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Topological Characters of Complete Metric Spaces  

By 

Haneen Akram Mustafa Ghanim 

Supervisor 

Dr. Fawwaz Abudiak 

Abstract 

         In this thesis the topological aspects of complete metric spaces are 

studied. 

         Complete metric spaces, Characterizations of complete metric spaces 

and examples of complete metric spaces are presented. A completion of a 

metric space is discussed. 

          Function spaces and their topologies are defined and studied. 

Completeness of function spaces is considered. As an application, a 

construction of the well-known Peano space –filling curve is discussed.  

         Finally, Theorems of topological characters concerning complete 

spaces such as Heine-Borel theorem, Ascoli's theorem and Baire's theorem 

with their proofs are introduced, in addition to other matters concerning the 

subject. The existence of continuous nowhere-differentiable real-valued 

functions is proved. 
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Introduction 

      The concept of metric spaces was first introduced by M. Fréchet in 

1906 in his paper [10]. He formulated the abstract notion of compactness. 

After that, many mathematicians studied the concept of completeness of 

metric spaces that is basic of all aspects of analysis. Although completeness 

is a metric property rather than a topological one, there are a number of 

theorems involving complete metric spaces that are topological in 

character. In this thesis, we study complete metric spaces with the most 

important examples and then explain deeply theorems of topological 

characters concerning complete metric spaces. We found that the study of 

topological aspects of complete metric spaces has a huge place in topology. 

        In chapter one we concentrate on the concept of complete metric 

spaces and provide characterizations of complete metric spaces. Also, we 

present a characterization of complete subspaces of complete metric 

spaces. Then we shed light on examples that play a pivotal role in analysis. 

Finally, we show that a non complete metric space has a completion (that 

can be made into a complete metric space) and any two completions are 

isometric to each other. 

        In chapter two we make a study of topologies defined on  a given set 

of functions: the product topology, the set-set topology, and the uniform 

metric topology. Then we discuss the idea of completeness of a function 

space. The completeness of the spaces 𝐶 𝑋, 𝑌 , 𝐵(𝑋, 𝑌) and 𝐵𝐶(𝑋, 𝑌) is 

studied where 𝐶 𝑋, 𝑌  denotes the set of all continuous mappings of the set 
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𝑋 into a space 𝑌, 𝐵 𝑋, 𝑌  denotes the set of all bounded mappings of the 

set 𝑋 into a space 𝑌 and  𝐵𝐶 𝑋, 𝑌  denotes the set of all bounded 

continuous mappings of the set 𝑋 into a space 𝑌 . Finally, we construct the 

well-known Peano space –filling curve. 

        In chapter three we introduce the most important theorems of 

topological characters concerning complete metric spaces.  We prove a 

theorem that characterizes compactness of a metric space and use it to 

prove Heine-Borel theorem and a classical version of  Ascoli's theorem. 

Then we state and prove one form of Baire's theorem. Finally, we use 

Baire's theorem to prove the existence of continuous nowhere-

differentiable real-valued functions.  
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Introduction 

           In 1906  M. Fréchet introduced the concept of metric space in [10]. 

The importance of completeness is to prove  that a sequence converges  

without  a prior knowledge of  its limit. Therefore, completeness can be 

used to prove existence of the limits which is important in proving some 

theorems of topological characters.    

1.1.Complete Metric Space: 

            In this section some definitions and theorems concerning metric 

spaces are provided. Characterizations of complete metric spaces are also 

presented. 

Definition (1.1.1) [22]: Let 𝑋 be a nonempty set. A function, 𝜌: 𝑋 × 𝑋 →

[0, ∞) that has the following properties: 

(a) (positive definiteness)  𝜌 𝑥, 𝑦 = 0 iff 𝑥 = 𝑦 for 𝑥, 𝑦 ∈ 𝑋; 

(b) (symmetry)  𝜌 𝑥, 𝑦 = 𝜌 𝑦, 𝑥  for all 𝑥, 𝑦 ∈ 𝑋; 

(c)(triangle inequality)  𝜌 𝑥, 𝑧 ≤ 𝜌 𝑥, 𝑦 + 𝜌 𝑦, 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋          

is called a metric , or distance function, on 𝑋 . 

Definition (1.1.2) [52]: Let 𝑋 be a nonempty set, and 𝜌 be a metric on 𝑋. 

Then the pair (𝑋, 𝜌) is called a metric space. 
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Definition (1.1.3) [52]: Let (𝑥𝑛) be a sequence in a metric space (𝑋, 𝜌), 

and let 𝑐 ∈ 𝑋. Then the sequence (𝑥𝑛) converges to 𝑐 iff ∀𝜖 > 0,  ∃𝑛0 ∈ ℕ 

(set of natural numbers ) such that 𝜌(𝑥𝑛  , 𝑐) < 𝜖  for all 𝑛 ≥ 𝑛0. 

Definition (1.1.4) [20]: A sequence (𝑥𝑛) in a metric space (𝑋, 𝜌) is called 

Cauchy if the following is true: For any 𝜖 > 0,  ∃𝑛0 ∈ ℕ such that  

𝜌(𝑥𝑛  , 𝑥𝑚 ) < 𝜖  for all 𝑛, 𝑚 ≥ 𝑛0. 

Definition(1.1.5)[7]: Consider a sequence (𝑎𝑛). Let (𝑛𝑘) be a sequence of 

natural numbers that is strictly increasing; that is, 𝑛1 < 𝑛2 < 𝑛3 < ⋯.  

Then the sequence (𝑏𝑘) defined by 𝑏𝑘 = 𝑎𝑛𝑘
 for every index 𝑘 is called a 

subsequence of the sequence (𝑎𝑛),  it is denoted by (𝑎𝑛𝑘
) . 

Definition(1.1.6)[7]: A subsequence (𝑎𝑛𝑘
) of a sequence  𝑎𝑛  in a metric 

space (𝑋, 𝜌)  converges to 𝑎 ∈ 𝑋  if for any 𝜖 > 0,  ∃𝑚 ∈ ℕ such that 

𝜌(𝑎𝑛𝑖
, 𝑎) < 𝜖 , for all 𝑖 ≥ 𝑚. 

Theorem (1.1.7)[34]: If a Cauchy sequence (𝑥𝑛) in a metric space (𝑋, 𝜌) 

has a subsequence that converges to 𝑥 ∈ 𝑋, then the whole sequence 

converges to 𝑥. 

Proof: Let a subsequence(𝑥𝑘𝑛
: 𝑘1 < 𝑘2 < ⋯ ) of a Cauchy sequence (𝑥𝑘) 

in a metric space (𝑋, 𝜌) be convergent to a point 𝑥 ∈ 𝑋. Then for any 𝜖 >

0,  ∃𝑚1 ∈ ℕ such that 𝜌(𝑥𝑘𝑖
, 𝑥) <

𝜖

2
 , for all 𝑖 ≥ 𝑚1 …  (1)  but (𝑥𝑘) is 

Cauchy, so  ∃𝑚2 ∈ ℕ with 𝜌(𝑥𝑖 , 𝑥𝑗 ) <
𝜖

2
 , for all 𝑖 , 𝑗 ≥ 𝑚2 … (2).                                                                                                    

Let 𝑚 = 𝑚𝑎𝑥 𝑚1, 𝑚2  , then for all 𝑖 ≥ 𝑚 we have : 

𝜌 𝑥𝑘𝑖
, 𝑥 < 𝜖

2
   (by (1) , as 𝑘𝑖 ≥ 𝑖) and 
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𝜌 𝑥𝑖 , 𝑥𝑘𝑖
 < 𝜖

2
  (by (2) , as 𝑘𝑖 ≥ 𝑖 )  .The result is that , for all 𝑖 ≥ 𝑚, we 

have:𝜌 𝑥𝑖  , 𝑥 ≤ 𝜌 𝑥𝑖  , 𝑥𝑘𝑖
 +  𝜌 𝑥𝑘𝑖

 , 𝑥 < 𝜖

2
+ 𝜖

2
= 𝜖.                               

Thus the sequence (𝑥𝑘) converges to 𝑥. ∎ 

Definition (1.1.8) [52]: The metric space (𝑋 , 𝜌) is called a complete space 

if every Cauchy sequence in 𝑋 converges to a point in 𝑋 .  

Definition (1.1.9) [6]:If the metric space (𝑋 , 𝜌) is complete, then 𝜌 is 

called complete metric on 𝑋.  

The following theorems (1.1.10, 1.1.19 and 1.1.21)characterize the 

completeness of a metric space: 

Theorem (1.1.10)[35]: A metric space (𝑋, 𝜌) is complete if every Cauchy 

sequence in (𝑋, 𝜌) has a convergent subsequence in 𝑋.  

Proof: Let (𝒙𝒏) be a Cauchy sequence in (𝑋, 𝜌) that has a convergent 

subsequence. Then the whole sequence converges (by theorem 1.1.7). Then 

(𝑋, 𝜌) is complete.∎ 

Definition(1.1.11)[35]: Let  𝑋, 𝜌  be a metric space and 𝜖 > 0, then the  

set 𝐵 𝑥, 𝜖 =  𝑦 ∈ 𝑋: 𝜌(𝑥, 𝑦) < 𝜖  is called 𝜖-ball centered at 𝑥. 

Definition(1.1.12)[35]: If 𝜌 is a metric on the set 𝑋, then the collection of 

all 𝜖-balls 𝐵 𝑥, 𝜖  , for 𝑥 ∈ 𝑋 and 𝜖 > 0,  is a basis for a topology on 𝑋, 

called the metric topology induced by 𝜌.  
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Definition (1.1.13)[13]: For a set 𝐸 in the metric space (𝑋, 𝜌) , the closure 

of  𝐸,  denoted by 𝐸 , is 𝐼𝑛𝑡 𝐸 ∪ 𝐵𝑑𝑦(𝐸) where 𝐼𝑛𝑡 𝐸  is the interior of 

𝐸 and 𝐵𝑑𝑦 𝐸  is the boundary of 𝐸.  

Theorem (1.1.14)[13]: Let  𝑋, 𝑑  be a metric space and 𝐸 ⊆ 𝑋. Then :  

(i) 𝑥 ∈ 𝐸  iff 𝐵 𝑥, 𝜖 ∩ 𝐸 ≠ ∅, ∀𝜖 > 0. 

(ii)𝐸 =  𝑥 ∈ 𝑋: 𝑑 𝑥, 𝐸 = 0  where 𝑑 𝑥, 𝐸 = 𝑖𝑛𝑓 𝑑 𝑥, 𝑒 : 𝑒 ∈ 𝐸 .  

Proof: (i) Since 𝐸 = 𝐼𝑛𝑡 𝐸 ∪ 𝐵𝑑𝑦(𝐸) , then it is clear that 𝑥 ∈ 𝐸  iff every 

open ball with center 𝑥 intersects 𝐸.  

(ii) By(i), if 𝑥 ∈ 𝐸  , then for every  𝜖 > 0 there exists a 𝑦 ∈ 𝐵(𝑥, 𝜖) ∩ 𝐸 

and, therefore, 𝑑 𝑥, 𝐸 = 0. If 𝑑 𝑥, 𝐸 = 0 then for every 𝜖 > 0 there is a 

𝑦 ∈ 𝐸 such that 𝑑(𝑥, 𝑦) < 𝜖; that is , 𝐵(𝑥, 𝜖) ∩ 𝐸 ≠ ∅, and thus, 𝑥 ∈ 𝐸 .∎ 

Theorem (1.1.15)[13]: A set 𝐸 in a metric space (𝑋, 𝑑) is closed iff every 

sequence of points in 𝐸 which is convergent in 𝑋 converges to a point in 𝐸.   

Proof:  Suppose 𝐸 is closed in 𝑋 and let (𝑥𝑛 ) be a sequence of points in  𝐸 

such that (𝑥𝑛 ) converges to 𝑥 ∈ 𝑋 . Then, by definition (1.1.3), for any 

𝜖 > 0, there exist 𝑛0 ∈ ℕ such that 𝑑(𝑥𝑛  , 𝑥) < 𝜖 for all 𝑛 ≥ 𝑛0 . So 

𝑥𝑛 ∈ 𝐵(𝑥, 𝜖) for all 𝑛 ≥ 𝑛0 and any 𝜖 > 0 , but 𝑥𝑛 ∈ 𝐸 , ∀𝑛 ∈ ℕ . Thus,  

𝐵 𝑥, 𝜖 ∩ 𝐸 ≠ ∅, ∀𝜖 > 0 ,and so 𝑥 ∈ 𝐸 = 𝐸.   For the converse: Let 𝑥 ∈ 𝐸 . 

Then, ∀𝑛 ∈ ℕ , 𝐵  𝑥,
1

𝑛
 ∩ 𝐸 ≠ ∅ . Take 𝑥𝑛 ∈ 𝐵  𝑥,

1

𝑛
 ∩ 𝐸, then (𝑥𝑛) is a  

sequence of points in 𝐸 converges to 𝑥 ∈ 𝑋.So by the condition it 

converges to 𝑥 ∈ 𝐸.  Hence 𝐸 is closed.∎ 
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Corollary (1.1.16): Let (𝑋, 𝑑) be a metric space , 𝐸 ⊆ 𝑋 .If 𝑥 ∈ 𝐸  then 

there exists a sequence (𝑥𝑛)of points in 𝐸 which converges to 𝑥 . 

Proof: Clear by the proof of theorem( 1.1.15).∎ 

Definition (1.1.17) [45]:Let (𝑋 , 𝜌) be a metric space ,for 𝐴 ⊆ 𝑋, 

𝑑𝑖𝑎𝑚 𝐴 = sup 𝜌 𝑥, 𝑦 : 𝑥, 𝑦 ∈ 𝐴  . 

Theorem (1.1.18)[45]: Let (𝑋 , 𝑑) be a metric space ,for 𝐴 ⊆ 𝑋, 

𝑑𝑖𝑎𝑚 𝐴 =  𝑑𝑖𝑎𝑚 𝐴   .  

Proof: Since 𝐴 ⊆ 𝐴 , then the inequality 𝑑𝑖𝑎𝑚 𝐴 ≤  𝑑𝑖𝑎𝑚 𝐴   is 

immediate. For the other inequality, let 𝑥, 𝑦 ∈ 𝐴 , then there exist sequences 

 𝑥𝑛  and  𝑦𝑛  in 𝐴 such that 𝑑(𝑥, 𝑥𝑛 ) <
𝜖

2
  and 𝑑(𝑦, 𝑦𝑛) <

𝜖

2
  for 𝑛 ≥ 𝑛0, 

say, where 𝜖 > 0 is arbitrary. Now for 𝑛 ≥ 𝑛0,  we have:  

                  𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑥𝑛 + 𝑑 𝑥𝑛 , 𝑦𝑛 + 𝑑(𝑦𝑛 , 𝑦) 

                                  ≤
𝜖

2
+ 𝑑 𝑥𝑛 , 𝑦𝑛 +

𝜖

2
  

                                  ≤ 𝑑𝑖𝑎𝑚 𝐴 +  𝜖 

so, 𝑑𝑖𝑎𝑚 𝐴  ≤ 𝑑𝑖𝑎𝑚 𝐴 , since 𝜖 > 0 is arbitrary.  

Thus , 𝑑𝑖𝑎𝑚 𝐴 =  𝑑𝑖𝑎𝑚 𝐴   .∎ 

Theorem (Cantor's Intersection Theorem) (1.1.19)[34]: A metric space 

 𝑋 , 𝑑  is complete iff for any descending sequence  𝐹𝑛   of nonempty 

closed sets such that 𝑑𝑖𝑎𝑚 𝐹𝑛 → 0 𝑎𝑠 𝑛 → ∞, the intersection 𝐹 =

 𝐹𝑛
∞
𝑛=1  consists of exactly one point.  
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Proof: Let  𝑋 , 𝑑  be a complete metric space and  𝐹𝑛   be a descending 

sequence of nonempty closed sets in 𝑋 such that 𝑑𝑖𝑎𝑚 𝐹𝑛 → 0                               

as 𝑛 → ∞ . Since each  𝐹𝑛  is nonempty, choose a point 𝑥𝑛 ∈ 𝐹𝑛  for each 

𝑛 ∈ ℕ . Since 𝑑𝑖𝑎𝑚 𝐹𝑛 → 0, then ∀𝜖 > 0, ∃𝑚0 ∈ ℕ such that 

𝑑𝑖𝑎𝑚 𝐹𝑚0
 < 𝜖 . For 𝑛, 𝑚 ≥ 𝑚0 , 𝐹𝑛  , 𝐹𝑚 ⊆ 𝐹𝑚0

 since  𝐹𝑛   is descending 

sequence. Now 𝑑(𝑥𝑛  , 𝑥𝑚 ) ≤ 𝑑𝑖𝑎𝑚(𝐹𝑚0
) < 𝜖 . So the sequence (𝑥𝑛) is 

Cauchy in 𝑋 . By completeness of the space  𝑋 , 𝑑 , the sequence  𝑥𝑛  

converges to a point (say) 𝑥0 ∈ 𝑋 .To show that 𝑥0 ∈  𝐹𝑛
∞
𝑛=1  , let 𝑚 be 

any positive integer. Then for 𝑛 ≥ 𝑚 ⇒ 𝑥𝑛 ∈ 𝐹𝑚 . The sequence  𝑥𝑛  

converges to  𝑥0 , then ∀𝜖 > 0, ∃𝑛0 ∈ ℕ such that 𝑑(𝑥𝑛 , 𝑥0) < 𝜖 for all 

𝑛 ≥ 𝑛0 which means that 𝑥𝑛 ∈ 𝐵(𝑥0 , 𝜖) . 

Take 𝑠 = 𝑚𝑎𝑥 𝑚, 𝑛0 .  Then 𝑥𝑛 ∈ 𝐵(𝑥0 , 𝜖)  for all 𝑛 ≥ 𝑠 . So                                

𝐵(𝑥0 , 𝜖) ∩ 𝐹𝑚 ≠ ∅ .Hence  𝑥0 ∈ 𝐹𝑚
     , and then 𝑥0 ∈ 𝐹𝑚   since 𝐹𝑚  is closed. 

Since 𝑚 was  arbitrarily chosen,  𝑥0 ∈  𝐹𝑛
∞
𝑛=1  . 

Now, suppose there is another point 𝑦 ∈  𝐹𝑛
∞
𝑛=1  . 

 Then 𝑑 𝑥0 , 𝑦 ≤ 𝑑𝑖𝑎𝑚(𝐹𝑛) , for every  𝑛 .Since 𝑑𝑖𝑎𝑚(𝐹𝑛) → 0 , therefore 

𝑑 𝑥0 , 𝑦 = 0, hence 𝑥0 = 𝑦.    

Conversely, let the given condition hold and   𝑥𝑛  be a Cauchy sequence in 

𝑋 . For each  𝑛 ∈ ℕ , let 𝐴𝑛 =  𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2, …  . Obviously 𝐴1 ⊇ 𝐴2 ⊇

𝐴3 ⊇ ⋯ and hence 𝐴1
   ⊇ 𝐴2

   ⊇ 𝐴3
   …. Since   𝑥𝑛  is Cauchy ,  𝑑𝑖𝑎𝑚(𝐴𝑛) →

0 ,therefore  𝑑𝑖𝑎𝑚(𝐴𝑛
    ) → 0 .By the hypothesis,  𝐴𝑛

    ∞
𝑛=1  consists of a 

single point say 𝑥0 .Thus, 𝑑 𝑥0, 𝑥𝑛 ≤ 𝑑𝑖𝑎𝑚 𝐴𝑛
      since 𝑥0, 𝑥𝑛 ∈ 𝐴𝑛

     , but  
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𝑑𝑖𝑎𝑚(𝐴𝑛
    ) → 0 , then  𝑑(𝑥0, 𝑥𝑛 ) → 0 as 𝑛 → ∞ . Hence,     𝑥𝑛  converges 

to  𝑥0  in   𝑋 , 𝑑  .  ∎ 

           Cantor's Intersection theorem is extended to characterize 

completeness of a 2-metric space which is defined as follows: 

Definition(1.1.20 )[28]: Let 𝑋 be a non-empty set and let 𝜍 be a mapping 

from 𝑋 × 𝑋 × 𝑋 to [0, ∞)   i.e.  𝜍: 𝑋3 → [0, ∞)  satisfying the following 

conditions:  

(i) For every pair of distinct points 𝑎, 𝑏 in 𝑋 there exists a point 𝑐 ∈ 𝑋 such 

that 𝜍(𝑎, 𝑏, 𝑐) ≠ 0. 

(ii) 𝜍 𝑎, 𝑏, 𝑐 = 0 only if at least two of the three points are same. 

(iii) 𝜍 𝑎, 𝑏, 𝑐 = 𝜍 𝑎, 𝑐, 𝑏 = 𝜍(𝑏, 𝑐, 𝑎) for all 𝑎, 𝑏, 𝑐 ∈ 𝑋.  

(iv) 𝜍 𝑎, 𝑏, 𝑐 ≤ 𝜍 𝑎, 𝑏, 𝑑 + 𝜍 𝑎, 𝑑, 𝑐 + 𝜍(𝑑, 𝑏, 𝑐) for all 𝑎, 𝑏, 𝑐 and 

𝑑 ∈ 𝑋.  

Then 𝜍 is called a 2-metric on 𝑋 and (𝑋, 𝜍) is called a 2-metric space.  

Theorem(1.1.21)[49]: Let (𝑋 , 𝜌) be a metric space, then (𝑋 , 𝜌) is 

complete if for every continuous function  𝐹: 𝑋 → ℝ ∪  +∞ , 𝐹 ≢ +∞ , 

bounded from below, and for every  𝜖 > 0 , there is a point 𝑣 ∈ 𝑋 

satisfying: 

(i)𝐹(𝑣) ≤ 𝑖𝑛𝑓𝑋 𝐹 + 𝜖   and 

(ii)For all 𝑤 ≠ 𝑣 , 𝐹 𝑤 + 𝜖𝜌(𝑣, 𝑤) > 𝐹(𝑣). 
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Proof: Let (𝑦𝑛) be a Cauchy sequence in 𝑋 , and let  𝐹: 𝑋 → ℝ  given by 

𝐹 𝑥 = lim𝑛→∞ 𝜌(𝑦𝑛  , 𝑥) . This function is continuous, and 𝑖𝑛𝑓𝑋 𝐹 = 0, 

since (𝑦𝑛) is Cauchy. We need to show that (𝑦𝑛) converges in 𝑋.  Choose 

any 0 < 𝜖 < 1 , then by (i) we have 𝐹(𝑣) ≤ 𝜖 for a point 𝑣 ∈ 𝑋 . Also for 

all 𝑤 ≠ 𝑣 we have  𝐹 𝑤 + 𝜖𝜌(𝑣, 𝑤) > 𝐹(𝑣). Now by the definition of 𝐹 

and the fact that (𝑦𝑛) is Cauchy, we can take 𝑤 = 𝑦𝑝  for  𝑝 large enough 

such that 𝐹(𝑤) is arbitrary small and thus: 𝜌 𝑤, 𝑣 ≤ 𝜖 + 𝜂  for any 𝜂 > 0 

Now  using (ii), the result is 𝐹 𝑣 ≤ 𝜖2. Repeating the argument : 𝐹 𝑣 ≤

𝜖2 and  𝜌 𝑤, 𝑣 ≤ 𝜖2 + 𝜂   for any 𝜂 > 0 . So we get 𝐹 𝑣 ≤ 𝜖3 Repeating 

this till concluding that :  𝐹 𝑣 ≤ 𝜖𝑛  , for all 𝑛 ≥ 1 where 𝑛 ∈ ℕ . Since  

0 < 𝜖 < 1 , we have 𝐹 𝑣 = 0 , i.e  lim𝑛→∞ 𝜌(𝑦𝑛  , 𝑣), this means that (𝑦𝑛) 

converges to 𝑣 by definition (1.1.3) .So the metric space (𝑋 , 𝜌) is 

complete.∎ 

         Other characterizations of the metric completeness can be found in 

[16,38,55] . 

Theorem (Cauchy Convergence Criterion) (1.1.22) [47]: In the metric 

space  ℝ, 𝑑  where 𝑑 is the usual metric( 𝑑 𝑥, 𝑦 =  𝑥 − 𝑦 , ∀ 𝑥, 𝑦 ∈ ℝ ),  

a real sequence is convergent iff it is a Cauchy sequence . 

Proof: Let  𝑥𝑛  be a convergent sequence in ℝ ,then lim𝑛→∞ 𝑥𝑛 = 𝐿 for 

some real number 𝐿. That is, ∀𝜖 > 0 there exists 𝑁 ∈ ℕ such that for all 

𝑛 ≥ 𝑁, 𝑑 𝑥𝑛 , 𝐿 <
𝜖

2
 . So if 𝑛, 𝑚 ≥ 𝑁 we have 

𝑑 𝑥𝑛 , 𝑥𝑚 ≤ 𝑑 𝑥𝑛 , 𝐿 + 𝑑(𝐿, 𝑥𝑚 ) 

  <
𝜖

2
+

𝜖

2
= 𝜖. 



12 

Which means that the sequence  𝑥𝑛  is Cauchy. 

       Conversely, Let  𝑥𝑛  be a Cauchy sequence in ℝ. Then there exists 

𝑁 ∈ ℕ such that for all  𝑛, 𝑚 ≥ 𝑁, 𝑑 𝑥𝑛 , 𝑥𝑚 < 1 . So for all 𝑛 ≥ 𝑁 we 

have 𝑑 𝑥𝑛 , 𝑥𝑁 < 1 which implies that  𝑥𝑛  <  𝑥𝑁 + 1. 

 Let 𝑀 = max  𝑥1 ,  𝑥2 , … ,  𝑥𝑁−1 ,  𝑥𝑁 + 1 ,  then  𝑥𝑛  ≤ 𝑀 for all 

𝑁 ∈ ℕ, that is the sequence is bounded. But every real sequence contains a 

monotonic subsequence. Now, this subsequence is both monotonic and and 

bounded, hence convergent. By theorem (1.1.7),   the whole sequence 

converges. ∎ 

Example (1.1.23)[52]: the metric space  ℝ, 𝑑  where                                   

𝑑 𝑥, 𝑦 =  𝑥 − 𝑦 , ∀ 𝑥, 𝑦 ∈ ℝ  is a complete metric space since every  

Cauchy sequence converges in ℝ by theorem (1.1.22). 

1.2.  Subspaces of Complete Metric Spaces: 

          Subspaces of a complete metric space are characterized  in this 

section. Definitions and theorems concerning subspaces of a metric space 

are presented before discussing this topic.   

 Definition  (1.2.1)[6]: (𝑌, 𝑑𝑌) is a metric subspace of the metric space 

(𝑋, 𝑑) when 𝑌 ⊆ 𝑋 and 𝑑𝑌 𝑎, 𝑏 = 𝑑(𝑎, 𝑏)  for all 𝑎, 𝑏 ∈ 𝑌. 

Theorem (1.2.2)[34]: let (𝑦𝑛) be a sequence in a metric subspace (𝑌, 𝑑𝑌)  

of a metric space (𝑋, 𝑑). Let  𝑦 ∈ 𝑌, the sequence (𝑦𝑛)  converges to 𝑦 in 

(𝑌, 𝑑𝑌) iff it  converges to 𝑦 in (𝑋, 𝑑).  
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Proof: For  𝑦 ∈ 𝑌, 𝐴 ⊆ 𝑌  is an open set in the metric subspace (𝑌, 𝑑𝑌) 

containing 𝑦 iff 𝐴 = 𝐵 ∩ 𝑌 for some open set 𝐵 in (𝑋, 𝑑) such that 𝑦 ∈ 𝐵. 

Thus, if  𝑦𝑛  is a sequence in 𝑌 , then the sequence is eventually in every 

open set containing 𝑦 in (𝑌, 𝑑𝑦 ) iff it is also in every open set containing 𝑦 

in (𝑋, 𝑑). ∎ 

Theorem (1.2.3)[34]: let (𝑦𝑛) be a sequence in a metric subspace (𝑌, 𝑑𝑌)  

of a metric space (𝑋, 𝑑). Then (𝑦𝑛) is Cauchy in 𝑌 iff (𝑦𝑛) is Cauchy in 𝑋. 

Proof: For any 𝑦, 𝑦 ′ ∈ 𝑌, we have 𝑑𝑌 𝑦, 𝑦 ′ = 𝑑(𝑦, 𝑦 ′). Hence, if  𝑦𝑛  is a 

sequence in 𝑌 then 𝑑𝑌 𝑦𝑖 , 𝑦𝑗  = 𝑑 𝑦𝑖 , 𝑦𝑗   , ∀𝑖, 𝑗 ∈ ℕ.∎ 

Theorem  (1.2.4)[43]:  A convergent sequence of points in a metric space 

(𝑋, 𝑑) is a Cauchy  sequence.  

Proof: let (𝑥𝑛) be a sequence  of  points in (𝑋, 𝑑) that converges to 𝑥 ∈ 𝑋.   

Then, for any 𝜖 > 0, ∃  𝑁𝜖 ℕ  such that 𝑑 𝑥, 𝑥𝑛 <
𝜖

2
  , for all 𝑛 ≥ 𝑁. 

Hence if 𝑛, 𝑚 ≥ 𝑁 , then 𝑑 𝑥𝑛  , 𝑥𝑚  ≤ 𝑑 𝑥𝑛  , 𝑥 + 𝑑 𝑥 , 𝑥𝑚 <
𝜖

2
+

𝜖

2
=

𝜖.∎ 

Definition (1.2.5)[34]: The metric space (𝑋, 𝑑) is called incomplete if it is 

not complete.  

Example(1.2.6)[34]: Consider the metric subspace 𝑋 = (0,1] of the metric 

space ℝ with its usual metric 𝑑 . Then (𝑋, 𝑑𝑋) is incomplete .  

 Proof: Consider the sequence  
1

𝑛
 , 𝑛 ∈ ℕ .It is a sequence of points in 𝑋  

The sequence  
1

𝑛
  converges to 0 ∈ ℝ , then it is Cauchy in ℝ by theorem 
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(1.2.4). It is also Cauchy in 𝑋 by theorem (1.2.3).But it doesn't converges 

to any point in 𝑋 as 0 ∉ 𝑋. ∎ 

Example(1.2.7)[34]: Consider the metric subspace 𝑋 = ℚ of the metric 

space ℝ with its usual metric 𝑑 . Then, (𝑋, 𝑑𝑋) is incomplete. 

Proof: Consider the sequence  𝑥𝑛  in 𝑋, where 𝑥𝑛 = (1 +
1

𝑛
)𝑛 .This 

sequence converges to 𝑒 in ℝ, hence it is Cauchy in ℝ by theorem(1.2.4), 

so it is also Cauchy sequence in 𝑋 by theorem (1.2.3) .But it doesn't 

converges to any point in 𝑋 since 𝑒 is irrational number.∎  

Theorem(1.2.8)[34]: A convergent sequence has a unique limit in a metric 

space (𝑋, 𝑑) . 

Proof: Let  (𝑥𝑛) be a convergent sequence in the metric space (𝑋, 𝑑) to 

two distinct points 𝑥 , 𝑦.Then ∃𝑚1 ∈ ℕ such that 𝑑 𝑥𝑛 , 𝑥 <
𝜖

2
, ∀𝜖 > 0 . 

Also, ∃𝑚2 ∈ ℕ such that 𝑑 𝑥𝑛 , 𝑦 <
𝜖

2
, ∀𝜖 > 0 .Let 𝑚 = 𝑚𝑎𝑥 𝑚1, 𝑚2 . 

Then we have : 

𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑥𝑛 + 𝑑 𝑥𝑛 , 𝑦 <
𝜖

2
+

𝜖

2
= 𝜖 . So, 0 ≤ 𝑑 𝑥, 𝑦 < 𝜖, ∀𝜖 > 0 . 

Then 𝑑 𝑥, 𝑦 = 0 ⇒ 𝑥 = 𝑦 which is a contradiction.∎ 

           The following theorem characterizes complete metric subspaces of a 

complete metric space.  

Theorem (1.2.9)[52]: Let (𝑋, 𝑑) be a complete metric space. Let (𝑌, 𝑑𝑌) 

be a metric subspace of 𝑋 . Then, Y is closed in 𝑋 iff (𝑌, 𝑑𝑌) is complete .  
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Proof : Let (𝑋, 𝑑) be a complete metric space , 𝑌 be closed subset of 𝑋 .Let 

(𝑦𝑛) be a Cauchy sequence in 𝑌, then it is also a Cauchy sequence in 𝑋. 

But (𝑋,d) is complete, so (𝑦𝑛) converges to a point 𝑥 ∈ 𝑋 then( by 

theorem(1.1.15)) the sequence (𝑦𝑛) converges to a point 𝑥 ∈ 𝑌 .Thus 

(𝑌, 𝑑𝑌) is complete. For the converse: Let (𝑌, 𝑑𝑌) be complete. If 𝑐 ∈

𝑌  then there exists a sequence  𝑦𝑛  of points in 𝑌 that converges to 𝑐 ∈ 𝑋 

(by corollary 1.1.16) . Then,  𝑦𝑛  is a Cauchy sequence in 𝑋, hence Cauchy 

in 𝑌 which is complete. So  𝑦𝑛  converges to 𝑐 ∈ 𝑌 . Thus 𝑌 is closed in 

𝑋.∎ 

Remark(1.2.10): It is now easy to prove that the subspaces  0,1  and ℚ 

discussed in the previous examples (1.2.6) and (1.2.7) respectively are 

incomplete, since  0,1  and ℚ are not closed in (ℝ, 𝑑) where 𝑑 is the usual 

metric on ℝ .  

1.3. Metrically Topologically Complete Space: 

            In spite of the fact that completeness is a metric property rather than 

a topological one, completeness can be considered  also in topological 

spaces. This section discusses  and elaborates  the former idea supported 

with examples.  

Definition (1.3.1)[56]: A topological space (𝑋, 𝜏) is called metrizable if 

there exist a metric 𝑑 on the set 𝑋 that induces the topology 𝜏 of 𝑋.  

Definition (1.3.2)[6]: Two metrics 𝑑 , 𝜌 on a set 𝑋 are called equivalent if 

they induce the same topology.  
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Remark(1.3.3)[56,6]:  

(i)A topological space (𝑋, 𝜏) may not be metrizable, that is no metric on 𝑋 

induces the topology of 𝑋. For example let 𝑋 =  𝑎, 𝑏  and let                    

𝜏 =  ∅,  𝑎 , 𝑋 . Then, 𝜏 is a topology for 𝑋, and it is not metrizable. For 

suppose 𝜌 is a metric on 𝑋 which produces 𝜏. 𝑎 ≠ 𝑏 so, 𝜌 𝑎, 𝑏 = 𝑟 > 0. 

Now,  𝐵  𝑏,
𝑟

2
 =  𝑏  , so  𝑏  is an open set, contrary to the definition of 𝜏. 

Hence, no 𝜌 can produce this topology on 𝑋. With this topology, 𝑋 is 

sometimes called the Sierpinski space.   

(ii)A topological space that is induced by a metric  𝑑, can also be induced 

by other equivalent metrics. For example, the metrics  

 𝜌𝜇  𝑥, 𝑦 = 𝑚𝑖𝑛 𝜇, 𝑑(𝑥, 𝑦)  for 𝜇 > 0 and 𝜌 𝑥, 𝑦 =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
 are 

equivalent to the metric 𝑑 on a set 𝑋. 

Definition (1.3.4)[19]: A topological space is said to be metrically 

topologically complete if there exists a complete metric inducing the given 

topology on it. These spaces are also called topologically complete.  

In other words , if a topological space 𝑋 is metrizable and induced by 

a metric 𝑑 , then 𝑋 is topologically complete if 𝑑 is complete or if an 

equivalent complete metric for 𝑋 exists. 

Example (1.3.5)[6]:Consider the topological space (ℝ, 𝜏) where 𝜏 is the 

usual topology on ℝ. This topological space is metrizable and is induced by 

the following equivalent metrics: 
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𝑑𝑒 𝑥, 𝑦 =  𝑥 − 𝑦   and 𝑑𝜃 𝑥, 𝑦 =  
𝑥

1+ 𝑥 
−

𝑦

1+ 𝑦 
   .It is proven in example 

(1.1.23) that the metric 𝑑𝑒  is complete on ℝ while the metric 𝑑𝜃  is 

incomplete metric on ℝ, for the sequence (𝑛) is Cauchy with respect to 𝑑𝜃 , 

but it doesn't converge to any point in ℝ .The topological space  (ℝ, 𝜏) in 

this example is metrically topologically complete .The existence of one 

complete metric for the topological space is enough to call it metrically 

topologically complete. 

Some subspaces of a metrically topologically complete space are  

metrically topologically complete while others are not.   

Example (1.3.6)[19]: Consider the subspace 𝑋 = (0,1) of the space (ℝ, 𝜏) 

where 𝜏 is the usual topology on ℝ. The space (ℝ, 𝜏) is metrically 

topologically complete induced by the usual metric 𝑑𝑒  which is complete. 

The metric 𝑑𝑒𝑋
 is not complete on 𝑋 because 𝑋 is not closed set in the 

metric space  (ℝ, 𝑑𝑒) . But this subspace 𝑋 is topologically complete (this 

is proven in the following pages) ,that is a complete metric for 𝑋 must 

exist. 

Definition (1.3.7)[56]: A 𝐺𝛿 -set in a space is a set which can be expressed 

as the intersection of a countable family of open sets. 

            The following theorem characterizes the topologically complete 

subspaces of a topologically complete space. 

Theorem (1.3.8)[6]: If 𝑌 is a topologically complete space then, a subset  

𝐴  of 𝑌 is topologically complete iff 𝐴 is a 𝐺𝛿 -set in 𝑌 .  
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Proof: [6 page 307]. 

Corollary (1.3.9): If 𝐴 is a closed subset of a topologically complete space 

𝑋, then 𝐴 is a topologically complete subspace. 

Proof[56]: Any closed set in a metric space is a 𝐺𝛿 -set .Then it is 

topologically complete by theorem (1.3.8). More over, if 𝑑 is a complete 

metric for 𝑋, then 𝑑𝐴  is a complete metric for 𝐴 .∎ 

Corollary (1.3.10): Any open subset of a topologically complete space is 

topologically complete.  

Proof: An open set in a metric space is a 𝐺𝛿 -set .Then it is topologically 

complete by theorem (1.3.8).∎ 

Remark (1.3.11): The subspace (0,1) discussed in example (1.3.6) is 

topologically complete by corollary (1.3.10) since(0,1)  is open set in 

(ℝ, 𝜏)where 𝜏 is the usual topology.  

Example (1.3.12)[19]: The set  𝑋 of irrationals is a topologically complete 

subspace of the topologically complete space (ℝ, 𝜏)where 𝜏 is the usual 

topology  since 𝑋 is a 𝐺𝛿 -set in ℝ. While the set ℚ is not topologically 

complete since ℚ is not a 𝐺𝛿 -set in ℝ .   

1.4.Examples: 

           The aim of this section is to shed light on three examples of 

complete metric spaces. These examples play a pivotal role in analysis.   
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Lemma(1.4.1)[5]: If (𝑥𝑛) is a sequence in 𝑋 , where (𝑋, 𝑑) is a discrete 

metric space, then the sequence (𝑥𝑛) converges in 𝑋 iff there exist 𝑁 ∈ ℕ 

such that 𝑥𝑛 = 𝑥 , ∀𝑛 ≥ 𝑁 ,for some 𝑥 ∈ 𝑋.  

Proof: Let  (𝑥𝑛) be a sequence of points in 𝑋 that converges to 𝑥 ∈ 𝑋, 

then, ∃𝑁 ∈ ℕ such that 𝑑 𝑥𝑛 , 𝑥 < 𝜖, ∀𝜖 > 0 and ∀ 𝑛 ≥ 𝑁. Let 𝜖 =
1

2
 , then      

𝑑 𝑥𝑛 , 𝑥 <
1

2
 ⇒ 𝑥𝑛 = 𝑥, ∀ 𝑛 ≥ 𝑁.  

Conversely, If 𝑥𝑛 = 𝑥 , ∀𝑛 ≥ 𝑁, for some 𝑁 ∈ ℕ, then                   

𝑑 𝑥𝑛 , 𝑥 = 0 < 𝜖, ∀𝜖 > 0. So (𝑥𝑛) converges to 𝑥. ∎ 

Lemma (1.4.2)[5]: Any discrete metric space (𝑋, 𝑑) is complete.  

Proof: If (𝑥𝑛) is Cauchy sequence in (𝑋, 𝑑), then ∀𝜖 > 𝑜, ∃𝑛0 ∈ ℕ such 

that 𝑛, 𝑚 ≥ 𝑛0 ⇒ 𝑑(𝑥𝑛 , 𝑥𝑚 ) < 𝜖. For 0 < 𝜖 < 1 ⇒ 𝑥𝑛 = 𝑥𝑚 = 𝑥 for a 

point 𝑥 ∈ 𝑋. Thus,  ∀𝑛 ≥ 𝑛0 ⇒  𝑥𝑛 = 𝑥 , and so (𝑥𝑛) converges to 𝑥 by 

lemma (1.4.1),hence the discrete metric space is complete. ∎ 

Corollary(1.4.3)[56]: The discrete topology on a set 𝑋 is metrizable, being 

the topology produced by the discrete metric on 𝑋 which is complete by 

lemma (1.4.2).Thus, the discrete topology is metrically topologically 

complete. 

Theorem(1.4.4)[45]: Let 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛 ) be two  

points of ℝ𝑛 , then 𝑑2 𝑥, 𝑦 =    𝑥𝑖 − 𝑦𝑖 
2𝑛

𝑖=1  
1

2  is a metric on ℝ𝑛 , called 

the Euclidean metric . 
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Theorem(1.4.5)[33]: Let  𝑥𝑘 , 𝑘 ∈ ℕ , be a sequence in (ℝ𝑛 , 𝑑2),  𝑥 =

 𝑥1, 𝑥2, … , 𝑥𝑛  where 𝑥𝑖 ∈ ℝ ,∀𝑖 = 1,2, … , 𝑛 . Then, the sequence  𝑥𝑘  

converges to 𝑥 iff the sequence (𝑥𝑖
𝑘) converges to 𝑥𝑖  in  (ℝ, 𝑑𝑒) for each 

𝑖 = 1,2, … , 𝑛 . 

Proof: Suppose  𝑥𝑘  converges to 𝑥, then ∀𝜖 > 0, ∃𝑁 ∈ ℕ ,such that 

𝑑2(𝑥𝑘 , 𝑥) < 𝜖 for 𝑘 ≥ 𝑁.  𝑥𝑖
𝑘 − 𝑥𝑖 =  (𝑥𝑖

𝑘 − 𝑥𝑖)
2 ≤ 𝑑2(𝑥𝑘 , 𝑥) < 𝜖, then 

(𝑥𝑖
𝑘) converges to 𝑥𝑖   for each 𝑖 = 1,2, … , 𝑛. 

Conversely, if the sequence (𝑥𝑖
𝑘) converges to 𝑥𝑖  in  (ℝ, 𝑑𝑒) for each 

𝑖 = 1,2, … , 𝑛, then for every 𝜖 > 0, there are positive integers 𝑁𝑖  such that 

 𝑥𝑖
𝑘 − 𝑥𝑖 <

𝜖

 𝑛
  for all 𝑘 ≥ 𝑁𝑖  . 

Letting 𝑁 = 𝑚𝑎𝑥 𝑁𝑖 : 𝑖 = 1,2, … , 𝑛 , we have  𝑥𝑖
𝑘 − 𝑥𝑖 <

𝜖

 𝑛
  , for all 

𝑘 ≥ 𝑁.Now, 𝑑2 𝑥𝑘 , 𝑥 =    𝑥𝑖
𝑘 − 𝑥𝑖 

2𝑛
𝑖=1  

1

2
<    

𝜖

 𝑛
 

2
𝑛
𝑖=1  

1

2

= 𝜖 . 

Therefore,  𝑑2(𝑥𝑘 , 𝑥) < 𝜖, for all 𝑘 ≥ 𝑁 and  𝑥𝑘  converges to 𝑥.∎ 

Theorem (Completeness of the Euclidean Space(ℝ𝒏, 𝒅𝟐))(1.4.6)[18]: 

(ℝ𝑛 , 𝑑2) is a complete metric space.  

Proof: Let  𝑎𝑘  be a Cauchy sequence in ℝ𝑛 . Let 𝜖 > 0. Then there exist a 

positive integer 𝑁 such that, for 𝑘, 𝑚 ≥ 𝑁,                             𝑑2 𝑎𝑘 , 𝑎𝑚 =

   𝑥𝑖 − 𝑦𝑖 
2𝑛

𝑖=1  
1

2  < 𝜖. If 𝑗 is appositive integer with 1 ≤ 𝑗 ≤ 𝑛, we have 

 𝑎𝑗
𝑘 − 𝑎𝑗

𝑚  ≤ 𝑑(𝑎𝑘 , 𝑎𝑚 ) < 𝜖 , for 𝑘, 𝑚 ≥ 𝑁. Thus for 1 ≤ 𝑗 ≤ 𝑛, the real 

sequence (𝑎𝑗
𝑘)𝑘=1

∞  is Cauchy sequence and hence converges , for all 
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𝑗 =  1,2, … , 𝑛 . Then the sequence  𝑎𝑘  converges by theorem (1.4.5) 

.Therefore ℝ𝑛  is complete.∎ 

        The Euclidean space is also complete in the square metric               

𝑑𝑠 𝑥, 𝑦 = max  𝑥𝑖 − 𝑦𝑖  , 𝑖 = 1,2, …𝑛 , 𝑥, 𝑦 ∈ ℝ𝑛  for the details see [35].  

Remark (1.4.7)[35]: The metric 𝑑2 induces the product topology on  ℝ𝑛 , 

so the product topology on ℝ𝑛  is metrically topologically complete. 

          It is already proven that ℝ𝑛  is a complete space. Analogously, 

ℝ𝜔 ,the set of all real sequences, is also complete when considered with  

the metric:  

𝑑 𝑥, 𝑦 =   
1

𝑛!
 

 𝑥𝑛 − 𝑦𝑛  

1 +  𝑥𝑛 − 𝑦𝑛  
  

∞

𝑛=1

  

for 𝑥 = (𝑥𝑛)𝑛≥1 , 𝑦 = (𝑦𝑛)𝑛≥1. The following example explains the details. 

Example (Completeness of Frechet's Sequence Space) (1.4.8)[34]: Let 

 𝑋, 𝑑  denote the frechet's sequence space, where 𝑋 consist of all real 

sequences, and the metric 𝑑 is given by 

𝑑 𝑥, 𝑦 =   
1

𝑛!
 

 𝑥𝑛 − 𝑦𝑛  

1 +  𝑥𝑛 − 𝑦𝑛  
  

∞

𝑛=1

 , for 𝑥 =  𝑥𝑛 𝑛≥1 , 𝑦 =  𝑦𝑛 𝑛≥1  

 Then:      

(i) 𝑑 is a metric on 𝑋. 

(ii)  𝑋, 𝑑  is a complete metric space .  



22 

Proof (i) (Same proof can be found in [45]): The series 

  
1

n!
 

 xn − yn 

1 +  xn − yn 
  

∞

n=1

 

 converges . In fact 

1

n!
 

 xn − yn 

1 +  xn − yn 
 ≤

1

n!
 

 The series   
1

n!
 ∞

n=1  converges, and so, by the Weierstrass M-test,  

  
1

n!
 

 xn − yn 

1 +  xn − yn 
  

∞

n=1

 

 converges. It is immediate that d x, y ≥ 0 and that  d x, y = 0 iff x = y. 

Also, d x, y = d y, x .   

Let  

dn xn , yn =
 xn − yn 

1 +  xn − yn 
 

  Since dn  is a metric on ℝ, then for all xn , yn  and zn  in  ℝ , 

dn xn , zn ≤ dn xn , yn + dn yn , zn  

 So for  x =  xn n≥1 , y =  yn n≥1, z =  zn n≥1 ,we have:                  

𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧  

Thus 𝑑 is a metric on ℝ𝜔 . 
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(ii) (This proof can be found in [34]):Let  𝑥𝑛 : 𝑛 ∈ ℕ  be a Cauchy 

sequence in ℝ𝜔 , where 𝑥𝑛 =  𝑥1
𝑛 , 𝑥2

𝑛 , …   for 𝑛 = 1,2, …                                 

Let 𝜖 > 0 be given and let 𝑟 ∈ ℕ be arbitrary. Choose 𝜖1 such that  

0 < 𝜖1 <
𝜖

𝑟! 1+𝜖 
. Then there exists 𝑛1 ∈ ℕ such that for 𝑚, 𝑛 > 𝑛1 , 

𝑑(𝑥𝑚 , 𝑥𝑛 ) < 𝜖1 , i.e 

  
1

k!
 

 xk
m − xk

n 

1 +  xk
m − xk

n 
  

∞

k=1

< 𝜖1  

 Then for each 𝑟 ∈ ℕ, 

1

r!
 

 xr
m − xr

n 

1 +  xr
m − xr

n 
 < ϵ1 ⇒  xr

m − xr
n <

𝜖1𝑟!

1 − 𝑟! 𝜖1
< 𝜖 

 for all 𝑚, 𝑛 > 𝑛1 (since 𝜖1 <
𝜖

𝑟! 1+𝜖 
  ).Hence for each 𝑟 ∈ ℕ , the sequence 

 𝑥𝑟
𝑛 : 𝑛 ∈ ℕ  is Cauchy in (ℝ, 𝑑𝑒) . By completeness of ℝ , the sequence 

converges to a limit 𝑡𝑟  (say) in ℝ . Let 𝑥 =  𝑡𝑟 : 𝑟 ∈ ℕ ∈ ℝ𝜔  . 

Now, let 𝜖 > 0 be given. Since the series  
1

𝑟!
∞
𝑟=1  converges, choose 𝑚 ∈ ℕ  

sufficiently large such that 

 
1

𝑟!

∞

𝑟=𝑚+1

<
𝜖

2
 

 Then 

  
1

r!
 

 tr − xr
n 

1 +  tr − xr
n 

  

∞

r=m+1

<
𝜖

2
 

 for 𝑛 = 1,2, … (1)                                            
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Since  lim𝑛→∞ 𝑥𝑟
𝑛 = 𝑡𝑟   (for 𝑟 = 1,2, …), ∃𝑘 ∈ ℕ such that  

  𝑡𝑟 − 𝑥𝑟
𝑛  <

𝜖

2𝑚
  ∀𝑛 ≥ 𝑘 and for all 𝑟 = 1,2, … , 𝑚. Therefore, 

  
1

r!
 

 tr − xr
n 

1 +  tr − xr
n 

  

m

r=1

< 𝑚
𝜖

2𝑚
=

𝜖

2
…  2  

 hold for all 𝑛 > 𝑘 .  

Adding (1) and (2), then 𝑑(𝑥, 𝑥𝑛) < 𝜖 , ∀𝑛 ≥ 𝑘 , proving that 

 lim𝑛→∞ 𝑥𝑛 = 𝑥 . Hence, the space (ℝ𝜔 , 𝑑) is complete.∎ 

1.5. Completion: 

           Cauchy sequences  are all convergent; they converge either to points 

in the metric space under consideration or to points that do not belong to 

the space under consideration, but they are members of  another larger 

metric space. So, imbedding an incomplete metric space in to a larger 

complete metric space that preserving the distance function, and the 

metrical properties of the incomplete space is possible.  

Definition (1.5.1) [6]: A map  𝑓: 𝑋 → 𝑋 ′ between metric spaces (𝑋, 𝑑) and 

(𝑋 ′, 𝑑′) is called an isometry if 𝑑′ 𝑓 𝑥 , 𝑓 𝑦  = 𝑑 𝑥, 𝑦    for all  𝑥, 𝑦 ∈ 𝑋. 

The mapping 𝑓 is also called an isometric embedding of 𝑋 into  𝑋 ′. 

Definition (1.5.2) [48]: The spaces (𝑋, 𝑑) and (𝑋 ′, 𝑑′) are said to be  

isometric spaces  if there exists a surjective isometry 𝑓: 𝑋 → 𝑋 ′. 

Remark (1.5.3)[45]: An isometry  𝑓: 𝑋 → 𝑋 ′ between metric spaces (𝑋, 𝑑) 

and (𝑋 ′, 𝑑′) is one-to-one. 
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Proof: Let 𝑥, 𝑦 ∈ 𝑋, 𝑓 𝑥 = 𝑓 𝑦 ⇒ 𝑑′ 𝑓 𝑥 , 𝑓 𝑦  = 0, then 𝑑 𝑥, 𝑦 = 0 

and so, 𝑥 = 𝑦.∎  

Definition (1.5.4)[6]: A binary relation 𝑅 in a set 𝐴 is a subset 𝑅 ⊆ 𝐴 × 𝐴. 

(𝑎, 𝑏) ∈ 𝑅 is written 𝑎 ∼ 𝑏. 

Definition (1.5.5)[6]: A binary relation 𝑅 in 𝐴 is called an equivalence 

relation if: 

 (i). ∀𝑎 ∈ 𝐴 ∶ 𝑎~𝑎 (reflexive). 

 (ii).  𝑎~𝑏 ⇒ (𝑏~𝑎) (symmetric).  

(iii).  𝑎~𝑏  ∧ (𝑏~𝑐) ⇒ (𝑎~𝑐)  (transitive).   

If 𝑎 ∼ 𝑏, we say that 𝑎 and 𝑏 are equivalent. 

Definition (1.5.6)[6]: Let 𝑅 be an equivalence relation in 𝐴. For each 

𝑎 ∈ 𝐴, the subset  𝑎 =  𝑏 ∈ 𝐴| 𝑏~𝑎  is called the equivalence class of 𝑎.  

Lemma (1.5.7)[6]: Let 𝑅 be an equivalent relation in 𝐴, and let 𝑎, 𝑏 ∈ 𝐴. 

Then:  

(i). ∪   𝑎 | 𝑎 ∈ 𝐴 = 𝐴.  

(ii). If 𝑎 and 𝑏 are  equivalent, then  𝑎 = [𝑏]. 

(iii). If 𝑎 and 𝑏 are not equivalent, then  𝑎 ∩  𝑏 = ∅. 

Lemma (1.5.8)[57]:Let  𝑋, 𝑑  be a metric space, then for any quadruple of 

points 𝑎, 𝑏, 𝑢 and 𝑣 of 𝑋, the following inequality holds: 
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 𝑑 𝑎, 𝑏 − 𝑑 𝑢, 𝑣  ≤ 𝑑 𝑎, 𝑢 + 𝑑 𝑏, 𝑣  

Proof: By the triangle inequality and the symmetry properties:  

𝑑 𝑎, 𝑏 ≤ 𝑑 𝑎, 𝑢 + 𝑑 𝑢, 𝑣 + 𝑑 𝑏, 𝑣 . 

Therefore,           𝑑 𝑎, 𝑏 − 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑎, 𝑢 + 𝑑 𝑏, 𝑣  

Also: 

𝑑 𝑢, 𝑣 ≤ 𝑑 𝑏, 𝑣 + 𝑑 𝑎, 𝑏 + 𝑑 𝑎, 𝑢 . 

From which,          𝑑 𝑢, 𝑣 − 𝑑 𝑎, 𝑏 ≤ 𝑑 𝑎, 𝑢 + 𝑑 𝑏, 𝑣 . 

Thus:                        𝑑 𝑎, 𝑏 − 𝑑 𝑢, 𝑣  ≤ 𝑑 𝑎, 𝑢 + 𝑑 𝑏, 𝑣 . ∎ 

           The importance of complete metric spaces is much more than 

incomplete ones. By adding points that are the limits of the noncom vergent 

Cauchy sequences, an incomplete metric space can be imbedded in to a 

complete metric space.  

Definition (1.5.9) [34]: A subset 𝐴 of a metric space (𝑋, 𝑑) is called dense 

in  𝑋  if 𝐴 = 𝑋. 

Definition(1.5.10)[15]: A metric space (𝑋 , 𝜌) is called a completion of the 

metric space (𝑋, 𝑑) if the following conditions are satisfied: 

(a) there is an isometric embedding 𝑓: 𝑋 → 𝑋  

(b) the image space 𝑓(𝑋) is dense in 𝑋  

(c) the space (𝑋 , 𝜌)  is complete.  
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             The main theorem about the completion of a metric space is the 

following: 

Theorem (1.5.11) [45]: Every metric space has a completion and any two 

completions are isometric to each other. 

Proof: The proof will be provided in steps. Let (𝑋, 𝑑) be a metric space. 

Step(1): Let 𝑋  denote the set of all Cauchy sequences in 𝑋, and let ~ be a 

relation in 𝑋  defined as follows : 

For  𝑥𝑛 , (𝑦𝑛) ∈ 𝑋 ,   𝑥𝑛 ~(𝑦𝑛) if lim𝑛→∞ 𝑑(𝑥𝑛 , 𝑦𝑛) = 0. 

This relation is : 

(i) reflexive: For(𝑥𝑛) ∈ 𝑋   ,  𝑥𝑛 ~(𝑥𝑛), since 𝑑 𝑥𝑛 , 𝑥𝑛 = 0 for every 

𝑛 ∈ ℕ and so, lim𝑛→∞ 𝑑(𝑥𝑛 , 𝑥𝑛) = 0 .  

(ii)symmetry: For  𝑥𝑛 , (𝑦𝑛) ∈ 𝑋 , if  𝑥𝑛 ~(𝑦𝑛), then             

lim𝑛→∞ 𝑑(𝑥𝑛 , 𝑦𝑛) = 0, therefore, lim𝑛→∞ 𝑑(𝑦𝑛 , 𝑥𝑛 ) = 0 , so that 

 𝑦𝑛 ~(𝑥𝑛) .                                                                                                                                     

(iii) transitivity: For  𝑥𝑛 ,  𝑦𝑛 , (𝑧𝑛) ∈ 𝑋 , if  𝑥𝑛 ~(𝑦𝑛) and   𝑦𝑛 ~(𝑧𝑛), 

then  lim𝑛→∞ 𝑑(𝑦𝑛 , 𝑥𝑛) = 0 and  lim𝑛→∞ 𝑑(𝑦𝑛 , 𝑧𝑛) = 0 , but: 

0 ≤ 𝑑 𝑥𝑛 , 𝑧𝑛 ≤ 𝑑 𝑥𝑛 , 𝑦𝑛 + 𝑑(𝑦𝑛 , 𝑧𝑛) 

For all 𝑛 ∈ ℕ, it follows that  

0 ≤ lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑧𝑛 ≤ lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑦𝑛 + lim
𝑛→∞

𝑑(𝑦𝑛 , 𝑧𝑛) = 0 

so lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑧𝑛 = 0. Thus (𝑥𝑛)~(𝑧𝑛). 
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By (i),(ii) and (iii); ~ is an equivalence relation and 𝑋  splits into 

equivalence classes. 

Step(2): Let 𝑋  denote the set of all equivalence classes; the elements of 𝑋   

will be denoted by 𝑥 , 𝑦 , etc. If a Cauchy sequence (𝑥𝑛) has a limit 𝑥 ∈ 𝑋, 

and if (𝑦𝑛) is equivalent to (𝑥𝑛), then lim𝑛→∞ 𝑦𝑛 = 𝑥 ,since                                 

𝑑 𝑦𝑛 , 𝑥 ≤ 𝑑 𝑦𝑛 , 𝑥𝑛 + 𝑑(𝑥𝑛 , 𝑥).For the nonequivalent sequences (𝑥𝑛) and 

(𝑦𝑛), then  lim𝑛→∞ 𝑥𝑛 ≠ lim𝑛→∞ 𝑦𝑛 . For if  

lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑦𝑛 = 𝑥 

then ,  0 ≤ 𝑑 𝑥𝑛 , 𝑦𝑛 ≤ 𝑑 𝑥𝑛 , 𝑥 + 𝑑(𝑥, 𝑦𝑛) 

and so, lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 = 0, contradicting the fact that (𝑥𝑛) and (𝑦𝑛) are 

two nonequivalent sequences.  

Step(3): An element  𝑥𝑛 ∈ 𝑥  of an equivalence class 𝑥 ∈ 𝑋  is called a 

representative of 𝑥 . 

Define:                                   𝜌: 𝑋 × 𝑋 → ℝ  by  

𝜌 𝑥 , 𝑦  = lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑦𝑛 , 

where (𝑥𝑛) and (𝑦𝑛) are two representatives of 𝑥  and 𝑦  , respectively.    By 

lemma (1.5.8),   𝑑 𝑥𝑛 , 𝑦𝑛 − 𝑑 𝑥𝑚 , 𝑦𝑚   ≤ 𝑑 𝑥𝑛 , 𝑥𝑚  + 𝑑 𝑦𝑚 , 𝑦𝑛 , and so, 

the sequence (𝑑 𝑥𝑛 , 𝑦𝑛 ) is a Cauchy sequence of real numbers in the 

complete metric space (ℝ, 𝑑𝑒) where 𝑑𝑒  is the usual metric on ℝ.  Hence, 

lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛  exists. 
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Now suppose that  𝑥𝑛 , (𝑥𝑛
′ ) represent 𝑥  and  𝑦𝑛 , (𝑦𝑛

′ ) represent 𝑦 .Then: 

𝑑 𝑥𝑛
′ , 𝑦𝑛

′  ≤ 𝑑 𝑥𝑛
′ , 𝑥𝑛 + 𝑑 𝑥𝑛 , 𝑦𝑛 + 𝑑(𝑦𝑛 , 𝑦𝑛

′ ) 

and,   

𝑑 𝑥𝑛 , 𝑦𝑛 ≤ 𝑑 𝑥𝑛 , 𝑥𝑛
′  + 𝑑 𝑥𝑛

′ , 𝑦𝑛
′  + 𝑑 𝑦𝑛

′ , 𝑦𝑛 , 

Taking the limits as 𝑛 → ∞ of these inequalities, and using the assumption 

that  𝑥𝑛 ~(𝑥𝑛
′ ) and  𝑦𝑛 ~(𝑦𝑛

′ ), it follows that  

lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑦𝑛 = lim
𝑛→∞

𝑑 𝑥𝑛
′ , 𝑦𝑛

′   .  

Thus, 𝜌 is well-defined.  

𝜌 satisfies the following properties  on 𝑋  : 

(i) 𝜌 𝑥 , 𝑦  ≥ 0, since 𝑑 𝑥𝑛 , 𝑦𝑛 ≥ 0 for all 𝑛, it follows that 

lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 ≥ 0 . If 𝑥 = 𝑦 , then 𝜌 𝑥 , 𝑦  = lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 ,  

Where (𝑥𝑛) ∈ 𝑥, (𝑦𝑛) ∈ 𝑦  and  𝑥𝑛 ~ 𝑦𝑛 . So, lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 = 0. 

Therefore, 𝜌 𝑥 , 𝑦  = 0. Conversely, if 𝜌 𝑥 , 𝑦  = 0, then 

lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 = 0 and hence  𝑥𝑛 ~ 𝑦𝑛 , so that 𝑥 = 𝑦 .  

(ii) 𝜌 𝑥 , 𝑦  = 𝜌 𝑦 , 𝑥   as 𝑑 𝑥𝑛 , 𝑦𝑛 = 𝑑 𝑦𝑛,𝑥𝑛 . 

(iii) For   𝑥𝑛 ∈ 𝑥 , (𝑦𝑛) ∈ 𝑦  and (𝑧𝑛) ∈ 𝑧  ,where 𝑥 , 𝑦 , 𝑧  ∈ 𝑋 ,  

𝜌 𝑥 , 𝑧  = lim
𝑛→∞

𝑑 𝑥𝑛 , 𝑧𝑛                                     

                   ≤ lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑦𝑛 + lim𝑛→∞ 𝑑 𝑦𝑛 , 𝑧𝑛                            
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                   = 𝜌 𝑥 , 𝑦  + 𝜌 𝑦 , 𝑧  . 

Thus 𝜌 is a metric on 𝑋 .  

Step(4): Define a mapping 𝑓: 𝑋 → 𝑋  as follows: 𝑓 𝑥 = 𝑥 , where 𝑥  

denotes the equivalence class each of whose members converges to 𝑥. Thus 

the constant sequence 𝑥𝑛 = 𝑥, ∀𝑛 ∈ ℕ is a representative of 𝑥 . This map is 

one-to-one. The metric 𝜌 has the property that  

𝜌 𝑥 , 𝑦  = 𝜌 𝑓 𝑥 , 𝑓 𝑦  = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, i.e, 𝑓 is an isometric 

embedding of 𝑋 into 𝑋 .  

Step(5): To show the density of 𝑓(𝑋)  in 𝑋 , let (𝑥𝑛) be a representative of 

an arbitrary point 𝑥 ∈ 𝑋 . For any 𝑘 ∈ ℕ, there exists a positive integer 𝑛𝑘  

such that 𝑑(𝑥𝑛 , 𝑥𝑛𝑘
) <

1

𝑘
 for 𝑛 ≥ 𝑛𝑘 . Let 𝑦 𝑘  be the equivalence class 

containing all Cauchy sequences converging to 𝑥𝑛𝑘
, i.e., 𝑦 𝑘 = 𝑓 𝑥𝑛𝑘

 . 

Then 𝜌  𝑥 , 𝑓 𝑥𝑛𝑘
  = 𝜌 𝑥 , 𝑦 𝑘 = lim𝑛→∞ 𝑑(𝑥𝑛 , 𝑥𝑛𝑘

) ≤
1

𝑘
 

Thus, 𝑥 = lim𝑘→∞ 𝑓( 𝑥𝑛𝑘
). 

Step(6): To prove that  𝑋 , 𝜌  is complete, Let (𝑥 𝑛) be a Cauchy sequence 

in 𝑋 . Since each 𝑥 𝑛  is the limit of a sequence in 𝑓 𝑋 , ∃𝑦 𝑛 ∈ 𝑓 𝑋  such 

that 𝜌(𝑥 𝑛  , 𝑦 𝑛) <
1

𝑛
. Then the sequence (𝑦 𝑛) can be shown to be Cauchy in 

𝑋  by arguing as follows: 

𝜌 𝑦 𝑛 , 𝑦 𝑚 ≤ 𝜌 𝑦 𝑛 , 𝑥 𝑛 + 𝜌 𝑥 𝑛 , 𝑥 𝑚 + 𝜌 𝑥 𝑚 , 𝑦 𝑚   

≤
1

𝑛
+ 𝜌 𝑥 𝑛 , 𝑥 𝑚  +

1

𝑚
. 
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The right hand side can be made as small as desired by choosing 𝑚 and 𝑛 

large enough, for (𝑥 𝑛) is Cauchy. Since 𝑦 𝑛 ∈ 𝑓 𝑋 , ∃𝑦𝑛 ∈ 𝑋 such that 

𝑓 𝑦𝑛 = 𝑦 𝑛 .  The sequence (𝑦𝑛) in 𝑋 must be Cauchy because (𝑦 𝑛) is a 

Cauchy sequence in 𝑋  and 𝑓 is an isometry. Therefore, (𝑦𝑛 ) belongs to 

some equivalence class 𝑥 ∈ 𝑋 . Now, for any 𝜖 > 0: 

𝜌 𝑥 𝑛 , 𝑥  ≤  𝜌 𝑥 𝑛  , 𝑦 𝑛 + 𝜌 𝑦 𝑛 , 𝑥  <
1

𝑛
+ 𝜌 𝑦 𝑛 , 𝑥   

and 

𝜌 𝑦 𝑛 , 𝑥  = 𝜌 𝑓(𝑦𝑛), 𝑥  ) = lim
𝑛→∞

𝑑(𝑦𝑛 , 𝑦𝑚 ) ≤ 𝜖 

for sufficiently large 𝑛, since (𝑦𝑛) is a Cauchy sequence in 𝑋. This implies 

that lim𝑛→∞ 𝜌 𝑥 𝑛 , 𝑥  = 0, thus  𝑋 , 𝜌  is complete. 

Step(7): Finally, let (𝑋∗, 𝑑∗) and (𝑋∗∗, 𝑑∗∗) be any two completions of 

(𝑋, 𝑑). To show that (𝑋∗, 𝑑∗) and (𝑋∗∗, 𝑑∗∗) are isometric: 

Let 𝑥∗ ∈ 𝑋∗ be arbitrary. By the definition of completion, ∃ 𝑥𝑛 ∈ 𝑋 such 

that lim𝑛→∞ 𝑥𝑛 = 𝑥∗. The sequence  𝑥𝑛  may be assumed to belong to 

𝑋∗∗.Since 𝑋∗∗ is complete,  𝑥𝑛  converges in 𝑋∗∗ to 𝑥∗∗, say, i.e., 

lim𝑛→∞ 𝑥𝑛 = 𝑥∗∗. Define 𝜑: 𝑋∗ → 𝑋∗∗ by setting 𝜑 𝑥∗ = 𝑥∗∗.It is clear 

that the mapping 𝜑 is one-to-one and does not depend on the choice of the 

sequence  𝑥𝑛  converging to 𝑥∗. Moreover, by construction, 𝜑 𝑥 = 𝑥 for 

𝑥 ∈ 𝑋 and 𝑑∗∗(𝜑 𝑥∗ , 𝜑 𝑦∗ = 𝑑∗(𝑥∗, 𝑦∗) for all 𝑥∗, 𝑦∗ ∈ 𝑋∗. Clearly,  𝜑 is 

onto.  

This implies that any two completions of a metric space are isometric.∎ 
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Example(1.5.12)[41]: With respect to the usual metric on ℝ: 

(i) The completion of ℝ is ℝ itself. 

(ii) The completion of ℚ is ℝ . 

(iii) The completion of (−∞, 𝑏) is (−∞, 𝑏].  

(iv) The completion of (𝑎, 𝑏) is [𝑎, 𝑏]. 
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Introduction 

            A function space is a topological space whose points are functions. 

There are different kinds of function spaces, and several topologies that can 

be defined on a given set of functions. Completeness of the function space 

is a basic property which is the focus of  this chapter. As an application, a 

construction of the well-known Peano space –filling curve is discussed. 

The set of all functions from a set 𝑋 to a set 𝑌 is denoted by ℱ(𝑋, 𝑌). 

2.1.The Space 𝓕(𝑿, 𝒀) : 

The overall aim of this section is the study of topologies defined on  

a given set of functions: the product topology, the set-set topology, and the 

uniform (metric) topology.  

The Product Topology: 

          To study the topological products of arbitrary families of topological 

spaces it is necessary to discuss briefly some related definitions and 

propositions.   

Definition(2.1.1)[19]:  Let  𝑋𝛼 : 𝛼 ∈ 𝐴  be an indexed family of sets. Then, 

its Cartesian product, denoted by  𝑋𝛼𝛼∈𝐴   is defined as the set of all 

functions 𝑥 from the indexing set 𝐴 in to  𝑋𝛼𝛼∈𝐴  such that 𝑥(𝛼) ∈ 𝑋𝛼  for 

all 𝛼 ∈ 𝐴. That is,  𝑋𝛼𝛼∈𝐴 =  𝑥: 𝐴 →  𝑋𝛼𝛼∈𝐴 |𝑥(𝛼) ∈ 𝑋𝛼 , ∀𝛼 ∈ 𝐴 . 
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Definition(2.1.2)[56]: The map 𝜋𝛽 :  𝑋𝛼𝛼∈𝐴 → 𝑋𝛽 , defined by 𝜋𝛽  𝑥 =

𝑥(𝛽), is called the projection map of  𝑋𝛼𝛼∈𝐴  on 𝑋𝛽 , or simply, the 𝛽th 

projection map.  

Definition(2.1.3)[19]: A box in  𝑋𝛼𝛼∈𝐴  is a subset   𝐵𝛼𝛼∈𝐴  of   𝑋𝛼𝛼∈𝐴  

where  𝐵𝛼 ⊆ 𝑋𝛼 , 𝛼 ∈ 𝐴. For 𝑗 ∈ 𝐴, 𝐵𝑗  is called the 𝑗th side of the box 

 𝐵𝛼𝛼∈𝐴 . A box  𝐵𝛼𝛼∈𝐴  is said to be large if all except finitely many of its 

sides are equal to the respective sets 𝑋𝛼 ′𝑠, that is to say, if there exist   

𝑗1, 𝑗2, … , 𝑗𝑛 ∈ 𝐴 such that 𝐵𝛼 = 𝑋𝛼  for all 𝛼 ∈ 𝐴 −  𝑗1 , 𝑗2, … , 𝑗𝑛 . Thus, a 

large box is a box which has finitely many 'short' sides.  

Definition(2.1.4)[19]: A wall in  𝑋𝛼𝛼∈𝐴  is a set of the form 𝜋𝑗
−1(𝐵𝑗 ) for 

some 𝑗 ∈ 𝐴 and some 𝐵𝑗 ⊂ 𝑋𝑗 . We also say this set is a wall on 𝐵𝑗 . 

Proposition(2.1.5)[19]: A subset of  𝑋𝛼𝛼∈𝐴  is a box iff it is the 

intersection of a family of walls. A subset of  𝑋𝛼𝛼∈𝐴  is a large box iff it is 

the intersection of finitely many walls.  

Proof:  Suppose 𝐵 =  𝐵𝛼𝛼∈𝐴  where 𝐵𝛼 ⊂ 𝑋𝛼  for all 𝛼 ∈ 𝐴 is a box in 

𝑋 =  𝑋𝛼𝛼∈𝐴 . For 𝛼 ∈ 𝐴, let 𝑊𝛼 = 𝜋𝛼
−1(𝐵𝛼). Then each  𝑊𝛼  is a wall in 𝑋. 

Claim: 𝐵 =  𝑊𝛼𝛼∈𝐴  . For 𝑥 ∈ 𝐵 iff the 𝛼th coordinate of 𝑥 belongs to 𝐵𝛼  

for all 𝛼 ∈ 𝐴, or, 𝑥 ∈ 𝐵 iff 𝜋𝛼 𝑥 ∈ 𝐵𝛼  for all 𝛼 ∈ 𝐴. Hence 𝑥 ∈ 𝐵 iff 

𝑥 ∈ 𝑊𝛼  for all 𝛼 ∈ 𝐴. Thus 𝐵 can be written as an intersection of walls. 

Conversely, suppose  𝑊𝑖 : 𝑖 ∈ 𝐼  is a family of walls in 𝑋. Then for each 

𝑖 ∈ 𝐼, there exists 𝑗 𝑖 ∈ 𝐴 such that 𝑊𝑖 = 𝜋𝑗  𝑖 
−1 (𝐵𝑗  𝑖 ) for some subset 𝐵𝑗  𝑖  

of 𝑋𝑗 (𝑖).For each 𝑖 ∈ 𝐼 fix such 𝑗 𝑖 ∈ 𝐴 and 𝐵𝑗  𝑖 ⊆ 𝑋𝑗  𝑖 .   
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Now for 𝑗 ∈ 𝐴, let 𝐶𝑗 =∩  𝐵𝑗 (𝑖): 𝑖 ∈ 𝐼, 𝑗 𝑖 = 𝑗 .In case there are no 𝑖′s in 𝐼 

for which 𝑗 𝑖 = 𝑗, 𝐶𝑗  is to be the set 𝑋𝑗 . Let 𝐵 be the box  𝐶𝛼𝛼∈𝐴 . Claim: 

𝐵 =  𝑊𝑖𝑖∈𝐼 . Suppose 𝑥 ∈ 𝐵 and 𝑖 ∈ 𝐼. Let 𝑗 = 𝑗 𝑖 . Then  𝜋𝑗  𝑖  𝑥 =

𝜋𝑗  𝑥 ∈ 𝐶𝑗 ⊆ 𝐵𝑗  𝑖  and so 𝑥 ∈ 𝜋𝑗  𝑖 
−1 (𝐵𝑗  𝑖 ) ,or, 𝑥 ∈ 𝑊𝑖 .Hence 𝐵 ⊆  𝑊𝑖 𝑖∈𝐼 . 

Conversely suppose 𝑥 ∈ 𝑊𝑖  for all 𝑖 ∈ 𝐼. Let 𝑗 ∈ 𝐴. Then 𝜋𝑗  𝑖  𝑥 ∈

𝐵𝑗  𝑖 for all 𝑖 ∈ 𝐼 for which 𝑗 𝑖 = 𝑗. Hence 𝜋𝑗  𝑥 ∈ 𝐶𝑗 for all 𝑗 ∈ 𝐴. Hence 

𝑥 𝑗 ∈ 𝐶𝑗  for all 𝑗 ∈ 𝐴. So 𝑥 ∈ 𝐵 =  𝐶𝛼𝛼∈𝐴 . Hence  𝑊𝑖𝑖∈𝐼 ⊆ 𝐵. 

Combining the two together, then the intersection of walls is a box.  

The proof of the second assertion is similar to the above except that we 

take into account only those indices 𝑗 ∈ 𝐴 for which the 𝑗th side is possibly 

not equal to the entire set 𝑋𝑗 .∎  

Proposition(2.1.6)[19]: 

(i)The intersection of any family of boxes is a box . 

(ii)The intersection of a finite number of large boxes is a large box.  

Proof: (i)Every box is an intersection of walls. Therefore an intersection of 

boxes is an intersection of intersections of walls and hence an intersection 

of walls. But an intersection of walls is a box. So the intersection of a 

family of boxes is a box.                                                                                                                                   

(ii) A large box is the intersection of finitely many walls. Hence the 

intersection of finitely many large boxes will again be the intersection of 

finitely many walls and hence a large box.∎ 
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              Let each set 𝑋𝛼  be a topological space with the topology 𝜏𝛼 . Then 

a topology can be defined on the product set   𝑋𝛼𝛼∈𝐴  . 

Definition(2.1.7)[56]: Let  𝑋𝛼  , 𝜏𝛼 : 𝛼 ∈ 𝐴  be an indexed collection of 

topological spaces. The topology on  𝑋𝛼𝛼∈𝐴  that is obtained by taking 

sets of the form   𝑈𝛼𝛼∈𝐴 , where: 

(i)𝑈𝛼  is open in 𝑋𝛼 , for each 𝛼 ∈ 𝐴.  

(ii)For all but finitely many coordinates, 𝑈𝛼 = 𝑋𝛼 . 

as a base for the open sets is called the product topology. 

Remark(2.1.8)[56]:The set  𝑈𝛼𝛼∈𝐴 , where 𝑈𝛼 = 𝑋𝛼  except for 𝛼 =

𝛼1, 𝛼2, … , 𝛼𝑛 , 𝑛 ∈ ℕ, can be written as:  

   𝑈𝛼𝛼∈𝐴 = 𝜋𝛼1

−1 𝑈𝛼1
 ∩ 𝜋𝛼2

−1 𝑈𝛼2
 ∩ …∩ 𝜋𝛼𝑛

−1(𝑈𝛼𝑛
). Thus, the product 

topology is that topology which has for a subbase the collection 

 𝜋𝛼
−1 𝑈𝛼 : 𝛼 ∈ 𝐴, 𝑈𝛼  open in 𝑋𝛼     

              This topology is defined in terms of large boxes as follows:   

Definition(2.1.9)[19]:   Let   𝑋𝛼  , 𝜏𝛼 : 𝛼 ∈ 𝐴  be an indexed collection of 

topological spaces. The family of all large boxes all of whose sides are 

open in the respective spaces is a base for a topology on  𝑋𝛼𝛼∈𝐴   called 

the product topology. 

Example(2.1.10)[56]: Consider the case,  Xα = X for each  α ∈ A, then 

 Xαα∈A  is just the set  ℱ(A, X) of all functions from A toX.The product 



38 

topology on ℱ(A, X) is obtained by taking the collection:  πα
−1 U :α ∈

A, U open in X   as a subbase . 

Note(2.1.11)[35]: The subset πα
−1 U  of ℱ(A, X) can be written in the 

following form:  

 𝑓: 𝑓 ∈ ℱ A, X , 𝑓 α ∈ U  

This set is denoted by (𝛼, 𝑈).  

The set-set topology: 

               The set-set topology is defined on the set ℱ X, Y ,where 𝑋 and 𝑌 

are topological spaces. The most commonly set-set topologies are 

discussed.  

Definition(2.1.12)[42]: Let (X, 𝜏) and  Y, 𝜏∗  be topological spaces. Let 

𝑈 and 𝑉 be collection of subsets of 𝑋 and 𝑌, respectively. Let  ℱ X, Y  be 

the collection of all functions from 𝑋 into 𝑌. Define, for 𝑢 ∈ 𝑈 and  𝑣 ∈ 𝑉,      

 𝑢, 𝑣 =  𝑓 ∈ ℱ X, Y : 𝑓(𝑢) ⊆ 𝑣 .                                                          Let 

𝑆 𝑈, 𝑉 =   𝑢, 𝑣 : 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 .If  𝑆 𝑈, 𝑉  is a subbase for a topology on  

ℱ X, Y , then it is called a set-set topology. 

               Some of the most commonly discussed set-set topologies are the 

point-open topology, and the compact open topology. 

Definition(2.1.13)[42]: With the notations of definition (2.1.12). If 𝑈 is the 

collection of all singletons in 𝑋 and 𝑉 = 𝜏∗ then the set-set topology on 

ℱ X, Y  is called the point-open topology.  
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            The point-open topology is also defined on ℱ X, Y  even if 𝑋 is just 

a set not a topological space. 

Notation(2.1.14)[31]: Let 𝑋 be a set and 𝑌 be a topological space. For 

𝛼 ∈ 𝑋 and 𝑣 ⊆ 𝑌 the notation (𝛼, 𝑣) is used to describe the subset 

 𝑓 ∈ ℱ X, Y : 𝑓(𝛼) ∈ 𝑣  of ℱ X, Y  determined by the point 𝛼 and the 

set 𝑣 . 

Definition(2.1.15)[31]: Let 𝑋 be a set and 𝑌 be a topological space. The 

topology on ℱ X, Y  having the subbase: 

{ 𝛼, 𝑣 : 𝛼 is a point in 𝑋 and 𝑣 is open set in 𝑌} is called the point-open 

topology.   

Definition(2.1.16)[31]: Let 𝑋 be a set and 𝑌 be a topological space. Let 

 𝑓𝑛  be a sequence of functions in ℱ(𝑋, 𝑌). Then  𝑓𝑛  converges pointwise 

to 𝑓0 ∈ ℱ(𝑋, 𝑌) iff for each fixed 𝑥𝑜 ∈ 𝑋 the sequence  𝑓𝑛 𝑥0   converges 

in the topological sense to the point 𝑓0 𝑥0  in 𝑌.  

           The point-open topology is called the topology of pointwise 

convergence. The latter's name goes back to the following theorem: 

Theorem(2.1.17) [31]: Let 𝑋 be a set and 𝑌 be a topological space. Let 

ℱ(𝑋, 𝑌) have the point-open topology. Then the sequence  𝑓𝑛  in ℱ(𝑋, 𝑌) 

converges in the topological sense to 𝑓0 ∈ ℱ(𝑋, 𝑌) iff the sequence  𝑓𝑛  

converges pointwise to the function  𝑓0 ∈ ℱ(𝑋, 𝑌).  
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Proof: Let 𝑓𝑛  be a sequence of functions in ℱ(𝑋, 𝑌) which converges in 

the topological sense to the function 𝑓0 ∈ ℱ(𝑋, 𝑌). Let 𝑥0 ∈ 𝑋 and let 𝑣 be 

any open set in 𝑌 containing 𝑓0 𝑥0  . Then the set  𝑥0, 𝑣  is a subbasic 

open set in ℱ(𝑋, 𝑌) containing 𝑓0, which implies there exists an 𝑛0 ∈ ℕ 

such that for all 𝑛 > 𝑛0, 𝑓𝑛 ∈  𝑥0, 𝑣  ,or, for all  𝑛 > 𝑛0,  𝑓𝑛 𝑥0 ∈ 𝑣, which 

proves that the sequence  𝑓𝑛  converges pointwise to the function  𝑓0 ∈

ℱ(𝑋, 𝑌). 

Conversely, suppose that the sequence  𝑓𝑛  converges pointwise to 

the function  𝑓0 ∈ ℱ(𝑋, 𝑌) and let   𝑥0, 𝑣  be any subbasic open set in the 

space ℱ(𝑋, 𝑌) which contains 𝑓0.  

Then 𝑓0 𝑥0 ∈ 𝑣 by definition of the point-open topology and, due to 

the fact  𝑓𝑛  converges pointwise to the function  𝑓0, there exists an 𝑛0 ∈ ℕ 

for which if 𝑛 ≥ 𝑛0, then 𝑓𝑛 𝑥0 ∈ 𝑣. So, the sequence  𝑓𝑛  converges in 

the topological sense to 𝑓0.  

Remark(2.1.18)[35]: Let 𝑋 be a set and 𝑌 be a topological space. The 

topology of pointwise convergence on ℱ(𝑋, 𝑌) is just the product topology 

which is discussed in example (2.1.10). 

Proof: The subset  𝛼, 𝑣 ; 𝛼 is a point in 𝑋 and 𝑣 is open set in 𝑌 ( which is 

the subbasis element for the topology of pointwise convergence), is just the 

subset  πα
−1 U  of ℱ(A, X) (which is the subbasis element for the product 

topology on ℱ(A, X) as illustrated in note (2.1.11). ∎ 



41 

       A deep study of the point-open topology on the set of all continuous 

real-valued functions is found in [21].  

           The other set-set topology defined on the set ℱ X, Y  is the compact-

open topology which made its appearance in 1945 by R. H. Fox in [9].  

Definition(2.1.19)[42]:  With the notations of definition (2.1.12). If 𝑈 is 

the collection of all compact subsets of  𝑋 and 𝑉 = 𝜏∗, then the set-set 

topology on ℱ X, Y  is called the compact-open topology.  

          The compact-open topology is also defined on the set of continuous 

functions from the space 𝑋 to the space 𝑌, denoted by 𝐶(𝑋, 𝑌).  

Definition(2.1.20)[37]: The sets of the form:                                            

                           𝑈, 𝑉 = { 𝑓 ∈ 𝐶 𝑋, 𝑌 : 𝑓(𝑈) ⊆ 𝑉} ,             

where the set 𝑈 is a compact subset of 𝑋 and 𝑉 is an open subset of 𝑌, form 

a subbase for a topology on 𝐶 𝑋, 𝑌  called the compact-open topology. 

              The compact-open topology on 𝐶 𝑋, 𝑌 is very important; it turns 

out to have useful properties in algebraic topology. This topology is 

defined in the following way:  

Definition(2.1.21)[44]: A family 𝜂 of subsets of a topological space 𝑋 is 

called a network on 𝑋 if for each point 𝑥 ∈ 𝑋 and each neighbourhood 𝑈of 

𝑥 there exists Ρ ∈ 𝜂 such that 𝑥 ∈ Ρ ⊆ 𝑈.  
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Definition(2.1.21)[44]: A network 𝜂 on a space 𝑋 is said to be compact if 

all of its elements are compact subspaces of 𝑋.  

Definition(2.1.22)[44]: Let 𝑋 and 𝑌 be topological spaces, and 𝜂 a 

compact network on 𝑋. Let the set  Ρ, 𝑉 = {𝑓 ∈ 𝐶 𝑋, 𝑌 : 𝑓(Ρ) ⊆ V} where 

Ρ ∈ 𝜂 and 𝑉 is open set in 𝑌.Then the family { Ρ, 𝑉 } is a subbase for a 

topology on 𝐶 𝑋, 𝑌  called the compact-open topology.   

Proposition (2.1.23)[46]: (i)The compact-open topology is always finer 

than the point-open topology. (ii) If 𝑋 is discrete space, then the compact-

open topology and the point-open topology are identical for all 𝑌. 

Proof: (i) This is immediate from the fact that the defining subbase for the 

compact-open topology contains a subbasis for the point-open topology, 

since each one-point subset of 𝑋 is compact.(ii) If 𝑋 is discrete space, then 

the only compact sets in 𝑋 are the finite sets (if 𝐴 is an infinite subset of 𝑋 

then the collection 𝐶 = { 𝑥 : 𝑥 ∈ 𝐴} is an open cover of 𝐴 which has no 

finite subcover, since if we remove any single element of C then it will not 

cover A, that means A is not compact). 

       In [26] a study of the compact-open topology on the set of all real- 

valued functions defined on 𝑋, which are continuous on compact subsets of 

𝑋 is presented. 
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The Uniform Metric Topology: 

       The uniform metric topology (or the uniform topology) is one of the 

most important topologies defined on ℱ X, Y  where 𝑋 is a set and 𝑌 is a 

metrizable space. 

Definition(2.1.24)[46]: Let 𝑋 be a set and let 𝑌 be a metrizable space 

induced by the standard bounded metric 𝑑. Let  𝜌 be a metric  on ℱ X, Y  

defined as 𝜌 𝑓, 𝑔 = sup⁡{𝑑 𝑓 𝑥 , 𝑔 𝑥  : 𝑥 ∈ 𝑋, 𝑓, 𝑔 ∈ ℱ X, Y }. This 

metric 𝜌 is called the uniform metric corresponding to the metric 𝑑, or the 

sup metric.  

Definition(2.1.25)[46]:The sup metric in definition (2.1.24) induces a 

topology for ℱ X, Y  called the topology of uniform convergence or the 

uniform topology. 

2.2. Completeness of The Space 𝓕 𝐗, 𝐘 : 

          In this section the idea of completeness of a function space is 

discussed. Note that for a function space to be complete it must be 

metrizable first.  

          The space ℱ X, Y  equipped with the product topology when 𝑋 is an 

uncountable set is not metrizable, hence is not complete. Similarly, The 

space ℱ X, Y  with the point-open topology when 𝑋 is an uncountable set is 

not complete. 
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Example(2.2.1)[39]: Let 𝑋 be an uncountable set, and let 𝜏 be the product 

topology on ℱ X, ℝ . Then the space  ℱ X, ℝ  is not metrizable. 

Proof: Let 𝐴 = {𝑥 ∈ ℱ X, ℝ : there is a finite subset Γ of 𝑋 such that 

𝑥𝛼 = 0 for all 𝛼 ∈ 𝛤 and  𝑥𝛼 = 1 for all 𝛼 ∈ 𝑋 − 𝛤} , and let 𝑎 be the 

member of ℱ X, ℝ  with the property that 𝑎𝛼 = 0 for all 𝛼 ∈ 𝑋.                      

Claim(1): 𝑎 ∈ 𝐴 . Let 𝑈 be a basic open set containing 𝑎. Then there exists 

a finite subset {𝛼1 , 𝛼2, … , 𝛼𝑛} of 𝑋 and a collection 𝑈𝛼1
, 𝑈𝛼2

, … , 𝑈𝛼𝑛
 of 

open subsets of ℝ such that 𝑈 =  𝜋𝛼𝑖

−1 𝑈𝛼𝑖
 𝑛

𝑖=1 . Thus, the point 𝑥 defined 

by 𝑥𝛼𝑖
= 0 for 𝑖 = 1,2, … , 𝑛 and 𝑥𝛼 = 1  for all 𝛼 ≠ 𝛼𝑖   for any 𝑖 =

1,2, … 𝑛 belongs to 𝑈 ∩ 𝐴. That means, 𝑈 ∩ 𝐴 ≠ ∅ for any arbitrary basic 

open set 𝑈 contains  𝑎. Therefore, 𝑎 ∈ 𝐴 .  

Claim(2): no sequence of points in 𝐴 converges to 𝑎. Let (𝑎𝑛) be a 

sequence of points in 𝐴. Let 𝑋𝑛 =  𝛼 ∈ 𝑋:  𝑎𝑛 𝛼 = 0  for each 𝑛 ∈ Ν. 

Then,  𝑋𝑛𝑛∈ℕ  is the countable union of finite sets and therefore it is 

countable. Thus there exists 𝛽 ∈ 𝑋 −  𝑋𝑛𝑛∈ℕ . So for each  𝑛 ∈

Ν ,  𝑎𝑛 𝛽 = 1. Hence, the open set  𝜋𝛽
−1 −1,1  in ℱ X, ℝ  is a 

neighborhood of 𝑎 that does not contain any member of the sequence (𝑎𝑛). 

Thus, the sequence (𝑎𝑛) does not converges to 𝑎. That is, there is a point 𝑎 

in 𝐴  with the property that no sequence in 𝐴 converges to 𝑎 which 

contradicts the fact that in a first countable space, a point belongs to the 

closure of a set iff there is a sequence of points in the set  converges to that 

point. With the knowledge that every metric space is first countable.∎   
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              The topology in which the space ℱ X, Y  is complete is the 

uniform topology. 

Theorem(2.2.2)[39]: If (𝑌, 𝑑) is a complete metric space where 𝑑 is the 

standard bounded metric on 𝑌, 𝑋 is a nonempty set, and 𝜌 is the uniform 

metric on ℱ X, Y  corresponding to 𝑑, then the metric space (ℱ X, Y , 𝜌) is 

complete. 

Proof: Let  (𝑌, 𝑑) be a complete metric space where 𝑑 is the standard 

bounded metric on 𝑌. Let (𝑓𝑛) be a Cauchy sequence in (ℱ X, Y , 𝜌) and 

𝛼 ∈ 𝑋. For each 𝑛, 𝑚 ∈ ℕ, 𝑑(𝑓𝑚 𝛼 , 𝑓𝑛 𝛼 ) ≤ 𝜌 𝑓𝑚 , 𝑓𝑛 , so the sequence 

 𝑓𝑛 𝛼   is Cauchy sequence in  𝑌, 𝑑 . Hence, this sequence converges to a 

point say  𝑦𝛼 ∈ 𝑌 because the space  𝑌, 𝑑  is complete. 

Claim: the sequence (𝑓𝑛) converges to the function 𝑓 ∈ ℱ X, Y  defined by 

𝑓 𝛼 = 𝑦𝛼  in the space  ℱ X, Y , 𝜌 . 

Let 𝜖 > 0 be given. Then there exists 𝑛0 ∈ Ν such that 𝜌 𝑓𝑚 , 𝑓𝑛 <
𝜖

2
  

Which implies that for each 𝛼 ∈ 𝑋, 𝑑(𝑓𝑚 𝛼 , 𝑓𝑛 𝛼 ) <
𝜖

2
 whenever 

𝑛, 𝑚 ≥ 𝑛0. But the sequence   𝑓𝑛 𝛼   converges to 𝑦𝛼 = 𝑓 𝛼 ∈ 𝑌. 

Therefore  there exists 𝑛1 ∈ ℕ such that 𝑑(𝑓𝑛 𝛼 , 𝑓 𝛼 ) <
𝜖

2
  for all 𝛼 ∈ 𝑋 

and all 𝑛 ≥ 𝑛1 . But  𝑑 𝑓𝑚 𝛼 , 𝑓 𝛼  ≤ 𝑑(𝑓𝑚 𝛼 , 𝑓𝑛 𝛼 ) + 𝑑(𝑓𝑛 𝛼 , 𝑓 𝛼 ) 

                                                                  <
𝜖

2
+

𝜖

2
= 𝜖 

for all 𝛼 ∈ 𝑋 and all 𝑛 ≥ max⁡{𝑛0,𝑛1}.  

Hence 𝜌 𝑓𝑚 , 𝑓 < 𝜖  whenever 𝑚 ≥ max 𝑛0,𝑛1 . ∎ 
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             The latter theorem proves completeness of the space ℱ X, Y  for an 

arbitrary set 𝑋 and a complete metric space  (𝑌, 𝑑) where 𝑑 is the standard 

bounded metric defined on 𝑌. So this theorem is also valid when 𝑋 is a 

topological space not just a set.  

2.3. Complete Subspaces of 𝓕 𝐗, 𝐘 :              

        In this section the completeness of the spaces 𝐶 𝑋, 𝑌 , 𝐵(𝑋, 𝑌) and 

𝐵𝐶(𝑋, 𝑌) is studied where 𝐶 𝑋, 𝑌  denotes the set of all continuous 

mappings of the set 𝑋 into a space 𝑌, 𝐵 𝑋, 𝑌  denotes the set of all 

bounded mappings of the set 𝑋 into a space 𝑌, and  𝐵𝐶 𝑋, 𝑌  denotes the 

set of all bounded continuous mappings of the set 𝑋 into a space 𝑌 . 

The Space 𝑪 𝑿, 𝒀  of Continuous Functions:  

           The space of continuous functions is basic in several aspects in 

analysis. Completeness of this space has many applications. 

Definition(2.3.1)[3]: A sequence 𝑓1 , 𝑓2, … of functions from a topological 

space 𝑋 to a metric space (𝑌, 𝑑) is said to converge uniformly to a function 

𝑓 ∈ ℱ X, Y  if, for each 𝜖 > 0, there is a number 𝑛0 ∈ ℕ such that 

𝑑(𝑓𝑛 𝑥 , 𝑓 𝑥 ) < 𝜖  whenever 𝑛 ≥ 𝑛0 for all 𝑥 ∈ 𝑋. 

Theorem (Uniform limit theorem) (2.3.2)[3]: If a sequence  𝑓1 , 𝑓2, … of 

continuous functions from a topological space 𝑋 to a metric space (𝑌, 𝑑) 

converges uniformly to a function 𝑓 ∈ ℱ X, Y  , then 𝑓 is continuous. 
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Proof: Given 𝜖 > 0, (by the uniformity of the convergence) choose 𝑛0 ∈ ℕ 

such that if 𝑛 ≥ 𝑛0, then 

  𝑑 𝑓 𝑥 , 𝑓𝑛 𝑥  <
𝜖

3
 

For all 𝑥 ∈ 𝑋. 

Given a point 𝑥0 ∈ 𝑋, the continuity of 𝑓𝑛0
 implies that there is a 

neighborhood 𝑈 of 𝑥0 in 𝑋 such that if 𝑥 ∈ 𝑈 then 

𝑑  𝑓𝑛0
 𝑥 , 𝑓𝑛0

 𝑥0  <
𝜖

3
 

Thus, for any 𝑥 ∈ 𝑈 we have: 

              𝑑 𝑓 𝑥 , 𝑓 𝑥0   

≤ 𝑑  𝑓 𝑥 , 𝑓𝑛0
 𝑥  + 𝑑  𝑓𝑛0

 𝑥 , 𝑓𝑛0
 𝑥0  + 𝑑  𝑓𝑛0

 𝑥0 , 𝑓 𝑥0   

           <
𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖 

That is, the function 𝑓 is continuous.∎ 

        Now, a theorem giving conditions for the subset 𝐶 𝑋, 𝑌  to be closed 

in the space ℱ X, Y  is proven.  

Theorem(2.3.3)[39]: Let (𝑋, 𝜏) be a topological space, let (𝑌, 𝑑) be a 

complete metric space where 𝑑 is the standard bounded metric on 𝑌, and let 

𝜌 be the uniform metric defined on ℱ X, Y  corresponding to 𝑑. Then  

𝐶 𝑋, 𝑌  is closed subset of  the metric space (ℱ X, Y , 𝜌) . 
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Proof: Let (𝑓𝑛) be a sequence of members of ℱ X, Y  that converges to 

𝑓 ∈ ℱ X, Y  relative to the metric 𝜌.  

Claim: the sequence (𝑓𝑛) converges uniformly to 𝑓 relative to the standard 

bounded metric 𝑑.  

Suppose that  𝑓𝑛   converges to 𝑓 ∈ ℱ X, Y  relative to the metric 𝜌, and let  

𝜖 > 0. Then, there exists 𝑛0 ∈ ℕ such that if 𝑛 ≥ 𝑛0,then 𝜌 𝑓𝑛 , 𝑓 < 𝜖. 

Therefore, for all 𝑛 ≥ 𝑛0 and all 𝑥 ∈ 𝑋, 

𝑑(𝑓𝑛 𝑥 , 𝑓 𝑥 ) ≤ 𝜌(𝑓𝑛 , 𝑓) < 𝜖 

Hence, the sequence (𝑓𝑛) converges uniformly to 𝑓 relative to the standard 

bounded metric 𝑑. 

Let 𝑓 ∈  ℱ X, Y  and 𝑓 ∈ 𝐶 𝑋, 𝑌           . Then, there exists a sequence (𝑓𝑛) of 

members of 𝐶 𝑋, 𝑌  that converges to 𝑓 relative to 𝜌. Then by the claim,    

the sequence (𝑓𝑛 ) converges uniformly to 𝑓 relative to the standard 

bounded metric 𝑑 .Then(By theorem (2.3.2)) 𝑓 is continuous function. 

Hence, 𝑓 ∈ 𝐶 𝑋, 𝑌  .∎       

Corollary(2.3.4)[39]: Let (𝑋, 𝜏) be a topological space, let (𝑌, 𝑑) be a 

complete metric space where 𝑑 is the standard bounded metric on 𝑌, and let 

𝜌 be the uniform metric defined on ℱ X, Y  corresponding to 𝑑. Then  

(𝐶 𝑋, 𝑌 , 𝜌) is complete. 

Proof: By theorem (2.2.1), the metric space (ℱ X, Y , 𝜌) is complete. By 

theorem(2.3.3),  𝐶 𝑋, 𝑌  is closed subset of  the metric space (ℱ X, Y , 𝜌). 
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By theorem(1.2.9),a closed subset of a complete metric space is complete. 

That is, (𝐶 𝑋, 𝑌 , 𝜌) is complete.∎ 

Example(2.3.5): The space (𝐶 𝑋, ℝ , 𝜌) (where 𝑋 is a topological space  ℝ 

has the usual metric and  𝜌 is the uniform metric corresponding to the 

standard bounded metric of the usual metric)  is complete. This is because 

the space ℝ is complete in the usual metric by example(1.1.23). 

The Space 𝑩(𝑿, 𝒀) of  Bounded Functions:  

              A metric 𝜍  is defined on 𝐵(𝑋, 𝑌) in which 𝑋 is a set and (𝑌, 𝑑) is 

a metric space. Then, the completeness of the space (𝐵 𝑋, 𝑌 , 𝜍)  is proven. 

Theorem(2.3.6)[36]: The space 𝐵 𝑋, 𝑌  of bounded functions from a set 𝑋 

to a metric space (𝑌, 𝑑) is itself a metric space, with distance defined by: 

For 𝑓, 𝑔 ∈ 𝐵 𝑋, 𝑌  and 𝑥 ∈ 𝑋,  

𝜍 𝑓, 𝑔 = sup 𝑑 𝑓 𝑥 , 𝑔 𝑥   , 𝑥 ∈ 𝑋  

Proof: The distance is well-defined because if 𝑖𝑚𝑓 and 𝑖𝑚𝑔 are bounded 

then so is there  union, and: 

𝑑(𝑓 𝑥 , 𝑔 𝑥 ) ≤ 𝑑𝑖𝑎𝑚(𝑖𝑚𝑓 ∪ 𝑖𝑚𝑔) 

Now, 𝜍 satisfies the distance axioms follows from the same properties for 

the metric 𝑑; 
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 𝜍 𝑓, 𝑔 = 0 ⟺  ∀ 𝑥 ∈ 𝑋, 𝑑 𝑓 𝑥 , 𝑔 𝑥  = 0                                                                 

                         ⟺ ∀ 𝑥 ∈ 𝑋, 𝑓 𝑥 = 𝑔(𝑥)                                                                                                      

                         ⟺ 𝑓 = 𝑔 

For 𝑕 ∈ 𝐵 𝑋, 𝑌    

𝜍 𝑓, 𝑔 = sup 𝑑 𝑓 𝑥 , 𝑔 𝑥   , 𝑥 ∈ 𝑋                                                                                             

               ≤ sup 𝑑 𝑓 𝑥 , 𝑕 𝑥  + 𝑑(𝑕 𝑥 , 𝑔 𝑥 ) , 𝑥 ∈ 𝑋                                           

              ≤ sup 𝑑 𝑓 𝑥 , 𝑕 𝑥   , 𝑥 ∈ 𝑋 + sup 𝑑 𝑕 𝑥 , 𝑔 𝑥   , 𝑥 ∈ 𝑋      

              = 𝜍 𝑓, 𝑕 + 𝜍 𝑕, 𝑔   

The axiom of symmetry is clear since 

        𝜍 𝑓, 𝑔 = sup 𝑑 𝑓 𝑥 , 𝑔 𝑥   , ∈ 𝑋                                                          

= sup 𝑑 𝑔 𝑥 , 𝑓 𝑥   , 𝑥 ∈ 𝑋                                                       

= 𝜍 𝑓, 𝑔   

     So 𝜍 is a metric on 𝐵 𝑋, 𝑌 .                  

      The importance of this metric is that the space 𝐵 𝑋, 𝑌  is complete in it. 

This is proven in the following theorem. 

Theorem(2.3.7) [36]:  Let 𝑋 be a set and (𝑌, 𝑑) be a complete metric 

space. Then the metric space (𝐵 𝑋, 𝑌 , 𝜍) where 𝜍 is the metric defined in 

theorem (2.3.6) is complete.  

Proof: Let  𝑓𝑛  be a Cauchy in 𝐵 𝑋, 𝑌 , then for every 𝑥 ∈ 𝑋,  

                 𝑑(𝑓𝑛 𝑥 , 𝑓𝑚  𝑥 ) ≤ 𝜍 𝑓𝑛 , 𝑓𝑚  → 0 as 𝑛, 𝑚 → ∞ 
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So  𝑓𝑛 𝑥   is a Cauchy sequence in 𝑌. But 𝑌 is complete, implies that the 

sequence  𝑓𝑛 𝑥   converges to, say, 𝑓 𝑥  in 𝑌.  

Normally, this convergence would expected to depend on 𝑥, being slower 

for some points than others. In this case however, the convergence is 

uniform, as it is 𝜍 𝑓𝑛 , 𝑓𝑚  = sup 𝑑(𝑓𝑛 𝑥 , 𝑓𝑚  𝑥 ) , 𝑥 ∈ 𝑋  which 

converges to 0. So given any 𝜖 > 0, there is an 𝑛0 ∈ ℕ, such that: for any 

𝑛, 𝑚 ≥ 𝑛0 and any 𝑥 ∈ 𝑋 

𝑑(𝑓𝑛 𝑥 , 𝑓𝑚  𝑥 ) <
𝜖

2
 

For each 𝑥 ∈ 𝑋, choose 𝑚 ≥ 𝑛0, dependent on 𝑥 and large enough so that: 

𝑑(𝑓𝑚 𝑥 , 𝑓 𝑥 ) <
𝜖

2
 

And this implies ∀𝑥 ∈ 𝑋, for any 𝑛 ≥ 𝑛0 

𝑑 𝑓𝑛 𝑥 , 𝑓 𝑥  ≤ 𝑑 𝑓𝑛 𝑥 , 𝑓𝑚 𝑥  + 𝑑 𝑓𝑚 𝑥 , 𝑓 𝑥   

<
𝜖

2
+

𝜖

2
= 𝜖 

That is,  𝑓𝑛 → 𝑓 uniformly in 𝑌 , hence sup 𝑑(𝑓𝑛 𝑥 , 𝑓 𝑥 ) , 𝑥 ∈ 𝑋 ≤ 𝜖 

Since 𝑛0 is independent of 𝑥, it follows that 𝜍 𝑓𝑛 , 𝑓 → 0 . 

Claim: The function 𝑓 is bounded:  Since 𝑓𝑛 → 𝑓 uniformly in 𝑌, it is 

possible to choose 𝑛0 ∈ ℕ, such that  

 𝑑 𝑓𝑛 𝑥 , 𝑓 𝑥  < 1 

for all 𝑥 ∈ 𝑋.  
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Since 𝑓𝑛0
 is bounded, there exists a positive number 𝐾 such that 

𝑑  𝑓𝑛0
 𝑥 , 𝑓𝑛0

 𝑦  ≤ 𝐾,   ∀𝑥, 𝑦 ∈ 𝑋 

𝑑 𝑓 𝑥 , 𝑓 𝑦  ≤ 𝑑  𝑓 𝑥 , 𝑓𝑛0
 𝑥  + 𝑑  𝑓𝑛0

 𝑥 , 𝑓𝑛0
 𝑦  + 𝑑(𝑓𝑛0

 𝑦 , 𝑓 𝑦 ) 

                             < 1 + K + 1 = 2 + 𝐾,   for all 𝑥, 𝑦 ∈ 𝑋 

With 𝑛0 independent of 𝑥 and 𝑦. That is 𝑓 ∈  𝐵 𝑋, 𝑌 , which complete the 

proof. ∎ 

Example(2.3.8):The space (𝐵 𝑋, ℝ , 𝜍) is complete metric space where 𝑋 

is an arbitrary set, ℝ has the usual metric, and  

𝜍 𝑓, 𝑔 = sup{ 𝑓 𝑥 − 𝑔 𝑥  : 𝑥 ∈ 𝑋}. 

The Space 𝑩𝑪 𝑿, 𝒀  of Bounded Continuous Functions: 

          Let 𝐵𝐶 𝑋, 𝑌  be the set of all bounded continuous functions from the 

metric space (𝑋, 𝐷) to the metric space (𝑌, 𝑑). Then   

𝜍 𝑓, 𝑔 = sup 𝑑 𝑓 𝑥 , 𝑔 𝑥   , 𝑥 ∈ 𝑋  For 𝑓, 𝑔 ∈ 𝐵𝐶 𝑋, 𝑌  and 𝑥 ∈ 𝑋  is a 

metric on 𝐵𝐶 𝑋, 𝑌 . 

Theorem(2.3.9)[20]: Let 𝑋 be a metric space, (𝑌, 𝑑) be a complete metric 

space. Then the metric space (𝐵𝐶 𝑋, 𝑌 , 𝜍) is complete. 

Proof: Let   𝑓𝑖  be a Cauchy in 𝐵𝐶 𝑋, 𝑌 , then for every 𝑥 ∈ 𝑋,  

                 𝑑(𝑓𝑖 𝑥 , 𝑓𝑗  𝑥 ) ≤ 𝜍 𝑓𝑖 , 𝑓𝑗  → 0 as 𝑖, 𝑗 → ∞ 
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So  𝑓𝑖 𝑥   is a Cauchy sequence in 𝑌. But 𝑌 is complete, implies that the 

sequence  𝑓𝑖 𝑥   converges to, say, 𝑓 𝑥  in 𝑌. 

Claim: 𝑓𝑖 → 𝑓 uniformly. 

Given 𝜖 > 0 take 𝑁 ∈ ℕ so that 𝜍 𝑓𝑖 , 𝑓𝑗  <
𝜖

2
  for 𝑖, 𝑗 ≥ 𝑁. Fix  𝑥 and 𝑖 for 

the moment. Since  𝑑  𝑓𝑖 𝑥 , 𝑓𝑗  𝑥  <
𝜖

2
  for all 𝑗, we can pass to the limit, 

and we get  𝑑 𝑓𝑖 𝑥 , 𝑓 𝑥  ≤
𝜖

2
< 𝜖 . Hence, the convergence is uniform. 

By theorem(2.3.2) we deduce that 𝑓 is continuous, i.e., 𝑓 ∈ 𝐶 𝑋, 𝑌 . 

Finally, 𝑓 ∈ 𝐵(𝑋, 𝑌) (By the claim of theorem (2.3.7) and since                

𝑓𝑖 ∈ 𝐵(𝑋, 𝑌) for each 𝑖). So, 𝑓 ∈ 𝐶(𝑋, 𝑌) ∩ 𝐵(𝑋, 𝑌).That is, 𝑓 ∈

𝐵𝐶(𝑋, 𝑌).∎ 

Example(2.3.10):The space (𝐵𝐶 𝑋, ℝ , 𝜍) is complete metric space where 

𝑋 is an any metric space, ℝ has the usual metric, and  

𝜍 𝑓, 𝑔 = sup{ 𝑓 𝑥 − 𝑔 𝑥  : 𝑥 ∈ 𝑋}. 

2.4. An Application: Space Filling Curve 

           The first space-filling curve was discovered and published 

in 1890 in [40] and called peano's curve. As a simple application of 

the results in last sections, the existence of a curve that fills the space Ι2 

where Ι = [0,1] is proved. 

Definition(2.4.1)[6]: A curve in a space Ι2 is the image 𝑓(Ι) of a  

continuous map 𝑓: Ι → Ι2. 
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Definition(2.4.2)[6]: A space filling curve in Ι2 is a curve going through 

each point of Ι2. 

        Recall that the space (ℝ𝑛 , 𝑑𝑠) is complete where 𝑑𝑠 is the square 

metric defined in section four of chapter one. If 𝑛 = 2, the space (ℝ2, 𝑑𝑠)is 

complete. Since Ι2 is closed in ℝ2,  (Ι2, 𝑑𝑠) is complete where 𝑑𝑠 𝑥, 𝑦 =

max{ 𝑥1 − 𝑦1 ,  𝑥2 − 𝑦2 } , 𝑥, 𝑦 ∈ Ι2.   In corollary(2.3.4), let 𝑋 = Ι with 

the usual topology and 𝑌 be the space (Ι2, 𝑑𝑠) , then the space 𝐶 Ι, Ι2  is 

complete in the uniform metric 𝜌 defined on 𝐶 Ι, Ι2 .  

Theorem(2.4.3)[35]: There exists a continuous map 𝑓: Ι → Ι2 whose image 

fills up the entire square Ι2.  

Proof:  

Step 1. Construction of triangular paths :  

begin with the closed interval [0,1] in the real line and the square Ι2 

in the plane.  

The triangular path g: Ι → Ι2  pictured in Figure 1 is a continuous 

map. Replace the path g by the path g  pictured in Figure 2 . It is made up of 

four triangular paths, each half the size of g and having the same initial 

final points as g. This operation can also be applied to any triangular path 

connecting two adjacent corners of the square. For instance, when applied 

to the path 𝑕 pictured in Figure 3, it gives the path 𝑕 .  
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Step 2. Construction of a sequence of continuous functions: 

Define a sequence of functions 𝑓𝑛 : Ι → Ι2. The triangular path pictured in 

Figure 1, is the first function 𝑓0. The next function 𝑓1 is the function 

obtained by applying the operation described in Step 1 to the function 𝑓0; it 

is pictured in Figure 2. The next function 𝑓2 is the function obtained by this 

same operation to each of four triangular paths that make up 𝑓1. It is 

pictured in Figure 4. The next function 𝑓3 is obtained by applying the 

operation to each of the 16 triangular paths that make up 𝑓2; it is pictured in 

Figure 5. And so on. At the general step, 𝑓𝑛  is a path made up of 4𝑛  



56 

triangular paths of the type considered in Step 1, each lying in a square of 

edge length 
1

2𝑛
  . The function 𝑓𝑛+1  is obtained by applying the operation 

of Step 1 to these triangular paths, replacing each one by four smaller 

triangular paths.  

 

 

 

Step 3. Proving that  𝒇𝒏  is a Cauchy sequence: 

To prove that the sequence of functions  𝑓𝑛  defined in step 2 is a Cauchy 

sequence in the space (𝐶 Ι, Ι2 , 𝜌) where 𝜌 is the uniform metric, take the 

functions 𝑓𝑛  and 𝑓𝑛+1.  Each small triangular path in 𝑓𝑛  lies in a square of 

edge length 
1

2𝑛
  . The operation by which the function 𝑓𝑛+1 is obtained 

replaces this triangular path by four triangular paths that lie in the same 
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square. Therefore, in the square metric on  Ι2, the distance between 𝑓𝑛 𝑡  

and 𝑓𝑛+1 𝑡  is at most 
1

2𝑛
 . That is:  

 𝑑𝑠(𝑓𝑛 𝑡 , 𝑓𝑛+1 𝑡 ) ≤
1

2𝑛
  , ∀𝑡 ∈ Ι 

As a result,  

𝜌(𝑓𝑛 , 𝑓𝑛+1) ≤
1

2𝑛
 

But, ∀ 𝑛, 𝑚 

𝜌 𝑓𝑛 , 𝑓𝑛+𝑚 

                  ≤ 𝜌 𝑓𝑛 , 𝑓𝑛+1 + 𝜌 𝑓𝑛+1, 𝑓𝑛+2 + ⋯ + 𝜌(𝑓𝑛+𝑚−1, 𝑓𝑛+𝑚 ) 

                   ≤
1

2𝑛
+

1

2𝑛 +1
+ ⋯ +

1

2𝑛+𝑚−1
<

2

2𝑛
 

So the sequence  𝑓𝑛  is Cauchy. Hence it converges in (𝐶 Ι, Ι2 , 𝜌) where 

𝜌 is the uniform metric to a continuous  function 𝑓  because (𝐶 Ι, Ι2 , 𝜌) is 

complete space.  

Step 4. Proving that 𝑓 is surjective: 

 Let 𝑥 ∈ Ι2 .Show 𝑥 ∈ 𝑓 Ι  

Claim: 𝑥 ∈ 𝑓 Ι       

Given 𝜖 > 0, Let 𝑁 large enough that 𝜌 𝑓𝑁 , 𝑓 <
𝜖

2
  and 

1

2𝑁
<

𝜖

2
  .   

Then for all   𝑡 ∈ Ι, 𝑑𝑠(𝑓𝑁 𝑡 , 𝑓 𝑡 ) <
𝜖

2
  . 
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Given 𝑛, the path 𝑓𝑛  comes within a distance of 
1

2𝑛
 of the point 𝑥. for the 

path 𝑓𝑛  touches each of the little squares of edge length  

1

2𝑛
  into which Ι2 is divided. So there is a point 𝑡0 ∈ Ι  such that  

𝑑𝑠(𝑥, 𝑓𝑁 𝑡0 ) ≤
1

2𝑁
<

𝜖

2
   . 

But 𝑑𝑠(𝑓𝑁 𝑡0 , 𝑓 𝑡0 ) <
𝜖

2
 . Hence, 𝑑𝑠(𝑥, 𝑓 𝑡0 ≤ 𝑑𝑠 𝑥, 𝑓𝑁 𝑡0  +

𝑑𝑠(𝑓𝑁 𝑡0 , 𝑓 𝑡0 ) < 𝜖. So, the 𝜖- 

neighborhood of 𝑥 intersects 𝑓(Ι). It follows that 𝑥 ∈ 𝑓 Ι       

The set Ι is compact, so 𝑓(Ι) is compact (continuous image of A 

compact set is compact) and therefore is closed. 

 Hence, 𝑥 belongs to 𝑓 Ι . ∎  
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Introduction 

        The study of topological aspects of complete metrics has a place in 

topology. In this chapter, theorems of topological characters concerning 

complete metric spaces are presented and proved. One of these theorems is 

to characterize compactness of a metric space that is used to prove Heine-

Borel theorem and the classical version of  Ascoli's theorem.  Another one 

is to prove that complete metric spaces belong to the class of topological 

spaces called the Baire  spaces. As an application, the existence of a 

continuous nowhere-differentiable real-valued function is proved.  

3.1.    Heine-Borel Theorem And  Ascoli's Theorem.  

         In this section, a condition on a metric space to be complete is 

provided. A theorem characterizes compactness of a metric space is proved 

and it is then used to prove Heine-Borel theorem and the classical version 

of  Ascoli's theorem.  

Definition(3.1.1)[29]: A set 𝑆 in a metric space (𝑋, 𝑑) is said to be 

sequentially compact if every sequence in 𝑆 contains a subsequence which 

converges to a point in 𝑆 . 

       The terms compact and sequentially compact are equivalent in any 

metric space.  

Theorem(3.1.2 )[29]: A set 𝑆 in a metric space (𝑋, 𝑑) is compact iff it is 

sequentially compact. 
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Proof: Suppose that 𝑆 is compact, but not sequentially compact. Thus there 

is an infinite sequence  𝑥𝑛 ⊂ 𝑆 with no subsequence converging to a point 

in 𝑆. Which implies that the points of the sequence  𝑥𝑛  do not cluster 

about any point of 𝑆. Thus there exists 𝜖 > 0 in which each point 𝑠 ∈ 𝑆 can 

be covered by the open ball 𝐵(𝑠, 𝜖) which contains at most one point of  

 𝑥𝑛 .Hence   𝐵 𝑠, 𝜖 : 𝑠 ∈ 𝑆   is an open cover for 𝑆, which has a finite sub-

cover (by compactness of 𝑆 ) 𝐵1, 𝐵2, … , 𝐵𝑁 . Since   𝑥𝑛  can have at most 

one point in each such ball,  𝑥𝑛  is finite, which is impossible.  

Conversely, suppose that 𝑆 is sequentially compact, but not compact, so 

there is an infinite cover of the set which does not contain a finite sub-

cover. Choose 𝜖 > 0, and a point 𝑠1 ∈ 𝑆. Since 𝑆 cannot be covered by a 

finite collection of open sets, it cannot be covered by the ball of radius 𝜖 

about  𝑠1. Therefore, we can choose 𝑠2 ∈ 𝑆 such that 𝑑(𝑠1, 𝑠2) ≥ 𝜖. For the 

same reason we can choose 𝑠3 outside balls of radius 𝜖 around 𝑠1 and 𝑠2, 

i.e., so that 𝑑 𝑠𝑖 , 𝑠3 ≥ 𝜖 , 𝑖 = 1,2. Continue in this way to define 𝑠𝑛  such 

that 𝑑 𝑠𝑖 , 𝑠𝑛 ≥ 𝜖 , 𝑖 = 1,2, … , 𝑛 − 1. Since 𝑆 is sequentially compact, the 

sequence  𝑠𝑛  must possess a Cauchy subsequence  𝑠𝑛𝑘
 , so that 

𝑑(𝑠𝑛𝑗
, 𝑠𝑛𝑘

) < 𝜖 for sufficiently large 𝑛𝑗 , 𝑛𝑘  which is impossible. This is a 

contradiction.∎ 

      Although completeness of a metric space is not a topological property, 

there are some topological conditions which implies that a metric space is 

complete. 
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Theorem(3.1.3)[20]: Any compact metric space  (𝑋, 𝑑) is complete.  

Proof: Let  𝑥𝑛  be a Cauchy sequence in 𝑋. By theorem (3.1. 2)  𝑋 is 

compact then it is sequentially compact which implies that the sequence 

 𝑥𝑛  has a convergent subsequence, say, to 𝑥. By theorem (1.1.7) the whole 

sequence converges to 𝑥. So (𝑋, 𝑑) is complete.∎ 

Definition(3.1.4)[47]: A subset 𝐺 of a metric space (𝑋, 𝑑) is said to be 

totally bounded if, given any 𝜖 > 0, there exists a finite subset               

{𝑥1 , 𝑥2, … , 𝑥𝑛} ⊂ 𝑋 such that 𝐺 ⊂  𝐵(𝑥𝑘 , 𝜖)𝑛
𝑘=1 ; i.e., for each 𝜖 > 0, 𝐺 

can be covered by a finite number of open balls of radius 𝜖 and centers at 

𝑥1, 𝑥2, … , 𝑥𝑛 .   

Definition(3.1.5)[27]: A finite 𝜖-net for a subset 𝐺 of a metric space (𝑋, 𝑑)  

is a finite collection of points 𝑦𝜖 =  𝑦1 , 𝑦2, … , 𝑦𝑛  in which for each 𝑥 ∈ 𝐺 

there is a point 𝑦𝑘 ∈ 𝑌𝜖  such that 𝑑(𝑥, 𝑦𝑘) < 𝜖 . That is, if 𝑌𝜖  is a finite 𝜖-

net for the set 𝐺 ⊆ 𝑋, then the set 𝐺 is covered by the open balls 

𝐵 𝑦𝑖 , 𝜖 ; 𝑖 = 1,2, … , 𝑛  having radius 𝜖 and center 𝑦𝑖 ∈ 𝑦𝜖   that is, 𝐺 ⊆

 𝐵 𝑦𝑖 , 𝜖 𝑛
𝑖=1 . 

       The  𝜖-net can be used to define total boundedness of a subset of a 

metric space.   

Definition(3.1.6)[27]: A subset 𝐺 of  the metric space (𝑋, 𝑑) is said to be 

totally bounded if for every 𝜖 > 0 there is a finite 𝜖-net for 𝐺.  

Consequences(3.1.7 )[36]: In a metric space  𝑋, 𝑑  we have the following: 
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1. Any subset of a totally bounded set is totally bounded. 

2.  A finite union of totally bounded sets is totally bounded. 

Proof: 1. Let 𝐺 be a totally bounded set of 𝑋.Let 𝐴 be any subset of 𝐺. 

Given 𝜖 > 0 ,  then the set 𝐺 is covered by the open balls           

𝐵 𝑥𝑖 , 𝜖 ; 𝑖 = 1,2, … , 𝑛  having radius 𝜖 and center 𝑥𝑖 ∈  𝑥1 , 𝑥2 , … , 𝑥𝑛 . That 

is there is a finite 𝜖-net for 𝐺. But 𝐴 ⊆ 𝐺 implies that 𝐴 is covered by the 

same finite 𝜖-net of the set 𝐺. 

2. Let 𝑈𝑖 , 𝑖 = 1,2, … , 𝑚 be totally bounded sets of 𝑋. Let 𝐴 =   𝑈𝑖
𝑚
𝑖=1  .  

Since 𝑈𝑖  is totally bounded for each 𝑖 = 1,2, … , 𝑚, given 𝜖 > 0 ,there 

exists {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑛 𝑖
} ⊂ 𝑋 such that 𝑈𝑖 ⊂  𝐵(𝑥𝑖𝑘 , 𝜖)

𝑛𝑖
𝑘=1 . Then 

 𝑈𝑖
𝑚
𝑖=1 ⊂   𝐵(𝑥𝑖𝑘 , 𝜖)𝑛

𝑘=1
𝑚
𝑖=1  implies that there exists 

 {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛 𝑖
}𝑚

𝑖=1 ⊂ 𝑋 such that  𝐴 ⊂   𝐵(𝑥𝑖𝑘 , 𝜖)
𝑛𝑖
𝑘=1

𝑚
𝑖=1 .Since finite 

union of finite sets remains finite, 𝐴 is totally bounded.    

Theorem(3.1.8)[27]: A totally bounded set G in a metric space  𝑋, 𝑑  is 

bounded.  

Proof: Pick some 𝜖 > 0. Since 𝐴 is totally bounded let 𝑌𝜖 =  𝑦1 , 𝑦2 , … , 𝑦𝑛  

be an 𝜖-net for 𝐺. Define 

𝐶 = max{𝑑 𝑦𝑖  , 𝑦𝑗  : 𝑖, 𝑗 = 1,2, … , 𝑛} 

Let 𝑥, 𝑦 be any two points in 𝐺. By the definition of an 𝜖-net there are two 

balls 𝐵 𝑦𝑚 , 𝜖  and 𝐵 𝑦𝑛 , 𝜖  such that  

𝑥 ∈ 𝐵 𝑦𝑚 , 𝜖 , 
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and 

𝑦 ∈ 𝐵 𝑦𝑛 , 𝜖 , 

where 𝑦𝑚 , 𝑦𝑛 ∈ 𝑌𝜖 . By the triangle inequality,  

𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑦𝑚 + 𝑑 𝑦𝑚 , 𝑦𝑛 + 𝑑(𝑦𝑛 , 𝑦) 

                                          ≤ 𝜖 + 𝐶 + 𝜖 

                                          = 𝐶 + 2𝜖 

Since 𝑥, 𝑦 ∈ 𝐺 are arbitrary, we have that 𝑑𝑖𝑎𝑚 𝐺 ≤ 𝐶 + 2𝜖.Hence the 

set 𝐺 is bounded.∎ 

        The converse of this theorem is not always true. 

Example(3.1. 9 )[23]: Consider the metric space  𝑙2, 𝑑 , where 𝑙2 is the set 

of all sequences of real numbers  𝑥𝑛  such that  𝑥𝑖
2 < ∞∞

𝑖=0   ,and 

𝑑 𝑥, 𝑦 =     𝑥𝑖 − 𝑦𝑖 
2∞

𝑖=0     for 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛 , …   and 𝑦 =

 𝑦1 , 𝑦2 , … , 𝑦𝑛 , …  ∈ 𝑙2 

The unit sphere with the equation  𝑥𝑖
2∞

𝑖=1 = 1 is a bounded subset in 𝑙2 

but not totally bounded, because the points 𝑒1 =  1,0,0, …  , 𝑒2 =

(0,1,0, … ) where the 𝑖-th coordinate of 𝑒𝑖  is one and the other coordinates 

are all zero all lie on this unit sphere, and the distance between any two of 

them is  2. Hence this unit sphere cannot have a finite 𝜖-net when 𝜖 =
 2

2
 .  

        In Euclidean space  ℝ𝑛   total boundedness is equivalent to 

boundedness.  
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Theorem(3.1.10)[8]: Bounded subsets of  ℝ𝑛 , 𝑑2  are totally bounded. 

Proof: Every bounded set is contained in some cube                                   

𝑄 =  −𝑅, 𝑅 𝑛 =  𝑥 ∈ ℝ𝑛 : 𝑚𝑎𝑥  𝑥1 ,  𝑥2 , … ,  𝑥𝑛   ≤ 𝑅 . Since any subset 

of a totally bounded set is totally bounded, it is enough to show that 𝑄 is 

totally bounded. Given 𝜖 > 0, choose an integer 𝑘 > 𝑅 𝑛 𝜖 , and let 𝑄 be 

the union of 𝑘𝑛  identical subcubes by dividing the interval  −𝑅, 𝑅  into 𝑘 

equal pieces. The side length of these subcubes is 2𝑅 𝑘   and hence their 

diameter is  𝑛 2𝑅 𝑘  < 2𝜖, so they are contained in the balls of radius 𝜖 

about their centers. ∎   

Theorem(3.1.11)[25]: Every closed and bounded interval of the real line is 

totally bounded.  

Proof: Consider the real line ℝ with the usual metric. Let 𝑉𝜌  be any 

nondegenerate closed and bounded interval, say 𝑉𝜌 = [𝛼, 𝛼 + 𝜌] for some 

real number 𝛼 and some 𝜌 > 0. Take an arbitrary 𝜖 > 0 and let 𝑛𝜖  be a 

positive integer large enough so that 𝜌 <  𝑛𝜖 + 1 
𝜖

2
 . For each integer 

𝑘 = 0,1, … , 𝑛𝜖  consider the interval 

 𝐴𝑘 = [𝛼 + 𝑘
𝜖

2
, 𝛼 +  𝑘 + 1 

𝜖

2
 ) of diameter 

𝜖

2
 . Since 𝐴𝑗 ∩ 𝐴𝑖 = ∅ 

whenever 𝑗 ≠ 𝑖, and 𝑉𝜌 ⊂ [𝛼, 𝛼 +  𝑛𝜖 + 1 
𝜖

2
 ) =  𝐴𝑘

𝑛𝜖
𝑘=0 , so  𝐴𝑘 ∩ 𝑉𝜌 

𝑘=0

𝑛𝜖
 

is a finite partition of 𝑉𝜌  into sets of diameter less than 𝜖. Thus every closed 

and bounded interval of the real line is totally bounded. ∎ 

      Total boundedness is also characterized in terms of Cauchy sequences.  
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Theorem(3.1.12 )[36]:In a metric space (𝑋, 𝑑),  a set 𝐾 is totally bounded 

iff every sequence in 𝐾 has a Cauchy subsequence.  

Proof: Let the totally bounded set 𝐾 be covered by a finite number of balls 

of radius 1, and let {𝑥1 , 𝑥2, … } be an infinite subset of 𝐾. (If 𝐾 is finite, a 

selected sequence must take some value 𝑥𝑖  infinitely often and so has a 

constant subsequence) A finite number of balls cannot cover an infinite set 

of points, unless at least one of the balls, 𝐵(𝑎1, 1), has an infinite number 

of points, say  𝑥1,1, 𝑥2,1, …  . 

        Now cover 𝐾 with a finite number of balls each of radius 
1

2
. For the 

same reason as above, at least one of these, 𝐵(𝑎2,
1

2
) covers an infinite 

number of points of  𝑥𝑛,1 , say the new subset  𝑥1,2, 𝑥2,2, …  . Continue this 

process forming covers of balls each of radius 
1

𝑚
 and infinite subsets  𝑥𝑛,𝑚   

of 𝐵(𝑎𝑚 ,
1

𝑚
). The sequence  𝑥𝑛,𝑛  is Cauchy, since for 𝑚 ≤ 𝑛, both 𝑥𝑚,𝑚  

and 𝑥𝑛,𝑛  are elements of the set  𝑥1,𝑚 , 𝑥2,𝑚 , …  , and so 𝑑(𝑥𝑛,𝑛 , 𝑥𝑚,𝑚 ) <
2

𝑚
→ 0 as 𝑛, 𝑚 → ∞.  

Conversely, given 𝜖 > 0 , let 𝑎1 ∈ 𝐾. If  𝐵(𝑎1, 𝜖) covers 𝐾 then we are 

done. If not, pick 𝑎2 in 𝐾 but not in 𝐵(𝑎1, 𝜖). Continue like this to get a 

sequence  𝑎𝑛 of distinct points in 𝐾 with 𝑎𝑛 ∉  𝐵(𝑎𝑖
𝑛−1
𝑖=1 , 𝜖), all of which 

are at least 𝜖 distant from each other. This process cannot continue 

indefinitely otherwise we get a sequence  𝑎𝑛  in which 𝑑(𝑎𝑚 , 𝑎𝑛 ) ≥ 𝜖 for 

all 𝑛, 𝑚 in ℕ, and so has no Cauchy subsequence. So after some 𝑁 steps we 

must have 𝐾 ⊆  𝐵(𝑎𝑖 , 𝜖)𝑁
𝑖=1 . ∎ 
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        Compactness in metric spaces is characterized by proving the 

following theorem that deals with two sets of properties one of which is 

topological while the other is not. If  (𝑋, 𝑑) is a metric space then 𝑋 is 

compact means that 𝑋 with the induced metric topology is compact. 

Theorem(3.1. 13)[51]: A metric space (𝑋, 𝑑) is compact iff it is complete 

and totally bounded.  

Proof: Suppose 𝑋 is compact. By theorem (3.1.3) the metric space is 

complete. For total boundedness, let  𝑥𝑛  be a sequence of points in 𝑋. 

Since 𝑋 is compact it is sequentially compact by theorem (3.1. 2) which 

means that the sequence  𝑥𝑛  has a convergent subsequence. So this 

subsequence is Cauchy. Hence, the sequence has a Cauchy subsequence. 

By theorem (3.1.12) 𝑋 is totally bounded. 

          Conversely, suppose that 𝑋 is complete and totally bounded. If  𝑥𝑛  

is an arbitrary sequence in 𝑋, then  𝑥𝑛  has a Cauchy subsequence, by 

theorem (3.1.12). Since 𝑋 is complete this subsequence converges. Thus 𝑋 

is sequentially compact. Hence by theorem (3.1.2) 𝑋 is compact. ∎   

      Theorem (3.1.13) is used to prove a theorem characterizes the compact 

subsets of Euclidean space ℝ𝑛 .   

Theorem(Heine-Borel)(3.1.14)[25]: Every closed bounded subset of ℝ𝑛  is 

compact.  

Proof: Let  𝐵 be an arbitrary closed bounded subset of ℝ𝑛 . By theorem 

(3.1.8), the set 𝐵 is totally bounded. It is proven(in theorem (1.4.6)) that the 
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space ℝ𝑛  is complete when equipped with the metric 𝑑2. Hence the set 𝐵 is 

complete because closed subset of complete metric space is complete 

subspace by theorem (1.2.9). So, the set 𝐵 is complete and totally bounded. 

Therefore (by theorem(3.1. 13 )), 𝐵 is compact. ∎ 

          Some definitions and theorems are needed to prove the classical 

version of Ascoli's theorem.   

Definition(3.1.15)[39]: Let (𝑋, 𝜏) be a topological space, let (𝑌, 𝑑) be a 

metric space, let ℱ ⊆ 𝐶(𝑋, 𝑌), and let 𝑥0 ∈ 𝑋. Then ℱ is equicontinuous at 

𝑥0 if for each 𝜖 > 0 there exists a neighborhood 𝑈 of 𝑥0 such that if 𝑓 ∈ ℱ 

and 𝑥 ∈ 𝑈, then 𝑑(𝑓 𝑥 , 𝑓 𝑥0 ) < 𝜖. If ℱ is equicontinuous at each point 

of 𝑋, then it is said to be equicontinuous. 

Note(3.1.16 )[39]: The difference between a collection of continuous 

functions and a collection of equicontinuous functions is that if (𝑋, 𝜏) is a 

topological space,  (𝑌, 𝑑) is a metric space, and ℱ ⊆ 𝐶(𝑋, 𝑌) then ℱ is a 

collection of continuous functions if for each 𝑥0 ∈ 𝑋, each 𝜖 > 0, and each 

𝑓 ∈ ℱ, there exists a neighborhood 𝑈𝑓  of  𝑥0 such that 𝑥 ∈ 𝑈𝑓 , then 

𝑑 𝑓 𝑥 , 𝑓 𝑥0  < 𝜖. But if ℱ is a collection of equicontinuous functions, 

then for each 𝑥0 ∈ 𝑋, each 𝜖 > 0, there exists a neighborhood 𝑈 of 𝑥0 such 

that if 𝑥 ∈ 𝑈 and 𝑓 is any member of ℱ, then 𝑑 𝑓 𝑥 , 𝑓 𝑥0  < 𝜖. In other 

words, 𝑈 works for every member of ℱ.       

Theorem(3.1.17)[39]: Let (𝑋, 𝜏) be a compact space, let  (𝑌, 𝑑) be a 

compact metric space, and let ℱ ⊆ 𝐶(𝑋, 𝑌). Then ℱ is equicontinuous iff ℱ 

is totally bounded with respect to the sup metric 
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𝜌 𝑓, 𝑔 = max⁡{ 𝑑 𝑓 𝑥 , 𝑔 𝑥  , 𝑓, 𝑔 ∈ ℱ , 𝑥 ∈ 𝑋 } 

Proof: Suppose ℱ is totally bounded with respect to 𝜌. Let 𝑥0 ∈ 𝑋 and let 

𝜖 > 0. Let 𝜖1 =
𝜖

3
, and let  𝑓1, 𝑓2, … , 𝑓𝑛  be an 𝜖1-net for ℱ. For each 

𝑖 = 1,2, … , 𝑛,  𝑓𝑖  is continuous. Therefore, for each 𝑖 = 1,2, … , 𝑛, let 𝑈𝑖  be 

a neighborhood of 𝑥0 such that if 𝑥 ∈ 𝑈𝑖  then 𝑑 𝑓𝑖 𝑥 , 𝑓𝑖 𝑥0  < 𝜖1. Let 

𝑈 =  𝑈𝑖
𝑛
𝑖=1  . 

Claim: If 𝑓 ∈ ℱ and 𝑥 ∈ 𝑈, then 𝑑 𝑓 𝑥 , 𝑓 𝑥0  < 𝜖. Let 𝑓 ∈ ℱ and let  

𝑥 ∈ 𝑈 . Because 𝑓 belongs to at least one of the 𝜖1-balls, there exists 

𝑖 (𝑖 = 1,2, … , 𝑛) such that 𝜌(𝑓, 𝑓𝑖) < 𝜖1. Hence 𝑑 𝑓 𝑥 , 𝑓𝑖 𝑥  < 𝜖1 and  

𝑑 𝑓 𝑥0 , 𝑓𝑖 𝑥0  < 𝜖1. Thus  

 𝑑 𝑓 𝑥 , 𝑓 𝑥0  ≤ 𝑑 𝑓 𝑥 , 𝑓𝑖 𝑥  + 𝑑 𝑓𝑖 𝑥 , 𝑓𝑖 𝑥0  + 𝑑 𝑓𝑖 𝑥0 , 𝑓 𝑥0   

                               < 𝜖1 + 𝜖1 + 𝜖1 = 𝜖 

Therefore, ℱ is equicontinuous.  

  Conversely, suppose that ℱ is equicontinuous, and let 𝜖 > 0 . Let 𝜖1 =
𝜖

3
 . 

Since ℱ is equicontinuous, for each 𝑥 ∈ 𝑋 there is a neighborhood 𝑈𝑥  of 𝑥 

such that if 𝑧 ∈ 𝑈𝑥 , then 𝑑 𝑓 𝑧 , 𝑓 𝑥  < 𝜖1 for all 𝑓 ∈ ℱ. Then  𝑈𝑥 : 𝑥 ∈

𝑋  is a open cover of 𝑋. Since 𝑋 is compact, there exists 𝑥1, 𝑥2, … , 𝑥𝑚  in 𝑋 

such that  𝑈𝑥1
, 𝑈𝑥2

, … , 𝑈𝑥𝑚
  covers 𝑋. Now   𝐵 𝑦, 𝜖1 : 𝑦 ∈ 𝑌  is an open 

cover of 𝑌. Since 𝑌 is compact, there exist 𝑦1 , 𝑦2, … , 𝑦𝑛  in 𝑌 such that  

𝐵 𝑦1, 𝜖1 , 𝐵 𝑦2, 𝜖1 , … , 𝐵(𝑦𝑛 , 𝜖1) covers 𝑌. Let Λ be the collection of all 

functions that map {1,2, … , 𝑚} into {1,2, … , 𝑛}, let 𝛼 ∈ 𝛬. If there exists 

𝑓 ∈ ℱ such that for each 𝑖 = 1,2, … , 𝑚, 𝑓(𝑥𝑖) ∈ 𝐵(𝑦𝛼 𝑖 , 𝜖1) choose one 
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such function and label it 𝑓𝛼 . Let  Γ = { 𝛼 ∈ Λ ∶ 𝑓𝛼  exists}.  Since Λ is 

finite and Γ ⊆ 𝛬, Γ is finite.                   Claim:  {𝐵 𝑓𝛼 , 𝜖 : 𝛼 ∈ Γ} covers ℱ. 

Let  𝑓 ∈ ℱ, and for each 𝑖 = 1,2, … , 𝑚, let 𝛼 𝑖  such that 𝑓(𝑥𝑖) ∈

𝐵(𝑦𝛼 𝑖 , 𝜖1)  then 𝛼 ∈ 𝛤. To show 𝑓 ∈ 𝐵(𝑓𝛼 , 𝜖),  let 𝑥 ∈ 𝑋 and let 𝑖 ∈

 1,2, … , 𝑚  such that 𝑥 ∈ 𝑈𝑥𝑖
 . Then 𝑑 𝑓 𝑥 , 𝑓𝛼 𝑥  ≤ 𝑑 𝑓 𝑥 , 𝑓 𝑥𝑖  +

𝑑 𝑓 𝑥𝑖 , 𝑓𝛼 𝑥𝑖  + 𝑑 𝑓𝛼 𝑥𝑖 , 𝑓𝛼 𝑥       

                              < 𝜖1 + 𝜖1 + 𝜖1 = 𝜖 

Since this inequality holds for every 𝑥 ∈ 𝑋 , 

𝜌 𝑓, 𝑓𝛼 = max 𝑑 𝑓 𝑥 , 𝑓𝛼 𝑥  : 𝑥 ∈ 𝑋 < 𝜖. Hence 𝑓 ∈ 𝐵(𝑓𝛼 , 𝜖). ∎  

Theorem(3.1.18)[39]: Let  𝑋, 𝜏  be a compact space, and let ℱ be a 

bounded subset of  𝐶 𝑋, ℝ𝑛 , 𝜌 . Then there exists a compact subset 𝑌 of 

ℝ𝑛  such that if 𝑓 ∈ ℱ and 𝑥 ∈ 𝑋, then 𝑓(𝑥) ∈ 𝑌. 

Proof: Let 𝑓0 ∈ ℱ. Since ℱ is bounded, there exists a positive number 𝑀 

such that 𝜌(𝑓0, 𝑓) < 𝑀 for all 𝑓 ∈ ℱ. Since 𝑋 is compact and 𝑓0 is 

continuous, 𝑓0(𝑋) is compact. Hence, 𝑓0(𝑋) is a bounded subset of ℝ𝑛 , so 

there is a positive number 𝑁 such that 𝑓0(𝑋) ⊆ 𝐵((0,0, . . ,0), 𝑁). 

Therefore, if 𝑓 ∈ ℱ, then 𝑓(𝑋) ⊆ 𝐵((0,0, . . ,0), 𝑁 + 𝑀). Let 𝑌 be the 

closure of the ball 𝐵((0,0, . . ,0), 𝑁 + 𝑀). So, 𝑌 is closed and bounded 

subset of ℝ𝑛  and hence is compact by theorem (3.1.14).∎  

Theorem(3.1.19)[4]: Let 𝐴 be a subset of a metric space  𝑋, 𝑑 . If 𝐴 is 

compact then 𝐴 is closed in (𝑋, 𝑑). 



71 

Proof: Suppose that 𝐴 is compact, and let  𝑥𝑛  be a sequence in 𝐴 that 

converges to a point 𝑥 ∈ 𝑋. Then, from theorem (3.1.2),  𝑥𝑛  has a 

subsequence that converges in 𝐴, and hence 𝑥 must be in 𝐴. Thus, 𝐴 is 

closed. ∎      

        A characterization of compact subsets of  ℝ𝑛   is that they are closed 

and bounded. But for the space 𝐶 𝑋, ℝ𝑛  the standard criterion for 

compactness is given by the classical version of Ascoli's theorem which is 

proven using theorem (3.1.13).    

Theorem(Ascoli's Theorem: Classical Version)(3.1.20)[39]: Let  𝑋, 𝜏  

be a compact space. Then, a subset of  𝐶 𝑋, ℝ𝑛 , 𝜌  is compact iff it is 

closed, bounded, and equicontinuous. 

Proof: Suppose ℱ is a compact subset of  𝐶 𝑋, ℝ𝑛 , 𝜌 .  

Closed: By theorem(3.1.19) ℱ is closed.                                                

Bounded: ℱ is compact then ℱ is totally bounded by theorem (3.1.13). But 

a totally bounded set is bounded by theorem (3.1.8).                                                 

Equicontinuous: By theorem (3.1.18) there exists a compact subset 𝑌 of ℝ𝑛  

such that if 𝑓 ∈ ℱ, then 𝑓(𝑋) ⊆ 𝑌. It follows that  ℱ ⊆ 𝐶(𝑋, 𝑌) which is 

totally bounded. Therefore, by theorem (3.1.17) ℱ is equicontinuous. 

Conversely, suppose ℱ is closed, bounded, and equicontinuous 

subset of   𝐶 𝑋, ℝ𝑛 , 𝜌 . By  theorem (1.4.6) the space (ℝ𝑛 , 𝑑2) is 

complete. Therefore by corollary (2.3.4)  𝐶 𝑋, ℝ𝑛 , 𝜌  is complete. Since 
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ℱ is closed subset of  𝐶 𝑋, ℝ𝑛 , 𝜌 , by theorem (1.2.9) ℱ is complete. 

Since  ℱ is bounded, by theorem (3.1.18), there exists a compact subset 𝑌 

of ℝ𝑛  such that if 𝑓 ∈ ℱ then 𝑓(𝑋) ⊆ 𝑌. It follows that  ℱ ⊆ 𝐶(𝑋, 𝑌) 

which is equicontinuous. Therefore, by theorem (3.1.17) ℱ is totally 

bounded. Since ℱ is complete and totally bounded, by theorem (3.1.13), it 

is compact. ∎   

3.2.   Baire Spaces. 

In applying topology to analysis one of the most useful applications 

of completeness is the Baire's theorem. In this section one form of Baire's 

theorem is stated and proved.   

Definition(3.2.1)[32]: A topological space 𝑋 is called a Baire space if for 

each sequence  𝑂𝑛  of dense open subsets of 𝑋,  𝑂𝑛𝑛∈𝑁  is dense in 𝑋.   

Theorem(Baire's theorem)(3.2.2)[11]: In a complete metric space  𝑋, 𝑑  

the intersection of a countable number of open, dense sets is itself dense. 

That is, a complete metric space is a Baire space.    

Proof: Let  𝐺𝑛  be a countable family of dense open sets in 𝑋. Let  𝑥 ∈ 𝑋 

and 𝜖 > 0 be arbitrary. Since 𝐺1 is dense open set in 𝑋 there exists an                       

𝑥1 ∈ 𝐺1 ∩ 𝐵(𝑥, 𝜖) such that 

𝐵 (𝑥1, 𝜖1) ⊆ 𝐺1 ∩ 𝐵(𝑥, 𝜖) where 0 < 𝜖1 < 𝜖 2  .                                                             

Since 𝐺2 is dense open set in 𝑋 there exists an 𝑥2 ∈ 𝐺2 ∩ 𝐵(𝑥1, 𝜖1) such 

that 
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𝐵 (𝑥2, 𝜖2) ⊆ 𝐺1 ∩ 𝐺2 ∩ 𝐵(𝑥, 𝜖) ∩ 𝐵(𝑥1, 𝜖1)  where 0 < 𝜖2 < 𝜖 4  

Continuing inductively, there exists an   

𝑥𝑛 ∈ 𝐺𝑛 ∩ 𝐵(𝑥𝑛−1, 𝜖𝑛−1) such that 

𝐵  𝑥𝑛 , 𝜖𝑛 ⊆ 𝐺1 ∩ 𝐺2 ∩ …∩ 𝐺𝑛 ∩ 𝐵(𝑥, 𝜖) ∩ 𝐵(𝑥𝑛−1, 𝜖𝑛−1)                               

where 0 < 𝜖𝑛 < 𝜖 2𝑛  

The sequence 𝐵  𝑥𝑛 , 𝜖𝑛  is a sequence of nonempty closed, 

descending sets such that 𝑑𝑖𝑎𝑚𝐵  𝑥𝑛 , 𝜖𝑛 → 0 as 𝑛 → ∞. Since the space 

(𝑋, 𝑑) is complete, by Cantor's intersection theorem there exists 𝑦 ∈

𝐵  𝑥𝑛 , 𝜖𝑛 .  But  𝐵  𝑥𝑛 , 𝜖𝑛 ∞
𝑛=1 ⊆   𝐺𝑛

∞
𝑛=1  ∩ 𝐵(𝑥, 𝜖) implies that:                 

   𝐺𝑛
∞
𝑛=1  ∩ 𝐵(𝑥, 𝜖) ≠ ∅. Hence, 𝑥 ∈  𝐺𝑛

∞
𝑛=1

           . ∎         

           The converse of this theorem is not always true. There are 

incomplete metric spaces that are Baire spaces. 

Example( An Incomplete Baire Space)(3.2.3)[34]: Let 𝑋 be the open 

interval (𝑎, 𝑏) with the usual metric. Then (𝑎, 𝑏) is dense in  𝑎, 𝑏 . Let 

𝑈1, 𝑈2, … , 𝑈𝑛 , …  be a sequence of dense open sets in 𝑋. Then 𝑈𝑖 = 𝐻𝑖 ∩

(𝑎, 𝑏), where 𝐻𝑖  is dense and open in  𝑎, 𝑏 . Now,  𝑎, 𝑏 , 𝐻1 , 𝐻2, … , 𝐻𝑛 , … 

is a sequence of dense open sets in  𝑎, 𝑏  and hence (since  𝑎, 𝑏  is a Baire 

space)  𝑎, 𝑏 ∩   𝐻𝑖
∞
𝑖=1  =    𝑎, 𝑏 ∩ 𝐻𝑖 

∞
𝑖=1 =  𝑈𝑖

∞
𝑖=1   is dense in 

 𝑎, 𝑏  and therefore in  𝑎, 𝑏  as well. Hence  𝑎, 𝑏  with the subspace metric 

is a Baire space. But  𝑎, 𝑏  is incomplete.  
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         In [12] it is discussed that the intersection of countably many dense 

𝐺𝛿 -subsets of a Baire space 𝑋 must be dense in 𝑋. A weaker condition is 

the intersection of any two dense 𝐺𝛿 -sets of 𝑋 must be dense in 𝑋, and that 

is the definition of a Volterra space. Any Baire space is Volterra. The 

converse is studied in [12].     

          Various forms of the Baire's theorem is discussed in [14]. A 

generalization of Baire's theorem is proved in [30]. Cartesian products of 

metric Baire spaces is discussed in [24].       

3.3. Continuous Nowhere Differentiable Function. 

       In 1806 Ampere in [1] tried to prove that any continuous function must 

be differentiable on a set of points. In 1872 Weierstrass presented a 

continuous nowhere differentiable function which is published in 1875 in   

[2]. In [ 17  , 54 , 53 , 50 ] examples of continuous nowhere differentiable 

functions are provided.  

         In this section, the existence of continuous nowhere-differentiable 

real-valued functions is proved using Baire's theorem.  

Theorem(3.3.1)[35]: Let 𝑕 be a continuous real-valued function defined on 

the unit interval  𝐼 = [0,1] and let 𝜖 > 0 be given. Then, there is a 

continuous real-valued function 𝑔 defined on 𝐼 that is nowhere 

differentiable with the property  𝑕 𝑥 − 𝑔(𝑥) < 𝜖  for all 𝑥 ∈ 𝐼 . 

Proof: The existence is proven without constructing an example.               

Let 𝐶(𝐼, ℝ) be the set of all continuous real-valued functions defined on 𝐼. 
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By corollary (2.3.4) the space  𝐶 𝐼, ℝ , 𝜌  where                                       

𝜌 𝑓, 𝑔 = 𝑚𝑎𝑥  𝑓 𝑥 − 𝑔(𝑥) ∶ 𝑥 ∈ 𝐼   is complete. By theorem(3.2.2)  

the space  𝐶 𝐼, ℝ , 𝜌  is a Baire space. This is the main property which is 

used in the proof.     

Step 1:  

Defining  𝑈𝑛  to be  a sequence of open dense subsets of 𝐶 𝐼, ℝ :  

Let 0 < 𝑕 <
1

2
  , let 𝑥 ∈ 𝐼 be given and 𝛼 > 0 . 

Given 𝑓 ∈ 𝐶 𝐼, ℝ , define its difference quotients as: 

∆𝑓 𝑥, 𝑕 = max   
𝑓 𝑥 + 𝑕 − 𝑓(𝑥)

𝑕
 ,  

𝑓 𝑥 − 𝑕 − 𝑓(𝑥)

−𝑕
   

 

If both 

 
𝑓 𝑥 + 𝑕 − 𝑓(𝑥)

𝑕
  

and 

 
𝑓 𝑥 − 𝑕 − 𝑓(𝑥)

−𝑕
  

are exist. And ∆𝑓 𝑥, 𝑕  is the one that is defined if one of the two is not 

defined.   

At least one of the two is defined since at least one of the numbers 𝑥 + 𝑕 

and 𝑥 − 𝑕 is in the unit interval 𝐼.  

Let the set 
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𝑈 𝛼, 𝑕 =  𝑓 ∈ 𝐶 𝐼, ℝ : ∆𝑓 𝑥, 𝑕 ≥ 𝛼 ∀ 𝑥 ∈ 𝐼  

Now, for each 𝑛 ∈ ℕ, define the set 𝑈𝑛  as : 

𝑈𝑛 =  𝑈 𝛼, 𝑕 

𝛼>𝑛,𝑕<
1
𝑛

 

Claim(1): for each 𝑛 ∈ ℕ, the set 𝑈𝑛  is open in 𝐶 𝐼, ℝ .  

Let 𝑓 ∈ 𝑈𝑛  then 𝑓 ∈ 𝑈 𝛼, 𝑕  for some 𝛼 > 𝑛 and some 𝑕 <
1

𝑛
 . take 

𝑟 =
𝑕

4
(𝛼 − 𝑛) 

Without loss of generality, let 

∆𝑓 𝑥, 𝑕 =  
𝑓 𝑥 + 𝑕 − 𝑓(𝑥)

𝑕
  

And let 𝑔 ∈ 𝐵 𝑓, 𝑟  such that 

∆𝑔 𝑥, 𝑕 =  
𝑔 𝑥 + 𝑕 − 𝑔(𝑥)

𝑕
  

Now, 

 
𝑓 𝑥 + 𝑕 − 𝑓 𝑥 

𝑕
−

𝑔 𝑥 + 𝑕 − 𝑔 𝑥 

𝑕
  

=  
 𝑓 𝑥 + 𝑕 − 𝑔 𝑥 + 𝑕  −  𝑓 𝑥 − 𝑔 𝑥  

𝑕
  

≤
2𝑟

𝑕
=

𝛼 − 𝑛

2
 



77 

Since 

 
𝑓 𝑥 + 𝑕 − 𝑓 𝑥 

𝑕
   

is at least 𝛼, then 

 
𝑔 𝑥 + 𝑕 − 𝑔 𝑥 

𝑕
  

is at least  

𝛼 −
𝛼 − 𝑛

2
=

𝛼 + 𝑛

2
= 𝛼  

For some 𝛼 .  

Then ∆𝑔 𝑥, 𝑕 ≥ 𝛼  and this implies that 𝑔 ∈ 𝑈 𝛼 , 𝑕 . But 𝛼 > 𝑛, so 

𝑔 ∈ 𝑈𝑛  , i.e., 𝐵 𝑓, 𝑟 ⊆ 𝑈𝑛  which means that the set 𝑈𝑛  is open in 𝐶 𝐼, ℝ .   

Claim(2):  for each 𝑛 ∈ ℕ, the set 𝑈𝑛  is dense in 𝐶 𝐼, ℝ .  

Let 𝑓 be arbitrary function in 𝐶 𝐼, ℝ . Given 𝜖 > 0, 𝛼 > 𝑛, we construct a 

function 𝑔 that belongs to both sets 𝑈𝑛  and 𝐵 𝑓, 𝜖 .  

Let 0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑘 = 1 be a partition of of the unit interval 𝐼 

. Let 𝐼𝑖 =  𝑥𝑖−1, 𝑥𝑖 , 𝑖 = 1,2, … , 𝑘 . Consider 𝑔 to be the function such that 

𝑔|𝐼𝑖  is a linear function in which the slope of each line segment is at least 

𝛼. Let 𝑕 <
1

𝑛
 and 𝑕 ≤

1

2
min  𝑥𝑖 − 𝑥𝑖−1 ; 𝑖 = 1,2, … , 𝑘 .  𝑔 is a member of 

𝑈𝑛 , for if 𝑥 ∈ 𝐼, then 𝑥 ∈ 𝐼𝑖  for some 𝑖 = 1.2, … , 𝑘. If 𝑥 ∈  𝑥𝑖−1,
𝑥𝑖−1+𝑥𝑖

2
 , 

then 𝑥 + 𝑕 ∈ 𝐼𝑖  and  
𝑔 𝑥+𝑕 −𝑔 𝑥 

𝑕
 equals the slope of the line segment 

representing the linear function 𝑔|𝐼𝑖 . And if 𝑥 ∈  
𝑥𝑖−1+𝑥𝑖

2
, 𝑥𝑖  , then 

𝑥 − 𝑕 ∈ 𝐼𝑖  and  
𝑔 𝑥−𝑕 −𝑔 𝑥 

−𝑕
 equals the slope of the line segment 
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representing the linear function 𝑔|𝐼𝑖 . This implies that ∆𝑔 𝑥, 𝑕 ≥ 𝛼, 

𝑔 ∈ 𝑈(𝛼, 𝑕) ⊆ 𝑈𝑛 .   

A construction of 𝑔 to be an element of 𝐵 𝑓, 𝜖  is the following:  

By uniform continuity of 𝑓, we can choose a partition of the unit interval 𝐼  

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 1 such that                                                            

 𝑓 𝑥 − 𝑓(𝑦) <
𝜖

4
 ∀ 𝑥, 𝑦 ∈  𝑡𝑖−1, 𝑡𝑖 , 𝑖 = 1,2, … , 𝑚.                                      

Let 𝑎𝑖 ∈  𝑡𝑖−1 , 𝑡𝑖 , 𝑖 = 1,2, … , 𝑚.  Define 

𝑔1 𝑥 =  

𝑓 𝑡𝑖−1                                                         ∀𝑥 ∈  𝑡𝑖−1 , 𝑎𝑖 

𝑓 𝑡𝑖−1 +
𝑓 𝑡𝑖 − 𝑓 𝑡𝑖−1 

𝑡𝑖 − 𝑎𝑖

 𝑥 − 𝑎𝑖       ∀𝑥 ∈  𝑎𝑖 , 𝑡𝑖      
  

The graphs of 𝑔1 and 𝑓 are pictured in Figure 6.  

If 𝑓(𝑡𝑖) ≠ 𝑓(𝑡𝑖−1) then 𝑎𝑖  must be such that 

𝑡𝑖 − 𝑎𝑖 ≤  
𝑓 𝑡𝑖 − 𝑓 𝑡𝑖−1 

𝛼
  

 Then 𝑔1 is a piecewise-linear function for which each line segment have 

slope at least 𝛼 in absolute value or have slope zero.  

Now, for each subinterval 𝐼𝑖  the two functions 𝑔1 and 𝑓 vary from  𝑓 𝑡𝑖−1  

by at most 𝜖 4  . That is  𝑔1(𝑥) − 𝑓(𝑥) < 𝜖 2  for all 𝑥 ∈ 𝐼 .So          

𝜌 𝑔1, 𝑓 = max  𝑔1(𝑥) − 𝑓(𝑥)  < 𝜖 2 .  

The function 𝑔 that is wanted is just the function 𝑔1 but with replacing each 

line segment that has slope zero by a "sawtooth" graph for which the  

absolute value of the slope of each edge is at least 𝛼 and lies within 𝜖 2  of 

the function 𝑔1. The graphs of 𝑓 , 𝑔1and 𝑔 are pictured in Figure 7.  
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Figure 7 

 

Step 2:  

The functions that are in the intersection of the sets 𝑈𝑛 , 𝑛 ∈ ℕ are 

continuous nowhere differentiable:  

the space  𝐶 𝐼, ℝ , 𝜌  is a Baire space So 𝑈𝑛 𝑛∈ℕ  is dense in 𝐶 𝐼, ℝ  

which implies that for each 𝜖 > 0 there is a function 𝑔 ∈  𝑈𝑛 𝑛∈ℕ  such 

that 𝜌(𝑕, 𝑔) < 𝜖.  
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For the end of this proof, let 𝑥 ∈ 𝐼 be given. Let 𝑓 ∈  𝑈𝑛 𝑛∈ℕ , then 𝑓 ∈ 𝑈𝑛  

for each 𝑛 ∈ ℕ. So there is a number 0 < 𝑕𝑛 < 1 𝑛   where             

∆𝑓 𝑥, 𝑕𝑛 > 𝑛 . Clearly the sequence  𝑕𝑛  converges to zero while the 

sequence  ∆𝑓 𝑥, 𝑕𝑛   diverge. In other words, lim𝑕→0 ∆𝑓 𝑥, 𝑕  does not 

exist. Hence 𝑓 is not differentiable at 𝑥. Since, 𝑥 was arbitrary, the function 

𝑓 is nowhere differentiable.∎ 
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