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Structural, electronic, magnetic & elastic properties of Full-Heusler
alloys: normal and inverse Zr,RhGa, Co,TiSn using
FP-LAPW method
By
Doha Naser Abu Baker
Supervisor
Prof. Mohammed Abu-Jafar

Abstract
The equilibrium structural parameters, electronic, magnetic and elastic
properties of the normal and inverse Zr,RhGa and Co,TiSn Full-Heusler
compounds have been studied using density functional theory (DFT) and
full-potential linearized augmented plane wave (FP-LAPW) method as
implemented in the WIEN2k package. The Generalized Gradient
Approximation (GGA) has been used for the exchange-correlation potential
(Vxc) to compute the equilibrium structural parameters; lattice constant (a),
bulk modulus (B), bulk modulus pressure derivative (B). In addition to
GGA approach, the modified Becke Johnson (mBJ) scheme has been used
to calculate the band gap energies. The normal Heusler Co,TiSn compound
and inverse Heusler Zr,RhGa compound within GGA and mBJ approaches
are found to have a half-metallic behavior, with an indirect energy gap in
the spin down configuration. The total magnetic moment for normal
Co,TiSn and inverse Zr,RhGa Full-Heusler compounds are to some extent
compatible with the experimental and theoretical results. The normal
Co,TiSn and inverse Zr,RhGa Full-Heusler compounds are mechanically
stable; are satisfy the Born mechanical stability criteria. B/S ratio shows

that the normal Co,TiSn has a brittle nature. While the inverse has a ductile
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nature. Poisson’s ratio (v) values show that the normal Co,TiSn and inverse

Zr,RhGa Full-Heusler compounds have an ionic bond nature.
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Chapter One
Introduction

In recent years, Heusler alloys received growing attention due to their
interesting physical properties[1-4], especially the half- metallic (HM)
character, half-metallic (HM) materials exhibiting a 100% spin polarization
around the Fermi surface [1-3] (a half metal is a ferromagnetic with a gap
in one of the spin directions at the Fermi energy &). Half metals can be
used as spin injectors for magnetic random access memories and other spin

dependent devices [2].

A lot of alloys were predicted to be half-metallic (HM) materials. In fact,
investigating and searching for new (HM) materials are mainly focusing on

the Heusler alloys [3-17].

From structural point of view, Heusler family can be described by two
variants: Full Heusler X,YZ phases, which typically crystallize in
Cu,MnAI(L21)-type structure and the Half-Heusler XYZ which typically
crystallize in NiMnSb (C1b) type structure, X and Y transition elements

are 3d,4d or 5d elements and Z is s-p elements.

The Full-Heusler compounds are divided into two types: normal Heusler

and inverse Heusler.

The atoms in normal Heusler compounds are lined up in X,: (1/4,1/4,1/4),

(3/4,3/4,314), Y(1/2,1/2,1/2), and Z(0,0,0), and the atoms in inverse



2
Heusler compounds are lined up in  X;:/(1/4,1/4,1/4), (1/2,1/2,1/2),
Y(3/4,3/4,3/4), and Z(0,0,0) [18] .

There are a lot of previous studies that have been done on Heusler
compounds and other compounds (half-metallic compounds) by using

different methods [19-24].

In 2006, Kandpal et al. [19] measured the lattice parameter and the total
magnetic moment for inverse Heusler Co,TiSn compound and found to be
7.072 A° 2 pg respectively. Also, the magnetic moment was calculated
using LMTO-ASA code [20], SPRKKR code [21], FP-LAPW method [22]
and FPLMTO method [23] ,it is found to be 1.40 pg, 1.55 g, 2 Ug, 2 Ug,
respectively. It is clear that the LMTO-ASA and SPRKKR codes fail to get
the correct measured total magnetic moment, while Wien2k and FPLMTO
codes do correctly obtain minority gap in this compound and also measured

correctly the magnetic moment 2 pg per formula unit .

In 2014, Birsan and Kuncser [24] studied the electronic, structural and
magnetic properties of  Zr,CoSn Full-Heusler compound by using FP-
LAPW method. They calculated the energy band gap (E,= 0.543 eV), total
magnetic moment (M = 3 pg) and the lattice parameter (a=6.76 A°). In
2014, A. Birsan [25] investigated structural and magnetic properties of the
Full-Heusler compound, Zr,CoAl using FP-LAPW method. He calculated
the lattice parameter (a= 6.54 A°), energy band gap (Eq = 0.48 eV), and

total magnetic moment (M = 2 g ).
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In 2015, Wang et al. [26] studied the half-metallic state and magnetic
properties versus the lattice constant in Zr,RhZ (Z = Al, Ga, In) Heusler
alloys by using CASTEP code. The CASTEP code is based on the density
functional theory (DFT) pseudo-potential method [27,28] .The calculated
lattice parameters were found to be 6.66, 6.64 and 6.81 A° respectively

and magnetic moment for all alloys was found to be 2 pg [26] .

In 2017, Jain et al. [29] studied electronic structure, magnetic and optical
properties of Co,TiZ (Z= B,AL,Ga,In ) Heusler alloys by using FP-LAPW
code. They found the lattice parameters to be 5.494, 5.842, 5.845 and 6.087
A° respectively. Bulk modulus is found to be 233, 182, 184 and 161 GPa,
respectively. Energy band gap is found to be 0.1, 0.44, 0.16 and 0.06 eV,
respectively, and total magnetic moment is found to be 1, 0.99, 1 and 1.03

Ug, respectively.

In 2017, Weia et al. [30] estimated the electronic, Fermi surface, Curie
temperature and optical properties of Zr,CoAl compound by using FPLO
code [31,32]. They calculated the lattice parameter (a = 6.629 A°), Bulk
modulus (B = 106.8 GPa, ), and the total magnetic moment( M = 2 Mg

for the normal Full-Heusler structure (Cu,MnAl).

In present work, the motivation is to investigate electronic, structural,
magnetic and elastic properties of normal Heusler Co,TiSn and inverse
Heusler Zr,RhGa compounds by using the full potential-linearized

augmented plane wave method [FP-LAPW method] within the Perdew-
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Burke-Ernzerhof generalized gradient approximation [PBE-GGA] [33]
integrated in Wien2k code [22] .

In chapter two, presents methodology details. In chapter three, we report
and discuss our obtained results for the system of interest, Finally

Conclusions are summarized in chapter four.
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Chapter Two
Methodology

Schrodinger equation; given in Equation 1 below; is very hard to be solved
for a N-body system. It has become evident that we must involve some

approximations to face a lot of problems of the body [22].

L Z
i — R C 1 e’ 1 e’ 1
—_Ei - _EI E|] _ izj = _ = i o _ ( }
z My z Mg 41|:E|] IRy r]l Bmep I m—mnl Bmep IRi—Ryl

The first term is the kinetic energy operator for the nuclei (T,), the second
term is for the kinetic energy of electrons (T.) and the last three terms
describe the coulomb interaction between the electron and the nuclei ( V),
between the electron and other electrons (V.e), and between the nuclei and

other nuclei (Vo) .

There isn’t an exact solution to this Schrodinger equation. However, to

solve this problem, there are some approximations.
The approximations are as follows:
2.1  The Open-Heimer Approximation

This approximation assumes that the nuclei are more massive than
electrons, and then T, =zero and Vnn  =constant
then H= T, +Vee + Vet (2

Where the External Potential is given by Ve =(VontVen)
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2.2 Hartree and Hartree-Fock Approximation

Hartree approximation depends on the principle of pauli exclusion. This

means that no two electrons can have the same set of quantum numbers.

In Hartree-Fock Approximation, many system particles have been solved
by assuming that the electrons are independent and separated from each

other. Thus, the wave function of electrons can be written as:
W (r1,r2,r3ec0ry) =¥a(r )Pa(r2) Ws(rs).... Pn(rn) (3)

The ¥, (r,) is the wave function for the electrons, and so the total

Hamiltonian can be written as:
(Ts+ Vext + VH) ‘P(r) =E \I’(r) (4)

The Tgis  the kinetic energy and Ve is the external potential whereas
the V4 is the Hartree potential for non-interacting electrons, and it can be
written as:

4
V= - 3. () Pl a)| d¥nd®y

()

i o

Bmeg 3

2.3 Density Functional Theory (DFT)

DFT provides a way to solve many body problem into a single body
problem, its successful minimizing of the energy functional will produce

the ground state density po

So E (p) is rewritten as the Hartree total energy plus another smaller

unknown functional called exchange-correlation functional, E,. (p).
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E (p) =Ts (p) + Ec (p) + Ex (p) + Eii (p) + Exc (p) (6)

Whereas T is single kinetic energy, E. is coloumb energy between nuclei
and electrons. E;i(p) represents the interaction between the nuclei. E, is
found to be the exchange correlation energy and it is unknown part, while

En is Hartree potential.

z .
En(p) =5 [ d°r d®r 20200 @)

Based on the variational principle, a set of effective one-particle

Schrodinger equation (Kohn-Sham Equation) is given as:

[Ts +Vex(r) +Vu(p(r)) +Vxc(p(r))|Pi(r) = &Di(r) (8)

Where & is the single particle energy, ®; is the electron wave function, V
iIs the Hartree potential, V¢ is the coulomb potential and Vyc is the

exchange-correlation potential.
2.4  Single Particle Kohn-Sham Equation.

The LAPW method is a procedure to solve the Kohn-Sham equations of the
ground state density, total energy and (Kohn-Sham) eigenvalues (energy
bands) of a many electrons system. In such method, we can interpret

Equation 7 as the energy function of a non-interacting classical electron

gas, subject to two external potentials: one is due to the nuclei L?gxt[p],

while the other is due to the exchange correlation effects V. .[p]. The

corresponding Hamiltonian is called the Kohn-Sham Hamiltonian. The

exact ground-state density p(¥) of an N-electron system is given as:



8

p(¥) = XL, di([®d:i(® = XL, |d:i(®)* (9)

Where the single-particle wave functions ¢,(¥) are the N lowest-energy

solutions of the Kohn- Sham equation
ﬁff.‘i‘bi = €¢; (10)

In certain occasions, Kohn-Sham equation is written as:

Ho(®) = [~V + Vo b= €, (11)

Where H is known to be the Hamiltonian operator, the effective potential

Vors (T) is the sum of the external, Hartree (electrostatic), and the exchange

correlation potential. V¢ (¥) is stated as:

- " SEglpl . 6E..[p]
Fgff(r] = Vgxt(r]+ ulp + &

&p 8p = ngt(F] + lIIFH + F_t.;- (F) (12)

Where Vy = :2 fp(?‘ ) dr’

meg @ 77|

It is shown from eqgn. (12) that V4 and V,. depend on the charge density

p(#), which in turn depends on the ¢;. This means that a self-consistency
problem occurs and therefore needs to be dealt with the solution ¢;. The

solution ¢; determines the original equation (Vy and V. in Hys), and the

equation cannot be written down and solved before its solution is being
recognized. Some starting density p, IS guessed, and a Hamiltonian Hgs;
can be constructed with it. The eigenvalue problem is also solved, and ®;
can be determined by p;. And now p; can be used to construct Hygs, which
will yield p, etc. The procedure can be subsequently used as long as the

series convergence and ps get out.
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Figure 1: Flowchart for the n" iteration in the self-consistent procedure to solve Hartree- Fock

or Kohn-Sham equations.
2.5 The Exchange-Correlation Functional.

The Kohn-Sham scheme described above was accurate: apart from the
preceding Born-Oppenheimer approximation, no other approximations
were made. But the fact that we do not know the exchange-correlation

functional was neglected so far and is still made unknown.
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Consequently, the introduction of an approximation is needed. The two
often - used approximations are LDA (Local Density Approximation) and

GGA (Generalized Gradient Approximation).
2.6 Local Density Approximation (LDA).

A widely used approximation-called (LDA) — is to postulate that the

exchange-correlation functional has the following form:

Ex* = fﬂ@)sﬂ[ﬂ@]d? (13)

Where g,.[p(r)] is the exchange-correlation energy per particle of a

uniform (a homogeneous) electron gas, it only depends on the electron

density p(T), thus the name given is the “local density approximation".

The exchange-correlation energy due to a particular density could be found
by dividing the material into infinitesimally small volumes with a constant

density [17].

Each volume contributes to the total exchange correlation energy by an
amount equal to the exchange correlation energy of an identical volume
and filled with a homogeneous electron gas. The exchange-correlation
energy is decomposed into exchange and correlation terms linearly as

shown below:

EDA — ELPA 4 ELOA (19)
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The first contribution is the exchange energy that comes from the Pauli

Exclusion Principle. The second contribution, called the correlation energy

ELPA originates from the interaction of electrons having the same spin

[18].

The next logical step to improve the LDA is to make the exchange-
correlation contribute to every infinitesimal volume not only to be
dependent on the local density in that volume, but also to contribute to the
density in the neighboring volumes. To sum up, the gradient of the density
will play a role. This approximation is called the Generalized Gradient

Approximation (GGA).
2.7 Generalized Gradient Approximation (GGA).

Where as LDA uses the exchange energy density of the uniform electron
gas, regardless of the homogeneity of the real charge density, the GGA is
concerned with such inhomogeneities (non-uniform charge density) by

including the gradient of the electron density in the functional. The GGA
uses the gradient of the charge density ﬁp (7).

The GGA can be conveniently written as follows
ESEA = [ p(Pe.p(), Vp(@)] d7 (15)

GGA seeks to improve the accuracy of the local density approximation
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2.8 Augmented Plane Wave (APW) Method.

Augmented plane wave method is introduced by Slater as a basis of
functions for solving the one-electron equation. APW method is a
procedure for solving the Kohn-Sham equation. In the APW scheme, the
unit cell is divided into two types of regions: (I) atomic centered muffin-tin

(MT) spheres with radius R_, and (Il) the remaining interstitial region as

shown in figure 2,

Figure 2: Scheme of Augmented Plane Wave.

In both types of regions, different basis sets are used. In the region far away
from the nuclei, electrons are almost free, so plane waves are employed.
However, close to the nuclei, the electrons behave almost as if they were in
a free atom and therefore they can be described as atomic like- wave

functions (radial solution of Schrodinger’s equation)

The introduction of such a basis is due to the fact that close to the nuclei

the potential and wave functions are very similar to those in an atom, while
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they appear to be smoother between the atoms. In other words, the further

the region from the nuclei, the more or less “free” the electrons would

become.
The APWs consists of:
- %eiﬁ”m"i rel
GEEE) = { VO (16)
TimA R ur (! YLE), ' <S,

Where K is the reciprocal lattice vectors and k is the wave vector inside the
Brillion zone, V is the volume of the unit cell, 7 is the poison
vector inside the sphere S,, uf is the numerical solution to the radial

Schrodinger equation at the energy «.

2.9 The linearized Augmented Plane Wave (LAPW) Method.

The linearized augmented plane wave method (LAPW) scheme was
introduced by Andersen [ref.] who suggested the expansion of the energy

dependence on radial wave functions u(r’) inside the atomic spheres with its
du*(r', E)

energy derivative g = u*(r',E). In this scheme, a linear

combination of radial function times spherical harmonics are used.

Inside the atomic sphere of radius R; a linear combination of the radial
functions times spherical harmonics Y,,(r) is used, where u(r,E,) - at the
origin - is the regular solution of the radial Schrédinger equation for energy

E, and the spherical part of the potential inside the atomic sphere u*(r',E)

is the energy derivative of u, taken at the same energy E;
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k)= 520 B) + bR B)) VL), 1<

=

g (17)
In the interstitial region, a plane wave expansion is used.

- 1 . "

k= _ i(k+K).r =

=(r,E) = e ,rel 18
¢ (r.E) v (18)

2.10 The Augmented Plane Wave + Local Orbits (LAPW+LO0)
Method.

This alternative approach was proposed by Sjostedt et al [18], namely the
APWH+lo (local orbital) method. They have shown that the standard LAPW
method with the additional constraint on the PWs of matching in value and
slope to the solution inside the sphere is not the most efficient way to
linearize Slater's APW method. It can be made much more efficient when
one uses the standard APW basis, but, in fact, with u(r,E,) at a fixed energy
E, in order to keep the linear eigen value problem. One then adds a new
local orbital (lo) to have enough variation flexibility in the radial basis

functions [19]:
by = 2im [ﬂlm j{n“l(r , El]] Vi (F) (19)

rel

b, = {[a cu(r,Ey) +blu(r Ey )| Vim(® , r' <R, (20)
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The coefficient ai®,, bi° are decided by necessities that ¢!2 should be

regularized and has a zero value with a slope at the sphere border.

In its general form, the LAPW method expands the potential in the

following form:

Z Vi, ()Y}, (F) ,inside sphere

Vi) =4 ™ P (21
Z V. e'¥ T outside sphere
k
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Chapter Three
Results and Discussion

3.1 Computational Method

In this work, First-principles full-potential linearized augmented plane
wave [FP-LAPW] computations have been performed as implemented in
Wien2k package [22] within the generalized gradient approximation [PBE-
GGA] [33] . For the compound Co,TiSn,the muffin-tin radii (Ryy) of Co,
Tiand Sn atoms are 2.22,2.17 and 2.22 a.u., respectively and for the
compound Zr,RhGa ,Ryr of Zr, Rh and Ga atoms are 2.37, 2.49 and 2.37

a.u., respectively .

The number of plane waves was restricted by Kyax Rwt =8 and the
expansions of the wave functions was set to I=10 inside the muffin thin
spheres. 35k points in the irreducible Brillion zone (BZ) with grid 10 x 10
x10 Monkhorst-Pack (MP) [34] meshes (equivalent to 1000k points in the
full Brillion zone (BZ)) are used to obtain self-consistency for Co2TiSn

and Zr2RhGa compounds.

The self-consistent calculations are considered to converge only when the
calculated total energy of the crystal converges to less than 10 Ry.
The elastic component Cy;, Cy, and Cy4, are calculated by using the method
developed by Morteza Jamal [35] and integrated in Wien2k code as the
IRelast package. The elastic constants of the cubic phase are calculated by

using second-order derivative within formalism of the Wien2k code.
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3.2 Structural Properties

The optimized lattice constant (a), bulk modulus (B), and its pressure
derivative (B") were calculated by fitting the total energy to Murnaghan’s

equation of state (EOS) [36]. Murnaghan’s equation of state (EOS) is given

by:

(22)

vu B'II

Bv |( %/ BV,
— { :l'r:] _|_1] _ - o
B | B -1 B' -1

Where E, is the minimum energy, B is the bulk modulus at the equilibrium
volume and B’ is the pressure derivative of the bulk modulus at the

equilibrium volume.

dE de diE
Pressure,P = — —, Bulk modulus ,B = —V—=V—
dav dav ave

Normal Heusler Co,TiSn and Heusler Zr,RhGa compounds have space
group Fm-3m (225),and inverse Heusler Co,TiSn and Heusler Zr,RhGa
compounds have space group F-43m (216) [19]. We have calculated the
structural properties for Full-Heusler Co,TiSn and Zr,RhGa compounds.
The crystal structure of Full-Heusler Co,TiSn and Zr,RhGa compounds are
shown in Figure 3. The total energy as function of the volume for normal
and inverse Heusler Co,TiSn, Zr,RhGa compounds are shown in Figure 4
(a-d).The optimized structural parameters are calculated from the equation

of state (EOS) and tabulated in Table 1



18

(@) (b)

©) (d)

Figure 3: The crystal structure of (a) normal Heusler Co,TiSn (b) inverse Heusler Co,TiSn (c)

normal Heusler Zr,RhGa (d) inverse Heusler Zr,RhGa compounds.
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Figure 4: Total energy as function of the volume for (a) normal Co,TiSn (b) normal Heusler

Zr,RhGa and (c) inverse Zr,RhGa (d) inverse Co, TiSn compounds.
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The estimated lattice parameter (a), bulk modulus (B) and pressure

derivative (B’) at zero pressure are tabulated in Table 1 :

Table 1: Calculated lattice parameter(a), bulk modulus(B), pressure
derivative (B’) for normal and inverse Heusler Co,TiSn andn

Zr,RhGa compounds.

Compounds Reference Lattice B B’
parameter(a) (GPa) (GPa)
A

Normal Present 6.094 166.932 4,627
COzTiSﬂ

Experimental 6.072 [19] - -
Normal Present 6.679 134.1 4.062
Zr,RhGa
Inverse Present 6.151 139.179 3.807
Co,TiSn
Inverse Present 6.619 129.319 5.073
Zr,RhGa

Theoretical 6.64 [26] - -

Table 1 shows that our calculated lattice parameter is in good agreement
with the experimental lattice parameter for normal Heusler Co,TiSn
compound. The calculated lattice parameter of normal Heusler Co,TiSn
compound is slightly overestimated the experimental lattice parameter with

0.36% larger [19] .

Our calculated lattice parameter of inverse Heusler Zr,RhGa compound is

found to be closer to the other theoretical result [26].
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3.3 Magnetic Properties

In this part, the total and partial magnetic moments for normal Heusler
Co,TiSn and Heusler Zr,RhGa ,and inverse Heusler Co,TiSn and Heusler
Zr,RhGa Compounds were calculated, and compared with the experimental

and other theoretical results as shown in Tables 2 and 3.

Table 2: Total magnetic moment for normal and inverse Heusler

Co,TiSn Compounds.

Magnetic Moment (ug)

Total

Compounds Co Co Ti Sn Interstitial | magnetic

moment

(Hs)

Normal | Present 1.32398 | 1.32398 | 0.19866 | 0.00709 | ~0.47779 1.9786

Co,TiSn | Experimental - - - - - 2 [19]

Result

nverse Present 0.46092 | 1.54481 | 0.25961 | 0.01579 | "0.12165 | 1.64026

Co,TiSn

Table 3: Total magnetic moment for normal and inverse Heusler

Zr,RhGa Compound.
Magnetic Moment (Ug)
Total
Compounds Zr Zr Rh Ga Interstitial | magnetic
moment
(D)
Normal | Present 0 0 0 0 0 0
Zr,RhGa
Inverse Present 0.88019 | 0.44447 | 0.15415 | 0.00905 | 0.50214 1.99
Zr,RhGa | Theoretical | - - - - - 2 [26]
Result

The integer value of the total magnetic moment (pg ) is characteristic of

half-metallic materials.
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We noticed that the total magnetic moment are found to be in the range
from 1.64026 to 2 pg. We found that the normal and inverse Heusler
Co,TiSn and inverse Heusler Zr,RhGa compounds are ferromagnetic
compounds .The total magnetic moment for normal Zr,RhGa compound is

0 yug which means it does not have magnetic behavior.

Present results show that the calculated total magnetic moment of normal
Heusler Co,TiSn compound is underestimated the experimental value with
1.07% less[19] . Our calculated total magnetic moment of inverse Heusler
Zr,RhGa compound is found to be closer to the other theoretical result
[26]. Present total magnetic moment results are to some extent compatible
with experimental and theoretical results. The calculated total spin
magnetic moments are clearly integral values and are in agreement with the

slater-Pauling rule [37].
3.4 Electronic Properties

In this part, the band structure, the total and partial density of states for
normal Heusler Co,TiSn and Heusler Zr,RhGa, and inverse Heusler

Co,TiSn and Heusler Zr,RhGa compounds were calculated.

It is clear from the band structure and density of states that the normal
Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds both have a
half -metallic behavior , which means at spin up the materials behave as
metallic nature while at spin down the materials behave as semiconducting
nature, and inverse Heusler Co,TiSn and normal Heusler Zr,RhGa

compounds both have a metallic behavior.
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Figure 5 (a, b and c) shows that the band structure spin up of normal and
inverse Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds have
metallic nature by using PBE-GGA method. Figure 6(a and c) shows that
the band structure spin down of normal Heusler Co,TiSn and inverse
Heusler Zr,RhGa compounds have an indirect energy band gap using
PBE-GGA method. The values of the energy band gaps of spin down are
calculated for normal Heusler Co,TiSn and inverse Heusler Zr,RhGa
compounds using PBE-GGA method . The energy band gaps of normal
Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds are found to be

0.482 eV and 0.573 eV, respectively as shown in Tables 4 and 5.

Figure 6b shows that the spin up of inverse Heusler Co,TiSn has metallic
behavior using PBE-GGA method. The band structure of normal Heusler
Co,TiSn and inverse Heusler Zr,RhGa are also calculated by using mBJ-

GGA.

Figure 7 shows that the normal Heusler Zr,RhGa compound has metallic
behavior. Figure 8 (a and b) also shows that the spin up of normal
Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds both have

metallic behavior using mBJ-GGA method.

Figure 9 (a and b) shows the energy band gap within mBJ-GGA method
for normal Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds is
still indirect band gap and the energy gap increases for normal Co,TiSn to

1.430 eV and for inverse Zr,RhGa to 0.641 eV at spin down.
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Figure 5: Band structure spin up by using PBE-GGA method for (a) normal Co,TiSn (b)

inverse Co,TiSn (c) inverse Zr,RhGa compounds
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Figure 9: Band structure spin down by using mBJ-GGA method for (a) normal Co,TiSn

(b) inverse Zr,RhGa compounds .

The band gap types and high symmetry lines are presented in Tables4and5:

Table 4: Energy band gaps for normal Heusler Co,TiSn and normal

Heusler Zr,RhGa Compounds using PBE-GGA and mBJ-GGA

methods Compounds.

Compounds | Band gap type | High Symmetry | Eg-PBE-GGA | Eg-mBJ-GGA
Lines (eV) (eV)

Co,TiSn Indirect I-X 0.482 1.430

Zr,RhGa Metallic - - -




Table 5: Energy band gaps for inverse Heusler Co,TiSn and inverse

Heusler Zr,RhGa Compounds using PBE-GGA and mBJ-GGA
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methods.
Compounds | Band gap type | High Symmetry | Eg-PBE-GGA | Eg-mBJ-GGA
Lines (eV) (eV)
Co,TiSn Metallic - - -
Zr,RhGa Indirect L-A 0.573 0.641

Total and partial density of states of spin up and spin down for normal
Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds are shown in
Figures (10 — 16). Density of state figures (10-16) show also half metallic
property for normal Co,TiSn and inverse Zr,RhGa compounds with
existing small energy band gap in the spin down direction, and this means
these have half metallic

that compounds

property.
In the spin up of normal Co,TiSn (Figure 10), the valence band is due to d-
state of Co, s-state and p-state of Sn and small contribution from Ti
d-state, while the conduction band is due to d-state of Ti and small
contribution from Sn p-state. In spin down of normal Co,TiSn (Figure 11),
the valence band is due to Co d-state, Ti d-state and Sn s-state and p-state,
while the conduction band is due to Co d-state and Ti d-state and small

contribution from s-state and p-state.

In normal Zr,RhGa (Figure 12), the valence band is due to Rh d-state and
Ga s-state, and small contribution from Zr near to fermi level due to Zr
d-state, and the conduction band is due to Zr d-state, and small

contribution of Rh due to d-state.
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In spin up of inverse Co,TiSn (Figure 13), the valance band is due to Co
d-state, Sn s-state and p-state, and small contribution from Ti d-state, and
the conduction band is due to Ti d-state and small contribution from s-state
and p-state. In spin down of inverse Co,TiSn(Figure 14), the valence band
Is due to Co d-state near to fermi level and Sn s-state and p-state, and
small contribution from Ti d-state, and the conduction band is due to Co
d-state near to femi energy and Ti d-state, and small contribution from Sn

s-state and p-state.

In spin up of inverse Zr,RhGa (Figure 15), the valence band is due to Rh
d-state, Ga d-state, and small contribution from Zr d-state near to fermi
energy level, and the conduction band is due to Zr d-state near to fermi
energy level. In spin down of inverse Zr,RhGa (Figure 16), the valence
band is due to Rh d-state , Ga d-state and small contribution from Zr
d-state, and the conduction band is due to Zr d-state near to fermi energy

level, and small contribution from Rh and Ga d-states .
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3.5 Elastic Properties

In this part, elastic constants(C;), bulk modulus (B), shear modulus (S),
B/S ratio, Young’s modulus (Y), Poisson’s ratio (v)and anisotropic factor
(A) of the normal Co,TiSn and inverse Zr,RhGa compounds were
calculated. For a cubic crystal, the standard mechanical stability is C,; > 0,

Ci1-C1,>0,Cy+2Cp>0 and Cu>0 [38]

Present calculations satisfied all the above conditions. We noticed that the
normal Heusler Co,TiSn and inverse Heusler Zr,RhGa compounds are
found to be mechanically stable, while inverse Heusler Co,TiSn and
normal Heusler Zr,RhGa compounds are mechanically unstable. In our
calculation, we focused on normal Heusler Co,TiSn and inverse Heusler
Zr,RhGa Compounds. For the face center cubic crystal, the bulk modulus
and shear modulus were calculated using Voigt and Reuss approximations,
Bulk modulus for cubic structure can be calculated from the following

equations [39,40]:

B :§(611+2(“12) (23)

Voigt Shear modulus S, and Reuss shear modulus S5 are given by the
following two equations:

Sv = é(cu - Clz + 3C44] (24)
SR — 5Cas(C11—C12) (25)

4c5+3(C11—C13)
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The average value of Voigt shear modulus and Reuses shear modulus is
called Hill shear modulus ,and can be estimated from the following

equation [39,40] :

St == (S, + Sg) (26)

Young's modulus () is defined as the ratio of the stress to strain, and given

by:

9548
V= (Sgg+3B)

(27)

Poisson's ratio and anisotropic factor can be computed by using bulk and

shear moduli, Poisson's ratio and anisotropic factor can be given by:

3B-25

V= 2(3B+5) (28)
2c4a

A= e )

Elastic constants, Voight bulk modulus (B), Voight shear modulus (S), B/S
ratio, Voight Young’s modulus (Y), Voight Poisson’s ratio (v) and

anisotropic factor (A) are presented in Table 6:
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Table 6: Elastic constants for normal Co,TiSn and inverse Zr,RhGa Full Heusler Compounds.

Materials Cn Cop, Cu B S B/S Y V A
(GPa) (GPa) (GPa) (GPa) | (GPa) (GPa)

Normal |246.976 |136.962 |109.226 |173.633 |87.53 |0.841 |224.83|0.284 |1.985
Co,TiSn

Normal |118.2706 | 141.5202 | 2.1653 133.77 73.350 | 739.931|710.13 [ 0.512 |70.186
Zr,RhGa

Inverse 120.027 | 151.389 |104.594 |140.934 |56.482|2.495 |149.48|0.323 |76.67
COgTisn

Inverse 145.279 | 116.5186 | 70.4579 |126.105 |48.026 | 2.6257 |127.85|0.331 |[4.9

Zr,RhGa




4
The Bulk (B) or shear modulus (S) measures the hardness of materials [37].
The ratio B/S measures the ductility and brittleness of the materials. When
B/S > 1.75, the materials behave in a ductile nature, otherwise it behaves in
a brittle nature [38]. In the present calculations, the B/S ratio of normal
Heusler Co,TiSn, normal Heusler Zr,RhGa, inverse Heusler Co,TiSn, and
inverse Heusler Zr,RhGa compounds are 0.841, -39.931, 2.495 and 2.6257,
respectively, The normal Heusler Co,TiSn and normal Heusler Zr,RhGa
both have brittle nature, while inverse Heusler Co,TiSn and inverse

Heusler Zr,RhGa both have ductile nature.

Young modulus (Y) measures the stiffness of materials. The highest the
value of Young modulus (Y), the stiffest is the material and the solids will
have covalent bonds. The Poisson ratio (v) measures the stability of the
material and provides useful information about the nature of the bonding
[39]. When Poisson ration (v) is greater than 1/3, the materials behave in a
ductile nature. Otherwise, it behaves in a brittle nature [40], and if the
value of Poison's ratio is greater than 0.25, the material will have ionic

bond; otherwise, the material has covalent bond.

In the present calculations, the v of normal Heusler Co,TiSn, normal
Heusler Zr,RhGa, inverse Heusler Co,TiSn, and inverse Heusle Zr,RhGa
compounds are found to be 0.284, 0.512, 0.323 , and 0.331, respectively,
The normal Heusler Co,TiSn, normal Heusler Zr,RhGa, inverse Heusler
Co,TiSn, inverse Heusler Zr,RhGa compounds have ionic bonds. Likewise,
the elastic anisotropy is an important parameter to measure the degree of

anisotropy of materials [41]. For an isotropic material, the value of A is
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unity. Otherwise, the material has an elastic anisotropy [42]. In the present
calculations, the A of normal Heusler Co,TiSn, normal Heusler Zr,RhGa,
inverse Heusler Co,TiSn, and inverse Heusler Zr,RhGa compounds are
found to be 1.985, -0.186, -6.67, 4.899, respectively and the normal
Heusler Co,TiSn, normal Heusler Zr,RhGa ,inverse Heusler Co,TiSn, and

inverse Heusler Zr,RhGa Compounds are elastic anisotropy [43].
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Chapter Four
Conclusion

In this work, the structural, electronic, magnetic and elastic properties for
normal Heusler Co,TiSn and inverse Heusler Zr,RhGa Full Heusler

compounds have been studied.

We found that normal Heusler Co,TiSn compound and the inverse Heusler
Zr,RhGa compound have half-metallic behavior. The normal Heusler
Co,TiSn and inverse Heusler Zr,RhGa compounds have an indirect energy
gap of 0.482 eV and 0.573 eV using PBE-GGA method. It was shown that
the energy band gap within mBJ-GGA for normal Heusler Co,TiSn
compound and for inverse Heusler Zr,RhGa compound are still indirect
band gap and the energy gap increases for normal Heusler Co,TiSn to be

1.430 eV and for inverse Heusler Zr,RhGa to be 0.641 eV.

The calculated total magnetic moment for these compounds are in the range
from 1.64 to 2 pg,which means that present results are to some extent

compatible with the experimental and theoretical results .

The elastic properties indicate that the normal Heusler Co,TiSn compound
and the inverse Heusler Zr,RhGa compound are mechanically stable. B/S
results show that the normal Heusler Co,TiSn and normal Heusler Zr,RhGa
compounds both have brittle nature, while inverse Heusler Co,TiSn and
inverse Heusler Zr,RhGa compounds both have ductile nature. The
Poisson's ratio (v) of normal Heusler Co,TiSn, normal Heusler Zr,RhGa,

inverse Heusler Co,TiSn, and inverse Heusler Zr,RhGa compounds are
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found to be 0.284, 0.512, 0.323, and 0.331, respectively. The normal
Heusler Co,TiSn, normal Heusler Zr,RhGa, inverse Heusler Co,TiSn, and
inverse Heusler Zr,RhGa compounds have ionic bonds. The A of normal
Heusler Co,TiSn, normal Heusler Zr,RhGa, inverse Heusler Co,TiSn, and
inverse Heusler Zr,RhGa compounds are found to be 1.985, -0.186, -6.67,
4.899, respectively, and the normal Heusler Co,TiSn and normal Heusler
Zr,RhGa, inverse Heusler Co,TiSn, and inverse Heusler Zr,RhGa

compounds are elastic anisotropy.



45

References

1. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys.
Rev. Lett. 50 2024 (1983).

2. G. A. Prinz, Science 282 1660 (1998).

3. G.D. Liu, X.F. Dai, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H. Zhu, and
J.Q. Xiao, Phys. Rev. B 74 054435 (2006).

4, X.F. Dai, G.D. Liu, L.J. Chen, J.L. Chen, and G.H. Wu, Solid State
Commun.140 533 (2006).

5. G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, Y.X. Li, Phys. Rev. B 77
014424 (2008).

6. E. Bayar, N. Kervan, S. Kervan, J. Magn. Magn. Mater. 323 2945
(2011).

7. Q.L. Fang, J.M. Zhang, K.W. Xu, V. Ji, J. Magn. Magn. Mater. 345 171
(2013).

8. N. Kervan, S. Kervan, J. Magn. Magn. Mater. 324 645 (2012).

9. H.Y. Jia, X.F. Dai, L.Y. Wang, R. Liu, X.T. Wang, P.P. Li, Y.T. Cui,
G.D.Liu, J. Magn. Magn. Mater. 367 33(2014).

10. A. Birsan, P. Palade, V. Kuncser, J. Magn. Magn. Mater. 331 109
(2013).



46
11. Yamamoto M, Marukame T, Ishikawa T, Matsuda K, Uemura T and

Arita M J. Phys. D:Appl. Phys. 39 824 (2006) .

12. K'ammerer S, Thomas A, H utten A and Reiss G Appl. Phys. Lett. 85
79 (2004) .

13. Okamura S, Miyazaki A, Sugimoto S, Tezuka N and Inomata K
Appl. Phys. Lett. 86 232503 (2005).

14. Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A,
Miyazaki T and Kubota H Appl. Phys. Lett. 88 192508 (2006).

15.Sakuraba Y, Miyakoshi T, Oogane M, Ando Y, Sakuma A, Miyazaki T
and Kubota H Appl. Phys. Lett. 89 0528508 (2006).

16. Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A and
Miyazaki T J. Phys. D: Appl. Phys. 39 834 (2006).

17. Tezuka N, lkeda N, Miyazaki A, Sugimoto S, Kikuchi M and
Inomata K Appl. Phys. Lett. 89 112514  (2006).
18.Dunlap,R.,Effects of composition on the properties of magnetic

shape memory alloys, Halifax, Nova Scotia, March (2007).

19. Hem Chandra Kandpal, Vadim Ksenofontov ,Marek Wojcik , Ram
Seshadri ,and Claudia Felser, Electronic structure, magnetism, and
disorder in the Heusler compound Co2TiSn, Journal of Physics D:

Applied Physics(2006).


http://iopscience.iop.org/journal/0022-3727
http://iopscience.iop.org/journal/0022-3727

47
20. Jepsen O and Andersen O K Stuttgart tb-Imto-asa program version

47 http://www.fkf.mpg.de/andersen/, (2000).

21. Ebert H The Munich spr-kkr package, version 3.6,

http://olymp.cup.uni-muenchen.de/ak/ebert/sprkkr ,(2005) .

22. Blaha, P. Schwarz, k., Madsen,G., Kvasnicka ,D.,& Luitz,J.2016.
WIENZ2k An Augmented PlaneWavePlus Local Orbitals Program for
Calculating Crystal Properties. In User’s Guide. Place Published:
Vienna University of Technology (Release 12/12/2016).

23. Savrasov S Y and Savrasov D Y Phys. Rev. B 46 12181(1992).
24. A. Birsan, V. Kuncser, Theoretical investigations of electronic
structure and magnetism in Zr2CoSn full-Heusler

compound,arXiv:14117154v1[cond-mat.mtrl-sci]26Nov (2014).

25. A. Birsan, Magnetism in the new full-Heusler compound, Zr2CoAl: A

first-principles study, Current Applied Physics 14 1434e1436 (2014).

26. X.T. Wang, JW. Lu, H. Rozale, X.F. Liu, Y.T. Gui, G.D. Liu,
Half-metallic state and magnetic properties versus the lattice constant
in Zr2RhZ (Z = Al, Ga, In) Heusler alloys, School of Material Sciences
and Engineering, Hebei University of Technology, 8 DingZiGu 1st Road,
Tianjin, PR China (2015).

27. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoolous,
Reviews of Modern Physics 64 1065 (1992).


http://www.fkf.mpg.de/andersen/
http://olymp.cup.uni-muenchen.de/ak/ebert/sprkkr%20,(2005

48
28. M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip,
S.J. Clark, M.C. Payne, Journal of Physics: Condensed Matter 14
2717(2002).

29.Rakesh Jain, N. Lakshmi,Vivek Kumar Jain, Vishal Jain, Aarti R
Chandra and K. Venugopalan , Electronic Structure ,Magnetic and
Optical properties of Co,TiZ(Z-B,AL,Ga,In), Journal of Magnetism and
Magnetic Materials (2017).

30. Xiao-Ping Wei, Weiwei Sun, Ya-Ling Zhang, Xiao-Wei Sun, Ting
Song, Ting Wang, Jia-Liang Zhang, Hao Su, Jian-Bo Deng, Xing-Feng
Zhu, Investigations on electronic, Fermi surface, Curie temperature and
optical properties of Zr2CoAl, Journal of Solid State Chemistry 247 97
(2017).

31. K. Koepernik, H. Eschrig, Phys. Rev. B 59 1743 (1999).
32. 1. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60 14035 (1999).

33. Perdew J P, Burke S and Ernzerh of M Phys. Rev. Lett 77 3865
(1996).

34. H. J. Monkhorst , I. D. Pack , Phys. Rev. B 13 5188 (1976).

35.M. Jamal, IRelast Package is provided by M. Jamal as part of the
commercial code WIEN2k : Available

from:http://www.wien2Kk.at/reg.user/unsupported; (2014) .

36. F. D. Murnaghan , proe. Natl. Acad. Sci. U.S.A. 30 244 (1944).



49
37.Galanakis I. , Dederichs P. H. , Papanikolaou N. , Slater-Pauling
behavior and origin of the half-metallicity of the full-Heusler alloys,

Phys. Rev. B,66 1744 29 (2002) .

38. Z. W. Huang, Y. H. Zhao, H. Hou, and P. D. Han, Physica B 407 1075
(2012) .

39. M. Born and K. Huang (Oxford;Clarendon) (1956).
40. Reuss, Z. Angew. Math. Mech. 9 49 (1929).
41. D. M. Teter, MRS Bull. 23 22 (1998).

42. S. Pugh , London ,Edinburgh ,Dublin Philosophical Magazine, J Sci
45 823 (1954).

43. C. Zener, Elasticity and Anelasticity of Metals, University of Chicago
Press, Chicago (1948).

44. P. Ravindran, L. Fast, P. A. Korzhavyi, and B. Johansson, J. Appl.
Phys. 84 4891 (1998).



Laihgll 7 ladl) daalas

Ldad) bl 408

Laig ally Lpeualinally Aig SNy A (ailiadl

Co2TiSN & Zr2TiSN :dussaally Ampdall 158 il yal
Al gl aladiuly

Aas)

il )

saa gl daaa .ol

LG el B pcalad) daje o sl clillial YlaSic) dagkY) oda ciath
Olaeald — il Ayibagl) 2 ladl) drala B cllal) cilaal

2018



dahall J0a il yal d3ig sally dunhilially dxig 58Ny dpus Al ailadl)
alil) agadl aladindy Co2TiSN & Zr2TiSn :dussaalls
das
S sl pal
iyl
sdaa gl deaa ol
oaidlall
dapbll Ol ClS)ad dugpally duahlizally 45 5V A0Sl (ailadll (asd &
dadalagl) 20N Aplaill sl aladnad Gyl e (CO2TISN & Zr2TiSn) e sSadl)
ol Cujglly (FP-LAPW) dhall dsinadl cilasall 53 aall Sl sally (DFT)
WIEN2K 7zl sl aa (PBE-GGA) aasdl

(B) bl Jalaag (a) Al s Glal (GGA) (:AMM @.})ﬂ\ i) e\:ilu\ (:3
Ol pmign (S ol pladid 8 Liagly (B) aaall Ally A50all Jalae e

.Aaldll bgnd
Al 28 il aal (g

Al dpalall Kby Sall CO,TISN 5 aakall ZHRhGA (Syall o s -1
Caalll duals Wby aglll CO,TiISN 5 wSall ZHRNGE  cnSyall of s 22

JREERE DY

oailbiad @y aghlly sl CO,TiSNs el ZnRhGa  clyall of i 23
oudalize

LAY ATl dleall A (e A Waliaag) ) a3l o) (s 4

Ohfise 2aball CO,TiSN 5 wSall ZHRNGA (Syall o Lg pall dpals PR (40 .5
LSl



z
Jia andal) CO2TiSN Syes ayhally canaall Q8 Sl Zr2RNGA Spe o (s .6
s

gl Lails ) O\Stiay ozl CO2TiSN 5 wSall ZI2RNGA casSyal) of o .7



