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Topological Characters of Complete Metric Spaces
By
Haneen Akram Mustafa Ghanim
Supervisor
Dr. Fawwaz Abudiak

Abstract

In this thesis the topological aspects of complete metric spaces are

studied.

Complete metric spaces, Characterizations of complete metric spaces
and examples of complete metric spaces are presented. A completion of a

metric space is discussed.

Function spaces and their topologies are defined and studied.
Completeness of function spaces is considered. As an application, a

construction of the well-known Peano space —filling curve is discussed.

Finally, Theorems of topological characters concerning complete
spaces such as Heine-Borel theorem, Ascoli's theorem and Baire's theorem
with their proofs are introduced, in addition to other matters concerning the
subject. The existence of continuous nowhere-differentiable real-valued

functions is proved.



Introduction

The concept of metric spaces was first introduced by M. Fréchet in
1906 in his paper [10]. He formulated the abstract notion of compactness.
After that, many mathematicians studied the concept of completeness of
metric spaces that is basic of all aspects of analysis. Although completeness
IS a metric property rather than a topological one, there are a number of
theorems involving complete metric spaces that are topological in
character. In this thesis, we study complete metric spaces with the most
important examples and then explain deeply theorems of topological
characters concerning complete metric spaces. We found that the study of

topological aspects of complete metric spaces has a huge place in topology.

In chapter one we concentrate on the concept of complete metric
spaces and provide characterizations of complete metric spaces. Also, we
present a characterization of complete subspaces of complete metric
spaces. Then we shed light on examples that play a pivotal role in analysis.
Finally, we show that a non complete metric space has a completion (that
can be made into a complete metric space) and any two completions are

isometric to each other.

In chapter two we make a study of topologies defined on a given set
of functions: the product topology, the set-set topology, and the uniform
metric topology. Then we discuss the idea of completeness of a function
space. The completeness of the spaces C(X,Y), B(X,Y) and BC(X,Y) is

studied where C(X,Y) denotes the set of all continuous mappings of the set
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X into a space Y, B(X,Y) denotes the set of all bounded mappings of the
set X into a space Y and BC(X,Y) denotes the set of all bounded
continuous mappings of the set X into a space Y . Finally, we construct the

well-known Peano space —filling curve.

In chapter three we introduce the most important theorems of
topological characters concerning complete metric spaces. We prove a
theorem that characterizes compactness of a metric space and use it to
prove Heine-Borel theorem and a classical version of Ascoli's theorem.
Then we state and prove one form of Baire's theorem. Finally, we use
Baire's theorem to prove the existence of continuous nowhere-

differentiable real-valued functions.



Chapter One
Complete Spaces



Introduction

In 1906 M. Fréchet introduced the concept of metric space in [10].
The importance of completeness is to prove that a sequence converges
without a prior knowledge of its limit. Therefore, completeness can be
used to prove existence of the limits which is important in proving some

theorems of topological characters.
1.1.Complete Metric Space:

In this section some definitions and theorems concerning metric
spaces are provided. Characterizations of complete metric spaces are also

presented.

Definition (1.1.1) [22]: Let X be a nonempty set. A function, p: X X X —

[0, ) that has the following properties:
(@) (positive definiteness) p(x,y) =0 iffx = yforx,y € X;

(b) (symmetry) p(x,y) = p(y,x) forall x,y € X;

(c)(triangle inequality) p(x,z) < p(x,y) + p(y,z) for all x,y,z€ X

is called a metric , or distance function, on X .

Definition (1.1.2) [52]: Let X be a nonempty set, and p be a metric on X.

Then the pair (X, p) is called a metric space.
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Definition (1.1.3) [52]: Let (x,) be a sequence in a metric space (X, p),
and let ¢ € X. Then the sequence (x,,) converges to c iff Ve > 0, Iny € N

(set of natural numbers ) such that p(x,, ,c) < € forall n = n,.

Definition (1.1.4) [20]: A sequence (x,) in a metric space (X, p) is called
Cauchy if the following is true: For any € >0, 3ny, € N such that

p(x, ,x,) <€ foralln,m = n,.

Definition(1.1.5)[7]: Consider a sequence (a,). Let (n;) be a sequence of

natural numbers that is strictly increasing; that is, n; <n, <nz < --.

Then the sequence (by,) defined by b, = a,, for every index k is called a

subsequence of the sequence (a,,), it is denoted by (a,,) .

Definition(1.1.6)[7]: A subsequence (a,,) of a sequence (a,) in a metric

space (X,p) converges to a € X if for any € > 0, 3Im € N such that

p(a,,a) <e,foralli=m.

Theorem (1.1.7)[34]: If a Cauchy sequence (x,) in a metric space (X, p)
has a subsequence that converges to x € X, then the whole sequence

converges to x.

Proof: Let a subsequence(x;, : k1 <k, <---) of a Cauchy sequence (x;)

in a metric space (X, p) be convergent to a point x € X. Then for any € >
0, 3m; € N such that p(x;, x) <§ ,forall i >my ... (1) but (x) is

Cauchy, so 3m, €N with p(x;, %) <> , for all i,j =m;..(2).

Let m = max{m,, m,} , then for all i > m we have :

p(xx,x) < (by(1),ask; > i)and
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p(xi,xp,) <5 (by (2) ,as k; = i) .The result is that , for all i > m, we
have:p(x; ,x) < p(x;,xx,) + p(xy, ,x) <S+i=e

Thus the sequence (x;) convergesto x. m

Definition (1.1.8) [52]: The metric space (X, p) is called a complete space

if every Cauchy sequence in X converges to a point in X .

Definition (1.1.9) [6]:1f the metric space (X,p) is complete, then p is

called complete metric on X.

The following theorems (1.1.10, 1.1.19 and 1.1.21)characterize the

completeness of a metric space:

Theorem (1.1.10)[35]: A metric space (X, p) is complete if every Cauchy

sequence in (X, p) has a convergent subsequence in X.

Proof: Let (x,) be a Cauchy sequence in (X,p) that has a convergent
subsequence. Then the whole sequence converges (by theorem 1.1.7). Then

(X, p) iscomplete.m

Definition(1.1.11)[35]: Let (X,p) be a metric space and € > 0, then the

set B(x,e) = {y € X: p(x,y) < €} is called e-ball centered at x.

Definition(1.1.12)[35]: If p is a metric on the set X, then the collection of
all e-balls B(x,e) , for x € X and € > 0, is a basis for a topology on X,

called the metric topology induced by p.
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Definition (1.1.13)[13]: For a set E in the metric space (X, p) , the closure
of E, denoted by E, is Int(E) U Bdy(E) where Int(E) is the interior of

E and Bdy(E) is the boundary of E.

Theorem (1.1.14)[13]: Let (X, d) be a metric space and E € X. Then:
()x e Eiff B(x,e) NE # ®,Ve > 0.

(i)E = {x € X:d(x,E) = 0} where d(x,E) = inf{d(x,e):e € E}.

Proof: (i) Since E = Int(E) U Bdy(E) , then it is clear that x € E iff every

open ball with center x intersects E.

(ii) By(i), if x € E , then for every e > 0 there exists a y € B(x,e) N E
and, therefore, d(x, E) = 0. If d(x, E) = 0 then for every € > 0 there is a

y € E such that d(x,y) < €; thatis, B(x,e) N E # @, and thus, x € E.m

Theorem (1.1.15)[13]: A set E in a metric space (X, d) is closed iff every

sequence of points in E which is convergent in X converges to a point in E.

Proof: Suppose E is closed in X and let (x,,) be a sequence of points in E
such that (x,) converges to x € X . Then, by definition (1.1.3), for any
e > 0,there exist ny € N such that d(x,,x) <e for all n>n, So
X, € B(x,€) forall n >ny and any € >0 , but x, € E,vn € N . Thus,
B(x,e)NE + @, Ve>0,andsox € E = E. For the converse: Let x € E.
Then,vne N , B (x%) NE +@.Take x,, €EB (x%) N E, then (x,,) is a
sequence of points in E converges to x € X.So by the condition it

converges to x € E. Hence E is closed.m
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Corollary (1.1.16): Let (X,d) be a metric space , E € X .If x € E then

there exists a sequence (x,,)of points in E which converges to x .
Proof: Clear by the proof of theorem( 1.1.15).m

Definition (1.1.17) [45]:Let (X,p) be a metric space ,for A C X,
diam(A) = sup{p(x,y):x,y € A}.
Theorem (1.1.18)[45]: Let (X,d) be a metric space ,(for A C X,

diam(4) = diam(4) .

Proof: Since A € A, then the inequality diam(4) < diam(4) is

immediate. For the other inequality, let x,y € A, then there exist sequences

(x,) and (y,) in A such that d(x,x,) <§ and d(y,v,) <§ for n > ny,

say, where € > 0 is arbitrary. Now for n > n,, we have:

d(x,y) < d(x,x,) + d(xp, y) + d (Y, ¥)
< % + d(x,, ¥) +§
< diam(A) + €
so, diam(4) < diam(A), since € > 0 is arbitrary.
Thus, diam(A) = diam(4) .=

Theorem (Cantor's Intersection Theorem) (1.1.19)[34]: A metric space
(X,d) is complete iff for any descending sequence (FE,) of nonempty
closed sets such that diam(F,) » 0asn — o, the intersection F =

N;—1 F, consists of exactly one point.
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Proof: Let (X,d) be a complete metric space and (F, ) be a descending
sequence of nonempty closed sets in X such that diam(F,) — 0
as n — oo . Since each E, is nonempty, choose a point x,, € F, for each
neN . Since diam(E,) —» 0, then Ve >0,3my €N such that
diam(F,,) < € . For n,m = my,F, ,E, S F, since (F,) is descending
sequence. Now d(x, ,x,,) < diam(F,,) <€ . So the sequence (x,) is
Cauchy in X . By completeness of the space (X,d), the sequence (x,)
converges to a point (say) x, € X .To show that x, € N;)— E, , let m be
any positive integer. Then for n > m = x,, € E,,. The sequence (x,)
converges to x, , then Ve > 0,3n, € N such that d(x,,x,) < € for all

n = ny which means that x,, € B(x, ,€) .

Take s = max{m,ny}. Then x, € B(xy,e) for all n=>s . So
B(xy,€) NE, # @ .Hence x, € F,, ,and then x, € E,, since E,, is closed.

Since m was arbitrarily chosen, x, € N;;—1 E, .
Now, suppose there is another point y € N;;—; E,

Thend(xy,y) < diam(F),) , for every n .Since diam(E,) — 0, therefore

d(xy,y) = 0, hence x, = y.

Conversely, let the given condition hold and (x,) be a Cauchy sequence in
X .Foreach ne N, let A, = {x,,, X, 41, Xy 42, --- }. Obviously 4; 2 A, 2

A3 2 ---and hence 4; 2 4, 2 A5 .... Since (x,,) is Cauchy, diam(4,) -
0 ,therefore diam(4,) — 0 .By the hypothesis, N, 4, consists of a

single point say x, .Thus, d(x,,x,) < diam(4,,) since xy,x, € 4,, , but
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diam(A,) - 0, then d(xy,x,) > 0asn — o . Hence, (x,) converges

to xg in (X,d). m

Cantor's Intersection theorem is extended to characterize

completeness of a 2-metric space which is defined as follows:

Definition(1.1.20 )[28]: Let X be a non-empty set and let ¢ be a mapping
from X X X X X to [0,00) i.e. o0:X3 - [0,00) satisfying the following

conditions:

(i) For every pair of distinct points a, b in X there exists a point ¢ € X such
that o(a, b, c) # 0.

(i1) a(a, b,c) = 0 only if at least two of the three points are same.

(iii)a(a,b,c) = a(a,c,b) = a(b,c,a) forall a,b,c € X.

(ivia(a,b,c) < o(a,b,d) +d(a,d,c)+a(d,b,c) for all ab,c and
d € X.

Then o is called a 2-metric on X and (X, o) is called a 2-metric space.

Theorem(1.1.21)[49]: Let (X,p) be a metric space, then (X,p) is
complete if for every continuous function F:X - RU {+},F # +oo ,
bounded from below, and for every € >0, there is a point v € X

satisfying:
()F(v) <infy F +€ and

(iForallw = v,F(w) + ep(v,w) > F(v).
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Proof: Let (y,) be a Cauchy sequence in X , and let F:X — R given by
F(x) =lim,_, p(y, ,x) . This function is continuous, and infy F = 0,
since (y,,) is Cauchy. We need to show that (y,,) converges in X. Choose
any 0 < e < 1, then by (i) we have F(v) < € for a point v € X . Also for
all w # v we have F(w) + ep(v,w) > F(v). Now by the definition of F
and the fact that (y,) is Cauchy, we can take w = y, for p large enough
such that F(w) is arbitrary small and thus: p(w,v) < e +n foranyn >0
Now using (ii), the result is F(v) < 2. Repeating the argument : F(v) <
e2and p(w,v) <e?+n foranyn > 0.So we get F(v) < 3 Repeating
this till concluding that : F(v) < €™ , for all n > 1 where n € N. Since
0<e<1,wehave F(v) =0,i.e lim,_,p(y, ,v), this means that (y,)
converges to v by definition (1.1.3) .So the metric space (X,p) is

complete.m

Other characterizations of the metric completeness can be found in

[16,38,55] .

Theorem (Cauchy Convergence Criterion) (1.1.22) [47]: In the metric
space (R,d) where d is the usual metric( d(x,y) = |x —y|,Vx,y ER),

a real sequence is convergent iff it is a Cauchy sequence .

Proof: Let (x,,) be a convergent sequence in R ,then lim,,_,, x,, = L for

some real number L. That is, Ve > 0 there exists N € N such that for all

n=N, d(x,, L) < % ) So if n,m=>N we have

d(x,, X,) < d(x,, L) +d(L, x,,)

<E+E_
272°¢
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Which means that the sequence (x,,) is Cauchy.

Conversely, Let (x,) be a Cauchy sequence in R. Then there exists
N € N such that for all n,m = N,d(x,,x,,) <1. So for all n > N we

have d(x,,, xy) < 1 which implies that |x, | < |xy| + 1.

Let M = max{|xq|, |x,|, ..., [xy_1], [xy| + 1}, then |[x,| <M for all
N € N, that is the sequence is bounded. But every real sequence contains a
monotonic subsequence. Now, this subsequence is both monotonic and and
bounded, hence convergent. By theorem (1.1.7), the whole sequence

converges. m

Example (1.1.23)[52]: the metric space (R, d) where
d(x,y) =|x—y|,Vx,y € R is a complete metric space since every

Cauchy sequence converges in R by theorem (1.1.22).
1.2. Subspaces of Complete Metric Spaces:

Subspaces of a complete metric space are characterized in this
section. Definitions and theorems concerning subspaces of a metric space

are presented before discussing this topic.

Definition (1.2.1)[6]: (Y,dy) is a metric subspace of the metric space

(X,d)whenY € X and dy(a,b) = d(a,b) foralla,b €Y.

Theorem (1.2.2)[34]: let (y,,) be a sequence in a metric subspace (Y, dy)
of a metric space (X,d). Let y €Y, the sequence (y,) convergesto y in

(Y,dy) iff it convergesto y in (X, d).
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Proof: For yeY,ACY is an open set in the metric subspace (Y,dy)
containing y iff A = B nY for some open set B in (X,d) such that y € B.
Thus, if (y,,) is a sequence in Y, then the sequence is eventually in every

open set containing y in (Y, d,) iff it is also in every open set containing y

in(X,d). m

Theorem (1.2.3)[34]: let (y,,) be a sequence in a metric subspace (Y, dy)

of a metric space (X, d). Then (y,) is Cauchy in Y iff (y,) is Cauchy in X.

Proof: For any y,y € Y, we have dy(y,y") = d(y,y). Hence, if (y,) is a
sequence in Y then dy (y;, ;) = d(y;, ;) Vi,j € N.m

Theorem (1.2.4)[43]: A convergent sequence of points in a metric space

(X, d) is a Cauchy sequence.

Proof: let (x,) be a sequence of points in (X, d) that converges to x € X.
Then, for any € > 0,3 NeN such that d(x,x,) <§ , for all n > N.

Hence if n,m >N , then d(x,,x,) Sd(xn,x)+d(x,xm)<§+§=
€.m

Definition (1.2.5)[34]: The metric space (X, d) is called incomplete if it is

not complete.

Example(1.2.6)[34]: Consider the metric subspace X = (0,1] of the metric

space R with its usual metric d . Then (X, dy) is incomplete .

Proof: Consider the sequence (71—1) ,n € N .It is a sequence of points in X

The sequence (%) converges to 0 € R, then it is Cauchy in R by theorem
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(1.2.4). It is also Cauchy in X by theorem (1.2.3).But it doesn't converges

toany pointinXas0 ¢ X. m

Example(1.2.7)[34]: Consider the metric subspace X = Q of the metric
space R with its usual metric d . Then, (X, dy) is incomplete.
Proof: Consider the sequence (x,)in X, where x, = (1+%)”.This

sequence converges to e in R, hence it is Cauchy in R by theorem(1.2.4),
so it is also Cauchy sequence in X by theorem (1.2.3) .But it doesn't

converges to any point in X since e is irrational number.m

Theorem(1.2.8)[34]: A convergent sequence has a unique limit in a metric

space (X,d) .

Proof: Let (x,) be a convergent sequence in the metric space (X,d) to

two distinct points x , y.Then 3m; € N such that d(x,,x) < %,VE > 0.

Also, 3m, € N such that d(x,,y) < %,VE >0 .Let m = max{m{, m,}.
Then we have :

d(x,y) <d(x,x,) +d(x,,y) <§+§= €.50,0<d(x,y) <eVe>0.
Then d(x,y) = 0 = x = y which is a contradiction.m

The following theorem characterizes complete metric subspaces of a

complete metric space.

Theorem (1.2.9)[52]: Let (X,d) be a complete metric space. Let (Y, dy)

be a metric subspace of X . Then, Y is closed in X iff (Y, dy) is complete .
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Proof : Let (X, d) be a complete metric space , Y be closed subset of X .Let
(y,,) be a Cauchy sequence in Y, then it is also a Cauchy sequence in X.
But (X,d) is complete, so (y,,) converges to a point x € X then( by
theorem(1.1.15)) the sequence (y,,) converges to a point x € Y .Thus
(Y,dy) is complete. For the converse: Let (Y,dy) be complete. If c €
Y then there exists a sequence (y,) of points in Y that converges to c € X
(by corollary 1.1.16) . Then, (y,,) is a Cauchy sequence in X, hence Cauchy
in Y which is complete. So (y,,) converges to c € Y . Thus Y is closed in

X.m

Remark(1.2.10): It is now easy to prove that the subspaces (0,1] and Q
discussed in the previous examples (1.2.6) and (1.2.7) respectively are
incomplete, since (0,1] and Q are not closed in (R, d) where d is the usual

metricon R .
1.3. Metrically Topologically Complete Space:

In spite of the fact that completeness is a metric property rather than
a topological one, completeness can be considered also in topological
spaces. This section discusses and elaborates the former idea supported

with examples.

Definition (1.3.1)[56]: A topological space (X,t) is called metrizable if

there exist a metric d on the set X that induces the topology t of X.

Definition (1.3.2)[6]: Two metrics d, p on a set X are called equivalent if

they induce the same topology.
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Remark(1.3.3)[56,6]:

(1)A topological space (X, 7) may not be metrizable, that is no metric on X
induces the topology of X. For example let X ={a,b} and let
T ={0,{a},X}. Then, 7 is a topology for X, and it is not metrizable. For
suppose p is a metric on X which produces t. a # b so, p(a,b) =r > 0.
Now, B (b, %) = {b}, so {b} is an open set, contrary to the definition of t.
Hence, no p can produce this topology on X. With this topology, X is

sometimes called the Sierpinski space.

(i1)A topological space that is induced by a metric d, can also be induced
by other equivalent metrics. For example, the metrics

d(x,y)

pu(x,y) = min{ud(x,y)} for p>0 and plxy) =0 are

equivalent to the metric d on a set X.

Definition (1.3.4)[19]: A topological space is said to be metrically
topologically complete if there exists a complete metric inducing the given

topology on it. These spaces are also called topologically complete.

In other words , if a topological space X is metrizable and induced by
a metric d , then X is topologically complete if d is complete or if an

equivalent complete metric for X exists.

Example (1.3.5)[6]:Consider the topological space (R,7) where t is the
usual topology on R. This topological space is metrizable and is induced by

the following equivalent metrics:
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x y

1+|x| 1+]|y|

d.(x,y) =|x—y| and dg(x,y) = At is proven in example

(1.1.23) that the metric d, is complete on R while the metric dg Iis
incomplete metric on R, for the sequence (n) is Cauchy with respect to dg,
but it doesn't converge to any point in R .The topological space (R, ) in
this example is metrically topologically complete .The existence of one
complete metric for the topological space is enough to call it metrically

topologically complete.

Some subspaces of a metrically topologically complete space are

metrically topologically complete while others are not.

Example (1.3.6)[19]: Consider the subspace X = (0,1) of the space (R, 7)
where 7 is the usual topology on R. The space (R,t) is metrically
topologically complete induced by the usual metric d, which is complete.
The metric d,, is not complete on X because X is not closed set in the
metric space (R,d,) . But this subspace X is topologically complete (this
is proven in the following pages) ,that is a complete metric for X must

exist.

Definition (1.3.7)[56]: A Gs-set in a space is a set which can be expressed

as the intersection of a countable family of open sets.

The following theorem characterizes the topologically complete

subspaces of a topologically complete space.

Theorem (1.3.8)[6]: If Y is a topologically complete space then, a subset

A of Y is topologically complete iff Aisa Gs-setinY .
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Proof: [6 page 307].

Corollary (1.3.9): If A is a closed subset of a topologically complete space

X, then A is a topologically complete subspace.

Proof[56]: Any closed set in a metric space is a Gg-set .Then it is
topologically complete by theorem (1.3.8). More over, if d is a complete

metric for X, then d, is a complete metric for A .m

Corollary (1.3.10): Any open subset of a topologically complete space is

topologically complete.

Proof: An open set in a metric space is a Gs-set .Then it is topologically

complete by theorem (1.3.8).m

Remark (1.3.11): The subspace (0,1) discussed in example (1.3.6) is
topologically complete by corollary (1.3.10) since(0,1) is open set in

(R, T)where t is the usual topology.

Example (1.3.12)[19]: The set X of irrationals is a topologically complete
subspace of the topologically complete space (R, t)where t is the usual
topology since X is a Gg-set in R. While the set Q is not topologically

complete since Q isnot a Gs-setin R..
1.4.Examples:

The aim of this section is to shed light on three examples of

complete metric spaces. These examples play a pivotal role in analysis.
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Lemma(1.4.1)[5]: If (x,,) is a sequence in X , where (X,d) is a discrete
metric space, then the sequence (x,,) converges in X iff there exist N € N

such that x,, = x,¥n > N ,for some x € X.

Proof: Let (x,) be a sequence of points in X that converges to x € X,
then, 3N € N such that d(x,,x) <e,Ve >0andvVn > N. Lete = % , then

1
d(x,,x) <72 X, =x,Ynz=N.

Conversely, If x,=x,vyn>=N, for some NEN, then

d(x,,x) =0<¢Ve>0.S0 (x,) convergesto x. m
Lemma (1.4.2)[5]: Any discrete metric space (X, d) is complete.

Proof: If (x,) is Cauchy sequence in (X,d), then Ve > o,3ny, € N such
that nm =>ny = d(x,,x,) <€. For 0<e<1=x, =x, =x for a
point x € X. Thus, Yn>n, = x, = x, and so (x,) converges to x by

lemma (1.4.1),hence the discrete metric space is complete. m

Corollary(1.4.3)[56]: The discrete topology on a set X is metrizable, being
the topology produced by the discrete metric on X which is complete by
lemma (1.4.2).Thus, the discrete topology is metrically topologically

complete.

Theorem(1.4.4)[45]: Let x = (xq,X3, e, Xp), Y = V1, V2, ., V) bE two
1
points of R™, then d,(x,y) = [XI-,(x; — y;,)?]z is a metric on R", called

the Euclidean metric .
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Theorem(1.4.5)[33]: Let (x¥),k € N , be a sequence in (R",d,), x =
(x4, %y, .., X,) Where x; ER Vi=1,2,..,n. Then, the sequence (x*)
converges to x iff the sequence (x¥) converges tox; in (R, d,) for each

i=12,..,n.

Proof: Suppose (x*) converges to x, then Ve > 0,3N € N ,such that

dy(xk,x) <efork = N. |xf — x| = /(xlk —x;)%2 < d,(x*,x) <€, then

(x¥) converges to x; foreachi =1,2,...,n.

Conversely, if the sequence (x¥) converges tox; in (R,d,) for each

i =1,2,...,n, then for every € > 0, there are positive integers N; such that
|xF —x;| <= forall k > N; .
Vn

Letting N = max{N;:i = 1,2,...,n}, we have |xf —x;| < Lf , for all
n
1

k = N.Now, d,(x*,x) = [Z?=1(xik - xi)z]% < [ -1 (iﬁ)z]E = €.

Therefore, d,(x*,x) <€, forall k > N and (x*) converges to x.m

Theorem (Completeness of the Euclidean Space(R", d,))(1.4.6)[18]:

(R",d,) is a complete metric space.

Proof: Let (a*) be a Cauchy sequence in R™. Let € > 0. Then there exist a
positive integer N such that, for k,m > N, d,(a*, a™) =
D (x — yl-)z]% < e.If j is appositive integer with 1 < j < n, we have
laf —a*| < d(a*,a™) <€, for k,m = N. Thus for 1 < j <n, the real

k -
sequence (a;)r—; is Cauchy sequence and hence converges , for all
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j=1{1,2,...,n}. Then the sequence (a*) converges by theorem (1.4.5)

.Therefore R" is complete. m

The Euclidean space is also complete in the square metric

d,(x,y) = max{|x; — y;|,i = 1,2,...n},x,y € R" for the details see [35].

Remark (1.4.7)[35]: The metric d, induces the product topology on R",

so the product topology on R™ is metrically topologically complete.

It is already proven that R™ is a complete space. Analogously,

R® the set of all real sequences, is also complete when considered with

the metric:

o0

B 1 |xn _ynl
d(x,y) = ; <E[1 + |x, _yn|]>

for x = (X, n>1,Y = (W )n>1- The following example explains the details.

Example (Completeness of Frechet's Sequence Space) (1.4.8)[34]: Let
(X,d) denote the frechet's sequence space, where X consist of all real

sequences, and the metric d is given by

d(x,y)

M8

~—Wn
(Tl' !1 + |X ynl]) forx = (xn)n>1 Y (yn)n>1

Then:

(i) disametricon X.

(i) (X,d) is a complete metric space .



22

Proof (i) (Same proof can be found in [45]): The series

2(%[1 fo:annID

converges . In fact

i |Xn_Yn| <i
n!'|1+[x, —y,l|  n!

The series Y.;°—4 (ni) converges, and so, by the Weierstrass M-test,

i(ill )

converges. It is immediate that d(x,y) = 0 and that d(x,y) =0 iffx =y.

Also, d(x,y) = d(y, x).

Let

|Xn_Yn|
1+ |Xn _Ynl

dn (Xn’ YD) =

Since d,, is a metric on R, then for all x,,,y, andz, in R,
dy (%, 2p) < dp Xy, Yn) + diy (Y0 Zn)
Sofor x = (Xn)nx1,Y = ndnz1,2 = (Zy)n>1 ,We have:
d(x,z) <d(x,y) +d(y,z)

Thus d is a metric on R®.
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(ii) (This proof can be found in [34]):Let {x,:n € N} be a Cauchy
sequence in  R®, where x,=(]x3,..) for n=12,..
Let € > 0 be given and let r € N be arbitrary. Choose €; such that

€

0< €1 < rte)

Then there exists n; € N such that for m,n >n, ,

><61

A%y, x,) < €1, 1.8

2

k=1

1] P =g
K |1+ [ —x]

Then for each r € N,

1 |x™ —xP €17!
— <g=2>x"—X'|<——<e€
rl |1+ |x™ —xP| 1-rleg
for all m,n > n, (since e, < —— ).Hence for each r € N , the sequence

ri(l+e)
{x':n € N} is Cauchy in (R,d,) . By completeness of R , the sequence
convergesto alimitt, (say) inR.Letx ={t,:r € N} € R“ .

] . . 1
Now, let € > 0 be given. Since the series Zf=1; converges, choose m € N

sufficiently large such that
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Since lim,,_,, x =t, (forr =1,2,...), 3k € N such that
It, — x| < j Vn > kandforallr = 1,2, ..., m. Therefore,

m

1 |t —xP € €

— <m-—==-..(2
2<r![1+|tr—x?| Mom ™~ 2 2)

r=1

hold forall n > k .

Adding (1) and (2), then d(x,x,)<e , Yn=k , proving that

lim, ., x, = x . Hence, the space (R, d) is complete.m
1.5. Completion:

Cauchy sequences are all convergent; they converge either to points
in the metric space under consideration or to points that do not belong to
the space under consideration, but they are members of another larger
metric space. So, imbedding an incomplete metric space in to a larger
complete metric space that preserving the distance function, and the

metrical properties of the incomplete space is possible.

Definition (1.5.1) [6]: Amap f:X — X between metric spaces (X, d) and
(X', d) is called an isometry if d'(f(x), f(y)) = d(x,y) forall x,y € X.

The mapping f is also called an isometric embedding of X into X',

Definition (1.5.2) [48]: The spaces (X,d) and (X,d) are said to be

isometric spaces if there exists a surjective isometry f: X — X

Remark (1.5.3)[45]: An isometry f:X — X between metric spaces (X, d)

and (X', d") is one-to-one.
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Proof: Letx,y € X, f(x) = f(y) = d’(f(x),f(y)) = 0,thend(x,y) =0

and so, x =y.m

Definition (1.5.4)[6]: A binary relation R inaset Aisasubset R € A X A.

(a,b) € Riswrittena ~ b.

Definition (1.5.5)[6]: A binary relation R in A is called an equivalence

relation if:

(i). Va € A : a~a (reflexive).

(ii). (a~b) = (b~a) (symmetric).

(iii). (a~b) A (b~c) = (a~c) (transitive).
If a ~ b, we say that a and b are equivalent.

Definition (1.5.6)[6]: Let R be an equivalence relation in A. For each

a € A, the subset [a] = {b € A| b~a} is called the equivalence class of a.

Lemma (1.5.7)[6]: Let R be an equivalent relation in A, and let a, b € A.

Then:

(i). U {[a]| a € A} = A.

(ii). If a and b are equivalent, then [a] = [b].

(iii). If a and b are not equivalent, then [a] N [b] = @.

Lemma (1.5.8)[57]:Let (X, d) be a metric space, then for any quadruple of

points a, b, u and v of X, the following inequality holds:
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|d(a,b) —d(u,v)| <d(a,u) +d(b,v)
Proof: By the triangle inequality and the symmetry properties:

d(a,b) <d(a,u) + d(u,v) + d(b,v).
Therefore, d(a,b) —d(u,v) <d(a,u) +d(b,v)
Also:

d(u,v) <d(b,v) +d(a,b) + d(a,u).
From which, d(u,v) —d(a,b) < d(a,u) +d(b,v).
Thus: |d(a,b) —d(u,v)| <d(a,u) +d(b,v). =

The importance of complete metric spaces is much more than
incomplete ones. By adding points that are the limits of the noncom vergent
Cauchy sequences, an incomplete metric space can be imbedded in to a

complete metric space.

Definition (1.5.9) [34]: A subset A of a metric space (X, d) is called dense
in X ifA=X.

Definition(1.5.10)[15]: A metric space (X, p) is called a completion of the

metric space (X, d) if the following conditions are satisfied:
(a) there is an isometric embedding f: X —» X
(b) the image space f(X) is dense in X

(c) the space (X, p) is complete.
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The main theorem about the completion of a metric space is the

following:

Theorem (1.5.11) [45]: Every metric space has a completion and any two

completions are isometric to each other.

Proof: The proof will be provided in steps. Let (X,d) be a metric space.
Step(1): Let X denote the set of all Cauchy sequences in X, and let ~ be a

relation in X defined as follows :

For (x,), ) € X, ()~ () i limy o, d (o, ) = 0.

This relation is :

(i) reflexive: For(x,) € X , (x,)~(x,), since d(x,,x,) = 0for every

n € N and so, lim,_, . d(x,,,x,) = 0.

(ii)symmetry: For (x,), (y,) € X, if  (x,)~(,), then

lim, ., d(x,,y,) =0, therefore, lim,_,d(y,,x,)=0 , so that

(yn)~(xn) .

(i) transitivity: For (x,.), (y,), (z,) € X, if (x,)~(y,) and  (y,)~(z,),

then lim,,_,, d(y,,x,) = 0and lim,_,,d(y,,z,) =0, but:
0 < d(xp, zy) < d(xy, Yu) + d(Vns 24)

For all n € N, it follows that

0 < limd(x,,z,) <limd(x,,y,) + limd(y,,z,) =0
n—0 n—0

n—0

so lim,,_,, d(x,, z,) = 0. Thus (x,)~(z,).
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By (i),(ii) and (iii); ~ is an equivalence relation and X splits into

equivalence classes.

Step(2): Let X denote the set of all equivalence classes; the elements of X
will be denoted by %, y, etc. If a Cauchy sequence (x,,) has a limit x € X,
and if (y,) is equivalent to (x,), then lim,_,y, =x ,since
d(y,, x) < d(y,, x,) + d(x,, x).For the nonequivalent sequences (x,) and

(), then lim,_ x,, # lim,,_,,, y,. For if

limx, = limy, =x
n—-oo

n—-oo
then, 0 < d(x,,y,) < d(x,,x)+d(x,y,)

and so, lim,,_,, d(x,,y,) = 0, contradicting the fact that (x,,) and (y,,) are

two nonequivalent sequences.

Step(3): An element (x,)) € ¥ of an equivalence class ¥ € X is called a

representative of x.
Define: p:XxX->R by

p(x,y) = lim d(xy, yn),

where (x,,) and (y;,) are two representatives of ¥ and y , respectively. By
lemma (1.5.8), |d(x,,, y,) — d(xp, Y| < d(x,, %) + AV, V1), and so,
the sequence (d(x,,y,)) is a Cauchy sequence of real numbers in the
complete metric space (R, d,) where d, is the usual metric on R. Hence,

lim,, ., d(x,,y,) exists.
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Now suppose that (x,,), (x,,) represent & and (y,,), (v,,) represent .Then:
d(xn, Yn) < d(xy, %) + A0y, Y1) + AW, V)

and,
d(xn, yn) < d (o, ) + d 0, ¥0) + Gy V),

Taking the limits as n — oo of these inequalities, and using the assumption

that (x,,)~(x,) and (y,,)~(¥,), it follows that
lim d(x,,y,) = lim d(x,, y,) -
n—o0 n—oo

Thus, p is well-defined.

p satisfies the following properties on X :

(i) p(x,¥) =0, since d(x,,y,) =0 for all n, it follows that

lim, . d(x,,y,) = 0.1fX =, then p(%,y) = lim,,_,, d(x,, y,),

Where (x,) € X, () €Y and (x,)~(). So,limy, ., d(x,,¥,) = 0.
Therefore, p(%,y) =0. Conversely, if  p(x,y)=0, then

lim,, . d(x,,y,) = 0and hence (x,)~(y,), sothat X = ¥.
(i) p(&, ) = p(F, %) 88 d(xy, ¥) = d (¥, %,)-
(iii) For (x,) € %, (y,) € y and (z,) € Z ,where %,7,Z € X,

p(%,2) = lim d(x,, z,)
n—oo

S 11m7’l—>00 d(xn’ yn) + hmn—)oo d()’nrzn)
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=pX,5) +p(F,2).
Thus p is a metric on X.

Step(4): Define a mapping f:X —» X as follows: f(x) = %, where ¥
denotes the equivalence class each of whose members converges to x. Thus
the constant sequence x,, = x,Vn € N is a representative of X. This map is

one-to-one. The metric p has the property that

p(%,5) = p(f(x), f(¥)) =d(x,y) for all x,y € X, i.e, f is an isometric
embedding of X into X.

Step(5): To show the density of £(X) in X, let (x,) be a representative of

an arbitrary point ¥ € X. For any k € N, there exists a positive integer n,

such that d(x,,x,,) <% for n > n,. Let y, be the equivalence class

containing all Cauchy sequences converging to x,,, i.e., Ji =f(xnk).

~ ~ ~ . 1
Then p (x,f(xnk)) = ,D(X,Yk) = hmn—>oo d(xn;xnk) < ;
Thus, X = limy_., f( %y, ).

Step(6): To prove that ()? p) is complete, Let (X,,) be a Cauchy sequence

in X. Since each %, is the limit of a sequence in f£(X),3y, € f(X) such
that p(%,, , 3,) < % Then the sequence (¥,) can be shown to be Cauchy in

X by arguing as follows:

PG, V) < p(n, %) + p(Xn, %) + p (X, i)

< =+ (s )+~
< — 4 p (%, %) +—.
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The right hand side can be made as small as desired by choosing m and n
large enough, for (%,) is Cauchy. Since j, € f(X),3y, € X such that
f(y,) = 3,. The sequence (y,,) in X must be Cauchy because (¥,) is a
Cauchy sequence in X and f is an isometry. Therefore, (y,) belongs to

some equivalence class ¥ € X. Now, for any € > 0:
o . . T -
p(xn,x) < p(xn 'yn) + p(anx) < E + p(Yn»x)

and

p(Fn, %) = p(f (1), X)) = Y}I_IBO AdWn Ym) S €

for sufficiently large n, since (y,,) is a Cauchy sequence in X. This implies

that lim,, ., p(%,, %) = 0, thus (X, p) is complete.

Step(7): Finally, let (X*,d*) and (X**,d*™) be any two completions of
(X,d). To show that (X*,d*) and (X**, d**) are isometric:

Let x* € X* be arbitrary. By the definition of completion, 3(x,,) € X such
that lim,_ x,, = x*. The sequence (x,) may be assumed to belong to
X*.Since X** is complete, (x,) converges in X** to x**, say, i.e.,
lim, ., x, =x*. Define ¢:X* - X™ by setting ¢(x*) = x™.It is clear
that the mapping ¢ is one-to-one and does not depend on the choice of the
sequence (x,) converging to x*. Moreover, by construction, ¢ (x) = x for
x € Xandd™(p(x*),p(y*) =d*(x*,y*) forall x*,y* € X*. Clearly, ¢ is

onto.

This implies that any two completions of a metric space are isometric.m
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Example(1.5.12)[41]: With respect to the usual metric on R:

(i) The completion of R is R itself.

(i1) The completionof Q is R .

(iii) The completion of (—oo, b) is (—x, b].
(iv) The completion of (a, b) is [a, b].
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Chapter Two
Complete Function Spaces
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Introduction

A function space is a topological space whose points are functions.
There are different kinds of function spaces, and several topologies that can
be defined on a given set of functions. Completeness of the function space
IS a basic property which is the focus of this chapter. As an application, a
construction of the well-known Peano space —filling curve is discussed.

The set of all functions from a set X to a set Y is denoted by F(X,Y).

2.1.The Space F(X,Y) :

The overall aim of this section is the study of topologies defined on
a given set of functions: the product topology, the set-set topology, and the

uniform (metric) topology.
The Product Topology:

To study the topological products of arbitrary families of topological
spaces it is necessary to discuss briefly some related definitions and

propositions.

Definition(2.1.1)[19]: Let {X,: a € A} be an indexed family of sets. Then,
its Cartesian product, denoted by [[,c4 X, is defined as the set of all
functions x from the indexing set A in to U,e4 X, such that x(a) € X, for

alla € A. That'is, [[,ea X, = {x: A > Uges X, |x(a) € X, Va € A}.
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Definition(2.1.2)[56]: The map mg:[[qea Xy = Xp, defined by mp (x) =
x(B), is called the projection map of [[,ec4 X, On Xz, or simply, the Sth

projection map.

Definition(2.1.3)[19]: A box in [[,e4 X, is a subset [l es By Of [lpea X,
where B, € X,, a € A. For j € A, B; is called the jth side of the box
[1aea By- Abox [1,e4 B, is said to be large if all except finitely many of its
sides are equal to the respective sets X,'s, that is to say, if there exist
J1,J2, -+ jn € A such that B, = X, for all @« € A —{ji,Ja, ..., jn}- Thus, a

large box is a box which has finitely many 'short' sides.

Definition(2.1.4)[19]: A wall in [[,c4 X, is a set of the form nj‘l(Bj) for

some j € A and some B; < X;. We also say this set is a wall on B;.

Proposition(2.1.5)[19]: A subset of [[,e4aX, is a box iff it is the
intersection of a family of walls. A subset of [[,c4 X,, IS a large box iff it is

the intersection of finitely many walls.

Proof: Suppose B = [],e4 B, Where B, c X, for all @ € A is a box in
X =TlgeaX,. Fora € A, let W, = n;1(B,). Then each W, is awall in X.
Claim: B = Ngea W, . For x € B iff the ath coordinate of x belongs to B,
for all « € A, or, x € B iff m,(x) € B, for all « € A. Hence x € B iff
x € W, for all « € A. Thus B can be written as an intersection of walls.
Conversely, suppose {W;:i € I} is a family of walls in X. Then for each
[ € I, there exists j(i) € A such that W, = nj‘(}) (B; (i) for some subset B; ;)

of X;;).For each i € I fix such j(i) € A and B;;y < X; ;).
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Now for j € 4, let G; =n{B;;y:i € 1, j(i) = j}.In case there are no i's in I
for which j(i) = j, G is to be the set X;. Let B be the box [[,e4 C,. Claim:
B =N;e W;. Suppose x € B and i € 1. Let j = j(i). Then m(x) =
m;(x) € G € B;;) and 50 x € 7, ;)(B; ;) ,0f, x € W;.Hence B € N W;.
Conversely suppose x € W; for all i €l. Let j €A Then m;(x) €
B;»for all i € I for which j(i) = j. Hence m; (x) € G for all j € A. Hence
x(J)EG for all jEA So x €B =]lgeaC,. Hence N;gW; € B.

Combining the two together, then the intersection of walls is a box.

The proof of the second assertion is similar to the above except that we

take into account only those indices j € A for which the jth side is possibly

not equal to the entire set X;. m

Proposition(2.1.6)[19]:

(i)The intersection of any family of boxes is a box .

(i) The intersection of a finite number of large boxes is a large box.

Proof: (i)Every box is an intersection of walls. Therefore an intersection of
boxes is an intersection of intersections of walls and hence an intersection
of walls. But an intersection of walls is a box. So the intersection of a

family of boxes is a box.

(i) A large box is the intersection of finitely many walls. Hence the
intersection of finitely many large boxes will again be the intersection of

finitely many walls and hence a large box. m
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Let each set X, be a topological space with the topology 7,. Then

a topology can be defined on the product set [[,e4 X, -

Definition(2.1.7)[56]: Let{(X, ,t,):a € A} be an indexed collection of
topological spaces. The topology on [[,e4 X, that is obtained by taking

sets of the form [[,e4 Uy, Where:

(U, isopenin X,, for each a € A.

(it)For all but finitely many coordinates, U, = X,,.

as a base for the open sets is called the product topology.

Remark(2.1.8)[56]:The set [[,e4a U,, Where U, = X, except for a =

ay, as, ..., &, n € N, can be written as:

[MeeaUs = 5 (U,,) N1z} (Uy,) N o0 (U, ). Thus, the product
topology is that topology which has for a subbase the collection

{n;'(U,):a € A, U, openinX,}
This topology is defined in terms of large boxes as follows:

Definition(2.1.9)[19]: Let {(X, ,7,):a € A} be an indexed collection of
topological spaces. The family of all large boxes all of whose sides are
open in the respective spaces is a base for a topology on [[,c4 X, called

the product topology.

Example(2.1.10)[56]: Consider the case, X, =X for each o € A, then

[Toea X, 1s just the set F(A,X) of all functions from A toX.The product
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topology on F(A,X) is obtained by taking the collection: {n;1(U):0 €

A, U open in X} as a subbase .

Note(2.1.11)[35]: The subset m;1(U) of F(A,X) can be written in the

following form:

{f:f e F(AX),f(a) €U}
This set is denoted by (a, U).
The set-set topology:

The set-set topology is defined on the set F(X,Y),where X and Y
are topological spaces. The most commonly set-set topologies are

discussed.

Definition(2.1.12)[42]: Let (X,7) and (Y,t*) be topological spaces. Let
U and V be collection of subsets of X and Y, respectively. Let F(X,Y) be
the collection of all functions from X into Y. Define, foru € U and v €V,
(u,v) ={f e FXY): f(u) € v} Let
S(U,V) ={(w,v):ueU,veV}lf S(U,V) is asubbase for a topology on

F(X,Y), then it is called a set-set topology.

Some of the most commonly discussed set-set topologies are the

point-open topology, and the compact open topology.

Definition(2.1.13)[42]: With the notations of definition (2.1.12). If U is the
collection of all singletons in X and V = t* then the set-set topology on

F(X,Y) is called the point-open topology.
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The point-open topology is also defined on F(X,Y) even if X is just

a set not a topological space.

Notation(2.1.14)[31]: Let X be a set and Y be a topological space. For
a€X and v €Y the notation (a,v) is used to describe the subset
{f eFXY): f(a) e v} of F(X,Y) determined by the point a and the

setv.

Definition(2.1.15)[31]: Let X be a set and Y be a topological space. The

topology on F(X,Y) having the subbase:

{(a,v):a 15 @ point in X and v is open set in Y} is called the point-open

topology.

Definition(2.1.16)[31]: Let X be a set and Y be a topological space. Let
(f,,) be a sequence of functions in F(X,Y). Then (f;,) converges pointwise

to fy € F(X,Y) iff for each fixed x, € X the sequence (f,(x,)) converges

in the topological sense to the point f;(x,) inY.

The point-open topology is called the topology of pointwise

convergence. The latter's name goes back to the following theorem:

Theorem(2.1.17) [31]: Let X be a set and Y be a topological space. Let
F(X,Y) have the point-open topology. Then the sequence (f,,) in F(X,Y)
converges in the topological sense to f, € F(X,Y) iff the sequence (f,)

converges pointwise to the function f, € F(X,Y).
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Proof: Let(f,) be a sequence of functions in F(X,Y) which converges in
the topological sense to the function f, € F(X,Y). Let x, € X and let v be
any open set in Y containing fy(x,) . Then the set (x,,v) is a subbasic
open set in F(X,Y) containing f,, which implies there exists an ny € N
such that for all n > ny, f,, € (xq,v) ,or, forall n > ny, f,(xy) € v, which
proves that the sequence (f;,) converges pointwise to the function f; €

FX,Y).

Conversely, suppose that the sequence (f;,) converges pointwise to
the function f, € F(X,Y) and let (x,,v) be any subbasic open set in the

space F(X,Y) which contains f;.

Then f,(xo) € v by definition of the point-open topology and, due to
the fact (f;,) converges pointwise to the function fj, there exists an ny € N
for which if n = ny, then £, (x,) € v. So, the sequence (f;,) converges in

the topological sense to f;.

Remark(2.1.18)[35]: Let X be a set and Y be a topological space. The
topology of pointwise convergence on F(X,Y) is just the product topology

which is discussed in example (2.1.10).

Proof: The subset (a, v); a is a point in X and v is open set in Y ( which is
the subbasis element for the topology of pointwise convergence), is just the
subset m;1(U) of F(A,X) (which is the subbasis element for the product

topology on F (A, X) as illustrated in note (2.1.11). m
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A deep study of the point-open topology on the set of all continuous

real-valued functions is found in [21].

The other set-set topology defined on the set F(X,Y) is the compact-

open topology which made its appearance in 1945 by R. H. Fox in [9].

Definition(2.1.19)[42]: W.ith the notations of definition (2.1.12). If U is
the collection of all compact subsets of X and V = t*, then the set-set

topology on F(X,Y) is called the compact-open topology.

The compact-open topology is also defined on the set of continuous

functions from the space X to the space Y, denoted by C(X,Y).
Definition(2.1.20)[37]: The sets of the form:
O, V)={feCY):fU)<V},

where the set U is a compact subset of X and I/ is an open subset of Y, form

a subbase for a topology on C(X,Y) called the compact-open topology.

The compact-open topology on C(X,Y)is very important; it turns
out to have useful properties in algebraic topology. This topology is

defined in the following way:

Definition(2.1.21)[44]: A family n of subsets of a topological space X is
called a network on X if for each point x € X and each neighbourhood Uof

x there exists P € n suchthatx e P € U.
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Definition(2.1.21)[44]: A network n on a space X is said to be compact if

all of its elements are compact subspaces of X.

Definition(2.1.22)[44]: Let X and Y be topological spaces, and n a
compact network on X. Let the set [P,V] = {f € C(X,Y): f(P) € V} where
P en and V is open set in Y.Then the family {[P,V]} is a subbase for a

topology on C(X,Y) called the compact-open topology.

Proposition (2.1.23)[46]: (i)The compact-open topology is always finer
than the point-open topology. (ii) If X is discrete space, then the compact-

open topology and the point-open topology are identical for all Y.

Proof: (i) This is immediate from the fact that the defining subbase for the
compact-open topology contains a subbasis for the point-open topology,
since each one-point subset of X is compact.(ii) If X is discrete space, then
the only compact sets in X are the finite sets (if A4 is an infinite subset of X
then the collection C = {{x}: x € A} is an open cover of A which has no
finite subcover, since if we remove any single element of C then it will not

cover A, that means A is not compact).

In [26] a study of the compact-open topology on the set of all real-
valued functions defined on X, which are continuous on compact subsets of

X is presented.
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The Uniform Metric Topology:

The uniform metric topology (or the uniform topology) is one of the
most important topologies defined on F(X,Y) where X isa setand Y is a

metrizable space.

Definition(2.1.24)[46]: Let X be a set and let Y be a metrizable space
induced by the standard bounded metric d. Let p be a metric on F(X,Y)
defined as p(f,g9) = supi?ﬁ"d(f(x),g(x)):x €X,f,g € F(X,Y)}. This
metric p is called the uniform metric corresponding to the metric d, or the

sup metric.

Definition(2.1.25)[46]:The sup metric in definition (2.1.24) induces a
topology for F(X,Y) called the topology of uniform convergence or the

uniform topology.
2.2. Completeness of The Space F(X,Y):

In this section the idea of completeness of a function space is
discussed. Note that for a function space to be complete it must be

metrizable first.

The space F(X,Y) equipped with the product topology when X is an
uncountable set is not metrizable, hence is not complete. Similarly, The
space F(X,Y) with the point-open topology when X is an uncountable set is

not complete.
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Example(2.2.1)[39]: Let X be an uncountable set, and let T be the product

topology on F (X, R). Then the space F(X,R) is not metrizable.

Proof: Let A = {x € F(X,R): there is a finite subset " of X such that
x,=0forallaer and x, =1 forall a € X—T}, and let a be the
member of F(X,R) with the property that a, =0 for all a € X.
Claim(1): a € A. Let U be a basic open set containing a. Then there exists
a finite subset {a;, ay, ..., a,} of X and a collection U, ,U,,, ..., U, Of
open subsets of R such that U = N}, ;! (U,,). Thus, the point x defined
by x,, =0 for i=12,..,n and x, =1 forall «a #a; for any i =
1,2,...n belongs to U N A. That means, U N A # @ for any arbitrary basic

open set U contains a. Therefore, a € A.

Claim(2): no sequence of points in A converges to a. Let (a,) be a
sequence of points in A. Let X, = {a € X:(a,), = 0} for each n € N.
Then, U,en X, 1S the countable union of finite sets and therefore it is
countable. Thus there exists f € X — U,enX,. S0 for each ne€
N, (a,)p = 1. Hence, the open set m;'(-11) in F(X,R) is a
neighborhood of a that does not contain any member of the sequence (a,).
Thus, the sequence (a,,) does not converges to a. That is, there is a point a
in A with the property that no sequence in A converges to a which
contradicts the fact that in a first countable space, a point belongs to the
closure of a set iff there is a sequence of points in the set converges to that

point. With the knowledge that every metric space is first countable. m
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The topology in which the space F(X,Y) is complete is the

uniform topology.

Theorem(2.2.2)[39]: If (Y, d) is a complete metric space where d is the
standard bounded metric on Y, X is a nonempty set, and p is the uniform
metric on F(X,Y) corresponding to d, then the metric space (F(X,Y), p) is

complete.

Proof: Let (Y,d) be a complete metric space where d is the standard
bounded metric on Y. Let (f,,) be a Cauchy sequence in (F(X,Y),p) and
a € X. For each n,m € N, d(f,,,(a), f,,(@)) < p(fn, /), SO the sequence

(fn (a)) is Cauchy sequence in (Y, d). Hence, this sequence converges to a

pointsay y, € Y because the space (Y, d) is complete.

Claim: the sequence (f;) converges to the function f € F(X,Y) defined by

f(a) =y, in the space (F(X,Y), p).

Let € > 0 be given. Then there exists n, € N such that p(f;,, ;) < %

Which implies that for each an,d(fm(a),fn(a))<§ whenever

n,m =n,. But the sequence (f,(a)) converges to y, = f(a) €Y.

Therefore there exists n; € N such that d(f, (@), f(a)) < % forall a € X

and all n > ny . But d(f, (@), (@) < d(fin (@), (@) + d(fo (@), f (@)

forall « € X and all n = maxifh, n, }.

Hence p(f,,, f) < € whenever m > max{no,nl}. |
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The latter theorem proves completeness of the space F(X,Y) for an
arbitrary set X and a complete metric space (Y, d) where d is the standard
bounded metric defined on Y. So this theorem is also valid when X is a

topological space not just a set.
2.3. Complete Subspaces of F(X,Y):

In this section the completeness of the spaces C(X,Y), B(X,Y) and
BC(X,Y) is studied where C(X,Y) denotes the set of all continuous
mappings of the set X into a space Y, B(X,Y) denotes the set of all
bounded mappings of the set X into a space Y, and BC(X,Y) denotes the

set of all bounded continuous mappings of the set X into a space Y .
The Space €C(X,Y) of Continuous Functions:

The space of continuous functions is basic in several aspects in

analysis. Completeness of this space has many applications.

Definition(2.3.1)[3]: A sequence fi, f>, ... of functions from a topological
space X to a metric space (Y, d) is said to converge uniformly to a function
feFXY) if, for each € >0, there is a number n, € N such that

d(f,(x),f(x)) < € whenevern = n, forall x € X.

Theorem (Uniform limit theorem) (2.3.2)[3]: If a sequence fi,f5, ... of
continuous functions from a topological space X to a metric space (Y,d)

converges uniformly to a function f € F(X,Y) , then f is continuous.
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Proof: Given € > 0, (by the uniformity of the convergence) choose ny € N

such that if n > ny, then

A(F G f(0) <3

For all x € X.

Given a point x, € X, the continuity of f, implies that there is a

neighborhood U of x in X such that if x € U then

d(f (), f (%))
< d(f G, fuy (@) +  (fag 0O frg (50D ) +  (fng (o), £ (x0) )

<E+E+E_
B

That is, the function f is continuous.m

Now, a theorem giving conditions for the subset C(X,Y) to be closed

in the space F(X,Y) is proven.

Theorem(2.3.3)[39]: Let (X,7) be a topological space, let (Y,d) be a
complete metric space where d is the standard bounded metric on Y, and let
p be the uniform metric defined on F(X,Y) corresponding to d. Then

C(X,Y) is closed subset of the metric space (F(X,Y),p) .
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Proof: Let (f,,) be a sequence of members of F(X,Y) that converges to

f € F(X,Y) relative to the metric p.

Claim: the sequence (f;,) converges uniformly to f relative to the standard

bounded metric d.

Suppose that (f,,) convergesto f € F(X,Y) relative to the metric p, and let
e > 0. Then, there exists ny € N such that if n = ny,then p(f,, f) <e.

Therefore, for all n =n, and all X €EX,

d(fu (), f(X)) < p(fu. f) <€

Hence, the sequence (f;,) converges uniformly to f relative to the standard

bounded metric d.

Let f € F(X,Y)and f € C(X,Y). Then, there exists a sequence (f,) of
members of C(X,Y) that converges to f relative to p. Then by the claim,
the sequence (f,,) converges uniformly to f relative to the standard
bounded metric d .Then(By theorem (2.3.2)) f is continuous function.

Hence, f € C(X,Y) .m

Corollary(2.3.4)[39]: Let (X,7) be a topological space, let (Y,d) be a
complete metric space where d is the standard bounded metric on Y, and let
p be the uniform metric defined on F(X,Y) corresponding to d. Then

(C(X,Y),p) is complete.

Proof: By theorem (2.2.1), the metric space (F(X,Y),p) is complete. By

theorem(2.3.3), C(X,Y) is closed subset of the metric space (F(X,Y),p).
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By theorem(1.2.9),a closed subset of a complete metric space is complete.

That is, (C(X,Y),p) is complete.m

Example(2.3.5): The space (C(X, R), p) (where X is a topological space R
has the usual metric and p is the uniform metric corresponding to the
standard bounded metric of the usual metric) is complete. This is because

the space R is complete in the usual metric by example(1.1.23).
The Space B(X,Y) of Bounded Functions:

A metric ¢ is defined on B(X,Y) in which X is a set and (Y, d) is

a metric space. Then, the completeness of the space (B(X,Y), ) is proven.

Theorem(2.3.6)[36]: The space B(X,Y) of bounded functions from a set X
to a metric space (Y, d) is itself a metric space, with distance defined by:

Forf,g € B(X,Y)and x € X,
a(f,9) = sup{d(f (x), g(x)) ,x € X}

Proof: The distance is well-defined because if imf and img are bounded

then so is there union, and:

d(f(x),g(x)) < diam(imf U img)

Now, o satisfies the distance axioms follows from the same properties for

the metric d;
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o(f,g)=0 & VxEe X,d(f(x),g(x)) =0

S VxeX f(x)=gx)

=f=yg
Forh € B(X,Y)

a(f,9) = sup{d(f(x), g(x)) ,x € X}
< sup{d(f(x), h(x)) +d(h(x),g(x)),x € X}
< sup{d(f(x), h(x)) ,X € X} + sup{d(h(x),g(x)) ,X E X}
=o(f,h) +a(h g)

The axiom of symmetry is clear since

a(f,g) = sup{d(f(x), g(x)) , € X}
= sup{d(g(x),f(x)) ,x € X}
=a(f,9)

So o is ametricon B(X,Y).

The importance of this metric is that the space B(X,Y) is complete in it.

This is proven in the following theorem.

Theorem(2.3.7) [36]: Let X be a set and (Y,d) be a complete metric
space. Then the metric space (B(X,Y), o) where ¢ is the metric defined in

theorem (2.3.6) is complete.

Proof: Let (f,) be a Cauchy in B(X,Y), then for every x € X,

d(fn(x):fm (x)) < O-(fnifm) - 0asn,m— ©
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So (fn (x)) is a Cauchy sequence in Y. But Y is complete, implies that the

sequence (f;, (x)) converges to, say, f(x) in Y.

Normally, this convergence would expected to depend on x, being slower
for some points than others. In this case however, the convergence is
uniform, as it is o(f,, f,) = sup{d(f,,(x), f,,(x)),x € X} which
converges to 0. So given any € > 0, there is an ny € N, such that: for any

n,m=nyandany x € X

A (O, fn () < 5

For each x € X, choose m > n,, dependent on x and large enough so that:
A(fn (0, f () < 5

And this implies Vx € X, forany n > n,

d(f (), () < (£ (), frn (1)) + d(fin (), £ ()
<sto=e
Thatis, f, = f uniformly in Y , hence sup{d(f,,(x), f(x)),x E X} <€
Since n, is independent of x, it follows that a(f,,, f) = 0.

Claim: The function f is bounded: Since f, = f uniformly in Y, it is

possible to choose n € N, such that

d(f (0, f() <1

for all x € X.
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Since £, is bounded, there exists a positive number K such that
d(fuy (), £, ) <K, Y,y €X
d(F GO, F ) < d (£, foy () + d (g 0, oy @) ) + Afoy 3D, F )
<1+K+1=2+K, forallx,yeX

With n, independent of x and y. That is f € B(X,Y), which complete the

proof. m

Example(2.3.8):The space (B(X, R), o) is complete metric space where X

Is an arbitrary set, R has the usual metric, and
a(f,9) = sup{|f(x) —g(x)|:x € X}.
The Space BC(X,Y) of Bounded Continuous Functions:

Let BC(X,Y) be the set of all bounded continuous functions from the

metric space (X, D) to the metric space (Y, d). Then

o(f,g9) = sup{d(f(x),g(x)) ,X € X} Forf,g e BC(X,Y)andx € X isa

metric on BC(X,Y).

Theorem(2.3.9)[20]: Let X be a metric space, (Y, d) be a complete metric

space. Then the metric space (BC(X,Y), o) is complete.
Proof: Let (f;) be a Cauchy in BC(X,Y), then for every x € X,

d(f;(x0), ;) < o(f,. f;) = 0asi,j - o
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So (fi (x)) Is a Cauchy sequence in Y. But Y is complete, implies that the

sequence (f;(x)) converges to, say, f(x) inY.

Claim: f; = f uniformly.

Given € > 0 take N € N so that o(f;, f;) < fori,j = N. Fix x and i for
the moment. Since d (ﬁ- (x),jj-(x)) <§ for all j, we can pass to the limit,

and we get d(f;(x),f(x)) < % < € . Hence, the convergence is uniform.

By theorem(2.3.2) we deduce that f is continuous, i.e., f € C(X,Y).
Finally, f € B(X,Y) (By the claim of theorem (2.3.7) and since

fi € B(X,Y) for each i). So, feCX,Y)nB(X,Y).That is, f €
BC(X,Y).m

Example(2.3.10):The space (BC(X,R), o) is complete metric space where

X is an any metric space, R has the usual metric, and

o(f,9) = sup{lf(x) —g(x)|:x € X}.
2.4. An Application: Space Filling Curve

The first space-filling curve was discovered and published
in 1890 in [40] and called peano's curve. As a simple application of
the results in last sections, the existence of a curve that fills the space I*

where I = [0,1] is proved.

Definition(2.4.1)[6]: A curve in a space I* is the image f(I) of a

continuous map f:1 - 1%,
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Definition(2.4.2)[6]: A space filling curve in I? is a curve going through

each point of I°.

Recall that the space (R",d,) is complete where d. is the square
metric defined in section four of chapter one. If n = 2, the space (R?,d,)is
complete. Since 1% is closed in R?, (I%,d,) is complete where d (x,y) =
max{|x; — y1|, 1%, = ¥2|},x,y € I>.  In corollary(2.3.4), let X = I with
the usual topology and Y be the space (I%,d,) , then the space C(I, IZ) IS

complete in the uniform metric p defined on € (I,1%).

Theorem(2.4.3)[35]: There exists a continuous map f:I — I* whose image

fills up the entire square 1%,
Proof:
Step 1. Construction of triangular paths :

begin with the closed interval [0,1] in the real line and the square I*

in the plane.

The triangular path g:1 — I* pictured in Figure 1 is a continuous
map. Replace the path g by the path g pictured in Figure 2 . It is made up of
four triangular paths, each half the size of g and having the same initial
final points as g. This operation can also be applied to any triangular path
connecting two adjacent corners of the square. For instance, when applied

to the path h pictured in Figure 3, it gives the path .
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Step 2. Construction of a sequence of continuous functions:

Define a sequence of functions f,:1 — I°. The triangular path pictured in
Figure 1, is the first function f,. The next function f; is the function
obtained by applying the operation described in Step 1 to the function f;; it
Is pictured in Figure 2. The next function f, is the function obtained by this
same operation to each of four triangular paths that make up f;. It is
pictured in Figure 4. The next function f; is obtained by applying the
operation to each of the 16 triangular paths that make up f,; it is pictured in

Figure 5. And so on. At the general step, f, is a path made up of 4"
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triangular paths of the type considered in Step 1, each lying in a square of
edge length Zin . The function f,,,; is obtained by applying the operation
of Step 1 to these triangular paths, replacing each one by four smaller

triangular paths.

fa

gy o

Illllllllllllll

Figure 4

Figure 5

Step 3. Proving that (f,,) is a Cauchy sequence:

To prove that the sequence of functions (f,,) defined in step 2 is a Cauchy

sequence in the space (C(I, IZ),p) where p is the uniform metric, take the

functions f,, and f,, 1. Each small triangular path in £, lies in a square of

edge length Zin . The operation by which the function f,,,; is obtained

replaces this triangular path by four triangular paths that lie in the same
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square. Therefore, in the square metric on I, the distance between £, (t)

and f,,+1(t) is at mostzin . That is:
1
ds(fn (), fns1 () < o YVt el

As a result,

1
p(fnffn+1) < Z_n
But, Vn,m

P (fus frm)

< p(ﬁufn+1) + p(fn+1jfn+2) + et p(fn+m—1'fn+m)

S ot < —

on 2n+l n+m—1 2n

So the sequence (f;,) is Cauchy. Hence it converges in (C(I,1?), p) where
p is the uniform metric to a continuous function f because (C(1, IZ),p) IS

complete space.

Step 4. Proving that f is surjective:

Let x € 12 .Show x € f()

Claim: x € f(I)

Given e > 0, Let N large enough that p(fy, f) < % and ZLN < % .

Then forall t €1, d,(fy(t), f(1)) <§ .
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Given n, the path f,, comes within a distance of zin of the point x. for the

path f,, touches each of the little squares of edge length

zin into which I? is divided. So there is a point t, € I such that

ds(x, fy(t0)) S 57 <5 .

But ds(fu(to). f(to)) <5 . Hence, dy(x,f(to) < ds(x, fu(to)) +

ds(fv(to), f(t)) < €. S0, the e-

neighborhood of x intersects £ (I). It follows that x € £(I)

The set I is compact, so f(I) is compact (continuous image of A

compact set is compact) and therefore is closed.

Hence, x belongs to f(I). m
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Chapter Three

Theorems of Topological Characters
Concerning Complete Spaces
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Introduction

The study of topological aspects of complete metrics has a place in
topology. In this chapter, theorems of topological characters concerning
complete metric spaces are presented and proved. One of these theorems is
to characterize compactness of a metric space that is used to prove Heine-
Borel theorem and the classical version of Ascoli's theorem. Another one
Is to prove that complete metric spaces belong to the class of topological
spaces called the Baire spaces. As an application, the existence of a

continuous nowhere-differentiable real-valued function is proved.
3.1. Heine-Borel Theorem And Ascoli's Theorem.

In this section, a condition on a metric space to be complete is
provided. A theorem characterizes compactness of a metric space is proved
and it is then used to prove Heine-Borel theorem and the classical version

of Ascoli's theorem.

Definition(3.1.1)[29]: A set S in a metric space (X,d) is said to be
sequentially compact if every sequence in S contains a subsequence which

converges to a pointin S .

The terms compact and sequentially compact are equivalent in any

metric space.

Theorem(3.1.2 )[29]: A set S in a metric space (X, d) is compact iff it is

sequentially compact.
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Proof: Suppose that S is compact, but not sequentially compact. Thus there
is an infinite sequence (x,,) < S with no subsequence converging to a point
in S. Which implies that the points of the sequence (x,) do not cluster
about any point of S. Thus there exists € > 0 in which each point s € S can
be covered by the open ball B(s,€) which contains at most one point of
(x,).Hence {B(s,€):s € S} is an open cover for S, which has a finite sub-
cover (by compactness of S) By, B,, ..., By. Since (x,,) can have at most

one point in each such ball, (x,,) is finite, which is impossible.

Conversely, suppose that S is sequentially compact, but not compact, so
there is an infinite cover of the set which does not contain a finite sub-
cover. Choose € > 0, and a point s; € S. Since S cannot be covered by a
finite collection of open sets, it cannot be covered by the ball of radius €
about s;. Therefore, we can choose s, € S such that d(s;,s;) = €. For the
same reason we can choose s3 outside balls of radius € around s; and s,
I.e., so that d(s;,s3) = €,i = 1,2. Continue in this way to define s,, such
that d(s;,s,) =2 €,i=1,2,..,n—1. Since S is sequentially compact, the
sequence (s,,) must possess a Cauchy subsequence (snk), so that

d(snj,snk) < e for sufficiently large n;,n, which is impossible. This is a
contradiction. m
Although completeness of a metric space is not a topological property,

there are some topological conditions which implies that a metric space is

complete.
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Theorem(3.1.3)[20]: Any compact metric space (X, d) is complete.

Proof: Let (x,) be a Cauchy sequence in X. By theorem (3.1. 2) X is
compact then it is sequentially compact which implies that the sequence
(x,,) has a convergent subsequence, say, to x. By theorem (1.1.7) the whole

sequence converges to x. So (X, d) is complete.m

Definition(3.1.4)[47]: A subset G of a metric space (X,d) is said to be
totally bounded if, given any € > 0, there exists a finite subset
{x1, %3, ..., xp} € X such that G < Uj_, B(xy,€); i.e, for each € >0, G
can be covered by a finite number of open balls of radius € and centers at

X1, X2, iy Xy

Definition(3.1.5)[27]: A finite e-net for a subset G of a metric space (X, d)
is a finite collection of points y. = {y;, v, ..., ¥, } in which for each x € G
there is a point y, € Y, such that d(x,y,) < e . That is, if Y. is a finite e-
net for the set G € X, then the set G is covered by the open balls
B(y;,€);i=1,2,..,n having radius € and center y; € y. thatis, G S

Ui=1 B(y;, €).

The e-net can be used to define total boundedness of a subset of a

metric space.

Definition(3.1.6)[27]: A subset G of the metric space (X, d) is said to be

totally bounded if for every € > 0 there is a finite e-net for G.

Consequences(3.1.7 )[36]: In a metric space (X, d) we have the following:
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1. Any subset of a totally bounded set is totally bounded.
2. A finite union of totally bounded sets is totally bounded.

Proof. 1. Let G be a totally bounded set of X.Let A be any subset of G.
Given € >0 , then the set G is covered by the open balls
B(x;,€);i =1,2,...,n having radius € and center x; € {xy, x5, ..., x,, }. That
is there is a finite e-net for G. But A € G implies that A is covered by the

same finite e-net of the set G.

2. Let U;,i =1,2,...,m be totally bounded sets of X. Let A = Uj%, U;.
Since U; is totally bounded for each i = 1,2,...,m, given € > 0 ,there
exists  {x;1, %Xz, ..., X, } © X such that U; c U;L, B(xy,€). Then

iU c UL Upzy B(xy, €) implies that there exists
UL 1{Xi1, Xz, o) Xin,} © X such that A < UJL; UL, B(xy, €).Since finite

union of finite sets remains finite, A is totally bounded.

Theorem(3.1.8)[27]: A totally bounded set G in a metric space (X,d) is
bounded.

Proof: Pick some € > 0. Since A is totally bounded let Y, = {y;, v, ..., ¥}

be an e-net for G. Define
C = max{d(yi ,yj): i,j=1.2,..,n}

Let x, y be any two points in G. By the definition of an e-net there are two

balls B(y,,, €) and B(y,, €) such that

x € B(y,,, €),



64

and

Y € B(yy, €),
where y,.., y,, € Y.. By the triangle inequality,
d(x,y) < A%, ym) + dWm, Yn) + A, ¥)
<e+(C+e
=C + 2¢

Since x,y € G are arbitrary, we have that diam(G) < C + 2e.Hence the

set G is bounded.m
The converse of this theorem is not always true.

Example(3.1. 9 )[23]: Consider the metric space (l,, d), where [, is the set
of all sequences of real numbers (x,) such that ¥ ,x;2 <o ,and
d(x,y) = \/(Z?O:O(xi —¥)?) for x = (x1,x3, ..., %p,...) and y =

V1, Y2 eois Vs ) €

The unit sphere with the equation Y2, x;2 = 1 is a bounded subset in [,
but not totally bounded, because the points e; = (1,0,0,...),e;, =
(0,1,0, ...) where the i-th coordinate of e; is one and the other coordinates

are all zero all lie on this unit sphere, and the distance between any two of

them is V2. Hence this unit sphere cannot have a finite e-net when e = \/2—7 :

In Euclidean space R"™ total boundedness is equivalent to

boundedness.
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Theorem(3.1.10)[8]: Bounded subsets of (R, d,) are totally bounded.

Proof: Every bounded set is contained in some cube
Q = [-R,R]" = {x € R": max{|x{|,|x2], ..., |x,|} < R}. Since any subset
of a totally bounded set is totally bounded, it is enough to show that Q is
totally bounded. Given € > 0, choose an integer k > Rv/n/e, and let Q be
the union of k™ identical subcubes by dividing the interval [—R, R] into k
equal pieces. The side length of these subcubes is 2R/k and hence their
diameter is vn(2R/k) < 2e, so they are contained in the balls of radius e

about their centers. m

Theorem(3.1.11)[25]: Every closed and bounded interval of the real line is

totally bounded.

Proof: Consider the real line R with the usual metric. Let V, be any
nondegenerate closed and bounded interval, say V, = [a, a + p] for some

real number a and some p > 0. Take an arbitrary € > 0 and let n, be a

positive integer large enough so that p < (n, + 1)% . For each integer
k = 0,1, ...,n, consider the interval

Ap=la+k>,a+(k+1)>) of diameter - . Since 4 N4 =0
whenever j # i, and V, C [a,a + (n, + 1)%) = Uy, Ak, 50 {4, N I{)}:;O
is a finite partition of V, into sets of diameter less than e. Thus every closed

and bounded interval of the real line is totally bounded. m

Total boundedness is also characterized in terms of Cauchy sequences.
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Theorem(3.1.12 )[36]:In a metric space (X,d), a set K is totally bounded

iff every sequence in K has a Cauchy subsequence.

Proof: Let the totally bounded set K be covered by a finite number of balls
of radius 1, and let {x, x,, ...} be an infinite subset of K. (If K is finite, a
selected sequence must take some value x; infinitely often and so has a
constant subsequence) A finite number of balls cannot cover an infinite set
of points, unless at least one of the balls, B(a;, 1), has an infinite number

of points, say {x; 1, %21, ... }

Now cover K with a finite number of balls each of radius % For the
same reason as above, at least one of these, B(az,%) covers an infinite
number of points of {x, 1}, say the new subset {x; 5, x, 5, ... }. Continue this
process forming covers of balls each of radius i and infinite subsets {xn,m}
of B(am,%). The sequence (x,,,) is Cauchy, since for m < n, both x,, ,

and x,, are elements of the set {x; ,,, X2, - }, and s0 d(x, n, Xmm) <

2
— > 0asn,m — oo,
m

Conversely, given € > 0, let a; € K. If B(aq,€) covers K then we are
done. If not, pick a, in K but not in B(a4, €). Continue like this to get a
sequence (a,, )of distinct points in K with a, ¢ U™ B(a;, €), all of which
are at least e distant from each other. This process cannot continue
indefinitely otherwise we get a sequence (a,,) in which d(a,,,a,) = € for
all n,m in N, and so has no Cauchy subsequence. So after some N steps we

must have K € UY., B(a;,€). m
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Compactness in metric spaces is characterized by proving the
following theorem that deals with two sets of properties one of which is
topological while the other is not. If (X,d) is a metric space then X is

compact means that X with the induced metric topology is compact.

Theorem(3.1. 13)[51]: A metric space (X, d) is compact iff it is complete

and totally bounded.

Proof: Suppose X is compact. By theorem (3.1.3) the metric space is
complete. For total boundedness, let (x,,) be a sequence of points in X.
Since X is compact it is sequentially compact by theorem (3.1. 2) which
means that the sequence (x,) has a convergent subsequence. So this
subsequence is Cauchy. Hence, the sequence has a Cauchy subsequence.

By theorem (3.1.12) X is totally bounded.

Conversely, suppose that X is complete and totally bounded. If (x,,)
is an arbitrary sequence in X, then (x,) has a Cauchy subsequence, by
theorem (3.1.12). Since X is complete this subsequence converges. Thus X

is sequentially compact. Hence by theorem (3.1.2) X is compact. m

Theorem (3.1.13) is used to prove a theorem characterizes the compact

subsets of Euclidean space R".

Theorem(Heine-Borel)(3.1.14)[25]: Every closed bounded subset of R™ is

compact.

Proof: Let B be an arbitrary closed bounded subset of R™. By theorem

(3.1.8), the set B is totally bounded. It is proven(in theorem (1.4.6)) that the
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space R™ is complete when equipped with the metric d,. Hence the set B is
complete because closed subset of complete metric space is complete
subspace by theorem (1.2.9). So, the set B is complete and totally bounded.

Therefore (by theorem(3.1. 13)), B is compact. m

Some definitions and theorems are needed to prove the classical

version of Ascoli's theorem.

Definition(3.1.15)[39]: Let (X, 1) be a topological space, let (Y,d) be a
metric space, let F € C(X,Y), and let x, € X. Then F is equicontinuous at
x, if for each € > 0 there exists a neighborhood U of x, such that if f € F
and x € U, then d(f(x), f(xg)) < €. If F is equicontinuous at each point

of X, then it is said to be equicontinuous.

Note(3.1.16 )[39]: The difference between a collection of continuous
functions and a collection of equicontinuous functions is that if (X,7) is a
topological space, (Y,d) is a metric space, and F € C(X,Y) then F is a
collection of continuous functions if for each x, € X, each € > 0, and each
f € F, there exists a neighborhood Ur of x, such that x € Ug, then
d(f(x),f(xy)) < €. But if F is a collection of equicontinuous functions,
then for each x, € X, each € > 0, there exists a neighborhood U of x, such
that if x € U and f is any member of F, then d(f(x),f(xo)) < €. In other

words, U works for every member of F.

Theorem(3.1.17)[39]: Let (X,t) be a compact space, let (Y,d) be a
compact metric space, and let F € C(X,Y). Then F is equicontinuous iff F

is totally bounded with respect to the sup metric
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p(f,9) = maxifid(f(x),g(x)),f,.g EF ,x € X}

Proof: Suppose F is totally bounded with respect to p. Let x, € X and let
€ > 0. Let ¢ =§, and let {fi,f>, ..., f,} be an e;-net for F. For each

i =1,2,..,n, f;iscontinuous. Therefore, for each i = 1,2, ...,n, let U; be
a neighborhood of x, such that if x € U; then d(f;(x), f;(xy)) < €. Let

U= n?zl Ui .

Claim: If f € F and x € U, then d(f(x), f(xy)) < €. Let f € F and let

x € U . Because f belongs to at least one of the e;-balls, there exists

i (i =12,..,n) such that p(f, f;) < e&. Hence d(f(x),f;(x)) <e and
d(f (%), fi(x9)) < €. Thus

<€ +te€ +€ =€
Therefore, F is equicontinuous.

Conversely, suppose that F is equicontinuous, and let e > 0 . Let ¢; = % :

Since F is equicontinuous, for each x € X there is a neighborhood U, of x
such that if z € U,, then d(f(2),f(x)) < & for all f € F. Then {U,:x €
X} is a open cover of X. Since X is compact, there exists xq, x5, ..., X, In X
such that {U,, Uy,, ..., U} covers X. Now {B(y,€e;):y € Y} is an open
cover of Y. Since Y is compact, there exist y;,y,,...,¥, in Y such that
B(y1,€1),B(y,€1), ..., B(y,,€1) covers Y. Let A be the collection of all
functions that map {1,2,...,m} into {1,2,...,n}, let a € A. If there exists

f € F such that for each i = 1,2,...,m, f(x;) € B(¥q(), €1) choose one
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such function and label it f,. Let T ={a € A: f, exists}. Since A is
finiteand I < A, T is finite. Claim: {B(f,,€): a € I'} covers F.
Let fe€F, and for each i =1,2,..,m, let a(i)such that f(x;) €
B(Ya@),€1) then a €I'. To show f € B(f,,€), let x€X and let i €
{1,2,...,m} such that x € Uy, . Then d(f(x),f,(x)) < d(f(x), f(x;)) +

d(f(xi):fa (xl)) + d(fa (xi):fa (X))
< €1 + €1 + €1 = €

Since this inequality holds for every x € X ,

p(f, f) = max{d(f(x), f, (x)):x € X} < €. Hence f € B(f,,€). m

Theorem(3.1.18)[39]: Let (X,t) be a compact space, and let F be a
bounded subset of (C(X,R™), p). Then there exists a compact subset Y of
R™ such that if f € F and x € X, then f(x) €Y.

Proof: Let f, € F. Since F is bounded, there exists a positive number M
such that p(f,, f) <M for all f €F. Since X is compact and f, is
continuous, f,(X) is compact. Hence, f,(X) is a bounded subset of R", so
there is a positive number N such that f,(X) € B((0,0,..,0),N).
Therefore, if f €F, then f(X) < B((0,0,..,0),N + M). Let Y be the
closure of the ball B((0,0,..,0),N + M). So, Y is closed and bounded

subset of R™ and hence is compact by theorem (3.1.14).m

Theorem(3.1.19)[4]: Let A be a subset of a metric space (X,d). If A is

compact then A is closed in (X, d).
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Proof: Suppose that A is compact, and let (x,,) be a sequence in A that
converges to a point x € X. Then, from theorem (3.1.2), (x,,) has a
subsequence that converges in A, and hence x must be in A. Thus, A is

closed. m

A characterization of compact subsets of R™ is that they are closed
and bounded. But for the space C(X,R"™) the standard criterion for
compactness is given by the classical version of Ascoli's theorem which is

proven using theorem (3.1.13).

Theorem(Ascoli's Theorem: Classical Version)(3.1.20)[39]: Let (X, 1)
be a compact space. Then, a subset of (C(X,R"),p) is compact iff it is

closed, bounded, and equicontinuous.
Proof: Suppose F is a compact subset of (C(X, R"), p).
Closed: By theorem(3.1.19) F is closed.

Bounded: F is compact then F is totally bounded by theorem (3.1.13). But

a totally bounded set is bounded by theorem (3.1.8).

Equicontinuous: By theorem (3.1.18) there exists a compact subset Y of R"

such that if f € F, then f(X) € Y. It follows that F € C(X,Y) which is

totally bounded. Therefore, by theorem (3.1.17) F is equicontinuous.

Conversely, suppose F is closed, bounded, and equicontinuous
subset of (C(X,R™),p). By theorem (1.4.6) the space (R",d,) is

complete. Therefore by corollary (2.3.4) (C(X,R™),p) is complete. Since
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F is closed subset of (C(X,R"),p), by theorem (1.2.9) F is complete.
Since F is bounded, by theorem (3.1.18), there exists a compact subset Y
of R™ such that if f € F then f(X) €Y. It follows that F € C(X,Y)
which is equicontinuous. Therefore, by theorem (3.1.17) F is totally
bounded. Since F is complete and totally bounded, by theorem (3.1.13), it

IS compact. m
3.2. Baire Spaces.

In applying topology to analysis one of the most useful applications
of completeness is the Baire's theorem. In this section one form of Baire's

theorem is stated and proved.

Definition(3.2.1)[32]: A topological space X is called a Baire space if for

each sequence (0,,) of dense open subsets of X, N,,cy O, IS dense in X.

Theorem(Baire's theorem)(3.2.2)[11]: In a complete metric space (X, d)
the intersection of a countable number of open, dense sets is itself dense.

That is, a complete metric space is a Baire space.

Proof: Let {G, } be a countable family of dense open sets in X. Let x € X
and € > 0 be arbitrary. Since G; is dense open set in X there exists an

x1 € Gy N B(x, €) such that
B(x1,€61) €S Gy NB(x,e)where 0 <e; <e€/2.

Since G, is dense open set in X there exists an x, € G, N B(xq,€;) such

that



73

B(x,,6,) €GN G, NB(x,€) N B(xy,€;) Where 0 < e, < €/4
Continuing inductively, there exists an
X, € G, N B(x,,_1, €,_1) such that

B(x,,e,)SG NG, N..NG, NB(x,€) N B(x,_1,€1-1)

where 0 < ¢, < €/2"

The sequence B(x,,e€,) is a sequence of nonempty closed,
descending sets such that diamB(x,,€,) — 0 as n — . Since the space
(X,d) is complete, by Cantor's intersection theorem there exists y €
B(x,,€,). But Nr_;B(x,,€,) S (NF=;G,) NB(x,e) implies that:

(Ny=1G,) N B(x,€) # @. Hence, x € N;,—1 G,. m

The converse of this theorem is not always true. There are

incomplete metric spaces that are Baire spaces.

Example( An Incomplete Baire Space)(3.2.3)[34]: Let X be the open
interval (a,b) with the usual metric. Then (a, b) is dense in [a, b]. Let
Uy, U,, ...,U,, ... be a sequence of dense open sets in X. Then U, = H; N
(a, b), where H; is dense and open in [a, b]. Now, (a, b),H{, H,, ..., H, ...
is a sequence of dense open sets in [a, b] and hence (since [a, b] is a Baire
space) (a,b) N (NjZ{ H;) = ni?o:l((a, b)NH;)=NZ,U; is dense in
[a, b] and therefore in (a, b) as well. Hence (a, b) with the subspace metric

is a Baire space. But (a, b) is incomplete.
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In [12] it is discussed that the intersection of countably many dense
Gs-subsets of a Baire space X must be dense in X. A weaker condition is
the intersection of any two dense Gs-sets of X must be dense in X, and that
Is the definition of a Volterra space. Any Baire space is Volterra. The

converse is studied in [12].

Various forms of the Baire's theorem is discussed in [14]. A
generalization of Baire's theorem is proved in [30]. Cartesian products of

metric Baire spaces is discussed in [24].
3.3. Continuous Nowhere Differentiable Function.

In 1806 Ampere in [1] tried to prove that any continuous function must
be differentiable on a set of points. In 1872 Weierstrass presented a
continuous nowhere differentiable function which is published in 1875 in
[2]. In[ 17 , 54,53, 50 ] examples of continuous nowhere differentiable

functions are provided.

In this section, the existence of continuous nowhere-differentiable

real-valued functions is proved using Baire's theorem.

Theorem(3.3.1)[35]: Let h be a continuous real-valued function defined on
the unit interval [ =[0,1] and let e > 0 be given. Then, there is a
continuous real-valued function g defined on [ that is nowhere

differentiable with the property |h(x) — g(x)| <€ forallx € I.

Proof: The existence is proven without constructing an example.

Let C(I,R) be the set of all continuous real-valued functions defined on 1.
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By corollary (2.3.4) the space (C(,R),p) where
p(f,g) =max{|f(x) —g(x)|: x €1} is complete. By theorem(3.2.2)
the space (C(I,R), p) is a Baire space. This is the main property which is

used in the proof.
Step 1:

Defining (U,,) to be a sequence of open dense subsets of C (I, R):

Let0<h<%,IethIbegivenanda>O.

Given f € C(I, R), define its difference quotients as:

fa+h)—f@| [f&-h-f®
h —h

)

}

Af(x,h) = max{

If both
flx+h)—f(x)
h
and
flx—h) = f(x)
—h

are exist. And Af(x, h) is the one that is defined if one of the two is not

defined.

At least one of the two is defined since at least one of the numbers x + h

and x — h is in the unit interval 1.

Let the set
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Ula,h) ={f € CU,R):Af(x,h) = aV x €I}

Now, for each n € N, define the set U,, as :

Claim(1): for each n € N, the set U,, is open in C(I,R).

Let f €U, then f € U(a,h) for some a >n and some h <% . take

r=Z(a—n)

Without loss of generality, let

fx+h) = f(x)
h

Af(x,h) =

And let g € B(f,r) such that

glx +h) —g(x)
h

Ag(x,h) = ‘

Now,

f+h) —flx) g+h)—gx)

h h
_ |(f(x +h)—gx+h)—(fx)—gx))
h
2r a—n
< =

h 2
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Since
fOx+h) - f(x)
h

is at least «, then

‘g(x +h) —g(x)

is at least

For some «.

Then Ag(x,h) = a and this implies that g € U(4,h). But a™>n, so
g €U, ,i.e., B(f,r) € U, which means that the set U,, is open in C(/, R).

Claim(2): foreachn € N, the set U,, is dense in C(I,R).

Let f be arbitrary function in C(I, R). Given € > 0, > n, we construct a

function g that belongs to both sets U,, and B(f, €).

Let 0 = xy < x1 < xp < -+ < x5, = 1 be a partition of of the unit interval |
cLet I = [x;_1,x;],i = 1,2,...,k . Consider g to be the function such that

g|I; is a linear function in which the slope of each line segment is at least
a. Let h < rl—land h < %min{lxi —x;_1;i=1,2,...,k}. g is a member of

U,, forif x €I, then x € I; for some i = 1.2,...,k. If x € [xi_l,—xi‘l;xi],

d g(x+h)—g(x)

then x + h € [; an equals the slope of the line segment

representing the linear function g|l,. And if x € [xl%”lxl] , then

9&—h=9&)

equals the slope of the line segment
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representing the linear function g|I;. This implies that Ag(x, h) = «a,

g€U(ah) cU,.
A construction of g to be an element of B(f, €) is the following:

By uniform continuity of f, we can choose a partition of the unit interval I
O=ty<t;<-<t,=1 such that
If(x) — f(y)] < % Vxvye€l[t_qt]i=12,..,m.

Leta; € (t;_q,t;),i = 1,2,...,m. Define

f(ti-1) Vx € [t;_q,a;]

91(x) = fQti-) + f(ti)t._—fcf.ti_l) (x—a) Vxé€la,t]

The graphs of g; and f are pictured in Figure 6.

If f(t) #+ f(ti—1) then a; must be such that
f@&) = f(ti-1)

a

ti—aiS

Then g, is a piecewise-linear function for which each line segment have

slope at least  in absolute value or have slope zero.

Now, for each subinterval I; the two functions g, and f vary from f(t;_;)

by at most €/4 . That is |g;(x) —f(x)| <e/2 for all x el .So
p(91, f) = max{|g1(x) — fF()} < €/2.

The function g that is wanted is just the function g; but with replacing each
line segment that has slope zero by a "sawtooth” graph for which the
absolute value of the slope of each edge is at least a and lies within €/2 of

the function g;. The graphs of f , g;and g are pictured in Figure 7.
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Figure 6

Step 2:

The functions that are in the intersection of the sets U,,n € N are

continuous nowhere differentiable:

the space (C(I,R),p) is a Baire space SoN ey U, is dense in C(I,R)
which implies that for each € > 0 there is a function g € N ,,en U,, SUch

that p(h,g) < e.
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For the end of this proof, let x € I be given. Let f € N,,eny U, then f € U,
for each neN. So there is a number 0<h,<1/n  where
Af(x,h,) >n . Clearly the sequence (h,) converges to zero while the
sequence (Af(x, h,)) diverge. In other words, lim;,_q Af(x, h) does not
exist. Hence f is not differentiable at x. Since, x was arbitrary, the function

f is nowhere differentiable. m
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