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Abstract

Limit cycles (isolated periodic solutions) describe the phenomenon
of oscillation that are considered and studied in different research fields
such as physics, medicine, chemistry, populations...etc. In nature, some of
biological and physical processes are represented by stable limit cycles.
The interest point of this problem comes from the study of number of
isolated closed orbits of a planar polynomial vector field, which is a part of
Hilbert’s Sixteenth Problem; this problem has been one of the major
problems in the qualitative theory of ordinary differential equations.
Hilbert's problem is interested in the number of limit cycles for the planar

polynomial differential system.

In this work, both limit cycles in xy-plane and the stability types of
limit cycles were exhibited, also direction field was considered, which
describes graphically the behavior for the solution of the differential
equation. Theorems related to the existence and non-existence of limit
cycles were discussed. Moreover, a common nonlinear ordinary differential
equation, named Abel differential equation, was discussed. Also this work

presented limit cycles of first order polynomial differential equation where



IX
the coefficients are periodic, and presented some results concerned to the
maximum number of limit cycles for polynomial differential equations, and

work on proving these results numerically.

Furthermore, limit cycles of planar differential system (planar vector
field) were presented. Also the Poincaré map, multiplicity of limit cycles
for planar differential system, and the multi-parameter of differential
system were exhibited. Finally, the number of non-contractible limit cycles

of a system in the cylinder was presented with numerical example.

The most challenging problem in this work is to obtain numerical
examples such that they contain more than one limit cycle by defining
suitable interval, coefficients and initial conditions that satisfy relevant
theorems and corollaries. While the second problem was to explore

examples of limit cycles which have multiplicity greater than one.



Chapter One

Preview

In this chapter, we will introduce the limit cycles (isolated closed
trajectories) in xy-plane and types of its stability; stable, unstable and semi
stable limit cycles. Also, presented the direction field which describes the
behavior of solution of the differential equation without solving it, and
introduced Poincaré-Bendixson’s Theorem and Bendixson’s-Criterion;
these theorems play an important role by guaranteeing the existence, non-
existence of limit cycles under particular conditions. At the end of this
chapter, a common nonlinear ordinary differential equation, the Abel

differential equation, is presented.

1.1 Introduction

During the last century, one of the major problems in qualitative
theory is to study the periodic solutions and limit cycles of real polynomial
differential equations in RZ. Limit cycles which can be described as
isolated periodic solutions in xy-plane, represent the simplest type of
behavior of continuous dynamical system (i.e. A dynamical system is a

way of describing the passage in time of all points in a given space).

Limit cycles represent a phenomenon of oscillation which is
observed in different research fields like control theory, electrical circuits,

chemistry, medicine, populations,...etc. They are described by differential
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equations or system of differential equations (i.e. collection of several

differential equations with several unknowns) [9].

Differential equation is an equation including an unknown function
and one or more of its derivatives [11] which is divided into ordinary
differential equation and partial differential equation. An ordinary
differential equation (ODE) is a differential equation which contains
differentials with respect to only one independent variable, while Partial
differential equation (PDE) contains differentials with respect to several
independent variables. The order of the differential equation is the order of
the highest derivative that appears in the equation. A decisive
classification of differential equations is whether they are linear or

nonlinear. The ordinary differential equation:
F(t, u,u’,u”, ...,u(n)) =0

is said to be linear if F is linear in the unknowns w,u’, ..., u(™, otherwise
it's called nonlinear. Oscillating pendulum, (see Figure 1.1) is an example
for the simple physical problem that leads to a nonlinear differential
equation, which can be mathematically model as:

96 9 sing = 0
T

where t is the time, g is the acceleration due gravity, L is the length of the

pendulum, and 8 is the angular displacement [7].



Figure 1.1: An oscillating pendulum.

There are many research’s related to computing the number of limit
cycles of generalized Abel equation. Bravo and Fernandez [8] obtained a
criterion for determining the stability of singular limit cycles of Abel
equation. Alkoumi and Torres in [2] proved new results about the
maximum number of limit cycles of first order differential equation with
periodic coefficients. Also, they applied these results to bound the number
of limit cycles of a family of planar polynomial vector fields. Alvarez et al.
[3] gave two criteria for bounding the number of non-contractible limit
cycles of a family of differential system on the cylinder which includes

Abel equation.

Gasull and Guillamonin [10] dealt with the problem of finding upper
bounds for the number of periodic solutions of class of one-dimensional
polynomial differential equations with one periodic coefficients. Llibre and
Zhao [14] showed that there is a polynomial system of differential
equations with arbitrary degree that has algebraic limit cycles of degree 3,
and gave an example of a cubic polynomial system for differential

equations with two algebraic limit cycles of degree 4.
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The most challenging questions in studying limit cycles are: How to
control the number of limit cycles? Is the number finite? Is the number

bounded?

This work, will focus and discuss nonlinear first order ordinary differential

equations.

1.2 Limit Cycles

One of the most difficult problems concerned studying nonlinear
systems is the problem of finding limit cycles. The phenomenon of limit
cycles was discovered by Henri Poincare (1854-1912). The limit cycle
describes a phenomenon of oscillation which is observed in various
scientific, engineering and medical fields [13]. In the following, the limit

cycle and its types will be defined.

Definition 1 [18]: An isolated closed trajectory in phase plane (xy-plane)
is called a limit cycle. Isolated means that the neighboring trajectories are

not closed; they spiral either towards or away from the limit cycle.

Thus, limit cycles occur only in nonlinear systems, where the linear system:

!

x = Ax

can have a closed trajectory, but will not be isolated. If x(t) is a periodic
solution, then cx(t) for any c # 0 is also a solution. Hence x(t) will be

surrounded by other closed trajectories, (see Figure 1.2).



cx (1)
x(1)

Figure 1.2: Periodic solutions for a linear system.

Definition 2 [18]: A stable limit cycle (attractive limit cycle) attracts the
near trajectories towards it as t — oo, while unstable limit cycle, the
trajectories spiral away as t — co. Semi-stable (half-stable) limit cycle
will have trajectories such that, from one side spiral towards it, while from

the other side spiral away as t — oo, (see Figure 1.3).

stable unstable half-stable
limit cycle limit cycle limit cycle

Figure 1.3: Types of limit cycle.

1.2.1 Direction Field

For many differential equations, especially nonlinear ones, it will be
difficult to find its analytical solution in explicit formula. Hence, it is
possible to rely on numerical or graphical methods to get an idea of how

the solution of the differential equation behaves.

Even though a solution cannot be found, information about the solution can

be found such as: the value of the solution at a certain point, the intervals
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where the solution is decreasing or increasing, the points where the solution
reaches a maximum value, does the solution go to infinity? does it go to

Zero?,...etc.

One technique which is useful when graphing the solution of a
differential equation is to draw the direction field (slope field) for the

equation.

Definition 3 [16]: A direction field of the differential equation is a plot of
short line segments drawn at various points in xy-plane displaying the

slope of the solution curve.

The direction field describes the behavior of solutions of the
differential equation without having the solution itself (i.e. the direction
field display how the trajectories flow through the plane). Where computers
are used to draw the direction field. The next example will clarify this

method.

Example 1:

Sketch the direction field for the linear differential equation:

dx Y

Solution:

Let us calculate the slope of the solution at different points in the xy-
plane. At the point (1,0) the slope of the solution is (1)2 — 0 = 1 which is
positive, thus, the solution there is increasing. While at the point (—1,1) the

solution has zero slope. On the other hand, the slope of the solution through



7
the point (0,1) is negative. Hence, the solution is decreasing, in the same
way calculate the slope for other points and draw their direction field.

Figure 1.4 shows the direction field and some solutions.

[ N No= S i
/ . e I
I ]
s s i
. X x
0 1
P
/ / /

(a) (b)

Figure 1.4: Representing the differential equation y’ = x* — y by (a) Direction field
(b) Solutions of different initial conditions.

1.2.2. Autonomous System

Another classification of differential equations or system of
differential equations focus on the independent variable; it can be explicit

or implicit.

Definition 4 [7]: A system of ordinary differential equations with the
functions F and G which are not explicitly depending on the independent
variable t is called autonomous system, otherwise the system is called non-

autonomous.

To put it in mathematical form, let us consider the system:

x'=F(x,y)
{y’ =G(x,y), (L1)
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where the functions F and G are continuous and have continuous partial
derivatives in the domain D of xy-plane. Then this system is called

autonomous one.

Example 2:

Show that the following nonlinear autonomous system has an attracting

(stable) limit cycle:
x'=x+y—x(x?+y?)

1.2
y'=—x+y—yx?+y?) (1.2)

Solution:

Clearly the point (0,0) is the only equilibrium solution (i.e. points in
the graph in which the functions derivatives are zero) for the system (1.2),
by using the polar coordinate rand 6 to describe the system more

conveniently:

x =rcosf - dx/dt =x' = —rsinf.d0/dt
y =rsinf - dy/dt =y’ =rcos6.d6/dt’

where r > 0. By multiplying the first equation of system (1.2) by x, the

second by y and then add them, so:
xx' = x% +xy —x2(x? + y?)
yy'=—xy+y? —y*(x* +y%)
xx' +yy' = [x% 4+ y?](1 — (x? + y?))
Use x2 + y2 =72, and xx' + yy' = rr’, giving:

r'=r(1—r?) (1.3)
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The critical points for » > 0 are the origin and the point r = 1,
which describes the unit circle in xy-plane. From Eq. (1.3) it follows that
r' >0 when r <1, and if r > 1 then ' < 0. This gives the conclusion
that; inside the unit circle the trajectories are directed outward, while they
are directed inward outside the unit circle. It seems that the circler = 1isa

limiting trajectory for the system.

To determine an equation for 8, multiply the first equation of system

(1.2) by y, the second by x, and subtract them, gives :
yx' =xy +y*—xy(x® +y?)
xy' = —x% +xy — xy(x? + y?)
yx' —xy' = x? + y?
rsinf(—rsind 8") — rcos@(rcos6 ") = r?
Thus,
6 =—1

Hence, the system in polar coordinate which is equivalent to system
(1.2) is:
r'=r(1-1r?%), 0'=-1 (1.4)
Notice that, by separation of variables, other solutions can be
obtained by solving Eq. (1.3).

If r #0and r # 1, then:

ar _ _ 2
dt—r(l re) —

ar _
r(1-r2)

dt (1.5)
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Using partial fraction to rewrite the left side of Eg. (1.5), and

integrating both sides, then:

1
"= e o=-t+t

where c,, t, are arbitrary constants. By substituting ¢, = 0 we get:
r=1, 0=—-t+t¢, (1.6)

Any point satisfying system (1.6) moves clockwise around the unit
circle, as t increases. Hence the autonomous system (1.2) has a periodic

solution.

The solution satisfying the initial conditions: r(0) = a,60(0) = S is

given by:

1
r= . 6=—(—Fp)

\/1 ¥ [ — 1]e2

If « < 1,thenr - 1 fromtheinsideast — oo; if a > 1, thenr — 1 from
the outside as t — oo. Hence in all cases as t — oo the trajectory spiral
toward the circle » = 1. Figure 1.5 shows several trajectories of the given

system; introducing a limit cycle [7].

¥

)
N/

Figure 1.5: Different trajectories making a limit cycle.
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1.2.3. Existence and Non-Existence of Limit Cycles

The following theorems concerning existence and non-existence of

limit cycles of nonlinear autonomous systems.

1.2.3.1. Poincare-Bendixson's Theorem

In the study of the qualitative behavior of autonomous differential
equations and dynamical systems on R?, the Poincare-Bendixson’s
theorem plays an important role. It guarantees the existence of limit cycles,
in addition, it gives the existence of stationary (critical) points as for a
system which is defined on a plane, each periodic orbit must be surrounded
by a stationary point [16]. Unfortunately, there is no much theorems about
proofing the existence of limit cycles, hence people try to find limit cycles
by utilizing computer.

Theorem 1 [7]: Consider the two dimensional autonomous system (1.1):

{x' =F(x,y)
y' =G(xy)’

where the functions F and G have continuous first partial derivatives in

domain D of the xy-plane. Any closed trajectory of system (1.1) is

necessarily surrounded by one critical point of the system.

From the above theorem, one can note that if a given region does not
contain any critical point then there is no closed trajectory lying in the
region. The next theorem gives the condition to guarantee existence of

closed trajectory.
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Theorem 2 (Poincare-Bendixson's Theorem) [7]: Let the functions F and
G have continuous first partial derivatives in a domain D of the xy-plane.
Let D, be a bounded subdomain in D, and let R be the region that consists
of D, plus its boundary (i.e. all points of R are in D). Suppose that R
contains no critical point of the system (1.1). If C = (¢(t),y¥(t)) is a
trajectory of the system (1.1) that exists and stays in R for some t, and
remain in RVt =>t, then either C is a periodic solution (closed
trajectory), or it spirals toward a closed trajectory as t — co. In either

case, the system (1.1) has a periodic solution in R.

Example 3:

Using the previous theorem to show that system (1.2) of example 2

has a periodic solution.

Solution:

The only critical point of system (1.2) is (0,0). Let R be the region
bounded by 0.75 < r < 1.5 which contains no critical points, starting by
r =0.75 - r’ > 0 this mean that r increases, while forr = 1.5 - r’' <
0 so, r decreases. Hence for any trajectory which crosses the boundary of

R is entering R.

So, any solution of system (1.2) that starts in R at t =t, cannot
leave, but stay in R for t > t,, hence, by Poincaré -Bendixson’s theorem

there exists a periodic solution in R.
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1.2.3.2. Bendixson’s Criterion

This theorem is used to show that a limit cycle does not exist under

particular conditions.

Consider the autonomous system (1.1):

{x’ =F(x,y)
y' =G(x,y)

Suppose that the domain D of system (1.1) is simply connected (i.e.

there are no holes or separate parts in the domain), and the functions F

and G have continuous partial derivative in D of the xy-plane. Assume

that F, + G, dose not change sign (i.e. either always positive or always
negative) throughout D, then system (1.1) has no closed trajectory in D.
Notice that if F, + G,, changes sign in the domain, then there may or

may not be closed trajectory in the domain D [7].

Example 4:

Suppose the system is given as:
x'=x3+y3
y' =3x+y3+2y

It is easy to show that F,(x,y) + G,(x,y) = 3x* + 3y* + 2, which is
always > 0 in the domain of xy-plane. Hence there is no close trajectory
in the xy-plane.

Another illustration for the criterion, let us Return to Example 2,

where:

Fe+ Gy, =2—4(x*+y?) =2(1—-2r?
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which is positive for 0 < r < iz , hence there is no closed trajectory. The
same result we have shown, there is no closed trajectory in the region when

r<l.

For r>— , then E, + G, < 0, but Bendixson’s criterion is not
NG y

applied because this annular region is not simply connected. Indeed, as

shown previously, it does not contain a closed trajectory.

1.3 Generalized Abel Differential Equation

One of the common nonlinear ordinary differential equations is the
Abel differential equation which named by the Norwegian mathematician
Niels Henrik Abel (1802-1829). He showed that there is no general
algebraic solution of the quintic equation [19]. He defined and worked on
methods to solve special integral equations the so-called Abel integral
equation. Also, worked on differential equations including the important
verification of Wronskian determinant for second order differential

equations.

The Abel differential equation plays an important role in many
applications of real life problems in various areas e.g. in biology control
theory, cosmology, fluid mechanics, solid mechanics, cancer therapy,

modeling of oceanic circulation, and in problems of magneto- statics [17].

There are two types of Abel differential equations. Abel's equation
of the first kind which appears as one of first nontrivial examples of

nonlinear differential equations which will be discussed here.
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The main purpose of this work is to study the number of isolated
periodic solutions (limit cycles) of the polynomial differential equation. The
interest of this problem which is a part of Hilbert's 16" problem (see appendix
[11) comes from studying the number of isolated closed orbits of planar

polynomial vector field. The polynomial differential equation given by:
u' =a,(t) +a;(Du+ -+ a,_,OuU + a,(Ou”, (1.8)

where the coefficients a;(t),i = 0,1, ...,n are continuous and T-periodic

functions for some T> 0.

A periodic solution of Eq.(1.8) is a solution u which is defined in the
interval [0, T'], such that w(0) = u(T). If this periodic solution is isolated in
the set of all periodic solutions then it's called a limit cycle. Eqg.(1.8) with
n =1, is a linear equation, consequently having at most one limit cycle,
while for n = 2 it’s called a Riccati equation with at most two limit cycles
[10]. For n = 3, Eq.(1.8) is Known as Abel differential equation. In two
publications of Pliss and Lloyd, they proved that Abel differential equation

has exactly three limit cycles taking into account the multiplicity cases [4].

A constant sign in the leading coefficient a, is not sufficient to
bound uniformly the number of limit cycles for n > 4. So, to get more
accurate information on the number of limit cycles, many papers in the
literature declared that only some polynomial coefficients a;(t) do not

vanish, in which the nonlinear polynomial has only three or four terms [1].
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There are no much researches who provide an explicit bound on the
number of limit cycles when all the coefficients of the nonlinear
polynomial are given. Calanchi and Ruf proved that if n is odd, where the
leading term is fixed and the remaining terms are small enough, then there
are at most n limit cycles, Alwash in a recent work proved related results

giving more precise information about the number of limit cycles [1].
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Chapter Two

Number of Limit Cycles

In this chapter, an introduction of limit cycles of polynomial
ordinary differential equation with periodic coefficients was given and
presented some elementary results that are used in proofs of many theorems
related to Abel differential equation. An attempt to proof these theorems
numerically was done by choosing suitable interval and initial condition
that satisfies the theorem. Also, a comparison between theorems and
corollaries which has at most one positive limit cycle is done. Furthermore,
here are presented some conditions which are used to limit the number of
isolated periodic solution of complete 4" —order polynomial equation with

numerical examples.

2.1 Number of Limit Cycles of Generalized Abel Differential Equation

with Numerical Simulation

This section deals with proved results to find the maximum number
of isolated periodic solutions (limit cycles) of polynomial first order

differential equation with periodic coefficients.

2.1.1. Preliminaries

This section presents some elementary results which are used in
proofs for many theorems related to Abel differential equation. Consider

the first order differential equation:
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u' =g(tu) =X, a;(Ou’, (2.1.1)

where a;(t) are T-periodic continuous functions for some T > 0, and g is

continuous in t with continuous derivatives up to order 3.

Definition 2.1 [2]: A continuous function f:[0,T] = R is said to have a
definite sign if it is not null and either f(t) < 0 or f(t) = 0, we write f <
0 (negative definite sign) in the first case and f > 0 (positive definite sign)

in the second case.

Notation: The terms (d,,d>, ...., d,)-polynomial refers to Eq.(2.1.1) such
that: a;(t) =0, if j#d;foralli =1,..,7 [12].

For example: the (0,1, 2)-polynomial equation means that all

coefficients of Eq.(2.1.1) are identical to zero except a,(t), a,(t), a,(t).

Definition 2.2: The periodic solution of the polynomial differential

equation u = u(t) is said to be isolated if there exists an € > 0 such that:
{t,u):u(t) —e <u(t) <u(t) + ¢}

The periodic solution which is isolated is called a limit cycle of the

differential equation.

By taking the interval [0,1] in Eqg.(2.1.1), let us consider the first

order differential equation of the form:
u'(t) = a,(®Ou™ + ap_ (Ou™ 1 + -+ ay(t), (2.1.2)

where t € [0,1], and a;(t):[0,1] - R,i = 0, 1,..,n are analytic functions.
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Definition 2.3 [12]: The solution of Eq.(2.1.2) is called closed solution if it

is defined on the interval [0,1] such that u(0) = u(1).

The next theorem show that equation (2.1.2) withi = 0,1, 2, 3 has at

most three closed solutions.
Theorem 2.1 [12]: The equation:
u'(t) = ap(t) + a;(Ou + a,(H)u? + az(t)u?, (2.1.3)

where a;(t):[0,1] » R,i = 0,1,2,3 are continuous in [0,1], and a;(t) > 0

t € [0,1] has at most 3 closed solutions.

In the following a set of three examples are presented to clarify

relevant theorems.

Numerical Example 1:

Let a;(t) = sin(mt) Vi = 0, 1, 2, 3, on the interval [0,1], with initial

condition u(0) = —0.45.
Clearly a;(t) = sin(;tt) > 0 on the interval [0,1].
Now, Eq.(2.1.3) is expanded by:
u'(t) = sin(mt) ud + sin(mt) u? + sin(wt) u + sin(mt)

which has one limit cycle on [0,1], (see Figure 2.1).



Figure 2.1: Limit cycle of equation:

u'(t) = sin(mt) u? + sin(mwt) u? + sin(mt) u + sin(me).
The equation with three terms has the form:
u' = a,, (Ou™ + a,, (Du™ + a,,u"s, (2.1.4)
wheren;,i =1,2,3 € Zand n; > n, > ns.

Gasull and Guillamon proved that if n; = 1 and a,,(t) or a,,(t)
have a definite sign then Eq.(2.1.4) has at most two positive limit cycles. In
the case where u = 0, there will be always a solution, and by changing the
sign of u this gives another solution (i.e. two limit cycles in positive
definite case and two in negative case), then the total number is five limit
cycles. Thus, to obtain bounds on the number of limit cycles for equation
with three monomials or more, one needs to assume that two coefficients

have a definite sign [2].
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Alwash, proved that if n = 3 and a,,_,(t) < 0, then the equation
u =u"+ a,_ (U + a,_,(HD)u"? (2.1.5)

has at most one positive limit cycle [2].

Numerical Example 2:

Let: n =3, a,_,(t) = cos(t), a,_,(t) = 0, with initial condition

u(1) = 0.003.
Then, the equation will be:
u' = u3 + cos(t) u?

which has one positive limit cycle on the interval [—m, ], (see Figure 2.2).
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Figure 2.2: Limit cycle of equation u’ = u3 + cos(t) u?.

But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(1) = 0.28, (see Figure 2.3).
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(a) (b)
Figure 2.3: No limit cycle of equation u’ = u3 + cos(t) u?.
Theorem 2.2 [2]: Given the polynomial differential equation:
u' = a, (Ou™ + a,, (Ou™ + a,, (Ou™ + ap (Hu™, (2.1.6)
wheren; >n, >n; >m=1.

Assume that a, (t) and a,,(t) or a,,(t) and a,, (t) have a definite
sign, or that a, (t) and a,,(t) have opposite definite signs, which are

summarized in the following Table 2.1:

Table 2.1: Summary of theorem 2.2

Condition Number of limit cycles
an, () A an, (t) are positive
an, (t) A ay, (t) are negative

an, () A ay, (t) are positive Then Eq.(2.1.6) has at most
A, () A a,,(t) are negative two positive limit cycles

a,, (t) is positive A a,_ (t) is negative
a,, (t) is negative A a, (t) is positive

Furthermore, if a,,(t) has null integral over the interval [0, T] (i.e.

fOT a,(t)dt +# @), then Eqg. (2.1.6) has at most one positive limit cycle.
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Numerical Example 3:

In this example let’s take the case where a,_ (t) has positive definite

sign and a,,, (t) has negative definite sign.
For instance, let:

n =5 n,=4, ng=2, m=1, a, (t) = a,, ) = apy(t) = sin(t),

a,,(t) = — sin(t). With initial condition: u(1) = 0.03.
Then, the equation will be:

!

u

sin(t) u® + sin(t) u* — sin(t) u? + sin(t) u

which has one positive limit cycle on the interval [—2m, 2], (see Figure

2.4).
0.2 02r
0.18 | f/\\ Jf/\\ 018}
! 4
0.16 | j \', Il,'ll \ 016+
0.44 7] f \ / g".l aal
| \
B ' \ [ 0.12}
0.12 ] / \ |I. \
0.1 / \.‘ jJ 1\ 01t
0.08 7| ’I '\ { \ 0.08
4 1
0.06 7] ;’ ‘\\. )fi ‘\\ 0.06F
0.04 7| Jj \\// \ 004
0.02 . . s . ‘ }
002 8 l-, l, ‘2 '0 [2 L '5 g 10 0 10 20 30 40 50

(a) (b)
Figure 2.4: Limit cycle of equation:
u’ = sin(t) u® + sin(t) u* — sin(t) u? + sin(t) u.
But, if we try different initial condition on the same interval, the
results came to be a non-limit cycle. For example: u(1) = 0.25, (see

Figure 2.5).
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Figure 2.5: No limit cycle of equation:

u' = sin(t) u® + sin(t) u* — sin(t) u? + sin(t) u.

Theorem 2.3 [2]: For Eq.(2.1.6), consider that a, (t) has a definite sign

and ny, n,,n3m € Z in which n; > n, > nj verifying the condition:
ny—2n, +n3=0. (2.1.7)
If
A= ap,?(m —ny)? — 4a,, a,,(m—ny))(m —n3) <0 (2.1.8)
then, Eq.(2.1.6) has at most one positive limit cycle.
The next proposition will be useful to prove Theorem (2.3).

Proposition 2.1 [2]: Consider the general first order equation

u' = g(tu), (2.1.9)

where g is continuous and T-periodic in T. Let / be an open interval and
k
g(t,u) has continuous partial derivatives a%g(t,u), k = {1,2,3} for all

k k
(tw) €[0,T)xJ. If Zg(t,w) 20 or ——g(t,u) <0 for all (tu)€

[0,T] x J, then Eq. (2.1.9) has at most k limit cycles with range containing J.
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Proof of theorem 2.3

Casel:m=1.

Without loss of generality, let us consider a,,, > 0, by changing the

independent variables T = —t.

Following reference [2] with more simplification, Eq. (2.1.6) can be written

as:
u' =uQ(t,w),
where:
Q(t,w) = apu™ ™t +ap u™ !t +a, u™T + ay(t)

using the change of variable technique u = e*, u' = x'e”.
From Eq. (2.1.9): x' = g(t, x) then,

u'(x) =e*g(t,x)

e*x' =e*Q(t,e%)

x'=Q(t e*) = g(tx)

Since g, (t,x) = Q,(t,e*)e* then,

Ix (t,x) =

ex(anl (Tll — l)eX(nl—l) + an, (n, — 1)ex(nz—1) + an, (n; — 1)ex(n3—1))

=¥ D(q, (n, — De ™) 4+ q, (n, —1)e*™27m) + q,, (n; — 1))

From equation (2.1.7):

le—n3=n1—n2
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If we denote R = e(™1~2)% then R? = e(™1~M3)% 50 g, (t,x) can be

written as:
ex("3‘1)(an1(n1 — 1DR? + Ap,(Ny — 1)R + ap, (n3 — 1))

By hypothesis (2.1.8) the last factor is a quadratic polynomial with
negative discriminant. Thus, by previous proposition (2.1) there exists at

most one positive limit cycle.
Case2: m # 1, rewrite Eqg.(2.1.6) as:
u' =umQ(t w),
where:
Qt,u) = a,, (OU™™™ + a,, (U™ + ap, (Du™™™ + a,(t)

In this case, the change of variable technique is well-defined for

positive solutions and keeps the number of positive limit cycles.
Using the change of variable: u = x% which satisfies:
m—1Da+1=0
Hence,
u' = ax* 1g(t,x)
u™Q(t, x%) = ax® 1g(¢t, x)
xMQ(t, x%) = ax* 1g(t, x)

1
g(t,x) = —Q(t,x*)x M1
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Thus,
— 1 a
gx(t: X) = xa—le(t,xa)

= x®71 [oc ((n1 —m) ap x*M"™1 4 (n, —m) q,, x* 271
+ (n3 —m) anSx“("3‘m)‘1)]
=|ar (g = ) @ x¥TTHD=2 4 (1 — 1) @, x¥PRTHD2 4
(ns —m) an3xa(n3_m+1)_2)]
= ax(Ms~mHDE=2[(n, —m) aq,, x*™M7") 4 (n, —m) a,, x¥"27"s)
+ (n3 —m) ap,]
If we denote § = x*™~m2) then §2 = x*(M~"3) and by using
Eq.(2.1.7) giving:
gx(t,x) =
axMs~mDE=2[(n, —m) a, S? + (ny; —m) a,,S + (n3 —m) a,,]

Here, by hypothesis (2.1.8), the last factor is a quadratic polynomial
with negative discriminant. Therefore, there exists at most one positive

limit cycle by proposition (2.1).

Numerical Example 4:

This example will cover the case where m = 1.
Let: n; =5, n, =4, ng=3, anl(t) = anz(t) = an3(t) = ap(t) =
sin(t).

with initial condition u(0) = 0.04.
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A= —23sin?(t) < 0
Since the conditions (2.1.7, 2.1.8) hold, then the equation will be:
u' = sin(t)u® + sin(t)u* + sin(t)u + sin(t)u

which has one positive limit cycle on the interval [0,27], (see Figure 2.6).

0385 : . . ‘ : 0350
03r 1 03} |
0.25F : 025

0.2f 1 0.2
0150 / . 015}
01 / E 01}
0.05F —_— A 0.0

(a) (b)

Figure 2.6: Limit cycle of equation:

u' = sin(t)u® + sin(t)u?* + sin(t)u® + sin(t)u.

But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 0.09, (see Figure 2.7).

4500 4500
4000 4000
3500 3500
3000 3000
2500 - 2500+
2000 |- 2000 +

1500 1500
1000 - 1000}

500 500

) o5 1 15 2 25 3 % 5 0 15 20 » 30 3
@) (b)

Figure 2.7: No limit cycle of equation:

u' = sin(t)u® + sin(t)u* + sin(t)u® + sin(t)u.
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Numerical Example 5:
This example will cover the case where m # 1.
Lettny, =3,n,=2,n3=1,m=0,
Any () = An, (1) = Ay, (t) = ap(t) = sin(t)
with initial condition: u(0) = 1.
A= —8sin?(t) <0
Then, the equation will be:
u' = sin(u + sin(t)u? + sin(t)u + sin(t)

which has one limit cycle on the interval [—m, ], (see Figure 2.8).

05

05 ™, / : 05

Figure 2.8: Limit cycle of equation:

u’ = sin(t) u + sin(t) u? + sin(t) u® + sin(t).

But, if we try a different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = —1, ( see Figure 2.9).
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4 -3 -2 -1 0 1 2 3 4

Figure 2.9: No limit cycle of equation:

u' = sin(t) u + sin(t) u? + sin(t) u3 + sin(t).

2.1.2 Comparison Between Theorems and Corollaries which has at

Most One Positive Limit Cycle

In this section, a complementary results of theorem 2.3 are

introduced while in corollary 3 a comparison with theorem 2.2 is done.

Corollary 1 [2]: Assume that a, (t),a,,(t) have the same definite sign,

and also n; < n, < n, satisfying the condition (2.1.7). If:
4an, () an, () > an,*(t)

then, for all ¢t, there exists m, > 0 such that if my < |m| then Eq.(2.1.6)

has at most one positive limit cycle.

Numerical Example 6:

Let:n, =4,n, =3,n3 =2, ani(t) = cos(t),Vi=1,2,3, a,, = cos(t).
with initial condition u(0) = —0.6.

To find m,, first solve Eq.(2.1.8)

anzz(m —ny)? — 4ay, an, (m—ny)(m—n3) <0
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A=(m—-3)2—-4m-4)(m-2)<0
A=m?—6m+9—4m?+24m—32<0
A=-3m?+18m—23<0
which has two roots: r;, = 1.84, r, = 4.15.

Hence, m € R/(1.84,4.15), so that m, can be any positive number
such that my < |m|. If assumed m = 1, then m, € (0,1) and the equation

will be:
u' = cos(t)u* + cos(t)u® + cos(t)u? + cos(t)

which has one negative limit cycle on the interval [‘7" g], (see Figure 2.10).
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Figure 2.10: Limit cycle of equation:

u' = cos(t)u* + cos(t)u? + cos(t)u? + cos(t).

But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 0.1, ( see Figure 2.11).
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Figure 2.11: No limit cycle of equation:

u' = cos(u* + cos()u3 + cos(t)u? + cos(t).

Corollary 2 [2]: Consider a, (t) and a, (t) have the same definite sign

and n; > n, > ng > m = 1 which is satisfying the condition (2.1.7). If

(ny — 1)*
4(n; — Dz — 1)

an,”(t) < an, (t)an, (t),

for all t. Then Eq.(2.1.6) has at most one positive limit cycle.

Numerical Example 7 :

Lettn; =5,n,=4,n3 =3, m=1,

which satisfy condition (2.1.7).

Ay, (t) = apy(t) = cos(b), Vi = 1, 2,3, with initial condition: u(0) = 0.04,
on the interval: [—m, 7].

Then, the equation will be:

u' = cos(t)u® + cos(O)u* + cos(t)u + cos(t)u
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which has one positive limit cycle on the interval: [—m, ], (see Figure 2.12).
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Figure 2.12: Limit cycle of equation:

u’ = cos(t)u® + cos(t)u* + cos(t)u® + cos(t)u.

But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 0.1, (see Figure 2.13).
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Figure 2.13: No limit cycle of equation:

u' = cos(t)u® + cos(t)u* + cos(t)u + cos(t)u.
A comparison between the next corollary and Theorem (2.2) is done.

Corollary 3 [2] : Let n, > n, > ng and satisfy the condition (2.1.7).

Assume that ay, (t), a,,(t) have opposite definite signs, then Eq.(2.1.4)

has at most two non-trivial limit cycles; at most one negative and at most

one positive.



34
It can be noted that this corollary does not include the case where

ap, () and ap, (t) have the same definite signs.

Numerical Example 8:
Let ng = 3,712 = 2, ny = 1,
which are verifying the condition (2.7).

ap, = Ay, = cos(t), ap, = —cos(t)
with initial condition: u(0) = 0.05 on the interval: [—m, 7].
Then, the equation will be:

u' = sin(Hud + sin(t)u? — sin(t)u

which has one positive limit cycle on the interval: [—T, t], (see Figure 2.14).

03 03-

(a) (b)

Figure 2.14: Limit cycle of equation:

u' = sin(t)u® + sin( )u? — sin(t) u.
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But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 10, (see Figure 2.15).
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Figure 2.15: No limit cycle of equation:

u' = sin(t)ud + sin( )u? — sin(t) u.

2.2. Limit Cycles of the Complete 4™-Order Equation

Our purpose of this section is to present some conditions which are
used to limit the number of isolated periodic solutions of the (4,3,2,1,0)-

polynomial equation which has the form:
u' = a,(Ou* + az(Oud + a,(Ou? + a; (Hu + ay(t) (2.2.1)

Gasull and Guillamon proved that Eq.(2.2.1) with a,(t) =1 might
have an arbitrary number of T-periodic solutions. Also when a,(t) =0
Alvarezand and others proved that if a;(t), a,(t) > 0 or a,(t),as(t) > 0 or
a,(t) > 0 > a,(t), then Eq.(2.2.1) has at most two positive limit cycles [2].

Theorem 2.4 [2]: If a3(t)? — §a4(t)a2(t) < 0 and a,(t),a,(t) > 0, then

Eq.(2.2.1) has at most two limit cycles.
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Proof:
Take the second derivative of the right hand side of Eq. (2.2.1) gives:
12a,(t)u? + 6as(t)u + 2a,(t)
which is a second order polynomial. Now the discriminant equals:
36a5(t)? — 96a,(t)a,(t)

which is negative by the hypothesis of the theorem. Thus, by proposition

(2.1), there exists at most two limit cycles.

Numerical Example 9:

Let: a;(t) = cos(t),Vi=1,2,4 , a;(t)=0,vi=0,3, on the

interval: [_T’Tg] with initial condition: u(0) = —1.

Then, the equation will be:
u' = cos(t)u* + cos(t)u? + cos(HhHu (2.2.2)
which has one negative limit cycle on the interval [_7”2] (see Figure

2.16).

Figure 2.16: Limit cycle of equation:

u' = cos(t)u* + cos(t)u? + cos(t)u.
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But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 0.1, (see Figure 2.17).
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Figure 2.17: No limit cycle of equation:

u' = cos(t)u* + cos(t)u? + cos(t)u.

By using Maple software to draw the phase portrait of Eq.(2.2.2), (see
Figure 2.18).
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Figure 2.18: Phase portrait of equation:

u' = cos()u* + cos(t)u? + cos(t)u.

Definition 2.4 [1]: Let «< be a T-periodic function,c is called a strict lower

solution of Eq. (2.6), if

o’ () < g(t, e (1))
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And, « is called a strict upper solution of Eqg. (2.6), if
o’ () > g(t,x (1))

for all t. (see Appendix II).

Theorem 2.5 [2]: Consider that a,(t)a,(t) > 0,Vt. If

43 ag(t)a,(t)3 + as(t) =0,

then Eq.(2.12) has at most two positive limit cycles.

Numerical Example 10:

Let: a;(t) =sin(t),vi=0,1,3,4, a,(t) =0, on the interval:

[—m, ], with initial condition : u(0) = 2.
Then, the equation will be:
u' = sin(u?* + sin(Hud + sin(Hu + sin(t) (2.2.3)

which has one limit cycle on [—m, 7], (see Figure 2.19).

250 25-

(a) (b)

Figure 2.19: Limit cycle of equation:

u = sin(u* + sin(u3 + sin(t)u + sin(t).
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But, if we try different initial condition on the same interval, the

results came to be a non-limit cycle. For example: u(0) = —1.5, ( see

Figure 2.20).
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By using Maple software to draw the phase portrait of Eq.(2.2.3), see

Figure 2.21.
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Figure 2.21: phase portrait of equation:

u = sin(u* + sin(u3 + sin(t)u + sin(t).
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Chapter Three

Limit Cycles of Polynomial Planar System

This chapter introduces a planar polynomial vector field and simple
family of polynomial planar system which is called rigid system. Also,
presents theorems which deals with rigid system including numerical

examples.

Moreover, exhibits the Poincaré map and multiplicity of limit cycle
of planar differential system. Also, it presents the multi-parameter
polynomials differential system with relevant theorem that was proved

numerically the existence of explicit limit cycle.

At the end of this chapter, system in the cylinder, rigid system, and
corollary which is giving an upper bound for the number of non-
contractible limit cycles for system in cylinder including numerical

example are presented.

Abel differential equation has been used to study the maximum
number of isolated periodic solutions (limit cycles) of autonomous planar
vector fields. Studying the limit cycles of planar polynomial systems can be

reduced to the study of Eq. (2.1).

3.1 Introduction

During the last century, the study of the limit cycles of polynomial
differential equations was a major challenge for researches. An important

problem in qualitative theory of differential equations is to determine the
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number of limit cycles of planar differential systems (planar vector field)
which has the form:

ax _ x' =P(x,y)

dt

, (3.1.1)
d '
— =y =QxY)

where P(x,y),and Q(x,y) are coprime polynomials in x and y with real
coefficients (i.e. P(x,y) and Q(x,y) has no common roots), such that the
dependent variables x and y € R. The degree of system (3.1.1) is n =
max{deg(P),deg(Q)}. An isolated periodic solution in the set of all
periodic solutions of system (3.1.1) is called limit cycle.

For example consider the cubic polynomial planar system:

{x’ = 20y + 2xy?
y' =y + 20x — 2x%y — 20x3 + 4y3

in which, the system limit cycles are sketched in Figure 3.1 [21].

/ ¥ /
/ 4
/
/ //
2 , /
A A
! IR A ANV A J
Jooars/ X
Hff ol
/
//
/ - /

Figure 3.1: Limit cycles of the system:

{x’ = 20y + 2xy?
y' =y + 20x — 2x%y — 20x3 + 4y3.
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3.1.1. Rigid System

One of the most simple family of polynomial planar system, in
which the derivative of the angular variable is constant, is called rigid

system:

{x’ = -y +xf(x,y)
y =x+yf(xy),

where f(x,y) is an arbitrary polynomial function [10].

Now, if we consider the rigid system of the form:

{x’ = -y +x[Ry_3(x,¥) + Ry (x,y) + Ry—1(x,y)]

y' =x+y[R,_3(x,¥) + R,_,(x,y) + R,i_1(x, )], (3.1.2)

where R,, is a homogenous polynomial of degree n. Rewriting the system

by using the polar coordinate (i.e. x = rcos6,y = rsin@) [4], then:

{r’ =r"2R,_5(cosh,sinf) + r" 1R, _,(cos6,sinf) + r"R,,_,(cosb, sinb) (3.1.3)
0'=1 o
Hence,

dr

i r" 2R, _s(cosB,sinf) + r" 1R, ,(cos@,sind) +

r"R,,_,(cos0, sind) (3.1.4)

Theorem 3.1 [4]: Consider the system (3.1.2), assume that = is odd,
R,3<0, R,_; =1 and the function B = foann_g(cose, sin6) do.

Then:
I-  If B =0, then system (3.1.4) does not have any limit cycle.

2-  While system (3.1.4) has at most one limit cycle if B < 0.
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The next remark presents a condition to reduce a polar equation to an

equation with leading coefficient equal to one.

Remark 3.1 [4]: If the leading coefficient R,,_, dose not vanish, then the

transformation of the independent variable given by:

0 - exp(f(;9 R,,_1(cost, sint) dt) (3.1.5)

will reduce the polar equation to identical equation with a leading

coefficient equals one.

Numerical Example 1:
Case one in Theorem 3.1: B = 0.

Let: n = 3, on the interval [0, 27], the leading coefficient is R,,_; =

R, = sinfcos6.

R,_» =Ry =sinf + 2cos0,R,,_3; = R, = 0.

2m
B=j 0do =0
0

with initial condition r(0) = 1.

First, reduce the leading coefficient R, to an equation with leading

coefficient equals one using Eq.(3.1.5).

6
1
0 - exp(f sint cost dt) = exp(zsinZQ)
0

hence, the differential equation will be:
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r_ 1. 3 : 2
T = exp (Esm Q)r + (sinf + 2cos0) r

which has no limit cycle, (see Figure 3.2).

OILER (N0 TR0 A S S T S N

FERE T B B B |

Figure 3.2: No limit cycle of the equation:
1
' =exp (Esin29> r3 + (sinf + 2cos@)r?.
Case two in Theorem 3.1: B < 0.

Let: n = 3, on the interval [0, 2], the leading coefficientis R,_; = R, =

sinfcoso.
R,_, = R; = sinf + cos0O

1
Rn_3=Ro = 5

21‘[_1

B = j —df=—n<0
o 2

with initial condition r(0) = 1.

First, reduce the leading coefficient R, to an equation with the

leading coefficient equals one, using Eq.(3.1.5).

6
1
0 - exp(j sintcost dt) = exp(zsinze)
0
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Hence, the differential equation will be:

r_ l P2 3 : 2 _
r' = exp (2 sin 9)r + (sin6 + cosO)r — mr

which has one positive limit cycle, (see Figure 3.3).

1r 127
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0.
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Gy 0.
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051
0

=

04

03t 02k

)

021

01

02

(a) (b)

Figure 3.3: Limit cycle of the equation:

0

r_ l 2 3 . 2 _
r' =exp (2 sin Q)r + (sinf + cos@)r= — mr.

But, if we try different initial condition on the same interval, the results

came to be a non-limit cycle. For example: u(0) = 2, (see Fig 3.4).

7

5,}10’ X 10

45 45

4 4

35 35

3 3

251 25

2t 2

154 15

i 1

0s5f 05

% 00z 004 006 008 01 o1 o % 5‘ 0 |1'5 Jz'n 2"; 3'0‘ = |4'0 ‘4'5

(@) (b)

Figure 3.4: No limit cycle of the equation:

r_ l 2 3 . 2 _
r’ =exp (2 sin B)r + (sinf + cos@)r= — mr.



46

3.1.2. Multiplicity of Limit Cycles for Planar Differential System

In this section, two ideas will be exhibited; the first one is Poincaré
map, and the second one is the multiplicity of limit cycles of planar

differential system.

Let us assume a planar differential system

{x’ = P(x,y)

Y =0y)’ (3.1.6)

where both of P(x,y) and Q(x,y) are real analytic functions defined in
some nonempty open set U € R?. Suppose that I' be a limit cycle for

system (3.1.6) such that: T ={y(t):0 <t <T}.

Consider p, € T and a section X through it. Since the limit cycle T is
periodic orbit, for any point g on X, the solution of system (3.1.6) starting

at g cuts the section X again in another point for some positive time.

If we denoted P(q) the point corresponding to the first intersection of the
solution for system (3.1.6) starting in g. Also notice that P(p,) = p, is a
fixed point. Hence, the function P: £ — X is called the Poincaré map for a
limit cycle T at a point p,. The Poincaré map controls the stability of a limit
cycle as mentioned in chapter one; a limit cycle can be either stable, semi-

stable or unstable.

To clarify this, suppose P is the identity and P'(p,) # 1, hence it can
be said that a limit cycle T is hyperbolic or of multiplicity one. If

P'(py,) < 1then T is stable while T is unstable if P'(py) > 1.
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In case P'(p,) = 1 and P is not the identity then, there exist an integer m
which is greater than one such that P™(p,) # 0, where the limit cycle T is

of multiplicity m [20].
The following table summarizes this case (Table 3.1).

Table 3.1: Stability analysis of the Poincaré map

m P™(po) < 0 P™(po) > 0
Odd [ is stable " is unstable
Even [ is semi-stable

The next example will demonstrate the Poincaré map.

Example 2: Suppose the vector field given in polar coordinate by:
r'=r(1-r?%
0’ =1

Show that the system has a unigue periodic orbit and classify its stability.
Note: Assume I to be the positive x axisi.e. { Z: (x,0); x € R, x > 0}.
Solution:

As shown in chapter one, the system has a fixed pointat r = 0 and a
limit cycle at r = 1. Starting at a point x, = x it will return to X after 2,

then x; = P(x). It starts at point (x, 0) and ends at point (P (x), 0), hence

Then,
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P(x) dr
2 = S —
" f r(d—r?)

Using partial fraction to evaluate the integration gives:

1 __A+ B N C
r(l—=r2) r 1+r 1-r

Ald+r)(A-r)+Brl-r)+Cr(1+r)=1

Whenr=0—>A=1,r=1—>C=%,r=—1—>B=—%.
Thus,
P 1 —-1 —1
2T = — d
& fx F2asn 2a-n v

P(x)
x

1 1
2m = (In|7| —Elnl?‘ + 1 —§1n|1 — 7D

Multiplying both sides by 2 and then take the exponential for both

sides gives:
P?(x) 1+«x 1—x
= * *
x> 1+P(kx) 1—-P(x)

4T

e

Rearrange the equation such that, the components which have x are
located in one side and the other components which have P(x) in the other
side

e*™x?*  P*(x)
1—x2 1-P2(x)

P?%(x) <1 +

e47rx2> e47rx2

1—x2)  1—x2
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Thus,
P(x) = (1+e™*"(x2 - 1))

Maple software is used to plot P(x), ( see Figure 3.5).

09

0 0.002 0.004 0.006 0.008 0010
X

r'=r(1-r?)
0'=1

Figure 3.5: Plot of P(x) of the system: {

Drawing y = x into Figure 3.5, then it can be seen x is mapped to

P(x), and a fixed point occurs at x* = 1 (i.e. intersection point of the two
graphs).

If an initial condition x, in which x, is being mapped to P(x,) is

given, the value of P(x,) is identical to the value of x; corresponding to

the location on the line y = x, since the height and the width are equal.
Mapping again will get the location of P(P(x,)) = P?(x,), running it

once again will give P3(x,) and so on, (see Figure 3.6).
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P(x)

xz = Px4) A

xg = Pixg}

Ixn Ixi .rI; I-fe =1
Figure 3.6: Mapping x = P(x).

Figure 3.6 is called cobweb diagram, it shows a fixed point r* = 1
(the point where P(x) = x) is a limit cycle. By iterating Poincaré map, it
can be seen that the result get towards the limit cycle, which is a stable

limit cycle [18].

3.1.3. Limit Cycles of Polynomial Planar System

In analyzing first order differential equations one of the major
stimulus for researchers is to study the existence of limit cycles of

polynomial vector field in R2. Let us consider the differential equation:

d /
d_JtC =x = 2}320 ak(t)xk , (317)

where n > 2 and a,(t) € C([0,2]). The closed solution of Eq. (3.1.7) is
x(t) such that x(0) = x(2m).

Theorem 3.2 [8]: If ay(t) = 0 as a special case of Eq.(3.1.7), then the

differential equation will be:

x' = YR_ ap(t)xk (3.1.8)
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Consider that foznal(t) dt <0 and 3Ij =2,3,..,n such that

ap(t) =0,vk =j,...,n , t €[0,2n] and Xj_;ax(t) > 0,Vt € [0,2m].

Then, there exists a positive isolated closed solution of Eq.(3.1.8).

Suppose the planar system:

{x' = Yk=1Pr(x,¥)

Y = Thes Qe6) (319)

where P, (x,y) and Qi (x,y) are homogenous polynomial of degree k. By

transforming system (3.1.9) to polar coordinates it gives:

n

=) r*pe(6)

k=1
n

0'= ) g, (0),

k=1
where
pr(6) = cos 8 P,(cosO,sinf) + sinb Qy(cosb, sinf)
q,(0) = cos 0 Q,(cosB, sin@) — sinb P, (cos6,sinb)
The next proposition belongs to the class of rigid system.

Proposition [20]: Suppose the system:

{x' = ax — cy + Yzt xF(x,y)

, h (3.1.10)
y' =cx+ay+ Xps1yF (%, y),

where F, (x,y) are homogenuos polynomial of degree k, and a < 0 < c.

Assume that 3j=2,3,...,n—1 in which F,(cos8,sinf) >
0,vk =j,...,n and 8 € [0, 2r]. Furthermore, if X721 F.(x,y) > 0,V0 €

[0,27] then: system (3.1.10) has at least a limit cycle.
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By transforming the system in polar coordinates:

r'=ar+ Z r®F,_,(cos8,sind)
k=2

6'=c
Now, to obtain a differential equation let us take r as a function of 6.

Hence,

Z; =Zr 4= Zk ,T*F,_;(cosH, sinf) (3.1.11)

Numerical Example 3:

Let: n =2, the homogenous polynomial : F;(cos@,sinf) =

2cos6 + 2sindf.
a=-2<0,c=2>0
on the interval [0, 27t], with initial condition r(1) = —0.6.

then, the differential equation (3.1. 11) will be given by:
-2
r = -7 + ZZ rkF._,(cos8, sind)

r'=-r+ E (r? (2sinf + 2co0s0))

which has one negative limit cycle, (see Figure 3.7).
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Figure 3.7: Limit cycle of equation:

r =-r +% (r? (2sinf + 2cos0)).

But, if we try different initial condition on the same interval, the result

came to be a non-limit cycle. For example: u(1) = 1, (see Figure 3.8).

2x1D" 2,}|n"

18 18

16 16

14 14

12 12

1 1

08 08

06 06

04 04

02 02 J

%9z 04 s o8 1 1z 11 16 + o 2 | ?a_l .|1'n : 50 50
@) (b)

Figure 3.8: No limit cycle of equation:

r'=-r +% (r? (2sin@ + 2co0s0)).
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3.1.4 Explicit Limit Cycle of Multi-Parameter Polynomial Differential

System

Now, let us assume the multi-parameter polynomial differential

system which has the form
ey =x+ (ay — Bx)(ax? — bxy + ay*)"

iy - (3.1.12)
—=y'=y—(By + ax)(ax® — bxy + ay*)",

dt -
where n € Z* and «, 8, a, b are real constant.

Theorem 3.3 [6]: Consider the polynomial differential system (3.1.12). If
a>0,>0anda > % |b| then, system (3.1.12) has an explicit limit cycle

which is given in polar coordinates as:

—Znﬁv) 2n

el
0

a (a — %bsin(Zv))

0
R(O,7) = exp(%) ran — —dv| ,

where
1/(2n)
-2
21 2n o exp (2F)
r =exp( - ) InBn f - —dv
exp( o ) —1J0 4 (a — Ebsin(Zv))
Proof:

If we rewrite the polynomial differential system (3.1.12) in polar

coordinates (r,0) as x = rcos6,y = rsinf [6], then it looks like:

= =1 =7 — Br2™*(a — < bsin(26))"
a0 _
at

) n (3.1.13)
0' = —ar?® (a — Ebsin(ZQ))
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From the above system (3.1.13) which can be converted to the following

differential equation called Bernoulli equation:
dr . E r1—2n

A9 @ a(a—bsin(20))"

(3.1.14)

n
Since a > % |b| and @ > 0, then —« (a — %bsin(ze)) < 0. Hence,

0’ <0, VO € R, which means each orbit of the differential system (3.1.12)

encircles the singularity at the origin.

Observe that system (3.1.12) has a periodic orbit if and only if
Eq.(3.1.14) has a strictly positive 2w periodic solution, say, R(6,7).
Furthermore, it is equivalent to the existence of solution (3.1.14) which
satisfies R(0,7) = R(2m,r) and R(6,r) >0 for any @ in the interval
[0, 27].

By solving the differential equation (3.1.14) which is satisfying the

initial condition R(0,r,) = r, = R(0) has the solution:

-2nfv

9 a
R(O,1y) = exp(%) [rozn —2n fo —— ) =dv
a(a—;bsnﬂZv))

0 eXp(

1/(2n)
] (3.1.15)

For system (3.1.12) a periodic solution has to satisfy the condition

R(0,7) = R(2m,r) which leads to a unique value r = r,, obtained by:
1/(2n)

—Zzﬁv)

—dv

by 2n o exp
r = exp yrv; f
@ exp ( na n) —1Jo 4 (a — %bsin(Zv))

By substituting the value of r in Eq. (3.1.15) then the equation has

the form:
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R(6,7) =
(%) |2 L) on LFE) of  CFD 1/@n
exp\«a anfBm fo 1 ndv —2n fO - - dv
e(T)—1 a(a—gbsin(ZU)) a(a—;bsin(Zv))

(3.1.16)

Now, to prove that Eq. (3.1.16) > 0.

npm -2nfv
an s (E9) () o o ()
2ne\ @) |~ f —dv
e( o) — 170 ¢ (a - %bsin(Zv))
1/(2n)
) e(—zzﬁv)
B _[ — |dv
O \a (a — lbsin(Zv))
39 o ZnBv)
- Zne j _ dv
a - —bsm(Zv))
1/(2n)
) e(—zzﬁv)
B _[ — |dv
O \a (a — %bsin(Zv))
1/(2n)
BG 2 ZnBv)
_2n Zne f _ dv > 0
a — —bsm(Zv))
Since
e(—zzﬁv)

1 >0
a(a — > bsin(2v))"
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To prove that system (3.1.12) is a stable hyperbolic limit cycle one needs to

prove:

dr
d_T‘O(ZTE, r0)|r0=r >1

But,

4mfBn
a

=)

r
d_T‘O (21, 1p) |r0:r =e

which is greater than one [6].
The next examples will illustrate Theorem 3.3.

Example 4: Consider system (3.1.12) withn=a=b=2anda = =1

then we get a quantic system:
{x’ =x+ (y —x)(2x?% — 2xy + 2y?)?
y' =y—+x)(2x* - 2xy + 2y*)?

By simplifying it, the system will have the form:
{x’ = x — 4x5 + 12x*y — 20x3y? — 12xy* + 4y°

3.1.17
y' =y —4x5 + 4x*y — 4x3y? — 4x%y3 + 4xy* — 4y° ( )

Converting system (3.1.17) into polar coordinates:

exp(—4v)

. 0
R(8,71) = exp(0) \/ﬁ — 4j 2 = sin(2v))? dv,
0

where 8 € R. Then,

4 2t exp(—4v
r = exp(2m) * f p(=4v) >dv ~ 0.81628
exp(8m) — 1 J, (2 — sin(Zv))

Finally,

d
d—;(zm 7o) lry=r = exp(8m) > 1

Thus, the limit cycle is stable hyperbolic.
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Numerically:

Convert system (3.1.17) into polar coordinate:
r' =r—r5(2 - sin20)?
0' = —r*(2 — sin26)?

Then,
dr B 1
o~ r3(2 — sin26)?

selecting the initial condition (1) = 2 on the interval [0, 27]. The result is

a positive limit cycle which is stable hyperbolic, (see Figure 3.9).

400
1200

1000 -
300

800

c00l- (@) 2004 {400

00} /7
wofl /7777
200}

) ]
(a) (b)
Figure 3.9: Limit cycle and Phase portrait (respectively) of equation:
dr 1

a0 T r3(2 — sin20)%

Example 5: Consider system (3.1.12) with n=a=b=a =8 =1,

giving the cubic system:

o =x+ (- D)@ =1y +y?)
y =y—-@+x)x*—xy+y?

By simplifying it
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{x’ =x —x3 + 2x%y — 2xy? + y3

3.1.18
oty (3.1.18)

Next, converting it into polar coordinates, then system (3.1.18) can

be expressed by the:

2] e—2v

= @) (42 _ —
R(6,1) = e/ (r*—4 0 (2-sin(2v))

dv)/?,

where 8 € R. Then,

284—7'[ 2T Ze—Zv

et™ —1), (2-sin(2v))

r=( dv)1/? = 1.1912

Finally,

dar
d_ro(zn' r0)|r0=r =e*™> 1

Thus, the limit cycle is stable hyperbolic.

Numerically:
Convert system (3.1.18) into polar coordinate
1
r'=r—-r3(1- Esin29)

I .2 _1 .
0’ =-r<(1 2stQ)

Then,
dr 1

ei—
de r(1 - sin26)

Selecting initial condition r(0) = 1.5 which belongs to the interval
[0, 2]. The result is a positive limit cycle which is stable hyperbolic, (see

Figure 3.10).
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Figure 3.10: Limit cycle and Phase portrait (respectively) of equation:

dr 1
—=r——
e r(1-— %sinZQ)

3.2. Limit Cycles of System in Cylinder

This section, will illustrate systems in the cylinder R x R/[0, 27]
which has the form

p' =2 — a(0)p + B(O)p*H + 7(B)p2k+

dat =
o (3.2.1)

0" =2 = a(0) + b(O)P",

where k € Z*, t is real number and both of &(0),5(8), #(8),a(6) and

b(8) are smooth 2m-periodic functions.

There are two types of periodic orbits of system (3.2.1); contractible
periodic orbits, this means it can be deformed continuously to a point,
however the second one is called non-contractible, this work will focus on

non-contractible type.
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It is noticed that when k=1,a(f) =1 and b(6) =0 then, Abel

differential equations are included [3].

In [2], the authors considered the special case where a(6) = 0 and

b(8) = 1. Hence having the following system

{p’ = a@(0)p + F(O)p": + 7(O)p™2 + 5(0)p™

3.2.2
o (322)

where kK > 0 and N; > N, > N; > 0. In system (3.2.2) , a limit cycle is
always non-contractible and if we considered it as a function of 6 it gives a

limit cycle of first order equation as
r' = B(O)r™ +7(0)r"™ + §(0)r™ + @(0)r™,
wherem=1—-kandV;,=1,2,3, n; =N; — k.
Corollary [2]: Suppose that
7(0)?(N, — 1)? = 43(6)8(O)(N; — 1)(N5 — 1) < 0 (3.2.3)
In which
Ny —2N, + N; =0 (3.2.4)

Then, system (3.2.2) has at most one limit cycle, particularly the result holds

if 5(68) and B(0) have an opposite definite signs and #(8) = 0.

Numerical Example 6:
Let @(0) = B(0) = 7(0) = 6(8) = cos(0),with initial condition: (0) = 5.

on the interval: [-m, ], k = 3, N; = 4, N, = 3, N3 = 2.
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0,ng=—-1,m

limit cycle in the interval [—m, ], (see Figure

1,n,

ny
cos(0)r + cos(0) + cos(0)r~! + cos(0)r—2

Satisfying the previous corollary.
,rl
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respectively.

2,N; = 1.

@(0) = [(6) = sin(0), §(8) = —sin(0),

Figure 3.11: Phase portrait of equation:

(@)

3, N,

Let:

1, N,

r" = cos(8)r + cos(0) + cos(0)r~1 + cos(8)r~2, with domain [ —m, ] and [—3, 37]

initial condition: (0) = 0.08, on the interval: [0,27].

Numerical Example 7:

k
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Satisfying the previous corollary.

Hence,

0, m = 0, then Eq. (3.2.1) will be:

n1=2,n2:1,n3=

sin(0)r?

r' =

which has one positive limit cycle in the interval [0,27], (see Figure 3.12).
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Figure 3.12: Phase portrait of equation: r’

with domain [0, 2r] and [0, 8] respectively.
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Chapter Four
Conclusions and Suggestions for Future Work

4.1 Conclusions

This thesis deals with limit cycles (isolated periodic solution) in xy-
plane, which is the simplest type of behavior in continuous dynamical
system (i.e. a dynamical system is a way of describing the passage of time
for all points in a given space). In this work, we illustrate limit cycles of
first order polynomial nonlinear differential equations of degree n whose

coefficients are T-periodic continuous functions.

As well, types of limit cycles: stability; stable, unstable, and semi
stable limit cycles are cleared. Also, direction field which describes the
behavior of solutions for differential equation without solving it, is
presented and talked about Poincaré-Bendixson’s Theorem and
Bendixson’s-Criterion; these theorems plays an important role by
guaranteeing the existence, non-existence of limit cycles under particular

conditions.

Moreover, a common nonlinear polynomial ordinary differential
equation for the case n = 3, called Abel differential equation, is presented.
Here are given some elementary results that are used in proofing many
theorems related to Abel differential equation. these theorems are justified
numerically by choosing suitable interval and initial conditions that satisfy

the theorems by using Matlab and Maple software. For Matlab, the
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ordinary differential equation solver; ode 45 was implemented while in
Maple used one of its differential equations tools which is phase portrait to

plot solutions curve by using numerical methods.

Also, made a comparison between theorems and corollaries which
has at most one positive limit cycle. Furthermore, presented some
conditions which are used to limit the number of limit cycles of the

complete 4" —order equation with numerical examples.

Abel differential equation used to study the number of limit cycles
for planar polynomial vector field of degree n, and the simple family of
polynomial planar system which is called rigid system. A theorem which
deals with a rigid system was justified with numerical examples. Moreover,
exhibited the Poincaré map, also it is called first return map, which is the
intersection of periodic trajectory in a given space with subspace called
Poincaré section, and multiplicity of limit cycle of planar differential

system.

Also, presented the multi-parameter polynomial differential system
with relevant theorem; this theorem provide a sufficient condition for
polynomial differential system to have explicit limit cycles including

numerical examples.

Finally, present a family of differential system on the cylinder. This
family involves Abel differential equation, and exhibited corollary which
gives an upper bound for the number of non-contractible limit cycle for a

system in the cylinder, supported by a numerical example.
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The most challenging problem in this work is to give examples having
more than one limit cycle by taking suitable interval, coefficients and initial
condition that satisfy theorems and corollaries. Another problem is to

explore examples of limit cycles which have multiplicity greater than one.

4.2 Suggestions for Future Work

After studying limit cycles, it seems that there is still a lot of work
which can be done in this field; particularly to expand the study of limit

cycles in the following areas:
1. Studying limit cycles of second order nonlinear differential equations.
2. Studying limit cycles of complex differential equations.

3. Studying the existence of periodic solutions with rational polynomial

differential equations.
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Appendices
Appendix (I): Direction Field Plot

The direction field consist of a grid of arrows tangential to the solution
curve. In Maple Software one can plot the solution curves by using the
calling sequences: DE Plot and Phase Portrait. In our work we have used

the Phase Portrait tool.

Calling sequence: PhasePortrait(deqn, vars, trange, init)
where:

deqn: is the differential equation of any order.

vars: are the dependent variable.

trange: is the range of the independent variable.

init: is the initial condition.

Example Al: Using Maple Software, plot the direction field for:
u'(t) = sin(t)u?(t), on the interval:[0, 8], with initial condition

u(0) = 0.08. As shown in Figure Al
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Appendix (11): Periodic Solutions, Strictly Upper and Lower Solution
1. Periodic Solutions:
Consider the ordinary differential equation:

u'(t) = ag(t) + a;(Ou + a,(O)u? + - + a, ()u™ (A1)
where, u and t are real variables, a;(t), Vi = 0,1, ...n are real polynomials.
A periodic solution of Eq.(Al) u = ¢(t) such that:

pt+T) = ¢(t)
for all t. A positive constant T is called the period of the solution.

Note that, if ¢ (t) has period T then, ¢(t) has also period 2T, 3T, ..., etc.[5].

Geometrically, a periodic solution is a solution whose graph repeats itself
in regular intervals, and T is the horizontal distance required to complete a
cycle, (see Figure A2).

ASTANAN
AYAVA

Figure A2: Periodic solution.

Taking any point on the above Figure, then it will repeat itself after time T.

If u = @(t) is a periodic solution of Eq.(A1) such that: ¢:[0,1] -» Ris C!
and ¢(0) = ¢(1), then it is possible to say that the periodic solution u =

@ (t) has period one [10].
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A common example of periodic solution are Trigonometric functions;

sin(t), cos(t) which are 2 periodic and tan (t) which is 7 periodic.

A simple example of 1-periodic functions, is the function:

fO) =x— x| 2)

Using Maple software to plot the function, take for example the interval

[—2,2], gives, ( see Figure A3):

Figure A3: An example of 1-periodic function: f(x) = x — [x].
2. Strictly Upper and Lower Solutions:

Consider the first order differential equation:

u' = g(t,u(®)) (A3)
where g is continuous and T-periodic in t.

a is called a lower solution of Eq.(A3) if:
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a' () < g(t, a(®) (A4)
As well, g is called an upper solution of Eq.(A3) if :
B'@® > g(tB1©) (AS5)

The next two numerical examples, illustrate upper and lower solutions:

Example A2:
Let
a(t) = cos (t) » a'(t) = —sin(t)
g(t,u(®)) = cos(u + 2
Then,

g(t, a(®) = g(t, cos(t)) = cos?(t) + 2

By using Maple Software to plot the curve of a'(t) and g(t, a(t)) on the

interval [—m, ], ( see Figure A4):

NN

|=
"
=
=

1
&|a
&=
4

|
.ul'

Figure A4: Plot of a’(t) = —sin(t) and g(t,a(t)) = cos?(t) + 2.
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From the above figure, a’(t) — g(t, a(t)) < 0, this means from Eq.(A4)

cos(t) is strict lower solution.

Example A3:
Let
B(t) = sin(t) —» B'(t) = cos(t)
g(t,u(®)) = —sin(tu
Then,

g(t, () = g(t,sin(r)) = —sin?(t)

Again using Maple Software to plot the curve of g'(t) and g(t, B(t)) on
the interval [— gg] ( see Figure Ab):

o0
- &|a
[E]

0.5-

Figure.A5: Plot of B’(t) = cos(t) and g(t, B(t)) = —sin?(¢).

From the above figure, B'(t) — g(t,,B(t)) > 0, that is mean from Eq.(A5)

sin(t) is strict lower solution.
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Appendix (H11):
Hilbert 16" Problem, Homogenous Polynomial of Degree k:
1. Hilbert 16" Problem:

Hilbert 16" problem was presented by a German mathematician named
David Hilbert in 1900 at the Conference of the International Congress of
Mathematicians in Paris. His problem includes two parts; the first one is
about real algebraic curves of degree n, while the second part of Hilbert’s
problem discuss the polynomial differential equation in the plane and the
upper bound for number of limit cycles in polynomial vector field of

degree n [15].

Hilbert question was “ For polynomial planar vector field of degree n, what
may be said about the number and location of limit cycles? . There was

many efforts to solve it but unfortunately it is still unsolved.
2. Homogenous Polynomial of Degree k:

A homogenous polynomial is a polynomial such that all nonzero
coefficients have the same degree (i.e. its linear combination of monomials
are of degree k) [9]. Note that a polynomial of degree zero which is called
constant or scalar is always homogenous, a homogenous polynomial of
degree one is called linear while a homogenous polynomial of degree two
is called quadratic and homogenous polynomial of degree three is called

cubic...etc.
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Example A4:
% P =x+ 5y:is a homogenous polynomial of degree one (linear).

% F =3y%?—2xz: is a homogenous polynomial of degree two
(quadratic).

% R =x3+ 4xy? — 2xyz: is a homogenous polynomial of degree
three (cubic).

% G =y3®+3xy?—2z° is not homogenous since the sum of

exponents is not equal in each term.
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