …    …   n 

    ak             a0        a1    a2    …    …    …   an     

    pk       p-2= 0    p-1= 1      p0        p1        p2        …    …    …   pn     

    qk      q-2= 1   q-1=0       q0    q1    q2    …    …    …   qn 

    ck     c0    c1    c2    …    …    …   cn 

The first row of the table is filled with the values of k that always range 

from -2 to n.  In the second row, we write the partial quotients of the given 

continued fraction. Now, to fill the 3
rd

 and 4
th
 rows, we write the values    

p-2 = 0, q-2 = 1, p-1 = 1, q-1 = 0 under k = -2, k = -1, respectively. Then we 

compute the values of pk’s and qk’s using the recursion formula. For 

example, to find p1 and q1 , we follow the arrows, (look at the table): 

                         

                                                    

This manner gives us the following equations which we obtain when we set 

k = 1 in the recursion formula:  

1 1 0 1

1 1 0 1

p a p p

q a q q





 

           

In the same process we find pk and qk for each value of k.         
                             

The last row contains the convergents ck’s, where ,0k
k

k

p
c k n

q
   . 

 

Back to our example, the table is filled in the same manner and the result 

is:  

a1 

q0 q-1 

a1 

p0 p-1 
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Table 2.2 

    k         -2     -1     0     1   2   3   4    5    6 

   ak              1         1   6   1   3    2    2     

   pk          0           1         1         2      13      15  58  131  320    

   qk          1          0        1     1   7   8   31   70  171 

   ck  1
1

1


 

2
1

2


 7

13

 8

15

 31

58

  70

131

 171

320

 

Theorem 2.6:  358.,10 p
 (Difference of Successive Convergents 

Theorem) 

nk
qq

cc
kk

k

kk 







 1,
)1(

1

1

1   

To prove this theorem we need the following lemma.   

Lemma 2.1:  7.,4 p  

Let 
k

k

q

p

 
be the k

th
 convergent of the continued fraction ],...,,[ 10 naaa , 

where pk and qk are defined as in Theorem 2.5. Then: 

1 1 ( 1) , 1k
k k k kp q p q k n       . 

Proof: 

This lemma will be proved by induction on k and using the formula that 

we’ve proved in the previous theorem. Direct calculations show the 

theorem is true for k = -1, 0 and 1.   

For k = -1: 
1

2112 )1(11.10.0 

  qpqp  

For k = 0: 
0

01001 )1(10.1.1   aqpqp  
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For k = 1: 
1

101010100110 )1(111).1(  aaaaaaaaqpqp  

Assume the lemma is true for some integer s < n, i.e. 
s

ssss qpqp )1(11   . 

Now, for k = s+1, we have: 

ssssssssssss qppaqqapqpqp )()( 111111    

).(1 11111111   ssssssssssssssssss qpqpqpqpqpqpaqpqap

 11.( 1) ( 1)s s     .   

Therefore, the formula is true for k = s+1 and so by induction the lemma is 

true for 1 k n   .   

Proof of Theorem 2.6:  

For 1 ≤ k ≤ n: 

1

11

1

11

1

1
1




















kk

kkkk

kk

kkkk

k

k

k

k
kk

qq

qpqp

qq

qpqp

q

p

q

p
cc  

Using Lemma 2.1, 
1

1

1

1

1

1

)1()1()1(






















kk

k

kk

k

kk

k

kk
qqqqqq

cc .   

Example 2.11: 

Verify Lemma 2.1 using the convergents of the continued fraction

]2,2,3,1,6,1,1[ .   

Solution: 

Using the values of pk’s = {1, 2, 13, 15, 58, 131, 320} and qk’s = {1, 1, 7, 

8, 31, 70, 171} obtained in Example 2.10, we get: 

For k = -1:  
1

2112 )1(11100 

  qpqp  

For k = 0:    
0

1001 )1(10111   qpqp  

For k = 1:    
1

0110 )1(11211  qpqp
  

For k = 2:    
2

1221 )1(111372  qpqp  
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For k = 3:    
3

2332 )1(1715813  qpqp
               

For k = 4:    
4

3443 )1(18583115  qpqp  

For k = 5:    
5

4554 )1(311317058  qpqp   

For k = 6:    
6

5665 )1(70320171131  qpqp  

Thus, 
k

kkkk qpqp )1(11    for -1 ≤ k ≤ 6.   

Corollary 2.1:  358.,10 p  

2

2

)1(








kk

k

k

kk
qq

a
cc , 2 ≤ k ≤ n.   

Proof: 

By Theorem 2.6, 
1

1

1

)1(










kk

k

kk
qq

cc and 
21

2

21

)1(










kk

k

kk
qq

cc  

Adding these two equations, we get: 

21

2

2

21

2

2

1

21

2

1

1

2

)()1()1()1()1()1(





































kkk

kk

k

kkk

k

k

k

k

kk

k

kk

k

kk
qqq

qq

qqq

qq

qqqq
cc

 
But from the continued fraction recursion formula, 12   kkkk qaqq  

Thus, 
22

2

21

1

2

2

)()1()()1()()1(






















kk

k

k

kk

k

k

kkk

kk

k

kk
qq

a

qq

a

qqq

qa
cc .   

 

Corollary 2.2:  561.,2 p  

For 1 ≤ k ≤ n, pk and qk are relatively prime.   

Proof: 

Let d = gcd(pk, qk). Then d divides nkqpqp k

kkkk   1,)1(11 .  

Hence, d=1=gcd(pk, qk). So, pk and qk are relatively prime for all 1 k n  . 

To illustrate this property, consider the convergents of the continued 

fraction in Example 2.10. We find that  

gcd(p1, q1) = gcd(2, 1) = 1; gcd(p2, q2) = gcd(13, 7) = 1,  
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gcd(p3, q3) = gcd(15, 8) = 1; gcd(p4, q4) = gcd(58, 31) = 1,  

gcd(p5, q5) = gcd(131, 70) = 1; gcd(p6, q6) = gcd(320, 171) = 1.   

Thus, pk and qk are relatively prime for each value of k, where 1 ≤ k ≤ 6.   

Example 2.12: 

Given ]2,1,3,1,1,1[  is the continued fraction representation of the rational 

number
25

39
, find the convergents. 

Solution: 

Applying Theorem 2.5, we find the convergents of ]2,1,3,1,1,1[ : 

c0 = 1, c1 = 2, c2 =
2

3
, c3 =

7

11
, c4 =

9

14
, c5 =

25

39
.   

Notice that: 

1) The even convergents 1, 
2

3
, 

9

14
 form an increasing sequence and 

approach the actual value 
25

39
 from below, i.e. c0 < c2 < c4 .   

2) The odd convergents 2, 7

11
, 

25

39
 form a decreasing sequence and 

approach the actual value 
25

39
 from above, i.e. c1 > c3 > c5 .   

3) The convergents ck  approach the actual value 
25

39
 as k increases, where    

0 ≤ k ≤ 5. Moreover, they are alternatively less than and greater than 
25

39
 

except the last convergent c5. Therefore, we conclude that c0 < c2 < c4 <

25

39
 = c5 < c3 < c1. Figure 2.1 illustrates these notes.   

 

                                                                                                     

     

 

These notes lead to the following theorem.   

c3 

c0 

c1 

c4 

c5 

c2 

39

25
 

Figure 2.1 



36 

Theorem 2.7:  562.,2 p  

Let c0, c1, …, cn be the convergents of the continued fraction ],...,,[ 10 naaa .  

Then even–numbered convergents form an increasing sequence and odd-

numbered convergents form a decreasing sequence. Moreover every odd-

numbered convergent is greater in value than every even-numbered 

convergent. In other words: 

c2m < c2m+2, c2m+3 < c2m+1 and c2j < c2r+1 , m, j, r ≥ 0.      

Proof: 

By Corollary 2.1, 

2
2

2 2 2

2 2 2

( 1)
, 1

k
k

k k

k k

a
c c k

q q





   .                        (2.17) 

Since ak, qk, qk-2 > 0, then 2 2 2 0k kc c   . Hence, 

                        2 2 2k kc c 
                     (2.18) 

Thus, the even–numbered convergents form an increasing sequence

...420  ccc . 

Similarly, by Corollary 2.1, 

2 1
2 1

2 1 2 1

2 1 2 1

( 1)
, 1

k
k

k k

k k

a
c c k

q q




 

 


    

and so 1212   kk cc                           (2.19) 

Thus, the odd–numbered convergents form a decreasing sequence

...531  ccc .   

Finally, put k = 2s + 1, s ≥ 0 in Theorem 2.6, we obtain  
2

2 1 2

2 1 2

( 1)
0

s

s s

s s

c c
q q






   . With 0)1(,, 2

212 

s

ss qq , we get  

      122  ss cc                                         (2.20) 

From (2.18), (2.19) & (2.20):                                       

          c0 < c2 < c4 < …< c2k < c2k+1 < c2k-1 < ... < c3 < c1, if n = 2k+1 

and  

           c0 < c2 < c4 < …< c2k < c2k-1 < c2k-3 < ... < c3 < c1, if n = 2k 
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Section 2.4: Solving Linear Diophantine Equations 

Many puzzles, enigmas and trick questions lead to mathematical equations 

whose solutions are required to be integers.  Such equations are called 

Diophantine equations, named after the Greek mathematician Diophantus 

who wrote a book about them.   

Definition 2.7:  12,2,1  

Diophantine Equation is an algebraic equation in one or more unknowns 

with integral coefficients such that only integral solutions are sought.  This 

type of equations may have no solution, a finite number or an infinite 

number of solutions.   

Example 2.13:  

The following equations are Diophantine equations, where integral 

solutions are required for x, y and z.   

753  yx , 122  yx , 
222 zyx  , 13 22  yx .   

Definition 2.8:  2  

Linear Diophantine Equation “LDE” in two variables x and y is the 

simplest case of Diophantine equations and has the form cbyax   where 

a, b and c are integers.   

Example 2.14:  

153  yx , 246  yx , 855  yx  are linear Diophantine equations in 

two variables.   
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In this section, we are interested in solving linear Diophantine equations in 

two variables.  i.e., finding integral solutions of cbyax  .  If a and b are 

both zeros, then the equation is either trivially true when c = 0 or trivially 

false when c ≠ 0.  Moreover, if one of a or b equals zero, then the case is 

also trivial.  So we omit these two cases and assume that both a and b are 

nonzero integers.   

Geometrically, this equation represents a line in the Cartesian plane that is 

not parallel to either axis.  Solutions of the equation cbyax   are the 

points on the line with integral coordinates.  Points with integral 

coordinates are called lattice points.   

However, does every linear Diophantine equation cbyax   have an 

integral solution? If not, what are the conditions necessary for a LDE to 

have a solution? The following theorem answers these questions.   

Theorem 2.8:  12.,14 p  

Let a, b & c be integers with ab ≠ 0.  The linear Diophantine equation 

cbyax   is solvable if and only if gcd(a, b) divides c.  If (x0, y0) is a 

particular solution of the LDE, then all its solutions are given by: 

)
),gcd(

,
),gcd(

(),( 00 t
ba

a
yt

ba

b
xyx  , where t is an arbitrary integer.   

Proof: 

First, we show that if the LDE cbyax   is solvable, then gcd(a, b) divides 

c.   

Suppose (x1, y1) is a solution of cbyax  .  Then, cbyax  11 .   
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But gcd(a, b) divides both a and b, then , by Theorem 1.1, gcd(a, b) 

divides 11 byax  .  i.e.  gcd(a, b) divides c.   

Next, we want to prove that if gcd(a, b) divides c, then the LDE cbyax   

is solvable.   

Suppose that gcd(a, b) divides c.  Then c = k. gcd(a, b) for some integer k.   

Now, by Theorem 1.4, there exists two integers m and n such that 

),gcd( banbma  .   

Multiply both sides of this equation by k to get: gcd( , ) ckma knb k a b   .   

Thus x0 = km, y0 = kn is a solution of the LDE cbyax  .  Therefore, the 

LDE is solvable.   

Now assume that (x0, y0) is a particular solution of cbyax  , then  

t
ba

b
xx

),gcd(
0   and Ztt

ba

a
yy  ,

),gcd(
0

 
also satisfy the LDE:   

0 0 0 0( ) ( )
gcd( , ) gcd( , ) gcd( , ) gcd( , )

b a ab ab
ax by a x t b y t ax t by t

a b a b a b a b
         

.00 cbyax   

Thus, )
),gcd(

,
),gcd(

( 00 t
ba

a
yt

ba

b
x  is a solution for any integer t.   

Finally, we want to prove that any solution (x′, y′) of the LDE cbyax   

is of the form )
),gcd(

,
),gcd(

( 00 t
ba

a
yt

ba

b
x  for some integer t.   

Since (x0, y0) and (x′, y′) are solutions of cbyax  , then: 

cbyax  00  and  cbyax  '' .  That is ''00 byaxbyax  .   

Hence, )'()'( 00 yybxxa                                                      (2.21) 

Dividing both sides of this equation by ),gcd( ba , we have:      

)'(
),gcd(

)'(
),gcd(

00 yy
ba

b
xx

ba

a
  
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Note that 
1 1&

gcd( , ) gcd( , )

a b
a b Z

a b a b
   are relatively prime by 

Theorem 1.5. So, we obtain 1 0 1 0( ) ( )a x x b y y     

This shows that 1b  divides 1 0( )a x x  . But, since 1 1gcd( , ) 1a b  , then by 

Theorem 1.6, 1b  divides )'( 0xx  .   

Hence, Ztt
ba

b
tbxx  ,

),gcd(
' 10 .                             (2.22) 

That is .
),gcd(

' 0 t
ba

b
xx   

Similarly, is .
),gcd(

' 0 t
ba

a
yy    

Thus, every solution 
0 0( , ),

gcd( , ) gcd( , )

b a
x t y t t Z

a b a b
    of the linear 

Diophantine equation is of the desired form.  

Note 2.3: 

We conclude from this theorem that every solvable linear Diophantine 

equation cbyax   has infinitely many solutions.  They are given by the 

general solution: 

 t
ba

b
xx

),gcd(
0 

 
and ,

),gcd(
0 t

ba

a
yy 

 
where t is an arbitrary 

integer.   

By giving different values to t, we can find any number of particular 

solutions.   

Corollary 2.3:  13.,14 p  

Suppose that gcd(a,b) = 1.  Then the LDE cbyax   is solvable for all 

integers c. Moreover, if (x0, y0) is a particular solution, then the general 

solution is x = x0 + bt, .,0 Ztatyy    



41 

Example 2.15: 

Determine whether the following LDE’s are solvable.   

a) 30186  yx  

b) 732  yx  

c) 1586  yx  

d) 52959  yx  

Solution: 

a) gcd(6,18) = 6 which divides 30, then the LDE 30186  yx  is solvable.   

b) gcd(2,3) = 1, so 732  yx  is solvable.   

c) gcd(6,8) = 2, but 2 does not divide 15, then 1586  yx  is not solvable.   

d) gcd(59,29) = 1, so 52959  yx  is solvable.   

How to find a particular solution to the LDE cbyax  ? 

It is not difficult to find a particular solution.  One of the methods that are 

used is the Euclidean Algorithm method.   16,2  

To find a particular solution to a solvable LDE cbyax  , we follow 

these steps.   

1) Step 1: Write ),( ba  as a linear combination of a and b.  That is: 

),gcd(00 babsar  , r0 and s0 are integers.   

2) Step 2: multiply both sides of this equation by c and then divide it by 

gcd(a, b):     c
ba

cs
b

ba

cr
a 





)

),gcd(
()

),gcd(
( 00

.   

3)  Step 3: we obtain (
),gcd(

,
),gcd(

0
0

0
0

ba

cs
y

ba

cr
x





 ) as a particular solution  

  of the linear Diophantine equation.   
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LDE’s were known in ancient China and India as applications to 

astronomy and puzzles.  The following puzzle is due to the Indian 

mathematician Mahavira (ca. A.D. 850).   

Example 2.16: 

Twenty-three weary travelers entered the outskirts of a lush and beautiful 

forest.  They found 63 equal heaps of plantains and seven single fruits, and 

divided them equally.  Find the number of fruits in each heap and the 

number of fruits received by each traveller.   

Solution: 

Let x denote the number of fruits in a heap and y denote the number of 

fruits received from each traveller.   

Then we get the linear Diophantine equation: 

                                            yx 23763   

i.e.                                       72363  yx  

x and y must be positive, so we are looking for positive integral solutions 

of the LDE.   

Since gcd(63, 23) = 1, then, by Corollary 2.3, the LDE is solvable.   

To find a particular solution, we apply the Euclidean Algorithm: 

1723263                                                                                    (2.23) 

617123                                                                                         (2.24) 

56217                                                                                           (2.25) 

1516                                                                                              (2.26) 

155   
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Now, use equations (2.21), (2.22), (2.23) and (2.24) in reverse order to get: 

6342311

)23263(4233

174233

171)17123(3

17163

)6217(16

5161















 

Thus, 1)11(23)4(63  .  Multiplying both sides of this equation by -7, 

we have: 7)711(23)74(63  .   

That is: 63(28) (23)(77) 7   .                  

Therefore, (28, 77) is a particular solution of 72363  yx .   

By Corollary 2.3, the general solution of the LDE is: 

)6377,2328(),( ttyx  , t is arbitrary integer.   

Finally, since x > 0 and y > 0, then: 

                          
02328  t     and      06377  t  

                           
217.1

23

28
t

   
and   222.1

63

77
t       

So, )6377,2328(),( ttyx  , where t is an integer less than or equal 1, is 

a positive integral solution of the LDE yx 23763  .   

Continued Fractions and Linear Diophantine Equations   13,2,1  

Another way to find a particular solution to a solvable LDE cbyax   is 

the continued fraction method.  Our approach to explain this method will 

be a step-by-step process until we’ll be able to find integral solutions to 

any solvable LDE of the form cbyax  .  This method depends on the 

formula stated in Lemma 2.1.   
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> Solving the LDE 1ax by  ; a & b are positive relatively prime 

integers. 

To solve this LDE, we express 
b

a
 as a finite simple continued fraction.  

                                      ],,...,,[ 110 nn aaaa
b

a
  

Then we calculate the convergents c0, c1, c2, …, cn-1 ,cn. The last two 

convergents 
1

1
1




 

n

n
n

q

p
c and 

n

n
n

q

p
c   with the relation stated in Lemma 2.1 

are the key to the solution: 
n

nnnn qpqp )1(11    

With pn = a and qn = b we have: n

nn aqbp )1(11    

Or  

                                   1
1 1( 1) ( 1) 1n n

n na q b p
                           

Comparing this equation with the LDE 1ax by  , we conclude that: 

1
0 1 0 1( ( 1) , ( 1) )n n

n nx q y p
     is a particular solution of 1ax by  . 

Therefore, if n is even, then 0 0 1 1( , ) ( , )n nx y q p   and if n is odd, then

0 0 1 1( , ) ( , )n nx y q p   . 

We have four cases 1 byax  according to the sign of both a and b:  

Case 1: 0& 0a b    

Equation: 1ax by   

Solution: 1
0 0 1 1( , ) (( 1) ,( 1) )n n

n nx y q p
     

Case 2: 0& 0a b    

Equation: 1ax by   

Solution: 1 1
0 0 1 1( , ) (( 1) ,( 1) )n n

n nx y q p 
     

Case 3: 0& 0a b    

Equation: 1ax by     

Solution: 0 0 1 1( , ) (( 1) ,( 1) )n n
n nx y q p     
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Case 4: 0& 0a b    

Equation: 1ax by    

Solution: 1
0 0 1 1( , ) (( 1) ,( 1) )n n

n nx y q p
     

Example 2.17: 

Solve the LDE 191204  yx using continued fraction method.   

Solution: 

First of all, gcd(204 , 91) = 1, then the LDE is solvable.   

To find a particular solution, we represent 
91

204

 
as a finite simple continued 

fraction.                                    ]3,7,4,2[
91

204
  

Then we construct the convergent table as shown in Table 2.3.  From this 

table:  n = 3, pn-1 = p2 = 65 and qn-1 = q2 = 29.   

Table 2.3 

    k        -2    -1     0     1     2     3 

    ak              2         4     7     3 

    pk         0          1         2         9        65       204 

    qk         1         0        1     4    29    91 

    ck  

 
2

1

2


    4

9

   29

65

   91

204

 

Thus, a particular solution to the LDE 191204  yx is: 
 

                                         
6565)1(

2929)1(

2

0

2

0





y

x
 

Finally, by Corollary 2.3, the general solution is: 

                              
29 ( 91) 29 91

65 204

x t t

y t

    

 
  , t is an arbitrary integer.   
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Now, what if we replace the number 1 in any LDE in the cases above by 

another integer “c”? In other words, what is the particular solution of the 

LDE cbyax  , 1),gcd( ba ? 

> Solving the LDE cbyax  , where a, b and c are integers, 1),gcd( ba .   

The first step in solving this LDE is to find a particular solution ),( 00 yx of 

the LDE 1byax  using the formulas we’ve studied and derived 

according to the case we have.   

From 100  byax , we have:  ccybcxa  )()( 00  

Thus, ),( 00 cycx  is a particular solution of the LDE cbyax  .   

> Solving the LDE CByAx  , where A, B and C are integers, 

1),gcd( BA .   

As we have proved in Theorem 2.8, the LDE CByAx   is solvable if 

and only if gcd(A, B) divides C.  If so, divide both sides of the LDE by 

gcd(A, B) to reduce it to the equation of the form: 

      cbyax  ,                              (2.27)  

where a, b and c are integers, gcd(a, b)=1.                        

The solution of equation (2.27) has been discussed and is easy to solve.  

Finally, any solution of this equation is automatically a solution of the 

original equation CByAx  .   

Example 2.18: 

Solve the LDE 29918265  yx  using continued fraction method.   

Solution: 
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gcd(65,182) = 13, and 13 divides 299.  So, the LDE 29918265  yx  is 

solvable.   

Divide both sides of the equation 29918265  yx  by 13 to get the LDE 

23145  yx .   

Now, we find a particular solution to the LDE 1145  yx .   

5
[0,2,1,4]

14
 .  The following table is the convergent table.   

Table 2.4
 

From this table: n = 3, p2 = 1 and q2 = 3.   

Thus, a particular solution to the LDE 1145  yx  is: 
 

                                         
11)1(

33)1(

2

0

2

0





y

x
 

So, (23x0, 23y0) = (69, 23) is a particular solution to the LDE 5 14 23x y    
 

Finally, the general solution of
 

23145  yx is: 

                                     
ty

ttx

523

14691469




  , t is an arbitrary integer.   

Note 2.4: 

The continued fraction method for finding a particular solution for a 

solvable LDE is equivalent to the Euclidean algorithm method.  This is due 

    k        -2    -1     0     1     2     3 

    ak              0         2     1     4 

    pk         0          1         0         1         1         5 

    qk         1         0        1     2     3    14 

    ck      0 
   2

1

    3

1

    14

5
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to the fact that the continued fraction of 
b

a
 is derived from the Euclidean 

algorithm as we have already studied in Chapter Two.  However, 

generating the convergents using the recurrence relations to solve a LDE is 

quicker than to find Euclidean algorithm equations and then use them in  

reverse order.    
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Chapter Three 

Infinite Simple Continued Fractions   

Section 3.1: Properties and Theorems  

Irrationals are numbers that cannot be written as a ratio of two integers.  

Some irrationals are of the form
C

BA
 , where A and C are integers, B is a 

positive no-perfect square integer.  Irrationals of this form are the roots of 

the quadratic equation 0)(2 222  BAACXXC , so they are called 

quadratic irrationals or quadratic surds.  However, there are irrational 

numbers which are not quadratic surds such as 𝜋, e, cube roots, fifth roots, 

etc.  Our discussion will concentrate on the continued fraction expansions 

of quadratic irrationals.   

The numbers 𝜋 and e are examples of transcendental numbers.  The 

expansion of transcendental numbers into continued fractions is not easy, 

but using decimal approximations to them, such as 𝜋 = 3.141592…..  and 

e = 2.7182818…., we can find some of the first terms of their continued 

fraction expansions: 

,.....]1,8,1,1,6,1,1,4,1,1,2,1,2[e  and ,.....]1,2,1,1,1,292,1,15,7,3[  

As we can see, e has apparent pattern occurs in its expansion, but the 

expansion of the irrational number 𝜋 does not appear to follow any pattern.   

However, mathematicians found the expansions of 𝜋 and e using methods 

which are beyond the scope of this thesis.   

In Chapter Two, we’ve defined the infinite simple continued fraction that 

has the form                      
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0

1

2

3

4

1

1

1

1

a

a

a

a

a










 

But, in that chapter, our study of continued fractions has been limited to 

the expansion of rational numbers.  In this chapter, we study the continued 

fraction expansion of irrational numbers, state their properties and some 

related theorems.   

The Continued Fraction Algorithm:  3.,4 p  

For the continued fraction expansion of irrational numbers, we’ll use the 

same algorithm as in the continued fraction expansion of rational numbers.   

Let y be an irrational number.   

Set 0yy   and let ]][[ 00 ya  ;  

]][[

1

00

1
yy

y


 , ]][[ 11 ya  ;  

]][[

1

11

2
yy

y


 , ]][[ 22 ya  ;  

              .   

              .   

]][[

1

11  


kk

k
yy

y ; ]][[ kk ya  ,  

              .   

              .   

              .   

We continue in this manner.  Here, the process will continue indefinitely 

but the expansion exhibit nice periodic behavior for quadratic irrationals.  

We’ll prove this algorithm in Theorem 3.5.   
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Example 3.1:  

Find the continued fraction expansion of 2 . 

Solution: 

Let 20 y , 221  , 
0 0[[ ]] [[ 2]] 1a y   ;      

12

1
1


y .  Rationalize the denominator of y1:  

1 1

1.( 2 1) 2 1
2 1, [[ 2 1]] 2

1( 2 1)( 2 1)
y a

 
      

 
; 

2 1 2

1 1
2 1 , [[ 2 1]] 2

2 1 2 2 1
y y a       

  
.  

Since  y1 = y2, it is clear that 2 3 4 5 ... 2 1y y y y       and 

.2.....5432  aaaa  

Hence, 

]2,1[,...]2,2,2,1[

1
2

1
2

1
2

1
12 











, where the bar over 2 indicates that 

the number 2 is repeated over and over.   

Example 3.2:  

Using the continued fraction algorithm, find the first 6 terms of the infinite 

continued fraction expansion of e.   

Solution:  

 Let 0 0 02.7182818285..., [[ ]] [[ ]] 2y e a y e     ; 

1 1 1

1
1.3922111911..., [[ ]] 1;

2.7182818285... 2
y a y   


 

2 2 2

1
2.5496467788..., [[ ]] 2

1.3922111911... 1
y a y   


;
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3 3 3

1
1.8193502419..., [[ ]] 1

2.5496467788... 2
y a y   


;
 

4 4 4

1
1.2204792881..., [[ ]] 1

1.8193502419... 1
y a y   


; 

5 5 3

1
4.5355734255..., [[ ]] 4

1.2204792881... 1
y a y   


.
 

Thus, ,...]4,1,1,2,1,2[e .  
 

Convergents:  9,6,2,1  

The corresponding convergents to any infinite continued fraction form an 

infinite sequence:  

,...,
1

1
1

0

0
0

q

p
c

q

p
c  , ,...i

i

i

p
c

q
 .   

These convergents are evaluated in the same way as convergents of finite 

simple continued fractions since each convergent is finite and represents a 

rational number.  So we calculate them using the formula:  

21

21









kkkk

kkkk

qqaq

ppap
, k ≥ 0 and 

1,0

0,1

21

21









qq

pp
.   

They also have the same properties of convergents of finite simple 

continued fractions, and we can summarize them as follows:  

* 
k

kkkk qpqp )1(11   , 1k     

* 
1

1

1

)1(










kk

k

kk
qq

cc , k ≥ 1.   

* 
2

2

)1(








kk

k

k

kk
qq

a
cc , k ≥ 2.   

* For k ≥ 1, pk and qk are relatively prime.   

* c0 < c2 < c4 <  ... < c2k < ... < c2k+1 < ... < c3 < c1.   
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The proofs of these properties are the same as before since the proofs given 

there were independent of whether the continued fraction is finite or 

infinite.   

Moreover, it is important to note here that since sa
 and kq , are positive 

integers for 1s
 & 0k

 , it follows from the equation 21   kkkk qqaq
 

that { , 0, 1, 2,...}kq k  is an increasing unbounded sequence.   

Theorem 3.1:  10.,4 p  

a) 1 1 0 0

1

[ , ,..., , ], 0, 0k
k k

k

p
a a a a k a

p




   .   

b) 1 1

1

[ , ,..., ], 1k
k k

k

q
a a a k

q




  .   

Proof:  

We only prove a). The proof of  b) is similar. 

Using induction on k:  

For k = 0:                      ][ 00

1

0

1

0 aa
p

a

p

p




 

For k = 1:    ],[
1

01

0

1

0

1
1

0

101

0

1 aa
a

a
p

p
a

p

ppa

p

p



 

 

Suppose the statement is true for k = n > 1.  That is,  

                                  ],,...,,[ 011

1

aaaa
p

p
nn

n

n




  

Now, 111   nnnn ppap .  Divide both sides by pn to get:  
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],,...,,[

1

1

1

1

1

011

0

1

1

1

1
1

1
1

aaaa

a

a

a

a

p

p
a

p

p
a

p

p

nn

n

n

n

n

n
n

n

n
n

n

n





























 

Thus, the statement is true for k ≥ 0.   

Example 3.3:  

Find the first seven convergents of the continued fraction expansion of 𝜋. 

Solution:  

We can find some of the first terms of the infinite continued fraction for 𝜋:  

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1,...]  .   

We want to find ci for each 0 ≤ i ≤ 6, so we construct the following 

convergent table: 
 

Table 3.1
 

  k        -2   -1   0   1     2    3       4       5        6 

  ak            3       7    15    1     292       1        1     

  pk         0          1       3      22       333      355  103993  104348   208341    

  qk         1         0      1   7  106  113   33102   33215   66317 

  ck    3  7

22

  106

333

 113

355

  33102

103993

  33215

104348

  66317

208341
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Now, 30 c
 

          
285714293.14285714

7

22
1 c

 

          396226423.14150943
106

333
2 c

 

          
035398233.14159292

113

355
3 c

 

          
301190263.14159265

33102

103993
4 c

 

          
39214213.14159265

33215

104348
5 c

 

          
346743673.14159265

66317

208341
6 c  

and 𝜋 = 3.1415926535897932….   

Notice that the convergents 610 ,...,, ccc  are good approximations for 𝜋 to 0, 

2, 4, 6, 9, 9, 9 decimal places, respectively.  Hence, they give successively 

better approximations to 𝜋.   

Now, from the property c0 < c2 < c4 < …< c2m < … < c2m+1 < .  .  .  < c3 < c1, 

the sequence of even convergents {c2m} is an increasing sequence that is 

bounded above by c1, so it is a convergent sequence.  Moreover, the 

sequence of odd convergents {c2m+1} is a decreasing sequence that is 

bounded below by c0, so it is also a convergent sequence.  Hence as m 

approaches  , the sequence {c2m} approaches a limit Me and the sequence 

{c2m+1} approaches a limit Mo.  That is,       mc2 = Me and 

      12 mc = Mo.   

Since even convergents are less than all odd convergents, then the limit Me 

is less than all odd convergents.  Similarly, the limit Mo is greater than any 

even convergent.   
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These two limits are equal according to the following theorem:  

Theorem 3.2:  7068.,1 pp &  568.,2 p  

Let ,....],,[ 210 aaa  be an infinite simple continued fraction expansion of a 

number y and let ],...,,[ 10 ii aaac   denotes the i
th
 convergent of the 

continued fraction, then:  

1)       mc2 =       12 mc .   

2)       mc = y.   

Proof:  

1) Using the property 
1

1

1

)1(










kk

k

kk
qq

cc , k ≥ 1, we obtain:  

mmmm

m

mm
qqqq

cc
212212

2

212

1)1(



 


 , m ≥ 0.   

 But we know that mm qq 212  , then
2

2 1 2 2

1 1

m m mq q q

 .
 

Now, as m increases, mq2 and 
2

2mq
 both increase and so 

2

2

1
{ }

m
q  

is a bounded 

decreasing positive sequence, hence it is convergent to 0.   

So, )(lim 212 mmm cc   = 0 and hence,       12 mc     
   

mc2 .   

2) Now, {c2m} and {c2m+1} are subsequences of the sequence {cm} and they 

both have a common limit, say M.  Then       mc = M.   

Hence, we can say that every infinite simple continued fraction converges 

to a limit M.  This limit is greater than all even convergents and less than 

all odd convergents.  We prove that the limit M equals the number y.   
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Given 























1

1

2

1

0

1

1

1

1

1

1

n

n

n

a

a

a

a

a

ay ,   

define












2

1

1

1

n

n

nn

a

a

ay , 














3

2

11 1

1

n

n

nn

a

a

ay , …  and so on.   

Then, we can write 

n

n
y

a

a

a

ay

1

1

1

1

1

1

2

1

0















and 
1

1




n

nn
y

ay .   

It is clear that yn+1 > 0. So, yn > an for all 0n  .  

Hence, 
1

1




n

nnn
a

aya .                                                                      (3.1) 

Now, comparing the three following expressions:  

             

n

n

n

a
a

a

a

ac

1

1

1

1

1

1

2

1

0















                                                  (3.2) 

              

n

n
y

a

a

a

ay

1

1

1

1

1

1

2

1

0















                                                  (3.3) 

and 
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1

1

2

1

01

1

1

1

1

1

1



















n

n

n

n

a
a

a

a

a

ac



                                      (3.4) 

We can see that they have the term 

1

2

1

0

1

1

1

1











na

a

a

a



 in common and 

differ in the terms
na

1
, 

ny

1
, 

1

1

1




n

n
a

a

, respectively.   

Using inequality (3.1), we get:  

                                           
nn

n

n

ay

a
a

11

1

1

1






                                       (3.5) 

Thus, from equations (3.2), (3.3), (3.4) and inequality (3.5), we conclude 

that y must lie between two consecutive convergents cn and cn+1.  That is:  

                           1 nn cyc               or               nn cyc 1  

But we know that even convergents are less than odd convergents.  Thus, 

we conclude that 

                                              122  mm cyc ,                       m = 0, 1, 2, …  

and in expanded form, we write:                                                               

135122420 ............ ccccycccc mm    

Thus, as m increases, even convergents approach y from the left and odd 

convergents approach y from the right.  Hence, the limit M obtained in the 

previous proof is the same as the number y.  In symbols,       mc = y.   
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Definition 3.1:  20  

Given an infinite simple continued fraction ,...],,,,[ 3210 aaaa  the term  

,...],,[ 21  nnnn aaay
 is called the (n+1)-st complete quotient of the 

continued fraction.   

Theorem 3.3:  569.,2 p   

Any infinite simple continued fraction represents an irrational number.   

Proof: (by contradiction) 

Let ,....],,[ 210 aaay   be an infinite simple continued fraction.  Then, by 

Theorem 3.2, y =       mc  and 122  mm cyc .   

Thus, mmm cccy 21220   .  But, 
mm

mm
qq

cc
212

212

1



  .   

So, 
mmm

m

qqq

p
y

2122

2 1
0



  

Now, suppose by contradiction that y is a rational number, say
s

l
y  , 

where s > 0.   

Then,  

mmm

m

qqq

p

s

l

2122

2 1
0



 . 

That is,   

12

220



m

mm
q

s
splq . 

So, mm splq 22   is a positive integer less than 
12 mq

s
.   

As we studied before, as m increases, 12 mq
 also increases.  Thus, there is 

an integer i such that sq i 12 .   
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Then, 
2 1

1
i

s

q 

 .  This implies that 10 22  ii splq .  Hence ii splq 22 
 is a 

positive integer less than one, which is a contradiction.  So, y is an 

irrational number.    

Theorem 3.4:  7.,4 p  

Let ,...}2,1,0,{ k
q

p

k

k  be the sequence of convergents of an irrational 

number y.  Define yk as in the continued fraction algorithm,  

i.e., 
]][[

1

11  


kk

k
yy

y .  Then: .0,
21

21 







 k
qqy

ppy
y

kkk

kkk

 

Proof:  

We prove this theorem using induction on k.  First, remember that

0,1 21   pp , 1,0 21   qq , 21   kkkk ppap  and 

21   kkkk qqaq . 

For k = 0:  

yy
y

y

qqy

ppy














0

0

0

210

210

10.

01.
 

For k = 1:  

y

ay

a
ay

y

ay

qqy

ppy





















)
1

(

1).
1

(

01.

1.

0

0

0

1

01

101

101
 

So, the statement is true for k = 0 and k = 1.   

Assume that the statement holds for an arbitrary number j ≥ 2.  That is,      

                                        .
21

21
y

qqy

ppy

jjj

jjj









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Now,  

)(

)(

)(

)(

)
1

(

)
1

(

121

121

1

1

1

1

11

11

jjjjjj

jjjjjj

jjjj

jjjj

jj

jj

jj

jj

jjj

jjj

ayqqqa

aypppa

ayqq

aypp

qq
ay

pp
ay

qqy

ppy






































 

.
21

21
y

qqy

ppy

jjj

jjj










 

So, the statement is true for j+1.  Thus, the theorem is true for k ≥ 0.   

Note 3.1:  4,3  

The property considered in Theorem 3.4 is also true for rational numbers.  

That is .0,],...,,[
21

21
10 nk

qqy

ppy
aaa

kkk

kkk
n 









  

The following theorem shows that any irrational number can be written as 

an infinite simple continued fraction.   

Theorem 3.5:  570.,2 p  

Let y = y0 be an irrational number.  Define the sequence


0}{ kka of integers 

ak recursively as follows:  

                               0,
1

,]][[ 1 


  k
ay

yya
kk

kkk  

Then ,...].,,,[ 3210 aaaay 
 

Proof:  

It is clear that, for any k ≥ 0, ak is an integer.   

By induction, we prove that yk is an irrational number for every k ≥ 0.   

Note that y0 is an irrational number and .]][[ 000 yya 
 Then, 00 ay 

 is 

irrational and so 
00

1

1

ay
y


 is irrational.   
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Assume that yk is an irrational number for an arbitrary integer k ≥ 0.  This 

implies that kk ay 
 and 

kk ay 

1
are also irrationals, which means that yk+1 

is irrational.  So, by induction, yk is an irrational number for every k ≥ 0.   

Next, we show that ak  ≥ 1 for every k ≥ 1.  yk  is an irrational number and 

]][[ kk ya 
 is an integer, then kk ya  and .0 kk ay  

But, .1]][[  kkkk yyay
 Then, 10  kk ay  and so 

.1
1

1 




kk

k
ay

y   Therefore, .1]][[ 11   kk ya   It means that 

,...,, 321 aaa are all positive integers.   

Finally, we prove that ,...],,[ 210 aaay  .   

Using the recursive formula: 

kk

k
ay

y




1
1 ,  

we find that 

.0,
1

1




k
y

ay
k

kk  

Now, .
1

1

00
y

ay   Successively substituting for y1, y2, y3, … yields:  

],,[
1

1

],[
1

210

2

1

0

10

1

00

yaa

y
a

a

ya
y

ay








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.0,],,...,,,,[

1

1

1

1

1

1

],,,[

1

1

1

13210

1

3

2

1

0

3210

3

2

1

0



























myaaaaa

y
a

a

a

a

a

yaaa

y
a

a

a

mm

m

m







   

Using Theorem 3.4, we get:  

11

11
0










mmm

mmm

qqy

ppy
y  

Let 
k

k
k

q

p
c 

 
be the k

th
 convergent of the continued fraction ,...].,,,[ 3210 aaaa  

Then       

mmmm

mmmm

m

m

mmm

mmm
m

qqqy

qpqp

q

p

qqy

ppy
cy

)( 11

11

11

11
0




















 

But, 
m

mmmm qpqp )1(11   .  Then,  

mmmm

m

m
qqqy

cy
)(

)1(

11

0

 


 . 

So, 
mmmm

m
qqqy

cy
)(

1

11

0

 
 .   

But, 11   mm ay , so 
mmmmmm

m
qqqqqa

cy
111

0

1

)(

1






 .   

As m approaches ∞, qm gets larger and larger, and so, 
mm qq 1

1



approaches 

zero.  It means that 0ycm 
 as m .   
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Hence, ,...].,,[lim 2100 aaacyy mm    

We conclude that we can approximate any irrational number by a rational 

number.   

Theorem 3.6:  253.,20 p  

The infinite simple continued fraction expansion of an irrational number is 

unique.   

Proof:  

Let x be an irrational number.  Suppose that there are two infinite simple 

continued fractions representing the irrational number x.   

                               ,...],,[,...],,[ 210210 hhhdddx   

It is clear that ]][[0 xd 
 and ]][[0 xh  .  So, 00 hd  .   

Next, using the continued fraction algorithm, we find that ]]
]][[

1
[[1

xx
d




and ]]
]][[

1
[[1

xx
h


 .  So, 11 hd  .   

Suppose that kk hd   for all k < n.  We’ll prove that nn hd  .   

Using the complete quotient, we can write:  

                       ],,...,,[],,...,,[ 12101210 nnnn xddddxddddx    

Now 

                                 
21

21

21

21



















nnn

nnn

nnn

nnn

qqx

ppx

qqx

ppx
x .   

So 

              ))(())(( 21212121   nnnnnnnnnnnn ppxqqxqqxppx .   

This implies that 

                         21212112 


nnnnnnnnnnnn qpxpqxqpxqpx  
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 Then                                                   

                               0)()( 2112   nnnnnnnn qpxxqpxx  

                                     0])[( 2112   nnnnnn qpqpxx  

But 

                                       
1

2112 )1( 

  n

nnnn qpqp  

Thus 

                                              0n nx x   . 

As a result, nn xx  . So, nnnn hxxd  ]][[]][[ .   

Thus, we deduce that nn hd  .   

Therefore, we’ve proved by induction that the simple continued fraction 

representation of an irrational number is unique.   



66 

Section 3.2: Periodic Continued Fractions 

In the previous section, we studied the representation of irrational numbers 

as infinite simple continued fractions.  We also discussed their convergents 

and some related theorems.  In this section, we study quadratic irrationals 

in details, i.e., irrationals of the form
C

BA
 , where A and C are integers, 

B is a positive non-perfect square integer.   

Definition 3.2:  18,9,6,3  

The infinite continued fraction ,...],,,[ 3210 aaaa
 is periodic with period d 

if there exists a smallest positive integer d and a nonnegative integer f such 

that ndn aa   for all n ≥ f . It can be represented as 

].,...,,,...,,[ 1110  dfff aaaaa  

The quotients 110 ,...,, faaa
 
are called non-repeating quotients and the 

quotients 11,...,,  dfff aaa  are called the repeating quotients of the fraction.   

A continued fraction is called purely periodic with period d if it is 

periodic with f = 0, that is if there is no non-repeating quotients.  It can be 

represented as ].,...,,[ 110 daaa  

Example 3.4:  

Find the continued fraction expansion of .
2

351

 

Solution:    

Let 3]][[,
2

351
000 


 yay

      

.2,
5

535

2535

)535(2

535

2

3
2

351

11
1

00

1 

















 a
ay

y
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.5,
2

535

2535

)535(5

535

5

2
5

535

11
2

11

2 

















 a
ay

y  

.2,
5

535

535

2

5
2

535

1
1313 










 aayy  

Since y3 = y1, it is clear that 24 yy  , 15 yy  , …, 22 yy k  , 112 yy k  , and 

the corresponding partial quotients alternate between 2 and 5 indefinitely. 

Hence, ].5,2,3[,...]2,5,2,5,2,3[
2

351




 

The continued fraction expansions of the irrational numbers 2  (in 

Example 3.1) and 
2

351
are periodic but not pure.   

Example 3.5:  

Find the continued fraction expansion of .113  

Solution:  

Let 6]][[,311 000  yay
    

3,
2

311

)311)(311(

)311(1

311

1

6113

11
1

00

1 















 a

ay
y

  

6,311
911

)311(2

311

2

3
2

311

11
2

11

2 














 a
ay

y
 

Since 02 yy  , it is clear that 13 yy  , 04 yy  , …, 02 yy k  , 112 yy k  , and 

the corresponding partial quotients alternate between 6 and 3 indefinitely.   

Therefore, ]3,6[,...]6,3,6,3,6[311   is purely periodic with period 2.   

Now, if we want to convert a periodic continued fraction to a quadratic 

irrational, what shall we do?  11,1  

We’ll explain the method by the following example.   
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Example 3.6:  

Convert the continued fraction ]1,2,1,3,2[  to the form .
C

BA

 

Solution:  

Let 














1

1
1

1
2

1
1

1
3

1
2x and y represents the repeating quotients of the 

continued fraction.   

 That is














1

1
2

1
1

1
1

1
2

1
1y .   

Now, 
23

34

23

1
1

1
2

1
1

1
1

1
2

1
1





















y

y

y

y

y

y

y

y .   

And so, 0323 2  yy .  Solving this quadratic equation, we get:  

                                             
3

101
y .   

Since y is positive, then
3

101
y .   

But, 

y

x
1

3

1
2



 .  Substitute the value of y in this equation to find the 

value of x:  

.
6103

13107

101

6103

1
2

3

101

1
3

1
2














x   
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Rationalize the denominator to get:  

.
18

1044

54

103132 



x  Hence, .

18

1044
]1,2,1,3,2[


  

Definition 3.3:  21,3  

An irrational number is called a quadratic irrational if it is a root of a 

quadratic equation 02  cbyay where a, b, c are integers, a ≠ 0 and its 

discriminant acb 42   is a positive non-perfect square integer. 

Lemma 3.1:  281.,22 p  

Let x be a quadratic irrational and let 
dcx

bax
y




 , where a, b, c and d are 

integers, c and d are not both zeros.  Then x is a quadratic irrational if and 

only if .0bcad
 

Proof: see  22 .   

Theorem 3.7:  20.,3 p  

If the continued fraction expansion of y is purely periodic, then y is a 

quadratic irrational.   

Proof:  

Let y be represented by a purely periodic continued fraction. That is 

].,...,,[ 110  daaay
 

Then  

],,...,,[

1

1

1

1

1
110

1

2

1

0 yaaa

y
a

a

a

ay d

d


















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and
 

...20  dd yyyy .   

Using Theorem3.4, .
21

21










dd

dd

qyq

pyp
y

  

So, .0)( 212

2

1   dddd pypqyq  

Hence y is a root of a quadratic equation. If y is rational, then it has a finite 

simple continued fraction representation, not an infinite pure periodic 

continued fraction presentation.  Thus y is a quadratic irrational.   

Corollary 3.1:  168.,21 p &  281.,22 p  

A periodic continued fraction represents a quadratic irrational.   

Proof:  

Let y be a real number represented by a periodic continued fraction.  That 

is ].,...,,,,...,,[ 11110  dffff aaaaaay
 

Let x be represented by the periodic part of y.  That is  

].,...,,[ 11  dfff aaax  Then, by Theorem 3.7, x is a quadratic irrational.   

So,    

],,...,,[

1

1

1

1

1

1

1

1

1

1

1

1

1

1

110

1

2

1

0

1

1

1

2

1

0

xaaa

x
a

a

a

a

a

a

a

a

a

a

ay

f

f

df

f

f

f
















































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Using Theorem 3.4, .
21

21










ff

ff

qxq

pxp
y Then, by Lemma 3.1 , y is a quadratic 

irrational since .0)1(1221  

f

ffff qpqp  

The quadratic equation 02  cbyay , where a ≠ 0, b and c are integers 

with a positive non-perfect square discriminant has two roots.   

The first one is 
C

BA

a

acbb 





2

42


 

and the second is 

C

BA

a

acbb 





2

42

 , where aCacbBbA 2,4, 2   are  

integers.    and are conjugates.  Notice that
a

b

C

A 


2
 and 

a

c

C

BA





2

2

 .   

For instance, 5  is the conjugate of 5  and

 

714  is the conjugate of 

714 .   

Definition 3.4:  23,1  

 Let   be a quadratic irrational satisfying the quadratic equation

  
02  cbyay , where a, b and c are integers.  Then 

 

is called a reduced 

quadratic irrational if 1  and .01  

 

Example 3.7:  

The quadratic irrational 103  is greater than 1 and satisfies the quadratic 

equation 10)3( 2 x , that is .0162  xx also, its conjugate

 

103  lies 

between -1 and 0.  Thus, 103  is a reduced quadratic irrational.   

In general, we know that if B is a positive non-perfect square integer, then

1]][[0  BB  and so, 0]][[1  BB .  Thus, 1]][[  BB  is a 

reduced quadratic irrational.   

 



72 

Theorem 3.8:  405.,24 p  

If y has a purely periodic continued fraction expansion, then y is a reduced 

quadratic irrational.   

Proof:  

Let ],...,,[ 110  daaay  be the value of a purely periodic continued fraction.  

In Theorem 3.7, we’ve proved that y is a root of the quadratic equation:  

                                  
2

1 2 1 2( ) 0d d d dq y q p y p       , 

hence y is a quadratic irrational.  Now, we shall prove that y is reduced.   

Since ak’s are positive integers for k ≥ 1 and y is purely periodic, 

1...20  dd aaa
 and so y > 1.  Also, notice that pk’s and qk’s are positive 

for all k.   

y and its conjugate y are the roots of the quadratic polynomial:  

                              212

2

1 )()(   dddd pxpqxqxg
 

Now,  

0)()()1( 2121   dddd ppqqg
 since 21   dd pp and 21   dd qq

 

and    0)0( 2  dpg .   

By the Intermediate Value Theorem, there is a root of g(x) between –1 and 

0.  But y is greater than 1, so the root is its conjugate y .  Thus, .01  y  

As a result, y is a reduced quadratic irrational.   

Theorem 3.9:  93.,1 p &  169.,23 p  

Let ],...,,[ 10 naaaw   be a purely periodic continued fraction.  Then:              

],,...,,[
1

011 aaaa
w

nn 



, where w′ is the conjugate of w.   
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Proof:  

w represents the purely periodic continued fraction ],...,,[ 10 naaa .  Then, it 

can be written as  

                                            ],,...,,[ 10 waaaw n  

Using Theorem 3.4,              

                                              
1

1










nn

nn

qwq

pwp
w  

where 
n

n

q

p

 
and 

1

1





n

n

p

p

 
are the n

th
 and (n-1)

st
 convergents of the continued 

fraction ],...,,[ 10 naaa , respectively.   

This implies that (by Theorem 3.7),  

                               0)( 11

2   nnnn pwpqwq                            (3.6) 

Next, let v be the purely continued fraction representation of of w but in 

reverse order,  

i.e.,                                
],,,...,,[

],,...,,[

011

011

vaaaa

aaaav

nn

nn









 

Again, using Theorem 3.4,  

                                              
1

1










nn

nn

svs

rvr
v                                           (3.7) 

where 
n

n

s

r

 
and 

1

1





n

n

s

r

 
are the n

th
 and (n-1)

st
 convergents of the continued 

fraction ],,...,,[ 011 aaaa nn  , respectively.   

We have:  

                                     
n

n
nn

n

n

s

r
aaa

p

p
 



],...,,[ 01

1
 

and                               
1

1
11

1

],...,,[








n

n
nn

n

n

s

r
aaa

q

q
 

Then   
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                                          111

1

,

,









nnnn

nnnn

sqrq

sprp

 

since convergents are in their lowest terms.  Substituting these results in 

equation (3.7), we get:  

                                              
11  




nn

nn

qvp

qvp
v  

So,                              0)( 1

2

1   nnnn qvpqvp  

Dividing both sides of this equation by –v
2
 (v > 1) 

                              0)
1

)(()
1

( 11

2 





 nnnn p
v

pq
v

q  

Thus, 
v

1
is a root of equation (3.6) and since v and w are positive, 

v

1

 
is 

negative and different from w.  so, 
v

1
 must be the conjugate w′ of w.   

Hence, 
v

w
1

 and so ],...,,[
1

01 aaa
w

v nn 



 .   

Theorem 3.10:  169.,23 p  

Let w be a quadratic irrational and w′ be its conjugate.  If d and l are  

rational numbers, then wld   is the conjugate of
 

lwd  .  Moreover, 

w

l
d




 
is the conjugate of 

w

l
d  .  

 

Proof: see  23 .   

Theorem 3.11:  21.,3 p  (Lagrange’s theorem) 

If w is a quadratic irrational number, then it has a periodic continued 

fraction expansion.   

Proof: see  3 .   
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Theorem 3.12:  405.,24 p &  45.,25 p  

If w is a reduced quadratic irrational number, then it has a purely periodic 

continued fraction expansion.   

Proof:  

Let 0ww  be a reduced quadratic irrational.  So, 1w  and its conjugate

w lies between -1 and 0.   

First, we prove that each complete quotient 1, kwk  is a reduced quadratic 

irrational.   

]][[,
1

0

1

0 wa
w

aw  . So, 1
1

0

1 



aw

w .  By Theorem 3.10, 
1

0

1

w
aw




and so 
0

1

1

aw
w


 .   

1w lies between -1 and 0 since
 

01  w .  So, 1w is a reduced quadratic 

irrational.   

Suppose nw is reduced.  That is, 1nw
 and

 
1 0nw    .   

Now, 
1

1
, [[ ]]n n n n

n

w a a w
w 

   .  So, we have  1

1
1n

n n

w
w a

  
  

and 

.
1

1

nn

n
aw

w





 

1]][[  nn wa  since
 

1nw .   So, 1 nnn aaw  and
 

01 1  nw .   

Hence, 1nw
 

is a reduced quadratic irrational and by induction, kw is 

reduced for k ≥ 0.   

Next, we complete the proof using contradiction.  Suppose that the 

continued fraction expansion of w is not purely periodic and has the form 

],...,,,,...,,[ 11110  dnnnn aaaaaa , where 
n

a is the first repeating quotient.   

)
1

()
1

( 1111

dn

dn

n

ndnn
w

a
w

aww


  .   
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But dnn ww  . So, 1111   dnndnn aaww  is a non-zero integer since 

otherwise 1na
 
and 1dna

 
would be equal and hence the period would begin 

one position sooner.   

This implies that 11 


dnn ww
 is also a non-zero integer. But, 01 1  nw

 

and
 

01 1  dnw . So, 11 11   dnn ww , a contradiction.   

As a result, the continued fraction expansion of a reduced quadratic 

irrational is purely periodic.   

Theorem 3.13:  112.,1 p &  47.,25 p  (The continued fraction 

expansion for T ) 

Let T be a positive integer, not a perfect square.  Then  

                           ]2,,,...,,,,[ 013210 aaaaaaaT nn
 

where .,...,2,1,1 njaa jjn   

i.e., 0 1 2 3 2 1 0[ , , , ,..., , ,2 ]T a a a a a a a
 

Proof:  

At first, notice that 1T and so 1 T . Thus, T is not a reduced 

quadratic irrational.   

Let 



1

1

1
,...],,[

2

1

0210







a

a

aaaaT                                                (3.8) 

Since ]][[0 Ta  , 10  Ta and its conjugate 01 0  Ta . Then, 

Ta 0 is a reduced quadratic irrational and has a purely periodic 

continued fraction.   

Add 0a to both sides in equation (3.8) to get:  
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

1

1

1
2

2

1

00







a

a

aTa  

But the expansion of a reduced quadratic irrational is purely periodic.  

Then,  

          ],...,,,2[

1

1
2

1

1

1

1
2 210

1

0

1

00 n

n

aaaa

a

a

a

a

aTa 

















 

So,  

]2,,...,,,[

1
2

1

1

1

1
2

1

1

1

1
0210

0

1

0

1

0 aaaaa

a

a

a

a

a

a

aT n

n

n



























        (3.9) 

Now, using Theorem 3.9,  

                       ]2,,...,,[
11

011

00

aaaa
aTTa

nn 






                         (3.10)  

 Moreover, using equation (3.9), we can find 
0

1

aT 
.  Subtract a0 from 

both sides to get:  
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]2,,...,,,0[

1
2

1

1

1

1
2

1

1

1

1
0 021

0

1

0

1

0 aaaa

a

a

a

a

a

a

aT n

n

n



























 

Thus, by Theorem 2.3,  

]2,,...,,[

1
2

1

1

1

1
2

1

1

11
021

0

1

0

1

0

aaaa

a

a

a

a

a

a
aT

n

n

n

























        (3.11) 

However, since the continued fraction expansion is unique and comparing 

both equations (3.10) & (3.11), we find:  

                                     nnnn aaaaaaaa   112211 ,,...,,  

So,                                   ]2,,,...,,,[ 012210 aaaaaaT  .   

In other words, the periodic part is symmetrical except for the term 2a0. It 

may or may not have a central term.   

For instance, the symmetrical part of the periodic expansion for 

]10,2,1,1,2,5[29   has no central term.  But, in the periodic expansion for

]10,1,1,3,5,3,1,1,5[31  , 5 is the central term.   

Example 3.8:  

Find the continued fraction expansion of 11 .   
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Solution:  

Let .3]]11[[,11 00  ay
      

3,
2

311

311

1
11 





 ay  

6,311
311

2

3
2

311

1
22 







 ay

 

3,
2

311

6311

1
1313 





 aayy

 

Since y3 = y1, it is clear that y1 = y3 = y5 = … and a1 = a3 = a5 = … = 3. So, 

y2 = y4 = y6 = … and a2 = a4 = a6 = … = 6
 

Hence, ]6,3,3[,...]6,3,6,3,3[

1
6

1
3

1
6

1
3

1
311 













. Notice that 

.2)3(26 0a  

For more examples, look at Table 3.2.   
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Table 3.2 

     T       The continued fraction expansion for T  

     2                               ]2,1[  

     3                              ]2,1,1[
      5                              ]4,2[

      6                             ]4,2,2[
      7 

                        

]4,1,1,1,2[
      8                              ]4,1,2[

     10                              ]6,3[
     11                             ]6,3,3[
     12                             ]6,2,3[
     13                          ]6,1,1,1,1,3[

     14                           ]6,1,2,1,3[
     15                             ]6,1,3[

     17                              ]8,4[
     18                             ]8,4,4[
     19                        ]8,2,1,3,1,2,4[

     20                             ]8,2,4[
     21                        ]8,1,1,2,1,1,4[

     22                       ]8,1,2,4,2,1,4[
     23                          ]8,1,3,1,4[

     24                             ]8,1,4[
     26                             ]10,5[
     27                           ]10,5,5[
     28                        ]10,3,2,3,5[

     29                       ]10,2,1,1,2,5[
     30                           ]10,2,5[
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Section 3.3: Solving Pell’s Equation   

In this section, we study the solution of one type of Diophantine equations, 

called Pell’s equation, using continued fractions method.  The continued 

fraction expansion of T plays an important role in our discussion.   

Definition 3.5:  12,9,5  

Pell’s equation is a Diophantine equation of the form MTyx  22
, 

where T is a positive non-perfect square integer and M is a fixed natural 

number.   

Indian mathematicians Brahmagupta and Bhaskara are the first to study 

Pell’s equation. This equation appears in problems in mathematics. One of 

these problems is “The Cattle Problem” of Archimedes. In this problem, 

there are eight unknowns represent the number of cattle in different kinds. 

After many steps, one can reduce the problem to .14729494 22  yx  

In this section, we are interested in solving the Pell’s equation 122 Tyx

, where T is not a perfect square since if T is a square natural number, i.e.  

2sT   for some natural number s, then we get a linear system of equations 

and so the case is trivial.   

For the case of 122 Tyx : 

                                          

1))((

1

1

222

22







syxsyx

ysx

Tyx

 

Thus,                        
1

1





syx

syx
   or   

1

1





syx

syx

 

Solving these two linear systems, we get ( , ) (1,0)x y   or ( , ) ( 1,0)x y   , 

respectively.   
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And for the case of 122 Tyx : 

                                         1))((

1

1

222

22







syxsyx

ysx

Tyx

 

                                     1

1





syx

syx

  
or  

1

1





syx

syx
 

Solving these two linear systems, we get )
1

,0(),(
s

yx



 
or )

1
,0(),(
s

yx  , 

respectively. So, we have the trivial solutions )1,0(),( yx  or )1,0(),( yx  

if s = 1. 

Another note about Pell’s equation is that if ( , )m n  is a solution, then there 

are three other solutions located at the vertices of the rectangle centered at 

the origin and having ( , )m n  as one of its vertices, i.e., the other three 

solutions are ( , ),( , )m n m n  &( , )m n  . Thus, it is enough to consider 

positive solutions only, i.e., m & n are positive integers.   

Remark 3.1:   

If ),( ba  is a solution of the equation 122 Tyx , then gcd(a,b)  =1.  

Otherwise if gcd(a,b)  = c ≠ 1 then 1)( 222 Tsrc  .  But c, r, s and T are 

all integers.  So c = 1.   

Theorem 3.14:  88.,14 p &  332.,26 p  

If ),( ba  is a positive solution of the equation 122 Tyx , then 
b

a

 
is a 

convergent of the continued fraction expansion of T .   

Before we write the proof of this theorem, we need the following lemma:  

Lemma 3.2:  326.,26 p  
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Let y be an irrational number. If 1, v
v

u

 
and 1),gcd( vu  satisfies 

22

1

vv

u
y  , then 

v

u

 
is one of the convergents of the continued fraction 

expansion of y.   

Proof:  see  26 .   

Proof of Theorem 3.14:  

First, if ),( ba  is a positive solution of 122 Tyx , then 122 Tba and 

Tba  .   

Now,  

                                     1))((

122





TbaTba

Tba

 

So,       22 2

1

2

1

)(

1

)(

1
0

bTbTbTbbTbab
T

b

a






  

By Lemma 3.2, 
b

a
 is a convergent of the continued fraction expansion of 

T .   

Second, if ),( ba
 is a positive solution of 122 Tyx , then 122 Tba .  

Rewrite the equation as 
T

a
T

b
11 22  .   

Now, 
T

a
T

ba
T

b
1

)
1

)(
1

(  .   

Notice that 0
1


T
 and so 

Ta

b 1
 .   

Therefore,  22 2

1

2

1

)
11

(

1

)
1

(

11
0

aTaa
T

a
T

Taa
T

bTaTa

b








 .   

This implies that 

22

11

aa

b

T

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and thus, by Lemma 3.2, 
a

b

 
is a convergent of 

T

1
.
 

Let ,...],,[ 210 aaaT  .  Then, by Theorem 2.3, ,...],,,0[
1

210 aaa
T
 .  Since 

a

b
 is a convergent of 

T

1
, then 0 1 2[0, , , ,..., ]n

b
a a a a

a
  for some n.   

But, 0 1 2[ , , ,..., ]n

a
a a a a

b
 .  Therefore, 

b

a
 is a convergent of T .   

Definition 3.6:  14  

The positive solution ),( 00 yx
 to Pell’s equation 122 Tyx  is called the 

least positive solution or the fundamental solution if fx 0 and gy 0

for every other positive solution ).,( gf  

It is easy to find the solution of Pell’s equation 122 Tyx  using the 

continued fraction expansion of ]2,,,...,,,,[ 013210 aaaaaaaT nn .    

Now, ],,...,,[ 110 nn

n

n aaaa
q

p


 
and ],...,,[ 110

1

1




  n

n

n aaa
q

p

 
are the n

th
 and     (n-

1)
st 

convergents of the continued fraction expansion of T .   

Using Theorem 3.4, 
11

11










nnn

nnn

qqt

ppt
T ,  

where Taaaat nn  0101 ],...,,2[ .    

Thus, 
10

10

)(

)(










nn

nn

qqTa

ppTa
T  

If we multiply and rearrange the terms we obtain:  

                     TpppaTqqqaT nnnnnn   1010 )(  

But T is an irrational number and Tppqqa nnnn ,,,,, 110   are all integers.   

This implies that 
10

10









nnn

nnn

ppaTq

pqqa
 

So  

                                         
nnn

nnn

paTqp

qapq

01

01









                                 (3.12) 
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Remember that 

                                        
n

nnnn qpqp )1(11                              (3.13) 

Substitute equations (3.12) in equation (3.13) to get:  

                            
n

nnnnnn qappqpaTq )1()()( 00   

Then                                     
n

nn pTq )1(22   

or                                         .)1( 122  n

nn Tqp  

Therefore, ),( nn qp
 is a solution to the equation 

122 )1(  nTyx .   

We have two cases.  If n is odd, then ),( nn qp is a particular solution to the 

equation 
122 Tyx .  Notice that the period length “ d ” of the continued 

fraction expansion of T is n+1.  So, we can write the particular solution 

),( nn qp
 as ),( 11  dd qp .   

However, if n is even, then ),( nn qp  is a particular solution to the equation 

122 Tyx .  So, we try to use convergents of the second period to find 

a particular solution to 122 Tyx .   

Now, the term that occurs for the second time is the term 12 na .  So,          

                               ],...,2,,,...,[ 110110

2

2
 nnn

n

n aaaaaaa
q

p

 

and                  
   

],,...,,2,,,...,[ 110110

12

12
nnnn

n

n aaaaaaaa
q

p




 
  

nnn

nnn

qqt

ppt
T

21222

21222









, where Tataaat nnn   011022 ],...,,2[ .   

nn

nn

qqTa

ppTa
T

2120

2120

)(

)(










 

Continuing as before yields:  

                                     
120122

120122









nnn

nnn

paTqp

qapq

                            (3.14)               

Now, 
12

212122 )1( 

  n

nnnn qpqp
                                           (3.15) 
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Substituting equation (3.14) in equation (3.15) and then dividing the 

resulting equation by -1 yield 

                                  
1)1( 22

12

2

12  

n

nn Tqp  

Thus, ),(),( 12121212   ddnn qpqp is a particular solution to 122 Tyx  

where either n is even and d is odd or vice versa.  Notice that whatever the 

case is, we can always find an integral solution to the equation 122 Tyx .   

The following theorem gives us the set of all positive solutions of 

122 Tyx .   

Theorem 3.15:  89.,14 p
 

Let T be a non-perfect square positive integer and 
i

i

q

p
is the i

th
 convergent 

of ],,...,,,[ 1210 dd aaaaaT  , where d is the period length.  Then:  

(a)  All positive solutions of 122 Tyx  are given by  

),( yx {
Nkqp kdkd  ),,( 11                               

Nkqp kdkd  ),,( 1212                           
  

(b)  On the other hand, all positive solution of 122 Tyx  are given by  

),( yx {
Nkqp dkdk  ),,( 1)12(1)12(                         

                                                            
  

 

Moreover, ),( 11  dd qp
 is the fundamental solution of        

{
122 Tyx                        

122 Tyx                      
 

and  ),( 1212  dd qp
 is the fundamental solution of 

122 Tyx
 if d is odd.   

Proof: see  14 .   

Example 3.9:  
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Find the fundamental solution to the equation:  

(a)  119 22  yx  

(b) 113 22  yx  

Solution:  

(a)  First, 0 1 2 3 4 5 619 [4,2,1,3,1,2,8] , , , , , ,a a a a a a a  
  .   

The period length d = 6.  So, the fundamental solution is ),( 55 qp .   

The first six convergents of 13  are:  

                                   
39

170
,

14

61
,

11

48
,

3

13
,

2

9
,4  

Thus, )39,170( is the fundamental solution to 119 22  yx .   

In addition, the set of all positive solutions of 119 22  yx  is  

                                    
 Nkqpyx kk   ),,(),( 1616  

The following table shows solutions for k = 1, 2, …, 5.   

Table 3.3 

     K ),( 1616  kk qp  

     1 )39,170(),( 55 qp  

     2 )13260,57799(),( 1111 qp  

     3 )4508361,19651490(),( 1717 qp  

     4 )1532829480,6681448801(),( 2323 qp  

     5 )395211575148,8502271672940(),( 2929 qp  

 

(b) 
 

],,,,,[]6,1,1,1,1,3[13 543210 aaaaaa  
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The period length d = 5.  So, the fundamental solution of 113 22  yx  

is ),( 99 qp .   

The first ten convergents of 13  are:  

                         
180

649
,

109

393
,

71

256
,

38

137
,

33

119
,

5

18
,

3

11
,

2

7
,4,3  

So, the fundamental solution is )180,649( .   

Notice that )5,18(),( 44 qp  is the fundamental solution of 113 22  yx .   

Moreover, we can find all other positive solutions of Pell’s equation using 

the fundamental solution as the following two theorems illustrate.   

Theorem 3.16:  339.,26 p &  354.,28 p
 

Let ),( 00 yx
 be the fundamental solution of Pell’s equation 122 Tyx .  

Then, all other positive solutions ),( nn yx
 can be obtained from the 

equation  

                                 NnTyxTyx n

nn  ,)( 00 .   

Proof: see  28 .   

Theorem 3.17:  63.,18 p
 

Let ),( 00 yx
 be the fundamental solution of the negative Pell’s equation

122 Tyx .  Then, all positive solutions ),( nn yx  of 122 Tyx are 

given by  NnTyxTyx n

nn  ,)( 00  

where odd values of n gives all positive solutions to 122 Tyx and even 

values of n gives all positive solutions to 122 Tyx .   

Proof: see  18 .   

Remark 3.2:  
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We find the values of ),( nn yx
 by expanding 

NnTyxTyx n

nn  ,)( 00  by the Binomial Theorem and equating 

rational parts and purely irrational parts of the resulting equation.  For 

example, for n = 3, we have:  

)3(3

3

3

2

3

1

3

0

3
)(

3

00

2

0

2

0

1

0

3

0

3

0

2

0

1

00

2

0

3

0

3

0033

TyyxTTyxx

TTyTyxTyxxTyxTyx








































 

So, )3,3(),( 3

00

2

0

2

0

1

0

3

033 TyyxTyxxyx   

Example 3.10:  

(1)  In Example 3.9, the fundamental solution of 113 22  yx  is (649, 180).   

Set n = 2, we have: 13233640842401)13180649(13 2

22  yx  

So, (842401, 233640) is the second solution of 113 22  yx .   

 Set n = 3, we get: 

133032645401093435849)13180649(13 3

33  yx  

So, (1093435849, 303264540) is the third solution of 113 22  yx .   

(2) By Theorem 3.17 and using convergents in Example 3.9, we find that 

the fundamental solution of 113 22  yx
 is (18, 5).   

To find the second solution of this equation, set n = 3:  

13648523382)13518(13 3

33  yx  

So, (23382, 6485) is the second solution of 113 22  yx .   

If we set n = 2, we get a solution of 113 22  yx :  

13180169)1358(13 2

22  yx  

Notice that we get the fundamental solution (169, 180) of 113 22  yx .   
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Chapter Four 

Best Approximation and Applications 

We discuss in the first section the best approximation and its relation with 

convergents.  In the second section we study some interesting applications 

of continued fractions in different fields.   

Section 4.1: Continued Fractions and Best Approximation  

A very important use of continued fractions is the approximation of 

irrational numbers by rational numbers.   

The problem of approximation includes determining which of the rational 

numbers that have a difference “no more than a specific value” from a 

given irrational number has the lowest positive denominator.  This way is 

also used to approximate rational numbers whose numerators and 

denominators are extremely large by a fraction with smaller numerator and 

denominator.   

Convergents have an important role in solving the problem of best 

approximation of a real number since, from our study of them, they are 

completely determined by the number represented and closely connected 

with it.   

Definition 4.1:  30
 

A rational number 
b

a
 is a best approximation of a first kind of a real 

number x provided that, for every rational number 
b

a

d

c
  such that 

bd 0 , we have 
d

c
x

b

a
x  .   
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In other words, 
b

a

 
is a best approximation of the first kind if we cannot 

find a different rational number closer to x with denominator ≤ b.   

Definition 4.2:  3  

A rational number 
b

a
 is a best approximation of a second kind of a real 

number x provided that, for every rational number 
b

a

d

c
  such that 

bd 0 , we have cdxabx   

Theorem 4.1:  386.,30 p  

Every best approximation of a second kind of a real number x is a best 

approximation of a first kind of x.   

Proof: 

Let 
b

a
 be a best approximation of a second kind of x. Let 

d

c

 
be a rational 

number with bd 0 . Then 

                                          cdxabx 
 

Now, 
d

c
x

d

cdx

b

cdx

b

abx

b

a
x 








  

So, 
d

c
x

b

a
x  . Thus, 

b

a

 
is a best approximation of a first kind.   

Remark 4.1:  386.,30 p  

The converse of Theorem 4.1 is not true. The following example shows 

that a best approximation of a first kind may not be a best approximation 

of a second kind.  
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Example 4.1:  

The rational number 
4

13

 
is a best approximation of the first kind to 𝜋 since 

there are no rational numbers closer to 𝜋 with denominator ≤ 4.   

2

7
,

3

10

 
and 

1

3

 
are the closest distinct rational numbers to 𝜋 with 

denominators 3, 2 and 1 respectively.   

...108407346.0
4

13


 

...191740679.0
3

10


 

...358407346.0
2

7


 

...141592653.0
1

3
  

Thus, for every rational number 
4

13


d

c
with 40  d , we get 

                                             d

c
 

4

13
.   

However, 
4

13

 
is not a best approximation of the second kind to 𝜋 since 

4

13

1

3
 and

 
410 

 
but 13.43.1   .   

The following theorem is a generalization of the idea in Example 3.3.   

Theorem 4.2:  31.,3 p &  404.,11 p  

For an infinite simple continued fraction representing an irrational number 

y, each convergent is nearer to y than the preceding convergent.   

Proof: 

Let ,...],...,,[ 10 naaa  be the infinite simple continued fraction representation 

of y. Then ],,...,,[ 110  nn yaaay  where ,...],[ 211   nnn aay .   
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By Theorem 3.4,  

                                       
11

11










nnn

nnn

qqy

ppy
y .   

This implies that  

                            1111   nnnnnn pyqpyyqy  

Thus                    )()(
1

1
11




 

n

n
nnnn

q

p
yqpyqy         for 1n .   

Dividing both sides by nn qy 1  yields: 

                               )(
1

1

1

1







 



n

n

nn

n

n

n

q

p
y

qy

q

q

p
y  

Then, take absolute value to both sides to obtain: 

                             
1

1

1

1







 
n

n

nn

n

n

n

q

p
y

qy

q

q

p
y   

But 01  nn qq  and 11 ny  for 1n .  Therefore 
1

1

0 1n

n n

q

y q





  .   

Thus, 
1

1




n

n

n

n

q

p
y

q

p
y  or 1n ny c y c     for 1n .   

So, y is closer to the thn convergent than to the ( 1)stn  convergent.   

Theorem 4.3:  387.,30 p  

Let y be a real number and let 
n

n
n

q

p
c 

 
be the n

th
 convergent of the simple 

continued fraction representation of y.  Then  

                                          1

1




nn

n
qq

cy .   

Proof: 

We’ll prove the theorem for irrational numbers.  The proof of rational 

numbers is in the same manner provided that cn+1 exists (that is y ≠ cn).   

First, we use the inequalities: 
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                                  12   nnn cycc , if n is even 

                                  nnn ccyc   21 , if n is odd  

and the property 
1

1

( 1)
, 0.

n

n n

n n

c c n
q q






    

Now, from the inequalities, we conclude: 

                                       
nnn cccy  1  

and                           
11

1

1)1(



 



nnnn

n

nn
qqqq

cc  

Thus, .
1

1


nn

n
qq

cy  

Theorem 4.4:  20.,25 p  

Every best approximation of the second kind of a real number x is a 

convergent of the simple continued fraction representation of x.   

Proof: 

We prove this theorem with the assumption that x is an irrational number.  

When ],,...,,[ 110 nn aaaax   is a rational number, the proof is in the same 

manner but assume that the last partial quotient 1na .   

Let ,...],,[ 210 aaax   and let 
b

a
 be a best approximation of x of a second 

kind.   

By contradiction, suppose that 
b

a
 is not a convergent.  We have only three 

cases to consider.   

 

Case I:  
0

0

q

p

b

a
  

Now, xa
b

a
 0  since 0

0

0 a
q

p
 .  This implies that 

b

a
xax  0 .   
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Then, babx
b

a
xbaxbax  10,.1 00  which 

contradicts that 
b

a
 is a best approximation of a second kind.   

Thus, 
0

0

q

p

b

a
 .   

 

Case II:  
1

1

q

p

b

a
  

Recall that 
1

1

3

3

5

5

4

4

2

2

0

0 ......
q

p

q

p

q

p
x

q

p

q

p

q

p
 .   

Then, 
b

a

q

p
x 

1

1 .  Multiply this inequality by b and then subtract a from 

the result to get: 

                                     .0
1

1  a
q

p
babx  

Thus,  

                                    abx
q

aqbp





1

11
0 .   

Note that 11 aqbp   is an integer and since 
1 1

1

0
bp aq

q




 
then 

111  aqbp .  Therefore,  

abx
q


1

1
.   

But 11 aq  , so abx
a


1

1
.   

Remember that 
1

0

1

x
ax  , where ,...],,[ 3211 aaax  and .]][[ 111 xxa   

So, abx
ax

ax 
11

0

11
which contradicts the assumption that that 

b

a

 
is a best approximation of a second kind.   

 

Case III: 
b

a
lies between 

0

0

q

p
 and 

1

1

q

p
 and is not a convergent, then  
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1

1

2

2







 
n

n

n

n

n

n

q

p
x

q

p

b

a

q

p
          if 

b

a
is to the left of x  

or      
n

n

n

n

n

n

q

p

b

a

q

p
x

q

p










2

2

1

1
           if 

b

a
is to the right of x  

Now 

       
1

1

1

1 1
0







 



nn

nn

n

n

n

n

n

n

n

nn

qq
cc

q

p

q

p

q

p

b

a

bq

bpaq
.   

Then 

                                     
1

11




nnn qqbq

.   

This is since 
n

n

q

p

b

a
  and therefore the integer .1 bpaq nn  

So,  

                                         
1

11




nqb

.   

That is  

                                          bqn 1 .                                        (4.2) 

Moreover, the inequalities (4.1) imply that  

              
2 2 2

2 2

n n n

n n

aq p b pa a
x

bq b q b

  

 


     

But 122   bpaq nn  since 
2

2




n

n

q

p

b

a
.   

Thus  

                                          
b

a
x

bqn


2

1
 

That is  

                                          abx
qn


2

1
                                        (4.3) 

Next,  

                                 
1

1
111




 

n

n
nnn

q

p
xqpxq  

By Theorem 4.3,  

(4.1) 
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211

1 1



 
nnn

n

qqq

p
x  

So,                                
2

11

1



 
n

nn
q

pxq  

From (4.2) and (4.3), we get: 

                                 1 1n nq x p bx a    ,
                

bqn  10  

which contradicts the fact that 
b

a
 is a best approximation of a second kind.  

Hence 
b

a
 must be a convergent of the continued fraction expansion of x.   

Theorem 4.5:  21.,25 p  

Let x be a real number not of the form 
2

1
0 a .  Then every convergent of 

the simple continued fraction expansion of x is a best approximation of a  

second kind to x.   

Proof: see  25 .   

Remark 4.2:  25  

If the real number x lies in the middle between two integers (i.e.  

2

1
0  ax , a0 is an integer), then 00 )1( axax 

 
since both sides 

equal to a half, where 
1

1

1

00 


aa
.  So, the convergent 00 ac 

 is not a best 

approximation of a second kind.   
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Section 4.2: Applications 

4.2.1 Calendar Construction   33,31,3  

There are many activities whose success depends on accurate planning.  

Some of them should be done during a certain period of a year, such as 

sowing and plowing.  So, calendar construction is an important issue since 

ancient times and calendars are found in every old civilization.   

By counting the days, calendars help us to determine the seasons which 

depend on the rotation of the Earth around the sun.   

A tropical “solar” year is the time it takes the Earth to make one 

revolution around the sun = 
315569259747

365.24219878125
864000000

  days.   

Remark 4.3:  

There are 365 days, 5 hours, 48 minutes and 45.9747 seconds in a year. So, 

there are (365*24 5 48 / 60)*3600 45.9747 31556925.9747     seconds 

in one year. On the other hand, there are 24*3600 86400 seconds a day.   

Babylonian Calendar “the oldest” contained 12 months with 29 and 30 

days alternately.  One year in this calendar had 354 days.  After that, the 

Babylonian calendar was replaced by the Egyptian Calendar which 

consisted of 12 months, each month contained 30 days.  One year in this 

calendar consisted of 360 days.  Then, five days were added to adjust the 

calendar in Pharaonic times.  This calendar was effective for more than 

3000 years.  However, it led to an error of quick accumulation and 

therefore a noticeable shift of seasons.  Next, a sixth day was introduced 

every fourth year to give a calendar called the Alexandrian Calendar.   
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Our calendar comes from the ancient Roman calendar.  A year in Roman 

calendar consisted of 365 days until an Alexandrian astronomer advised 

Romans to create the Julian calendar in 

which every year divisible by 4 was a leap 

year “consisting of 366 days” and every 

other year was a common year 

“consisting of 365 days”.  Julian calendar 

was a good calendar as it accumulated a 

small error in a hundred years.  However, 

over the next millennium, the discrepancy 

was noticed.   

Finally, a new more precise calendar 

construction was created by Pope 

Gregory XIII.  He decreed to omit a leap 

year every century except those years 

that are divisible by 400.  The Gregorian calendar is both accurate and easy 

to remember.   

The question now is what is the science behind this construction? In fact, 

continued fractions provide such a science.   

The idea of constructing a modern calendar is to have a cycle of q years 

such that p of them are leap years.  So, q – p are common years.  When p 

and q are chosen, we should take into consideration that the mean year 

length is very close to the tropical year.  Moreover, the rule for selecting p 

leap years should be convenient and simple to use.   

Figure 4.1: The first page of the 

papal bull "Inter Gravissimas" by 

which Pope Gregory XIII 

introduced his calendar. 
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During the q-cycle with p leap years, there are 365q + p days.  Thus, the 

mean year length is 
q

p
365 .   

Recall that a tropical year consists of  

315569259747

864000000 864000000

209259747
365

32000000

7750361
365  52421987812.365

days. 

Now, our purpose is to find a good approximation 
q

p

 
for 

32000000

7750361
.  The 

last fraction represents the error between a tropical year and a common 

year.   

Representing this fraction as a continued fraction yields 

                     
7750361

[0,4, 7, 1, 3, 5, 6, 1, 1, 3, 1, 7, 7, 1, 1, 1, 1, 2]
32000000

  

The first 8 corresponding convergents are  

00 c                                                              25.0
4

1
1 c  

42413793103.0
29

7
2 c                                  22424242424.0

33

8
3 c  

2421875.0
128

31
4 c                                       62421991084.0

673

163
5 c  

02421987518.0
4166

1009
6 c                               12421988014.0

4839

1172
7 c  

The Julian Calendar is realized by the first convergent 1c  which gives a 4-

year cycle with one leap year in it.   

The annual error considered in Julian Calendar is  

                                   50078012187.0
32000000

7750361

4

1
  

which means that the calendar accumulates about 8 extra days in 1000 

years.  That is a bit less than a day in 100 years.   
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Looking at the denominators next convergents, we realize that the numbers 

29, 33, 128, 673, … provide uncomfortable lengths of a cycle.  For 

example, the fourth convergent 
128

31

 
determines a 128-year cycle with 31 

leap years in it.  We can construct a corresponding calendar in which there 

is a leap year every fourth year in the cycle with the thirty-second leap year 

deleted and this construction gives an annual error  

                  50000112812.050000112812.0
32000000

7750361

128

31
  

which means a loss of about one day every 100000 years.  This 

construction is more accurate than Julian Calendar but it is uncomfortable 

to use.  So, no one used this calendar.   

Now, we try to find a cycle several centuries long with easy and simple 

selection rule of leap years.  Suppose that q = 100t, t is an integer lies 

between 1 and 9.  This assumption matches with the problem of 

approximating the fraction 
320000

7750361

32000000

7750361
100  .   

                            
7750361

[24,4, 1, 1, 4, 1, 2, 2, 6, 11, 2, 1, 1, 2]
320000

  

The first corresponding 6 convergents are 

240 c                                                          25.24
4

97
1 c  

24.2
5

121
2 c                                                 222224.2222222

9

218
3 c  

951224.2195121
41

993
4 c                             22.24

50

1211
5 c  

The first convergent 
4

97
1 c

 
gives a 400-cycle with 97 leap years in it.  

The selection rule of leap years in the cycle is that every year divisible by 4 
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is a leap year except 100
th

, 200
th

, 300
th
 years.  This calendar is called 

Gregorian Calendar which is used nowadays in most countries.   

The error results in a century from this calendar is  

                               030121875.0
320000

7750361

4

97
   

That is an accumulation of about one extra day every 3320 years.   

Another calendar could be constructed using the convergent 
5

121
2 c

 

which gives a 500-year cycle with 121 leap years in it.  The selection rule 

of leap years in this cycle is that every year divisible by 4 is a leap year 

except 100
th

, 200
th

, 300
th
, 400

th
 years.   

The error results from this calendar in a century is  

                   019878125.0019878125.0
320000

7750361

5

121
   

which implies that there is a loss of nearly a day every 5031 years.   

Moreover, we can construct a calendar using a 900- year cycle with 218 

leap years in it.   The selection rule of leap years in this calendar implies 7 

exceptions to the fourth year rule since (900 4) 7 218   .  This calendar is 

accurate since it accumulates only one day in about 42660 years.  

However, it is more complicated than the previous calendars and the 900- 

year cycle is long and therefore inconvenient.  So, we reject this calendar 

and prefer the simpler ones.   

A small correction can be done in future to the Gregorian Calendar to 

make it more accurate.  Continued fractions give an easy method to carry 

out his correction.  The idea is to find a longer cycle length q consisting of 
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a number of 400- year cycles.  Suppose q = 400s, where s is the number of 

400 year cycles in the new longer cycle.   

Represent 
80000

7750361

32000000

7750361
400   as a simple continued fraction to get 

                                
7750361

[96,1, 7, 3, 2, 1, 25, 2, 1, 5, 2]
80000

  

The first corresponding four convergents are  

                         960 c                                   971 c  

                         
8

775
2 c                               

25

2422
3 c  

The second convergent 
8

775
2 c

 
provides us with a 3200- year cycle with 

775 leap years in it.   

The error of this construction is  

                       0045125.00045125.0
80000

7750361

8

775
  

which implies that there is a loss of about one day every 88643 years.   

Remember that in Gregorian Calendar, there are 97 leap years in every 

400- year cycle.  So, we get 97×8 = 776 leap years within every 3200 

years.  Therefore, omitting one leap year every 3200 years will provide us 

with a modified Gregorian Calendar which has nearly the same 

construction as Gregorian Calendar but is more accurate.   
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4.2.2 Piano Tuning  32,30,3    

Musicians know that we cannot tune a piano perfectly.  In this discussion, 

we study the role of continued fractions in piano tuning.   

The keyboard of a piano consists of white and black keys.  The standard 

white keys are A, B, C, D, E, F and G.  A black key is called sharp and 

flat.   It is a sharp key “#” of the white key that precedes it and a flat key 

“b” of the white key that follows it as Figure 4.2 shows.   

 

 

 

 

 

Figure 4.2 

Sounds that have frequencies with small integer ratios are consonant and 

harmonious.  Musical intervals represent the ratios of frequencies of two 

notes.  For example, an octave, which represents the ratio 2:1, is the 

interval between two notes, one having double the frequency of the other.  

A perfect fifth is an interval represents the ratio 3:2.  There are many other 

intervals such as perfect fourth “4:3”, whole step “9:8”, etc.  In fact, our 

study here is about the first two intervals which are the most consonant 

intervals.   

Pythagorean scale used only octaves and perfect fifths.  The problem we 

are trying to solve comes from trying to find an integer solution to the 

2:1 
3:2 
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equation 

y

x










2

3
2 in order to keep the scale finite.  This equation has no 

integer solution except x = y = 0.  So, we need to approximate the solution 

using continued fractions.   

Now, 

y

x










2

3
2 implies that

2

3
2 / yx

.   

So, 
2 2

3
log ( ) log (3) 1 0.5849625007211562

2

x

y
     and its continued 

fraction expansion is [0,1, 1, 2, 2, 3, 1, 5, 2, 23, 2,...]  

The k
th

 convergents, 62  k   are: 
53

31
,

41

24
,

12

7
,

5

3
,

2

1
 

Taking the fourth convergent, we get 687668151.498307072
2

3 )12/7(  .  

The approximation 
12

7
implies that the octave consists of 12 semitones with 

a perfect fifth equal to 7 semitones, “a semitone is the musical interval 

between two adjacent notes in a 12-tone scale”.  In fact, in western music, 

they use this approximation, i.e., the octave is divided into 12 semitones.  

Other approximations are inconvenient since 
41

24

 
and 

53

31
 give 41 and 53 

notes within an octave, respectively which are too many notes.  Moreover, 

2

1
and 

5

3
give 2 and 5 notes within an octave, respectively which are too 

few notes.  The percentage error results from choosing 
12

7

 
as an 

approximation is: 
7

2 12

2

(log (3) 1)
.100% 0.278508% 0.3%

log (3) 1

 
 


.
 

  



106 

References 

[1] C. D. Olds, Continued Fractions, New York: Random House, Inc. 

1963. 

[2] Thomas Koshy, Elementary Number Theory with Applications, 

Second Edition, Academic Press, 2007. 

[3] Yu Tung Cheng, Continued Fractions, Cornell University, AMS 

Classification: 11A55, May 2007. 

[4] Samuel Wayne Judnick, Patterns in Continued fraction 

Expansions, Master Thesis, University of Minnesota, May 2013. 

[5] H. Davenport, The Higher Arithmetic: An Introduction to the   

Theory of Numbers, Seventh Edition, Cambridge University Press,  

1999. 

[6] A.Ya.Khinchin, Continued Fractions, Dover Publications, INC, 

New York, 1997. 

[7] Kesha King, Continued Fractions and the Man Who Knew 

Infinity, June 2011. 

[8] http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/cfINT

RO.html  

[9] Wieb Bosma, Cor Kraaikamp, Continued Fractions. 

https://www.math.ru.nl/~bosma/Students/CF.pdf 

[10] Kenneth H. Rosen, Elementary Number Theory and Its  

Applications, Addison-Wesley Publishing Company, 1984. 

[11] John J. Watkins, Number Theory: A Historical Approach,  

Princeton University Press, 2013. 

http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/
https://www.math.ru.nl/~bosma/Students/CF.pdf


107 

[12] Sagar Panda, Diophantine Equation, National Institute of 

Technology Rourkela, 2011. 

[13] Song Y. Yan, Primality Testing and Integer Factorization in  

Public-Key Cryptography, Springer, 2013. 

[14] Lars- Ake Lindahl, Lectures on Number Theory, Uppsala  

University, 2002. 

[15] Bassam A. Manasrah, Invitation to Number Theory, First Edition,  

Al-Huda, 2003. 

[16] http://www.cs.cmu.edu/~adamchik/21127/lectures/divisibility_5_prin

t.pdf 

[17] https://www.math.upsud.fr/~fischler/inde/inde_fischlerpondichery.pd

f 

[18] Peter J. Cameron, A Course on Number Theory, Queen Mary 

University of London, 2009. 

[19] Charles G. Moore, An Introduction to Continued Fractions, The 

National Council of Teachers of Mathematics, INC, 1964. 

[20] L-K. Hua, Introduction to Number Theory, Springer, 2012. 

[21] http://nptel.ac.in/courses/111103020/module8_lec4.pdf 

[22] David Garth, Martin Erickson, Introduction to Number Theory, 

CRC Press, 2007. 

[23] http://14.139.172.204/nptel/CSE/Web/111103020old/module8/lec5.p

df 

[24] Lawrence C. Washington, An Introduction to Number Theory 

with Cryptography, CRC Press, 2016. 

http://www.cs.cmu.edu/~adamchik/21127/lectures/divisibility_5_print.pdf
http://www.cs.cmu.edu/~adamchik/21127/lectures/divisibility_5_print.pdf
https://www.math.upsud.fr/~fischler/inde/inde_fischlerpondichery.pdf
https://www.math.upsud.fr/~fischler/inde/inde_fischlerpondichery.pdf
http://nptel.ac.in/courses/111103020/module8_lec4.pdf
http://14.139.172.204/nptel/CSE/Web/111103020old/module8/lec5.pdf
http://14.139.172.204/nptel/CSE/Web/111103020old/module8/lec5.pdf


108 

[25] Peter Szusz, Andrew M. Rochett, Continued Fractions, World 

Scientific, 1992. 

[26] David M. Burton, Elementary Number Theory, Allyn and Bacon, 

Inc, 1980. 

[27] Seung Hyun Yang, Continued Fractions and Pell’s Equation, 

August, 2008. 

[28] Ivan Niven, An Introduction to the Theory of Numbers, Fifth  

Edition, John Wiley and Sons, Inc, 1991. 

[29] Herbert Aleksandr, Continued Fractions, Courier Corporation, 

1964. 

[30] http://www.math.binghamton.edu/dikran/478/Ch7.pdf 

[31] Friedrich Eisenbrand, Pope Gregory, The Calendar, And  

Continued Fractions, Documenta Mathematica, Extra Volume 

ISMP (2012) 87–93. 

[32] Matthew Bartha, Piano Tuning and Continued Fractions.           

https://www.whitman.edu/Documents/Academics/Mathematics/barth

a.pdf 

[33] Yury Grabovsky, Modern Calendar and Continued Fractions, 

TempleUniversity. 

https://www.math.temple.edu/~yury/calendar/calendar.pdf 

[34] Ben-Menahem, Ari, Historical Encyclopedia of Natural and 

Mathematical Sciences, Springer, 2009. 

http://www.math.binghamton.edu/dikran/478/Ch7.pdf
https://www.whitman.edu/Documents/Academics/Mathematics/bartha.pdf
https://www.whitman.edu/Documents/Academics/Mathematics/bartha.pdf
https://www.math.temple.edu/~yury/calendar/calendar.pdf


109 

[35] Wooster Woodruff Beman and David Eugene Smith, History of 

Mathematics, Second Revised Edition, The Open Court Publishing 

Co. London Agents, 1903. 

[36] Rosanna Cretney ,The origins of Euler’s early work on continued  

fractions, Elsevier Inc., 2014. 

[37] David Eugene Smith , A Source Book in Mathematics, Courier 

Corporation, 2012. 

[38] Wissam Raji, An Introductory Course in Elementary Number 

Theory, The  Saylor Foundation, 2013. 

[39] http://en.wikipedia.org/wiki/Continued_fraction#History_of_co

ntinued fractions  

[40] http://www.pi314.net/eng/lambert.php 

[41] George M. Rassias, Themistocles M. Rassias, Differential 

Geometry, Calculus of Variations, and Their Applications, CRC 

Press, 1985. 

[42]  http://en.wikipedia.org/wiki/Generalized_continued_fraction# 

History of_continued_fractions  

[43] http://en.wikipedia.org/wiki/Periodic_continued_fraction 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Continued_fraction#History_of_continued
http://en.wikipedia.org/wiki/Continued_fraction#History_of_continued
http://www.pi314.net/eng/lambert.php
https://www.google.ps/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22George+M.+Rassias%22&source=gbs_metadata_r&cad=7
https://www.google.ps/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Themistocles+M.+Rassias%22&source=gbs_metadata_r&cad=7
http://en.wikipedia.org/wiki/Generalized_continued_fraction# History of_continued_fractions
http://en.wikipedia.org/wiki/Generalized_continued_fraction# History of_continued_fractions
http://en.wikipedia.org/wiki/Periodic_continued_fraction


110 

Appendix 

Would it be possible to find convergents for a continued fraction without 

finding first all of the preceding convergents? It can be done using 

determinants. 

Consider the continued fraction expansion ,....],,[ 210 aaa  of a real number. 

Using the continued fraction recursion formula: 

                     
21

21









kkkk

kkkk

qqaq

ppap
, k ≥ 0 and 

1,0

0,1

21

21









qq

pp
 

We have 

                                          .

.

.

.

1

21

3211

1233

0122

011

00

















kkkk

kkkk

ppap

ppap

ppap

ppap

pap

ap

 

To compute pk, we find the following system of linear equations in k + 1 

unknowns, p0 through pk: 

    kkkk

kkkk

ppap

ppap

ppap

ppap

ppa

p

















12

1213

3231

2120

101

0

.

.

0

0

0

0

1

0











 a

 

To solve for pk, we may use Cramer’s Rule: 
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           110...0

.11..

.0......

.....1..

...110

0..11

0.01

00...01

010...0

.11..

.0......

.....1..

...110

0..11

1.01

0...01

1

3

2

1

1

3

2

1

0





























k

k

k

k

k

a

a

a

a

a

a

a

a

a

a

a

p

 

In the denominator we have a lower triangular matrix, so its determinant is 

(-1)
k+1

. For the numerator, we interchange successively k
th

 columns until 

we get the last column in the first position and then multiply its entries by   

-1 to get: 

      1

1

2

1

0

1

)1(

10....0

11...

0......

........

.....1..

...110

...11

0....01

)1(




















k

k

k

k

k

a

a

a

a

a

p  

Then, 
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k

k

k

a

a

a

a

a

p

10....0

11...

0......

........

.....1..

...110

...11

0....01

1

2

1

0













 

  

Again to find the value of qk, we have: 

    

kkkk

kkkk

qqaq

qqaq

qqaq

qqaq

qqa

q

















12

1213

3231

2120

101

0

.

.

0

0

0

0

0

1













 

 

Applying Cramer’s Rule to find qk and proceeding in the same way as we 

did for pk we get: 

             

k

k

k

a

a

a

a

q

10....0

11...

0......

........

.....1..

...110

...10

0....011

1

2

1













 

This determinant can be simplified to get: 
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k

k

k

a

a

a

a

a

q

10....0

11...

0......

........

.....1..

...110

...11

0....01

1

3

2

1













 

Therefore,  

            

1,

10....0

11...

0......

........

.....1..

...110

...11

0....01

10....0

11...

0......

........

.....1..

...110

...11

0....01

1

3

2

1

1

2

1

0

























k

a

a

a

a

a

a

a

a

a

a

c

k

k

k

k

k

 

Example: 

Using determinants find the 4
th
 convergent of the continued fraction for 

each of the following: 

a) 
2

111
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b) 
215

6211
 

Solution: 

a) ]3,6,2[
2

111



 

 

        379

818

3100

1610

0131

0016

31000

06100

01310

00161

00012

4 













c
 

 

b) ]23,1,7,1,28[
215

6211
  

        215

6211

23100

1110

0171

0011

231000

11100

01710

00111

000128

4 















c
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Note: 

kp and kq  are determinants of tridiagonal matrices which can be 

calculated inductively as follows: 

Given the tridaigonal matrix , 3nA n  : 

 

          






































nn

nnn

n

n

ac

bac

b

c

bac

bac

ba

A

0....0

...

0.....

........

.......

...0

...

0....0

11

1

3

332

221

11

 

 

Then, 1 1 1 1 1det det det , 2,3,..., 1k k k k k kA a A b c A k n          

  

 

 

 

 

 



 

 جامعة النجاح الوطنية
 كمية الدراسات العميا

 
 
 وتطبيقاتها الكسور المستمرة

 
 إعداد

 رنا بسام بدوي
 

 

 إشراف
 د. محمد عثمان عمران

 
 
 

بكمية رياضيات درجة الماجستير في الالحصول عمى قدمت هذه الأطروحة استكمالًا لمتطمبات 
  مسطينالدراسات العميا في جامعة النجاح الوطنية في نابمس، ف

7112 

 



 ب 

 وتطبيقاتها لكسورالمستمرةا
 إعداد

 رنا بسام بدوي
 إشراف

 د. محمد عثمان عمران
 

 الممخص
دساست الكسْس الوسخوشة البسيطت الوٌخِيت ّغيش الوٌخِيت  ّخصائصِا حن في ُزٍ الأطشّحت         

ّحل أهثلت عليِا ّإثباث بعض الٌظشياث الِاهت . حن أيضاً اسخخذام الخقاسيب ّبعض الٌظشياث 

 الخاصت بِا لحل هعادلت ديْفاًخايي الخطيت بوخغيشيي.

ذّسيت ّاسخخذام الكسش الوسخوش حن بعذ رلك دساست بعض الٌظشياث الوخعلقت بالكسْس الوسخوشة ال

 الذّسي للجزّس الصواء ّالخقاسيب الخاصت بِا لحل حالت خاصت هي هعادلت بيل. 

أخيشاً حن دساست العلاقت بيي الخقاسيب الخاصت بالكسش الوسخوشلأي عذد حقيقي ّأفضل حقشيب هي 

ذاد الحقيقيت في بعض الٌْع الثاًي لِزا العذد ّاسخخذام ُزٍ الخقاسيب لإيجاد أفضل حقشيب للأع

 الخطبيقاث هثل بٌاء حقْين هيلادي دقيق ّضبظ البياًْ.

 

 

 

 

 

 

 

 
 

 




