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Study of Zariski Topology of Modules, between Theory and
Practice

By
Naheel Ghaith
Supervisor
Dr. Khalid Adarbeh

Abstract
This thesis contributes to study the Zariski topology of rings as well as it’s
generalization to modules. The first part of the thesis introduce the Zariski
topology of rings, several topological properties are discussed, for example
compactness, separation axioms, Noetherianity of spaces.
In the second part of the thesis, we study a generalization of Zariski’s
topology from ring theory into module theory. This generalization was
introduced by M.
Behboodi and M. R. Haddadi in 2008. As in the first part, many features of
the topologies are presented as a generalization of similar properties in part
one.
The theme throught the two parts is how are topological properties related
to algebraic properties. It should be noted that the results of the two parts

are used to build illustrative examples of topologies.



Introduction

Throughout, R denotes a commutative ring with identity element 1. The
spectrum of R, Spec(R), denotes the set of all prime ideals of JR. For a sub-
set S of R, V(S) denotes the set of all prime ideals of 93 which contain S.

Let K be a field. The set of all n-tuples (a1, as, - - - , a,) of numbers in K is
called affine n-space and denoted by A’%-. The ring of polynomials over the
field K, denoted by K [x1,xo, -+ ,x,],let f € Klxy, 29, ,x,] anda =
(a1, a9, ,a,) € A, then f(a) € K and so the polynomials are also func-
tions on A’%-. An affine variaty is the set of common zeros of a collection of
polynomials. If S C K[z, xs, -, x,], the variaty of Sis V(S) = {a €
A% | f(a) = Oforall f € S}. Note that, ) = V(1) and A} = V(0) are vari-
aties. Moreover, the intersection of any collection of affine variaties is an affine
variaty and the union of any finite collection of affine variaties is an affine vari-
aty. Hence, the affine variaties have the same properties as the closed topology
on A’-. This topology was observed by Oscar Zariski in 1952 and it is called
the Zariski topology on A%.. Forany V' C A, I(V') is the ideal of all poly-
nomial functions vanishingon V, I(V') = {f € K[z, 29, -+ ,2,] | f(x) =

0 for all x € v}, the coordinate ring of V' is the quotient of the polynomial ring
by this ideal. In 1960, Grothendiek transferred the topology to the spectrum

of an arbitrary commutative ring by using the correspondence between points
of an affine variety and maximal ideals of its coordinate ring. and he called it
Zariski topology, for more details see [16, Notes on chapter V].

The Zariski topology of rings is a topology defined over Spec(R) where the



closed sets are of the form V' (S), S a is an arbitrary subset of R. For x € ‘R,
let W(x) := Spec(R) \ V(). The collection {W (x)|x € R} forms a base of
open sets for the Zariski topology of rings. For the basic algebraic, topological
and algebraic geometry definitions, we refer the reader to [3, 17, 29, 4]].
Chapter one is devoted to study the Zariski topology of rings. We will discuss
some basic topological properties of Spec(fR) and its relation with the alge-
braic properties of R by solving the Zariski topology exercises of Atiyah and
MacDonald [3]. Those exercises will form the body of the Zariski topology of

rings. The following are some discussed properties of this topology:

1. Spec(fR) is compact, that is , every open covering of Spec(fR) has a finite

subcovering.
2. Spec(fR) is Ti-space if and only if every prime ideal of R is maximal.

3. Spec(fR) is irreducible if and only if the nilradical (the set of all nilpotent

elements of {R) of R is a prime ideal.

4. Leto : Ry — Ry be aring homomorphism, then ¢ induces a contin-
uous map ¢* : Spec(Ry) — Spec(Ry), given by ¢*(P) = ¢ 1(P)
(P € Spec(fRa)).

5. For a Neotherian ring R (every acsending chain of ideals in R is station-
ary), Spec(fR) is discrete and finite if and only if R is an Artinian ring (ev-

ery desending chain of ideals in R is stationary).

A prime module is a left R-module £ which satisfies that Ann(N) = Ann(E)



for every nonzero submodule A of F, where

Ann(N) ={r e RVn e N : rn = 0}.

Then a submodule P of E is said to be a prime submodule if E /P is a prime
module (see [[L1]).

In 2008, M. Behboodi and M. R. Haddadi started the idea of generalizing the
Zariski topology of rings to modules [7, 6]. Unfortunately, not all the modules
can have the Zariski topology, since the collection {V (N')|\ is a submodule of E'}
(where V() is the set of all prime submodules of F containing ) is not
closed under finite unions. All this made necessary, the introduction of the no-
tion of the fop module. The module E is called a top module if it has Zariski
topology (the collection {V'(N')} closed under finite unions). The multiplica-
tion modules make upon example of top modules, where a module F over a
commutative ring R is a multiplication module if each submodule of £ is of
the form 7 F where 7 is an ideal of ‘R (see [26, Theorem 3.5]).

In chapter two of this thesis we will reproduce all the results of M. Behboodi
and M. R. Haddadi paper, classical Zariski topology of modules and spec-
tral spaces I [7]. Mainly, as in chapter one, we will discuss some basic proper-

ties of the classical Zariski topology. The following are some discussed facts,

1. For each R-module F, Spec(F) is a Tj-space if and only if dim(E) < 0,

where dim(F) is the prime dimension of E [23] 24].

2. Spec(FE) is the cofinite topology if and only if dim(F) < 0 and for every
submodule A of E either V' (N\) is the whole space or finite.

3. For each left 9i-module £ with finite spectrum, Spec(F) is a spectral space,



where the spectral space 1s a topological space that is homeomorphic to the

spectrum of a commutative ring.

In addition to reproducing the results of the papers considered above, we will
also use those results to enrich the literature with new examples subject to the
topological and the algebraic discussed notions.

As we mentioned above, this topic links three basic branches of pure mathe-
matics, algebra, topology and algebraic geometry. Thus, many algebraic con-
cepts can be reformulated through topological characteristics, as well as, one
may appeal to the algebraic notions (of rings or modules ) to provide examples
and counter examples of topological spaces with specific properties. These are

two motivations for studying this topic.



Preliminaries

0.1 Ring and Module theory

In this section we recall some basic definitions and facts that will be used fre-

quently in this thesis. We will use [31, 3] as main references.

0.1.1 Generated ideals

Definition 0.1. Let YR be a ring and S be a subset of R. The ideal of R gener-

ated by S is the smallest ideal of R which contains S and is denoted by (S).

In particular if S = {z}, then (z) = {rz|r € R}. Also, if S is a finite set, then
the ideal Z = (S) of R is called a finitely generated ideal of *R.
c.g. IfS = {xl,xg}, then Z = (8) = %.’El + 9‘{9:2.

0.1.2 Prime ideals and Maximal ldeals

Definition 0.2. Let ‘R be a ring, then

1. The ideal P of fR is a prime ideal of R if and only if P # R and if A, B are
ideals of R, A C P or B C P whenever AB C P.

2. If R is commutative, then P is prime if and only if P # R and if a,b € R,

a € Porb & P whenever ab € P.

3. The set of all prime ideals of ‘R is called the prime spectrum of R and is

denoted by Spec(fR).



4. The ideal M of R is a maximal ideal of ‘R if and only if there is no ideal
7 of fR that containing M properly and is contained strictly in R. The set

of all maximal ideals is called the maximal spectrum of R and denoted by

Mazx(fR).

5. The ideal £ of R is a minimal ideal of *R if and only if there is no nonzero

ideal 7 of R strictly contained in L.

6. The ideal P is of R is a minimal prime ideal if and only if it is a prime

ideal, and there is no prime ideal strictly contained inside P.
Proposition 0.3. Let ‘R = Z,,. Then
1. the ideals in Z,, are the sets of the form (d) where d divides n.

2. the maximal ideals in Z,, are the sets of the form (p) where p is a prime di-

vides n.

Proposition 0.4. [3, Theorem 1.3] Let YR be a nonzero commutative ring. Then

R has at least one maximal ideal.

Proposition 0.5. [3, Crollary 1.4]Let R be a commutative ring and let Z be a

proper ideal of R, then there exists a maximal ideal M of R containing 7.

Lemma 0.6. [31, Lemma 3.23, Lemma 3.3] Let R be a commutative ring and

7 an ideal of YR. Then
1. Z is prime if and only if 93/7 is an integral domain.

2. 7 is maximal if and only if 93/ is a field.



0.1.3 Radicals

Definition 0.7. Let YR be aring and a € R.

1. If there is n > 1 such that a” = 0, then a called a nilpotent element. Note
that 0 is a nilpotent element in any ring. The rings with no nonzero nilpo-
tent element is called a reduced ring. e.g. Integral domains are reduced

ring.

2. The set of all nilpotents of R is an ideal of R called the nilradical of *R and
denoted by Nil(R). Equivalently,

Nil(R)= () P.
PeSpec(R)

3. If a> = a, then a is called an idempotent element of R.

Definition 0.8. Let R be a ring and Z an ideal of PR. The radical of Z, VT is

VI = {z € R|2" € T for some n > 1} = ﬂ{P € Spec(R)|Z C P}.
Notice that Nil(R) = 1/ (0) where (0) is the zero ideal of fA.

0.1.4 Dimension of a ring

Definition 0.9. [31, Definition 14.17] Let R be a commutative ring, and Py, ..., P,

are prime ideals of ‘R,

1. The chain Py C P; € --- C P, is called a chain of prime ideals of ‘R of

—

length n.



2. If P € Spec(R). Then the height of P, denoted by ht(P) is defined to be
the supremum of lengths of chains Py € P, € --- C P, = Pif this

supremum exists, and oo otherwise.

3. The dimension of R, denoted by dim(R),

dim(R) = sup{ht(P)|P € Spec(R)}.

e.g. Let F' be a field, dim(F) = 0 since the only prime ideal is (0). For the

ring of integers Z, dim(Z) = 1, see [31, Examples 14.19 (iii)].

0.1.5 Noetherian and Artinian rings

Definition 0.10. Let R be a commutative ring.

1. The ring R is a Noetherian ring if and only if every ascending chain of ide-
alsof R,7Z; C Z, C --..,1is stationary. Equivalently, every ideal of ‘R is

finitely generated.

2. The ring ‘R is an Artinian ring if and only if every descending chain of ide-

als of R, Z; D7y O -- -, is stationary.
Proposition 0.11. Let R be a ring.
1. If YR is an Artinian ring, then every prime ideal is maximal.

2. If YR is an Artinian ring, then the number of the maximal ideals of R is fi-

nite.

3. PR is Artinian if and only if R is Noetherian and dim(R) = 0.



0.1.6 Localization

Let R be a commutative ring.

Definition 0.12. [31] Let R be a commutative ring and S be a subset of fA.

The subset S is called a multiplicative closed subset of R if:
1. 1s € S, and
2. a,b € S implies that ab € S.

e.g. (1) Let R be an integral domain. Then S = R \ {0} is a multiplicative
closed set of ‘R.
(2) Let R be a commutative ring and P be a prime ideal of 2R. Then

S =R\ P is a multiplicative closed subset of fR.

Definition 0.13. [31] Let 2R be a commutative ring and S C R be a multiplica-

tive closed set of R. Then the relation ~ on R X S which defined by
(a,s) ~ (a’,s") if and only if 3 u € S such that u(as’ — a’s) =0
is an eqivalent relation.

The equivalece classes (a, s) are denoted by ¢ where a € SR and s € S. The set

of all equivalece classes
1 a
STR={-]aeR, seS}
S

is called the localization of %R at the multiplicative closed set S. The set S~!R
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is form a ring with

aq a9 a159 + a9S51
===
S1 52 5152

ap ag aijag

'81 592 5152

Note that, 1g5-13 = % and Og-13 = %.

Particular Case: If R is an integral domain and S = R \ {0}, then S7'R
is called the qoutient field or field of fraction of ‘R. Note that, every nonzero
element 7 is a unit with inverse 2.

Let SR be aring and S = R \ P, where P is a prime ideal of 2R. Then
S_lmzﬂ%p:{g]aefﬁ,sgép}
s
Proposition 0.14. [31] Let R be a ring and S be a multiplicative closed set of
R. Then
1. Any ideal of S~!R is of the form S—!7 for some ideal 7 of fR.

2. Prime ideals of S™!$R is of the form S~'P with P NS = () and P is a prime
ideal of A.

Proposition 0.15. [31] Let R be aring and S = R \ P, then Ry is a local ring

with maximal S~'P = PRp = Nil(Rp).

0.1.7 Rings homomorphism

Definition 0.16. Let $R; and R, be two rings and 6 : PR — R, be a mapping

from R; into Ry such that

(1) (z+y) =0(x) +0(y) forall z,y € Ry,



11
(2) O(zy) = 0(x)0(y) for all z,y € Ry,

(3) O(1ly,) = 1n,.

Then 6 is called a ring homomorphism. If € is a bijection map, then it is called
an isomorphism and we say that R, and R» are isomorphic, in this case we

write R; = Rs.

Proposition 0.17. Let 93; and R, be two rings and 6 : R; — R, be aring

homomorphism.

(1) The kernel of 6 defined by Ker(0) = {r € 9:1|0(r) = 0} is an ideal of R;.
(2) The image of 6, denoted I'm(6), is a subring of R.

(3) The homomorphism € is injective if and only if Ker(0) = Oxy,.

(4) The homomorphism @ is surjective if and only if Im(6) = fRs.

(5) The image of 6 is isomorphic to the quotient ring R,/ Ker(0). If 6 is sur-

jective then R is isomorphic to Ry /ker(0).

(6) If R, and R, are commutative and Z is an ideal of Ry, then §7(Z) is an

1deal of *R;.

(7) If R, and R, are commutative and P is a prime ideal of Rs, then 6~1(P)

1s a prime ideal of ‘R;.

0.1.8 Modules

Throughout, all rings are with identity element and all modules are unitary left

modules.
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Definition 0.18. Let £ be an $R-module.

1. The annihilator of a nonempty subset S of E is an ideal of R denoted by

Annn(S) is
Anngx(S) = {r € R|rS = 0g}.

2. For any submodule N of £ we use (N : E) to denote Annp(E/N),

Anng(E/N) ={r € R|r(E/N) =0/N},

Now, r&/ + N = 0+ N implies r £ C N thus

N E)={reR:rECN}.

(N : E) is called the residual of N by E.

0.1.9 Finitely generated modules

Definition 0.19. Let R be a ring and £ an $R-module.

1. If v € E, then the set Rz = {rz | r € PR} is a submodule of F and it is

denoted by (z).

2. If {x;};es are elements of £ and £ = > . _; Rx;, then {x;};c; are called the

el

set of generators of L.

3. If {x; }ies is a finite set of E, then F is called a finitely generated module.

0.1.10 Noetherian and Artinian modules

Definition 0.20. Let R be a ring and £ an 93-module.
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1. The module £ is a Noetherian module if and only if every ascending chain
of submodules of £, N7 C AN, C ---,is stationary. Equivalently, every

submodule of F is finitely generated.

2. The module E is an Artinian module if and only if every descending chain

of submodules of E, N7 D N, D - - -, is stationary.

0.2 General Topology

In this section we recall some basic topological definitions. The reader can

refer to [29, 17].

Definition 0.21. Let 7" be a nonempty set. A topology on 7' is a nonempty

family 7 of subsets of 7" which satisfies the following conditions:
o )T cT.

o If {Aj}icr € T then(),.; A €T.

o IfA BeT,thenAUBE€ET.

The subsets of 7" belonging to the family 7 are called closed sets. The set
T together with a topology 7 is called topological space and is denoted by
(T, T) or simply by T". The complement of the elements of 7 is called open

sets.

Definition 0.22. Let 7 be a topology on the nonempty set 7. A basis of T
is a family of open sets O C 7T such that every open set of 7 is a union of

elements of O.
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Definition 0.23. Let 7 be a topology on the nonempty set 7". A subbasis of 7
is a family of open sets S C T such that the family Og := {U1 N U N --- N
Un|Uy,Us, -~ U, € S}is abasis of T .

Definition 0.24. Let S be a subset of a topological space T". The closure of
S, S, is the intersection of all the closed subsets of 7" which contain S (1s the

smallest closed set containing S).

Proposition 0.25. Let S be a subset of a topological space 7. Then:
1. S§CS.

2. Sisclosed if and only if S = S.

3. If Lis a subset of T such that S C £, then S C L.

4. If S C £ and L is closed, then S C L.

Let (T, T) be a topological space and let S be a nonempty subset of 7. If we
consider the family 75 of subsets of S defined as follows 75 := {SNA|A €
T}, Ts is a topology on S. T the topology induced on S by 7" (or subspace
topology) and (S, 7s) will be called topological subspace.

0.2.1 Separation Axioms

A common way to classify different classes of topological spaces is by using

the separation axioms.
Definition 0.26. Let 7" be a topological space. We say that 7" is a

e Ty-space if for any a # b € T there exist U, V' open subsets of 7" such that
acU bdUorbeV,agV.
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e Ti-space if for any a # b € T there exist U, V' open subsets of 7" such that
acU b¢UandbeV, a ¢ V.

e Hausdorff or T5-space if for any a # b € T there exist U, V' disjoint open

subsets of 7" such thata € U and b € V.

Note that a Hausdorff space is also a 77 space and that a 7} space is also a 7y,

space.

Lemma 0.27. Let 7" be a topological space. Then, 7" is a Tj-space if and only
if for any a,b € T, {a} = {b} implies a = b.

Lemma 0.28. Let 7" be a topological space. Then, 7" 1s a T7-space if and only

if every singleton of 7" is closed.

Definition 0.29. Let 7" be a set. A collection { A;};c; of subsets of 7" is called

acoverof T if T = | J,.; A;. If { A; };es are open sets, then it is called an open

el

cover of T'.

Definition 0.30. A topological space T’ is called compact if every open cover

of T" contains a finite subcover, i.e.,

T:UAZ- - T:OAJ-
j=1

el
A subset S of the space 7' is called compact if it is a compact space with re-

spect to the subspace topology.

Definition 0.31. [3] A nonempty topological space 7" such that every pair of

nonempty open sets in 7’ intersect is called irreducible space.

Definition 0.32. The maximal irreducible subspaces of 1" are called the irre-

ducible components of T'.
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The next proposition presents the properties of irreducible spaces.

Proposition 0.33. [9, Page 95] Let 7" be a topological space.
(i) If A is an irreducible subspace of T, then A is irreducible.

(i1) Every irreducible subspace of 7' is contained in a maximal irreducible

subspace.
(i11) The irreducible components of 7" are closed and cover 7'.

Proposition 0.34. [9] Let f : T" — T’ be a continuous map of topological

spaces. If £ C T is an irreducible subset, then f(E) C 7" is irreducible.

Definition 0.35. Let 7" be a topological space. An element a in the closed sub-

set A is called a generic point of Aif A = {a}.

Definition 0.36. [3] A topological space T is called Noetherian space if it’s
closed subsets satisfy the descending chain condition; i.e. for every sequence
Y1 DY, O Y;--- of closed subsets Y; of T, Y,, = Y,,.1 = --- for some n.

Equivalently, the open subsets satisfy the ascending chain condition.
Proposition 0.37. [3]] Let T be a topological space.

(1) If T"is a Noetherian space, then it is compact.

(2) If T is a Noetherian space, then every subspace of 7" is Noetherian.

(3) T is a Noetherian space if and only if every open subspace of 7' is com-

pact.

(4) T is a Noetherian space if and only if every subspace of 1" is compact.
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Definition 0.38. If 7" is a topological space and p € T', a neighborhood of p is
a subset V' of 7' that includes an open set U containing p, p € U C V. The
neighborhood V' need not be an open set itself. If V' is open it is called an open

neighborhood.

Definition 0.39. Let 7', S be topological spaces. A function § : 7" — S is called
continuous at the point x € 7 if for each neighborhood N of f(z) € S there
exists a neighborhood M of x such that f(M) C N. The function f is called

continuous on 7" if it is continuous at every point of 7'.

Proposition 0.40. Let f : 7" — S be a function between topological spaces.

Then, the following assertions are equivalent:

(1) fis continuous.

(2) §71(A) is open in T for each open subset A of S.
(3) §1(B) is closed in T for each closed subset B of S.

Definition 0.41. Let 7', S be topological spaces. A functionf : 7' — S'is
called an homeomorphism if { is continuous, bijective and {1 : S — T'is
continuous. Two topological spaces are called homeomorphic if there exists a

homeomorphism between them.

Definition 0.42. The topological space 7' is called a disconnected space if it

can be decomposed as a disjoint union of two nonempty closed subsets.
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CHAPTER 1

Zariski topology of rings

Throughout this chapter, all rings are commutative with unity.

1.1 Definition and Examples

Throughout this section, R denotes a commutative ring with unity, S denotes
a subset of R, Z denotes an ideal of %R, /Z is the radical of Z and Spec(fR) is

the set of all prime ideals of YR. We start by the following definition.

Definition 1.1. Let S be a subset of 9R. The variety of S, V/(S), defined by

V(S) = {P € Spec(R)|S C P}.

Example 1.2. Let R = Z. Then Spec(Z) = {(0), (p) : p is prime integer} by
[3, page 4 Examples]. Now, if S = (6). Then V(S) = {(2), (3)}.

The next Lemma proves that any variety in R is of the form V(\/f ) for some

ideal Z of ‘R.

Lemma 1.3. Let R be aring and S a subset of PR. If 7 is the ideal in R gener-
ated by S, then

Proof. For the first equality, let P € V(S), then S C P. Now, Z C P since Z
is the smallest ideal that contains S, hence P € V(Z). For the second inclu-

sion,let P € V(Z),thenZ C P. ButS C Z. Thus, S C P,i.e. P € V(S).
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Now, for the second equality, if P € V(Z) and 2 € /7 then there is k € N
such that z¥ € Z. Now, P € V(Z) impliesZ C P. Thus z* € P and this

implies that 2 € P since P is prime. Therefore vZ C P. The second inclusion

is true since Z C /7. ]

Next we discuss some properties of the varieties in 2R .

Lemma 1.4. Suppose that Z, J C ‘R are ideals in ‘R. Then

(i) fZ C J,then V(J) C V(T).

(i) V(Z) c V(J)if and only if /7 C V.
(iii) V(Z) = V(J) if and only if /7 = V/Z.
v) V(ZNnJ)=V(ZJ)=V(Z)UV(JT).

Proof. (i) Suppose that Z C J are ideals of %R, if P is prime ideal in V' (T ),
then 7 C P. Therefore,Z C P and V(J) C V(Z).

(ii) First, assume that V' (Z) C V/(J) which implies that for every prime
ideal P of R such that Z C P, then J C P. Therefore, if z € /7, then
since v/ J is the intersection of all prime ideals containing .7, and if P is
a prime ideal such that Z C P implies that 7 C P, then x € P, hence
z € VI and /T C VZ. Now for the second direction, suppose /.7 C
V/Z, then by (i) and Lemmal|1.3, V(Z) C V(7).

(iii) Suppose V(Z) = V(J), then V(Z) C V(J) implies by (ii) /T < VZ.
Also, V(J) € V(Z) implies vVZ C /J. Hence, /J = v Z. Conversely,
if V7 = VZ, then by Lemmal|l.3, V(J) = V(V/J) = V(VI) = V().
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(iv) ForZ,J ideals of R, 77 CZNJ CZandZJ CINJ C J. By (i),
V(I) cV(INT) CV(ZT)and V(J) C V(INJT) C V(ZT). Hence
V(T)UV(T) C V(ZINT) C V(ZT). Now,let P € V(ZJ)soZJ C P.
ThenZ C P or J C P since P is prime ideal. Therefore P € V(Z) or
P e V(J). Hence P € V(I)UV(J). ie. V(I)UV(T) C V(INJ) C
V(ZJ) C V(T)UV(T) O

Next, we will see how the varieties of a ring YR can be used to define a topol-
ogy on Spec(fR).

Proposition 1.5. Let R be a ring. Then Spec(fR) has a topology whose closed
sets are the collection V(R) = {V(S)|S subset of $}. This topology is called

the Zariski topology of R and denoted by 7.

Proof. To prove that (Spec(fR), 7) forms a topological space, we show that the

sets V' (S) satisty the axioms for closed sets in the space Spec(fR).

1. The empty set and the space Spec(fR) are closed sets, because for every
prime ideal P,0 € P and 1y ¢ P since P is proper. Hence, V (0) =
Spec(R) and V (1) = 0.

2. The intersection of any family of closed sets in Spec(fR) is closed, if (S;)icr

is a family of subsets of R, then S; C |J S; foralli € I. By Lemmaf|l .4
el

, V(US) c V(S;)foralli € I. Thus V(U S;) € N V(S;). Now, if
el iel el
P e V(S;) foralli € I,S; C Pforalli € I. Hence, |JS; C P and

1€l
P e V(U Si). Therefore, V(I Si) = () V(S)).
i€l iel iel
3. The finite union of closed sets is closed. By Lemma I 4] O

Next, we provide the Zariski topology of some special rings.
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Examples 1.6. 1. For any field F the only prime ideal is (0). Hence, the closed
sets in Spec (IF) are () and Spec (IF). i.e. the Zariski topology on Spec (FF) is

the trivial topology.

2. For the ring of integers Z: Spec (Z) = {(0), (2), (3), (5), (7), (11),--- }.
Now, we show that any finite subset of Spec Z under Zariski topology is
closed. Suppose that S = {(p1), (p2),- -, (pn)} is a finite collection
of prime ideals in Z where p; # Oforalll < ¢ < n. Now,letm =
p1-p2.- - .ppandZ = (m), then V(Z) = {(p1), (p2),- -, (pn)}. On the
other hand, since Z is a PID , then for any proper ideal Z C Z, there ex-
istaunique m > 2 € NsuchthatZ = (m). For m, by the fundamen-
tal theorem of arithmetic, there exists a unique prime factorization m =
p1ipe™ -+ p,in iy > 1. Then forall 1 < k < n, the ideal (p;,) € Spec (Z)
and V(Z) = V((m)) = {(p1), (p2),-- -, (pn) }- That is to say the nontrivial
closed sets in Spec (Z) is a finite subset of Spec (Z). Notice that {(0)} is

not a closed set.

The following proposition describes the basic open sets of Spec(R).

Proposition 1.7. Let W (x) denotes Spec(R) — V' (x), where = € R. i.e.
W(x) ={P € Spec(R) | x ¢ P}.

Then the collection {IW (z)|z € PR} forms a basis of open sets for the Zariski

topology of R and the sets W (x) are called the basic open sets of Spec(fR).

Proof. Let O be any open set in Spec(R). There is some S C A such that
O = Spec(R) — V(S) = Spec(R) — (| V(z) = U [Spec(R) — V (z)] =

zeS zeS
U W (x). Hence, every open set can be written as a union of the sets W ().
x€S
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By Definition the collection {W (x)|z € 2R} forms a basis of open sets

for the Zariski topology of ‘A. [

The following Proposition discuss some properties of the open basic sets of

Spec(fR).

Proposition 1.8. Let R be aring and =, y € R. Then
) W(z)NnW(y) = W(zy);
(ii) W (x) = 0 if and only if z is a nilpotent.

(iii) W(x) = W(y) if and only if \/(z) = /(y).
(iv) W (z) = Spec(fR) if and only if z is a unit.

Proof. (i) Suppose P is a prime ideal such that P € W (x) N W (y),then
P € W(x) and P € W(y). Now by definition of open basic sets, = ¢
P and y ¢ P. Therefore xy ¢ Pthus P € W(zy). Now,let P €
W {(zy), then xy ¢ P. Since (xy) C (x)and (zy) C (y), we have
() ¢ Pand (y) ¢ P. Therefore, P € W(x)and P € W(y) hence
PecW(x)nWi(y).

(ii) Let W(x) = (. Equivalently, V (x) = Spec(R) which means that x €
P,VP.Hence,z € (] P = Nil(R). Therefore, z is a nilpotent

PeSpec(R)
element.

(iii) Suppose W (x) = W (y) which equivalent to V(x) = V (y), so by Lemma

1.3, V(y/(z)) = V(4/(y)). Therefore by Lemma 1.4 (iii), 1/ (z) =
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(iv) Let W(z) = Spec(R). Thus, W (z) = W(1) by (iii) /(z) = /(In) =

Lz Therefore, 19z € (), so x is a unit. N

1.2 Properties of the Zariski topology of a ring

In this section we will discuss some topological properties of Spec(R) under
Zariski topology. First, we discuss the compactness of Spec(R). The following
proposition proves that Spec(R) with the Zariski topology is always a compact

space for any ring ‘R.

Proposition 1.9. Let R be a ring. Then Spec(fR) is a compact space under the

Zariski topology.

Proof. Let the open sets W (Z;),7 € I be a covering of Spec(R) where each
7, is an ideal of R. Thus Spec(R) = | W(Z;) = U [Spec(R) — V(Z;)] =

Spec(R) — N V(Z;) = Spec(R) —Z%/I(Z ), sinfé >_Z; is the smallest
ideal containziillg all the ideals Z;. ThereforZeE,IV(Z Z) ZZEIQ) = V(1s). Now,
there exists a finite subset J of [ such that for eileej;y j e Jlx = Z a; T;
where a; € Randz; € Z;. Hence, }  7; = Rthus V(3 I;) =]€(DJ. Thus,
Spec(R) = U W(Z;). Hence, {W(E;}Ze 7 restricts to ajfi]lite subcover. It
follows that S];éc(iﬁ) is compact. O]

The following proposition is a characterization of the compact open subsets of
Spec(R).
Proposition 1.10. Let R be a ring.

(i) If x € R, then W (x) is a compact subset.

(ii) An open subset of Spec(fR) is compact if and only if it is a finite union of

sets W (x;) where x; € fR.
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Proof. (i) Suppose that W (z) = U W (x;). Then for all prime ideals P
such that x ¢ P, there exists z'fljlch that z; ¢ P. Let K be the ideal
generated by all x;. Then if X C P for some P, we have that x € P and
hence v € V/IC. Therefore there is m € N such that 2 € KC, and we
write it as 2" = i a;x; for some x1, x9, - -+, x, and {a;}I, € R.If
all 1,29, ,x, l;;long to some prime ideal P, we have 2 € P and

therefore x € P. Equivalently, x ¢ P for some P implies z; ¢ P for
some i = 1,2,---  n. Hence, W(z) = | W(x;).

i=1
(ii) First, let O be an open set which is a finite union of basic open sets, hence
O is compact;(finite union of compact sets is compact). Now, let O be a

compact open subset of Spec(R). So O = |J W(x;) and O has a fi-

iel
nite subcover, which means there exists x1, s, -+ , x, such that O =
n
U W (x;). ]
i=1

Another topological property of the Zariski topology of a ring fR is the 7-

space.
Theorem 1.11. Let R be a ring. Then Spec(fR) is a Ty-space.
To prove this Theorem we need the following two Lemmas 1.13]

Lemma 1.12. Let A be a nonempty subset of Spec(R). Then A = |J V(P).
PcA

Proof. First, since the closure of A is the smallest closed set containing .4 we

have A C |J V(P). Now, let K be any closed subset in Spec(R) such that
PecA

A C K. Now, there is S C QR such that L = V(S). Let () be a prime ideal

such that Q@ € |J V/(P). So there exists Py € A such that Q € V(P,) which
PeA

means Py C Q. Since A C K, Py € K = V(S). Therefore S C Py C @,
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ie. € V(S) = K.Hence, |J V(P) C K. But the closure of A is the
PeA

intersection of all closed sets containing A, thus |J V(P) C A. O
PecA

Lemma 1.13. Let P € Spec(R), then {P} = V(P).

Proof. Tt follows by Lemma|1.12, {P} = JV(P) = V(P) O

Next we prove Theorem [I.T1]

Proof. of Theorem |1.11] Let P, Q € Spec(R). Then {P} = {Q} if and only

if V(P) = V(Q), by Lemma|l.13| Now, by Lemma|l.4 EI) VP = +/QO. Now

the radical of prime ideals is the ideal itself, so P = Q. Therefore, by Lemma

Spec(R) is a Ty-space. O

In general, Spec(fR) is not a T;-space under the Zariski topology since singiltons
are not always closed. Next we discuss the algebraic properties of R that make

Spec(fR) a Ti-space. We begin with this Lemma.

Lemma 1.14. Let P € Spec(R). Then {P} is a closed set if and only if P &
Max(fR).

Proof. Suppose that {P} is closed in Spec(R). By Lemma {P} =
{P} = V(P). Hence, there is no other prime ideal containing P, which means

P is a maximal ideal. Now, suppose that P is a maximal ideal of R. Then by

using Lemma|1.13} {P} = V(P) = P since P is maximal. Therefore, {P} is

a closed subset of Spec(R). O]
Theorem 1.15. Let ‘R be a ring. The following assertions are equivalent:

(i) Spec(R) is a Hausdorff space.

(ii) Spec(fR) is a T}-space.
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(i) dim(R) = 0.

Proof. (1)=-(i1) Trivial (Hausdorff = T-space).

(ii)=-(iii) Let Spec(fR) be a T1-space. Then by Lemma every singleton
{p} in Spec(R) is closed and by Lemma 1.14]every prime ideal of R is maxi-
mal. This means dim(R) = 0

(iii)=-(i) Suppose that dim(R) = 0. Let P, Q are two distinct prime (maximal)
ideals of JR. Now, assume there exists f € P \ Q since P # Q. The local ring
P has exactly one maximal (prime) ideal PRp, which is the nilradical of Rp.
Now, f/1 € PRp = Nil(Rp), i.e. there isn > 1 such that (f/1)" = 0. This
implies that for some s € R \ P we have sf” = 0. Now, f ¢ Q implies that
Q € W(f)and s ¢ P implies that P € W (s). Hence, W (s) "W (f) ={P1 €
Spec(R)|s ¢ Py and f ¢ P} = {P1 € Spec(R)|s ¢ Py and " ¢ P} =
W(sf™) = W(0) = 0. Thus, Spec(R) is a Hausdorff space. O

Example 1.16. Let R = 7Z. Spec(Z) is not T}-space, since (0) is not a maxi-

mal ideal in Z.

Recall, R is Noetherian if and only if every ascending chain Z; C Z, C --- of
ideals of ‘R is stationary. Also the Noetherian topological space is a space such
that it’s closed subsets satisfy the descending chain condition. A good point

is that the Noetherian property of fR is highly commuted with the Noetherian
property of Spec(R) under Zariski topology.

Proposition 1.17. Let R be a Noetherian ring, then Spec(fR) is a Noetherian

space.

Proof. Let (V(Z;));en be an infinite collection of closed sets of Spec(2R) such
that V(Z; ;1) C V(Z;). Since V(Z) = V(+/Z) for any ideal of 9%, and by
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Lemmal 1.3 we have \/Z; C /Z;,; for all i. Hence we have an ascending chain
of ideals of R and since R is a Noetherian ring there is n such that \/Z; = \/Z,
for all i > n. Therefore, V(vZ;) = V(v/Z,). i.e. Spec(2R) is a Noetherian

space. [

From the proof of Proposition we notice that Spec(fR) is a Noetherian

space if and only if ‘R satisfies the a.c.c on the radical ideals.

Example 1.18. [3, Example, page 91] The converse of Proposition [1.17]is
not true. Let K be a field and R = K[y, x9, x3, - - - | be a polynomial ring
in a countably infinite set of indeterminates x; over K, and let the ideal a be

the ideal (1, 22, 23,--- , 2", - -

). The ring S = 9R/a has only one prime
ideal which is the image of (1, x9, x3, -+ ). Write y,, = T, so Spec(S) =
(y1,Y2, Y3, - -+ ) = mis a maximal ideal, since K[z, T2, x3, - ]/(Y1, Y2, Y3, - )
= K since each y,, € Nil(9) is a nilpotent, so we have m C Nil(5) so every
prime in S is contains m which is minimal, hence m is the only prime ideal of
S . Hence Spec(S) is a finite space so it is a Noetherian space. But S is not a
Noetherian ring; the ascending chain (y1) € (y1,%2) € (y1,%2,y3) € - - - does

—

not terminate.

Recall that, the discrete topology on the space T' is defined by letting every
subset of 7" be open (and hence also closed). The following Proposition discuss

when the Zariski topology on Spec(fR) is the discrete topology.

Proposition 1.19. Let R be a Noetherian ring. The following assertions are

equivalent:

(1) PR is Artinian.
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(2) Spec(fR) is discrete and finite.
(3) Spec(fR) is discrete.

Proof. (1) = (2): Suppose R is Artinian ring. By Proposition every
prime ideal of R is maximal, hence by Lemma each point of Spec(R)

is closed. By [3, Proposition 8.3], YR has a finite number of maximal (prime)
ideals, so Spec(fR) is finite. But then every subset of Spec(fR) is a finite union
of closed sets, hence closed, and Spec(fR) is discrete.

(2) = (3): Obvious.

(3) = (1): Suppose Spec(fR) is discrete. Then each point is closed. By
Lemma the closed points correspond to maximal ideals, so every prime
ideal in R is maximal. Then dim(R) = 0, so by [3, Proposition 8.5], %R is

Artinian. []

Example 1.20. Let R = Z,,. First, we find the ideals of Z;. The positive

divisors of 12 are 1, 2, 3,4, 6 and 12 so we have the following ideals:

(1 = Zlg

)

(2) = {0,2,4,6,8,10}
(3) = {0,3,6,9}
(4) = {0,4,8}
(6) = 10,6}

(12) = {0}.

Notice that Z;5 is both Noetherian and Artinian ring because it is a finite ring
so any ascending and descending chain of it’s ideals will terminate. Now, the

prime ideals of Z;, are (2) and (3) because are maximal ideals. Notice that



29

(1),(4), (6) and (12) are not prime ideals since (1), (12) are improper ideals
while (4), (6) is not prime since 2(2) =4 € (4) but 2 ¢ (4) and 2(3) = 6 € (6)
but niether 2 nor 3 belongs to (6). Therefore Spec(Z12) = {(2),(3)}. Thus

Spec(Z19) is discrete space; by using the above Proposition.

Recall that an irreducible topological space is a nonempty space such that ev-
ery pair of nonempty open sets intersect. The following Proposition can be

used to enrich the literature with examples of irreducible spaces.

Proposition 1.21. Let R be a ring. Then Spec(fR) is irreducible if and only if
Nil(fR) is prime.

Proof. First, suppose that Spec(R) is irreducible. Let f, g ¢ Nil(*R), by
Proposition[1.8|(il), W (f) # @ and W(g) # 0. But() # W(f) N W(g) =
W (fg) since Spec(R) is irreducible, hence fg ¢ Nil(R). Therefore, Nil(R)
is prime ideal. Now, suppose Nil/(fR) is prime. Let O1, O be any two nonempty
open sets in Spec(R). There exists fi, fo € QR such that W(f;) € O, and
W(f2) € O where W(f1), W(f,) are nonempty. Hence by Proposition
[L8LGD, f1, f2 ¢ Nil(R). Now, W(f1) N W(f2) = W(fif2) # 0 since
Nil(fR) is prime i.e. fifo ¢ Nil(R). Now, W(f1) N W(fs) CO1NOy #£ 0
since W(f1) N W(fy) # (). Therefore, Spec(fR) is irreducible space. O

Example 1.22. Let R be any integral domain. Trivially R is reduced ring (i.e.

has no nonzero nilpotent). Thus, Spec(fR) is irreducible space.
The following Lemma is useful in finding the irreducible components of Spec(fR).

Lemma 1.23. Let R be a ring and Z an ideal of $R. Then V' (Z) is an irre-
ducible subset of Spec(R) if and only if /Z is prime.
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Proof. Apply Proposition to R/Z. Thus Spec(R/Z) is irreducible if and
only if Nil(9%/Z) is prime. But Spec(SR/Z) = V(Z) and Nil(R/T) = V.
[

Proposition 1.24. Let R be a ring. The irreducible components of Spec(fR)

are the closed sets V' (P), where P is a minimal prime ideal of ‘.

Proof. Suppose Y is a maximal irreducible subset of Spec(R). Then by Propo-
sition[0.33] (iii), Y is closed. So, Y = V/(P) for some ideal P of SR. Now by

Lemma |1.23] /P is prime ideal. If there is Q € Spec(R) such that Q C P

and V(Q) is irreducible. Then by Lemmal[l.4, V(P) C V(Q). Since V(P) is
maximal irreducible subset of Spec(R), V(P) = V(Q). Hence by Lemma|1.4]
VP = +/Q. Thus v/P is a minimal prime ideal. ]

1.3 Homeomorphism spectrums

Let Ry and R, be two rings and ¢ : R; — PRy be a homomorphism of rings.
Recall that, the preimage of a prime ideal of R is a prime ideal of R;. The
following Proposition proves that ¢ can be induce a continuous map between

Spec(Ry) and Spec(R;).

Proposition 1.25. Let 931, R, be two rings and ¢ : PR; — Qs be a ring homo-
Y Spec(Rg) — Spec(R1)

morphism. Then 1S a continuous map.

P67\ (P)
Proof. Let x € R; and W (z) be an open set in Spec(R;). We want to show
that 1 (W (x)) = W(é(x)). Let P € Spec(Rs) such that P € o1 (W (z)),
then ¢~ 1(P) = ¢(P) € W(x). Now ¢ 1(P) is prime in Spec(R;) so v ¢
¢~1(P). Then ¢(x) ¢ P which implies P € W (p(x)) which is open in
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Spec(Ry). Therefore, (W (z)) € W(é(x)). In a similar way W (é(x)) C
Y~} (W (x)). Therefore, the preimage of open sets in Spec(R;) are open in

Spec(Ry), i.e. 1 is continuous map. O

The following Proposition proves that the spectrum of a ring R is homeomor-

phic to the spectrum of R /Nil(R).

Y
Proposition 1.26. Let R be a ring. Then Spec(R) = Spec(R/Nil(R)).

Proof. Define ¢ : | — R/Nil(R) by ¢(Z) = Z/Nil(R), where T is

an ideal of R. Clearly, Spec(R/Nil(R)) = {P/Nil(R)|P € Spec(R)}.
Thus, ) : Spec(R) — Spec(R/Nil(R)) given by (P) = P/Nil(R)

is bijection. Now by Proposition ! is a continuous map. Finally we
show that ¢ is continuous. Let W (.7 /Nil(9R)) be open in Spec(R/Nil(R)),
where 7 is an ideal of 9. Suppose Q € ¢~ '(W(J /Nil(RR))). Hence, ¢(Q) €
W(J/Nil(R)) so J/Nil(R) € ¥(Q). Then J = ¢~ (T /Nil(R)) € Q so
Q € W(J). Therefore, ¢~ (W (J /Nil(R))) € W (J). In similar argument
W(J) C YW (J/Nil(R))). Hence, 1 is a homeomorphism. O

Now the following Proposition discuss the case that ¢ : $R; — ‘R, is a serjec-

tive (onto) map.

Proposition 1.27. Let R be a ring, Z an ideal of R. Let V (Z) be provided with
Y
the subspace topology of Spec(fR). Then Spec(R) = V().
¢ R—R/T
Proof. Define ¢ as follows B
J—=TJ=J/T
Recall that ¢ is a surjective map and Ker(¢) = Z. Clearly, Spec(R/Z) =
{P/Z|P € Spec(R) and Z C P}. Thus, ¢ : Spec(R) — Spec(R/T) given by
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Y(P) = P/Z is a bijection map. Now by Proposition 1~1 is a continuous
map. Finally we show that ¢ is continuous. Suppose V(7 /Z) is a closed set
in Spec(R/Z). Then v Y (V(T/I)) = {P € Spec(R)|T/I C P/T €
Spec(R/I)} = V(J) is a closed set in Spec(R). Therefore, v is a bijection

and both ¢ and ¢)~! are continuous. Thus 1) is homeomorphism. [

Next we consider an example on non homeomorphic map between spectrums

of two rings.

Example 1.28. [3, Exercise 21(vii), page 13] Let ‘R be an integral domain with
one nonzero prime ideal P, i.e. Spec(R) = {(0), P} this means P is a max-
imal ideal of $& which implies that $3 /P is a field. Let K be the field of frac-
tions of PR. Hence the ring S = (PR/P) x K also has exactly two prime ideals,
Q1 = {(z,0) : x € R} and Qs = {(0,k) : k € K}. Note that, Q; is a (max-
imal) prime ideal since S/Q; = K which is a field and Q> is a prime ideal

since S/Qy = R/P which is a field. Define

o R—S

x> (T,x).

Notice that ¢(z +y) = (z+y,z +y) = (T,z) + [U,y) = o(z) + ¢(y)
and ¢(zy) = (Ty,zy) = (T,7)(¥,y) = ¢(x)¢(y) forall z,y € NRand
o(1n) = (Ix + P, 1x) = 1g. Thus ¢ is a ring homomorphism. Therefore ¢
induses a map v between Spec(S) and Spec(R) such that 1)(P) = ¢~ 1(P)
forall P € Spec(S). Hence, ¥(Q1) = {z € R|T = 0} = Pand ¢(Q2) =
{r € Rlxr = 0} = (0) so ¢ is one-to-one and onto. However, v is not a

homeomorphism since in the topological space Spec(S) = {Q1, Q2}, we have
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Q1 = V(Qy)isclosed as Q; € Qs, but t)(Qs) = (0) is not closed in Spec(R),
since (0) is not a maximal ideal of 2R, by Lemma 1.14]

1.4 The spectrum of product ring

In this section we discuss some properties of the spectrum of the product of fi-

nite number of rings {R;}!"_;, denoted by [] fR; is the set of all r = (ry, 79, -+ ,7,)

=1
n

where r; € R, foralll < i < n.Recall thatm;: [[PR; — R, given by
i=1
(rj) = r; is the canonical projection map which is a ring homomorphism.

The following Theorem talks about the spectrum of direct product of finite

number of rings.

Theorem 1.29. Let each {R;}!" ; be a ring. Then

n n

where X; = Spec(fR;) and the sets X;’s are disjoint and clopen (i.e closed and

open).

Proof. Letm;: [[9R; — R, given by (r;) — r; be the canonical projection,
i=1
and f; = Ker(m;) = [[2R,. As 7, is surjective, then by Proposition [1.27| the
JF#i
map 7} : Spec(R;) — V(fi) = X, is homeomorphism. Since [ f; = 0,
i=1

wehave | X; = V() fi) = V(0) = Spec(®R). Now, for i # j we have
i=1 i=1
V(f)nV(f;) =V(fiU f;) = V(R) = 0. Hence, X,’s are disjoint closed sets

which cover Spec(R). Finally, X;’s are open sets also since the complement of

V' (f;) which equal to | V'(f;) is closed. O]
ji

The last Theorem above can be used to prove the following result which dis-
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cuss the connectedness of spectrums of rings under Zariski topology. The fol-

lowing Proposition discuss a characterization of disconnected Spec(fR).

Proposition 1.30. Let R be any ring. The following assertions are equivalent:
(1) R = R; X Ry where Ry, Ry are non-zero rings.
(i1) Spec(fR) is disconnected.

(i11) ‘R contains an idempotent different than 0 and 1.

Proof. (1)=-(ii): By Theorem[1.29] Spec(R) = X; | X, where X7, X, are
nonempty closed sets and X; (| X> = (). Hence, Spec(fR) is a disconnected
space.

(i1)=-(iii): Assume that Spec(R) is disconnected; then it is a disjoint union of
two nonempty closed sets V(Z), V(7). Then V(Z)V(J) = V(Z + JT) =
(), so there is no prime contain Z + 7, which must be equal (1x). Therefore,
there exists v € Zandy € J suchthatz + y = 1x. Since Spec(fR) is
disconnected, we have Spec(R) = V(Z) UV (JT) = V(ZJ),s0ZJ C
Nil(R). Thus there is n such that (zy)” = 0. Consider the equation 1y =
120 = (2 + )2 = 220 4 o gyl ggn g lyndl g e
ap = 22" 4+ -+ 2"y land ay = 2" " + o 4+ 4?7 So ay + as = 1,
and every term in a;as contains a factor of (xy)", thus ajas = 0. Therefore

a1 = ai(a; + ag) = a? + ajas = a?, so a; and a, are idempotent.

(iili)=-(i): Suppose a # 0, 1 is an idempotent. Then 1—a is also an idempotent
# 0, 1g. This means (a) and (1 — a) are proper, nonzero ideals, and they are
coprime since a + [1 — a] = 1. Since (a)(1 — a) = (a — a®) = (0), by
[3, Proposition 1.10.i] (a) N (1 —a) = (a)(1 —a) = (0). Letp : R —
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R/(a) x R/(1 — a) givenby ¢(z) = (x + (a),x + (1 — a)) be the natural

homomorphism. Then by [3, Proposition 1.10.11, 1ii] ¢ is an isomorphism.  []

Example 1.31. Let R = Z,. First, we find Spec(Z). The positive divisors of

10 are 1, 2,5 and 10 so we have the following ideals:

(1) = Zyo

(2) = {0,2,4,6,8)

(5) = {0,5}

(10) = {0}.

The prime ideals of Z;, are (2) and (5) since both of them are maximal ideals.
Notice that (1) and (10) are improper ideals of Zy so both of them are neither
prime nor maximal. Therefore Spec(Zip) = {(2), (5)}. Now, notice that Z;, =
Zs X Zs where neither Zo nor Zs is the zero ring. Also, the idempotents of Z1
are 0, 1, 5and 6, 1.e. Zj( has an idempotent different than 0 and 1. Therefore, by

Proposition Spec(Z) is disconnected space.

Corollary 1.32. The spectrum of a local ring R (ring with one maximal ideal)

is always connected.

Proof. It follows by Proposition [I.30]since the idempotents of local rings are

0 and 1g; for any idempotent element a, we have ¢ = a 'a? = a ta = 1.

Suppose a?

= a # 0, 1y in R. Then a is not a unit, and hence it is contained
in some maximal ideal m. Similarly (1 — a)> = 1 —2a + a* = 1 — ais
another idempotent # 0, 1, hence not a unit. But fR is local, a would be in

m = (| Max(R), so 1 — a would be a unit by [3], Proposition 1.9]. O
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Example 1.33. (1) Let R = Zs. First, we find Spec(Zsg). The positive divisors

of 8 are 1, 2,4 and 8 so we have the following ideals:

1) =
2) = {0,2,4,6}

(

(

(4) = {0,4}
(8) = {0}

The prime ideal of Zs is (2) because it is a maximal ideal. Notice that

(1), (4) and (8) are not prime ideals since (1), (8) are improper ideals
while (4) is not prime since 2(2) = 4 € (4)but2 ¢ (4). Therefore
Spec(Zg) = {(2)}. Thus Zg has one maximal (prime) ideal. Thus Spec(Zsg)
1s a connected space; by using the above Corollary. Also notice that the

idempotents of Zg are 0 and 1.

(2) Let 2R, be the subset of QQ consisting of rationals % where p { y and p is a
fixed prime. i.e. R, = {{[z,y € Z,p { y} is a commutative ring. Now,
R, has one maximal ideal Z = {{|z,y € Z,p { y,p | x}. Therefore R, is
a local ring, [3, Examples, page 38]. Thus Spec(fR,) is a connected space;
by using the above Corollary. Also notice that the idempotents of R, are

Ox, = 0/1and 1y, = 1/1.
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CHAPTER 2

Z.ariski topology of modules

In this chapter, we will discuss the generalization of Zariski topology of rings

to modules which was studied by M. Behboodi and M. R. Haddadi [7, 6].

2.1 Definitions and Basics

In this section, we present the definition of the classical Zariski topology of
modules. We start by the following definitions and propositions about the

prime spectrum of a module.

Definition 2.1. Let ‘R be a ring, £ a left ’R-module and P a proper submodule
of E. Then:

(1) A prime submodule of E is a proper submodule P such that for any ideal
T of "R and any submodule A of E,if ZN C P.then N C PorZ E C
P.

(2) A prime module £ is a module such that it’s zero submodule is prime.

Equivalently, for every nonzero submodule N of E, Anng(N) = Anng(E).

(3) The set of all prime submodules of E is called the prime spectrum of E

and denoted by Spec(F).

Recall that a nonzero left JR-module E is simple if it has no submodule except
itself and the zero submodule. If £ is a direct sum of simple modules then ' is

called a semisimple module.



38

Example 2.2. Each simple module is prime. Let YR = Z be the ring of integers.

The simple Z-modules are of the form Z/pZ, where p is prime.

The next proposition proves that from a prime submodule of an YR-module F,

we can obtain a prime ideal of ‘A.

Proposition 2.3. Let ‘R be a ring, £ a left R-module and P a proper submod-
ule of £/ . If P is a prime submodule, then (P : F) is a prime ideal of fR.

Proof. [10] Let P be a prime submodule of E. Let A, B be two ideals in R
such that AB C (P : E). Suppose that B ¢ (P : E), thus thereisb € B
such thatb ¢ (P : E). Then there is ¢ € E such that x = bc ¢ P. Now let a
be any element from A. Now A B C (P : F) implies af3b C (P : E). Then
(aR)x = (aRb)c C P implies (RaR)(Rx) C P. Hence RaR C (P : E) or
Mz C P, since P is a prime submodule. But x ¢ P, thus a € RaR C (P : E).
Therefore, A C (P : E). Finally, (P : E) # R since P is a proper submodule
of E,ie. 1 ¢ (P: E). m

The next example shows that the converse of the previous proposition is not

true in general.

Example 2.4. Let R = Zand E =7 X Z, N = (2,0)Z then (N : E) = (0) is
a prime ideal of Z but V is not a prime submodule of Z x Z since (6)(3,0)Z C
(2,0)Z but (6)F € N and (3,0)Z ¢ N This is the case for all submodules of

the form (z,0)Z, z > 1 is an integer.

Remark 2.5. Let YR be a commutative ring, £ a left 53-module and A a sub-
module of E. If (N : E) is a maximal ideal in R, then N is a prime submod-

ule of . For the proof of this remark see [21, Proposition 2].
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Clearly the prime submodules of R as an YR-module coincide with the prime
ideals.

Let R be a ring and £ an YR-module, throughout for any submodule N of E,
V (N) denotes the set { P € Spec(E) | N C P}, and V(FE) denotes the
set {V(N) | N < E}. Clearly, V(0) = Spec(E), V(E) = () and for any
family of submodules N; of E, () V(N;) = V(3 N;).

In contrast to the situation of théerjing theory, V(Zg) is not closed under finite

union in general, see the next example.

Example 2.6. Let R = Z and £ = Q & Q. The prime submodules of E are

(0), Q@ (0), (0) ® Qand {Py |0 # Y C Q°}, where Q* = Q \ {0},
Py = |J P foreveryt € Q*, P, = {(z,tx)|z € Q} see [2] page 4466]
forthef)ergof. Let (0,1/2), (1/2,3/4) € E, V((0,1/2)) U V(1/2,3/4) =
(0)®QUP;j, C V(0,0). But V((0,0)) = Spec(E). And there is no submodule

N of E such that V(N) = (0) ® QU Pj)s.
The previous discussion motivate to introduce the following definition.

Definition 2.7. [26] Let R be a ring, £ an Yi-module, F is called a module
with Zariski topology or fop module if for any submodules N, M of E there
exists a submodule £ such that V/(N)U V(M) =V (L).

Example 2.8. Let R be a ring and F a left 9i-module.

(1) If Spec(FE) is empty, then F is a top module. e.g. Let R = Z, p a fixed
prime and
0# E = E(p) ={a € Q/Z|a =r/p" + Z for some r € Z and n € N}

see [18]] for the proof.
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(2) If E is a module that has only one prime submodule, then it is a top mod-
ule. e.g. Q as a Z-module by using [[18, Theorem 1], Spec(Q) = {(0)} and
Maz(Q) = 0.

(3) If & = ‘R, then it is a top module. This topological space was studied in

chapter one of this thesis.

Recall that an R-module F is called a multiplication module if, for each sub-
module N of E, there exists an ideal Z of 93 such that N =7 F.
The following proposition is needed to prove that the multiplication modules

are top modules.

Proposition 2.9. ([26, Lemma 3.1]) Let YR be aring, E a left 'R-module, Z an
ideal of R and V' a submodule of E. Then

VN)UV(ZE) = V(IN).

Proof. First, let P be a prime submodule such that P € V(N) UV (ZE). Then
PeVWN)orPeV(ZE). Thus N CPorZE CPbut N C EsoZN C P,
i.e. P € V(ZN). Thus, we proved that V(N) U V(ZE) C V(ZN'), Now, let
P € V(IN) be a prime submodule. Then ZN C P,soN C PorZE C P.
Thus P € V(N)orP € V(ZE),ie. P € V(N)UV(ZE). Thus, we proved
that V(ZN) C V(N) UV (ZE) 0
Corollary 2.10. ([26, Corollary 3.2]) Let R be a ring, £ an YR-module and

T, J ideals of %. Then V(ZE) UV (JE) = V(IJE).

Throughout let R be a ring, E a left R-module and N a submodule of . Then
W (N) denotes the set Spec(E) \ V(N) = {P € Spec(E)|N ¢ P}, and
W(E) denotes the set {W(N) | N < E}.
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Now we present the generalization of the Zariski topology of rings to modules,
which was called the classical Zariski topology of modules and was introduced

by M. Behboodi and M. R. Haddadi in 2008.

Definition 2.11. Let R be a ring and £ be an R-module. Then 7 (FE) is the
collection of all unions of finite intersections of elements of WW(F). This col-
lection is the topology on Spec(F) by the subbasis W(F) and it is called the

classical Zariski topology of E.

Definition 2.12. The set U is an open subset in this topology if it is a unions of

finite intersections of elements of W(FE).
Remark 2.13. Let R be a ring.

e The classical Zariski topology of the module R as Y93-module and the usual

Zariski topology of the ring ‘R are coincide.

o If I/ is a top J3-module, then the classical Zariski topology and the Zariski

topology of £ are coincide.

2.2 Properties of classical Zariski topology

We begin this section by recalling some consepts that will emerge during the

rest of this chapter.

Definition 2.14. ([5]) Let ‘R be a ring, £ a left YR-module and P a proper sub-
module of E.

e A maximal prime submodule P of F is a prime submodule of £ that does

not contain in another prime submodule.
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e F is a homogeneous semisimple module if it is a direct sum of isomorphic

simple YR-modules. Equivalently, Ann,(F) is a maximal ideal of fR.

e If the factor module £'/P is a homogeneous semisimple, then P is called a

virtually maximal submodule of F£.

The following Theorem provides an algebraic characterization for Spec(FE) to

be a T7-space.

Lemma 2.15. Let R be a ring and £ a left SR-module. If Spec(E) is a T} -

space, then every prime submodule of £ is maximal prime.

Proof. Let q; € Spec(E), since singleton sets are closed in the 7}-spaces, then

{a1} is closed set in Spec(E). Hence, {q:} = [ O;, where O; = 6 V(Kij)s
K;;, < E and I is an index set. Assume there Zeiiists a prime subm];ciule qo of
E such that q; ;Ct q2. Thenforany i € I, q; € O, so there exists K j, for
some 1 < j; < k;jsuchthatq, € V(K;,). Thus K5, € q1 & qo. Now

q2 € V(K ), s0 q2 € O, for all i € I. Therefore, q2 € {q; }, which contradicts

the assumption. O
Before the following Theorem, we recall a needed definition.

Definition 2.16. [24, Definition 3.1] Let R be a ring and £ an ‘R-module. A
prime chain of length n is a chain Py C P;--- C P, of proper inclusions of
prime submodules of F, the prime dimension of E, dim(F), is the maximal
length of a prime chain or oo if there are prime chains of unbounded length. If

F has no prime submodule, we set dim(F) = —1.

Theorem 2.17. [7, Theorem 2.14] Let R be a ring and E a left $R-module,
Spec(F) is a Ty-space if and only if dim(E) < 0.
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Proof. First notice that if Spec(E) = 0, then dim(E) = —1 and trivially it is
a Ti-space. So we may assume that Spec(FE) # (). Suppose Spec(F) is a T}-
space, then by the previous Lemma, if P is a prime submodule of £/, then there
is no other prime containing P. Thus dim(FE) = 0. Now suppose dim(E) = 0;
if P is a prime submodule of £, then it is a maximal prime submodule. Thus
V(P) = {P} forall P € Spec(E), and so {P} is a closed set in Spec(FE).

Therefore, Spec(FE) is a Ti-space. O]
The following corollary insure that Theorem recovers Theorem [I.15]

Corollary 2.18. Let R be a commutative ring and £ = R. Then Spec(R) is a
Ti-space if and only if dim(R) = 0.

Corollary 2.19. [7, Lemma 2.32] Let E be a prime module, Spec(F) is a T}-
space if and only if Spec(F) = {(0)}.

Proof. 1t follows since F is prime means the zero submodule is prime submod-

ule and then use Theorem [2.17.. []

For a finitely generated module F, if Q is a proper submodule of E, then Q is
contained in a maximal submodule,by [12, Corollary 10.5]. Hence by Theorem
2.17, Spec(F) is a Ty-space if and only if Spec(FE) = Max(FE). Next result

treats the case when the module is finitely generated.

Theorem 2.20. [/, Theorem 2.17] Let R be a commutative ring and £ a finitely
generated S3-module, Spec(FE) is a Ti-space if and only if £ is multiplication

module with dim(FE) = 0.

Proof. < follows directly by Theorem [2.17
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= Suppose that Spec(F) is a T1-space. Since E is finitely generated, if P is a
proper submodule of £, then P is contained in a maximal submodule, by The-
orem [2.17, dim(E) = 0. Thus by [32, Corollary 4.15], E is a multiplication
module. [

Recall that, the cofinite topology is a topology that can be defined on every set
T'. It has the empty set and all cofinite subsets of 7" as open sets. Also, the cofi-
nite topology is the smallest topology satisfying the 77 axiom. Next theorem

will discuss when a module £ has the cofinite topology on Spec(FE).

Theorem 2.21. [7, Theorem 2.22] Let R be a ring and E a left Y3-module.
Then Spec(E) is the cofinite topology if and only if dim(E) < 0 and if M is a
submodule of E then either V' (N) = Spec(E) or V(N) is finite.

Proof. = Assume that Spec(E) is the cofinite topology. By Theorem [2.17]
dim(E) < 0 since Spec(E) is a T}-space. Now, if there is a submodule N of
E such that V() is infinite and V(N') # Spec(E). Then W (N) is an open
set in Spec(E) with infinite complement, a contradiction.

< Suppose dim(FE) < 0and V(N) is finite or V(N') = Spec(FE) for all
submodule N of E. Thus, if N;’s are submodules of £, then the finite union

U V(N;) is finite or Spec(E). Therefore, any intersection of finite union of
i=1

submodules Nj; of E, () (U V(Nj;)), is finite or Spec(E). Hence, Spec(E)
jeJ i=1
is the cofinite topology because every closed set in Spec(F) is either finite or

Spec(E). O

The following Corollary discuss when R as an $R-module is the cofinite topol-

ogy.
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Corollary 2.22. Let ‘R be a commutative ring. Then the following assertions

are equivalent:
(1) Spec(fR) is the cofinite topology.

(2) dim(R) = 0 and if Z is a ideal of R then either V (Z) = Spec(R) or V(Z)

1s finite.

Equivalently, Spec(fR) is the cofinite topology if and only if dim($R) = 0 and
Z C Nil(R) or V(Z) is finite, for any ideal Z of fA.

The following example shows that the condition in Theorem dim(E) =
0, is not enough to give a cofinite topology on Spec(E). Note that if dim(E) =

—1, Spec(F) is the trivial space, hence it is cofinite.

Example 2.23. [/, Example2.23] Let & = Zo © Z3 © L5 © -+ © Ly, D - - -
be a Z-module where p; is a non-negative prime number. Now let P be a prime
submodule of £. Since E is a semisimple module (direct sum of simple Z-
modules), P is virtually maximal by [5, Proposition 1.4]. Hence by Defini-
tion E /P is homogeneous semisimple. Since F is a direct sum of non-
isomorphic simple modules, /P is simple since there is no submodule other
than (0) and E/P. So, P is a maximal submodule of E. Thus dim(E) = 0.
Clearly for each prime number p;, P; := ) Z,, is a maximal submodule of
E and so Spec(E) is infinite. Now, N = gigjzg ®0® 0@ --- is asubmodule
of E, V(N) = Spec(E) \ {Ps}. Thus V(N) is infinite and V (N) # Spec(E).
Thus,Spec(E) is not the cofinite topology by Theorem 2.21]
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2.3 Classical Zariski topology and Hausdorff spaces

In this section, we discuss when Spec(E) is a Hausdorff space. We start this
section by showing when the Artinian module satisfies the ascending chain

condition (a.c.c) on intersections of prime submodules.

Definition 2.24. Let R be a ring.

e The prime radical radx(FE) of a left R-module F is

radw(F)= (] P.
PeSpec(E)

e If Spec(FE) = 0, then rady(E) = E.

By a (left) primitive ideal we mean an ideal which is the annihilator of a (nonzero)
simple left module. A left primitive ring is a ring which has a faithful (it’s an-
nihilator is zero) simple left module. Actully, the quotient of a ring by a left

primitive ideal is a left primitive ring [15].

Lemma 2.25. ([30, Theorem 1.5]) Let R be a ring such that R /p is (left) Ar-
tinian, where p is any primitive ideal of 2R and E is an Artinian 93-module.

Then F satisfies a.c.c on intersection of prime submodules.

Proof. Let R be a ring such that 93 /p is (left) Artinian, where p is any primi-

tive ideal. If Spec(E) = () then the result is true. Suppose that £ has a prime
submodule. Let ¢ := {N < E|N = fn] P;, P, prime submodule of £}. Then
¢ has a minimal element, say L, becalgg E is Artinian module. Cleary L. =

PiNPyN---N P, where P, is a prime submodule of F, forall i = {1,2,..,n}.

Now, let P be any prime submodule of £, wehave PN P N P N---N P, C
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PNnPN---NP,= L. Since L is minimal, PN P NP N---NP, = L. Hence
L < P, so L is contained in any intersection of prime submodules. Consider,
P,. Now P, # FE and hence there is a submodule U of Artinian module F
containing P; such that U/ P, is simple. Hence p = Ann(U/P,) is a primi-
tive ideal, also p is a prime ideal since P is prime submodule. By our assump-
tion, the ring YR /p is simple Artinian. Hence by [8|, Corollary 1.9.] E/P; is
semisimple since F//P; is Artinian and prime module. Thus F/P; is semisim-
ple, foralli = {1,2,..,n}. Thus, £/ P, is Neotherian for all i = {1,2,..,n},
since it is Artinian. Hence, F// L is Neotherian, so it satisfies a.c.c on intersec-
tion of prime submodules. Hence, FE satisfies a.c.c on intersection of prime

submodules. []

Corollary 2.26. [7, Proposition 2.29] Let R be a ring such that R/p is (left)
Artinian for all primitive ideal p, and £ is an Artinian 23-module. Then E/radn(E)

is Noetherian and F satisfies a.c.c on intersections of prime submodules.

Proof. By the proof of Lemma[2.25] if Spec(E) = (), then radn(E) = E.
Now, if Spec(E) # 0, then E/P is Noetherian for any prime submodule
P. Hence, the radical of E/P is finite intersections of prime submodules,
thus radg (F) is finite intersection of prime submodules. Also, £ /rady(E)

is Noetherian and F satisfies a.c.c on intersections of prime submodules. []

Definition 2.27. Let R be a ring.

e A Pl-ring (polynomial identity ring) is a ring such that all it’s elements sat-
isfy a monic polynomial in Z[x1, x9, - - - |, €.g. commutative rings are PI-ring

since it’s elements satisfy f(x,y) = xy — yr € Z|x, y|,see [28], Chapter 13].
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e A prime ring R is a ring such that for any two ideals Z, J of Rif Z J =
(0),thenZ = (0) or J = (0), e.g. simple rings are prime. Also, integral

domains are prime rings.

e If R is a prime ring , then *R is left bounded if, for any nonzero divisor c in
R, there is an ideal A of R and a nonzero divisor element d such that Rd C
A C Re. Recall that, ¢ is a nonzero divisor in fR if there is no a € A such

that ac = 0.

e A ring R is left fully bounded if all prime homomorphic image of R (R/P

where P is a prime ideal of fR) is left bounded.

o A ring R is left FBN-ring if ‘R 1s left fully bounded and left Noetherian, see

[13] for examples.

Finally, [[13, Proposition 9.4] proved that the primitive homomorphic image of

an FBN-ring is simple Artinian.

Corollary 2.28. [7, Corollary 2.30] Let R be a PI-ring (or an FBN-ring). If £/
is an Artinian R-module, then £ /rady(F) is Noetherian and F satisfies a.c.c

on intersections of prime submodules.

Proof. Every left primitive image of PI-ring is Artinian by [30], thus the result
follows by Corollary [2.26] O

Recall that, the topological space 1" is a Hausdorff space if any two distinct
points of 7" can be separated by disjoint open subsets. Hausdorff spaces are
also called T5-spaces or separated spaces. The discrete topology on the set X

is defined by letting every subset of X be open (and hence also closed). Every
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discrete topological space satisfies each of the separation axioms. If X is finite,
then X is a T}-space if and only if it is the discrete topology.

By using the previous results we get the following Proposition.

Proposition 2.29. [7, ,Corollary 2.27, Theorem 2.31] Let R be a ring and £ an
M-module. If either Spec(F) is finite or if R is a PI-ring (or an FBN-ring) and

E an Artinian module. Then the following assertions are equivalent:

(i) Spec(F) is a Hausdorff space.
(ii) Spec(F) is a Ti-space.
(iii) Spec(F) is the cofinite topology.
(iv) Spec(F) is discrete .

(v) dim(FE) <O0.

Proof. If R is a Pl-ring and £ is an Artinian module, then E/rady(E) is

Noetherian and by [25, Theorem 4.2], Spec(E /radx(F)) is finite. Now there

f: Spec(E) — Spec(E/rady(F))
is a bijective map

P — P—l—Tadg)q(E)

(1)=-(i1) Clear, since every Hausdorff space is a T}-space.

(ii)=-(iii) If Spec(E) is a T}-space, then by Theorem 2.17, dim(E) < 0. Then
V(N) is finite for every N < E because Spec(F) is finite. Thus by Theorem
Spec(E) is a cofinite topology.

(iii)=-(iv) Suppose that Spec(F) is the cofinite topology. Since singleton sets
are closed, Spec(F) is a Ti-space. Thus Spec(F) is discrete, since it is finite.
(iv)=-(v) Suppose that Spec(F) is discrete. Since Spec(F) is a T1-space,
dim(E) < 0 by Theorem



50

(v)=-(i) Suppose that dim(F) < 0. By Theorem Spec(E) is a Ty-space.
Since Spec(FE) is finite, it is a discrete space. Thus Spec(FE) is a Hausdorff

space. [

In the next Corollary we apply the above Proposition to commutative ring ‘R
as an R-module. Recall that any nonzero commutative ring has one maximal

(prime) ideal at least.

Corollary 2.30. Let 2R be a commutative ring such that Spec(fR) is finite.

Then the following assertions are equivalent
(i) Spec(fR) is a Hausdorff space.
(ii) Spec(fR) is a T;-space.

(iii) Spec(fR) is the cofinite topology.

(iv) Spec(fR) is discrete .
v) dim(R) = 0.

Next, let R be a ring and F an R-module, we discuss the property of Spec(FE)
when it is a Hausdorff space. Note that, if Spec(E) is empty or contain one

prime submodule then Spec(F) is a Housdorff space since it is the trivial space.

Proposition 2.31. [7, Proposition 2.26] Let R be a ring and E a left 23-module
such that £ has more than two prime submodules. If Spec(FE) is a Hausdorff

space, then every prime submodule is maximal prime and Spec(F) is covered

by finite closed sets V' (N;) # Spec(E) where {N;}_, are submodules of E.

Proof. Suppose that Spec(F) is a Hausdorff space. Let P, Q be distinct prime

submodules of E. Then there exists disjoint open sets U, V' such that P € U



51

and Q € V, where U = U(ﬁ WWN;)),V = U (Tﬁ W (N;,)) for submod-

il j=1 keK =1
ules \V;;, N}, of E. Then there exists s € I, t € K such that P € ﬂ W (Ns;)
j=1

and Q € ﬂt W (Ny), where
I=1

(ﬁwwsj-)] N [ﬁwmz)] —0. (+)

Hence P Q Q and O g ‘P. Therefore, every prime submodule of F is maximal

prime. Now by taking the complement for both sides of (*) we get

j@lV(J\@j)] U [;Llle(/\@z)} = Spec(E). .

2.4 Irreducible subsests in classical Zariski topology of modules

Let R be aring, E be a left R-module and Spec(E) be provided with the clas-
sical Zariski topology. In this section we discuss when a subset of Spec(F)
is an irreducible subset. We begin this section by recalling that, for any sub-
set A in Spec(F), the closure of A is the smallest closed set containing A and

is denoted by A. The following Proposition describe the closure of subsets of
Spec(FE).
Proposition 2.32. [/, Proposition 3.1] Let ‘R be a ring and E a left R-module.

If A # () is a subset of Spec(E), then A= |J V(P).
PeA

Proof. The closure of A is the smallest closed set containing A thus A C

lJ V(P). Let B be any closed subset of Spec(F) such that A C B. Thus
PeA

B = ﬂ(U V' (Ni;)), for some N;; submodules of £, i € [ andn; € N.
el j=1
Now, let @ € |J V(P). Then there exists Py € A such that @ € V(P,), so
PeA
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Py C Q. Since A C B, Py € B,soforeachi € [thereisj € {1,2,---n;}
such that \;; C Py. Thus NV;; € Py C Q.Hence Q € B. Therefore

U V(P) C B. Finally, since the closure of A is the intersection of all closed
PeA

subsets containing it, |J V(P) C A. O
PeA

The following Corollary discuss some properties of the closed set V' (P) where

P is a prime submodule.

Corollary 2.33. [7, Corollary 3.2] Let ‘R be a ring and E a left 9R-module.
Then

(i) Forevery P € Spec(E), {P} = V(P).

(ii) Let P € Spec(FE). The singleton {P} is closed in Spec(FE) if and only if

P 1s a maximal prime submodule of F.

Proof. By Proposition2.32((i) {P} = |J V(F) = V(P). Next, for (ii) the
Fe{P}

set {P} is closed if and only if {P} = {P} = V(P)i.e P is the only prime

submodule containing P, thus P is a maximal prime submodule. [

Now, we start discussing the irreducible subsets of Spec(E) under classical
Zariski topology. The following Lemma prove that V' (P) is an irreducible sub-
set. Recall that, the irreducible space 'I' is nonempty and cannot be expressed
as a union of two proper closed subsets, i.e. If I" C U U V where U, V are

closed subsets of 7', then 7" C U orT' C V.

Lemma 2.34. [/, Lemma 3.3] Let ‘R be a ring and E a left $R-module. Then
V (P) is irreducible for each P € Spec(E).

Proof. Let A; and A, be two closed sets such that V' (P) C A; U A,. Now,
either P € AjorP € A;because P € V(P). Say P € A;. Now, A; =
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N( U V' (N;j)), for some index set I, n; € N and N;; are submodules of £,
iel j=1

thus P € U V(N;j), foralli € I. Now U V' (N;) is closed so it contains

J=1 J=1

{P}. Thus V(P) € U V(N;;), foralli € I. Therefore, V(P) C A;. ie.
j=1
V (P) is irreducible. O

For any subset A in Spec(FE), the intersection of elements of A is denoted by
3(A) (note that if A = (), then S(A) = E). The next Theorem shows that we

can obtain a prime submodule of £ from an irreducible subset of Spec(E).

Theorem 2.35. [7, Theorem 3.4] Let R be a ring and F a left SR-module. If A

is an irreducible subset of Spec(F), then $(.A) is a prime submodule of .

Proof. Let A be an irreducible subset of Spec(F). Obviously, S(A) = (| P
is a proper submodule of F and A C V(S(A)). Now suppose ZN C S‘f(ej),
where Z is an ideal of YR and N is a submodule of E. By using Proposition
RI9weget A C V(ZIN) C V(N) U V(ZE). Thus either A C V(N) or
A C V(ZE) because A is irreducible. Now, if A C V(N), then N C P,
forall P € A,ie, N C S(A). Also, if A C V(ZFE),thenZE C P, for
allP € A,ie.,ZE C (A). Therefore by Definition[2.1, $(.A) is a prime

submodule. ]

The converse of the above Theorem is not true in general, the following Theo-

rem shows when the converse is true.

Theorem 2.36. [/, Theorem 3.4] Let R be aring and E' a left Y3-module. If
A C Spec(E) such that $(.A) is a prime submodule and S(A) € A, then A is

irreducible.
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Proof. Assume that Q := J(A) is a prime submodule of F and Q € A. Now
A C V(Q), then A C V(Q) since V(Q) is closed. Also by Proposition [2.32)
V(Q) C A.ie. A= V(Q). Now suppose A C A; U Ay, where A;, As are
closed sets in Spec(E). This yields to A C A; U Ay. SoV(Q) C A U A,
and by Lemma[2.34] V' (Q) is irreducible, V(Q) C A; or V(Q) C A,. But
ACV(Q),thus A C A or A C A,. Hence A is irreducible. N

The assumption 3(A) € A is a necessary condition in the above Theorem,

Example 2.37. Let R =Z, F = Z3 P Zs D Zsand A = {0 B Z3 & Z5,Z3 &
0@ Zs}. Now S(A) = 0@ 0 & Zj; is a prime submodule of F and A =
V(O@Zg@Z5)UV(Z3@O@Z5) = {0@23@25}U{Z3@0@Z5} ThUSA

is not irreducible.

Definition 2.38. Let R be a ring, F a left )3-module and N is a submodule of
E.

(1) If there is a prime submodule containing A/, then the prime radical of N/

[27] is
VN = {P : P is a prime submodule of F and N' C P}.

(2) If there is no prime submodule containing , then we put v N = E.
(3) The prime radical of E is equal to 1/(0) i.e. radn(E) = 1/(0).

Corollary 2.39. [7, Corollary 3.6] Let R be aring, F a left R-module and N
is a submodule of E. The subset V' (N) is irreducible in Spec(FE) if and only if
VN is a prime submodule of F.
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Proof. Suppose that V() is an irreducible subset of Spec(E), by Theorem

2.35|3(V(N)) is a prime submodule. But 3(V (N)) = +/N. Conversely,
let v/ be a prime submodule of Spec(E), Clearly V(N) = V(VN),i.e.
VN € V(N) = V(N). Thus by Theorem[2.36, V (N) is irreducible. O

Remark 2.40. [7, Corollary 3.6] From the above Corollary, Spec(F) is irre-
ducible if and only if 1/(0) = radx(E) is a prime submodule since Spec(E) =
V((0))-

Let R be a ring and E an R-module. Recall that, F is a homogeneous semisim-
ple module if it is a direct sum of isomorphic simple $R-modules, equivalently,
Anng(F) is a maximal ideal of 8. Also, if P is proper submodule of £ and
the factor module £/P is a homogeneous semisimple, then P is called a vir-
tually maximal submodule of E'. The following Theorems, Theorem and
Theorem give us a characterization for irreducible spectrum over PI-rings

or FBN-rings.

Theorem 2.41. [/, Theorem 3.7] Let ‘R be a PI-ring (or an FBN-ring) and F a
nonzero left R-module. If R is an Artinian ring or E is left Artinian, then the

following assertions are equivalent:
(i) Spec(FE) is irreducible.
(ii)) F/rady(F) is a nonzero homogeneous semisimple module.

(ili) Spec(E) is nonempty and V N # E submodule of E, either V' (N) is

empty or V() is irreducible.

Proof. (i) = (i1) Suppose that Spec(FE) is irreducible. Then Spec(E) # ()

by the definition of irreducible spaces; and rady (F) is a prime submodule by
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Corollary

Case (1): If E is a left Artinian module, then rady(£) is a virtually maximal
submodule of £ by [S, Corollary 1.6]. Thus, E'/radx(F) is a homogeneous
semisimple module.

Case (2): If R is an Artinian ring and E a left R-module, then R/P is sim-

ple Artinian where P := (radn(FE) : F) is a maximal (prime) ideal. Thus
E/rady(F) is a homogeneous semisimple module; Ann(FE /radx(E)) is max-
imal ideal.

Finally, rady(F) is a proper submodule of E since rady(FE) is prime submod-
ule, and so £ /rady(F) is nonzero.

(27) = (iii) Suppose E/radn(F) is a nonzero homogeneous semisimple mod-
ule N is a proper submodule of E. Then either VAN = E or VN /rady(E) is
a proper submodule of E /rady(E) since rady(E) € vAN. Now, we will as-
sume that /A’ # E because if VN = E, then V(N) = 0. Thus, VN /radn(E)
is a prime submodule of F /radyx(E) since F/radx(E) is a homogeneous
semisimple module. This means, v/ is a prime submodule of E. Therefore,
V(W) is irreducible; by Corollary [2.39]

(7i1) = (1) Clear (since V' (0) = Spec(E)). O]

A left R-module E is called co-semisimple module if every proper submodule
of E is an intersection of maximal submodules. Thus if £ is co-semisimple
PR-module and Q is a proper submodule, then Q is contained in a maximal
submodule. The semisimple modules (direct sum of simple modules) are co-

semisimple, see [7]].

Theorem 2.42. [/, Theorem 3.7] Let ‘R be a PI-ring (or an FBN-ring) and £

a nonzero left R-module. If E is left semisimple module, then the following
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assertions are equivalent:

(i) Spec(FE) is irreducible.

(ii) F/rady(F) is a homogeneous semisimple module.
(iii) V(N) is irreducible, V N # E submodule of £,

Proof. (i) = (i1) Suppose that Spec(F) is irreducible. Then Spec(E) # ()
and rady (E) is a prime submodule; by Corollary 2.39] If E is left semisimple
module, then by [5), Corollary 1.6], rady(F) is a virtually maximal submodule
of £, i.e., E'/rady(F) is a homogeneous semisimple module.

(i) = (i4i) Let E be a semisimple module. Let A be a proper submodule

of £, V(N) # () since every proper submodule of F is contained in a max-
imal submodule. Clearly rady(E) C v N. Thus VN /rady(E) is a proper
submodule of £ /radx(F). Since E /rady(F) is a homogeneous semisimple
module, VA /rady(E) is a prime submodule of E/radx(E), i.e. VN is a
prime submodule of E. Therefore, V' (N) is irreducible, by Corollary
(7i1) = (i) Clear (since V (0) = Spec(E)). O]

2.5 Classical Zariski topology in view of spectral spaces

Let R be aring and F a left SR-module. Let Spec(E) be provided with the
classical Zariski topology. First, we introduce the definition of a spectral space

which defined by Hochster [[14] as follows,

Definition 2.43. A topological space 7' is a spectral space if there exits a com-
mutative ring S such that 7" is homeomorphic to Spec(S), where the topology

on Spec(S) is the Zariski topology of rings.
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Hochster [14, p.52,Proposition 4] considered another characterization for spec-

tral spaces, the topological space 1" which satisfy the following conditions :

(1) T is a compact space.
(2) T is aTy-space.

(3) The compact open subsets of 1" are closed under finite intersection and

form an open basis.

(4) Every irreducible closed subset of 7" has a generic point.
Let R be any ring. In the following Proposition we prove that Spec(fR) is a
spectral space.

Proposition 2.44. Let R be a ring. Then Spec(fR) is a spectral space.

Proof. Refer to Chapter 1, Spec(fR) is a compact space and the compact open
subsets of Spec(R) are closed under finite intersection and form an open basis,
by Proposition Now by Theorem Spec(fR) is a Ty-space. Finally by
Lemmall.23] every irreducible closed subset of Spec(R) has a generic point,
since the closed set V (Z) = V(V/Z) is irreducible if and only if v/Z is prime
ideal, thus V' (v/T) = m Therefore, Spec(fR) is a spectral space. O]

The following example shows that the compactness property does not hold for

all Spec(F).

Example 2.45. [/, Example 2.23] Let £ be a Z-module where

E=78ZL;s®Ls® - ©Lp -

where p; is a non-negative prime number. In Example 2.23] we show that, if

N=Zd0®d0®--- < E, then V(N) = Spec(E) \ {P,}. Thus V(N is
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infinite and V' (N') # Spec(E). Thus Spec(E) cannot have a finite open cover.

Thus it is not compact.

Next Proposition shows that Spec(FE) is a Ty-space for any module E and dis-

cuss the existence of generic points for irreducible closed sets of Spec(F).

Proposition 2.46. [/, Proposition 3.8] Let 3 be aring and E a left $R-module.

Then
(1) Spec(F) is a Ty-space, for any R-module E.

(2) If P € Spec(F), then P is a generic point of the irreducible closed subset
V(P).

(3) If K is a finite irreducible closed subset of Spec(E), then K has a generic

point.

Proof. (1) A topological space is a Ty-space if and only if the closures of dis-
tinct points are distinct. Thus by Corollary (i), if Py, Py € Spec(E), we
have {P,} = {P,} if and only if P; = P».

(2) By Corollary [2.33|(i), V(P) = {P} i.e. P is a generic point for V(P).

(3) Let K = {Py,Ps,--- ,P,} be a finite irreducible closed subset of Spec(E),

where {P;}", € Spec(E),n € N. And by Proposition2.32, K = K =

V(P1)UV(Py)U---UV(P,). But K is irreducible subset, hence K = V(P;)

for some 1 < i < n. Hence, by (2) K has a generic point. ]

Behboodi and Haddadi mentioned in [7] that they didn’t find an example of
irreducible closed set of Spec(E) that does not have a generic point. Then,

they conjectured that, every irreducible closed subset of Spec(E) has a generic
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point where F is any Pi-module. This conjecture was partially solved by Ansari-
Toroghy and Ovlyaee-Sarmazdeh in [2, Theorem 3.8]. Before providing the

solution of the conjecture, we recall some needed definitions.
Definition 2.47. [1] Let R be a commutative ring and £ a left $R-module.

(1) Let P € Spec(R). The set of all P-prime submodules of F is
Specp(E) = {P € Spec(E) | P= (P : E)},

where P is the P-prime submodule of E.
(2) The saturation of a submodule N of E with respect to P € Spec(fR) is
Sp(N)={e€ E|te € N forsometc R\ P}.
(3) The torsion submodule of F' is
T(E)={ec E|3IreR\0:re=0}.
Remark 2.48. Let R be a commutative ring and £ a left 9i-module. Then
(1) If T'(E) = 0, then F is called a torsion-free module.
(2) If T(F) = E, then F is called a torsion module.
(3) If P = (0) and N = (0), then S()(0) = T'(E).
Definition 2.49. [1]] Let ‘R be a ring and E a left $R-module.

(1) The natural map of a nonempty Spec(FE) is defined as follows:

Y Spec(E) — Spec(R/Ann(E))

P—(P:E)=(P:E)/Ann(E)
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(2) If Spec(E) = () or Spec(E) # () and the natural map of X = Spec(F) is

injective (one-to-one), then F is called an X -injective module.

Proposition 2.50. [[19, Proposition 3.2] Let YR be a commutative ring, £ an ‘R-
module, P, Q € Spec(E) and P € Spec(R). Then the following assertions are

equivalent:

1. Eis X-injective.
2.If(P:FE)=(Q: E),then P = Q.
3. |Specp(E)| < 1,VP € Spec(fR).

Proof. Suppose E is an X -injective module, i.e )(P) = ¢(Q) implies P = Q.
If (P:E)=(Q: E),then (P : E)/Ann(F) = (Q : E)/Ann(FE) which
implies P = Q. Now suppose (2) holds, if P, Q € Specp(E) we have P =
(P:FE)=(Q: E)ie. P = Q. Thus |Specp(E)| < 1. Finally suppose (3)
holds and for P, Q € Spec(F), ¥(P) = ¥(Q) implies that (P : E) = (Q :
FE) = P. Thus by (3), P = Q i.e. ¥ is one-to-one. N

Proposition 2.51. [1] Let 2R be a commutative ring and £ an Y3-module, then

(1) E is X-injective if and only if for every P € Spec(F), P = Sp(PFE) for
P=(P:E).

(2) If E is a top module, then F is an X -injective R-module.
(3) If £/ 1s X-injective, then every homomorphic image of E is X-injective.

Proof. (1) Suppose E is X-injective. Let P € Spec(F), thus by Proposition
Specp(E) # 0 where P = (P : E). Now by [20, Corollary 3.7],
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Specp(E) # 0 < Sp(PE) € Specp(E). Now, P = (P : E) means
PE C P # E, thus Sp(PE) = Sp(P) # E.But Sp(P) ={ec E |3t e
R\P : teec Pt ={ec E|Ite R\ P : e € P} = Psince
P € Spec(FE)ie. Sp(PE) =P # E. Thus (Sp(PE) : E) = (P : E).
Therefore, P = Sp(PFE) since F is X-injective. Conversely, suppose for
every P € Spec(E), P = Sp(PE) for P= (P : E). Let P, Q € Spec(F)
such that (P : E) = (Q : E). Thus P = Sp(PE)and Q = Sg(QFE)
where P = (P : E) = (Q : E) = Q. Hence, P = Q. Therefore by
Proposition E 1s X-injective.

By [26, Theorem 3.5] E is top module implies |Specp(FE)| < 1 for every
P € Spec(R) which equivalent to E is X -injective by Proposition[2.50|

Suppose E is X -injective. By Proposition 2.50] for every P € Spec(R),
|Specp(E)| < 1. The result follows since for every submodule A of F,
Spec(E/N) = {P/N | P € Spec(E) : N C P}, soforevery P €
Spec(R), Specp(EJN) = {P/N € Spec(E/N)|P = (P/N : E/N) =
(P : E)}. Thus |Specp(E/N)| < 1.ie. E/N is X-injective. O

Next we consider a needed Proposition. For it’s proof see [1]].

Proposition 2.52. [1, Corollary 3.19] Let ‘R be a PID and the $R-module £

be a torsion-free or torsion-module, then £ is top module if and only if £ is

X-injective.

Theorem 2.53. [2, Theorem 3.8] Let ‘R be a PID and F an X-injective left ‘-

module. If A is an irreducible closed subset of Spec(E), then A has a generic

point.
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Proof. Let A C Spec(FE) be an irreducible closed subset. Then we have two
cases:

Case (1): If E is a top module, then A = V(N) = V(v/N) for some sub-

module A of E. By Corollary 2.39, v/ is a prime submodule of F since

A = V(v/N) is irreducible. Hence, A has a generic point.
Case (2): If E is not a top module, let 0 # S(((0) C E since otherwise
i.eif S)(0) = Oor S)(0) = E,then £ is a top module by [, Corol-
lary 3.19]. Now, suppose A is infinite subset, because if A is finite, then it
has a generic point by Proposition Now by Theorem m 3(A) is a
prime submodule of E. Thus by Proposition2.51], §(A) = Sp(PE) where
P € Spec(R). Now, P = (0) since if not, there is a maximal ideal ) # P
of R such that So(QF) = Sp(PE), and this contradicts () # P. Therefore,
S(A) = Sg)(0) andif P € A, then S)(0) C P.Let E = E/S(4(0),
X = Spec(E/S(0)) = {P/S)(0)[P € Spec(E)} and A = {P =
=T

P/S)(0)|P € A}. Now, E is torsion-free, since S(0) = T(£) and

~

E/T(F) is torsion-free. Also, by Proposition 2.51} F is X-injective, since £

is X-injective. Therefore, Eisa top module, by Proposition 2.52| Now X has

Zariski topology Definition 2.7, X = Spec(E) has classical Zariski topology
and define the map ¢ : X — X as follows Y(P/S()(0)) = P. Clearly, ¢ is a

one-to-one map. Let £; ; be a submodule of £ and () ( U V(L;;)) be aclosed
i€l j=1
set of Spec(E). Then 1) is continuous map since

~(0@res)-(e)

icl \j=1 iel \j=1

Moreover, ¢ is a closed map since for any submodule £ of E we have 1(V (L)) =
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-~

V(L). Therefore, A = 1)~!(.A) is an irreducible closed set in X. And since E

such that A P). Therefore A has a generic point since A = (A) =

is a top module, Ahas a generic point. So there is a prime submodule Pof E
V(P
). []

b(V(P)) =V (P

The following Theorem shows that, if the 23-module E has finite prime spec-

trum, then Spec(F) is a spectral space.

Theorem 2.54. [/, Theorem 3.9] Let R be a ring and £ a left 93-module. If

Spec(E) is a finite set, then Spec(F) is a spectral space.

Proof. Suppose that Spec(E) is a finite set. By Proposition 2.46 Spec(E) is
a Tp-space and every irreducible closed subset of Spec(E) has a generic point.
Also, Spec(F) is finite implies that it is a compact space and the compact open
subsets of Spec(F) are closed under finite intersection and form an open basis.
Therefore, Spec(FE) satisfies the conditions in the Hochster’s characterization

of a spectral space. i.e. Spec(FE) is a spectral space. [

Corollary 2.55. Let R be a ring and F a finite left )3-module, then Spec(F) is

a spectral space.

Proof. Suppose F is finite 93-module. Then Spec(E) must be finite. Thus it is

a spectral space. [
Next Proposition talks about the relation between Noetherian modules and
Noetherian spaces if the module is a top module.

Proposition 2.56. Let R be a ring and £ a Noetheian $R-module. If £ is a top

module, then Spec(FE) is a Noetherian space.
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Proof. Suppose FE is a top module. Let (V (N;));en be an infinite collection of
closed sets of Spec(E) such that V(Ni 1) € V(N;). Since V(N) = V(VN)
for any submodule of £, we have \/N; C /N, for all i. Hence we have an
ascending chain of submodules of £ and since £ is a Noetherian ring there is

n such that \/N; = /N, for all i > n. Therefore, V(v/N;) = V(VN,). ie.

Spec(E) is a Noetherian space. O

The following Theorem discuss when the X -injective module over PID is a

spectral space.

Theorem 2.57. [2, Theorem 3.8] Let R be a PID and E an X -injective ‘R-

module. If Spec(F) is a Noetherian space, then Spec(F) is a spectral space.

Proof. Suppose Spec(F) is a Noetherian space, then it is a compact space
and every open subset is compact, thus compact open subsets are closed un-
der finite intersection and form an open basis. Now Spec(FE) is a Ty-space by
Proposition [2.46| Finally by Theorem every irreducible closed subset of

Spec(F) has a generic point. i.e. Spec(F) is a spectral space. ]

In [19] Lu considered another Zariski topology on Spec(F) such that the closed
sets are V*(N) = {P € Spec(E)|(N : E) C (P : E)} and studied it in view
of spectral spaces. The next Proposition compares between this topology and

the classical Zariski topology.

Proposition 2.58. [7, Proposition 3.11] Let ‘R be a commutative ring and F
be a finitely generated 2R-module. Then the classical Zariski topology of E
and the Zariski topology of £ considered in [[19], coincide if and only if E'is a

multiplication module.
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Proof. Assume that the classical Zariski topology of E and the Zariski topol-
ogy of E considered in [[19], coincide. Then by Proposition Spec(E)
with the topology considered in [19] is a Tj-space. Now by [[19, Corollary 6.6],

E is a multiplication module. The converse is evident. [

Corollary 2.59. [7, Corollary 3.12] Let ‘R be a commutative ring. If E'is a
finitely generated multiplication R-module, then Spec(F) under classical

Zariski topology is a spectral space.

Proof. By Proposition the classical Zariski topology of F is coincide
with the Zariski topology of F considered in [19], then by [19, Corollary 6.6]

Spec(E) under the Lu Zariski topology is a spectral space. ]
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