

IMPLEMENTATION OF A DIGITAL

COMMUNUCATION SYSTEM

MOHAMMAD TAHA HAMID MURAD SODQI H. AYYASH

Supervised by

Dr. ALLAM MOUSA

Electrical Engineering Department
An-Najah National University

 2011

2

IMPLEMENTATION OF A DIGITAL
COMMUNUCATION SYSTEM

MOHAMMAD TAHA HAMID MURAD SODQI AYYASH

M.T.HAMID@HOTMAIL.COM MURAD_AYYASH@HOTMAIL.COM

Supervised by

Dr. ALLAM MOUSA

A Thesis presented to the Electrical Engineering Department of An-Najah National University in

the fulfillments of partial requirements of the B.Sc. degree in Electrical Engineering.

Department of Electrical Engineering

Faculty of Engineering

An-Najah National University

2011

3

ABSTRACT

The implementation of the digital communication system is important for the study, analysis,

test and development of the performance of the system, in this project we introduce two parts to

carry out the implementation, the theoretical part and it is concerned with the study and

analysis of the algorithms in source coding, channel coding and data security represented in

cryptography and steganography. the second part is the MATLAB implementations, simulations

and analysis, the adopted algorithms for the implementation are Huffman, BWT compression,

Run-Length coding and decoding, for lossless source coding, BCH coding and decoding, for

forward error correction, advanced encryption standard AES with 128-bit cipher key with second

protection layer of steganography for data security, the performance was simulated and tested

under the AWGN channel with M-PSK digital modulation.

4

ACKNOWLEDGMENT

We wish to express our appreciation of the assistance given us by the Dr.Allam Mousa, the

supervisor of our project, Department of Electrical Engineering, An-Najah National University.

5

Table of Contents

Chapter One

Source Coding.. 10

Introduction .. 11

Entropy and conditional Entropy .. 12

Conditional Entropy and Mutual Information: .. 13

Lossless Coding Techniques .. 15

Entropy Coding .. 16

Shannon-Fano Coding: ... 16

Huffman Coding .. 16

Upper Bound for the Huffman Code ... 19

And Coding in Blocks .. 19

The Burrows-Wheeler Transform ‘‘BWT’’ .. 24

BWT Algorithm Description .. 24

Move-To-Front Transform ... 25

The Decoding of Burrows-Wheeler Transform ... 28

Decoding of Move-To-Front Transform ... 31

Chapter Two

Channel Coding Overview .. 33

Channel Capacity ... 35

Capacity for Additive White Gaussian Noise Channel ... 38

Block Channel Coding ... 39

Mathematical Related Concepts ... 40

Encoding of BCH code .. 42

Decoding of BCH Codes.. 46

Chapter Three

Encryption .. 52

Overview .. 52

Rijndael Algorithm: ... 53

Encryption process .. 59

6

Steganography ... 63

Chapter Four

System Performance Simulations ... 65

The Source Coder .. 65

The output of source coder ... 66

The Channel Coder and Channel... 67

The Encryption-Decryption Process ... 69

The Steganography Process .. 71

System Implementation .. 72

The MATLAB Functions .. 74

The Source Coding and Decoding Functions .. 74

Data Analysis with Entropy Function ... 74

Run-Length Encoder and Decoder ... 75

Huffman Encoder & Decoder ... 77

BWT encoder & decoder .. 79

The Channel Coding and Decoding Function ... 83

The Encryption Functions ... 85

Steganography ... 92

References .. 98

7

Introduction

The project aims at the implementation of the following digital communication system starting
from the data processing with digital input data. The figure below shows a block diagram of a
digital communication system with two possibilities for the input data that may be an analog or

digital data.

The brief overview for the system parts and its parts is described as follows:

Source coding

The data compression or source coding is the process of encoding information using fewer bits
(or other information-bearing units) than an unencoded representation would use, by removing
the redundancy and we can remove it until limit defined as entropy through use of specific
encoding schemes. For example Huffman BWT. The Function of source coding is to reduce the
size of information that will be transmitted to maintain the resources. BW , power and space
data storage.
The first chapter introduces the BWT compassion which employs Huffman coding, MTF
transforms ,BW transforms.

Block diagram of Digital communication system

8

Channel coding

It is the addition of redundancy on the original input bit steam taking the channel capacity into
consideration it is functions to ensure that the signal transmitted is recovered with very low
probability of error at the destination and usually designed to make error-correction possible .
The BCH forward error correction algorithm is adopted and it is discussed in the second chapter

Encryption:

It is the process of transforming information (referred to as plaintext) using an algorithm (called
cipher) to make it unreadable to anyone except those possessing special knowledge, usually
referred to as a key. It is used to protect the information (privacy), authentication(verifying the
message origin) and Integrity(establishing that a received message has not altered).Another
layer maybe added to conceal the encrypted data which is the steganography .
The third chapter is a description of AES in order to implement Rijndael encryption algorithm .

The Channel

The channel is the media that the signal will propagate into to the receiving part of the system
this channel introduces an error to the signal. it is limited by a specific bandwidth and
consequently a specific capacity. The AWGN channel is adopted with digital M-PSK modulated
data.

The last chapter is the MATLAB implementation of the system with simulations and analysis that
are needed to measure the performance of the system.

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Key_%28cryptography%29

9

Chapter One

SOURCE
CODING
 Implementation of Source Coding and

Decoding

In this chapter analysis and implementation of Entropy coding such as Huffman coding ,

and other coding Techniques like Run Length Coding , MTF transform and BWT as an

efficient text-coding technique

10

Lossless Source Coding Algorithms

Entropy Encoding

Huffman
Coding

Adaptive
Huffman

Shannon-
Fano

Arithm
etic

coding

Golom
b

coding

Dictionary
coders

Lempel-Ziv
Algorithms

LZ77 LZ78

Other Ecoding Algorithms

Data
dedupl
ication

Run-
length

encoding

Burrows–
Wheeler

transform

Contex
t

mixing

Dynamic
Markov

Compres
sion

Source Coding

In this chapter the lossless source coding techniques are to be studied and analyzed in order to

be implemented.

The lossless coding techniques is summarized in this chart

This chapter is a study, analysis and implementation of the lossless source coding techniques,

the first algorithm is the Huffman Coding which is chosen since it has an acceptable code

efficiency and performance for all types of files. The second is the Burrows–Wheeler transform

which is more efficient compression coding for text files. The third is the run length coding.

11

Introduction
A code is a mapping of discrete of set of symbols to finite binary sequences,

Data compression or Source coding is the process of encoding information using fewer bits than

an unecoded representation, by removing the redundancy and we can remove it until limit

defined as entropy.

We have two kinds of source coding ,lossless source coding by which the data can be decoded to

form exactly same bits can be achieved by moderate compression (e.g.: 2:1) this type is used in

“ZIP” and important applications in medical images that’s we can’t accept any error in it. On the

other hand we have lossy coding which is Method for representing discrete-space signals with

minimum Distortion. Decompressed image is visually similar but has high compression ratio (ex:

20:1),this type is used in JPEG and MPEG .

According of the output of the coder we have Variable length coding that is compressed and

decompressed with zero error (lossless data compression) and the each symbol representation

of bits depends on the probability (ex: Huffman ,Shannon-Fano, …) and the second one is fixed

length code which all symbol have the same codeword length independent of the

probability(Lempel-Ziv).

A Prefix Code is a specific type of uniquely decodable code in which no code is a prefix of

another code, as shown with a source

Symbol Codeword

S0 0
S1 10
S2 110
S3 111

Run length coding is very simple code that is orders the same data value occurs in many
repeated data elements are stored as a single data value and count, rather than as the original
run

For example if we have data like this (0000000111111111000000) more efficient to represent
the data like this (07 19 06).

Efficiency parameter (η) for a code is very important to know which code is more efficient by
this equation below

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Techniques we will cover in details in this section, Huffman coding, Shannon-Fano and BWT
transform & compression.

Entropy and conditional Entropy

The basic definition of the Entropy is a measure of the source information depends on the

probabilities of its data symbols .

The information of a single event or message ‘ I ’ that any data contains is defined as the base 2

logarithm of its probability ‘p’ as follows

And the entropy ‘H’ is the negative of the information

For a data of many symbols its entropy is defined as the average entropy of all elements

For a two random variables that take two probabilities of P and 1-P the entropy is as the
following :

Probability

En
tr

o
p

y
o

f
a

B
in

ar
y

so
u

rc
e

Figure 1: P vs. H for Two Symbols –Data (Binary Source Of Information)

13

Conditional Entropy and Mutual Information:

If X and Y are two variables, and if x and y are correlated, their Mutual Information is The

average information that Y gives about X .

And their entropy is a conditional entropy and it is given as the entropy of X given Y :

The Mutual information between X and Y is

This equation describes that the mutual information is the reduction in uncertainty of X given Y .

In order to implement source coding techniques, the following files are to be used as an input of
the encoders , the files are analyzed by measuring its size before the compression and its
entropy in bits per symbol and then the output file size , the results are for samples of :

Text Files

size before
bytes(txt)

size after
bytes

entropy

1 1.14 k 588 4.1486

2 30.5k 13.14k 4.179

3 56.9k 24.28k 4.155

4 79.6k 34.13k 4.157

5 183k 78.8k 4.1626

14

Images TIF(Tagged Image File)

Speech Files

Images JPG

Size Before
Bytes

Size After
Bytes

Entropy

1 2.25M 1.96M 6.555

2 2.26M 2.187M 7.74

3 28.8M 27.515M 7.85

4 264K 230.2K 7.57

5 510K 413.66K 6.63

6 916K 876.8K 7.77

7 1.38M 1.285M 7.55

Speech
bytes

Speech Entropy
Bit/symbol

1 286K 13.0752

2 160.6K 13.1137

3 59K 13.24

4 78.7K 14.11

5 52K 13.17

6 61K 12.8

7 23K 12.56

Image size
Mb

Speech Entropy
Bit/symbol

1 4.82 7.9177

2 3.41 7.7087

3 0.091 7.6722

4 0.838 7.311

15

It appears that the file size and its entropy are independent since the entropy depends on the

probability of the source symbols , but it is different between the different types of files .

The entropy will affect the size at the output of the encoder and it will be different for each

coding technique.

Lossless Coding Techniques

The Lossless Data Compression technique recommended preserves the source data accuracy by
removing redundancy from the application source data. In the decompression processes the
original source data is reconstructed from the compressed data by restoring the removed
redundancy ,The reconstructed data is an exact of the original source data . The motivation for
using compression is to Save storage space or bandwidth.

The performance of the data compression algorithm is independent of where it is applied , it
may be necessary to rearrange the data into appropriate sequence before applying the data
compression algorithm. The purpose of rearranging data is to improve the compression ratio.

After compression has been performed, the resulting variable-length data structure is then
Packetized(compressed file). The packets containing compressed data should be transported
through a channel communication link from the source to the receiver . The contents of the
packets are then extracted and data about algorithm are provided to the receiver in order to
be decompressed.

One of the Parameters that are needed to check for any algorithm , compression ratio is the
ratio between the size of the compressed file and the size of the source file.

 Compression factor is the inverse of the compression ratio. That is the ratio between the size of
the source file and the size of the compressed file.

 the most important one is code efficiency

16

There are a few well known Lossless compression techniques, including Huffman coding,
arithmetic coding and Lempel-Ziv coding.

Entropy Coding

Shannon-Fano Coding:

Overview

Shannon-Fano coding is prefix codes which produces variable size codes for the symbols

occurring with different probabilities. The coding depends on the probability of occurrence of

the symbol and the general idea is to assign shorter codes for symbols that occur more

frequently and long codes for the symbols occurring less frequently.so the probabilities must be

known This makes the algorithm inefficient

Shannon-Fano algorithm:

The algorithm used for generating Shannon-Fano codes is as follows:

1) For a given list of symbols, develop a corresponding list of probabilities so that each
symbol’s relative probability is known.

2) List the symbols in the order of decreasing probability.
3) Divide the symbols into two groups so that each group has equal probability.
4) Assign a value 0 to first group and a value 1 to second group.
5) Repeat steps 3 and 4, each time partitioning the sets with nearly equal probabilities as

possible until further partitioning is not possible.

Huffman Coding

Overview

Huffman code is the coding technique that takes a fixed length code and convert it to a
variable length code this coding method assigns shorter codeword to the high
probability symbols and loner codes for lower probability symbols . This method builds
a tree to represent the optimal unique prefix code of each symbol, The actual
compression is then performed by simply applying the translation given by the prefix

17

code tree , every message encoded by a prefix free code (Huffman code) is uniquely
decodable , this coding method is used in JPEG and MP3 files with other lossy
compression techniques .

In this section we will implement this code by MATLAB and apply this simulation on
different types of files (text , speech and image) and find the relationship between this
code and entropy, and measure the code efficiency to compare it with another codes.

Huffman Coding Algorithm

This algorithm is divided into two main steps the first one is the preparation of the probability

vector and the second is the binary code assignment for each symbol.

First Step :

Initialization of a list of probabilities with the probability of each symbol .

finding the list of probabilities for two smallest probabilities and

 Addition the two smallest probabilities to form a new probability

Remove and from the list.

Adding P to the list.

The steps will be repeated until the list only contains 1 entry of probability equals one.

After that , the following Tree is the result for a source of information has the following

probability of each symbols as shown in the figure :

18

Figure 2 The Tree of the first step for 8 symbol-source

As shown all data words have to be inserted in the first row, starting with the highest one and
then inserted into a tree . The tree will be computed in the following manner : The lowest two
probabilities are added to one value Then the new value and all remaining values are copied
into a new row The new row represents a new step and it is taken according to the its
probability i.e the after taking the lowest two probabilities, the next two higher probabilities
thant the first is taken and this will be continued until only one value (1) is obtained (the root
of the tree)

The next step is the assignment of a binary code for each symbol by giving the binary
value for the lower branch of each node of the tree and for the higher , it will be as in
the figure 3

Figure 3 Binary code assignment for the symbols

19

Y0

As it shown , for every time the value is added, the higher value is assigned with a 0 and the
lower with a 1, although taking previous assignments with it. As a result, the binary code is
written in such way that appears in the figure 3 , each symbol with corresponding Huffman
code.

Then the resulting code will be the minimum for higher probability and longer code for the
lower probabilities according to the nodes of the tree.

Upper Bound for the Huffman Code Bit Rate

And Coding in Blocks

The bit rate of the code is related to the average codewords length L of the output code of

Huffman coding , the following inequality is a theorem that shows that the average codeword

length is restricted between the entropy of the source and as following .

assume that the source

Coding can be done as a blocks of symbols to achieve a bit rate that approaches the entropy of

the source symbols as the following

And Yn refers to the total blocks of symbols

It is obvious that

According to the firstly described inequality we have

Y1

20

 Dividing by the number of symbols m in the block

taking the limit as the block length approaches infinity i.e the size of the block is increasing with
more symbols and codeword length

The final equation results in

Which means that as the block length is increasing the average length of the code (the bit rate)
approaches the entropy of the source .
The result of increasing the block size is the efficiency reaches to 100% of the code , and for
Huffman coding this performance could be achieved with large size of blokes.

Huffman encoder is implemented using MATLAB and it is applied for different digital data of

different file types.

In order to obtain the relations between the different encoder parameters the simulation

results are shown in the tables below.

Text Files using Huffman coding*

*
 All compression results in this chapter are not practical results due to excluding the Header Files, the results

taking from encoding and decoding at the same block without separation, practical results are shown in chapter4.

size before
bytes

size
after
bytes

Compression
factor

compression
ratio

code
efficiency

entropy

1 1.14 k 588 1.93 43.8% 0.99213 4.1486

2 30.5k 13.14k 2.32 43.1% 0.9913 4.179

3 56.9k 24.28k 2.34 42.6% 0.99128 4.155

4 79.6k 34.13k 2.33 42.86% 0.99123 4.157

5 183k 78.8k 2.32 43% 0.99205 4.1626

21

The text files have an entropy around 4 bits per symbol so the predicted compression factor is to

be around the 2.

Justification: ASCII characters is represented by 8 bits per symbol in the uncompressed file,

after the compression it is represented in average by 4.16 bits per symbol (character)

Huffman Coding for a text data shows an acceptable compression performance since files sizes

are approximately reduced to the half of the original ones.

The highest compression level is marked in red

Images TIF

Size Before
Bytes

Size After
Bytes

Compression
Factor

Average Code
Length

Code
Efficiency

Entropy

1 2.25M 1.96M 1.147 6.64 0.986 6.555

2 2.26M 2.187M 1.0333 7.77 0.9961 7.74

3 28.8M 27.515M 1.0467 7.886 0.9959 7.85

4 264K 230.2K 1.1468 7.612 0.994 7.57

5 510K 413.66K 1.232 6.664 0.9957 6.63

6 916K 876.8K 1.0447 7.79 0.9965 7.77

7 1.38M 1.285M 1.073 7.56 0.997 7.55

Figure 4 size before vs. size after Huffman Coding for TIF images

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Size After MB

S
iz

e
 B

e
fo

re
 M

B

22

It is obvious from the figure that the low entropy TIF files around 6.6 has the highest CR [file 1

and file 5 ‘refer to the table above’] but for file 5 of 6.63 entropy the code efficiency is greater

than file 1 so it has a better CR than file 1

Huffman encoding shows adequate levels of compression for TIF image files .

TIF Images have an entropy around 7 bits per symbol so the predicted compression factor is to

be around the 1 .

Justification: TIF Image Symbols (pixels) is represented by 8 bits per symbol in the

uncompressed file, after the compression it is represented in average by 7.38 bits per symbol

,as a result . Huffman encoder has a little levels of compression for this type of files .

In figure 5 the relation between the entropy and the level of compression is inversely

proportional , according to the justification above the first image has the highest level of

compression due to the lowest entropy that it contains.

6.6 6.8 7 7.2 7.4 7.6 7.8
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Entroy Of The Source Bits/Symbol

C
o
m

p
re

s
s
io

n
 F

a
c
to

r

Figure 5 compression factor vs. entropy shows the effect of entropy on CR for different-size files

23

Huffman Decoding

For all files that are being decoded with Huffman algorithm there is decoding algorithm for this
code and for all prefix codes in general it depends on the Huffman dictionary that is the output
of the Huffman encode which contains the symbol index and corresponding Huffman code , this
decoding algorithm is straight forward algorithm described in the chart below :

Input Huffman-Coded file’s Bit

stream

Check the dictionary . Is this

codeword recognized ?

Shift the input to add the next

bit to the codeword

N
O

YES

Get the index from the

dictionary to obtain the

symbol

The process continuous until the end of the stream.

24

The Burrows-Wheeler Transform ‘‘BWT’’
An Efficient Text- Compression Algorithm

The Burrows-Wheeler transform, also called “block-sorting” does not process the input
sequentially, but instead it processes a block of text as a single unit.

BWT after rotating the block of text it sorts the characters in a block of text according to a
lexical ordering of their following context. This process can be understood in terms of sorting a
matrix containing all cyclic rotations of the text.

BWT is the a general name is assigned to the presses of sequential transformations that are
BWT ,MTF ‘move-to-front transform’ , and entropy encoder , the first two transforms is aiming
at decreasing the entropy of the source .

BWT Algorithm Description

The compression algorithm takes the input text, which is treated as a string S of N characters
which are selected from an ordered alphabet of X characters in general. In this chapter it is the
English with all set of symbols which are included in the ASCII code.

The first step is to create an N x N matrix M by using the input string S as the first row and
rotating (cyclic shifting) the string N-1 times and each time adding the new string as a new row
to the existing ones. See figure 6 a

The second step is to sort the Matrix M lexicographically by rows. At least one of the rows of the
newly created M’ contains the original string S. and its denoted or named - the index of the first
such row- I. which if necessary for the decoding process.

The third and last step is to take the last characters of each row (from top to bottom) and write
it in a separate string L. L and the Index I are the outputs of this transformation.

 The Figure below shows such a matrix, constructed for the input string “mohammad,murad ”.
Each row is one of the fourteen rotations of the input, and the rows have been sorted lexically.
The first column (F) of this matrix contains the first characters of the contexts, and the last
column (L) contains the permuted characters that form the output of the BWT. The index I in
this example is 10 as shown in the next figure.

25

 a b

 Output L : dmrhaaomad,mum

After that the output text is suitable to be encoded using Move-To-Front algorithm and then RLE
and the entropy encoding as a final stage.
Figure 7 shows the standard BWT steps, RLE is not Essential, and it is not included in this
implementation.

Move-To-Front Transform

Move-to-Front encoding, is a scheme, as the name suggest, that uses a list of possible
symbols and modifies it at every cycle (moving one symbol, the last one used). It uses
the fact, that in many cases, the appearance of data words are clustered in short
intervals. It uses self-organizing sequential search and variable-length encoding of
integers. The advantages are that allows fast encoding and decoding, and requires only

mohammad,murad
ohammad,muradm
hammad,muradmo
ammad,muradmoh
mmad,muradmoha
mad,muradmoham
ad,muradmohamm
d,muradmohamma
,muradmohammad
muradmohammad,
uradmohammad,m
radmohammad,mu
admohammad,mur
dmohammad,mura

,muradmohammad
ad,muradmohamm
admohammad,mur
ammad,muradmoh
d,muradmohamma
dmohammad,mura
hammad,muradmo
mad,muradmoham
mmad,muradmoha
mohammad,murad
muradmohammad,
ohammad,muradm
radmohammad,mu
uradmohammad,m

BWT MTF RLE Entropy

Coding

Figure 7 Typical scheme for the Burrows-Wheeler compression algorithm

Figure 6 BWT of the input text mohammad,murad N=14 ,I=10 (a) not sorted cycles (b) lexical ordered rows

26

one pass over the data to be compressed. It is used here as a part of BWT that is being
discussed.

 Word Position in dictionary Dynamic dictionary
 of English alphabet

bananaaa 1 (abcdefghijklmnopqrstuvwxyz)
bananaaa 1,1 (bacdefghijklmnopqrstuvwxyz)
bananaaa 1,1,13 (abcdefghijklmnopqrstuvwxyz)

 bananaaa 1,1,13,1 (nabcdefghijklmopqrstuvwxyz)
bananaaa 1,1,13,1,1 (anbcdefghijklmopqrstuvwxyz)
bananaaa 1,1,13,1,1,1 (nabcdefghijklmopqrstuvwxyz)
bananaaa 1,1,13,1,1,1,0 (anbcdefghijklmopqrstuvwxyz)
bananaaa 1,1,13,1,1,1,0,0 (anbcdefghijklmopqrstuvwxyz)

 Final code 1,1,13,1,1,1,0,0 (anbcdefghijklmopqrstuvwxyz)

For the word mohammad,murad its MTF transformation is 4,5,5,4,3,0,1,5,5,3,7,7,5,5 for a
dictionary of its symbols. Or the dictionary can be used as all printable ASCII characters [from
decimal 32 to 126] , so no need to include it within compressed file .

Now , the BWT algorithm is implemented and applied to five text files , the results is compared
with the Huffman coded files.

Text Files using BWT & Huffman Compression

BWT

size before
bytes(.txt)

size after
bytes

Entropy of the
source text

Compression
factor

1 1004 284 4.02 3.53

2 1.14k 474 4.18 2.4

3 2.29k 999 5.07 2.34

4 2.76k 0.989k 4.73 2.8

5 3.57k 1.33k 5.25 2.68

Huffman

size before
bytes(.txt)

size after
bytes

Entropy of the
source text

Compression
factor

1 1004 401 4.02 2.5

2 1.14k 513 4.18 2.27

3 2.29k 1.18k 5.07 1.94

4 2.76k 1.33k 4.73 2.07

5 3.57k 1.92k 5.25 1.85

Figure 8 MTF example for a word of repeated characters , bananaaa shown in steps

27

It appears that BWT has a greater compression factors than that Huffman has, this can be
explained due to the two transformations for the input text files BWT and MTF which changes
the permutation (rearrangement) and shape of the source symbols, consequently these two
transformation results in reduction of the source entropy before the last stage entropy coding
as it shown in the table below

Source files has average 4.63 bits per symbol while it is after BWT and MTF 3.706 bits per
symbol in average , this causes the increase of CR’s for these files by this technique. Now in this
sample of text files BWT &MTF transform results in reducing files entropy in average with
respect to original by 19.95%.
The following figure shows the difference between Huffman and BWT compression for the
tested text files :

In the last chapter more analysis is carried out with practical results and simulations.

File No. Entropy of the source text
File input

Entropy of the source after
BW&MTF transforms

1 4.02 3.412
2 4.18 3.881
3 5.07 4.15
4 4.73 3.477
5 5.25 3.614

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Size Before KB

S
iz

e
 A

ft
e
r

K
B

BWT

HUFFMAN

Figure 9 Comparison between BWT and Huffman coding for text files shows the size before against size after in K Bytes

28

The Decoding of Burrows-Wheeler Transform

The Burrows-Wheeler Transform has two methods of decoding, the first one is depending on
the adding and sorting of the output text to have a matrix M of N x N size in such a way to
reverse the coding process this method is easy and straight forward but it need more computer
time to be done, the original string S is not obtained directly .

The second method is depending on the permutations it is more difficult than the first but it
needs less commuting time and storage and it will be described.

This method ,unlike the first one , its output is the original string S , at the beginning, we have
the transformed string L and the index I.

L : d m r h a a o m a d , m u m

In the first step, the string L is sorted lexicographically and called F :

F : , a a a d d h m m m m o r u

It is similar to the first row of M’ matrix .

Define the correspondence vector T of the length N, whose elements are numbers between
1 and N. The correspondence is defined as given that each k is unique
integer and cannot be appear more than once starting from the first appearance .

in this example the correspondence vector T is like this :

T = (5 ,8 ,13 ,7 ,2 ,3 ,12 ,9 , 4 ,6 ,1 ,10 ,14 ,11)

T(1)=5 states that L(1) has the index 5 at vector F , or in other words “d” in the fifth position
in F.

It is given that in general L(I) is the last character of S , in this example I=10 , L(10)=”d”
which is the last character of S = mohammad,murad

Now the text could be reconstructed from L and T with the following relations and steps “it will
be appear that each step depends on the previous step while the first one depends on the
index I ”:

Starting from the last symbol of S

N: the number of elements of S

29

From i = 1 ... to N-1

And

To illustrate that, the previous example is taken;

First step

From i = 1 to 14 ;

N=14

i=1

S(N 1) = S(13) = L (X 1)

 X i = T i (X i 1)

 X 1 = T 1 (X 0) = T 1 (10) = 6

So ,

S(13) = L (6

i=2

S(N 2) = S(12) = L (X 2)

 X 2 = T 2 (X 1) = T 2 (6) = 3

 S(12) = L (3

i=3

S(N 3) = S(11) = L (X 3)

 X 3 = T 3 (X 2) = T 3 (3) = 13

 S(11) = L (13 u

30

………………………………………… (1)

………………………………………… (2)

………………………………………… (3)

………………………………………… (4)

i=4

S(N 4) = S(10) = L (T 4 (13)) = L (14
.
.

And continue
.
.
.

i=13

S(N 13) = S(1) = L (X 13)

 X 14 = T 14 (X 12) = T 14 (5) = 2

 S(11) = L (2

Then all S elements are obtained .

To summarize the relations that are used to decoding so far :

Where: , : represents index of T in the process of decoding

31

Decoding of Move-To-Front Transform

In order to encode by MTF it is needed to construct a dictionary that is arranged according to
the input symbols ,the arrangement is done by moving the symbol in the dictionary that is
corresponding to the message symbol to the front of the dictionary .
Although the previous way is the encoding process it is also the same for decoding . to show
that the example in figure is taken again

Then the original message is obtained by one pass on the MTF code and arranging the dictionary
which allows faster decoding than other techniques.

For the word mohammad,murad its MTF transformation is 4,5,5,4,3,0,1,5,5,3,7,7,5,5 and the
decoding needs a dictionary of all possible ASCII symbols, this is done in the simulation part of
source coding.

MTF code Dictionary Output
1,1,13,1,1,1,0,0 (abcdefghijklmnopqrstuvwxyz) b

1,13,1,1,1,0,0 (bacdefghijklmnopqrstuvwxyz) a
13,1,1,1,0,0 (abcdefghijklmnopqrstuvwxyz) n

1,1,1,0,0 (nabcdefghijklmopqrstuvwxyz) a
1,1,0,0 (anbcdefghijklmopqrstuvwxyz) n

1,0,0 (nabcdefghijklmopqrstuvwxyz) a
0,0 (anbcdefghijklmopqrstuvwxyz) a

0 (anbcdefghijklmopqrstuvwxyz) a

 The output is bananaaa

Figure 9 MTF decoding for example of figure 8

32

Chapter Two

CHANNEL
CODING
Implementation of Binary BCH Linear Block

Codes Encoder & Decoder

This chapter is a study and implementation of a BCH channel codes with important concepts such

as the Joint Entropy and Conditional Entropy and its relationship with channel capacity and the

capacity of two channel models BSC and AWGN channel.

33

Channel Coding Overview

Channel coding or error control coding is a part of a Digital communication system used to

detect the errors in the transmitted data and correct it using redundant bits added to the

original data according to a specific algorithm

This technique is divided into two parts the first is the forward error correction code FEC that

used to detect the errors and correcting without the need of retransmission that is in the

conditions of good BER and the second is Automatic repeat request ARQ which is used under

huge errors to request a retransmission of data .

This figure shows the channel coding main parts :

Hamming Distance and Codeweight

- Two main measures for the coding performance are the hamming distance and code
weight which are defined as: Hamming distance is number of places, bits in which they

differ in two different codes but code weight is the number of one’s in the code.

The forward error correction coding is divided into main coding types which are the Block Codes ,

convolutional codes and Turbo Codes

Block Codes

The block codes is a channel coding technique that is divide the data which being transmitted

into a fixed length blocks called Codewords C each of these Codewords is being coded according

to an algorithm, if the output is containing the original data with parity bits the block code is

called systematic but if the output is a new code without containing the original input data

codeword explicitly then it is called unsystematic.

Figure 0.1 Channel Coding Classifications

34

For the block codes –which is the chapter topic, The error correction performance of a block

code is described by the minimum Hamming distance between each pair of code words, and is

called the distance of the code.

The binary information sequence at the encoder input has a rate of . Mainly there are

two types of channel encoding techniques. The first is the block coding, by which a blocks of

information bits are encoded into corresponding bits blocks. Each bits is called a code word

with a total number of possible code words. The code rate, defined as the ratio , is a

measure of the amount of the redundancy introduced by the specific block coding technique.

A block code C is constructed by breaking up the message data stream into blocks of length

has the form , and mapping these blocks into code words in C . The

resulting code consists of a set of M code words . Each code word has a

fixed length denoted by and has a form

The elements of the code word are selected from an alphabet field of q elements. In the binary

code case, which is our implementation, the field consists of two elements, 0 and 1. On the

other hand, when the elements of the code word are selected from a field that has q alphabet

elements, the code is non-binary code. As a special case when q is a power of 2 (i.e.)

where is a positive integer, each element in the field can be represented as a set of distinct

bits. As indicated above, codes are constructed from fields with a finite number of q elements

called Galois field and denoted by

In general, finite field can be constructed if q is a prime or a power of prime number.

When q is a prime, the consist of the elements with addition and

multiplication operations are defined as a modulo- q . If q is a power of prime (i.e.

where m is any positive integer), it is possible to extend the field to the field

 . This is called the extension field of and in this case multiplication

and addition operations are based on modulo- p arithmetic.

To construct the elements of the extension from the binary with

elements 0 and 1, a new symbol α is defined with multiplication operation properties as:

 and . The elements of the

 that satisfy the above properties are . As the field should

has elements and be closed under multiplication α should satisfies the condition

. Hence; the elements of the extension are which is a

commutative group under an addition and Multiplication (excluding the zero element)

operations. is called a primitive element since it can generate all other field elements and it is

a root of a primitive polynomial . So each element in the field can be represented as a set

of m-tuple bits. To make the picture clear, Table at page 42 shows the three representation

for the elements of with a primitive polynomial as our study case

and implementation.

35

Channel Capacity

Entropy, Information and Capacity

According to the information theory and mathematical models for representing it, from the

previous chapter, the entropy is defined as average information that is associated with the

source of information, mathematically it represented by

 ∑

Now suppose the X is a binary source of information with zero probability is P the entropy is

discussed in the previous chapter and it is

For discrete binary random variable the entropy could be denoted as H(P)

The Joint Entropy and Conditional Entropy

If the two variables X and Yare jointly distributed as P(X,Y) then the joint entropy is denoted as

H(X,Y) and has mathematical equation

 ∑

∑

If one of these variables has the probability given another variable P(Y|X) then the conditional

entropy is

 ∑

∑

 ∑

∑

Form the last equation the joint entropy could be rewritten according to a chain rule as

This means that the entropy of X and Y is the entropy of X plus what Y has (entropy or

uncertainty) given the knowing of X.

As for entropy the information is defined for a source X as

36

 ∑

The mutual information is defined in previous chapter as

 ∑

The channel capacity

The channel is defined as a probabilistic device that is fully described by the conditional
probability function P(Y|X) and represented as

Now, the channel capacity “ C ” is defined as the maximum average information that can be

transmitted over the channel per each channel use, mathematically :

If the chancel carries binary data as input and output with probability of receive one or
zero is P and the other is 1-P if the rows of the channel transition matrix that contains
p(y|x) permutations of each other, and the columns are permutations of each other
then the channel is a binary symmetric channel BSC this channel also as discrete
memory less DMC . The previous channel characteristics could be represented as

P (y | x) x y

Figure 0.2 Mathematical Model Of The Channel

0

1

0

1
1 - p

1 - p

Figure 0.3 BSC with inputs, outputs and reception
probabilities

37

The transition matrix for BSC channel is represented as [

]

For this channel the input X is {0,1} and the output Y is {0,1} .

Then the capacity for this channel could be obtained according to the equation like this knowing

that P(0|0)=1-P , P(0|1)=P , P(1|1)=1-P and P(1|0)=P For a source X with probability symbols of

P(0)=P(1)=0.5 for maximum information

plog2pp)p)log2(1(1

p)P(1)(1pP(0)

p1
p)logP(1)(1

pP(1)p)P(0)(1

p
P(1)plog

p)P(1)(1pP(0)

p
P(0)plog

pP(1)p)P(0)(1

p1
p)logP(0)(1Y))max(I(X;C





























2

1
)0()1(PP

This figure is deeply related with figure 1 of previous chapter for the entropy of the binary

source , so the capacity of a binary symmetric channel BSC is

Where is the crossover probability and it is equal to P(0|1) = P(1|0) , it could be varied as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability P

C
h

an
n

e
l C

ap
ac

it
y

 B

it
s/

C
h

an
n

e
l U

se

BSC Capacity

Figure 2.4 BCS Channel Capacity

38

Capacity for Additive White Gaussian Noise Channel

This channel model is more important since most of the channel coding techniques are designed

and tested according to this model , the AWGN channel has a noise power density N0 that is

normally distributed according to Gaussian distribution function , it is characterized as

√

The capacity for continuous-time input and output signals of this channel is given by

Where H(Y) the entropy of the continues time output signal and it is defined as :

 ∫

And H(N) the entropy of the Gaussian Noise

Now if the signal is band limited with a bandwidth B then the capacity according to Shannon-

Hartley theorem is

)

Where S is the power of input signal to the channel and N = N0B is the noise power

 Finally the capacity of an AWGN channel is deeply related to the input signal to the channel

signal to noise ratio and the allocated bandwidth and it is dependent on the digital modulation

scheme .

Finally the AWGN channel is chosen since this chapter will be an analysis implementation of a

source coding techniques that aims at adding redundant bits to its input codeword to enable the

error detection and correction and to reduce the probability of error over AWGN channel.

39

Block Channel Coding

BCH codes:

The Bose , Chaudhuri and Hocquenghem codes is a powerful random multiple error
correcting cyclic codes.this class of codes is a generalization of Hamming codes for multiple
error correction. There are two types of BCH code , Binary BCH codes were first discovered by A.
Hocquenghem in 1959 and independently by R.C. Bose and D.K. Ray-Chaudhuri in 1960 in our
case we take this deeply. On the other hand we have non-binary BCH codes, the most important
subclass is the class of Reed-Solomon (RS) codes.

The decoding algorithms for BCH codes are syndrome decoding , Berlekamp’s iterative
algorithm, and Chien’s search algorithm.

Binary primitive BCH codes

For any positive integers and , there exist a binary BCH code with the
following parameter :

Block length :

Number of parity-check digits:

Minimum distance :

Where:

n: output codeword length
k:input bits
m:the order of primitive polynomial
t: number of errors that can be correct
dmin: the minimum distance

clearly , this code capable to correcting or fewer errors in the block of digits. To
determine the generator polynomial we need to know how many errors that the code can
correct and the order of primitive polynomial from this we can know the minimal
polynomial , and the generator polynomial of this code as specified in terms of its root of
Galois Field that we illustrate in this chapter.

40

Mathematical Related Concepts

Minimal polynomials:

Let α be an element in . We call the monic polynomial of smallest degree which has
coefficients in and α and its conjugates as a root, the minimal polynomial of α.or in
other word The minimal polynomial is irreducible over , and any other non-zero
polynomial GF with is a (polynomial) multiple of .

 All the field elements of the form ()

 and is odd, are called conjugates of and

all of them over the defined field have the same minimal polynomial (i.e.

)Hence, every even power of in has the same minimal polynomial as the preceding odd
power of .

The primitive polynomial is used to obtain the generator polynomial ,and is the order of
the primitive polynomial we will talk about this in the next part.

There is a lot of theorems for the minimal polynomial but the most important theorems
are chosen to be considered:

The first theorem which describes the first minimal polynomial over the finite filed states that :

If be the minimal polynomial of an element a in and is irreducible.

And by the definition the minimal polynomial

That is needed to determine the next minimal polynomial.

The second theorem describes how to construct the minimal polynomial and states that:

If be a polynomial over , and α is a root of of order in the multiplicative
group of some field F of characteristic p. and Let r be the smallest integer so that pr+1 1 mod n.
then α, αp, αp^2, ..., αp^r are all distinct roots of P(x).

To find the minimal polynomial :

 (
)

Where :
p: the order of that is needed to find the minimal polynomial
r: integer number
To illustrate the previous mathematical theory we consider the field this means the
order of is 4 and the primitive polynomial may be , and we need to
determine what will be

http://en.wikipedia.org/wiki/Irreducible_polynomial

41

This have a root , , , * only because after of this we have[=] so we ignore this

case . or in other words we can say that , , are the conjugates of so we can obtain
the minimal polynomial and , , and are the same

After do this we find

And we can find any by this way.

Generator Polynomial

The generator polynomial of the t error correcting BCH code of block length of
the lowest degree polynomial over that has

Note that the generator polynomial of the binary BCH code is originally found to be the least
common multiple of the minimum polynomials

And

Hence the number of parity-check bits; , of the code is at most .

However, generally, every even power of α in has the same minimal polynomial as
some preceding odd power of in . As a consequence, the generator polynomial of the
t-error-correcting binary BCH code can be reduced to

Where:

 : Least common multiple that means if we have any two or more minimal polynomial we
take only one of them.

*
 , , are also considered as conjugates and have the same minimal polynomials since the

equation
 is satisfied.

42

Encoding of BCH code

After the preparation of the generator polynomial we go with steps to encode the data.

Step 1:

Generator matrix is the most important and the complex step to encode the data that will be
send and the dimensions of the matrix is .

Generator matrix can be construct by put the coffecient of the generator polynomial and
followed by zeros with length of the parity bits and in the next row we shift one column
and so on , and after this we need to make from column number 1 to as identity because we
deal with systematic code . And we obtain the most general generator matrix as

Where:

Ik : is the identity matrix of dimensions
P:parity matrix of dimensions

Step 2 :

After we get the generator matrix actually we need to obtain the codeword as equation
below

Where:
D: the information.
G: the generation matrix

Now the codeword is formed and data is ready for transmission.

Step 3:

The check matrix for a systematic code can be found directly from the generator matrix.

43

BCH(15,5,7)

Study Case & implementation

If the primitive polynomial P is being Considered , and the error correction
 and the root in Galois field then we have the following specifications:

 ,

The
 ,

Based on :

Given 10011 , if is a root :

so

Form this it is needed to determine the minimal polynomial for all ,this is illustrated by this
table

Filed elements Minimal polynomial

Power
representation

Polynomial
representation

Binary
representation

44

To obtain the it could be written as

After the multiplication

So*;

And by the same way all minimal polynomials could be found.

Now the is the multiply of since

Therefor;

The coefficients of the is

]

* If we have then it is equal to zero , for each it could be replaced from the table above for example

 and , And since, we add without carry

45

The generation matrix of k by n that is needed can be built by putting the generator poly in the
first row and followed by zeros and in the next row is the one bit rotation of previous row

[

]

Now , first k columns of G must be identity matrix I k this matrix is the reduced row echelon
form of the previous matrix and it has the form

[

]

Now The predefined parity check matrix is :

[

]

All possible codewords can be obtained by multiplying a Data of length bit by generator
matrix

46

Decoding of BCH Codes

Decoding process of the BCH codes is the most challenging task. Mainly, we have three decoding
algorithms for BCH codes: Peterson- Gorentien-Zierler algorithm and Berlekamp- Massey
algorithm, and syndrome, Peterson- Gorentien-Zierler algorithm is described here and also the
syndrome algorithm that is implemented .

 Now , assume that the received code word is differs from the sent code

Word in positions , then the error code word will
have a nonzero elements at these positions and the error polynomial can be written as

Where

V: the maximum error allowed or v=t

For this algorithm its necessary to compute the syndromes of the received code word

polynomial . define the syndrome to be

 ()

Or

 .

 .

Where

 is the error locations. Defining what is called error locator polynomial as

So ,

47

0 2 4 6 8 10 12 14 16 18
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E

R

(15, 5, 7)

(15,7,7)

(31,25,5)

(63,36,11)

that has zeros at . It can be shown that from the two equation before can be coupled
together in matrix form and written as

[

]

 [

]

[

]

Peterson’s algorithm is based on solving these matrix for . If A is found to be singular that
means we have less than t errors in the received code word. In this case we have to reconstruct
a new syndrome matrix by deleting the two right most columns and the two bottom rows from
A and .

solve a gain for excluding t and so on. After are found the error correct polynomial
defined in previous equation is constructed. Finally, the roots of are to be found using
Chien’s search algorithm and the error locations set to be the reciprocal of these
roots.

The benefit we get from the described decoding is the increasing in the system reliability and

robustness against noise for a given type of modulation as shown in this figure for BPSK

Figure 2.5 BCH codes performance comparison in a noisy channel - theoretically

48

Peterson- Gorentien-Zierler algorithm :

Get the received codeword r

𝑆𝑗 𝑟(𝑎𝑗) 𝑗 𝑡

compute the Syndromes

𝑉 𝑡

𝑀
𝑆 𝑆𝑣
⋮ ⋱ ⋮
𝑆𝑣 𝑆 𝑣

𝒅𝒆𝒕 𝑴 𝟎

[

Λ

Λ

Λ]

 𝑀

[

 𝑆𝑣

 𝑆𝑣

 𝑆 𝑣]

Find the error location
By finding the zeros of Λ 𝑥

[

Y

Y

Y]

𝑋𝑙 𝑋𝑣
⋮ ⋱ ⋮
𝑋𝑙 𝑋𝑣

[

 𝑆𝑣

 𝑆𝑣

 𝑆 𝑣]

𝑉 ⟵ 𝑉

49

Syndrome Decoding of BCH Codes :

The decoding process of the BCH binary codes could be done by this algorithm , based on the

parity check matrix

The multiplication of the parity check matric by a codword C is equal to zero

If the input of the BCH decoder is the codeword r which contains errors so that

The definition states that the Syndrome S is the multiplication of the output codeword by the
parity check matrix

The Syndrome S has a binary values of number

To obtain the error within the received codeword r from the following equation it could

be obvious

So that the syndrome of an erroneous codeword r is the error in this codeword multiplied by

the parity check matrix , and since the parity check matrix H is not invertible the error vector e

could be found from a lookup table that contains all possible error patterns and each that

corresponding to a Syndrome value .

The lookup table which contains all syndromes and error patterns is called the Syndrome table

and it should had a size of 2n-k by n , the rows of this table could be sorted so that it will be

50

corresponding to the syndrome decimal value in order to reduce the seeking time , the table for

our case of BCH(15,5,7) is contains of 1024 rows by 15 columns .

The first value of the syndrome table is usually the correct codeword of syndrome zero and it is

often be the all-zeros codeword

If the error pattern that is corresponding to the syndrome value is found then it is easy to obtain

the correct original code word C.

This algorithm is implemented for BCH(n,k) and it could be summarized by the following flow

chart

Get the received codeword r

𝑆 𝐻 𝑟𝑇 𝒔

Calculate the Syndrome for r

If 𝒔

Seek for error pattern
corresponding to s

𝐶 𝑟 𝑒

Get the original codeword

𝒅

Get the original data by the
elimination of parity check n-k

bits

NO

YES

51

Chapter Three

ENCRYPTION
Data Security Implementation

This chapter is a description and implementation of an Advanced Encryption Standard Rijndael

algorithm which is a symmetric encryption algorithm , another layer of security is added by

implementing a steganography system

52

Encryption

Overview

Data that can be read and understood without any special measures is called plaintext or clear
text. The method of disguising plaintext in such a way as to hide its substance is called
encryption or in other words Encryption is the process of transforming information (referred to
as plaintext) using an algorithm (called cipher) to make it unreadable to anyone except those
possessing special knowledge, usually referred to as a key.

Symmetric encryption uses a single key to encrypt and decrypt the message. This means the
person encrypting the message must give that key to the recipient before they can decrypt it.

Asymmetric encryption, also known as Public-Key encryption, uses two different keys - a public
key to encrypt the message, and a private key to decrypt it. The public key can only be used to
encrypt the message and the private key can only be used to decrypt it.

In this chapter the symmetric encryption is conceded to be analyzed, described and

implemented .The Advanced Encryption Standard is adopted in this chapter and it is

represented by the a Rijndael algorithm with 128-bit cipher key.

Symmetric Encryption Processes

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Key_%28cryptography%29

53

AES

The National Institute of Standards and Technology, (NIST), provided proposals for the Advanced
Encryption Standard, (AES). The AES is a Federal Information Processing Standard, (FIPS), which
is a cryptographic algorithm that is used to protect electronic data [1]

The AES algorithm is a symmetric block cipher that can encrypt,(encipher), and decrypt,
(decipher), information. Encryption converts data to an unintelligible form called cipher-text.
Decryption of the cipher-text converts the data back into its original form, which is called
plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data in blocks of 128 bits.

 Finalist candidate algorithms are five AES algorithms they are: MARS, RC6, Rijndael , Serpent,
and Twofish. In this chapter we will take a Rijndael algorithm with key length 128 bit and
implementing it by MATLAB.

Rijndael Algorithm:

The Rijndael algorithm was developed by Joan Daemen of Proton World International and
Vincent Fijmen of Katholieke University at Leuven.

The main advantages of Rijndael algorithm flexibility , security Having the support of a rich
algebraic structure enables Rijndael to be more secure than the average algorithm, Although it
is flexible and defends against attacks, Rijndael does not require a lot of memory to operate.

The input, the output and the cipher key for Rijndael are each bit sequences containing 128, 192
or 256 bits with the constraint that the input and output sequences have the same Length. A bit
is a binary digit, 0 or 1, while the term ‘length’ refers to the number of bits in a sequence. In
general the length of the input and output sequences can be any of the three allowed values but
for the Advanced Encryption Standard (AES) .

Rijndael algorithm based on galois field generated by the primitive polynomial

Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a minimum of
128 bits and a maximum of 256 bits. Assuming one byte [our case] equals 8 bits, the fixed block

size of 128 bits is 128 ÷ 8 = 16 bytes.

54

The Basic Algorithm

For simplicity we choose a 128 bits length of data, this algorithm have a two branches
encryption and key schedule
We will illustrate these deeply.

 Specification of Rijndael Algorithm :

1.State

A byte in Rijndael is a group of 8 bits and is the basic data unit for all cipher operations. Such
bytes are interpreted as finite field elements using polynomial representation, where a byte b
with bits represents the finite field element:

 ∑

All input , output and the cipher key are represented as a one dimensional array of bits for
essentially programming the input is converted to two dimensional array of bytes and this
process called state. In our case 128 bits, the state array is 4*4 of bytes however also the cipher
key also need to convert it in the same style that is mean 4*4 array of bytes.
If there are a sequence of data that want to convert into a state that
can be done by

Where
r : row
c : column

55

2. Transformation :

2.1 S-Box
An S-Box takes some number of input bits, m, and transforms them into some number of output
bits, n: an m×n S-Box can be implemented as a lookup table with 2m words of n bits each and in
our implementation we are using lookup table as we shown below.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 01 DE A5 63 6A 26 7E C9 7F 67 A4 05 03 64 2E 32

1 AE 04 BA B5 B2 50 3A 17 08 82 0F 94 ED 7C F5 71

2 6C 24 8A B9 D9 E2 CC 38 B0 6D EC 8D 3D CA 9D A9

3 B1 6F E3 80 35 3B B6 4A E7 21 55 B3 68 BD 6E 19

4 F0 16 6B EB 59 28 1D 2C D6 41 3F D5 C7 3E 8F 89

5 36 88 45 8E DD 8C 34 CD 2F A2 22 F7 AF 29 9E 91

6 E9 86 C0 40 18 83 F6 25 C2 A1 54 AB 66 EF A6 E8

7 B4 5A 84 C4 52 5F E5 02 5D EA D4 DB D2 85 5B 27

8 00 44 93 47 DF 46 1A D7 37 51 49 A8 1C B8 4F F9

9 C5 43 60 20 0C 57 7B A3 61 E1 2A E4 33 C6 53 74

A 0B 9A 76 E6 65 FF C3 3C 9F 75 56 F8 69 F3 9C 87

B 7D F4 5E FD BF 23 0D DA AA 99 95 9B 0E 5C 96 39

C D3 90 30 92 C1 2D 1B E0 81 97 15 72 10 1F 98 62

D 78 4D 13 73 AC CE D0 1E FE 8B 2B 0A 06 C8 4E F2

E CB CF 58 7A EE A0 B7 DC 12 42 FB FC 07 14 4B AD

F D8 48 77 11 D1 A7 BC 70 F1 FA BB 79 09 BE 4C 31

Very simple to use its each byte in the state that represent in HEX the first one is the row in the
s-box and the second number is the column number and the intersection between the two is
the number transformed, it is done for all number in the state.

But to know how this lookup table obtain the S-box is generated by determining the
multiplicative inverse for a given number in = ,
Rijndael's finite field (zero, which has no inverse, is set to zero). The multiplicative inverse is
then transformed using the following affine transformation.

 ’

Apply s-box Tr

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Lookup_table
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field_arithmetic#Rijndael.27s_finite_field
http://en.wikipedia.org/wiki/Affine_transformation

56

[

]

[

]

[

]

Where is the multiplicative inverse as a vector.

The matrix multiplication can be calculated by the following algorithm:

 Store the multiplicative inverse of the input number in two 8-bit unsigned temporary
variables: s and x.

 Rotate the value s one bit to the left; if the value of s had a high bit (eighth bit from the
right) of one, make the low bit of s one; otherwise the low bit of s is zero.

 Exclusive or the value of x with the value of s, storing the value in x

 For three more iterations, repeat steps two and three; steps two and three are done a
total of four times.

 The value of x will now have the result of the multiplication.

After the matrix multiplication is done, exclusive or the value by the decimal number 99 (the
hexadecimal number 0x63, the binary number 1100011, and the bit string 11000110
representing the number in LSb first notation).

Or we can put this matrix into an equation as follow

Where

 And each bit of the byte that we need to transform.

2.2 Shift Rows

The Shift Rows transformation operates individually on each of the last three rows of the state
by cyclically shifting the bytes depends on the number of the rows, we don’t have shift in
row(0) but row(1) we have a one cycle shift and so on.as illustrated below

57

Where

 is the state after transformed by s-box

2.3 Mix columns

The Mix Columns transformation acts independently on every column of the state take each
column and multiply it by mix columns matrix as follow:

[

]

 [

] [

]

This can also be seen as the following:

This can be done only by multiplication in the field . as we illustrated in channel coding chapter .

2.4 Add round key

In the add Round Key transformation, from the key schedule (the round key described later) are
each added (XOR’ d) into the columns of the state so that:

[

]

[

]

 [

]

This is done four times in each round to apply this transform.

 ’

Apply shift rows Tr

58

3.Key schedule

In this algorithm the length of cipher key is 128 bits, which is generated into 4 * 4 bytes. Label
the first four columns as respectively . From this primary key we need
to generate round keys for all 10 rounds with 128 bits .and we need in these steps S-box and
Rcon that is illustrated as follows:

Rcon (Round Column)

Is something that should be used when we generate a first column in each round

01 02 04 08 10 20 40 80 1b 39

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

We can get the first columns of all round keys by

Where:
 : the number of the column
 :the round key at such column
 : the number of the round

This equation can be used at first column in each round only.

Now we need to generate all key rounds and we will illustrate it step by step :

Round (0):

 It takes the primary key

Round (1):

The first column of this round key if we called , that takes the last column of the primary key
 and rotate it once then go to the S-box and replace all elements of this column or that can
be expressed as

And the remaining columns can be obtained by

From round 2 to round 10 keys which is the same idea in round 1 key

59

For the first columns of these keys are used

And for others are used

After perform this operation, we have finished the most important step before the second

branch which is encryption.

Encryption process

Encryption algorithm

 State

Add round key

Sub bytes

Shift rows

Mix columns

Add round key

Add round key

Shift rows

Sub bytes

 Cipher text

 Cipher key

 Round key(R)

 Round key (10)

60

Decryption

To decrypt, perform cipher in reverse order, using inverses of the transformation and the same
key schedule.

 Cipher text

Add round key

Inverse Shift rows

Inverse Sub bytes

Add round key

Inverse Mix columns

Add round key

Inverse Sub bytes

Inverse Shift rows

State

 Round key (10)

 Round key(R)

Cipher key

61

Inverse transformation:

1.Inverse S-Box

As we see in the lookup table

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 80 00 77 0C 11 0B DC EC 18 FC DB A0 94 B6 BC 1A

1 CC F3 E8 D2 ED CA 41 17 64 3F 86 C6 8C 46 D7 CD

2 93 39 5A B 21 67 05 7F 45 5D 9A DA 47 C5 0E 58

3 C2 FF 0F 9C 56 34 50 88 27 BF 16 35 A7 2C 4D 4A

4 63 49 E9 91 81 52 85 83 F1 8A 37 EE FE D1 DE 8E

5 15 89 74 9E 6A 3A AA 95 E2 44 71 7E BD 78 B2 75

6 92 98 CF 03 0D A4 6C 09 3C AC 04 42 20 29 3E 31

7 F7 1F CB D3 9F A9 A2 F2 D0 FB E3 96 1D B0 06 08

8 33 C8 19 65 72 7D 61 AF 51 4F 22 D9 55 2B 53 4E

9 C1 5F C3 82 1B BA BE C9 CE B9 A1 BB AE 2E 5E A8

A E5 69 59 97 0A 02 6E F5 8B 2F B8 6B D4 EF 10 5C

B 28 30 14 3B 70 13 36 E6 8D 23 12 FA F6 3D FD B4

C 62 C4 68 A6 73 90 9D 4C DD 07 2D E0 26 57 D5 E1

D D6 F4 7C C0 7A 4B 48 87 F0 24 B7 7B E7 54 01 84

E C7 99 25 32 9B 76 A3 38 6F 60 79 43 2A 1C E4 6D

F 40 F8 DF AD B1 1E 66 5B AB 8F F9 EA EB B3 D8 A5

Very simple to use its each byte in the cipher that represent in HEX the first one is the row in the
Inverse S-Box and the second number is the column number and the intersection between the
two is the number transformed, do it for all number in the cipher text.

2. Inverse shift rows:

Its completely inverse of the shift rows in the encryption side , assume we have this matrix and

we need to transform it.

 ’

Apply inverse shift

row Tr

62

3. Inverse mix Columns

The inverse Mix Columns transformation acts independently on every column of the cipher take
each column and multiply it by mix columns matrix as follow:

[

] [

]

[

]

This can also be seen as the following:

This can be done only by multiplication in the field .

4.inverse Add round key

In the inverse add Round Key transformation, from the key schedule (the round key described
before) are each added (XOR’ d) into the columns of the cipher so that:

[

] [

] [

]

It is done four times in each round to apply this transform.
After carrying out these transformation like decryption flow chart and using the same cipher

key that used in encryption we should recover the same file that encrypted.

Assume we have a text file which contains murad,mohammad

murad,mohammad 109 117 114 97 100 44 109 111 104 97 109 109 97 100

 In this example we have 14 bytes only so we need to add two zeros as result we need 16 bytes.

Cipher key : [43 40 171 9 126 174 247 207 21 210 21 79 22 166 136 60]

Then the cipher text is

And at the decryption side the recovered data is murad,mohammad

ASCII representation

63

Steganography
As a second data security layer

Steganography can be defined as the science of writing hidden messages in such a way that no

one, except the sender and intended recipient, can detect the existence of the message

Steganography has a difference with cryptography. While the Cryptography involves the

encryption algorithms that change the message symbols as it done with the AES . An encrypted

message is obvious. One may not know the intended meaning of the message, but it is obvious

that it exists!

However, Steganography makes an effort to hide the fact that the encrypted data even exists,

so not drawing attention to it. It replaces bits of unused data into the file- (i.e. graphics, sound,

text, audio, or video) with some other bits that have been obtained secretly or unauthorized

manner. Our implementation employs the embedding with image data.

The embedding algorithm that is used the Least significant bit Embedding LSB and its depends

on bits replacement of a source file’s least significant bit according to the message or data

information bits.

This method could be used apart from the encryption to provide less computation time and

difficult data transformations, or could be used with it.

Carrier

File

Secret

Message or

encrypted

data

Embedding

Algorithm

Carrier

File

+

Secret

Message

Key

Figure 3.1 General Steganography Algorithm Block Diagram

64

Chapter Four

SYSTEM
IMPLEMENTATION
MATLAB Implementation of the System

This chapter introduces the programming codes and MATLAB functions that are created so that

to carry out the operations and tasks that each block in the digital communication system

performs.

65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Size Before KB

S
iz

e
 A

ft
e
r

K
B

BWT

Huffman

RAR

Run-Length

System Performance Simulations

The Source Coder
 In order to carry out this test, there is a set of different size and type files to be encoded, the

compressed or encoded files (the output) are then compared with the input files according to

some parameters. The coders that are used Huffman, Run-Length, and BWT.

The next figure shows the difference in the size after and before for the chosen text files

File

name

Size
Before

[Bytes]

BWT

[Bytes]

Huffman

[Bytes]

RunLength

[Bytes]

RAR

[Bytes]

Average code
Length for
Huffman

[Bits/symbol]

Average code
Length for

BWT
[Bits/symbol]

Entropy
Of the source

[Bits/symbol]

File 1 1k 0.532k 0.664 k 1.53 k 0.47 4.40 2.94 4.38
File 2 1.36 k 0.787k 0.874 k 2.67 k 0.77 4.40 3.59 4.38
File 3 3.66 k 1.96 k 2.40 k 7.16 k 1.88 4.89 3.74 4.85
File 4 4.12k 1.95 k 2.62 k 7.72 k 1.82 4.75 3.27 4.72
File 5 6.08 k 2.92 k 4.05 k 11.9 k 2.82 5.09 3.5 5.05
File 6 12.7 k 5.02 k 7.21 k 25 k 4.87 4.41 2.97 4.39
File 7 16.0 k 6.02 k 9.14 k 31.5 k 5.85 4.46 2.85 4.44
File 8 18.1 k 6.75 k 10.2 k 35.6 k 6.72 4.45 2.85 4.43

Figure 4.1 comparison plot for the three encoders compared with RAR

66

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
0

1

2

3

4

5

6

7

8

9

10

11

12

Size Befor KB

S
iz

e
 A

ft
e
r

K
B

RAR

Huffman

BWT

Run-length encoder seems not suitable for major types of files and it is may implemented within

a specific algorithm which has a considerable number of repeated successive symbols which is

not usually occurs in an ordinary text file. As a result the run length coding is excluded form the

next comparisons.

The output of source coder
In this implementation the output file should be include the decoding information represented

in a header attached to a file.

The header data contains important details for the decoding process to be carried out

successfully, for each coder the content of the header is different, this is shown in the next

section of this chapter.

Figure 4.2 the performance of the adopted text codes compared with RAR

Encoded File Header Files

Original File Input

Output

Figure 4.3 output file structure compared with input file

67

The same test is done to voice wave files and the results for the Huffman encoder are shown in

the table below

File name
(.wav)

Size
Before

[K Bytes]

Size
after

[K Bytes]

Average code
Length for

[Bits/symbol]

Entropy

[Bits/symbol]

hello 25.7 20.6 5.95 5.91
how 29.2 23.3 5.97 5.95

hi 30.1 21.4 5.357 5.317
Good 38.6 35.0 6.94 6.91

ok 55.7 49.1 6.768 6.74

The Channel Coder and Channel

While the main parameters in the previous section are the size of the file and average code

length the channel forward error correction code testing parameter is the bit error rate, this

parameter is affected by the modulation type and it is order and the FEC technique, the

implementation of BCH (15,5,7) is used in this test, this type of channel FEC codes can correct up

to 3 errors in the code-word of 15 bits.

To test the correction capability of this type, the following code-word is assumed to be the

corresponding to the 5-bit message signal:

A random three errors are introduced to the code word to check the output of the decoder:

Now a four random errors are introduced to the same code-word:

0 1 0 0 1

0 1 0 0 1 1 0 1 1 1 0 0 0 0 1

Output 15 bit code word:

Input 5 bit word:

0 1 0 1 1 1 0 1 0 1 0 1 0 0 1

Erroneous code word:

0 1 0 0 1 Recovered message:

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

Erroneous code word:

Recovered message: 0 0 0 0 0

68

0 5 10 15 20 25 30
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E

R

8-PSK

16-PSK

32-PSK

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

8-PSK

16-PSK

32-PSK

Now a binary file 6.4 K Bytes is tested using this coder for different modulation schemes and the

following simulation results for bit error rate is obtained

The above results is compared with the theoritical results and shows some differences due to

finite length of input data

Figure 4.4 BER against SNR for different coded PSK schemes with BCH (15, 5, 7)

Figure 4.5 Theoretical results for the same test

69

0 2 4 6 8 10 12 14 16 18
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E

R

(15, 5, 7)

(15,7,7)

(31,25,5)

(63,36,11)

The theoretical performance of the implemented BCH type shows that has a great BER than

others but it has a good error corrections capability with shorter block size to be coded

The Encryption-Decryption Process

To test the encryption process a text file is being encrypted and decrypt to ensure that the AES

Rijndael Block cipher is working properly.

The implemented AES is a symmetric block cipher algorithm with 128-bit key and 128-bit block

size.

The input data is a text data this data is shown as it is in the text editor

The 128-bit symmetric cipher key used is

(2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C)HEX

Figure 4.6 different BCH types performance

Data compression or Source coding is the process of encoding information using fewer bits than an

unencoded representation would use by removing the redundancy and we can remove it until limit

defined as entropy.

70

The input for the AES RJ block cipher is broken into 4 by 4 blocks of 8-bit symbols as follows in

decimal representation

The data after the encryption process will be like this and it has a range from 0 to 255 (0-FF)HEX

After the above process the text data that appears in the file editor

68 32 112 115

97 99 114 105

116 111 101 111

97 109 115 110

32 83 99 111

111 111 101 100

114 117 32 105

32 114 99 110

103 32 32 99

32 116 112 101

105 104 114 115

115 101 111 115

32 101 100 32

111 110 105 105

102 99 110 110

32 111 103 102

111 116 32 110

114 105 117 103

109 111 115 32

97 110 105 102

101 32 115 104

119 98 32 97

101 105 32 110

114 116 116 32

97 110 111 32

110 101 100 114

32 110 101 101

117 99 100 112

114 110 105 119

101 116 111 111

115 97 110 117

101 116 32 108

100 101 32 111

32 32 114 118

117 98 101 105

115 121 109 110

103 101 100 97

32 32 117 110

116 114 110 99

104 101 100 121

32 32 99 114

97 119 97 101

110 101 110 109

100 32 32 111

118 116 110 32

101 32 116 108

32 32 105 105

105 117 108 109

105 101 101 115

116 102 100 32

32 105 32 101

100 110 97 110

116 121 0 0

114 46 0 0

111 0 0 0

112 0 0 0

126 140 15 168 86 178 49 229 9 107 64 6

211 84 224 2 89 28 58 56 74 251 183 174

254 61 70 118 248 191 53 182 66 52 128 12

94 217 94 99 16 148 204 43 187 230 54 75

107 193 153 223 237 30 224 146 140 117 15 134

153 168 53 238 78 186 185 235 255 158 117 58

48 169 56 223 213 222 6 60 68 233 202 15

119 60 43 239 22 99 18 68 100 41 215 253

195 39 170 200 15 152 228 164 223 155 55 174

85 192 78 138 75 212 157 83 106 37 96 132

4 123 54 92 68 194 51 232 158 235 156 44

162 196 249 65 168 2 162 34 92 112 125 163

86 69 213 147 42 176 97 129 191 23 141 148

248 140 197 58 151 25 111 141 139 55 15 210

137 16 31 223 237 214 183 251 167 32 104 96

226 66 42 199 229 134 131 11 248 59 3 215
143 107 36 65 14 232 142 142

126 101 21 126 199 115 135 183

149 54 37 126 170 80 161 55

239 93 28 254 168 207 148 204

~Óþ^ŒT=ÙàF^¨vcVYø²¿”1:5Ìå8‣+JB»kû4æ@·€6®Kk™0wÁ¨©<™58+ßîßïíNÕ-ºÞcà¹’ë<DŒÿDdužé)uÊ

×†:ýÃ¢'À,ÄªN6ùÈŠ\AKD¨˜ÔÂä•3¢¤Sè"ßjž\›%ëp7`œ}®„,£Vø‰âEŒBÕÅ*“:ßÇ*—íå°Ö†ao·ƒ••û¿‹•ø7

;•h ”Ò`×•~•ïke6]$%A~~þÇª¨èsPÏŽ‡¡”Ž·7Ì

71

The Steganography Process *

To increase the data security and protection steganography is used to conceal the encrypted

data within another carrier data file usually true colored losses encoded data file commonly

bitmap indexed images, the steganography is based on least significant bit embedding LSB and it

is tested to an encrypted data file as follows :

The Data text File to be AES encrypted first

AES encryption with (2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C)HEX cipher key

Embedded Data within bitmap image

The steganography generated key is function of Encrypted Data bits and it is : (2 00) HEX

The test is done to the both two cryptography and steganography systems and the original data

is recovered successfully as shown above.

*
 This process is not essential in the communication system but its added to perform higher protection for

data storage purposes

Implementation of a digital communication System  Input Data :

§•¦<]-

C£Søfs•ÕúeíþG

 Encrypted Data :

The Original The Embedded

 Data Stenography

:

§•¦<]-

C£Søfs•ÕúeíþG

 Extracted Data :

Implementation of a digital communication System  Decrypted Data :

72

System Implementation

After each function is tested, the whole system functions have to work with each other to

perform the total system operations.

The transmitter of the system has a data file as an input, this file is the source coder [bwtenc] ,

[rundec]or [huffenc] input, the output of this encoder is the compressed data file and it is

passed to AES encryption block[AES()] this block take the compressed binary file as a plain text

and ciphers it after that the cipher text is encoded with FEC BCH (15, 5) encoder [bchen] and it

is modulated and transmitted over AWGN channel the channel function performs the last

operation to the output BCH encoded file. For storage purposes the file can be protected with

another protection layer which is the steganography and it is done by the steganography system

that is implemented to perform that.

The following diagram shows the steps described above

At the receiving side the data file is obtained by carrying out the reverse operations which are
the FEC BCH decoding [bchde] then the decoded information is passed to the decryption
system to do the inverse operation of AES ciphering [iAES] then the data is ready to be
decompressed by the source decoder [bwtdec], [huffdec],or [rundec]
If the data is concealed within a carrier file by the steganography system the data could be
obtained by the inverse operation.The oerations above described in the next figure :

Data

File

Source

Coder

Encryption

System

Channel FEC

coder

AWGN

Channel Steganography

System

Figure 5 The Implemented System

Input coded

data
Cannel

Decoder

Decryption

System

Source

Decoder

Data

File

Figure 4.8 The implemented decoding system

73

System Implementation Test

In this part we need to ensure that our system work properly so we will select a text file that

passed through our implementation.

Original file

Size of the file is [1004 byte]

Applying BWT compression and the output file’s size is [564 byte]

Now applying Rijndeal encryption to the source codded file [file.BWT] and output file size is the

same as the input.

The output of the Rijndael encryption [data.AES] is pass to BCH encoding, the output of BCH

[bch.BCH] size is [1120 byte], and this illustrate why source coding is needed sine the BCH

output is the same as the original file , the size of the original file and the output of bch is the

same approximately with fewer bytes, but with capability to perform the forward error

correction

Now [bch.BCH] is needed to be passed through AWGN channel and the most important

parameter here is the BER. If we select the 8-psk modulation and by changing the SNR the

results of the file reception are illustrated in the table

The system can recover* the signal only if the SNR greater or equal 13 for this file as shown in

the table, and the recovered signal is exactly same the original signal [1004 byte] .

The BCH decoder failed to recover the signal at SNR level of 9 since we have in average 7 errors

per each block which are over the decoder correction capability.

Finally the system is implemented successfully and it is tested for different file types as it

illustrated previously.

*
 It is needed to obtain the signal after BCH decoder with no errors

Signal SNR 13 12 10 9

of errors 109 233 626
856

BER 0.0123 0.02 0.0704
0.0962

File Recovery
Successfully
recovered

Failed Failed Failed

74

The MATLAB Functions

 The Source Coding and Decoding Functions

Data Analysis with Entropy Function
The Function source code

Calling code: ent(‘ file type’)

Inputs: Data File , File Type text ,image or wav file

Output: The Entropy of the File in bits/symbol

The function performs the entropy calculations by finding the unique symbols in a given file and

then the frequency of occurrence of each symbol then the probability could be found for each

symbol and then by applying the entropy equation the function returns the parameter H which is

the file entropy, the entropy represents the lower limit of the source coding output average code

length.

function [H]=ent(a)
if strcmp(a,'im')
[filename1] = uigetfile('*.*', 'choose image');
A=imread(filename1);
A=reshape(A,[],1);
end
if strcmp(a,'txt')
[filename] = uigetfile('*.txt', 'choose a text file');
file_open=fopen(filename,'r');
file_read=fread(file_open,'uint8');
fclose(file_open);
A=file_read;
end
if strcmp(a,'wav')
[filename1] = uigetfile('*.wav', 'choose wav file');
A=wavread(filename1);
end
freq=histc(A,unique(A));
p=freq./sum(freq);
pin=1./p;
plog=log2(pin);
pk=p.*plog;
H=sum(pk);

message=['File Entropy :' num2str(H) 'bit/symbol'];
disp(message);

75

Run-Length Encoder and Decoder
The Function source code

Calling code: runenc

Inputs: Data File

Output: Run-Length Encoded File (*.RUN)

The function reshapes the data file to a vector of symbols then it holds the symbol and counts the

repetitions of that symbol after its position it takes another symbol when the different symbol is

found.

If there is no reputations in a given data file the size of this file will be increased as a result.

function []=runenc
name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'uint8');
fclose(file_open);
a=file_read;
a=reshape(a,[],1);
code=a;
count=1;k=1;i=1; % Run Length Encoder
while i~=length(code)
 for j=i+1:length(code)
 if code(i)==code(j)
 count=count+1;
 end
 if code(i)~=code(j)
 Run_Len(k)=code(i);
 Run_Len(k+1)=count;
 k=k+2;
 count=1;
 i=j;
 break
 end
 end
 if j==length(code);
 Run_Len(k)=code(i);
 Run_Len(k+1)=count;
 k=k+2;
 count=0;
 i=j;
 break
 end
end
file=fopen('File.RUN','w');
fwrite(file,Run_Len,'ubit8');
fclose(file);

76

Calling code: rundec

Inputs: File.run

Output: the original data file (file.txt)

The function separates the repetitions and the data into two array to recover the original data

and put it into output file.

function []=rundec
file_open=fopen('File.run','r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
run_code=file_read;
data=[];
pos=1;k=1;j=1;
for i=1:length(run_code)
 if mod(i,2)~=0
 values(k)=run_code(i);
 k=k+1;
 end
 if mod(i,2)==0
 runs(j)=run_code(i);
 j=j+1;
 end
end
 i=1;k=1;r=1;
 while i~=sum(runs)+1
 data(i)=values(k);
 if runs(r)~=1
 for j=0:runs(r)
 data(i+j)=values(k);

 end
 i=i+runs(r); k=k+1;r=r+1;
 else i=i+1;k=k+1;r=r+1;
 end
 end

file=fopen('file.txt','w');
fwrite(file,char(data)','ubit8');
fclose(file);

77

Huffman Encoder & Decoder
The function source code

Huffman Encoder

function []=huffenc(type)
name=uigetfile('*.*');
if strcmp(type,'txt')==1
file_open=fopen(name,'r');
file_read=fread(file_open,'uint8');
fclose(file_open);
a=file_read;
end
if strcmp(type,'wav')==1;
 a=wavread(name);
end
symbols=unique(a);
freq=histc(a,unique(a));
p=freq./sum(freq);
dict = huffmandict(symbols,p); % Create the dictionary.
hcode = huffmanenco(a,dict)'; % Encode the data.
file_Huff=fopen('File.HUFF','w');
fwrite(file_Huff,hcode,'ubit1');
fclose(file_Huff);
if strcmp(type,'wav')==1;
file_Huff=fopen('DictS.HUFF','w');
fwrite(file_Huff,symbols,'double');
fclose(file_Huff);
end
if strcmp(type,'txt')==1;
file_Huff=fopen('DictS.HUFF','w');
fwrite(file_Huff,symbols,'ubit8');
fclose(file_Huff);
end
power=1+ceil(log2(max(freq)));
file_Huff=fopen('DictF.HUFF','w');
command=['ubit' int2str(power)];
fwrite(file_Huff,freq,command);
fclose(file_Huff);
powerL=1+ceil(log2(length(hcode)));
commandL=['ubit' int2str(powerL)];
Len=length(hcode);
file_Huff=fopen('Len.HUFF','w');
fwrite(file_Huff,Len,commandL);
fclose(file_Huff);
sym=length(symbols);
key=[power,sym,powerL];
file_power=fopen('Key.HUFF','w');
fwrite(file_power,key,'ubit8');
fclose(file_power);
AVL=0;
for i=1:length(p)
 AVL=AVL+p(i)*length(dict{i,2});
end
message=['AVL : ' num2str(AVL) 'bits/symbol'];
disp(message)

78

Calling code: huffenc()

Inputs: data file, type of file

Output: Huffman compressed file with header file contains the source symbols frequencies and

length of data ,The encoding and decoding is done as it was shown in chapter one

Huffman Decoder

Calling code: huffdnc() Inputs: huffman encoded file (*.huff),header files Output: data File

function []=huffdec(type)
file_open=fopen('Key.HUFF','r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
[key]=file_read;
power=key(1);
sym=key(2);
powerL=key(3);
if strcmp(type,'wav')==1;
file_open=fopen('DictS.HUFF','r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
symbols(1:sym)=file_read(1:sym);
end
if strcmp(type,'wav')==1;
file_open=fopen('DictS.HUFF','r');
file_read=fread(file_open,'double');
fclose(file_open);
symbols(1:sym)=file_read(1:sym);
end
file_open=fopen('DictF.HUFF','r');
command=['ubit' int2str(power)];
file_read=fread(file_open,command);
fclose(file_open);
freq(1:sym)=file_read(1:sym);
file_open=fopen('Len.HUFF','r');
commandL=['ubit' int2str(powerL)];
file_read=fread(file_open,commandL);
fclose(file_open);
Len=file_read;
file_open=fopen('File.HUFF','r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
hcode(1:Len)=file_read(1:Len);
p(1:sym)=freq(1:sym)/sum(freq);
dict = huffmandict(symbols,p); % Create the dictionary.
dhsig = huffmandeco(hcode,dict); % Decode the code.
if strcmp(type,'wav')==1;
wavwrite(dhsig,44100,'a.wav');
end
if strcmp(type,'txt')==1
file=fopen('file.txt','w');
fwrite(file,char(dhsig)','ubit8');
fclose(file);
end

79

BWT encoder & decoder

BWT Encoder

function []=bwtenc
name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'uint8');
fclose(file_open);
a=file_read;
Max=max(histc(a,unique(a)));
L=zeros(length(a),1);
x=a;
BWT=zeros(length(a),Max+1);
for i=1:length(a)
L(i)=x(length(a));
x(:,1)=circshift(x,-1);
BWT(i,1:Max)=x(1:Max);
BWT(i,Max+1)=x(length(a));
end
BWT=sortrows(BWT);
for i=1:length(a)
 if BWT(i,1:Max)==transpose(a(1:Max));
 Primary_index=i;
 end
end
% M T F
symbols=unique(a);
dicti=symbols;
MTF_code=zeros(1,length(BWT),'single');

for i=1:length(BWT) % rearrange the dictionary
 for j=1:length(dicti)
 if BWT(i,Max+1)==dicti(j);
 MTF_code(i)=j-1;
 temp=dicti(j);s=j;
 while s~=1
 dicti(s)=dicti(s-1);
 s=s-1;
 end
 dicti(1)=temp;
 end
 end
end
MTF_symbols=unique(MTF_code);
MTF_freq=histc(MTF_code,unique(MTF_code));

MTF_P(1:length(MTF_symbols))=MTF_freq(1:length(MTF_symbols))/su

m(MTF_freq);
dict = huffmandict(MTF_symbols,MTF_P); % Create the dictionary.
hcode = huffmanenco(MTF_code,dict)'; % Encode the data.
hcode1=hcode';
% BWT output Files
file_Huff=fopen('File.BWT','w');
fwrite(file_Huff,hcode1,'ubit1');
fclose(file_Huff);

80

BWT Encoder con.

Calling code: bwtenc

Inputs: data file

Output: compressed file (*.BWT), header files contains MTF symbols & frequencies, Huffman

symbols, primary BWT index, source symbols.

powerL=1+ceil(log2(length(hcode)));
commandL=['ubit' int2str(powerL)];
Length_index=[length(hcode),Primary_index];
file_Huff=fopen('Length.BWT','w');
fwrite(file_Huff,Length_index,commandL);
fclose(file_Huff);

powerMT=1+ceil(log2(max(MTF_symbols)));
commandMT=['ubit' int2str(powerMT)];
file_Huff=fopen('MTFSYM.MTF','w');
fwrite(file_Huff,MTF_symbols,commandMT);
fclose(file_Huff);

power=1+ceil(log2(max(MTF_freq)));
sym_no=length(MTF_freq);
key=[power,sym_no,powerL,powerMT];
file_power=fopen('key','w');
fwrite(file_power,key,'ubit8');
fclose(file_power);

file_Huff=fopen('MTF.MTF','w');
command=['ubit' int2str(power)];
fwrite(file_Huff,MTF_freq,command);
fclose(file_Huff);

file_Huff=fopen('Dict.MTF','w');
fwrite(file_Huff,symbols,'ubit8');
fclose(file_Huff);

AVL=0;
for i=1:length(MTF_P)
 AVL=AVL+MTF_P(i)*length(dict{i,2});
end

81

BWT Decoder

3function []=bwtdec
file_open=fopen('key','r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
[key1]=file_read;
power1=key1(1,1);sym_no1=key1(2,1);powerL1=key1(3,1);powerMT1=k

ey1(4,1);
file_open=fopen('Dict.MTF','r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
[symbols1]=file_read;
file_open=fopen('Length.BWT','r');
commandL1=['ubit' int2str(powerL1)];
file_read=fread(file_open,commandL1);
fclose(file_open);
Length_huffcode=file_read(1);
Primary_Index=file_read(2);
file_open=fopen('File.BWT','r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
hcode1(1:Length_huffcode)=file_read(1:Length_huffcode);
file_open=fopen('MTF.MTF','r');
command1=['ubit' int2str(power1)];
file_read=fread(file_open,command1);
fclose(file_open);
MTF_freq1(1:sym_no1)=file_read(1:sym_no1);
file_open=fopen('MTFSYM.MTF','r');
commandMT1=['ubit' int2str(powerMT1)];
file_read=fread(file_open,commandMT1);
fclose(file_open);
MTF_symbols1(1:sym_no1)=file_read(1:sym_no1);
MTF_P1(1:sym_no1)=MTF_freq1(1:sym_no1)/sum(MTF_freq1);
%MTF_symbols1=unique(MTF_code);
dict1 = huffmandict(MTF_symbols1,MTF_P1); % Create the

dictionary.
dhsig = huffmandeco(hcode1,dict1); % Decode the code.

IMTF_code=zeros(length(dhsig),1);
for i=1:length(dhsig)
 IMTF_code(i)=symbols1(dhsig(i)+1);
 s=dhsig(i)+1;
 while s~=1
 symbols1(s)=symbols1(s-1);
 s=s-1;
 end
 symbols1(1)=IMTF_code(i);
end
% BWT decoding
L=IMTF_code;
F=zeros(length(L),2);
F(:,1)=sortrows(L);
T=zeros(length(L),1);

82

BWT Decoder Con.

Calling code: bwtdec

Inputs: compressed file (*.BWT), header files

Output: original Data File

The encoding using BWT, MTF, and Huffman is discussed deeply in chapter one with the

decoding process .

This implementation has a good memory utilization for the process of storing the BW

transformed file since all permutations in done at separated variable and it is stored according to

the maximum frequency of occurrence of certain symbol so BWT matrix has a reduced size from

data length by data length to maximum frequency plus one square. As a result, the block size

increased and the compression becomes more efficient.

for i=1:length(L)
 for j=1:length(F)
 if (L(i)==F(j))&& (F(j,2)==0)
 T(i)=j;
 F(j,2)=1;
 break;
 end
 end
end

S=zeros(length(L),1);
% first step
S(length(L))=L((Primary_Index));
X=T(Primary_Index);
for i=1:length(L)-1
 S(length(L)-i)=L(X);
 X=T(X);
end
file_power=fopen('file.txt','w');
fwrite(file_power,char(S)','ubit8');
fclose(file_power);
message=['AVL : ' num2str(AVL) 'bits/symbol'];
disp(message)

83

The Channel Coding and Decoding Function

BCH Encoder

function []=bchen
name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
a=file_read;
n=input('Enter n: ');
k=input('Enter k: ');
P=input('Enter Generator polynomial: ');
G=zeros(k,n);
temp=zeros(1,n);
temp(1,1:n-k+1)=P(1:length(P));
G(1,1:n)=temp(1:n);
for i=2:k
 temp = circshift(temp, [0, 1]);
 G(i,1:n)=temp(1:n);
end
G=rem(abs(rref(G)),2);
hh=length(a);
for i=1:k-rem(hh ,k)
 a(hh+i)=0;
end
j=1;m=k;
jjj=length(a);
output=zeros(1,jjj+jjj*10/k);
for i=1:jjj/k
input1(j:m)=a(j:m);
j=j+k;
m=m+k;
end
f=1;h=k;
x=1;x1=n;
for i=1:(jjj/k)-1
c=input1(f:h)*G;
nn=1;
for l=x:x1
 output(l)=c(nn);
 nn=nn+1;
end
x=x+n;
x1=x1+n;
f=f+k;
h=h+k;
end
output=rem(output,2);
file=fopen('bch.BCH','w');
fwrite(file,output,'ubit1');
fclose(file);

84

Calling code: bchen Inputs: the binary file that is encoded by ‘huffenc ‘ or ‘bwtenc’ , Output:

‘bch.BCH’

BCH Decoder

Calling code: bchde , Inputs: the encoded file ‘bch.BCH’ , Output: binary file ’ bchde.BCH’ that

will be delivered to bwtdec or huffdec functions.

function []=bchde
name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
output=file_read;
n=input('Enter n: ');
k=input('Enter k: ');
P=input('Enter Generator polynomial: ');
G=zeros(k,n);
temp=zeros(1,n);
temp(1,1:n-k+1)=P(1:length(P));
G(1,1:n)=temp(1:n);
for i=2:k
 temp = circshift(temp, [0, 1]);
 G(i,1:n)=temp(1:n);
end
G=rem(abs(rref(G)),2);

H=zeros(n-k,n);
j=1;
for i=k+1:n
 H(j,k+j)=1;
 j=j+1;
end
parity=G(:,k+1:n);
H(:,1:k)=parity';
t = syndtable(H);
j=1;m=n;u=1;
for i=1:length(output)/n
r(1:n)=output(j:m);
s = rem(r * H', 2);
err = bi2de(fliplr(s));
err_loc = t(err + 1, :);
ccode = rem(err_loc + r, 2);
recoverd(1,u:u+k-1)=ccode(1,1:k);
u=u+k;
j=j+n;
m=m+n;
end
file=fopen('bchde.BCH','w');
fwrite(file,recoverd,'ubit1');
fclose(file);

85

The Encryption Functions
AES Rijndael

Rijndael encryption

This function needs another function which is [rjenc] to perform the Rj. encryption algorithm

function []=AES(a)
 name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit8');
fclose(file_open);
data=file_read;

if strcmp(a,'1')==1
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
data=file_read;
end
cipherkey=[43 40 171 9;126 174 247 207;21 210 21 79; 22 166 136

60;];

if strcmp(a,'1')==1
data=reshape(data,8,[]);
data=data';
data=bi2de(data,'left-msb');
end

k=16-(rem(length(data),16));
j=length(data);

 for i=1:k
 data(j+i)=0;
 end

enc_data=zeros(length(data),1);
l=1;
for i=1:length(data)/16
 enc_data(l:l+15)=rjenc(cipherkey,data(l:l+15));
 l=l+16;
end
 file=fopen('data.AES','w');
fwrite(file,enc_data,'ubit8');
fclose(file);
 if strcmp(a,'1')==1
enc_data=de2bi(enc_data,'left-msb',8);
enc_data=reshape(enc_data',[],1);
file=fopen('data.AES','w');
fwrite(file,enc_data,'ubit1');
fclose(file);
end

end

86

function enc_data=rjenc(cipherkey,state)
%s-box inilization
sBOX={...
'63' '7c' '77' '7b' 'f2' '6b' '6f' 'c5' '30' '01' '67' '2b' 'fe' 'd7' 'ab' '76';
'ca' '82' 'c9' '7d' 'fa' '59' '47' 'f0' 'ad' 'd4' 'a2' 'af' '9c' 'a4' '72' 'c0';
'b7' 'fd' '93' '26' '36' '3f' 'f7' 'cc' '34' 'a5' 'e5' 'f1' '71' 'd8' '31' '15';
'04' 'c7' '23' 'c3' '18' '96' '05' '9a' '07' '12' '80' 'e2' 'eb' '27' 'b2' '75';
'09' '83' '2c' '1a' '1b' '6e' '5a' 'a0' '52' '3b' 'd6' 'b3' '29' 'e3' '2f' '84';
'53' 'd1' '00' 'ed' '20' 'fc' 'b1' '5b' '6a' 'cb' 'be' '39' '4a' '4c' '58' 'cf';
'd0' 'ef' 'aa' 'fb' '43' '4d' '33' '85' '45' 'f9' '02' '7f' '50' '3c' '9f' 'a8';
'51' 'a3' '40' '8f' '92' '9d' '38' 'f5' 'bc' 'b6' 'da' '21' '10' 'ff' 'f3' 'd2';
'cd' '0c' '13' 'ec' '5f' '97' '44' '17' 'c4' 'a7' '7e' '3d' '64' '5d' '19' '73';
'60' '81' '4f' 'dc' '22' '2a' '90' '88' '46' 'ee' 'b8' '14' 'de' '5e' '0b' 'db';
'e0' '32' '3a' '0a' '49' '06' '24' '5c' 'c2' 'd3' 'ac' '62' '91' '95' 'e4' '79';
'e7' 'c8' '37' '6d' '8d' 'd5' '4e' 'a9' '6c' '56' 'f4' 'ea' '65' '7a' 'ae' '08';
'ba' '78' '25' '2e' '1c' 'a6' 'b4' 'c6' 'e8' 'dd' '74' '1f' '4b' 'bd' '8b' '8a';
'70' '3e' 'b5' '66' '48' '03' 'f6' '0e' '61' '35' '57' 'b9' '86' 'c1' '1d' '9e';
'e1' 'f8' '98' '11' '69' 'd9' '8e' '94' '9b' '1e' '87' 'e9' 'ce' '55' '28' 'df';
'8c' 'a1' '89' '0d' 'bf' 'e6' '42' '68' '41' '99' '2d' '0f' 'b0' '54' 'bb' '16';};

sBOXd=zeros(16,16);% initilization of 16x16 decimal s-box
for i=1:16
 for j=1:16
 sBOXd(i,j)=hex2dec(sBOX{i,j});
 end
end
%---- KEY SCHEDULE ------
matrix inilizatin
state=reshape(state,4,4); % 4x4 Data matrix=state
cipher_key=reshape(cipherkey,4,4);
rcon=zeros(4,10); % initlization of

RCON matrix
rcon(1,:)=[1 2 4 8 16 32 64 128 27 54;]; % initlization of

RCON matrix
round_key=zeros(4,44);
round_key(1:4,1:4)=cipher_key(1:4,1:4);
level=5;pre_level=level-4;L=0; %W in file
while(level~=45) % all levels=columns to 44+1

 for i=1:4 % total rows =4
 if

(level==5)||(level==9)||(level==13)||(level==17)||(level==21)||(level=

=25)||(level==29)||(level==33)||(level==37)||(level==41)

 if i==1
 round_key(:,level)=circshift(round_key(:,level-

1),3); % circular shift onece at level
 L=L+1; % rcon index increment
 end
 s_pointer=de2bi(round_key(i,level),8,'left-msb');
 r=bi2de(s_pointer(1:4),'left-msb');
 c=bi2de(s_pointer(5:8),'left-msb');
 round_key(i,level)=sBOXd(r+1,c+1);
 round_key(i,level)=bi2de(xor((de2bi(rcon(i,L),8,'left-

msb')),(de2bi(round_key(i,level),8,'left-msb'))),'left-msb');
 else
 round_key(i,level)=round_key(i,level-1); % if it is

not from above values 5,9,13 ...
 end

round_key(i,level)=bi2de(xor((de2bi(round_key(i,pre_level),8,'l

eft-msb')),(de2bi(round_key(i,level),8,'left-msb'))),'left-

msb');
 end
level=level+1;
 pre_level=pre_level+1;
end

Rijndael Algorithm

87

 %----- ENCRYPTION ---------
temp_column=zeros(4,1);
mul_temp=zeros(4,1);
mix_colum=[02 03 1 1;1 2 3 1;1 1 2 3;3 1 1 2];
enc=zeros(4,4);
enc_temp=zeros(4,4);
enc_temp2=zeros(4,4);
xorAns=zeros(4,1);
for m=1:4 %INITIAL ROUND ENCRYPTION
 for i=1:4
 enc(i,m)=bi2de(xor((de2bi(state(i,m),8,'left-msb')),

(de2bi(round_key(i,m),8,'left-msb'))),'left-msb');
 end
end
for R=1:10 % total rounds
 for i=1:4 %cloumns
 for j=1:4 % rows
 s_pointer=de2bi(enc(i,j),8,'left-msb');
 r=bi2de(s_pointer(1:4),'left-msb');
 c=bi2de(s_pointer(5:8),'left-msb');
 enc(i,j)=sBOXd(r+1,c+1);
 end
 end
 enc_temp(1:4,1:4)=enc(1:4,1:4); % transfer enc to enc_temp

for shifting
 for f=1:4 % shift Rows
 enc_temp(f,:)=circshift(enc_temp(f,:),[0 -(f-1)]); %

circular shift for rows
 end
 enc(1:4,1:4)=enc_temp(:,:); % return the enc_temp to Enc
 %----Mix Columns -------
 if R~=10 % Last Round dont have mix column step
for t=1:4
 for i=1:4
 temp_column=enc(:,i);
 for j=1:4
 for k=1:4
 mul_temp(k)=rjmul(temp_column(k,1),mix_colum(j,k));
 end
 mul_xor1=bi2de(xor((de2bi(mul_temp(1),8,'left-

msb')),(de2bi(mul_temp(2),8,'left-msb'))),'left-msb'); % RJ.

Filed mul. of mix.col.mat&enc
 mul_xor2=bi2de(xor((de2bi(mul_temp(3),8,'left-

msb')),(de2bi(mul_temp(4),8,'left-msb'))),'left-msb'); % RJ.

Filed mul .of mix.col.mat&enc
 xorAns(j,1)=bi2de(xor((de2bi(mul_xor1,8,'left-

msb')),(de2bi(mul_xor2,8,'left-msb'))),'left-msb'); % Xor the

mul. results
 end
 enc_temp(:,i)=xorAns;
 end
end
 end
round_key_temp(1:4,1:4)=round_key(1:4,4*R+1:4*R+4);
 for m=1:4
 for i=1:4
 enc_temp2(i,m)=bi2de(xor((de2bi(enc_temp(i,m),8,'left-

msb')),(de2bi(round_key_temp(i,m),8,'left-msb'))),'left-msb');
 end
 end
 enc(1:4,1:4)=enc_temp2(:,:); % return the enc_temp to Enc
end
enc_data=reshape(enc,[],1);

Rijndael Algorithm Con.

88

These three function*‘AES’ , ‘rjenc’ , ‘rjmul’+ are working together to perform the encryption

process

Calling code: AES(‘Type’) Input: data file Output: encrypted file (*.AES)

Rijndael Decryption

also in decryption process we need two function to carry out the process

function [rj]=rjmul(a,b)
apoly = gf(de2bi(a ,'left-msb'),8,283);
bpoly = gf(de2bi(b ,'left-msb'),8,283);
xpoly = gf([1 0 0 0 1 1 0 1 1],8,283);
cpoly = conv(apoly,bpoly);
[a2,remd] = deconv(cpoly,xpoly);
rj=bi2de(double(remd.x),'left-msb');

function []=iAES
name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
enc_data1=file_read;
enc_data1=enc_data1';
enc_data1=reshape(enc_data1,8,[]);
enc_data1=enc_data1';
enc_data1=bi2de(enc_data1,'left-msb');
enc_data=enc_data1;
%k=length(enc_data1)-(rem(length(enc_data1),16));
%enc_data=enc_data1(1:k);

cipherkey=[43 40 171 9;126 174 247 207;21 210 21 79; 22 166 136

60;];

data=zeros(length(enc_data),1);
l=1;
for i=1:length(data)/16
 data(l:l+15)=rjdec(cipherkey,enc_data(l:l+15));
 l=l+16;
end

data=de2bi(data,'left-msb',8);
data=data';
data=reshape(data,1,[]);
file=fopen('data1.iAES','w');
fwrite(file,data,'ubit1');
fclose(file);

Rijndael Field Multiplication , GF(8)

89

function data=rjdec(cipherkey,enc_data)
%s-box inilization
sBOX={...
'63' '7c' '77' '7b' 'f2' '6b' '6f' 'c5' '30' '01' '67' '2b' 'fe' 'd7' 'ab' '76';

'ca' '82' 'c9' '7d' 'fa' '59' '47' 'f0' 'ad' 'd4' 'a2' 'af' '9c' 'a4' '72' 'c0';

'b7' 'fd' '93' '26' '36' '3f' 'f7' 'cc' '34' 'a5' 'e5' 'f1' '71' 'd8' '31' '15';

'04' 'c7' '23' 'c3' '18' '96' '05' '9a' '07' '12' '80' 'e2' 'eb' '27' 'b2' '75';

'09' '83' '2c' '1a' '1b' '6e' '5a' 'a0' '52' '3b' 'd6' 'b3' '29' 'e3' '2f' '84';

'53' 'd1' '00' 'ed' '20' 'fc' 'b1' '5b' '6a' 'cb' 'be' '39' '4a' '4c' '58' 'cf';

'd0' 'ef' 'aa' 'fb' '43' '4d' '33' '85' '45' 'f9' '02' '7f' '50' '3c' '9f' 'a8';

'51' 'a3' '40' '8f' '92' '9d' '38' 'f5' 'bc' 'b6' 'da' '21' '10' 'ff' 'f3' 'd2';

'cd' '0c' '13' 'ec' '5f' '97' '44' '17' 'c4' 'a7' '7e' '3d' '64' '5d' '19' '73';

'60' '81' '4f' 'dc' '22' '2a' '90' '88' '46' 'ee' 'b8' '14' 'de' '5e' '0b' 'db';

'e0' '32' '3a' '0a' '49' '06' '24' '5c' 'c2' 'd3' 'ac' '62' '91' '95' 'e4' '79';

'e7' 'c8' '37' '6d' '8d' 'd5' '4e' 'a9' '6c' '56' 'f4' 'ea' '65' '7a' 'ae' '08';

'ba' '78' '25' '2e' '1c' 'a6' 'b4' 'c6' 'e8' 'dd' '74' '1f' '4b' 'bd' '8b' '8a';

'70' '3e' 'b5' '66' '48' '03' 'f6' '0e' '61' '35' '57' 'b9' '86' 'c1' '1d' '9e';

'e1' 'f8' '98' '11' '69' 'd9' '8e' '94' '9b' '1e' '87' 'e9' 'ce' '55' '28' 'df';

'8c' 'a1' '89' '0d' 'bf' 'e6' '42' '68' '41' '99' '2d' '0f' 'b0' '54' 'bb' '16';};

sBOXd=zeros(16,16);% initilization of 16x16 decimal s-box
for i=1:16
 for j=1:16
 sBOXd(i,j)=hex2dec(sBOX{i,j});
 end
end
 %s-box inverse inilization
IsBOX={...
'52' '09' '6a' 'd5' '30' '36' 'a5' '38' 'bf' '40' 'a3' '9e' '81' 'f3' 'd7' 'fb';

'7c' 'e3' '39' '82' '9b' '2f' 'ff' '87' '34' '8e' '43' '44' 'c4' 'de' 'e9' 'cb';

'54' '7b' '94' '32' 'a6' 'c2' '23' '3d' 'ee' '4c' '95' '0b' '42' 'fa' 'c3' '4e';

'08' '2e' 'a1' '66' '28' 'd9' '24' 'b2' '76' '5b' 'a2' '49' '6d' '8b' 'd1' '25';

'72' 'f8' 'f6' '64' '86' '68' '98' '16' 'd4' 'a4' '5c' 'cc' '5d' '65' 'b6' '92';

'6c' '70' '48' '50' 'fd' 'ed' 'b9' 'da' '5e' '15' '46' '57' 'a7' '8d' '9d' '84';

'90' 'd8' 'ab' '00' '8c' 'bc' 'd3' '0a' 'f7' 'e4' '58' '05' 'b8' 'b3' '45' '06';

'd0' '2c' '1e' '8f' 'ca' '3f' '0f' '02' 'c1' 'af' 'bd' '03' '01' '13' '8a' '6b';

'3a' '91' '11' '41' '4f' '67' 'dc' 'ea' '97' 'f2' 'cf' 'ce' 'f0' 'b4' 'e6' '73';

'96' 'ac' '74' '22' 'e7' 'ad' '35' '85' 'e2' 'f9' '37' 'e8' '1c' '75' 'df' '6e';

'47' 'f1' '1a' '71' '1d' '29' 'c5' '89' '6f' 'b7' '62' '0e' 'aa' '18' 'be' '1b';

'fc' '56' '3e' '4b' 'c6' 'd2' '79' '20' '9a' 'db' 'c0' 'fe' '78' 'cd' '5a' 'f4';

'1f' 'dd' 'a8' '33' '88' '07' 'c7' '31' 'b1' '12' '10' '59' '27' '80' 'ec' '5f';

'60' '51' '7f' 'a9' '19' 'b5' '4a' '0d' '2d' 'e5' '7a' '9f' '93' 'c9' '9c' 'ef';

'a0' 'e0' '3b' '4d' 'ae' '2a' 'f5' 'b0' 'c8' 'eb' 'bb' '3c' '83' '53' '99' '61';

'17' '2b' '04' '7e' 'ba' '77' 'd6' '26' 'e1' '69' '14' '63' '55' '21' '0c' '7d';};

IsBOXd=zeros(16,16);% initilization of 16x16 decimal inv. s-box
for i=1:16
 for j=1:16
 IsBOXd(i,j)=hex2dec(IsBOX{i,j});
 end
end
%---- KEY SCHEDULE ------
cipher_key=reshape(cipherkey,4,4);
rcon=zeros(4,10); % initlization of

RCON matrix
rcon(1,:)=[1 2 4 8 16 32 64 128 27 54;]; % initlization of

RCON matrix
round_key=zeros(4,44);
round_key(1:4,1:4)=cipher_key(1:4,1:4);
level=5;pre_level=level-4;L=0; %W in file

Rijndael Decryption Algorithm Con.

90

while(level~=45) % all levels=columns to 44+1

 for i=1:4 % total rows =4
 if

(level==5)||(level==9)||(level==13)||(level==17)||(level==21)||

(level==25)||(level==29)||(level==33)||(level==37)||(level==41)
 if i==1
 round_key(:,level)=circshift(round_key(:,level-

1),3); % circular shift onece at level
 L=L+1; % rcon index increment
 end
 s_pointer=de2bi(round_key(i,level),8,'left-msb');
 r=bi2de(s_pointer(1:4),'left-msb');
 c=bi2de(s_pointer(5:8),'left-msb');
 round_key(i,level)=sBOXd(r+1,c+1);
 round_key(i,level)=bi2de(xor((de2bi(rcon(i,L),8,'left-

msb')),(de2bi(round_key(i,level),8,'left-msb'))),'left-msb');
 else
 round_key(i,level)=round_key(i,level-1); % if it is

not from above values 5,9,13 ...
 end

round_key(i,level)=bi2de(xor((de2bi(round_key(i,pre_level),8,'l

eft-msb')),(de2bi(round_key(i,level),8,'left-msb'))),'left-

msb');
 end
 level=level+1;
 pre_level=pre_level+1;
end
%------DECRYPTION--------------
temp_column=zeros(4,1);
mul_temp=zeros(4,1);
mix_colum=[14 11 13 9;9 14 11 13;13 9 14 11;11 13 9 14];

%inverse mix_colum
encrypted_data=reshape(enc_data,4,4);
state=zeros(4,4);
enc_temp=zeros(4,4);
enc_temp2=zeros(4,4);
xorAns=zeros(4,1);
enc=encrypted_data;
for h=1:10 % total rounds
 R=11-h;
 enc_temp2(:,:)=enc(:,:); % return the enc_temp to Enc
 %------ Add Round Key -------
 round_key_temp(1:4,1:4)=round_key(1:4,4*R+1:4*R+4);
 for m=1:4
 for i=1:4
 enc_temp(i,m)=bi2de(xor((de2bi(enc_temp2(i,m),8,'left-

msb')),(de2bi(round_key_temp(i,m),8,'left-msb'))),'left-msb');
 end
 end
 enc(:,:)=enc_temp(:,:);

Rijndael Decryption Algorithm Con.

91

 %----Mix Columns -------
 if R~=10 % Last Round dont have mix column step
for t=1:4
 for i=1:4
 temp_column=enc(:,i);
 for j=1:4
 for k=1:4

mul_temp(k)=rjmul(temp_column(k,1),mix_colum(j,k));
 end
 mul_xor1=bi2de(xor((de2bi(mul_temp(1),8,'left-

msb')),(de2bi(mul_temp(2),8,'left-msb'))),'left-msb'); % RJ.

Filed mul. of mix.col.mat&enc
 mul_xor2=bi2de(xor((de2bi(mul_temp(3),8,'left-

msb')),(de2bi(mul_temp(4),8,'left-msb'))),'left-msb'); % RJ.

Filed mul .of mix.col.mat&enc
 xorAns(j,1)=bi2de(xor((de2bi(mul_xor1,8,'left-

msb')),(de2bi(mul_xor2,8,'left-msb'))),'left-msb'); % Xor the

mul. results
 end
 enc_temp(:,i)=xorAns;
 end
end
 end
 enc(:,:)=enc_temp(:,:);
 for f=1:4 % shift Rows
 enc(f,:)=circshift(enc(f,:),[0 (f-1)]); % circular shift

for rows
 end
 for i=1:4 %cloumns
 for j=1:4 % rows
 s_pointer=de2bi(enc(i,j),8,'left-msb');
 r=bi2de(s_pointer(1:4),'left-msb');
 c=bi2de(s_pointer(5:8),'left-msb');
 enc(i,j)=IsBOXd(r+1,c+1);
 end
 end
end
for m=1:4 %FINAL STEP
 for i=1:4
 state(i,m)=bi2de(xor((de2bi(enc(i,m),8,'left-

msb')),(de2bi(round_key(i,m),8,'left-msb'))),'left-msb');
 end
end
data=reshape(state,[],1);

Rijndael Decryption Algorithm Con.

92

These three function*‘iAES’ , ‘rjdec’ , ‘rjmul’+ that work together to perform the decryption part.

Calling code: iAES(‘Type’) , Inputs: encrypted file’data.AES’ , Output:the decrypted file

(‘data1.iAES’).

Steganography
 LSB Steganography encoder

function []=textsteg(mode)
[filename1,path] = uigetfile('*.*', 'choose the carrier');
cd(path)
carrierfile=imread(filename1);
[filename] = uigetfile('*.txt', 'choose a file to be

Embedded');
file_open=fopen(filename,'r');
file_read=fread(file_open,'uint8');
fclose(file_open);
text=file_read;clear file_open;clear file_read;
binary_text_bytes=de2bi(text,8);
[tex_L,tex_W]=size(binary_text_bytes);
[c_L,c_W,c_d]=size(carrierfile);
binary_text=reshape(binary_text_bytes,[],1);

for i=1:length(binary_text)
 if mode==8
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st
 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd
 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(5)=binary_text(i-3); %Least sig. bit 4th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(4)=binary_text(i-4); %Least sig. bit 5th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(3)=binary_text(i-5); %Least sig. bit 6th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(2)=binary_text(i-6); %Least sig. bit 7th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(1)=binary_text(i-7); %Least sig. bit 8th

 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-7)=pix_val;
 end
 if mode==7
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st
 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd
 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(5)=binary_text(i-3); %Least sig. bit 4th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(4)=binary_text(i-4); %Least sig. bit 5th

93

 i=i+1;if i>length(binary_text),break;end
 pix_bi(3)=binary_text(i-5); %Least sig. bit 6th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(2)=binary_text(i-6); %Least sig. bit 7th
 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-6)=pix_val;
 end
 if mode==6
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st
 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd
 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(5)=binary_text(i-3); %Least sig. bit 4th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(4)=binary_text(i-4); %Least sig. bit 5th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(3)=binary_text(i-5); %Least sig. bit 6th
 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-5)=pix_val;
 end
 if mode==5
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st

 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd

 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th

 i=i+1;if i>length(binary_text),break;end
 pix_bi(5)=binary_text(i-3); %Least sig. bit 4th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(4)=binary_text(i-4); %Least sig. bit 5th
 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-4)=pix_val;
 end
 if mode==4
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st
 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd
 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th
 i=i+1;if i>length(binary_text),break;end
 pix_bi(5)=binary_text(i-3); %Least sig. bit 4th
 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-3)=pix_val;
 end
 if mode==3
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st
 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd
 i=i+1;if i>length(binary_text),break;end
 pix_bi(6)=binary_text(i-2); %Least sig. bit 3th
 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-2)=pix_val;
 end

94

Calling code: textsteg(‘mode’) , Inputs: the carrier file [picture] and the text file to be

embedded , Output: ‘'Steg-image-with-text.bmp’

 LSB Steganography decoder

if mode==2
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st

 i=i+1;if i>length(binary_text),break;end
 pix_bi(7)=binary_text(i-1); %Least sig. bit 2nd

 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i-1)=pix_val;
 end
 if mode==1
 pix_bi=de2bi(carrierfile(i),8,'left-msb');
 pix_bi(8)=binary_text(i); %Least sig. bit 1st

 pix_val=bi2de(pix_bi,'left-msb');
 carrierfile(i)=pix_val;
 end
end

imwrite(carrierfile,'Steg-image-with-text.bmp');
A=num2str(length(binary_text));
out_data=['The Key For Extracting The Data is : ',A];
file=fopen('Key.txt','w');
fwrite(file,out_data,'uint8');
fclose(file);
figure
imshow(carrierfile);clc;message=['DONE With carrier

:',filename1,' to text file :',filename,' the key is :',A];
disp(message);disp('M.H & M.A');

function []=textstegde(mode)
Key=input('enter the key :');
a=uigetfile('*.bmp','choose stego-image with text');
carrierfile_Em=imread(a);
binary_text_reconstructed=zeros(1,Key);
for i=1:Key
 tt=i;
 if mode==8
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 i=i+1;if i>Key,break;end %Least sig. bit 4
 binary_text_reconstructed(i)=pix_bi(5);
 i=i+1;if i>Key,break;end %Least sig. bit 5
 binary_text_reconstructed(i)=pix_bi(4);
 i=i+1;if i>Key,break;end %Least sig. bit 6
 binary_text_reconstructed(i)=pix_bi(3);
 i=i+1;if i>Key,break;end %Least sig. bit 7
 binary_text_reconstructed(i)=pix_bi(2);
 i=i+1;if i>Key,break;end %Least sig. bit 8
 binary_text_reconstructed(i)=pix_bi(1);
 end

95

if mode==7
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 i=i+1;if i>Key,break;end %Least sig. bit 4
 binary_text_reconstructed(i)=pix_bi(5);
 i=i+1;if i>Key,break;end %Least sig. bit 5
 binary_text_reconstructed(i)=pix_bi(4);
 i=i+1;if i>Key,break;end %Least sig. bit 6
 binary_text_reconstructed(i)=pix_bi(3);
 i=i+1;if i>Key,break;end %Least sig. bit 7
 binary_text_reconstructed(i)=pix_bi(2);
 end
 if mode==6
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 i=i+1;if i>Key,break;end %Least sig. bit 4
 binary_text_reconstructed(i)=pix_bi(5);
 i=i+1;if i>Key,break;end %Least sig. bit 5
 binary_text_reconstructed(i)=pix_bi(4);
 i=i+1;if i>Key,break;end %Least sig. bit 6
 binary_text_reconstructed(i)=pix_bi(3);
 end
 if mode==5
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 i=i+1;if i>Key,break;end %Least sig. bit 4
 binary_text_reconstructed(i)=pix_bi(5);
 i=i+1;if i>Key,break;end %Least sig. bit 5
 binary_text_reconstructed(i)=pix_bi(4);
 end

96

Calling code: textstegde (‘mode’) , Input : embedded file 'Steg-image-with-text.bmp’ , Output:

the recovered file (‘text.txt’).

The previous system is implemented so an ASCII represented symbols could be concealed in an

image file using the simple LSB algorithm with controlling the number of employed bit positions

and with key generated as a function of data length.

 if mode==4
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 i=i+1;if i>Key,break;end %Least sig. bit 4
 binary_text_reconstructed(i)=pix_bi(5);
 end
 if mode==3
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>=Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);
 i=i+1;if i>=Key,break;end %Least sig. bit 3
 binary_text_reconstructed(i)=pix_bi(6);
 end
 if mode==2
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);
 i=i+1;if i>Key,break;end %Least sig. bit 2
 binary_text_reconstructed(i)=pix_bi(7);

 end
 if mode==1
 pix_bi=de2bi(carrierfile_Em(i),8,'left-msb');
 binary_text_reconstructed(i)=pix_bi(8);

 end
 i=tt;
end
binary_text_reconstructed=reshape(binary_text_reconstructed,[],

8);
text_reconstructed=bi2de(binary_text_reconstructed);
A=char(text_reconstructed)';
disp('The Extracted Text is :')
disp(char(text_reconstructed)');
out_data=[A];
file=fopen('text.txt','w');
fwrite(file,out_data,'uint8');
fclose(file);

97

The Channel and Modulation function

MATLAB performs the modulation and demodulation process and AWGN channel modeling by

the functions [awgn()] and [pskmod] .

Calling code: noisych (modulation order , SNR)

 Input : BCH coded file (*.BCH)

Output: BCH file with white Gaussian noise added.

function []=noisych(M,snr)

name=uigetfile('*.*');
file_open=fopen(name,'r');
file_read=fread(file_open,'ubit1');
fclose(file_open);
output=file_read;

sig=pskmod(output,M);
rsig=awgn(sig,snr);
dsig=pskdemod(rsig,M);

file=fopen('noisych.CH','w');
fwrite(file,dsig,'ubit1');
fclose(file);

98

References

[1] Joan Daemen, Vincent Rijmen , The design of Rijndael: AES-the advanced encryption standard.

Springer, 2002

[2] S. Lin and D.J. Costello, Jr. Error ControlCoding: Fundamentals and Applications, Englewood

Cliffs, NJ: Prentice Hall, 1983.

[3] Ingemar J. Cox ,Digital watermarking and steganography, Morgan Kaufmann, 2008

[4] Donald Adjeroh, Timothy C. Bell, Amar Mukherjee, The Burrows-Wheeler Transform: Data

Compression, Suffix Arrays, and Pattern Matching, Springer, 2008

[5] David Salomon,Data compression: the complete reference, Springer, 2004

[6] Ian Glover, Peter M. Grant, Digital Communications, Prentice Hall, 2009

[7] Bernard Sklar, Digital communications: fundamentals and applications, Prentice Hall

[8] John B. Anderson, Seshadri Mohan, Source and channel coding: an algorithmic approach, Springer,

1991

[9] Hans Dobbertin , Vincent Rijmen , Aleksandra Sowa , Advanced encryption standard – AES, Springer,

2005

[10] Lin, Shu, Error control coding : fundamentals and applications, Pearson-Prentice Hall, 2004

[11] S.R. Kodituwakku, U. S.Amarasinghe, Comparison Of Lossless Data Compression Algorithms For Text
Data, Indian Journal of Computer Science and Engineering

http://www.google.co.il/search?tbo=p&tbm=bks&q=inauthor:%22Bernard+Sklar%22&source=gbs_metadata_r&cad=8
http://www.google.co.il/search?tbo=p&tbm=bks&q=bibliogroup:%22Prentice+Hall+Communications+Engineering+and+Emerging+Technologies+Series%22&source=gbs_metadata_r&cad=8
http://www.google.co.il/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22John+B.+Anderson%22&source=gbs_metadata_r&cad=8
http://www.google.co.il/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Seshadri+Mohan%22&source=gbs_metadata_r&cad=8
http://www.google.co.il/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Hans+Dobbertin%22
http://www.google.co.il/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Vincent+Rijmen%22
http://www.google.co.il/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Aleksandra+Sowa%22

