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Abstract

We introduce a new linear algorithm to split overflowed nodes of an
R-tree index called the Global Center Point Splitting (GCPS) algorithm.
The proposed method is an enhancement of the Quadratic splitting
algorithm proposed by Guttmann (Guttman A, 1984; 47-57). Most
known algorithms do not take advantage of the fact that most spatial
objects data is known beforehand, and these objects are relatively easy to
identify. In this paper we have adopted an informative approach by
making use of spatial information provided by the problem space.
Objects in the problem space are scanned and the Global Center Point
(GCP) that the objects are concentrated around is determined. The GCPS
algorithm uses the proximity between the Global Center Point (GCP) and
the remaining objects in selecting a splitting axis that produces the most
even split. We conducted several experiments using both real and
synthetic data sets. Results show that the proposed splitting method
outperforms the quadratic version in terms of construction time
especially for nodes with high capacity. The query performance
approximately remains the same.
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1 Introduction

The real-world spatial databases are very large, with sizes can reach
to millions of objects. The spatial indexes are used to quickly access
spatial database systems. Efficient processing of queries manipulating
spatial relationships between objects in the database depends on the
spatial index used. R-tree is the most widely used structure for indexing
multi-dimensional information (Guttman, A. 1984; 47-57).

R-Trees can organize any-dimensional data by representing the data
by a minimum bounding rectangle (Papadias, D. & et al. 1995). Each
node bounds its children. A node can have many objects in it. The leaves
point to the actual objects (stored on disk probably). Objects are added to
the node that will get the least enlargement in its MBR size to minimize
node coverage. It must be noted also that the MBRs may overlap;
consequently, the search operation will visit more nodes before getting a
result. Efficient R-trees require minimizing both node overlap and
coverage.

The insertion of a new entry to a full leaf node in R-tree requires
node splitting. Node splitting is a critical process for the overall
performance of the access method since it determines the final shape of
the structure (Fu, Y. & et al. 2002; 766-770); (Sleit, A. 2008; 711-720);
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(Sleit, A. Al-Nsour, E. 2014; 222-236). An efficient splitting algorithm
may be used to achieve different goals, such as reducing the R-tree index
creation time, and producing an R-tree structure which has the minimum
overlapping of the MBRs and minimum total coverage of the MBRs.

In literature, a number of R-tree structure variants present (Sellis, T.
& et al. 1987; 507-518); (Beckmann, N. & et al. 1990; 322-331). and
several splitting algorithms have been proposed (Guttman, A. 1984; 47—
57); (Sleit, A. Al-Nsour, E. 2014; 222-236); (Ang, C. H. & Tan, T. C.
1997; 15-18); (Al-Badarneh, A. & et al. 2010; 3-18); (Al-Badarneh, A.
& Tawil, M. 2009).

In this paper we focus on the Quadratic node splitting algorithm
proposed by Guttmann (Guttman, A. 1984; 47-57). A pair of objects is
selected from the over-flown node as the seeds of the split. These are
picked to be the pair of objects that if put in the same node will create the
largest empty space. Each of the two nodes resulted from the splitting
will contain exactly one seed. Each of the remaining objects is inserted to
the nearer node (i.e. the node that requires smaller enlargement of its
MBR). The requirement of the min/max number of objects per node must
be satisfied. It is obvious that the goal of minimizing the total coverage
may be compromised.

In this paper we present a new enhancement to the Guttmann’s
quadratic node splitting algorithm. We propose a new algorithm upon
which the pick seeds operation is done. This new pick seeds algorithm
will cause a linear cost when compared with the original quadratic cost
algorithm. Most known algorithms do not take advantage of the fact that
most spatial objects data is known beforehand, and these objects are
relatively easy to identify. In this paper, we have adopted an informative
approach by making use of spatial information provided by the problem
space. The objects in the problem space are scanned and the point that
the objects are concentrated around is determined. This point is used to
determine the axis of splitting. We will show that when using the new
splitting algorithm in building the index, the index creation/update time
will be reduced and the query performance remains nearly the same when
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compared with the quadratic version. We think that the new technique
would be very efficient for the most recent DB systems which in general
have high query frequency.

The rest of this paper is organized as follows. Section 2 describes the
new algorithm, section 3 will provide some testing and comparison
results. Section 4 is the conclusion and future work.

2. Global Center Point Splitting (GCPS) Algorithm

The R-tree Quadratic splitting algorithm proposed by Guttmann
(Guttman, A. 1984; 47-57) consists of two phases:

Phase 1: a pair of objects is selected from the over-flown node as
seeds. These are picked to be the pair of objects that if put in the same
node will create the largest empty space. This phase of picking the seeds
requires a Quadratic time complexity.

Phase 2: Each of the two nodes resulted from the splitting will
contain exactly one seed. Each of the remaining objects is inserted to the
nearer node (i.e. the node that requires smaller enlargement of its MBR).
The requirement of the min/max number of objects per node must be
satisfied. It is obvious that the goal of minimizing the total coverage may
be compromised. This phase requires a linear time complexity.

In this paper we present a new enhancement to phase 1 in the
Guttmann’s quadratic node splitting algorithm. Phase 2 will not be
changed. We propose a new algorithm upon which the pick seeds
operation is done. This new pick seeds algorithm will cause a linear cost
when compared with the original quadratic cost algorithm.

The new proposed phase 1 consists of three parts:

Partl: Determining a global center point of the (M+1) objects of the
over-flown node. Each object MBRi will have its own center point
( X;, ¥; ). These points will be used in determining the global center point
(Xgepr Ygcp) Of the whole object (node) space as shown in the following
two equations:
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Part 2: A splitting axis intersecting with the global center point
(GCP) is determined. The GCP is used to map the objects into
concentration regions by inspecting how their concentration is oriented
vertically or horizontally. The axis must split the object space into two
highly concentrated areas. Consequently, the splitting axis will be
horizontal -passing through the GCP- if more than half of the objects are
concentrated to the left or to the right of the GCP. On the other hand, the
splitting axis will be vertical -passing through the GCP- if more than half
of the objects are concentrated above or below the GCP. Otherwise both
vertical split and horizontal split must be considered in Part3.

Part 3: Picking the seeds. The seeds of split will be determined
according to the splitting axis orientation. There are three cases:

Casel: If the splitting axis is horizontal, the proposed pick seeds
algorithm suggests selecting the farthest object above the splitting axis as
the first seed, and the farthest object below the splitting axis as the
second seed.

Case 2: If the splitting axis is vertical, the algorithm suggests
selecting the farthest object to left of the splitting axis as the first seed,
and the farthest object to right of the splitting axis as the second seed.

Case 3: If the splitting axis cannot be determined from part 2, the
algorithm proceeds as follows: Let pairl be the seeds that are picked
when the splitting axis is horizontal, and let pair2 be the seeds that are
picked when the splitting axis is vertical. Then, calculate the difference in
y-value between seedl and seed2 in pairl, and the difference in x-value
between seedl and seed2 in pair2. Then choose the pair with max
difference to be the seeds of the split.

An - Najah Univ. J. Res. (N. Sc.) Vol. 30(1), 2016




116 “Global Center Point Splitting: ...... i

From Part 3, it is obvious that the goal of minimizing the total
overlap may be compromised. This algorithm has a linear complexity;
the calculations performed in the three parts of the algorithm require
linear time complexity.

2.1 The GCPS Algorithm

The MBR of an R-tree node i is specified by two points: the lower
left corner (X, ,Y,) and the upper right corner(X, Yy, ). An over-flown

node ‘N’ with ‘M + 1 objects should be split into two new nodes N1 and
N2. The Pseudocode for the GCPS algorithm is formally described as
follows:

//Calculate the center of each MBR i (X, Y, ) in node N:

X, +X +
For (i=0;i<M+L;i+H){ X = %’ = %

)
//Determine the global center point (Xgcp, Vgep):

For (i=0;i<M+1;i++){ Xgep 7= Xi'5 Yoo t= Yi3}
Xgop /= MF1); Yoo /= (M),

//Setting counters: define four counters to store the number of MBR
centers that are to the left, right, above, below the GCP.

For (i=0;i<M+1;i++){

If X;> X, increment right _counter

p
If x; <X, increment left counter

If y;>Y,, increment above counter

If ¥, <Y, Increment below_counter

}
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//Setting flags: for each counter, define a flag that is set to be true if
the corresponding counter is greater than half the number of nodes.

if(left_counter>(M+1)/2){left flag=true;}else{left flag=false;}
if(right_counter>(M+1)/2){right_flag=true;}else{right flag=false;}
if(above counter>(M+1)/2){above flag=true;}else{above flag=false

3

if(below_counter>(M+1)/2){below_flag=true;}else{below_flag=fals
e}

//Determine the splitting axis: the seeds will be the farthest two
points around the splitting axis.

/[Case 1: the splitting axis is horizontal.
if(XOR(left_flag,right flag)==1&&(above flag|below flag)==0){
for (1I=0;1<M+1;i++){
i (Y <Ygep )1
//object is below splitting axis

//pick the object with max Y, - Y; to be seedl}

else lf( yi > ygcp ){
//object is above splitting axis

//pick the object with max y;- Y., to be seed2}
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//Case 2: the splitting axis is vertical.
If (XOR(above flag,below flag)==1&&(left flag||right flag)==0){
For (i=0;i<M+1;i++){
if (X <Xgep )1
//object is to the left of splitting axis

//pick the object with max X, - X; to be seed1}
else if( X;> X, ) {

//object is to the right of splitting axis

//pick the object with max X; - X, to be seed2}

h
j

//Case 3: compare VYq.q,- Yseeq; When the splitting axis is horizontal

With Xg.q, - Xseeq; When the splitting axis is vertical, and then choose the
splitting axis with max difference.

1f((XOR(left flag,right flag=—1&&
XOR(above flag,below flag)==1)
[[(left flag==0&&right flag==0&&above flag==0&&below flag==0))
{  //suppose that the splitting axis is horizontal

dl: ySeed 2 horizontal ~ ySeedlfhorizontaI
//suppose that the splitting axis is vertical
d2= Xseed 2 vertical = X

Seed1 vertical

if(d1>d2)
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//The splitting axis is horizontal, the seeds are the farthest in y value

around the axis

else if(d1<=d2)

//The splitting axis is vertical, the seeds are the farthest in x value

around the axis

}

2.2 lllustrative Example

To demonstrate the GCPS algorithm’s work mechanism, Figure 1

provides an example.
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Seed2

Seedl

The two nodes resulting from the splitting

Vertical splitting axis-
Seeds are the farthest in x with respect to splitting axis.

Figure (1): The GCPS algorithm’s work mechanism: a step by step
example.

3. Experiments and Results

The programs used in the experiments are all written in C++ and are
run on 1.73 GHz Intel Core 17 machine with 6 GB of RAM running
Windows 7. Both synthetic and real world data files were used for
testing. We conducted several experiments to test the GCPS algorithm
against the Quadratic algorithm. Experiments are grouped in two types:
Index creation experiments and Index Query experiments.

3.1 Index creation experiments

The new GCPS algorithm differs from the Quadratic algorithm only
in the splitting process of an over-flown node. This will affect the final
structure of the tree. The effectiveness of the two index creation
algorithm can be measured by the index creation time. In Table 1, five R-
trees were generated using n-nodes synthetic data files with Uniform
distribution, with n ranging from 10,000 to 100,000 and with Max fill=50
and Min fill=Max/2. The average time taken in creating R-trees is
measured when the new GCPS algorithm and the Quadratic algorithm are
used.
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Table (1): Index creation time using synthetic data sets.

Quadratic New GCPS Improvement
n time Numb.er time Numb-er o,
(seconds) | of splits | (seconds) | of splits
10,000 0.559 293 0.432 293 23%
30,000 1.809 876 1.448 880 20%
50,000 3.340 1478 2.531 1466 24%
80,000 5.377 2339 4.494 2319 16%
100,000 7.056 2939 5.711 2926 19%

In Table 2, two R-trees were generated using real world files (with
Max fill=50 and Min fill=Max/2). The average R-trees creation time is
measured when the new GCPS algorithm and the Quadratic algorithm are
used. The real data sets are from TIGER/Line data distributed by United
States Bureau of Census (TIGER/Line™ Files, 2005). The first data set
containing 53145 MBRs of Long Beach county roads (LB). The second
data set containing 76999 MBRs hypsography data, Germany Hypsogr.

Table (2): Index creation time using real data sets.

Quadratic New GCPS
time Number time Number Impr(})}ement
(seconds) | of splits | (seconds) | of splits ¢
LB 3.718 1577 2.693 1565 28%
Hypsogr 6.021 2664 4.751 2658 21%

From Table 1 and Table 2, the new linear algorithm manages to
reduce the R-tree creation time based on the improvement of splitting
time. There are two important factors that affect this improvement in the
R-tree creation time: the number of splits and the split cost. It is obvious
that the splitting cost in the quadratic splitting algorithm O(n?) is higher
than that of the new GCPS linear algorithm O(n).

In Table 3, the average R-tree creation time and number of splits for
both algorithms are measured using synthetic data file with n=100000
and different node capacities (Max fill values). The percentage of
improvement in the R-tree creation time gained by GCPS is determined.
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Table (3): Index creation time with different Max fill values.

Max | Quadratic 1%?;%2?:& (ljcegs ii?ngg,iﬁ Improvement
fill (seconds) splits (seconds) splits %o

50 7.056 2939 5.711 2926 19%
100 10.897 1459 8.625 1452 21%

200 19.855 716 15.417 731 22%

300 28.637 484 21.182 468 26%

400 35.362 352 25.807 357 27%

From Table 3, as the (Max fill) increases, the number of splits will
decrease and the split cost will increase. Consequently, the percentage of
improvement in the R-tree creation time gained by the GCPS algorithm
will increase. In low node capacity situations the number of splits will be
high, while in high node capacity situations the split cost will be high
with less number of splits. It is obvious that the bulk of performance
improvement is more for high node capacity situations, in which
quadratic splitting algorithm has the complexity of O(n?), while the new
GCPS algorithm has a linear complexity O(n) as it was shown in
section2.

3.2 Index Query experiments

The difference between the new GCPS algorithm and the Quadratic
algorithm is only in the splitting process of an over-flown node. Note that
the node splitting process is called only when a node overflows. This will
affect the final structure of the tree and the query performance of the
index. The most commonly used query type in literature for testing node
splitting algorithms is the intersection query type (Sleit, A. Al-Nsour, E.
2014; 222-236); (Theodoridis, Y. & Sellis, T. 1996; 161-171) ; (Ang, C.
H. & Tan, T. C. 1997; 15-18). The performances of the two splitting
algorithms are compared, and the query time is measured for various
window query sizes. In Table 4, we test the following query sizes as a
percentage of the test data space: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9. The average query time of 10 uniformly distributed intersection
queries for each query size is measured. The indexes are built by the two
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splitting algorithms using the synthetic Uniform data files with
n=100000.

Table (4): Query time (synthetic data set).

Synthetic data file
Test Quadratic New GCPS Improvement
(milliseconds) (milliseconds) %
1 5.863 5.718 2%
2 5.879 5.791 2%
3 5.805 5.968 -3%
4 5.856 5.698 3%
5 5.690 5.585 2%
6 5.756 5.560 3%
7 5.312 5.242 1%
8 5.094 5.084 0%
9 4.942 5.061 -2%

In Table 5 and Table 6, we performed the same window query tests
for indexes built by the two splitting algorithms using the (LB) file and
the (Hypsogr) file respectively. The average query time of 10 uniformly
distributed intersection queries for each query size is measured.

Table (5): Query time (LB data set).

LB
Test Quadratic New GCPS Improvement

(milliseconds) (milliseconds) %
1 2.501 2.447 2%
2 2.547 2.566 -1%
3 2.537 2.521 1%
4 2.501 2.532 -1%
5 2.559 2.519 2%
6 2.709 2.629 3%
7 2.699 2.684 1%
8 2.709 2.747 -1%
9 2.676 2.664 0%
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Table (6): Query time (Hypsogr data set).

Hypsogr
Test Quadratic New GCPS Improvement

(milliseconds) (milliseconds) %
1 3.568 3.571 0%
2 3.694 3.577 3%
3 3.687 3.672 0%
4 3.603 3.568 1%
5 3.660 3.624 1%
6 3.701 3.671 1%
7 3.635 3.651 0%
8 3.655 3.643 0%
9 3.696 3.725 -1%

The results in Table 4, Table 5 and Table 6 show that the query
performance of the indexes built by the Quadratic algorithm and the new
algorithm are very close.

4 Conclusions

In this paper, we present a simple efficient linear node splitting
algorithm in an R-tree index. This algorithm is a linear enhancement of
the Quadratic algorithm proposed in (Guttman A, 1984; 47-57). With the
use of the new splitting algorithm in building the index, the index
creation time will be improved without affecting the query performance
of the index. We performed an experimental study using both real and
synthetic data sets. For future work we think that this technique can be
also applied to 3-D object problem spaces in a very similar approach.
This technique could be very useful for modern databases with high
frequencies that employ approximate query processing. A concurrent
approach can be applied to this algorithm for example we can apply the
concept of multithreading, while combining each of the two sub regions
which has resulted from the original region.
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