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Abstract 

Based on the density functional theory, the full-potential linearized 

augmented plane wave (FP-LAPW) method has been carried out to 

determine the structural stability of different crystallographic phases, the 

pressure-induced phase transition, the electronic properties, the elastic 

constants and their related properties, the mechanical properties, the 

thermodynamic properties as well as the optical properties of LiH, NaH, 

KH, RbH and CsH compounds. The rocksalt (RS), zincblende (ZB), 

cesium chloride (CsCl) and wurtzite (WZ) structures are considered. The 

Perdew, Burke and Ernzerhof Generalized Gradient Approximation (PBE-

GGA) approach was used for the exchange-correlation potential to compute 

the equilibrium structural parameters, transition pressure, elastic constants 

and their related properties, the mechanical properties as well as the 

thermodynamic properties. The PBE-GGA and modified Becke-Johnson 

(mBJ-GGA) schemes have been used for the exchange-correlation potential 

to calculate the band structures and optical properties. The alkali hydrides 

lattice constant increases as going from Li to Cs in the periodic table, while 

bulk modulus decreases. The calculated band structures using the mBJ-

GGA approach have an insulating nature for these compounds in all the 

considered structures, except the LiH and CsH in CsCl structure, which 

show a semi-conducting behavior. The calculated elastic constants for 

alkali hydrides in the four structures RS, CsCl, ZB and WZ at ambient 



XVII 

pressure are mechanically stable, except LiH and NaH in CsCl structure. 

The mBJ-GGA scheme is found to be more accurate than PBE-GGA in 

computing the energy-band gap and optical properties compared to the 

experimental results. The elastic constants (C11, C44, B) and their related 

properties in the RS structure are increasing with increasing pressure, C12 

decreases as the pressure increases indicates that these compounds are 

unstable under high pressure, and the RS structure transforms to CsCl 

structure. Elastic constants, bulk modulus, Shear modulus (stiffness) and 

Debye temperatures of these compounds decrease as going from Li to Cs in 

the periodic table. These compounds in the RS structure are more 

mechanically stronger at ambient conditions. Alkali hydrides except the 

LiH and CsH in CsCl structure are suitable as dielectric compounds; they 

have a wide direct energy band gap. Alkali hydrides have a wide absorption 

region, on the other hand NaH and RbH absorption is very huge compared 

with LiH, KH and CsH absorption. NaH and RbH are excellent absorbent 

materials; maximum absorption regions are located in the middle 

ultraviolet (MUV) region and far ultraviolet (FUV) region. LiH, RbH and 

CsH compounds are also found to be a wide direct energy band gap; 

therefore, they could be suitable for the optoelectronic UV device 

applications. The absorption coefficient α(w), imaginary part of dielectric 

constant       and the extinction coefficient k(w) for alkali compounds 

vary in the same way. The calculated ground state parameters for these 

compounds in each structure are well compared with the available 

theoretical and experimental results, and most of them are in good 

agreement with other calculations and experimental measurements. 



1 

Chapter One 

Introduction 

Hydrogen is the lightest element in the periodic table, which is why alkali 

hydrides XH (X=Li, Na, K, Rb and Cs) have the simplest structures. These 

molecules attract researchers in various areas because they have the 

simplest electronic structure which enabling comparisons between different 

theoretical models. The alkali hydrides XH have been an important 

compounds due to their possible applications in nuclear and chemical 

industries [1]. They have many promising uses, such as hydrogen storage 

and obtaining high-energy fuels [1]. These compounds are, to some extent, 

soft solids: their bulk modulus gradually decreases from Li to Cs in the 

periodic table, while their lattice constants increases. These materials have 

been investigated both experimentally and theoretically for many years. 

The X-ray experimental study shows that XH compounds crystallize in the 

rocksalt (RS) structure at normal conditions [2, 3]. The structural phase 

transition of NaH, KH, RbH and CsH compounds from the low-pressure 

rocksalt structure to the high-pressure cesium chloride structure has been 

observed in diamond-anvil-cell high-pressure experiments [3, 4]. The 

transition pressure for these compounds ranges from 1.2 GPa for CsH to 

approximately 30 GPa for NaH [2–4], while the RS to CsCl phase 

transition in LiH has not yet been observed. The transition pressure for 

these alkali decreases as the alkali atomic mass increases. NaH has an 

enormous transition pressure compared to the others, which is 

approximately 30 GPa, and a volume fraction    ⁄              The 
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KH, RbH and CsH transition pressures are 4.0, 2.2 and 1.2 GPa, 

respectively [2-5]. Hochheimer et al. [3] performed a high-pressure energy-

dispersive X-ray study of the alkali hydrides NaH, KH, RbH, and CsH. The 

structural phase transition from RS to CsCl phase was observed for KH, 

RbH and CsH at high pressure, while this structural phase transition has not 

observed for NaH for a pressure up to 28.0 GPa. Hochheimer et al.[3] 

found that the transition pressure from the RS to CsCl phase structure 

decreases when increasing the alkali radii. This result has been suggested 

by Bashkin et al. [6], which depends on the assumption that the alkali 

hydrides and alkali halides show a similar behavior. There have been many 

theoretical predictions for LiH phase transition and the estimated transition 

pressure ranging from about 200 to 600 GPa. Sudha et al. [7] investigated 

the structural, electronic and elastic properties of alkali hydrides XH (X = 

Li, Na, K, Rb, Cs) by using the Vienna ab initio simulation package. The 

calculated transition pressure from the RS to CsCl phase is predicted to be 

208.0, 37.0, 3.5, 3.0 and 2.1 GPa for LiH, NaH, KH, RbH and CsH, 

respectively, using the PBE-GGA approach [7]. These compounds were 

predicted to be semiconductors with the CsCl structure.  Guangwei et al. 

[8] predicted that the structure of LiH will change from RS to CsCl at very 

high pressure, approximately at 660 GPa. Xiao-Wei et al. [9] used an ab 

initio plane-wave pseudo-potential density-functional theory method to 

investigate the RS to CsCl phase transition and bulk modulus of NaH; the 

transition pressure was predicted to be 32 GPa, and the bulk modulus was 

found to decrease as the temperature increases. Saitta et al. [10] carried out 

Density functional theory (DFT) calculations within the local-density 
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approximation (LDA) and its gradient-corrected (GC) generalization using 

pseudo-potentials to calculate the transition pressure for CsH from the RS 

to CsCl; pressures of -0.8 and 1.5 GPa were obtained using the LDA and 

GC approaches, respectively. Rodriguez et al. [11] applied an improved 

linear muffin-tin orbital atomic-sphere approximation-energy approach to 

investigate the static structural properties and the pressure-induced phase 

transition from RS to CsCl for the NaH and KH compounds; the estimated 

transition pressures were found to be 30.7 and 2.0 GPa for NaH and KH, 

respectively. Ahuja et al. [12] used the full-potential linear-muffin-tin-

orbital (FP-LMTO) method to investigate LiH, NaH, KH and RbH 

compounds. They predict that RbH and KH will transform to CsCl 

structure, while their calculations predict CrB crystal structures at high 

pressure for RbH and KH but not for the light Alkali compounds, NaH and 

LiH. 

Sudha et al. [7] calculate theoretically the elastic constants and their related 

properties of alkali hydrides XH (X = Li, Na, K, Rb, Cs) in the Rock Salt 

and Cesium Chloride structures. Their calculations in the RS structure are 

in good agreement with experimental results. Gulebaglan et al. [13] used 

the method developed by Morteza Jamal integrated in WIEN2K code [14] 

to calculate the elastic properties and their related constants properties for 

RbH in RS structure and they found it to be stable at zero pressure and 

temperature. Xiao-Wei et al.[9] computed the elastic constants and their 

related properties for NaH in RS and CsCl structures, they found that NaH 

at zero temperature and pressure is stable in RS structure, while it is not 
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stable in CsCl structure (C44<0) which disagree with Sudha et al. [7]. Their 

results in CsCl structure were C11=95.80 GPa, C12=-13.04 GPa and C44=-

6.16 GPa. Wen Yu et al. [15] have used plane wave pseudo-potential 

density functional and calculated the RS to CsCl phase transition and their 

thermodynamic properties of alkali hydrides LiH and NaH; they found 

from the phonon dispersion curves that the CsCl phase is unstable at low 

pressure.  

From the above it is clear that there is considerable work on the considered 

compounds, involving both experimental and theoretical methods, but there 

are no reported studies on the ground state parameters, electronic structure, 

structural phase transition, elastic constants and optical properties for both 

the zincblende (ZB) and wurtzite (WZ) phases. The reasons mentioned 

above motivated us to perform such calculations on the structural, 

electronic and the structural phase transition for LiH, NaH, KH, RbH and 

CsH compounds in RS, CsCl, ZB and WZ phases, using the full-potential 

augmented plane wave method (FP-LAPW). This will provide reference 

data for the experimentalists and will serve as an additional data to the 

existing theoretical work on these compounds. 
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Chapter 2 

Density Functional Theory 

2.1 Introduction 

Electromagnetic radiation can exhibit both particle and wave properties. De 

Broglie in his PhD thesis in 1924 has generalized the Einstein's postulate to 

matter by postulate the wave nature of electrons. De Broglie suggested the 

wave properties of matter, and in 1927, the wave-like behavior of matter 

was experimentally proved, and in 1929, he won the Nobel Prize.    

De Broglie's postulate was a starting point for Schrödinger to construct his 

famous wave equation, which is known as Schrödinger equation.  In 1926, 

Heitler and London solved Schrödinger equation for the simplest molecule, 

hydrogen molecule [16]. Heitler and London supposed a model known as 

Heitler and London model for the two electrons wave function in H2 and 

they have introduced an important concept of exchange energy for the two 

electrons. They have explained how the wave functions of the two 

hydrogen atoms are attached. Later, the challenge was to find a solution to 

the many body Schrödinger equation, this challenge motivate theorists to 

develop many methods to apply quantum physics to complex systems     

[17-22]. 

Thomas [17] and Fermi [18], in 1927 separately presented a semi-classical 

model, Thomas-Fermi theory, sometimes called the „statistical theory‟, 

which is a quantum mechanical theory for the electronic structure of many 

body systems. Electrons in this model were considered as a free electron 
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gas distributed around the nuclei. This method for the first time uses the 

concept of electron density; it is based on the uncertainty principle and the 

Fermi distribution of electrons gas. Although it fails in explaining general 

features of the density, it has become a basis for more developed methods. 

Few years later, Hartree, Fock and Slater solved the many body 

Schrödinger equation. Hartree-Fock method [19] assumed that the electrons 

of N-body wave function of the system are independent from each other. 

The total wave function of the system then can be written as:  

                                                                              

The wave function of the system in Hartree-Fock method, which is 

sometimes called the self-consistent field method, is represented by the 

single particle orbital. Each particle in the Hartree–Fock equations 

considered as if it is subjected to the mean field, which is created by other 

system particles.  

In 1964, another computational quantum mechanical method has been 

proposed and developed to solve the many particles Schrödinger equation 

by Hohenberg and Kohn [20]. This universal approach to quantum 

mechanical many-body problem method is called Density Functional 

Theory (DFT) [21]. One year after Hohenberg and Kohn published their 

theorem, a practical approach for DFT functional was published by Kohn 

and Sham in 1965 [22]. The Kohn-Sham theorem supposed that the ground 

state density of the supposed interacting electrons system is equivalent to 

the ground state density of a non-interacting particles system. Kohn and 
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Sham equations by this assumption turn DFT into an efficient practical 

tool. 

Many electrons systems as Hartree-Fock, Density Functional Theory and 

other methods require advanced computational modeling of material 

science. The development of computer hardware and increased computer 

power has led these quantum methods available for practical use. It uses the 

development of theoretical concepts to simulate the properties of material 

to understand and complement the experiments, a new branch of science 

called “Computational Materials Science” has been established to predict 

and validate different models. 

2.2 Many-particles Schrödinger equation 

In Computational Materials Science, one often starts with an ideal crystal 

to study some properties like (relative stability, chemical bonding, 

relaxation of atoms, electrical and elastic properties, phase transition, 

optical or magnetic behavior) on the atomic scale at zero temperature and 

zero pressure. The unit cell of the system contains several atoms at defined 

positions; the boundary conditions are periodic continues. For this, theorists 

came to face a many-body problem, it is a quantum many body problem; 

particles under study are so light compared with classical scale. To study 

the materials and their properties, theorist has to solve the many-particles 

time independent Schrödinger equation. Schrödinger equation can be 

written as: 
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where, ψ is the all participating particles wave function, Ri is the 

coordinates of the nuclei, rj is the coordinates of electron and   is the 

many-particles Hamiltonian for this system which can be written as: 
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where Mi is the mass of nucleus and mi is the electron mass. The first term 

in equation (2.3) represents the kinetic energy operator for the nuclei (Tn), 

while the second term represents the kinetic energy operator for the 

electrons (Te), the last three terms represent the Coulomb potential, and 

they are the electron-nuclear attraction (Ven), electron-electron repulsion 

(Vee) and nucleus-nucleus repulsion (Vnn), respectively. 

It is a difficult task to have an exact solution for this kind of equations; it is 

a many body particle Schrödinger equation. The complexity is, the wave 

function ψ of the system depends on the coordinates of each particle in the 

system, and thus, the treatment of any system with more than a few 

numbers of particles is not feasible. Some approximations are needed to 

solve many body particles Schrödinger equation. 
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The nucleus has a large mass compared with the electron mass; this fact 

enables us to use certain approximations. The nuclei to some extent can be 

considered as classical particles, which can be described by only their 

positions and velocities.  

2.3 The Born-Oppenheimer approximation 

Born-Oppenheimer approximation is one of the most important 

approximations [23]. The nucleus mass is about 1863 more massive than 

electrons mass, since the nuclei are more massive than electrons, nuclei are 

much slower than the electrons. They can be considered as static particles, 

with approximately zero kinetic energy. This approximation reduces the 

number of degree of freedom to 3Nel, where Nel is the number of electrons 

in the system [24, 25].  

This approximation treats the atomic nuclei classically; the operator 

represents the nuclei kinetic energy now can be neglected. Now the only 

effective players in the many particles Schrödinger equation (2.3) are 

electrons. Now the nuclei are reduced to a given source of positive charges; 

they become „external‟ to the electron cloud, by this approximation the first 

term in equation (2.3) can be neglected while the last term is constant. 

The problem now can be considered as a collection of interacting electrons, 

moving in the nuclei potential, external potential. The many particles 

problem now lifted with the kinetic energy of the electron gas (Te), 

electron-electron interaction potential energy (Vee) and the electrostatic 
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potential energy of the electrons in an external potential of the nuclei (Vext). 

The new Hamiltonian now can be written as: 

 ̂   ̂   ̂    ̂                                                                                                   

Although the Born-Oppenheimer approximation simplifies the many 

particles problem, it is still difficult to solve. More simplifications are 

needed.  

2.4 Hartree and Hartree-Fock Approximation 

Hartree-Fock theory can be considered as fundamental for many particles 

electronic structure theory. Independent particle assumption is the first step 

to solve the many-electron system problem. In Hartree approximation [19] 

the many-electron Schrödinger equation can be solved by assuming that 

each electron in the system moves in the average external potential, 

effective potential, of the surrounding electrons. They assumed that the 

electrons are independent from each other. According to this assumption, 

the total wave function for the system can be written as: 

Ψ(r1, r2, r3….rN) =Ψ1(r1 )Ψ2(r2)Ψ3(r3)…. ΨN(rN)                                  (2.5) 

where ΨN(rN) is the single electron wave function. Now the time 

independent Schrödinger equation can be written as: 
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where Ts is the single particle kinetic energy. VH is given by 
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where    is the Hartree potential.       

Later, the problem was modified to include the electron spin 'Slater 

determinant' by the Hartree-Fock approximation [26], which is an 

extension of Hartree approximation. The many particles wave function now 

includes the permutation symmetry, which leads to the exchange 

interaction. The exchange interaction is due to the Pauli Exclusion 

Principle. Pauli Exclusion Principle is a quantum mechanical principle; it 

states that two or more identical particles cannot occupy the same quantum 

state, which means the total wave function must be anti-symmetric under 

particle exchange. Therefore, it is impossible for two electrons to have the 

same value of the four quantum numbers (n, Ɩ, mƖ and ms); two electrons 

with the same spin cannot occupy the same state simultaneously. For two 

electrons problem, the anti-symmetry wave function is given by: 
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or in determinant form 
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The generalization to N electron is just 

            
 

√ |
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|

|
                                           

A determinant of spin orbitals is called a Slater determinant. 

2.5 Density Functional Theory (DFT) 

Density Functional Theory (DFT) is a ground-state theorem based on the 

charge density     , the charge density contains as much information as the 

wave function does [21, 27-30]. DFT is computationally simple and has 

proved that it is highly successful in describing structural, electronic, 

elastic, optical and other properties for different types of materials. For 

these reasons, DFT has become a common tool in the first-principles 

calculations, which aims to predict properties of many particles systems. 

2.6 Hohenberg-Kohn theorem 

Hohenberg and Kohn [20] proposed an idea to reduce the number of 

degrees of freedom of the system to just three. They replaced the many 

electrons wave function by electron density ρ (r), which depends only on 3 

degrees of freedom and describes the charge density of all electrons in the 

system. This idea is theoretically possible in the non-interacting electrons 

system by describing the Coulomb repulsion between the electrons by the 

effective external potential. The charge density ρ (r) is defined as: 
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       ∫|            |
                                                                 

where |            |
  gives the probability density of measuring the first 

electron at the position r1, the second electron at position r2 and the Nth 

electron at the position rN, and N is the number of electrons in the atom. 

Hohenberg and Kohn have proved that the energy corresponds to the 

ground state energy can be minimized by adding a universal potential 

F[ρ(r)] such that the minimum energy is given by the equation 

          〈 | ̂   ̂  | 〉  〈 | ̂   | 〉                                                       ) 

            ]  ∫                                                                                  

These potentials, external potential Vext(r) and Hohenberg-Kohn density 

functional FHK [ρ] are unique functional of the electron density ρ (r). The 

ground state density can be estimated by calculating the universal potential 

FHK[ρ]. The universal potential FHK [ρ] is given by the following equation 

[20, 21]: 

        ]  〈 | ̂   ̂  | 〉                                                                                 

The ground state energy can be found by solving Thomas-Fermi-

Hohenberg-Kohn equation [30]: 
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where Vne is electron-nuclear attraction potential energy and λ is the 

Lagrange multiplier.  

2.7 Kohn-Sham equations 

Solving equation (2.15) in terms of the electron density is to some extent 

complicated. Instead of this, Kohn and Sham have proposed a simpler way. 

They introduced a method, which established on the Hohenberg-Kohn 

theorem, minimizing the total energy by varying the charge density, the 

normalization constraint is given by the following:  

∫|     |
                                                                                                           

Kohn and Sham solved a set of one-electron Schrödinger equations for the 

non-interacting electrons "fictitious system", all quantities depend on the 

charge density, which is the same for the real system [20, 21]. These one-

electron equations contain an unknown external potential V(r), which 

minimizes the electron-electron interaction of the real system, Kohn-Sham 

equation, is given by: 

[       (    )    (    )     (    )]                                      

where, εi is the single particle energy and φi is the electron wave function. 

The four operators represent the kinetic energy operator Ts, the Hartree 

potential VH, the Coulomb potential Vext and the exchange-correlation 

potential VXC. The Hartree potential VH can be written as: 
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   ∫
     

|      |
                                                                                                  

The new form of Schrödinger is: 

( 
  

  
           )                                                                              

where       is the electrons total wave function, Veff is the effective 

potential and E is the system total energy. Now by equation (2.19) instead 

of many particles problem we are dealing with one electron problem, an 

electron that is moving in an effective potential where Veff is given by: 

                         
       

  
                                                            

The third term in the equation represents the exchange-correlation potential 

Vxc. The exchange-correlation potential Vxc and Hartree potential VH are 

both depending on the charge density      ; on the other hand, the charge 

density       depends on the electron wave function       , which is 

needed. The precise ground state density in Kohn-Sham theorem is given 

by: 

      ∑            
                                                                                        

The single particle wave function        is given by: 

       ∑         
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To express        (true single particle orbital), we need to find the 

coefficients     in equation (2.22), the solution of the Kohn-Sham (KS) 

orbitals permits to determine the     that minimize the total energy. 

Density functional calculation required     optimization and the 

determination of the density. We are dealing with self-consistency problem 

as seen in Figure 2.1. The solution (  ) determines the VH and Vxc in HKS. 

This can be done by starting with a guess charge density ρ∘, and a 

Hamiltonian HKS1 [31] is constructed with it. The eigen value problem is 

solved, and results in a set of φ1 from which a density ρ1 can be derived. 

Most probably, ρ∘ will differ from ρ1. Now ρ1 is used to construct HKS2, 

which will yield a ρ2, etc. The procedure can be set up in such a way that 

this series will converge to a final charge density ρf, which used to generate 

a final Kohn-Sham Hamiltonian HKSf; this final density is then consistent 

with the Hamiltonian. 

 

Figure 2.1: Flow chart for the self-consistent density functional theory. 
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2.8: The local spin density approximation LSDA 

The last term in equation (2.20) is due to exchange and correlation, 

exchange interaction between electrons with the same spin, while the 

correlation energy can be defined as the difference between Hartree-Fock 

energy and the exact energy. The electrons interact with each other and 

correlate their motion because they tend to avoid each other, an electron at 

r reduces the probability of finding another electron at r
'
. Local-Spin 

Density Approximation (LSDA) (or simply Local Density Approximation 

(LDA) which is dealing only with nonmagnetic systems) [32] is an 

approximation which have been applied to DFT by Kohn-Sham method to 

calculate the unknown exchange-correlation energy Exc, the only term in 

the effective potential of the Kohn-Sham equation which cannot be 

determined exactly. It divides the inhomogeneous system into a small set of 

regions containing homogeneous interacting electron gas with density ρσ, 

where (σ) is the spin up or spin down, and the total density is  

                                                                                                                

In each region, the exchange-correlation energy per particle of the 

homogeneous gas can be stated as: 

                                                                                                

The analytic expression for the exchange energy εx(ρ↑, ρ↓) can be obtained 

from the Hartree-Fock approximation [26, 33, 34]. The total exchange-

correlation energy    
    is the sum of the contribution of all regions [35], 
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which is based on the quantum Monte-Carlo result of the ground-state 

energy for the homogenous electron gas [29]. The total exchange 

correlation energy is the sum of the contribution of all regions,    
    is 

given by 

   
           ∫                

                                                                   

in addition, the exchange-correlation potential is calculated from 

   
       

    

      
            

           

      
                               

2.9 Generalized gradient approximation 

Many modern theoretical codes that are using DFT have now more 

advantage approximations to improve accuracy for certain physical 

properties. The LDA uses the exchange-correlation energy for the uniform 

electron gas at every point in the system regardless of the homogeneity of 

the real charge density. For non-uniform charge densities the exchange-

correlation energy can deviate significantly from the uniform result, this 

deviation can be expressed in terms of the gradient and higher spatial 

derivatives of the total charge density. Generalized gradient approximation 

(GGA) came as a modification of (LDA), it inserts another parameter to the 

exchange-correlation energy Exc [28, 36, 37]; Exc is now a functional of 

local electron density ρ(r) and their gradients of the local electron density 

or higher orders of density derivatives to correct this deviation, Exc can be 

written as: 
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           ∫                ⃗⃗       

                                                        

The (GGA) improves significantly ground state properties of light atoms, 

molecules and solids and generally tends to produce larger equilibrium 

lattice parameters with respect to the LDA. 
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Chapter Three 

Methodology 

3.1 Introduction 

In this chapter the basic concepts of (Full potential Linearized Augmented 

Plane Wave method (FP-LAPW) are presented. DFT equations are defined 

in terms of the functional; there are several techniques to solve these 

equations. The basis which are used in calculating one-electron functions 

are plane waves (PWs) corresponding to Bloch functions. However, these 

plane waves (PWs) are inefficient basis set and need modification for 

describing the rapidly varying wave functions close to the nuclei.  

In order to overcome this problem, pseudo-potential calculations eliminate 

the oscillations, due to the presence of the core electrons, or one can 

augment the PW's basis set. An example of the second approach is the 

Linearized Augmented Plane Wave plus local orbitals (LAPW+lo) method 

that is one of the most accurate methods. 

3.2 The Augmented Plane Wave method (APW) 

Slater introduced the APW method in 1937 as basis functions for solving 

Kohn-Sham equations [38, 39]. These basis functions are especially 

adapted to the problem, in the APW scheme the unit cell is partitioned into 

two types of regions as shown in Figure 3.1. 

i) non-overlapping spheres centered at the atomic sites with radius Rα, such 

a sphere is often called a muffin tin sphere. 
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ii) An interstitial region; the remaining space outside the spheres. 

In this case, the wave functions are expanded into PWs each of which is 

augmented by atomic solutions in the form of partial waves, i.e. a radial 

function multiplied by spherical harmonics. Close to the nuclei, inside the 

atomic sphere where electrons behave quit as they were in a free atom, 

radial solutions of Schrödinger's equation are employed, in the remaining 

interstitial region; region far away from the nuclei; the electrons are more 

free, free electrons are described by plane waves. 

 

 

 

 

 

Figure 3.1: Division of a unit cell in muffin tin regions and the interstitial region, for a case 

with two atoms. 

The introduction of such basis set is due to the fact that between the atoms 

the potential and wave functions are smooth while close to the nuclei they 

are similar to those in an atom. The APWs consist of:   
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where  
 ⃗⃗    
    is the wave function,    is the position inside sphere with polar 

coordinates   , V is the unit cell volume,     is the reciprocal lattice vector, 

 ⃗⃗  is a wave vector in the first Brillouin Zone,     are spherical harmonics, 

         is the regular solution to the radial part of the Schrödinger 

equation for a free atom at the energy ε and    ,    are expansion 

coefficients. 

The Kohn-Sham (KS)    orbitals are expressed as a linear combination of 

APWs          . Inside the Muffin Tin sphere, a KS's orbitals can only be 

described accurately if ε in the APW basis functions is equal to the eigen-

energy εi. Therefore, a different energy dependent set of APW basis 

functions must be found for each eigen-energy. The        satisfy the 

following equation: 

 

  

 

  
(  
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(       )  

      

  
]       

                                                                                                                              

By these functions, Slater notes that in a constant potential, plane waves are 

the solution of the Schrödinger equation and in a spherical potential, radial 

functions are the solution. This potential approximation usually called 

"muffin-tin" (MT). 
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The dual representation defined by equation (3.1) is not guaranteed to be 

continuous on the sphere boundary, as it must be for the kinetic energy to 

be well defined. Accordingly, it is necessary to impose this constraint. In 

the APW method, this is done by requiring that the augmented functions 

match (in value not in slope) the plane waves at the atomic sphere 

boundary, this is done in APW by defining the ulm in terms of CG. 

     
    

√      
∑      |   |     

 ( ⃗⃗    )                                             

 

 

where    |   |  is the Bessel function of order  , the coefficients   and   

are matched at the boundary of the sphere and the origin is taken at the 

center of the sphere.  

There is no restriction on the derivative at the atomic sphere boundary. 

Therefore, the APW basis functions derivations are discontinuous at the 

boundary, in general they have a kink at r=RMT. It must be mentioned that 

Linearized Augmented Plane Wave method (LAPW) is a more accurate 

method. In LAPW method, the basis functions and their derivatives are 

made continuous at the boundary by matching to a radial function at fixed 

   plus its derivative with respect to   . Linearized Augmented Plane Wave 

(LAPW) method (discussed in the next section) is more accurate in band 

structure calculation schemes, which use the basis functions and their 

derivatives. 
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3.3 Linearized augmented plane wave method (LAPW): 

LAPW is the first successful improvements to solve the energy dependence 

of the basis set. Andersen introduced the Linearized Augmented Plane 

Wave method (LAPW) scheme [40]. In this scheme a linear combination of 

radial function times, spherical harmonics are used. LAPW method uses 

the basis functions and their first derivatives. The basis functions and their 

first derivatives made continuous at the boundary between core and 

interstitial region, so that it is more flexible and accurate method. The     

and its energy derivative satisfy the following equation:  

( 
  

  

  

   
 

  

  

      

  
        )   ̇                                  

The original energy dependence of the radial basis function          

thereby replaced by the Taylor series:  

                       
   

   
|            

                                     

In this way, the wave functions are affected by an error, which is quadratic 

in the deviation of the eigen-value   from the energy parameter   . 

Substituting the first two terms of the expansion in the APW for fixed    

gives the definition of the LAPW. This has a price; the energy difference 

       is yet unknown and hence undetermined     must introduced: 
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At the sphere boundary, function inside the sphere matches the plane wave 

both in value and in slope in order to determine the coefficients      and 

    . The augmented wave functions ulm(r)Ylm(   ) and their derivatives 

are linearized to form the basis functions inside the spheres. Two radial 

functions are used in LAPWs instead of one in the APWs, so LAPW are 

more variation freedom inside the atomic spheres. 

The linear compensation of ulm(r) and its derivative is obtained by 

numerical integration of the radial Schrödinger equation on the radial mesh 

inside the sphere. Instead of one radial functions in APW there are two 

radial functions in inside spheres within LAPWs. Potential inside spheres 

can now be treated with no difficulties, on the other hand, there is a price to 

be paid for the additional radial function: the basis function must have 

continuous derivatives and consequently, higher plane wave cut-offs are 

required to achieve a given level of convergence. The solution of the KS 

equations expanded in this combined basis according to the linear variation 

method: 

   ∑     
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The coefficients Cn can be determined by the Rayleigh-Ritz variational 

Principle. The convergence of this basis set can be controlled by a cut-off 

energy parameter RMT×KMax, where RMT is the smallest atomic sphere 

radius in the unit cell and KMax is the largest Kn vector in equation (3.7). 

3.4 The augmented plane wave plus local orbitals method (APW+lo): 

APW+lo method was proposed by Sjöstedt et al. [41]. Some electrons are 

extremely bounded to nucleus and behave as if they are in a completely 

free atom but subject to the potential due to electrons of the valence states, 

it makes no sense to use LAPW to calculate the potential of these electrons. 

These states are called core states. The issue with core states is that they do 

not participate directly with other atoms in chemical bonding. They are 

contained entirely in the muffin tin sphere, while valence states leak out of 

the muffin tin sphere and participate in chemical bonds and treated by 

LAPW method. Electrons close to the nuclei can be treated as “core states” 

(e.g. 1s electrons) and add another different basis to LAPW for them, these 

basis are called local orbitals (LO) basis. Local orbitals exist inside the 

sphere of the particular atom and it is zero everywhere, so it is zero in the 

spheres of the other atoms and in the interstitial region. A local orbital (LO) 

is defined as: 
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The coefficients can be determined by assuming that local orbital should 

have zero value at the sphere boundary. High efficiency has been found for 

a mixed basis set, APW+lo are basis for low l-quantum numbers but the 

higher l is treated by LAPW. APW+lo is slightly increased computational 

time, this is a small price to be paid for high accuracy that local orbitals 

offer; therefore local orbitals are always used [42]. 

3.5 Full Potential Linearized Augmented Plane Wave Method          

(FP-LAPW) 

The potential within atomic spheres of radius Rα has been assumed 

spherically symmetric, and centered at atomic positions Rα by APW and 

LAPW methods, while it is assumed constant in the interstitial region. In 

highly coordinated systems eg. close-packed metals this approximation 

works reasonably well, while for open structures, such as layered structures 

it might lead to serious discrepancies compared with experimental 

measurements. Therefore, for open systems, no shape of approximation is 

made for the system potential to understand and predict structural and 

electronic properties. 

The full-potential LAPW method (FP-LAPW) is one of the most accurate 

schemes for solving the Kohn-Sham equations suggested by Andersen [41] 

on which WIEN2k code is based. Full potential LAPW method (FP-

LAPW) combines the choice of the LAPW basis set with the treatment of 

the full-potential and charge density without any shape approximations in 

the interstitial region and inside muffin-tins. This generalization is achieved 
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be relaxing the constant interstitial potential VI and the spherical muffin-tin 

approximation VMT(r) due to the inclusion of a warped interstitial 

∑  
     , where K are all reciprocal lattice vectors up to the largest value 

of KMax. The non-spherical terms inside the muffin-tin spheres: 

      

{
 
 

 
 ∑    ⃗⃗                                                   

 

∑                                                                    

  

 

FP-LAPW method becomes possible with the development of a technique 

for getting the coulomb potential for a general periodic charge density 

without shape-approximation and with including of the Hamiltonian matrix 

elements due to the warped interstitial and non-spherical terms of the 

potential. 

3.6 The modified Becke-Johnoson (mBJ)   

The Generalized Gradient Approximation (PBE-GGA) [28] has been used 

to calculate the structural properties. The modified Becke-Johoson (mBJ) 

formalism is also used to overcome the well-known underestimation of the 

band gap values by the GGA method [43, 44]. 

Ground state properties are well estimated by LDA and GGA 

approximations, on the other hand these approximations fail to deal with 

excited states properties. These approximations well reproduce the band 

structure of metallic or even complicated metallic systems, but in many 

semiconductors, wide band gap semiconductors and insulators the band 
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gaps values are hardly underestimated. Improved band gaps values can be 

obtained by using the LDA+U method [45], but it can only be applied to 

localized and correlated electrons, e.g., 3d or 4f in rare-earth oxides. A 

successful but highly computational time costing method is GW method 

[46].  

Electronic structure can be performed with the Kohn-Sham (KS) equations 

given by 

( 
 

 
         

     )                                                                       

where      is the one electron wave functions,      is the electron energy 

and       
    is the KS effective potential which includes the exchange 

correlation potential approximated by GGA and LDA approximations. A 

new exchange potential introduced by Becke and Johnson is modified by 

Tran and Blaha [47]. The modified Becke-Johnson (mBJ) potential is given 

by: 
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where     
  is the Becke-Roussel exchange potential,       is the electron 

density,       is the kinetic energy. 
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where A and B are two parameters with values A= -0.012 and B= 1.023 

a.u.
1/2

 according to the best fit of the experimental results of the 

semiconductor band gaps [47] and  Vcell is the unit cell volume. 
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Chapter Four 

Crystal structure 

4.1 Rock-salt structure (RS) 

The Rock-salt structure (RS) is called Fm3m (in Hermann–Mauguin 

notation) with number 225; it is a cubic crystal system and form a face-

centered cubic (fcc) lattice type [50, 51]. The RS structure unit cell 

contains two kinds of atoms, one of the atoms at the lattice site itself (0, 

0,0) and the other kind at (0.5, 0.5 , 0.5)a as shown in figure 4.5, where a is 

the lattice constant. The primitive vectors that span the RS structure unit 

cell can be given by: 

  ⃑  
 

 
 ̂  

 

 
 ̂            ⃑  

 

 
 ̂  

 

 
 ̂            ⃑  

 

 
 ̂  

 

 
 ̂                               

 

 

 

 

 

 

Figure 4.1: Rock-salt structure (RS). 
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4.2 The zinc blende structure(ZB) 

The zinc blende structure (ZB) is called F43_m (in Hermann–Mauguin 

notation) with number 216; it is a cubic crystal system and forms a face-

centered cubic (fcc) space lattice type as the RS structure. ZB unit cell has 

two kinds of atoms at the lattice site, one of the them  positioned at the 

lattice site itself (0,0,0), while the other atom far from the lattice position 

by a/4 along all axes, its position is (0.25,0.25,0.25)a as shown in figure 

4.6, where a is the lattice constant [49 ,50, 51]. 

 

 

 

 

 

 

Figure 4.2: zinc blende structure(ZB) 

4.3 Cesium Chloride structure (CsCl) 

The Cesium Chloride structure (CsCl) also is a cubic crystal as the RS and 

ZB but with a (bcc) space lattice type instead of (fcc) for RS and ZB as 

shown in figure 4.7 CsCl has two kinds of atoms, an atom of one type 

positioned at the origin of the cube at (0, 0, 0), while at the corners of the 
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cube at (0.5, 0.5, 0.5)a. Each atom in the CsCl structure has eight nearest 

neighbors, the space group for CsCl structure is pm_3m with number 

221[49, 50, 51], the primitive vectors for CsCl structure can be given by:  

 ⃑    ̂            ⃑    ̂         ⃑    ̂                                                                    

4.4 The wurtzite structure(WZ) 

Various binary compounds like zinc sulfide crystallize in two different 

forms or more. Zinc sulfide can be found in the Wurtzite and Zincblende 

structures. In the wurtzite structure as shown in figure 4.8, the Zn atom 

positioned at (1/3, 2/3 , 0)a and S positioned at (1/3, 2/3, u)a [49, 50, 51].  

 

 

 

 

 

 

Figure 4.3: Cesium Chloride structure (CsCl). 
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Figure 4.4: Wurtzite structure (WZ). 

The space group of wurtzite structure is P63-mc with number 186, the 

primitive vectors of the wurtzite structure are: 
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Chapter five 

Computational details 

5.1 Introduction 

To study the region near the nucleus without introducing pseudo potential, 

the basis set must be efficient. Therefore, atomic space divided into the 

following two regions: the muffin-tin region and the interstitial region. The 

muffin-tin region is the space occupied by spheres of radius RMT, one 

around each atom; these spheres are often called muffin-tin (MT) spheres. 

The remaining space outside the spheres is called the interstitial region. 

Spherical harmonics expansion is used inside the muffin tin (MT) spheres, 

and the plane wave basis set is used in the interstitial part. The muffin tin 

radii (RMT) used in the present calculations for the H, Li, Na, K, Rb and Cs 

atoms are 1.25, 2.0, 2.56, 2.6, 2.67 and 2.76 atomic units (a.u.), 

respectively. The charge density was Fourier expanded up to Gmax= 20 in 

RS, CsCl and ZB, while Gmax= 14 in WZ structure. The plane wave cutoff 

was taken such as that the cutoff RMT.Kmax =5 (where Kmax is the maximum 

value for the reciprocal lattice vector K). The basis functions, charge 

density and potential are expanded inside the muffin-tin spheres in 

combination with the spherical harmonic functions, with a cut-off lmax = 12 

for the WZ structure and lmax = 6 for the cubic structures.  

For energy convergence the full Brillouin zones (FBZ) were sampled with 

1331 k-points for the three structures, RS, ZB and CsCl. In the irreducible 

Brillouin zone (IBZ), a grid size of 11 × 11 × 11 was used, which is 
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reduced to 56 special k-points. For the WZ structure, a grid size of 18 × 18 

× 18 was used with 3700 k-points, which is then reduced to 222 special k-

points in the (IBZ) [52]. The self-consistent calculation of the total energy 

of the unit cell gives convergence to less than 10
-5

 Ry/unit cell. 

5.2 Convergence Tests 

The accuracy of the Density functional theory (DFT) results as well as the 

calculations running time and calculations errors depend on some input 

computational parameters. In order to obtain accurate calculations and 

reducing the calculations time, one has to carry out some convergence tests 

to optimize the input computational parameters. 

The parameters that have to be tested are the muffin tin radius RMT, the 

RMT.Kmax, number of k points in the Brillion zone (BZ) and the plane wave 

cutoff energy of the wave function. 

The muffin tin radii RMT have to be chosen in order to not allow an overlap. 

In order to reduce the computational time, the number of plane-waves 

required must be reduced, and this done by minimizing the interstitial 

region. RMT must be chosen as large as possible to minimize the  interstitial 

region [50, 51].  

The number of k-points necessary needed for accurate self-consistent 

calculation results  depends on the desired accuracy, the system type 

(metallic, semiconductor or insulator) and on the property under study, for 

example, optical properties need dense k-mesh. 
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5.2.1 How to select RMT radii: 

The WIEN2k program can automatically set the muffin-tin-radius RMT for 

the atomic spheres of the atoms under study.  It is recommended to set RMT 

by using some useful considerations. 

To save computational time, choose the RMT as large as possible but 

without overlapping. Choosing the smaller RMT makes calculations more 

expensive but to more extent accurate, small RMT means more plane waves 

(PW's) needed.  The radii must not be too much different, but in present 

case, which contains Hydrogen atom, RMT for Hydrogen must be 

approximately half Alkali RMT. In case the core charge leaks out of the 

spheres, you must increase the RMT of the atom. 

5.2.3 Choosing RMT.Kmax and the number of K-points 

In order to achieve the energy eigen value convergence, the interstitial 

region wave function expanded in terms of plane waves, with a cutoff of 

RMT.Kmax. Calculation of the bulk properties must be made after applying 

some tests. K-points and energy cutoff tests are very important procedures 

to get the best results in a reasonable time. Choosing RMT.Kmax in this test, 

we make a number of sessions with the same number of K- points, same 

RMT for all sessions, the same lmax and the same lattice parameter. We make 

a run for every session and looking for the energy. Finally, we choose the 

RMT.Kmax, which minimizes the energy per unit cell, in other words we look 

for the RMT.Kmax, which makes the structure more stable. As an example, 
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Table 5.1 shows the best RMTKmax for LiH compound in RS structure is 

RMTKmax=5. 

Table 5.1: Test to find the best RMTKmax for LiH compound in RS 

structure. 

No. RMTKmax Total energy Etot (Ry) 

1 3 -16.21094328 

2 4 -16.25141012 

3 5 -16.27145976 

4 6 -16.26941201 

5 7 -16.25135219 

6 8 -16.24071573 

7 9 -16.18013412 

To choose the best number of K-points, we must do the same steps for 

choosing the best RMTKmax; in this test, we must fix all parameters (lattice 

parameter, RMTKmax, lmax and the same RMT except number of K-points. 

Table 5.2 shows the test results for LiH compound. 

Table 5.2: Choosing K-points for LiH compound within RS structure. 

No. K-points K-reduced Matrix Total energy Etot (Ry) 

1 512 40 8×8×8 -16.27020228 

2 729 55 9×9×9 -16.27020566 

3 1000 70 10×10×10 -16.27020705 

4 1331 56 11×11×11 -16.27020903 

5 1728 72 12×12×12 -16.27020816 

6 2197 94 13×13×13 -16.27020279 

5.3 Optimization 

The ground state properties for each structure obtained by calculating the 

total energy per unit cell at several volumes around the equilibrium 

volume, and fitting the calculated values to the Murnaghan's equation of 

state [53] equation (5.1). 
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where E0 is the minimum energy at equilibrium volume V0, E(V) is the 

energy at volume V, V0 is the equilibrium volume, B0 is the bulk modulus 

and  

  
       ⁄                                                                                           (5.2) 

To optimize a structure in WIEN2K, we usually start the calculations by 

building the struct.file with estimated parameters. After building the 

struct.file we must initialize the job by introducing number of k-points, 

R.Kmax and Gmax. Then SCF cycle after choosing proper convergence 

parameters must be run. When the SCF cycle ends with good convergence 

(check convergence), we choose optimize job. Then "x-optimize"               

(a program which generates structures with  different volumes), we choose 

the first option, vary volume with constants a, b and c to find the optimum 

lattice parameters for cubic structures, while we choose the second option; 

vary c/a with constant volume; with wurtzite structure to determine the 

optimum ratio of c/a. In the present calculations, we vary the volume by 

choosing the values (-9.-6,-3, 0, 3, 6, 9) % and run the optimized job and 

then we plot energy curve versus volume or c/a. 
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5.4 Phase transition 

 The structural phase transition is determined by calculating the Gibbs free 

energy (G) for the two phases, which is given by the known relation 

G=E0+PV+TS, where E0 is the equilibrium energy of the unit cell, P is the 

pressure, V is the unit cell volume and S is the system entropy. Since, the 

theoretical calculations are performed at T=0 K, Gibbs free energy 

becomes equal to the enthalpy, H=E0+PV. For a given pressure, a stable 

structure is one for which the enthalpy has its lowest value. Induce 

transition pressure can be estimated by using the usual condition of equal 

enthalpies for the two structures at the point of intersection. 

5.5 Optical properties  

The optical properties of solids are very useful to calculate and estimate the 

energy band structure of solids, it is a useful tool to study impurity levels, 

magnetic excitations and lattice vibrations. 

Some observable quantities can be measured by experimentalists, which 

provide up the way to determine the dielectric function ɛ(w) and optical 

conductivity     , which is related to the band structure such as optical 

reflectivity, transmission and refraction. Optical conductivity refers to the 

electrical conductivity in the presence of an electric field E(w) [54, 55, 56]. 

5.5.1 Kramers-Kronig Relations: 

Experimentally, the imaginary part of the complex index of refraction 

cannot be measured directly; it can be estimated by the measurement of the 
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absorption coefficient. The reflectivity also depends on both real and 

imaginary of the dielectric constant (    and   ). Thus we have insufficient 

information to determine    and    independently from measurements of 

absorption coefficient. However, if    or    is known over a wide 

frequency range, then Kramers-Kronig relations are useful relations to 

determine the unknown one. Kramers-Kronig relations are based on linear 

response theory and on causality, and can be given by the following two 

relations:[57, 58] 
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where   is the principal part of the integral. 

Kramers-Kronig relations connect both    and   , from these two relations 

if either    or    is known over a wide frequency range the other can be 

determined. 

5.5.2 Optical calculations 

The analysis of optical spectroscopy is an important and useful tool to 

estimate and analyze the energy band structure of a given material. 

Complex dielectric function (        ) depends on the energy band 

structure, so that it gives us more details about the electronic structure      

[54, 56]. The symmetries in the cubic structures; RS, CsCl and ZB; allow 

only one non-zero component of the dielectric tensor             , 
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these structures are optically isotropic. On the other hand symmetries in the 

WZ structure allow only       and       to be non-zero components of the 

dielectric tensor, these components are along the [100] and [001] 

polarizations directions, respectively. The imaginary part of the complex 

dielectric constant      ; which represents the optical absorption in the 

crystal; and real part       are given in equations (5.3) and (5.4), the other 

optical constants are related to real and imaginary dielectric constants[59-

61]. Once we have calculated ɛ1 and ɛ2, others like optical Reflectivity 

R(w), Refractive index n(w) in addition to the absorption coefficient I (w) 

can be calculated, they can be calculated from the following relations      

[59-61]: 
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5.6 Calculation of elastic properties 

The basic elastic properties describe the homogeneous deformations (bulk 

modulus), while inhomogeneous deformations describe tensor of the elastic 

constants. These quantities can be derived from the change in the system 

total energy as a function of the change in the lattice cell volume as will be 

described below. 
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5.6.1 Bulk modulus 

The bulk modulus describes the resistance of the solid to the uniform 

volume deformation; it is given by the following equation: 

    
  

  
                                                                                                              

here V is a unit cell volume and P is the effected pressure. The bulk 

modulus can be estimated by calculating the total energy at different unit 

cell volumes and fitting the calculated E-V points to Murnaghan's equation 

EOS equation (5.1).[53] The accurate pressure corresponding to the desired 

volume can be calculated using the following relation: 
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5.6.2 Elastic constants 

The optimized lattice constant (a0) has been used to compute the elastic 

constants at ambient pressure by computing the stress generated by forcing 

a small strain to an optimized unit cell, calculations for strains in the range 

from -0.003 to 0.003 were carried out for each distortion. By following the 

system symmetry, the cubic crystal has three independent elastic constants 

namely (C11,C12 and C44) and the hexagonal has five namely (C11, C12, C13, 

C33 and C55). These elastic constants are crucial, in determining the material 

response to an applied macroscopic stress can be predicted. On the other 

hand elastic parameters are essential to derive useful mechanical properties 

such as brittleness/ductility, stiffness, hardness, shear's modulus (S), 
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Young's modulus (Y), compressibility (β), anisotropic ratio (A) and 

Poisson's ratio (ν) for useful applications. 

The following relations give the Born mechanical stability criteria for cubic 

structure [62]: C11> 0; C44> 0; C11 +  2C12> 0; C11> B > C12, where B is the 

bulk modulus, which can serve as an indicator of the resistance of the 

material to fracture. For hexagonal system (WZ), mechanical stability 

criteria [63] defined as     |   |, C55> 0.  

5.7 Mechanical properties  

To estimate the mechanical properties, two schemes of approximations are 

usually used (the Voigt (V) and Reuss (R) approximations [64, 65]). The 

Reuss and Voigt equations denote the lower and upper limits of the 

mechanical properties, elastic constants and their related parameters could 

be predicted by employing Voigt-Reuss-Hill (VRH) approximation, which 

signify the arithmetic mean of Voigt and Reuss [66]. The shear modulus 

describes the material's response to shear strain [64, 66]. Following Hill 

expressions, Hill shear modulus SH is the arithmetic mean of Voigt and 

Reuss shear modulus given as: 

   
 

 
                                                                                            (5.9) 

where the Voigt shear modulus    and the Reuss shear modulus    are 

given by the following equations: 

   
 

 
                                                                                  (5.10) 
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                                                                               (5.11) 

The Young's modulus (Y) is ratio of the stress to strain and gives further 

information about the stiffness of a material, the greater the value of (Y), 

the stiffer the material is[66], Y is given by: 

  
    

       
                                                                                            (5.12) 

The following relations give the bulk modulus B:  

  
 

 
                               ,for cubic and structure                      (5.13) 

  
 

 
                        ,for hexagonal structure            (5.14) 

The elastic anisotropic factor (A) is a fundamental parameter characterizes 

the variation in atomic arrangement in different directions [25, 26]. The 

criterion of the anisotropy of the elastic wave velocity in a crystal is given 

by the following expression: 

  
    

       
                                                                          (5.15) 

  
    

            
                                                                 (5.16) 

Material is completely isotropic when A = 1, deviation of A from the unity 

defines the anisotropy, the values smaller or larger than 1 measure the 

degree of elastic anisotropy [67, 68].  

Poisson's ratio ν is an indicator, which can be used to judge the brittleness 

and ductility of the solid compounds [69]. The critical value of v is 1/3, the 

compound has a ductile (brittle) nature when v > 1/3 (v < 1/3) [70, 71]. 
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The Poisson's ratio (v) is given by: 

  
      

         
                                                                                         (5.17) 

Pugh [72] has suggested a simple relationship, which is based on the ratio 

of the bulk modulus B to shear modulus S. B/S is used to estimate if the 

material is brittle or ductile in nature. The critical value, which separates 

ductile from brittle behavior, is around 1.75. The material has a ductile 

behavior if B/S > 1.75, otherwise the material has a brittle nature. 

Hardness, a macroscopic concept, which describes the material resistant 

against the volume changing, can be described by three essential concepts: 

(i) shear modulus; resistance against reversible deformations (ii) bulk 

modulus; the resistance to volume changes, and (iii) Vickers hardness. 

Hardness is better predicted by shear modulus as compared to bulk 

modulus [73]. In recent research, Chen and co workers have shown that the 

Vicker hardness approach demonstrates better hardness than shear 

modulus; Chen's model is given by [71]: 

     
  

  
                                                                                       (5.18) 

5.8 Thermal properties: 

With the help of the calculated elastic constants, bulk modulus (B), shear 

modulus (SH), Young‟s modulus (Y) and the Debye temperature (θD) are 

obtained by using the average sound velocity     .    has been 

approximated using a relation which involves transverse (  ) and 

longitudinal (  ) sound velocities. Debye temperature of material can be 
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define as, the temperature of a crystal's highest normal mode of vibration, 

or in other words, the highest temperature that can be accomplished as a 

result of single normal of vibration. The Debye temperature (θD) is given 

by: 
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where kB is Boltzmann‟s constant, h is Plank‟s constant, n is the number of 

atoms per formula unit,  NA is Avogadro‟s number, M is the molecular 

weight, ρ is the mass density per unit volume,   is the Debye frequency 

and    is the average sound velocity. The average sound velocity   , 

longitudinal sound velocity    and transverse sound velocity    are given 

respectively by the following expressions [74-77]. 
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Computed values of the elastic constants have been used to calculate 

transverse, longitudinal and average velocity in addition to Debye 

temperature.  
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Chapter six 

Results and discussions 

6.1 LiH Compound 

6.1.1 Structural properties 

The calculated structural parameters for LiH such as the lattice constant a0, 

bulk modulus B0, and the pressure derivative of the bulk modulus   
  with 

RS, CsCl, ZB and WZ phases are obtained by calculating the total energy 

per unit-cell at several volumes around the equilibrium volume and fitting 

the calculated values to the Murnaghan's equation of state (ESO) [53]. 

Figure 6.1.1 shows the total energy as a function of the unit cell volume for 

LiH with RS, CsCl, ZB and WZ structures. Results for structures are listed 

in Tables 6.1.1 along with other experimental and theoretical works, while 

for WZ structure; results are listed in Table 6.1.2. The calculated structural 

parameters for LiH in RS structure are in agreement with the previous 

experimental results [4, 48, 78, 79] and other theoretical work [7, 80, 81, 

82, 83]. There is an agreement between the predicted values of B0 and   
  

and the experimental results [4, 79].  
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Table 6.1.1: Structural parameters for LiH in RS, CsCl and ZB 

structures along with experimental and other theoretical results. 

a
Ref.[4], 

b
Ref.[78], 

c
Ref.[48], 

d
Ref.[79], 

e
Ref.[7], 

f
Ref.[80], 

g
Ref.[81], 

h
Ref.[82], 

i
Ref.[83]     

For the CsCl structure, we have no experimental results to compare with. 

Structural parameters of LiH are closed to the results of Sudha et al.[7]. 

To the best of our knowledge, the structural parameters for LiH in ZB and 

WZ structures are not available experimentally and theoretically. 

Table 6.1.2: Structural parameters for LiH in WZ structure. 

B
' 

B(GPa) u(a.u.) c/a  ao(Å) compound 

3.36 27.91 0.385 1.4942 3.115 LiH 

 

Structure  Structural 

parameters 

Present 

calculation 

Experimental  

results 

Other theoretical 

results 

RS a( Å ) 

Bo(GPa) 

B' 

4.018            

36.85            

4.02               

4.075
b
,  4.084

c
 

32.2
a
 

3.95
d
 

4.0811
e
, 3.92

f
, 4.03

g
 

33
e
, 34.1

h
, 32.3

i
, 31

g
 

4.9
e
, 3.5

g
 

CsCl a( Å ) 

Bo(GPa) 

B' 

2.510          

33.60          

4.01             

============ 

============ 

============ 

2.458
e
 

30.16
e
 

4.05
e
 

ZB a( Å ) 

Bo(GPa) 

B' 

4.307 

27.17 

3.94 

============ 

============ 

============ 

 ============ 

         

============ 

         

============ 
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Figure 6.1.1: Calculated total energy per unit cell versus V/V0 for LiH in RS, CsCl, ZB and WZ 

structures 

6.1.2 Phase transition 

The energy per unit cell as a function of volume is calculated by using 

PBE-GGA approach. The calculated total energy versus V/V0; where V is 

the unit cell volume and V0 is the equilibrium unit cell volume; by using 

PBE-GGA for LiH is shown in Figure 6.1.1. It is clear from Figure 

6.1.1that the RS structure, at ambient pressure (zero pressure and zero 

temperature), is the more stable ground state structure for LiH. Under 

compression, the calculations show that LiH will undergo a structural phase 

transition from RS to CsCl structures, while transition from RS to ZB or 

from RS to WZ undergoes under expansion. The enthalpy versus pressure 

curves for the both structures for LiH are displayed in Figure 6.1.2. The 
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calculated transition pressures from RS to CsCl structure for LiH 

compound is 211.8 GPa using PBE-GGA approach, which is in the range 

of the previous theoretical calculations [7, 8, 84], the difference between 

the theoretical calculations is related to variations in the approaches used. 

The transition from RS to CsCl is occurred at very high pressure with 

V/V0=0.446, where V0 is the equilibrium volume of the RS unit cell and V is 

the transition volume, while the transition from RS to ZB or WZ needs 

volume expansion, the V/V0 fractions are listed in Table 6.1.3. The 

computed transition pressures as well as the previous theoretical data for 

LiH are given in Table 6.1.4.  

Table 6.1.3: The V/V0 fraction for LiH. 

Compound RS → CsCl             RS → ZB             RS → WZ 

V/V0  for LiH 0.446                    1.291                     1.194 

Table 6.1.4: Calculated transition pressure Pt as well the other 

theoretical data for LiH compound. 

RS → CsCl    Pt(GPa) RS → ZB 

Pt(GPa) 

 

RS → WZ 

Pt(GPa) 

 

Present Work Other theoretical works 

211.8 208
a
, 660

b
, 329

c
 -3.83 -2.4 

a
Ref.[7], 

b
Ref.[8], 

c
Ref.[84] 
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Figure 6.1.2: Enthalpy as a function of pressure for LiH using PBE-GGA approximation. 

6.1.3 Electronic band structure  

The calculated band structure along the high symmetry lines in Brillouin 

Zone of LiH in the RS, CsCl, ZB and WZ using PBE-GGA and mBJ-GGA 

approaches for the exchange-correlation potential are calculated and shown 

in Figure 6.1.3 The band structures are calculated using the computed 

equilibrium lattice constants in tables 6.1.1 and 6.1.2. Figure 6.1.3 shows 

that the LiH in the RS structure has a direct energy band gap with valence 

 

 

  

Pt= -3.83 GPa 

Pt=211.8 GPa 

Pt= -2.4 GPa 



53 

and conduction bands both lying at X-point symmetry line, while the other 

structures have indirect energy band gap. The calculated energy band gaps 

are listed in Table 6.1.5, the calculated energy band gaps using mBJ-GGA 

is broader than that using PBE-GGA approach; the differences in minimum 

energy gap between PBE-GGA and mBJ-GGA are 2, 2.158, 1.462 and 

1.623 eV with RS, CsCl, ZB and WZ structures. LiH compound in CsCl 

structure seems to be semiconductor when using PBE-GGA approach, 

while it is wideband gap semiconductor using mBJ-GGA approach. 

According to the above-mentioned approaches; PBE-GGA and mBJ-GGA; 

energy band gap Eg  using mBJ-GGA is proved to be more accurate 

compared to the experimental results. It is clear that LiH compound, using 

mBJ-GGA, is insulators in all structures except in CsCl structure; it is a 

wide energy band gap semiconductor. It is clear from Table 6.1.5 that the 

energy band gaps for LiH in RS structure, using PBE-GGA approximation 

is somewhat smaller than the experimental values and this is mainly due to 

the self-interaction problem. PBE-GGA approximation contains the self-

interaction error [15, 85], due to this unphysical problem (PBE-GGA shifts 

some states to incorrect high energy level), usually, the energy band gap is 

strongly underestimated and sometimes semiconductor or metallic state is 

obtained instead of an insulating one. This problem shifts the Li-2s state to 

incorrect high energy level and interacts with H-1s state; this interaction 

increases Coulomb repulsion that lowering the valence band and causes 

narrowing of energy band gap [85]. 
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Table 6.1.5: Calculated energy band gap value Eg(eV) of LiH in RS, 

CsCl, ZB and WZ structures. 

Structure Present work 

           GGA         mBJ 

Experimental 

works 

Other theoretical works 

 

RS 

 

CsCl 

 

ZB 

 

WZ 

X→X: 3.190        5.200 

W→X: 3.250        5.400 

R→X:  0.740       2.940 

M→M: 4.230       6.480 

W→L:4.340        6.150 

L→L:  5.240         6.950 

Λ→K: 3.800        5.730 

K→K : 4.250        6.120 

4.4
a
 

 

 

--------------- 

 

--------------- 

 

--------------- 

4.6723
b
, 4.94

c
, 5.37

d
, 

4.92
e
 

 

 

1.5
b
 

 

------------------ 

 

-------------------- 

a
Ref.[86], 

b
Ref.[7], 

c
Ref.[84], 

d
Ref.[87], 

e
Ref.[88]. 

 

Figure 6.1.3: Band structure of LiH in RS, CsCl, ZB and WZ in PBE-GGA and mBJ-GGA 

approaches. 
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0.74 eV 

4.23 eV 

 

2.94 eV 
6.48 eV 

 

4.34 eV 
5.24 eV 

 

6.15 eV 
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Becke and Johnson proposed an exchange potential, which was designed to 

reproduce the exact exchange potential, the calculated energy band gaps by 

mBJ-GGA are in good agreement with the experimental value [86] and 

other theoretical values [7, 84, 87, 88]. Figure 6.1.4 shows the density of 

states for LiH compound using both GGA and mBJ-GGA approaches. For 

further understanding the nature of these electronic bands structure, the 

total and partial density of states for LiH compound at ambient pressure 

also have been calculated.   

Density of state (DOS) of a system describes the number of states at each 

energy level that are available to be occupied. From the total and local 

partial DOS for LiH we can see that the energy below the Fermi energy 

(FE) indicated by a dotted horizontal line, comes mainly from H-s along 

with a small contribution from Li-s, Li-p. Above the (FE) it is mainly 

comes from Li-P and Li-s states with small contribution from H-s state. In 

case of LiH using PBE-GGA, the lowest lying bands above FE, bottom of 

the valence states, are around 0.74 eV along X-point, 4.3 eV along L-point 

and 3.65 eV along K-point for CsCl, ZB and WZ, while by using mBJ-

GGA they are 2.9 eV along X-point, 5.75eV along L-point and 5.3eV along 

K-point. Figure 6.1.4 also shows that the density of states (states/eV), top 

of the peaks, by using mBJ-GGA are greater than that with PBE-GGA for 

all structures. It is clear from Figure 6.1.4, that the energy band gap using 

mBJ-GGA is broader than that with PBE-GGA approach. 
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Figure 6.1.4: Density of states of LiH in RS, CsCl, ZB and WZ structures. 
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6.1.4 Optical properties 

The dielectric function is complex function; it is an important optical 

parameter, which can be defined as the material response to 

electromagnetic radiation. Using the relations in section 5.5, optical 

constants can be determined and analyzed. The static real dielectric 

constants for LiH with the four studied structures (RS, CsCl, ZB and WZ) 

when photon energy is zero; namely ɛ1(0) are 4.13, 3.92, 2.83 and 2.86eV, 

respectively using PBE-GGA approach and 2.46, 2.62, 2.0 and 2.0eV 

respectively using mBJ-GGA approach. It is clear that mBJ-GGA has a 

lower value of ɛ1(0) and this is mainly relating to variation in electronic 

band structure as seen in section 6.1.3. In the high-energy region ɛ1(w) 

value with the four structures is negative, which means LiH compound has 

a metallic behavior in the high-energy region. The calculated real and 

imaginary parts of the optical dielectric function for LiH compound with 

the RS, CsCl, ZB and WZ structures are displaying in Figure 6.1.5 and in 

Figure 6.1.6 as a function of the photon energy from 0.0 to 14.0eV. The 

maximum values of ɛ1(w) with the four structures shifted toward the high-

energy with decreasing intensity compared to PBE-GGA approach. The 

calculated values of dielectric constants indicate that the cubic structures of 

LiH is optically isotropic;     =   ; while the WZ structure is optically 

anisotropic;     ≠   . The imaginary part gives us information about 

absorption behavior of the studied compounds. From Figure 6.1.6, ɛ2 

begins to have a considerable amount at about 3.0, 5.1, 6.0 and 5.0eV with 

PBE-GGA along [100] polarization and 6.1, 7.5, 7.8 and 9.0eV with mBJ-
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GGA along [100] polarization. The imaginary part    indicates that the LiH 

with RS, CsCl, ZB and WZ maximum absorption peak values are around 

7.44, 6.49, 6.49 and 6.33eV, respectively using PBE-GGA and 9.6, 8.57, 

8.44 and 8.43eV, respectively using mBJ-GGA method.  

 

Figure 6.1.5: Real part of the dielectric constant of LiH in RS, CsCl, ZB and WZ structures. 

 

Figure 6.1.6: Imaginary part of the dielectric constant of LiH in RS, CsCl, ZB and WZ 

structures.  
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Figure 6.1.7 shows the absorption spectrum which is related directly to the 

imaginary part of   . It is clear that there are strong absorption peaks for 

LiH with RS, CsCl, ZB and WZ in the energy range from 3.0, 5.2, 6.1 and 

5.8eV to 14eV, respectively using PBE-GGA and from 6.0, 7.2, 7.9 and 

7.5eV to 14eV, respectively using mBJ-GGA, these peaks reflect some 

transitions between different orbits. From Figure 6.1.7, maximum 

absorption for LiH in RS, CsCl, ZB and WZ structures occurs at 7.54, 8.27, 

6.59 and 6.31eV, respectively using PBE-GGA and 9.7, 9.64, 9.81 and 

8.18eV, respectively using mBJ-GGA. Real conductivity, as shown in 

Figure 6.1.8, with the four structures has the same shape of absorption 

α(ω), (Figure 6.1.7). The reflectivity coefficient R(w) for LiH with RS, 

CsCl, ZB and WZ are displayed in Figure 6.1.9, the zero-frequency or 

static reflectivity for RS, CsCl, ZB and WZ structures are 11.5%, 11.0%, 

6.3% and 6.7%, respectively with PBE-GGA approach and 4.9%, 5.6, 2.6% 

and 3.0%, respectively with mBJ-GGA approach. With both PBE-GGA 

and GGA-mBJ approaches, R(w) increases as the photon energy increases 

with frequent peaks; these peaks originate from the inter-band transitions; 

as the photon energy reaches 14eV, R(w) goes to the maximum value. LiH 

compound has a high reflectivity against high-energy photons; it is a good 

coating material to avoid and prevent solar heating. 
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Figure 6.1.7: Absorption function of LiH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.1.8: Real conductivity function of LiH in RS, CsCl, ZB, and WZ structures. 
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Figure 6.1.10 is displaying the refractive index n(w). The static refractive 

index; when photons energy is zero; n(0) is found to be 2.02 in RS 

structure, 1.98 in CsCl structure, 1.68 in ZB structure and 1.69 in WZ 

structure, respectively using PBE-GGA approach and 1.55 in RS structure, 

1.61 in CsCl structure, 1.4 in ZB structure and 1.41 in WZ structure, 

respectively using mBJ-GGA approach. The static refractive index n(0) 

value is equal the square root of the real part of dielectric function; 

     √     ; which is to some extent the same as that obtained from 

Figure 6.1.10. Figure 6.1.11 displaying the energy loss function L(w), L(w) 

is related to the energy loss of a fast electron in the material. Figure 6.1.11 

shows that loss function maximum values for LiH in RS, CsCl, ZB and WZ 

structures are at 11.77, 13.0, 11.64 and 13.19 eV, respectively using GGA 

approach and 13.05, 13.0, 13.44 and 10.86 eV using mBJ approach, L(w) is 

usually large at the Plasmon energy [89]. The extinction coefficient k(w) is 

displayed in Figure 6.1.12; the curves of extinction coefficient k(ω) are 

closed to the ε2(ω) and have similar features with the absorption coefficient 

α(ω). k(w) of LiH in RS, CsCl, ZB and WZ structures starts from 2.1, 4.0, 

3.8 and 4.8eV, respectively by using PBE-GGA approach and 5.7, 6.5, 6.0 

and 6.9eV, respectively by using mBJ-GGA approach. k(w) of LiH in RS, 

CsCl, ZB and WZ structures has maximum value at energy equals 7.1, 

5.68, 4.87 and 4.6eV, respectively using PBE-GGA approach and 12.7, 6.7, 

8.13 and 8.32eV, respectively using mBJ-GGA approach. 
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Figure 6.1.9: Reflectivity coefficient R(w) of LiH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.1.10: Refractive index n(w) of LiH in RS, CsCl, ZB, and WZ structures. 

 

 

 

 

 

 

  

  

 

  

  



63 

 

Figure 6.1.11: Energy loss function L(w) of LiH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.1.12: Extinction coefficient k(w) of LiH in RS, CsCl, ZB, and WZ structures. 
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6.1.5 Elastic properties 

The calculated elastic constants and bulk moduli for LiH, together with the 

available experimental and theoretical results are displayed in Table 6.1.6 

for the RS, CsCl and ZB structures, respectively [7, 80, 83, 90]. The 

computed elastic constants for LiH compound in the RS structure agree 

well with experimental and previous theoretical results [7, 80, 83, 90]. The 

variation in theoretical results is due to the variation in the potential 

approximations used.  

Table 6.1.6: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

LiH in cubic structures. 

 

Elastic 

Constant

s 

RS Structure CsCl Structure ZB 

Structure 

Presen

t work 

Experimental 

work 

Other 

theoretical 

work 

Present 

work 

Other 

theoretical 

work 

Present 

work 

C11 

C12 

C44 

70.2
 

10.2
 

50.4
 

66.4
a
, 74.1

b 

15.6
a
, 14.2

b
 

45.8
a
, 48.1

b 

 

78.01
c
, 

82.7
d 

10.5
e
, 10.7

d 

43.3
e
, 52.5

d 

175 

-38 

-22
 

66.5
e 

12
e
 

32
e 

35 

19.6 

33.4 

BV 

BR 

BH 

30.2 

30.2 

30.2 

 31.2
e 

32 

32 

32 

30
e 

25 

25 

25 

a
Ref.[90], 

b
Ref.[83], 

c
Ref.[7], 

d
Ref.[80]  

It is clear from Table 6.1.6 that these elastic constants satisfy the Born–

Huang criteria (defined in chapter 5) for the RS and CsCl structures; 

meaning that they are mechanically stable, while the CsCl structure does 

not satisfy the Born–Huang criteria. Similarly, for the hexagonal system 
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(WZ) presented in Table 6.1.7, the criteria for mechanical stability is also 

satisfied.  

Figure 6.1.13 shows the pressure dependence of the elastic constants and 

bulk moduli for LiH compound in RS structure. It is noticed that elastic 

constant C11 and bulk modulus increase with the applied pressure. It is also 

noticeable that elastic constant C11 is the most sensitive to pressure than 

C12, C44 and B. At high pressure, C44 approaches zero, indicating that these 

compounds are unstable under high pressure, and the RS structure 

transforms to CsCl structure. 

Table 6.1.7: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

LiH in WZ structure. 

BH BR BV C55 C33 C13 C12 C11 

26.2 26.2 26.2 33.1 69.5 5.32 4.25 68.3 

 

Figure 6.1.13: Variation of elastic constants and bulk moduli for LiH compound in RS 

structure. 
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6.1.6 Mechanical properties 

The bulk modulus for LiH compound is small, which means the weak 

resistance to the fracture of these materials. The CsCl phase is the hardest 

because it possess the most bulk modulus value, on the other hand the 

compressibility (β=1/B) of this phase structure is the least one, while WZ 

structure has the most compressibility. The value of the bulk modulus B 

computed from the elastic constants is to some extent agrees with the 

results obtained from Murnaghan‟s equation of state [53]. Table 6.4.7 

displays the anisotropy factor (A) for LiH compound in the four structures; 

WZ structure is completely isotropic with A=1, while the other structures 

are anisotropic because A is far from unity.  

 Poisson's ratio ν is an indicator, which can be used to judge the brittleness 

and ductility of the solid compounds. The critical value of v is 1/3, the 

compound has a ductile (brittle) nature when v > 1/3 (v < 1/3), Poisson‟s 

ratio for LiH compound as shown in table 6.1.8 is less than 1/3 in all 

structures, means they have a brittle nature. 
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Table 6.1.8: The calculated Young's modulus (Y), Shear modulus (S) (in GPa), compressibility (β in GPa
-1

), B/S ratio, 

Poisson's ratio (υ), Anisotropic ratio (A),  Cauchy pressure Cs and Vickers hardness (HV) for LiH compound in RS, 

CsCl, ZB and WZ structures in comparison with available theoretical data. 

 

Constant 

Rs Structure CsCl Structure ZB 

Structure 

WZ 

Structure 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Present 

Calculations 

Y 86.5 83
a 

68 68
a 

53 68.2 

S 42 39
a 

29 30
a 

23 32.4 

B/S 0.72 0.8
a
 1.1 1.0

a 
1.08 0.8 

υV 0.023 0.11
a
 0.13 0.15

a 
0.145 0.062 

A 1.68 1.28
a
 0.32 1.17

a 
4.33 1.0 

β 0.033 0.032 0.031 0.033 0.04 0.038 

Hv 23.19 19.1 9.77 11.6 8.35 16.6 

a
Ref.[7]. 
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The material has a ductile behavior if B/S > 1.75, otherwise the material 

has a brittle nature. From Table 6.4.7, it is clear that LiH compound 

represents a brittle nature, which agrees with Poisson‟s ratio and the small 

value of the bulk modulus. Hardness is a macroscopic concept, which 

describes the material resistant against the volume changing. Chen's model 

for hardness is given by equation (6.12) in chapter 6. 

Table 6.4.7 shows that the LiH in RS structure has the most value of 

Vicker's hardness (Hv) (the most hardness), on the other hand, ZB structure 

has the least value of Hv, and Young‟s modulus (Y) value for LiH in RS 

structure is the highest value. Therefore, Y agrees with Hv that LiH in RS 

structure is the stiffer structure; the greater the value of Young's modulus 

(Y) is the stiffer the material. This means that RS structure is mechanically 

the strongest among all phases, which is consistent with the bulk modulus 

and Hv values, while ZB structure is the least strong mechanically. 

6.1.7 Thermal properties 

With the help of the calculated elastic constants, bulk modulus (B), shear 

modulus (SH), Young‟s modulus (Y) and the Debye temperature (θD) are 

obtained. Debye temperature and average wave velocity are displayed in 

Table 6.1.8. The RS structure has the least value of Debye temperature and 

average wave velocity, while WZ has the greater value of Debye 

temperature and ZB has the greatest value of the average velocity. To 

return to the previous shear modulus (S), bulk modulus (B) and sound 

velocity values, it is clear that mainly the sound velocity depends on the 
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estimated values of the shear modulus (S) and bulk modulus (B). As the 

shear and bulk modulus increase, the sound velocity increases. Figure 

6.1.14 shows the dependence of Debye temperature and average wave 

velocity on the pressure, Debye temperature increases as the pressure 

increases. The same view for the average wave velocity. 

Table 6.1.9: Average wave velocity (Vm in m/s) and Debye temperature 

(ӨD in K) for LiH compound in RS, ZB and WZ structures. 

WZ structure ZB structure CsCl 

structure 

RS structure Constant 

Present 

calculations 

Present 

calculations 

Present 

calculations 

Other 

theoretical  

calculations 

Present 

calculations 

1142 820
 

784 1131
a
  1051 ӨD 

7716 5931
 

4390 7748
a
  7550 Vm 

a
Ref.[7]. 

 

Figure 6.1.14: Variation of average wave velocity for LiH compound in RS structure. 
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Figure 6.1.15: Variation of Debye temperature for LiH compound in RS structure. 

6.2 NaH Compound 

6.2.1 Structural properties 

The calculated structural parameters for NaH such as the lattice constant a0, 

bulk modulus B0, and the pressure derivative of the bulk modulus   
  in RS, 

CsCl, ZB and WZ phases are obtained by calculating the total energy per 

unit-cell at several volumes and fitting the calculated values to the 

Murnaghan's equation of state (ESO) [53]. Figure 6.2.1 shows the total 

energy as a function of the unit cell volume for NaH with RS, CsCl, ZB 

and WZ structures. Results for RS, CsCl, and ZB structures are listed in 

Table 6.2.1, along with other experimental and theoretical works, while for 

WZ structure, results are listed in Table 6.2.2.  
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Table 6.2.1: Structural parameters for NaH with RS, CsCl and ZB 

structures along with experimental and other theoretical results. 

Structure Structural 

parameters 

Present 

calculations 

Experimental 

results 

Other theoretical 

results 

 

RS 

a0(Å ) 

B0(GPa) 

  
  

4.838 

23.30 

3.55 

4.880
a 

14.3±1.5
b
, 

19.4±2
c
 

7.7±1.0
b
, 

4.40±0.5
c
 

4.8511
d
, 4.865

e
, 4.921

f 

4.775
g
 

26
 d

, 22.90
e
, 20

f
, 27.4

h
,  

29.6
g
 

3.62
 d

, 4.1
f
, 3.78

e
 

CsCl a0(Å ) 

B0(GPa) 

  
  

2.965 

23.97  

3.83 

3.094
c
 

28.30±3.0
c
 

4.30±0.40
 c
 

3.010
 d

,4.838
i
, 4.955

j
, 

2.982
e
 

28
d
,  22.81

i
 23.5

k
, 

23.21
e
 

2.669
d
, 3.75

l
 , 3.16

k
, 

3.75
e
 

ZB a0(Å ) 

B0(GPa) 

  
  

5.228 

17.49 

3.67 

============ 

============ 

============ 

============ 

============ 

============ 

a
Ref[78], 

b
Ref.[3], 

c
Ref.[5], 

d
Ref.[7], 

e
Ref.[9], 

f
Ref.[81], 

g
Ref.[80], 

h
Ref.[91], 

i
Ref.[92], 

j
[15], 

k
[11], 

l
[93].  

Table 6.2.2: Structural parameters for NaH with WZ structure. 

  
  B0(GPa) u(a.u.) c/a0 a0(Å ) Compound 

3.90 18.06 0.390 1.5672 3.748 NaH 

The calculated lattice constants for NaH in RS and CsCl structures are in 

agreement with the previous experimental results [3, 5, 78] and other 

theoretical work [7, 9, 11, 80, 81, 91, 93], while results of references       

[15, 92] for NaH in CsCl disagree with the present work and the 

experimental results. There is an agreement between the predicted values of 

B0 and   
  and the experimental results in Ref.[5] and theatrical calculations 

[7, 9, 80, 81, 91], while B0 and   
  values are far from results in Ref.[3]. 
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The variation in theoretical results is due to the variation in the potential 

approximations used.  

6.2.2 Phase transition 

The energy per unit cell as a function of volume is calculated by using 

PBE-GGA approach. The calculated total energy versus V/V0, where V is 

the unit cell volume and V0 is the equilibrium unit cell volume, for NaH is 

shown in Figure 6.2.1. It is clear from Figure 6.2.1that the RS structure, at 

ambient pressure (zero pressure), is thermodynamically stable structure 

(ground state structure), it has a minimum energy. Under compression, the 

calculations as shown in Table 6.2.4 show that the compound undergoes a 

structural phase transition from RS to CsCl structures (positive transition 

pressure), while transition from RS to ZB or from RS to WZ undergoes an 

expansion (negative transition pressure). The enthalpy versus pressure 

curves for the both structures for NaH are displayed in Figure 6.2.2. The 

calculated transition pressures from RS to CsCl structure for NaH 

compound is 34.26 GPa using PBE-GGA approach, which is in the range 

of the experimental [5] and other theoretical calculations [7, 8, 9, 12, 92]. 

The transition from RS to CsCl is occurred at very high pressure with 

V/V0=0.565, where V0 is the equilibrium volume of the RS unit cell and V is 

the transition volume, while the transition. 
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Figure 6.2.1: calculated total energy per unit cell versus V/V0 for NaH in RS, CsCl, ZB and 

WZ structures. 

 

Figure  6.2.2: Enthalpy as a function of pressure for NaH using PBE-GGA approximation. 
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from RS to ZB or WZ needs volume expansion, the V/V0 fractions are listed 

in Table 6.2.3. The computed transition pressures as well as the previous 

theoretical data for NaH are given in Table 6.2.4. 

Table 6.2.3: The V/V0 fraction for NaH. 

V/V0  for 

NaH 

RS → CsCl             RS → ZB             RS → WZ 

0.565                    1.255                     1.225 

Table 6.2.4: Calculated transition pressure Pt as well the experimental 

and other theoretical data for NaH compound. 

RS → WZ 

Pt(GPa) 

 

RS → ZB 

Pt(GPa) 

 

RS → CsCl    Pt(GPa) Compound 

Other 

theoretical 

works 

Experiment

al works 

Present 

Work 

-1.57 -1.94 37 
b, c, d

, 32
e, f

 29.3±0.9
a 

34.26 NaH 

a
Ref.[5], 

b
Ref.[12], 

c
Ref.[7], 

d
Ref[8], 

e
Ref.[9], 

f
Ref.[92] 

6.2.3 Electronic band structure  

The calculated band structure along the high symmetry lines in the 

Brillouin zone, for NaH in the RS, CsCl, ZB and WZ phases using PBE-

GGA and mBJ-GGA approaches for the exchange-correlation potential, are 

shown in Figure 6.2.3. The band structures are calculated using the 

computed equilibrium lattice constants. Figure 6.2.3 shows that the NaH in 

the RS structure has a direct energy band gap with the valence and 

conduction bands that are situated at the X-point symmetry line, while the 

other phases have an indirect energy band gap. The calculated PBE-GGA 

and mBJ-GGA energy band gaps are listed in Table 6.2.5 along with other 

theoretical works [7, 82, 94]. It can be seen that the calculated energy band 
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gaps using mBJ-GGA are broader than those using PBE-GGA approach. 

The differences in the minimum energy gaps between GGA and mBJ-GGA 

are 2.88, 3.45, 2.75, and 2.80 eV in RS, CsCl, ZB and WZ structures, 

respectively. NaH in CsCl phase is semiconductors within the GGA 

approximation. By using the mBJ-GGA, the NaH is found to be an 

insulator. It is clear that these compounds, using mBJ-GGA, are insulators 

in all structures. Figure 6.2.4 shows the density of states for NaH 

compound, using both PBE-GGA and mBJ-GGA approaches. In order to 

understand the nature of these electronic bands structures further, the total 

and partial density of states for NaH compound at ambient pressure have 

also been calculated. Density of state (DOS) of a system describes the 

number of states at each energy level that are available to be occupied. 

From the total and partial DOS for NaH (Figure 6.2.4), one can see that the 

bands below the Fermi energy level (FE) - indicated by a dotted horizontal 

line - come mainly from the H-s states along with a small contribution from 

Na-s and Na-p states. Above the FE, the bands mainly come from Na-s and 

Na-p states, with a small contribution from H-s state. 
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Table 6.2.5: Calculated energy band gap value of NaH in RS, CsCl, ZB 

and WZ structures.  

a
Ref.[7], 

b
Ref.[82], 

c
Ref.[94] 

In the case of NaH compound using PBE-GGA, the lowest lying bands 

above FE are around 3.82eV along the L-symmetry point, 1.1 eV along the 

X-symmetry point, 3.75eV along the L-symmetry point and 3.8eV along 

the Γ-symmetry point for RS, CsCl, ZB and WZ structures, respectively. 

Lastly, by using the mBJ-GGA, the lowest lying bands above FE are 

around 6.7eV along the L-symmetry point, 4.55eV along the X-symmetry 

point, 6.50eV along the L-symmetry point and 6.6eV along the Γ-

symmetry point. Figure 6.2.4 also shows that the peaks of the density of 

states (states/eV) obtained by using mBJ-GGA approach are sharper and 

greater in magnitude compared to those obtained by using PBE-GGA 

approach. It is also clear from Figure 6.2.4 that the energy band gap using 

mBJ-GGA is broader than that using PBE-GGA method.  

 

Structure Present work 

            GGA        mBJ 

Other theoretical works 

RS 

 

W→L : 3.820        6.700 

L→L : 4.630         7.130 

4.8560
a
, 3.46

b
, 5.68

c 

 

CsCl 

 

R→X: 1.100         4.550 

X→X : 4.490        7.050 

1.0
a
 

 

ZB W→L: 3.750         6.500 

L→L : 4.380         6.900 

----------------------------------------- 

 

WZ Λ→Γ: 3.800         6.600 

M→M : 4.350        6.800 

------------------------------------------- 
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Figure 6.2.3: Band structure of NaH in RS, CsCl, ZB and WZ in PBE-GGA and mBJ-GGA 

approaches. 
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Figure 6.2.4: Density of states of NaH in RS, CsCl, ZB and WZ structures. 
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6.2.4 Optical properties 

The static real dielectric constants ɛ1(0) (when photon energy is zero) for 

NaH with the four studied structures (RS, CsCl, ZB and WZ) are about 

2.27, 2.9, 2.4 and 2.4eV, respectively using PBE-GGA approach and 1.7, 

1.8, 1.5 and 1.5eV, respectively using mBJ-GGA approach. Because there 

are variations in the electronic band structure; band gap is broader with 

mBJ-GGA; ɛ1(0) with mBJ-GGA has a lower value comparing to PBE-

GGA approach. The calculated real and imaginary parts of the optical 

dielectric function for NaH compound with the RS, CsCl, ZB and WZ 

structures have been displayed in Figures 6.2.5 and 6.2.6 as a function of 

the photon energy from 0.0 to 14.0 eV. 

The imaginary part gives us information about absorption behavior of the 

studied compounds. From Figure 6.2.6, the imaginary part of dielectric 

function ɛ2 onset of absorption around 4.5, 4.2, 4.1 and 4.1 eV with PBE-

GGA and 7.20, 6.95, 6.9 and 6.5 eV with mBJ-GGA, which to some extent 

in accordance with the direct energy gap along L-symmetry point with RS 

and ZB structures, along X-symmetry point with CsCl and along M-

symmetry point with WZ structure. The imaginary part    indicates that the 

NaH with RS, CsCl, ZB and WZ maximum absorption peak values are 

around 6.44, 6.58, 6.33 and 5.86 eV, respectively using PBE-GGA and 9.0, 

9.46, 8.8 and 8.31 eV, respectively using mBJ-GGA, respectively. From 

Figure 6.2.7 for the absorption spectrum α(w) which is related directly to 

the imaginary part   , it is clear that there are strong absorption peaks for 

NaH with RS, CsCl, ZB and WZ in the energy range from 6, 5.2, 5.2 and 
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5.0 eV to 14 eV, respectively using PBE-GGA and from 8.2, 8.0, 7.8 and 

7.8 eV to 14 eV, respectively using mBJ-GGA, these peaks reflect some 

transitions between different orbits. From Figure 6.2.7, maximum 

absorption for NaH with RS, CsCl, ZB and WZ occurs at 5.9, 5.0, 4.8 and 

4.6 eV, respectively using PBE-GGA and 8.0, 7.8, 7.75 and 7.3 eV 

respectively using mBJ-GGA. Absorption with mBJ-GGA is very large 

compared with that using PBE-GGA method. 

 

Figure 6.2.5: Real dialectic constant ɛ1(w) of NaH in RS, CsCl, ZB and WZ structures. 
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Figure 6.2.6: Imaginary dielectric constant ɛ1(w) of NaH in RS, CsCl, ZB and WZ 

The reflectivity coefficient R(w) for NaH in RS, CsCl, ZB and WZ 

structures are displayed in Figure 6.2.8, the zero-frequency reflectivity are 

6%, 4.0%, 4.6% and 6.7%, respectively with PBE-GGA and 1.7%, 2.6, 

1.1% and 1.1%, respectively with mBJ-GGA approach. It is clear that R(0) 

with RS structure using mBJ-GGA is greater than that using PBE-GGA 

approach. With the four structures and after R (w) reaches its maximum 

value, it begins to decreases until about 13 eV, again it increases with both 

PBE-GGA, and mBJ-GGA approaches. Along the spectrum from 0 eV to 

14 eV, there are peaks; these peaks originate from the inter-band 

transitions. Figure 6.2.9 displays the energy loss function L(w), which is 

related to the energy loss of a fast electron in the material. Figure 6.2.9  

shows that loss function for NaH in RS, CsCl, ZB and WZ structures 

begins at 5.48, 5.39, 4.84 and 4.45 eV, respectively using PBE-GGA 
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approach and 7.38, 8.0, 7.47 and 6.74 eV using mBJ-GGA approach, as 

seen L(w) increases as the photon energy increases. 

Figure 6.2.10 displays the refractive index n(w). The static refractive index 

n(0) is found to have the values 1.64 with RS structure, 1.70 in CsCl 

structure, 1.55 in ZB structure and 1.54 in WZ structure, respectively using 

PBE-GGA approach and 1.34 in RS structure, 1.36 in CsCl structure, 1.24 

in ZB structure and 1.24 in WZ structure, respectively, using mBJ-GGA 

approach.  

 

Figure 6.2.7: Absorption spectrum α(w) of NaH in RS, CsCl, ZB and WZ structures. 
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Figure 6.2.8: Reflectivity coefficient R(w) for NaH in RS, CsCl, ZB and WZ structures.  

 

Figure 6.2.9: Energy loss function L(w) for NaH in RS, CsCl, ZB and WZ structures.  
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The static refractive index n(0) value is equal the square root of the real 

part of dielectric function;      √     ; which is to some extent the 

same as that obtained from Figure 6.2.10. 

The extinction coefficient k(w) displays in Figure 6.2.11, K(w) of NaH 

starts to have a considerable value for NaH in RS, CsCl, ZB and WZ at 4.5, 

4.3, 4.25 and 4.27eV, respectively using PBE-GGA and at 7.5, 7.4, 7.5 and 

7.47eV respectively, using mBJ-GGA. From these figures, we can see that 

the cubic structures are optically isotropic but not the WZ structure. 

 

Figure 6.2.10: Refractive index n(w) for NaH in RS, CsCl, ZB and WZ structures. 
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Figure 6.2.11: Extinction coefficient k(w) for NaH in RS, CsCl, ZB and WZ structures. 

6.2.5 Elastic properties 

The calculated elastic constants and bulk moduli for NaH, together with the 

available experimental and other theoretical results are displayed in Table 

6.2.6 in the RS, CsCl and ZB structures, respectively [7, 80, 83 ].  The 

computed elastic constants for NaH compound in the RS structure are to 

some extent in agreement with the experimental and previous theoretical 

results [7, 80, 83].  The Born mechanical stability criteria for cubic 

structure are given in chapter 5. 
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Table 6.2.6: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

NaH in cubic structures. 

 

Elastic 

Constants 

RS Structure CsCl Structure ZB 

Structure 

Present 

work 

Experime

ntal work 

Other 

theoretical 

work 

Present 

work 

Other 

theoretic

al work 

Present 

work 

C11 

C12 

C44 

39.1 

13.0 

24.1
 

47.3
a 

2.5
a
 

22.5
a 

 

59.1
b
, 53.2

c 

9.2
b
, 14.8

c 

22.02
b
, 

22.7
c 

95.2 

-14 

-6.5
 

73.02
b 

11.9
b
 

30.11
b 

19.5 

13.7 

16.0 

BV 

BR 

BH 

21.7 

21.7 

21.7 

 26
b 

32 

32 

32 

26
b 

15.7 

15.7 

15.7 

a
Ref.[83], 

b
Ref.[7], 

c
Ref.[80] 

It is clear from Table 6.2.6 that these elastic constants satisfy the Born–

Huang criteria for the RS and CsCl structures; meaning that they are 

mechanically stable, while the CsCl structure does not satisfy the Born–

Huang criteria, NaH in the CsCl structure is not stable, it is reversible 

(when pressure is released it return to the RS structure). Elastic constants 

for the hexagonal system (WZ) presented in Table 6.2.7, they are satisfy 

the Born–Huang criteria for hexagonal (WZ) structure.  

Figure 6.2.12 shows the pressure dependence of the elastic constants and 

bulk moduli for NaH compound in RS structure. It is noticed that elastic 

constant C11 and bulk modulus increase with the applied pressure. It is also 

noticeable that elastic constant C11 is the most sensitive to the pressure than 

C12, C44 and B. At high pressure, C44 approaches zero, indicating that these 
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compounds are unstable under high pressure, and the RS structure 

transforms to CsCl structure. 

Table 6.2.7: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

NaH in WZ structure 

BH BR BV C55 C33 C13 C12 C11 

15.2 15.2 15.2 11.7 30.1 5.7 7.6 34.3 

 

 

 

Figure 6.2.12: Variation of elastic constants (Cij) and bulk modulus (B) for NaH compound with 

pressure  in RS structure. 
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6.2.6 Mechanical properties 

The bulk modulus for NaH compound is small, which means the weak 

resistance to the fracture of these materials. The CsCl phase is the hardest 

as in the LiH case, because it possesses the most bulk modulus value, on 

the other hand the compressibility (β=1/B) of this phase structure is the 

least one as shown in Table 6.2.8, while WZ structure has the most 

compressibility. The value of the bulk modulus B computed from the 

elastic constants is to some extent agrees with the results obtained from 

Murnaghan‟s equation of state [53]. Table 6.2.8 displays the anisotropy 

factor (A) for NaH compound in the four structures; WZ structure is 

completely isotropic with A=1, while the other structure are anisotropic 

because A is far from unity. 
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Table 6.2.8: The calculated Young's modulus (Y), Shear modulus (S) (in GPa), compressibility (β in GPa
-1

), B/S ratio, 

Poisson's ratio (υ), Anisotropic ratio (A),  Cauchy pressure Cs and Vickers hardness (HV) for NaH compound in RS, 

CsCl, ZB and WZ structures in comparison with available theoretical data. 

 

 

 

 

 

 

a
Ref.[7] 

 

 

Elastic 

Constants 

Rs Structure CsCl Structure ZB 

Structure 

WZ 

Structure 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Present 

Calculations 

Y 45.3 53
a 

42 66
a 

26 29.7 

S 19.68 23
a 

18 30.4
a 

10 12.6 

B/S 1.1 1.1
a 

1.75 0.85
a 

1.74 1.2 

υV 0.152 0.13
a 

0.178 0.14
a 

0.218 0.174 

A 1.84 0.88
a 

0.16 0.98
a 

5.5 0.88 

β 0.046 0.038
a 

0.031 0.038
a 

0.063 0.65 

Hv 7.19 7.8 2.5 14.6
a 

1.53 4.0 
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Poisson's ratio ν is used to judge the brittleness and ductility of the solid 

compounds, as indicated in the previous section, Poisson‟s ratio for NaH 

compound as shown in table 6.2.8 is less than 1/3 in all structures, means 

has a brittle nature in these structures. 

B/S is used to estimate if the material is brittle or ductile in nature. It is 

clear from Table 6.2.8 that NaH compound represents a brittle nature, 

which is in good agreement with Poisson's ratio. NaH in RS structure has 

the most value of Vickers hardness (Hv) (the most hardness); on the other 

hand, ZB structure has the least value of Hv. This means that RS structure 

is the more mechanically strong among all phases. Young's modulus (Y) 

and the bulk modulus for NaH in RS structure have the greater value 

among the four structures; they are consistent with Hv that NaH in RS 

structure is the most mechanically stable, while ZB structure is the least 

strong mechanically. 

6.2.7 Thermal properties 

Debye temperature and average wave velocity are displayed in Table 6.2.9. 

The RS structure has the greater value of Debye temperature, while WZ has 

the greater average wave velocity. Figure 6.1.13 and Figure 6.1.14 show 

the dependence of Debye temperature and average wave velocity on the 

pressure, Debye temperature increases as the pressure increases. The same 

view for the average wave velocity, it increases as the pressure increases. 
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Table 6.2.9: Average wave velocity (Vm in m/s) and Debye 

temperature (ӨD in K) for NaH compound in RS, ZB and WZ 

structures. 

WZ structure ZB structure CsCl 

structure 

RS structure Constant 

Present 

calculations 

Present 

calculations 

Present 

calculations 

Other 

theoretical  

calculations 

Present 

calculations 

422 345 207 549
a 

495.4 ӨD 

3709 3033 1646 4475
a 

3661 Vm 

a
Ref.[7]. 

 

 

Figure 6.2.13: Variation of Debye temperature vs pressure for NaH with RS structure. 
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Figure 6.2.14: Variation of average wave velocity versus pressure for NaH with RS structure. 

6.3 KH Compound 

6.3.1 Structural Properties 

The ground-state properties of KH compound in RS, CsCl, ZB and WZ 

structures have been estimated by calculating the total energy at different 

unit-cell volumes and fitting the calculated E-V points to Murnaghan's 

equation of state (EOS) [53], as shown in Figure 6.3.1. We can clearly see 

from these curves that the rock-salt structure has the lowest energy 

minimum at ambient pressure, which means that it is the most stable 

structure at ambient conditions (zero pressure and temperature). The 

calculated equilibrium lattice constant a0, bulk modulus B0 and first-order 

pressure derivatives of the bulk modulus   
  for KH in the RS, CsCl, ZB 

phases, along with the available experimental [2, 3, 6] and theoretical      

[7, 80, 95] results, are listed in Table 6.3.1, while they are listed in Table 
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6.3.2 for WZ structure. Structural parameters for KH in RS structure are in 

good agreement with experimental results [2, 3, 6]. 

  

Figure 6.3.1: Calculated total energy per unit cell versus cell volume for KH in RS, CsCl, ZB 

and WZ. 

From Table 6.3.1, it is clear that the calculated structural parameters for 

KH in the CsCl structure are in good agreement with the results of Sudha et 

al.[7]. For the four structures RS, CsCl, ZB and WZ, if we make a 

comparison between LiH, NaH and KH we can see that the calculated 

lattice constant increases as the alkali radius increases, while the bulk 

modulus decreases. There are no experimental results for the lattice 

constant for KH in CsCl up to date. Present results of the structural 

parameters for KH compound in ZB and WZ structures are calculated for 

the first time.  

 

 Volume ( a.u.
3
) 
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Table 6.3.1: Structural parameters for KH compound in RS, CsCl and 

ZB structures, along with experimental and other theoretical results. 

a
Ref[2], 

b
Ref[3], 

c
Ref[6], 

d
Ref[7], 

e
Ref[80], 

f
Ref[95]  

Table 6.3.2: Structural parameters for KH compound in WZ 

structure. 

B
' 

B(GPa) u(a.u.) c/a a0( Å ) Compound 

3.62 10.12 0.393 1.514 4.492 KH 

6.3.2 Phase Transition 

The energy per unit cell is calculated by using the PBE-GGA at different 

unit-cell volumes, and the results are fitted to the Murnaghan's equation of 

state [53], as shown in Figure 6.3.1. It is clearly shown that KH undergoes 

a structural phase transition from RS to the other structures. At the 

transition pressure, the enthalpies of the two consecutive phases are equal. 

Enthalpy-pressure curves for KH are displaced in Figure 6.3.2.  

 

 

 

Structure  

 

Structural 

parameter

s 

 

Present  

work 

 

Experimental  work  

 

Other theoretical  

work  

RS a0( Å ) 

B0(GPa) 

B' 

5.70 

13.41 

3.9 

5.70
a, c

  

15.6 ± 1.5
b 

4.0 ± 0.5
b 

5.721
d
, 5.701

e 

16
d
, 17.3

f 

2.955
d
 

CsCl a0( Å ) 

B0(GPa) 

B' 

3.41 

15.04 

4.00 

…………… 

28.5 ±1.5
b 

4.0 + 0.6
b
 

3.520
d
 

20
d
 

3.007
d
 

ZB a0( Å ) 

B0(GPa) 

B' 

6.215 

9.85 

3.40 

…………… 

…………… 

…………… 

…………… 

…………… 

…………… 
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Figure 6.3.2: Enthalpy as a function of pressure for KH using PBE-GGA. 

The estimated induced-transition pressures from RS to the other structures 

for KH are presented in Table 6.3.3. The computed transition pressure from 

RS to CsCl structure is found to be 5.11 GPa, which is in good agreement 

with the previous theoretical calculations and the experimental value [3]. 

Table 6.3.4 displays the V/V0 fraction. The induced-transition pressures 

from RS to CsCl for KH occurred at V/V0= 0.693, which means that the RS 

to CsCl transition requires volume compression. The RS to ZB and RS to 

WZ phase transitions occur when V/V0 is greater than one, meaning that 

these two transitions require volume expansion.  

 

 

 

 

Pt= -1.39 GPa 

Pressure (GPa)  

Pt= 5.11GPa 

Pressure (GPa) 

 

Pt= -1.25GPa 

Pressure (GPa) 
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Table 6.3.3: Calculated transition pressures as well as the experimental 

and other theoretical data for KH compound. 

RS → WZ 

Pt(GPa) 

 

RS → ZB 

Pt(GPa) 

 

RS → CsCl    Pt(GPa)  

Compound Other 

theoretical work 

Experimental 

work 

Present 

Work 

-1.25 -1.39 3.5
b, c

, 2
d
 4

a
 5.11 KH 

a
Ref.[3],

 b
Ref[7] , 

c
Ref[10], 

d
Ref[11] 

Table 6.3.4: The V/V0 fractions for KH. 

Compound RS → CsCl             RS → ZB             RS → WZ 

V/V0 for KH  0.693                       1.571                    1.513 

There are small differences between the reported and experimental 

transition pressures, and one of the reasons for this phenomenon is that the 

experimental calculations are carried out at room temperature, while the 

theoretical calculations are performed at 0K, the induced transition pressure 

decreases as the temperature increases. In addition, the purity of the 

prepared compound affect the induced transition pressure, there is a 

presence of XOH (X=Li, Na, K, Rb, Cs) compounds which remain through 

the alkali transition. [5]  

6.3.3 Electronic properties  

Atoms in a crystal interact with their neighbors and the energy levels of the 

electrons in an isolated atoms turn into bands. In fact, a material can be 

classified as a conductor, insulator or semiconductor by examining its band 

structure and the Fermi energy-level position. The self-consistent band 

structures of KH is calculated in cubic RS, CsCl and ZB structures and a 

hexagonal (WZ) structure using the computed equilibrium lattice constant 
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within PBE-GGA and mBJ-GGA for the exchange-correlation potential; 

the results are shown in Figure 6.3.3. We can clearly see that the Fermi 

level crosses the energy-band gap for all structures. The topologies of the 

energy-band structures for KH, LiH and NaH compounds are quite similar 

to one another. Using PBE-GGA and mBJ-GGA approaches, the minimum 

energy-band gap is direct along the L-point and M-point high symmetry 

lines for KH compound in RS and WZ structures, respectively. For the 

CsCl structure, the minimum energy-band gap is indirect. From Figure 

6.3.3 and Figure 6.3.4 for the KH density of states, it is clear that the 

electronic energy bands are more vertically distributed in PBE-GGA; mBJ-

GGA shifts them closer to one another. Differences in the width of the first 

valence band below the Fermi-energy between PBE-GGA and mBJ-GGA 

in RS, CsCl, ZB and WZ structures are 0.6, 1.1, 0.9 and 0.9 eV, 

respectively for KH compound. Table 6.3.5 reports the calculated energy-

band gaps using the two approaches, mBJ-GGA and PBE-GGA methods 

along with the available theoretical results [7, 80, 96, 97].  

Table 6.3.5: Calculated energy band-gap values ((Eg (eV)) of KH in 

RS, CsCl, ZB and WZ structures. 

Structure Present work 

     PBE-GGA                   mBJ-GGA 

Other theoretical works (Eg) 

 

RS L→L: 3.428             L→L: 6.012 3.5992
a
, 5.85

b
, 3.203

c
, 6.28

d
  

CsCl R→X: 2.456                R→X: 4.971 2.0
a
 

ZB W→L : 3.671    X→X : 6.801 ------------------------------------ 

WZ M→M : 3.655             M→M : 6.917 ------------------------------------ 

a
Ref.[7], 

b
Ref.[80], 

c
Ref.[96], 

d
Ref.[97]. 
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Figure 6.3.3: Band structure of KH in RS, CsCl, ZB and WZ in the PBE-GGA and mBJ-GGA 

approaches. 
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Figure 6.3.4: Density of states of KH in RS, CsCl, ZB and WZ in the PBE-GGA and mBJ-

GGA approaches. 
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The calculated energy-band gaps for KH in RS, CsCl, ZB and WZ 

structures are broader using mBJ-GGA than using PBE-GGA, by 

approximately 1.25eV to 3.4eV. The energy-band gap has been modified 

using mBJ-GGA approach, so the band gap calculated using mBJ-GGA are 

more accurate than those calculated using PBE-GGA approach compared 

to the experimental results. The band gap is used to classify the compound, 

KH in CsCl structure seems to be classified as semiconductors when using 

PBE-GGA, while it is classified as insulator when using mBJ-GGA 

method.  

6.3.4 Optical properties 

Using the relations in section 5.5, optical constants can be determined and 

analyzed. The static real dielectric constants ɛ1(0) for KH in the four 

studied structures (RS, CsCl, ZB and WZ) when photon energy is zero; are 

about 2.17, 2.47, 2.0 and 1.96eV, respectively using PBE-GGA approach 

and 1.51, 1.8, 1.36 and 1.4eV, respectively using mBJ-GGA approach. It is 

clear that mBJ-GGA has a lower value of ɛ1(0) and this is mainly related to 

variation in electronic band structure as seen in section 6.3.3. ɛ1(w) value is 

negative in some regions, which means KH compound has a metallic 

behavior in those regions. The calculated real and imaginary parts of the 

optical dielectric function for KH compound in the RS, CsCl, ZB and WZ 

structures are displayed in Figures 6.3.5 and 6.3.6 as a function of the 

photon energy from 0.0 to 14.0 eV. The cubic structures are optically 

isotropic, while the WZ structure is not isotropic because       . From 
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Figure 6.3.6, the imaginary part of dielectric function ɛ2 in RS, CsCl, ZB 

and WZ structures onset of absorption around 3.43, 3.7, 4.1 and 3.95 eV, 

respectively within PBE-GGA and 6.68, 6.22, 7.5 and 7.5 eV, respectively 

within mBJ-GGA. They begin to have considerable values at 4.25, 4.59, 

4.7 and 7.8 eV, respectively within PBE-GGA approach and 6.8, 6.49, 7.8 

and 4.6 eV, respectively within mBJ-GGA approach. The mBJ-GGA 

approach is more accurate in predicting these optical constants , because 

these optical constants are strongly depend on energy gap, and mBJ-GGA 

is more accurate in predicting these energy gaps. 

 

Figure 6.3.5: Real part of the dielectric constant of KH in RS, CsCl, ZB and WZ structures.  
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Figure 6.3.6: Imaginary part of the dielectric constant for KH in RS, CsCl, ZB and WZ 

structures. 

The imaginary part    indicates that the KH compound in RS, CsCl, ZB 

and WZ structures has maximum absorption peaks. These peaks are around 

6.0, 7.0, 5.2 and 5.2 eV, respectively using PBE-GGA and 9.80, 8.72, 8.5 

and 8.25 eV, respectively using mBJ-GGA. From Figure 6.3.7 for the 

absorption spectrum which is related directly to the imaginary part of   . It 

is clear that there are strong absorption peaks for KH in RS, CsCl, ZB and 

WZ structures in the energy range from 4.3, 4.5, 4.8 and 4.6 eV to 14 eV, 

respectively using PBE-GGA and from 6.8, 6.5, 7.8 and 8.0 eV to 14 eV, 

respectively using mBJ-GGA.  

From the same Figure 6.3.7, maximum absorption for KH in RS, CsCl and 

ZB occurs at 6.15, 7.2 and 5.4 eV, respectively using PBE-GGA and 9.8, 

8.86 and 8.6 eV, respectively using mBJ-GGA, while in WZ structure, 
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maximum absorption occurs at 5.2 eV along [100] direction and at 5.45 eV 

along [001] direction using PBE-GGA approach and at 10.3 eV along [100] 

direction and at 8.53 eV along [001] direction using mBJ-GGA approach. 

Absorption spectrum approximately the same as imaginary dielectric 

function, they begin to have a considerable value approximately at the 

same point and reach maximum value at the same photon energy. Real 

conductivity, Figure 6.3.8 with the four structures, has the same shape of 

absorption function α(ω) as in Figure 6.3.7. 

The reflectivity coefficient R(w) for KH in RS, CsCl, ZB and WZ 

structures are displayed in Figure 6.3.9, the zero-frequency reflectivity are 

3.7%, 5.0%, 2.7% and 2.7%, respectively within PBE-GGA and 1.0%, 

2.1%, 0.5% and 0.7%, respectively with mBJ-GGA approach. It is clear 

that R(0) within PBE-GGA is greater than that of mBJ-GGA approach. 

With the four structures and after R(w) reaches its maximum value, it 

begins to decrease and oscillates. Along the spectrum from 0 eV to 14 eV, 

there are peaks; these peaks originate from the inter-band transitions. With 

both PBE-GGA and mBJ-GGA approaches, R(w) in CsCl structure 

increases as the photon energy increases with different peaks. R(w) has a 

great value in the high-energy region, KH has a high reflectivity against 

high-energy photons; it is a good coating material to avoid and prevent 

solar heating. Since the mBJ-GGA is more accurate in predicting the 

energy gap and these constants are energy gap dependence, they are more 

accurate within mBJ-GGA method. 
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Figure 6.3.7: Absorption function of KH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.3.8: Real conductivity function of KH in RS, CsCl, ZB, and WZ structures. 
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Figure 6.3.9: Reflectivity coefficient R(w) of KH in RS, CsCl, ZB, and WZ structures. 

Figure 6.3.10 displays the energy loss function L(w), which is related to the 

energy loss of a fast electron in the material. Figure 6.3.10  shows that loss 

function for KH in RS, CsCl, ZB and WZ structures begins at 4.49, 5.0, 

4.68 and 4.0 eV, respectively using PBE-GGA approach and 7.19, 7.0, 7.72 

and 7.5 eV using mBJ-GGA approach. L(w) oscillates but the peaks go to 

higher value as the photon energy increases. Figure 6.3.11 displays the 

refractive index n(w). The static refractive index n(0) is found to have the 

values 1.48 in RS structure, 1.57 in CsCl structure, 1.40 in ZB structure and 

1.40 in WZ structure respectively using PBE-GGA approach and 1.22 in 

RS structure, 1.34 in CsCl structure, 1.16 in ZB structure and 1.18 in WZ 

structure, respectively using mBJ-GGA approach. The static refractive 

index n(0) value is equal to the square root of the real part of dielectric 
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function;      √     ; which are to some extent the same as that 

obtained from Figure 6.3.5.  

 

Figure 6.3.10: Energy loss function L(w) for KH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.3.11: Refractive index n(w) of KH in RS, CsCl, ZB, and WZ structures. 
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The extinction coefficient k(w) is displayed in Figure 6.3.12; the curves of 

extinction coefficient k(ω) are closed to the ε2(ω) and have similar features 

with the coefficient α(ω). K(w) starts to have a considerable value in RS, 

CsCl, ZB and WZ structures at 3.48, 4.56, 4.7 and 4.46 eV within PBE-

GGA approach and 6.60, 6.13, 7.7 and 7.88 eV within mBJ-GGA 

approach. Variation in predicting the absorption and extinction coefficients 

between mBJ-GGA and PBE-GGA is related to the variation in energy gap 

prediction. From these figures, we can see that the cubic structures are 

optically isotropic while the WZ structure is not. 

 

Figure 6.3.12: Extinction coefficient k(w) of KH in RS, CsCl, ZB, and WZ structures. 
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6.3.5 Elastic properties 

The calculated elastic constants and bulk moduli for KH, together with the 

available other theoretical results are displayed in Table 6.3.6 in the RS, 

CsCl and ZB structures, respectively [7, 80, 91,  96].  The computed elastic 

constants for KH compound in the RS structure are in a good agreement 

with the previous theoretical results. Although the calculated C12 value is 

negative for the KH compound in CsCl structure; as Xinyou et al.[96] 

result of KH compound; the results are to some extent are consistent with 

Sudha et al.[7] and Xinyou et al. [96]. It is clear from Table 6.3.6 that these 

elastic constants satisfy the Born–Huang criteria for the cubic structures as 

well as for WZ (hexagonal) structure (Table 6.3.7); meaning that they are 

mechanically stable.  

Table 6.3.6: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

KH in cubic structures. 

 

Compound 

  RS structure CsCl structure ZB 

structure 

Present 

work 

Other theoretical 

work 

Present 

work 

Other 

theoretical 

work 

Present 

work 

C11 

C12 

C44 

27.76
 

6.38
 

13.73
 

31.10
a
, 26.8

b
, 

32.8
c
 

8.35
a
, 6.5

b
, 8.04

c
 

14.47
a
, 10.6

b
, 

12.9
c
 

56.36 

-4.67 

0.79
 

51
a
, 56.66

d
 

4.5
a
, -5.53

d 

20
a
, 4.54

d 

13.41 

9.16 

11.27 

BV 

BR 

BH 

13.51
 

13.51 

13.51 

15.6
a
 15.67

 

15.67 

15.67 

15.6
a
 10.58 

10.58 

10.58 

a
Ref.[7], 

b
Ref.[80], 

c
Ref.[91], 

d
Ref.[96]. 
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Figure 6.3.13 shows the pressure dependence of the elastic constants and 

bulk moduli for KH compound in RS structure. It is noticed that elastic 

constant C11 and bulk modulus increase with the applied pressure. It is also 

noticeable that elastic constant C11 is the most sensitive to the pressure 

rather than C12, C44 and B. C12 almost constant during pressure increasing, it 

does not depend on pressure. At high pressure, C44 approaches zero, 

indicating that these compounds are unstable under high pressure, and the 

RS structure transforms to CsCl structure. 

Table 6.3.7: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

KH in WZ structure. 

BH BR BV C55 C33 C13 C12 C11 

11.5 11.4 11.5 4.3 19.0 

 

9.3 

 

7.7 16.2 

 

Figure 6.3.13: Variation of elastic constants and bulk moduli for KH compound in RS structure. 
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6.3.6 Mechanical properties 

The bulk modulus for KH compound is small, which means the weak 

resistance to the fracture of these materials. The CsCl phase is the hardest 

phase as in the LiH and NaH cases, because it possesses the most bulk 

modulus value, on the other hand the compressibility (β=1/B) of this phase 

structure is the least one as shown in Table 6.3.8, while WZ structure has 

the most compressibility. The value of the bulk modulus B computed from 

the elastic constants is to some extent agrees with the results obtained from 

Murnaghan‟s equation of state [53]. Table 6.3.8 displays the anisotropy 

factor (A) for KH compound in the four structures; all structures are 

completely anisotropic with A far from unity. 
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Table 6.3.8: The calculated Young's modulus (Y), Shear modulus (S) (in GPa), compressibility (β in GPa
-1

), B/S ratio, 

Poisson's ratio (υ), Anisotropic ratio (A),  Cauchy pressure Cs and Vickers hardness (HV) for KH compound in RS, 

CsCl, ZB and WZ structures in comparison with available theoretical data. 

 

Constant 

Rs structure CsCl structure ZB 

structure 

WZ 

structure 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Present 

Calculations 

Y 28.69 31
a 

29.9 18.40 18.40 11.30 

S 12.5 13
a 

12.68 7.60 7.60 4.20 

β  0.0740 --------
 

0.0638 0.0945 0.0945 2.7380 

B/S 1.0808 1.2
a 

1.014 1.3921 1.3921 0.0869 

υV  0.146 0.21
a
 0.181, 0.209 0.209 0.336 

A 1.284 1.27
a 

0.025 5.30 5.30 1.01 

HV 5.00 ------ 3.89 -------- 1.44 -1.39 

a
Ref.[7]. 
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Although both the calculated anisotropy factor (A) value and that 

calculated by  Sudha et al. [7] for KH compound in CsCl structure indicate 

that KH compound is anisotropy (A is far from unity with both), there is a 

variation in A values. This variation is due to two main reasons:  the used 

optimized lattice constant is different which tends to different estimated 

transition pressure. Poisson's ratio value Table 6.3.8 is lower than 1/3 in all 

structures, KH represents a brittle nature. B/S is used to estimate if the 

material is brittle or ductile in nature. It is clear from Table 6.3.8 that KH 

compound represents a brittle nature for the four structures, which agrees 

with Poisson's ratio. KH in RS structure has the most value of Hardness Hv 

(the most hardness); on the other hand, WZ structure has the least value of 

Hv. This means that RS structure is mechanically the strongest among all 

phases, which is consistence with the bulk modulus and Hv values, while 

WZ structure is the least strong mechanically.  

6.3.7 Thermal properties 

Debye temperature and average wave velocity are displayed in Table 6.3.9. 

The RS structure has the greater value of Debye temperature and average 

wave velocity. The results are in agreement with Sudha el al [7] results. 

Figure 6.3.14 and Figure 6.3.15 show the dependence of Debye 

temperature and average wave velocity on the pressure, Debye temperature 

increases as the pressure increases until about 10 GPa, after that it starts to 

decrease. The same behavior for the average wave velocity. This behavior 
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at enormous pressure may related to the structural transform from RS 

structure to the CsCl structure.  

Table 6.3.9: Average wave velocity (Vm in m/s) and Debye 

temperature (ӨD in K) for KH compound in RS, ZB and WZ 

structures. 

WZ structure ZB 

structure 

CsCl 

structure 

RS structure Constant 

Present 

calculations 

Present 

calculations 

Present 

calculations 

Other 

theoretical  

calculations 

Present 

calculations 

210 245.2 251.1 348
a
 337.10 ӨD 

2186 2557 2285 3347
a
 3227 Vm 

a
Ref.[7]. 

 

Figure 6.3.14: Variation of Debye temperature vs pressure for KH with RS structure. 
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Figure 6.3.15: Variation of average wave velocity vs pressure for KH with RS structure. 

6.4 RbH Compound 

6.4.1 Structural Properties 

The ground-state properties of RbH compound in RS, CsCl, ZB and WZ 

structures have been estimated by calculating the total energy at different 

unit-cell volumes and fitting the calculated E-V points to Murnaghan's 

equation of state (EOS) [53], as shown in Figure 6.4.1. We can see clearly 

from these curves that the rock-salt structure has the lowest energy 

minimum at ambient pressure, which means that it is the most stable 

structure at ambient conditions.  

The calculated equilibrium lattice constant a0, bulk modulus B0 and first-

order pressure derivatives of the bulk modulus   
  for RbH in the RS, CsCl 

and ZB phases, along with the available experimental [2, 3, 6] and 

theoretical [7, 13, 80, 95] results, are listed in Tables 6.4.1, respectively, 
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while they are listed in Table 6.4.2 for WZ structure. Structural parameters 

for KH with RS structure are in good agreement in experimental results [2, 

3, 6]. The bulk modulus B0 and   
  for RbH in CsCl are experimentally 

measured, while the lattice constant has not yet been measured. From Table 

6.4.1, it is clear that the calculated structural parameters for RbH in the 

CsCl structure are in good agreement with the results of Sudha et al.[7]. 

Table 6.4.2 displays the structural parameters for the RbH within the WZ 

structure. To the best of our knowledge, none of the structural parameters 

of RbH in ZB and WZ structures have yet been calculated experimentally 

and theoretically. 

 

Figure 6.4.1: Calculated total energy per unit cell versus cell volume for RbH in RS, CsCl, ZB 

and WZ. 

 

 

 

 Volume (a.u.
3
) 
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Table 6.4.1: Structural parameters for RbH compound in RS, CsCl 

and ZB structure, along with experimental and other theoretical 

results. 

a
Ref[2], 

b
Ref[6], 

c
Ref[3], 

d
Ref[7], 

e
Ref[80], 

f
Ref[13], 

g
Ref[95] 

Table 6.4.2: Structural parameters for RbH in WZ structure. 

B
' 

B(GPa) u(a.u.) c/a a0( Å ) Compound 

.06 8.135 0.390 1.527 4.764 RbH 

6.4.2 Phase Transition 

The energy per unit cell is calculated by using the PBE-GGA at different 

unit-cell volumes, and the results are fitted to the Murnaghan's equation of 

state [53], as shown in Figure 6.4.2. It is clearly shown that RbH compound 

undergoes structural phase transition from RS to the other structures. At the 

transition pressure, the enthalpies of the two consecutive phases are equal. 

Enthalpy-pressure curves for RbH are displayed in Figure 6.4.2. 

 

 

Structure  

 

Structural 

parameter

s 

 

Present  

work 

 

Experimental  

work  

 

Other theoretical  

work  

RS a0( Å ) 

B0(GPa) 

B' 

6.054 

11.25 

3.87 

6.037
a
, 6.048

b 

10.0 ± 1.0
c
 

3.9 ± 0.5
c 

5.992
d
, 6.199

e
, 6.064

f 

14.1
d
, 14.7

g 

2.840
d
 

CsCl a0( Å ) 

B0(GPa) 

B' 

3.62 

13.64 

4.21 

    …………… 

18.4 ± 1.1
c 

3.9 + 0.5
c
 

3.81
d
 

14.9
d
 

2.866
d
 

ZB a0( Å ) 

B0(GPa) 

B' 

6.598 

8.33 

3.25 

……………
 

……………
 

……………
 

……………
 

……………
 

……………
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The estimated induced-transition pressures from RS to the other structures 

for RbH compound is presented in Table 6.4.3. The computed transition 

pressure from RS to CsCl structures is found to be 3.5 GPa, which is in 

good agreement with the previous theoretical calculations and the high-

pressure experimental value of approximately 2.2 GPa [3].  

Table 6.4.3: Calculated transition pressures as well as the experimental 

and other theoretical data for RbH. 

RS → WZ 

Pt(GPa) 

 

RS → ZB 

Pt(GPa) 

 

RS → CsCl    Pt(GPa)  

Compound Other theoretical 

work 

Experimental 

work 

Present 

Work 

-1.05 -1.13 3
b
, 1

c
  2.2  →  3.1

a
 3.50 RbH 

a
Ref.[3],

 b
Ref[7], 

c
Ref [12]. 

 

Figure 6.4.2: Enthalpy as a function of pressure for RbH using the PBE-GGA. 
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The induced-transition pressures from RS to CsCl for RbH occurred at 

V/V0= 0.719 which means that the RS to CsCl transition requires volume 

compression, While the RS to ZB and RS to WZ phase transitions occurred 

when V/V0 =1.546 and 1.554 respectively, where V is the unit-cell volume 

at which the transition occurs and V0 is the unit-cell equilibrium volume of 

the RS structure. V/V0 greater than one for the transition from RS to ZB or 

from RS to WZ, this means these two transitions require volume expansion. 

There is small difference between the reported and experimental transition 

pressure, and one of the reasons for this phenomenon is that the 

experimental calculations are carried out at room temperature, while the 

theoretical calculations are performed at 0K. 

6.4.3 Electronic properties  

In fact, a material can be classified as a conductor, insulator or 

semiconductor by examining its band structure and the Fermi energy-level 

position. The self-consistent band structures of RbH are calculated in cubic 

RS, CsCl and ZB structures and a hexagonal (WZ) structure using the 

computed equilibrium lattice constant within PBE-GGA and mBJ-GGA for 

the exchange-correlation potential; the results are shown in Figure 6.4.3. 

We can clearly see that the Fermi level crosses the energy-band gap for all 

structures. The minimum energy-band gap is direct along the L-point and 

X-point symmetry lines within the RS and ZB structures respectively for 

RbH compound, while for the CsCl structure, the minimum energy-band 

gap is indirect. RbH has a direct minimum energy-band gap along the M-
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point symmetry line within the WZ structure within PBE-GGA, but it is 

indirect within mBJ-GGA.  

Table 6.4.4: Calculated energy band-gap values ((Eg (eV)) of RbH in 

RS, CsCl, ZB and WZ structures. 

Structure Present work 

    PBE-GGA           mBJ-GGA 

Other theoretical 

works (Eg) 

Experimental 

results 

RS L→L : 3.050 L→L : 5.633 3.0255
a
, 2.960

b
, 4.21

c
, 

6.97
d 

4.91
e
 

CsCl R→X : 2.397               R→X : 4.474 2.1
a
 …… 

ZB X→X  : 3.379               X→X : 6.466 -------------------------- …… 

WZ M→M : 3.470     M→Σ : 6.907 --------------------------- …… 

a
Ref.[7], 

b
Ref.[96], 

c
Ref[100], 

d
Ref[101], 

e
Ref.[4]. 

Results are presented in Table 6.4.4; it is clearly shown from Figure 6.4.3 

that PBE-GGA and mBJ-GGA approach gave us a different energy gap 

direction for RbH in WZ structure. From Figure 6.4.3, it is clear that the 

electronic energy bands are more vertically distributed within PBE-GGA; 

mBJ-GGA shifts them closer to one another. Differences in the width of the 

first valence band below the Fermi-energy between PBE-GGA and mBJ-

GGA in RS, CsCl, ZB and WZ structures are 0.8, 0.82, 0.81 and 0.80 eV, 

respectively for RbH. Table 6.4.4 reports the energy-band gaps, calculated 

using the two approaches, mBJ-GGA and PBE-GGA along with the 

available theoretical [7, 96, 100, 101] and experimental [4] results. The 

calculated energy-band gaps for RbH in RS, CsCl, ZB and WZ structures 

are broader using mBJ-GGA approach than using PBE-GGA approach, by 

approximately 1.25eV to 3.4eV using mBJ-GGA. The energy-band gap has 

been modified using the mBJ-GGA approach, so the band gap calculated 
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using mBJ-GGA is more accurate than that calculated using the PBE-GGA 

approach and they are in good agreement with experimental results [4]. To 

our best knowledge, there is no previous study of the electronic properties 

of RbH in ZB and WZ structures. The present calculations using mBJ-

GGA are greater than experimental results with about 0.72eV. This is 

mainly due to the greater temperature and pressure in the experiment, while 

theoretical calculations are carried out at zero temperature and ambient. In 

addition, the lattice constant used in the present work does not match the 

experimental one. The present calculations using mBJ-GGA are more 

accurate than the other represented theoretical calculations: there is a 

difference of approximately 1.88eV, 1.95eV and 2.06eV between the 

experimental results and the results of references 12, 42, respectively and 

of approximately 1.86 eV between the experimental results and present 

work using PBE-GGA. Due to the underestimated energy gap when using 

PBE-GGA for RbH in the CsCl structure, RbH in the CsCl seems to be 

classified as semiconductor, while it is classified as an insulator when using 

mBJ-GGA method. Although the ground state is well described by PBE-

GGA, this approximation fails to account for excited-state properties. Due 

to a well-known non-physical problem in calculating the energy-band gap 

using PBE-GGA, which is the self-interaction error [69], differences in 

energy-band gap values between PBE-GGA on one hand and mBJ-GGA on 

the other hand arise. Within PBE-GGA, the energy-band gap is 

underestimated, and sometimes a semiconducting or metallic state may be 

obtained instead of an insulating one. Figure 6.4.4 displays the densities of 
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states of RbH compound obtained using the PBE-GGA and mBJ-GGA 

approaches. The heights of the peaks vary from one phase structure to 

another, and depend on the phase structure and the method used to 

calculate the exchange potential. Total and partial densities of states for the 

RbH compound in the four structures (RS, CsCl, ZB and WZ) have been 

calculated for further understand the nature of electronic-band structures. It 

is clear that the energy bands below the Fermi energy (FE), indicated by a 

dotted horizontal line, arise mainly from H-s, along with small 

contributions from Rb-d. Above the FE, they mainly arise from Rb-d and 

with small contribution from Rb-p and H-s states. 
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Figure 6.4.3: Band structure of RbH in RS, CsCl, ZB and WZ within the PBE-GGA and mBJ-

GGA approaches. 
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Figure 6.4.4: Density of states of RbH in RS, CsCl, ZB and WZ within the PBE-GGA and 

mBJ-GGA approaches. 
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6.4.4 Optical properties 

The calculated real dielectric constant for RbH in the four studied 

structures; RS, ZB CsCl and WZ; when photon energy is zero; namely 

ɛ1(0) are 2.37, 2.63, 2.1 and 2.09, respectively within PBE-GGA approach 

and 1.59, 1.83, 1.4 and 1.38, respectively within mBJ-GGA approach. As 

we mentioned before, ɛ1(0) within mBJ-GGA has a lower value than PBE-

GGA approach because band gap within mBJ-GGA is broader than with 

PBE-GGA approach. The calculated real and imaginary parts of the optical 

dielectric function for RbH compound in the RS, CsCl, ZB and WZ 

structures have been displayed in Figures 6.4.5 and 6.4.6 as a function of 

the photon energy from 0.0 to 14.0 eV. The cubic structures are optically 

isotropic, while the WZ structure is anisotropic because        . ɛ1(w) is 

negative in some regions.  

From Figure 6.4.6, the imaginary part of dielectric function ɛ2 with RS, 

CsCl, ZB and WZ structures onset of absorption around 0.7, 1.71, 2 and 2.7 

eV, respectively within PBE-GGA and 4.1, 5.68, 7.25 and 6.0 eV, 

respectively within mBJ-GGA. They begin to have considerable values at 

2.6, 3.1, 3.25 and 3.34 eV, respectively with PBE-GGA approach and 5.7, 

6.1, 7.53 and 6.7 eV, respectively within mBJ-GGA approach. The 

imaginary part    indicates that the RbH in RS, CsCl and ZB has maximum 

absorption peak. These values are around 7.1, 5.2 and 4.0 eV, respectively 

using PBE-GGA and 8.0, 7.8 and 8.4 eV, respectively using mBJ-GGA. 

WZ structure is optically anisotropic and maximum absorption occurs at 
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3.9 eV in [100] direction and at 4.25 eV in [001] direction using PBE-GGA 

approach, while it is occurs at 7.36 eV and 7.28 eV, respectively along 

[100] and [001] directions using mBJ-GGA approach. In the case of mBJ-

GGA, for     and    are shifted toward the high-energy region with weaker 

intensities.  

 

Figure 6.4.5: Real Part of the dielectric constant of Rbh CsC1, ZB and Wz structures. 

 

Figure 6.4.6: Imaginary part of the dielectric constant of RbH in RS, CsCl, ZB and WZ 

structures.  
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From Figure 6.4.7, the absorption spectrum is related directly to the 

imaginary part   , it is clear that there are strong absorption peaks for RbH 

in RS, CsCl, ZB and WZ structures which onset at about 2.5, 3.57, 3.5 and 

3.9 eV, respectively using PBE-GGA approach and 5.2, 5.0, 6.5 and 6.79 

eV, respectively using mBJ-GGA approach. These peaks are shifted toward 

the high-energy region. From the same figure maximum absorption for KH 

in RS, CsCl and ZB structures occurs at 6.15, 7.2 and 5.4 eV, respectively 

using PBE-GGA and 9.8, 8.86 and 8.6 eV, respectively using mBJ-GGA, 

while in WZ structure, maximum absorption occurs at 5.2 eV along [100] 

direction and at 5.45 eV along [001] direction using PBE-GGA approach 

and at 10.3 eV along [100] direction and at 8.53 eV along [001] direction 

using mBJ-GGA approach. Absorption spectrum approximately the same 

as imaginary dielectric function, they begin to have a considerable value 

approximately at the same point and reach maximum value at the same 

photon energy.  

The reflectivity coefficient R(w) for RbH in RS, CsCl, ZB and WZ 

structures are displayed in Figure 6.4.8, the zero-frequency reflectivity are 

4.5%, 5.6%, 3.3% and 3.4%, respectively with PBE-GGA and 1.3%, 

1.79%, 0.79% and 0.7%, respectively with mBJ-GGA approach. It is clear 

that R(0) within PBE-GGA is greater than that of mBJ-GGA approach. 

With the four structures and after R(w) reaches its maximum value, it 

begins to decrease and oscillates. Along the spectrum from 0 eV to 14 eV, 

there are peaks; these peaks originate from the inter-band transitions. 
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Figure 6.4.7: Absorpotion spectrum of Rbh in Rs, Csc1, ZB and Wz structures. 

 

 

Figure 6.4.8: Reflectivity coefficient R(w) for RbH in RS, CsCl, ZB and WZ structures. 
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Figure 6.4.9 displays the energy loss function L(w), which is related to the 

energy loss of a fast electron in the material. Figure 6.4.9 shows that loss 

function for KH in RS, CsCl, ZB and WZ structures begins at 4.49, 5.0, 

4.68 and 4.0 eV, respectively using PBE-GGA approach and 7.19, 7.0, 7.72 

and 7.5 eV, respectively using mBJ-GGA approach, as seen L(w) oscillates 

but the peaks go to higher value as the photon energy increases. 

 

Figure 6.4.9: Energy loss function L(w)for RbH in RS, CsCl, ZB and WZ structures. 

Figure 6.4.10 displays the refractive index n(w). The static refractive index 

n(0) is found to have the values 1.48 in RS structure, 1.57 in CsCl 

structure, 1.40 in ZB structure and 1.40 in WZ structure, respectively using 

PBE-GGA approach and 1.22 in RS structure, 1.34 in CsCl structure, 1.16 

in ZB structure and 1.18 in WZ structure, respectively using mBJ-GGA 

approach. 
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The static refractive index n(0) value is equal the square root of the real 

part of dielectric function;      √     ; which is to some extent the 

same as that obtained from Figure 6.4.5. 

 

Figure 6.4.10: Refractive index n(w)for RbH in RS, CsCl, ZB and WZ structures. 

 

Figure 6.4.11: Extinction coefficient k(w) for RbH in RS, CsCl, ZB and WZ structures. 
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The extinction coefficient k(w) is displayed in Figure 6.4.10, K(w) starts to 

have a considerable value in RS, CsCl, ZB and WZ at 3.48, 4.56, 4.7and 

4.46 eV with PBE-GGA approach and 6.60, 6.13, 7.7 and 7.88 eV in mBJ-

GGA approach. From these figures, we can see that the cubic structures are 

optically isotropic while the WZ structure is not. 

6.4.5 Elastic properties 

The calculated elastic constants and bulk moduli for RbH in the RS, CsCl 

and ZB structures, together with the available other theoretical results are 

displayed in Table 6.4.5 [7, 80, 91].  The computed elastic constants for 

RbH compound in the RS structure agree well with previous theoretical 

results [7, 80, 91 ], although the calculated C12 value is negative for the 

RbH compound in CsCl structure; as Xinyou et al.[98] result of KH 

compound; RbH compound still stable in the CsCl structure. The results are 

to some extent is consistent with Sudha et al. [7] and Xinyou et al. [98]. It 

is clear from Table 6.4.5 that these elastic constants satisfy the Born–

Huang criteria for the cubic structures as well as for WZ (hexagonal) 

structure (Table 6.4.6); meaning that they are mechanically stable. 

Similarly, for the hexagonal system (WZ) presented in Table 6.4.7, are also 

satisfied. CsCl has the greater value of bulk modulus, while WZ in Table 

6.4.6 has the lowest value of bulk modulus. 
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Table 6.4.5: The calculated elastic constants Cij (GPa), Bulk modulus (B) in Voigt (V), Reuss (R) and Hill (H) 

approximations (in GPa) for RbH in cubic structures. 

 

 

Compound 

  RS structure CsCl structure ZB structure 

Present 

work 

Other theoretical 

work 

Present 

work 

Other 

theoretical 

work 

Present work 

C11 

C12 

C44 

25.29
 

5.07
 

8.44
 

26.46
a
, 24.6

b
, 

28.2
c
 

7.93
a
, 4.6

b
, 7.11

c
 

10.97
a
, 8.2

b
, 

12.5
c
 

52.73
 

-2.78
 

1.67
 

42
a 

1.4
a 

12
a
 

15.13 

7.8 

8.10 

BV 

BR 

BH 

11.81 
 

11.81 

11.81 

13.97
a
 15.71

 

15.71 

15.71 

14.85
a
 10.28 

10.28 

10.28 

a
Ref.[7], 

b
Ref.[80], 

c
Ref.[91]. 
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Figure 6.4.13 shows the pressure dependence of the elastic constants and 

bulk modulus for RbH compound with RS structure. It is noticed that 

elastic constant C11 and bulk modulus increase in the applied pressure. It is 

also noticeable that elastic constant C11 is the most sensitive to the pressure 

rather than C12, C44 and B. At high pressure, C44 approaches zero, indicating 

that these compounds are unstable under high pressure, and the RS 

structure transforms to CsCl structure. 

Table 6.4.6: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

RbH in WZ structure. 

BH BR BV C55 C33 C13 C12 C11 

8.9 8.9 8.9 4.6 17.9 5.1 5.8 15.3 

 

 

Figure 6.4.12: Variation of elastic constants and bulk moduli for RbH compound in RS 

structure. 
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6.4.6 Mechanical properties 

The bulk modulus for KH compound is small, which means the week 

resistance to the fracture of these materials. The CsCl phase is the hardest 

phase as in the case of previous compounds (LiH, NaH and KH), because it 

possesses the most bulk modulus value, on the other hand the 

compressibility (β=1/B) of this phase structure is the least one as shown in 

Table 6.4.7, while WZ structure has the most compressibility. The value of 

the bulk modulus B computed from the elastic constants is to some extent 

agrees with the results obtained from Murnaghan‟s equation of state [53]. 

Table 6.4.7 displays the anisotropy factor (A) for RbH compound in the 

four structures; WZ structure is completely isotropic with A=1, while the 

other structure are anisotropic because A is far from unity. 
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Table 6.4.7: The calculated Young's modulus (Y), Shear modulus (S) (in GPa), compressibility (β in GPa
-1

), B/S ratio, 

Poisson's ratio (υ), Anisotropic ratio (A),  Cauchy pressure Cs and Vickers hardness (HV) for RbH compound in RS, 

CsCl, ZB and WZ structures in comparison with available theoretical data. 

 

Constant 

Rs structure CsCl structure ZB 

structure 

WZ 

structure 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Present 

Calculations 

Y 21.73 25
a 

28.9 34
a 

15.70 12.60 

S 9.10 10.2
a 

12.1 15
a 

6.30 4.97 

β  0.0846 -------- 0.0636 ---------- 0.0972 0.1123 

B/S 1.2978 1.37
a
 1.298 0.99

a 
1.6317 1.7429 

υV  0.193 0.23
a
 0.193 0.03

a 
0.245 0.265 

A 0.834 1.18
a 

0.060 0.95
a 

2.21 0.97 

HV 2.36 ------ 3.33 -------- 0.31 -0.479 

a
Ref.[7]. 
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Poisson's ratio value and B/S value are displaying in Table 6.4.7, they 

indicate that RbH compound represents a brittle nature for all structures. 

RbH in CsCl structure has the most value of hardness Hv (the most 

hardness); on the other hand, WZ structure has the least value of Hv. This 

means that CsCl structure is mechanically the strongest among all phases, 

which is consistence with the bulk modulus and Hv values, while WZ 

structure is the least strong mechanically. 

 6.4.7 Thermal properties 

 Debye temperature and average wave velocity are displayed in Table 

6.4.8. The RS structure has the greater value of Debye temperature and 

average wave velocity. The results are in agreement with Sudha el al.[7] 

results. Figure 6.4.14 and Figure 6.4.15 show the dependence of Debye 

temperature and average wave velocity on the pressure. Debye temperature 

increases as the pressure increases, while the average wave velocity is 

constant in the range from 12.5 GPa to about 50 GPa. 

Table 6.4.8: Average wave velocity (Vm in m/s) and Debye 

temperature (ӨD in K) for RbH compound in RS, ZB and WZ 

structures. 

WZ 

structure 

ZB structure CsCl 

structure 

RS structure Constant 

Present 

calculations 

Present 

calculations 

Present 

calculations 

Other 

theoretical  

calculations 

Present 

calculations 

157.8 171.8 180 215
a
 203.15 ӨD 

1746 1901 1745 2165
a
 2065 Vm 

a
Ref.[7]. 
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Figure 6.4.13: Variation of Debye temperature with pressure for RbH in RS structure. 

 

 

Figure 6.4.14: Variation of average wave velocity with pressure for RbH in RS structure. 

6.5 CsH Compound 

6.5.1 Structural Properties 

The ground-state properties of CsH compound in RS, CsCl, ZB and WZ 

structures have been estimated by calculating the total energy at different 

unit-cell volumes and fitting the calculated E-V points to Murnaghan's 
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equation of state (EOS) [53], as shown in Figure 6.5.1. We can see clearly 

from these curves that the rock-salt structure has the lowest energy 

minimum at ambient pressure, which means that it is the most stable 

structure at ambient conditions.  

 

Figure 6.5.1: Calculated total energy per unit cell versus cell volume for CsH in RS, CsCl, ZB 

and WZ. 

The calculated equilibrium lattice constant a0, bulk modulus B0 and first-

order pressure derivatives of the bulk modulus   
  for CsH in the RS, CsCl 

and ZB phases, along with the available experimental [2, 3, 4, 6, 99] and 

theoretical [7, 80, 91, 95] results, are listed in Table 6.5.1. Table 6.5.1 

shows that the calculated structural parameters for CsH in RS structures are 

in good agreement with experimental results and the calculated structural 

parameters in the CsCl structure are in good agreement with the results of 

Sudha et al.[7]. Table 6.5.2 displaying the structural parameters for CsH 

compound within the WZ structure.  

 

 Volume (a.u.
3
) 
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Table 6.5.1: Structural parameters for CsH in the RS, CsCl and ZB 

structures, along with experimental and other theoretical results. 

a
Ref.[4],

 b
Ref[2], 

c
Ref[3], 

d
Ref[99], 

e
Ref[7], 

f
Ref[80], 

g
Ref[95], 

h
Ref[91], 

i
Ref [6]. 

Table 6.5.2: Structural parameters for CsH in WZ structure. 

B
' 

B(GPa) u(a.u.) c/a a0( Å ) 

3.71 6.374 0.389 1.548 5.037 

6.5.2 Phase Transition 

The energy per unit cell is calculated by using the PBE-GGA at different 

unit-cell volumes, and the results are fitted to the Murnaghan's equation of 

state [53], as shown in Figure 6.5.2. It is clearly shown that CsH compound 

undergoes a structural phase transition from RS to the other structures. At 

the transition pressure, the enthalpies of the two consecutive phases are 

equal. Enthalpy-pressure curves for CsH are displayed in Figure 6.5.2. The 

estimated induced-transition pressures from RS to the other structures for 

CsH compounds are presented in Table 6.5.3. The computed transition 

pressure from RS to CsCl structures is found to be equal to 2.45 GPa, 

 

Structure  

 

Structural 

parameters 

 

Present  

work 

 

Experimental  work  

 

Other theoretical  

work  

RS a0( Å ) 

B0(GPa) 

B' 

6.446 

8.9 

3.26 

6.387
a, b

, 6.376
b
 
 

8.0± 0.7
a
, 7.6 ±0.8

c
  

4.0
a
, 4 ± 0.4

c
, 4.0

d
  

 

6.344
e
, 6.407

f 

12
e
, 11.9

g
, 8.8

h 

3.037
e
 

CsCl a0( Å ) 

B0(GPa) 

B' 

3.863 

11.50 

4.45 

    …………… 

14.2± 1
a
, 22.3 ± 1.5

c
 15.9

i 

4 ± 0.2
a
, 4.8 ± 0.5

c
 

3.84
e
 

14
e
 

4.675
e
 

ZB a0( Å ) 

B0(GPa) 

B' 

 7.002 

6.47 

3.57 
 

    …………… 

    …………… 

    …………… 
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which are in good agreement with the previous theoretical calculations and 

the high-pressure experimental values of approximately 1.2 GPa [3]. Table 

6.5.4 displays the V/V0 fraction, where V is the unit-cell volume at which 

the transition occurs and V0 is the unit-cell equilibrium volume of the RS 

structure.  

 

Figure 6.5.2: Enthalpy as a function of pressure for CsH using the PBE-GGA method. 

Table 6.5.3: Calculated transition pressures as well as the experimental 

and other theoretical data CsH compound. 

RS → WZ 

Pt(GPa) 

 

RS → ZB 

Pt(GPa) 

 

RS → CsCl    Pt(GPa)  

Compound Other 

theoretical 

work 

Experimental 

work 

Present 

Work 

-1.65 -0.81 2.1
b
, 1.5

c
 1.2

a
 2.45 CsH 

a
Ref.[3],

 b
Ref[7], 

c
Ref [10]. 

 

 

 

Pt=- 0.809 GPa 

Pressure (GPa)  

Pt=2.45GPa 

Pressure (GPa) 

 

Pt= -1.65 GPa 

Pressure (GPa) 
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Table 6.5.4: The V/V0 fractions for CsH compound. 

Compound RS → CsCl             RS → ZB             RS → WZ 

V/V0 for CsH 0.736                       1.511                     2.373 

The induced-transition pressures from RS to CsCl for CsH occurred at 

V/V0= 0.736, which means that the RS to CsCl transition requires volume 

compression. The RS to ZB and RS to WZ phase transitions occur when 

V/V0 is greater than one, meaning that these two transitions require volume 

expansion. There is a small difference between the reported and 

experimental transition pressure, and one of the reasons for this 

phenomenon is that the experimental calculations are carried out at room 

temperature, while the theoretical calculations are performed at 0K, the 

induced transition pressure decreases as the temperature increases.  

6.5.3 Electronic properties  

Atoms in a crystal interact with their neighbors and the energy levels of the 

electrons in isolated atoms turn into bands. In fact, a material can be 

classified as a conductor, insulator or semiconductor by examining its band 

structure and the Fermi energy-level position. The self-consistent band 

structures of CsH is calculated in cubic RS, CsCl and ZB structures and a 

hexagonal (WZ) structure using the computed equilibrium lattice constant 

within PBE-GGA, mBJ-GGA for the exchange-correlation potential; the 

results are shown Figure 6.5.3. We can clearly see that the Fermi level 

crosses the energy-band gap for all structures. The energy-band structures 

scheme of KH, RbH and CsH compounds are quite similar to one another. 

The minimum energy-band gap is direct along the L-point symmetry and 
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X-point symmetry lines within the RS and ZB structures respectively for 

CsH compound. For the CsCl structure, the minimum energy-band gap is 

indirect within PBE-GGA approach, while it is direct along the R-point 

symmetry line within mBJ-GGA. CsH has a direct minimum energy-band 

gap along the M-point symmetry line in the WZ structure within mBJ-

GGA, but it is indirect within PBE-GGA. From Figure 6.5.3, it is clear that 

the electronic energy bands are more vertically distributed within PBE-

GGA; mBJ-GGA shifts them closer to one another.  

Differences in the width of the first valence band below the Fermi-energy 

between PBE-GGA and mBJ-GGA in RS, CsCl, ZB and WZ structures are 

0.60, 0.58, 0.64 and 0.60 eV, respectively for CsH. Table 6.5.5 reports the 

energy-band gaps, calculated using the two approaches mBJ-GGA and 

PBE-GGA along with the available theoretical [7, 93, 100, 101] and 

experimental results [102].  
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Figure 6.5.3: Band structure of CsH in RS, CsCl, ZB and WZ structures within the PBE-GGA 

and mBJ-GGA approaches. 
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Differences in the width of the first valence band below the Fermi-energy 

between PBE-GGA and mBJ-GGA in RS, CsCl, ZB and WZ structures are 

0.60, 0.58, 0.64 and 0.60 eV, respectively for CsH compound. 

Table 6.5.5: Calculated energy band-gap values ((Eg (eV)) of CsH in 

RS, CsCl, ZB and WZ structures. 

a
Ref.[7], 

b
Ref[100], 

c
Ref[101], 

d
Ref.[93], 

e
Ref.[102]. 

The calculated energy-band gaps are broader using mBJ-GGA than using 

PBE-GGA, by approximately 1.25eV to 2.66eV, depending on which 

structure is used. The energy-band gap has been modified using the mBJ-

GGA approach, so the band gap calculated using mBJ-GGA is more 

accurate than that calculated using the GGA approach and they are in good 

agreement with experimental results. The present calculations for RS 

structure on energy band gap using PBE-GGA approximation is smaller 

than experimental result of about 1.93eV, while using mBJ-GGA is greater 

than experimental results of about 0.25eV. This is mainly due to the greater 

temperature and pressure in the experiment, while theoretical calculations 

carried out at zero temperature and ambient pressure. In addition, the lattice 

constant used in this present work does not equal the experimental one. The 

present calculations using mBJ-GGA are more accurate than the other 

represented theoretical calculations: the energy band gap in references [7] 

Structure Present work 

     PBE-GGA            mBJ-GGA 

Other theoretical works Experimental 

results 

RS L→L : 2.470      L→L : 4.650 2.4472
a
, 4.04

b
 , 6.67

c
, 2.80

d
 4.4

e
 

CsCl R→X :2.696       R→R: 3.950   2.5
a
 -------------- 

ZB X→X : 2.894     X→X : 5.555 ---------------------------------- ------------- 

WZ M→Σ : 3.145    M→M : 5.974 ----------------------------------- -------------- 
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and [93] are smaller than the experimental result of approximately 1.95eV 

and 1.6eV respectively, while result of reference [101] greater by about 

2.27eV. CsH is categorized as a semiconductor in the four structures using 

PBE-GGA and an insulator using mBJ-GGA method. Although the ground 

state is well described by PBE-GGA, this approximation fails to account 

for excited-state properties. Due to a well-known non-physical problem in 

calculating the energy-band gap using GGA, which is the self-interaction 

error [85], differences in energy-band gap values between GGA on one 

hand and mBJ-GGA on the other hand arise. With GGA, the energy-band 

gap is underestimated, and sometimes a semiconducting or metallic state 

may be obtained instead of an insulating one. 

The density of states for the KH, RbH and CsH compounds are quite 

similar to one another. Figure 6.5.4 displays the densities of states of CsH 

compounds, obtained using the PBE-GGA and mBJ-GGA approaches. The 

heights of the peaks vary from one phase structure to another, and depend 

on the phase structure and the method used to calculate the exchange 

potential. By phase transition from RS to CsCl, the band gaps of these 

compounds decrease by about 0.7 to 1.2 eV. Total and partial densities of 

states CsH compound in the four structures (RS, CsCl, ZB and WZ) have 

been calculated to further understand the nature of electronic-band 

structures. It is clear that the energy bands below the Fermi energy (FE), 

indicated by a dotted horizontal line, arise mainly from H-s, along with 

small contributions from X-s and X-p. Above the FE, they mainly arise 

from X-P and X-s states, with a small contribution from the H-s state. 
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Table 6.5.5 and Figure 6.5.4 show that the energy-band gap calculated 

within mBJ-GGA is wider than that calculated within PBE-GGA, as 

mentioned before, and to some extent agree with the experimental results. 

 

Figure 6.5.4: Density of states of CsH in RS, CsCl, ZB and WZ structures. 
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6.5.4 Optical properties 

Using the relations in section 5.5 optical constants can be determined and 

analyzed. Figure 6.5.5 displaces the calculated real dielectric constant for 

CsH in the four studied structures. The static real dielectric constant for 

CsH in RS, CsCl, ZB and WZ structures are 2.37, 2.63, 2.1 and 2.09 

respectively using PBE-GGA approach and 1.59, 1.83, 1.4 and 1.38, 

respectively using mBJ-GGA approach. It is clear that mBJ has a lower 

value of ɛ1(0) comparing to PBE-GGA approach and this is relating to 

variation in electronic band structure as seen in section 6.5.3. The value of 

ɛ1(w) within mBJ-GGA is almost positive in the whole spectrum, which 

means no metallic behavior exists, while within PBE-GGA there are small 

regions in which ɛ1(w) has a negative values. The maximum value of ɛ1(w) 

for RS, CsCl, ZB and WZ structures occurs at photons energy equals to 5.8, 

3.98, 4.49 and 4.2 eV, respectively using GGA approach and  7.17, 5.4, 

7.37 and 7.0 eV, respectively using mBJ-GGA approach.  

The maximum values of  ɛ1(w) for the four structures shifted toward the 

high energy with decreasing in the intensity compared to PBE-GGA 

approach. The calculated imaginary parts of the optical dielectric function 

for CsH compound in the RS, CsCl, ZB and WZ structures have been 

displayed in Figure 6.5.6 as a function of the photon energy from 0.0 to 

14.0 eV. The calculated values of real and imaginary dielectric constants 

indicate that the cubic structures of CsH are optically isotropic;     =   , 

while the WZ structure is optically anisotropic;     ≠   . The imaginary 
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part gives us information about absorption behavior of the studied 

compounds. From Figure 6.5.6, ɛ2 begins to have a considerable amount at 

about 2.83, 2.0, 2.1 and 3.3 eV within PBE-GGA along [100] polarization 

and 5.4, 4.0, 6.65 and 6.7 eV within mBJ-GGA along [100] polarization, 

which is to some extent close to the direct energy gap. The imaginary part 

   indicates that the CsH in the RS, CsCl, ZB and WZ structures has 

maximum absorption peaks. These peaks at 5.9, 5.63, 4.8 and 4.25 eV, 

respectively using PBE-GGA and at 7.6, 6.6, 8.1 and 8.0 eV, respectively 

using mBJ-GGA. 

 

Figure 6.5.5: Real part of the dielectric constant of CsH in RS, CsCl, ZB and WZ structures. 
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Figure 6.5.6: Imaginary part of the dielectric constant of CsH in RS, CsCl, ZB and WZ 

structures. 

Figure 6.5.7 is displaying the absorption spectrum for CsH in the four 

structures. Absorption spectrum is related directly to the imaginary part of 

  , it is clear that there are strong absorption peaks of CsH in RS, CsCl, ZB 

and WZ structures in the energy range from 3, 5.2, 5.0 and 5.8 eV to 14 eV, 

respectively using PBE-GGA and from 6, 7.2, 7.0 and 7.5 eV to 14 eV, 

respectively using mBJ-GGA, these peaks reflect some transitions between 

different orbits. From the same figure maximum absorption of CsH in RS, 

CsCl, ZB and WZ structures occurs at 7.54, 9.64, 6.59 and 6.31 eV, 

respectively using PBE-GGA and 9.7, 8.36, 9.8 and 8.18 eV, respectively 

using mBJ-GGA. The reflectivity coefficient R(w) of CsH in RS, CsCl, ZB 

and WZ structures are displayed in Figure 6.5.8. The zero-frequency 

reflectivity values are 4.5%, 5.6%, 3.3% and 3.4%, respectively within 
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PBE-GGA and 1.3%, 1.8, 0.79% and 0.7%, respectively within mBJ-GGA. 

Within both PBE-GGA and mBJ-GGA approaches, R(w) has a peaks; these 

peaks originate from the inter-band transitions; as the photon energy 

reaches 14 eV, R(w) within PBE-GGA goes to the maximum value. Figure 

6.5.9 is displaying the energy loss function L(w), L(w) is related to the 

energy loss of a fast electron in the material.  

Figure 6.5.9 shows that loss function for CsH in RS, CsCl, ZB and WZ 

structures using mBJ-GGA are shifted toward the higher energy and the 

peaks have greater value. Figure 6.5.10 displaces the refractive index n(w). 

The static refractive index; when photons energy is zero or w=0; n(0) is 

found to have the values 1.55 for RS structure, 2.63 for CsCl structure, 1.44 

for ZB structure and 1.49 for WZ structure, respectively using PBE-GGA 

approach and 1.26 for RS structure, 1.35 for CsCl structure, 1.19 for ZB 

structure and 1.18 for WZ structure, respectively using mBJ-GGA 

approach. The static refractive index n(0) value is equal to the square root 

of the real part of dielectric function;      √     ; which is to some 

extent the same as those obtained from Figure 6.5.5. 
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Figure 6.5.7: Absorption function of CsH in RS, CsCl, ZB, and WZ structures. 

 

Figure 6.5.8: Reflectivity coefficient R(w) of CsH in RS, CsCl, ZB, and WZ structures. 

 

 

 

  

 
 



152 

 

Figure 6.5.9: Energy loss function L(w) of CsH in RS, CsCl, ZB, and WZ structures. 

The extinction coefficient k(w) is displayed in Figure 6.5.11, the curves of 

extinction coefficient k(ω) are closed to the ε2(ω) and have similar features 

with the absorption coefficient α(ω), Figure 6.5.7. k(w) for RS, CsCl, ZB 

and WZ approaches starts from 3.0, 2.0, 3.0 and 3.17eV, respectively by 

using PBE-GGA approach and 5.67, 4.0, 6.5 and 6.39eV, respectively by 

using mBJ-GGA approach. Maximum value of k(w) for RS, CsCl, ZB and 

WZ structures occurs at energy equals to 7.1, 5.68, 4.87 and 4.6eV, 

respectively using PBE-GGA approach and 7.8, 6.7, 8.13 and 8.32eV, 

respectively using mBJ-GGA approach. 
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Figure 6.5.10: Refractive index n(w)(w) of CsH in Rs, CsC1,ZB, and WZ Structures. 

 

Figure 6.5.11: Extinction coefficient k(w) of CsH in RS, CsCl, ZB, and WZ structures. 
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6.5.5 Elastic properties 

 The calculated elastic constants and bulk modules of CsH, together with 

the available other theoretical results are displayed in Table 6.5.6 in the RS, 

CsCl and ZB structures, respectively [7, 80, 91].  The computed elastic 

constants for CsH compound in the RS structure agree well with the 

previous theoretical results, although the calculated C12 value is negative 

for the CsH compound in CsCl structure; it is stable; the results are to some 

extent is consistent with Sudha et al.[7]. It is clear from Table 6.5.6 that 

these elastic constants satisfy the Born–Huang criteria for the cubic 

structures as well as for WZ (hexagonal) structure (Table 6.5.7); meaning 

that they are mechanically stable. CsCl has the greater value of bulk 

modulus, while WZ in Table 6.5.7 has the lowest value of bulk modulus. 

Table 6.5.6: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

CsH in cubic structures. 

 

Compound 

  RS structure CsCl structure ZB structure 

Present 

work 

Other theoretical 

work 

Present 

work 

Other 

theoretical 

work 

Present work 

C11 

C12 

C44 

20.7
 

3.17
 

8.0 

25.6
a
, 22.4

b
, 20.3

c
 

6.761
a
, 3.2

b
, 3.1

c
 

9.74
a
, 5.8

b
, 9.1

c
 

38.21
 

-1.90
 

4.30
 

38
a 

3.2
a
 

6.5
a
 

16.2 

3.5 

6.1 

BV 

BR 

BH 

9.02 
 

9.02 

9.02 

11.98
a
 11.46

 

11.46 

11.46 

13.97
a
 7.77 

7.77 

7.77 

a
Ref.[7], 

b
Ref.[80], 

c
Ref.[91]. 
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Figure 6.5.13 shows the pressure dependence of the elastic constants and 

bulk modulus for CsH compound in RS structure. It is noticed that elastic 

constant C11 and bulk modulus increase with the applied pressure. It is also 

noticeable that elastic constant C11 is the most sensitive to the pressure 

rather than C12, C44 and B. At high pressure, C44 approaches zero, indicating 

that these compounds are unstable under high pressure, and the RS 

structure transforms to CsCl structure. 

Table 6.5.7: The calculated elastic constants Cij (GPa), Bulk modulus 

(B) in Voigt (V), Reuss (R) and Hill (H) approximations (in GPa) for 

CsH in WZ structure. 

BH BR BV C55 C33 C13 C12 C11 

5.70 5.69 5.70 5.57 12.29 2.61 2.66 11.61 

 

Figure 6.5.12: Variation of elastic constants and bulk modules for CsH compound in RS 

structure. 
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6.5.6 Mechanical properties 

The bulk modulus for CsH compound is small, which means the week 

resistance to the fracture of these materials. The CsCl phase is the hardest 

phase as in the case of previous compounds (LiH, NaH, KH and RbH), 

because it possesses the most bulk modulus value, on the other hand the 

compressibility (β=1/B) of this phase structure is the least one as shown in 

Table 6.5.8, while WZ structure has the most compressibility. The value of 

the bulk modulus B computed from the elastic constants is some extent 

agrees with the results obtained from Murnaghan‟s equation. Table 6.5.8 

displays the anisotropy factor (A) for CsH compound in the four structures; 

RS and ZB structures are some extent isotropic with A=0.912 and 0.96 

respectively, while the CsCl and WZ structures are anisotropic because A 

is far from unity. 
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Table 6.5.8: The calculated Young's modulus (Y), Shear modulus (S) (in GPa), compressibility (β in GPa
-1

), B/S ratio, 

Poisson's ratio (υ), Anisotropic ratio (A),  Cauchy pressure Cs and Vickers hardness (HV) for CsH compound with 

RS, CsCl, ZB and WZ structures in comparison in available theoretical data. 

 

Constant 

Rs structure CsCl structure ZB 

structure 

WZ 

structure 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Other 

theoretical 

Calculations 

Present 

Calculations 

Present 

Calculations 

Y 19.0 22
a 

24.3 26
a 

14.71 11.54 

S 8.31 9.15
a
 10.6 11

a 
6.21 4.96 

β  0.1108 ---------- 0.0872 ------- 0.1287 0.1754 

B/S 1.085 1.31
a
 1.081 1.27

a 
1.2512 1.14919 

υV  0.147 0.22
a
 0.146 0.07

a 
0.184 0.162 

A 0.912 1.18
a 

0.214 0.37
a 

0.96 1.24 

HV 3.27 ------ 4.26 -------- 1.47 1.33 

Cs -4.83 -2.97
a 

-6.20 -3.30
a 

-2.60 -2.91 

a
Ref.[7]. 
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Poisson's ratio ν and B/S value both are used to estimate if the material is 

brittle or ductile in nature. Table 6.4.8 shows that Poisson's ratio ν value 

and B/S value in agree that CsH compound represents a brittle nature in the 

four structures. CsH in CsCl structure has the most value of Hv (the most 

hardness); on the other hand, WZ structure has the least value of Hv. This 

means that CsCl structure is mechanically the strongest among all phases, 

which is consistence with the bulk modulus and Hv values, while WZ 

structure is the least strong mechanically. 

 6.5.7 Thermal properties 

Debye temperature and average wave velocity are displayed in Table 6.4.9. 

The RS structure has the greater value of Debye temperature and average 

wave velocity. The results agree well with Sudha el al. [7] results. Figure 

6.4.14 and Figure 6.4.15 show the dependence of Debye temperature and 

average wave velocity on the pressure, both of Debye temperature and 

average wave velocity increase as the pressure increases.  

Table 6.5.9: Average wave velocity (Vm in m/s) and Debye 

temperature (ӨD in K) for CsH compound in RS, ZB and WZ 

structures. 

WZ 

structure 

ZB structure CsCl 

structure 

RS structure Constant 

Present 

calculations 

Present 

calculations 

Present 

calculations 

Other 

theoretical  

calculations 

Present 

calculations 

128.9 145.2 158 167
a
 160.37

 
ӨD 

1513 1709 1634 1786
a
 1735 Vm 

a
Ref.[7]. 
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Figure 6.5.13: Variation of Debye temperature with pressure for CsH in RS structure. 

 

Figure 6.5.14: Variation of average wave velocity with pressure for CsH in RS structure. 
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Chapter seven 

Conclusion 

7.1 Conclusions 

The structural, electronic properties, the structural phase transition, elastic 

and optical properties of the alkali hydrides XH (X=Li, Na, K, Rb and Cs) 

are calculated in the RS, ZB, CsCl and WZ structures. The FP-LAPW 

method was used, within the GGA and mBJ-GGA approaches, as 

implemented in WIEN2k code. A good agreement with the experimental 

results was obtained; by applying the mBJ-GGA approach, the energy band 

gap was modified and thus the CsCl structure was converted from a 

semiconductor to an insulator for LiH, KH and RbH compounds. The NaH 

and CsH compounds in CsCl structure were also converted from 

semiconductor to wide energy band gap semiconductor. The phase 

transitions predicted in this work are from RS to CsCl, RS to ZB, and RS to 

WZ. It is clear that XH (X= Li, Na, K, Rb and Cs), within the PBE-GGA 

approach, undergoes from RS to CsCl under high pressure of 211.8, 34.26, 

5.00, 3.50 and 2.54 GPa for LiH, NaH, KH, RbH and CsH, respectively. 

Whereas, under low pressure the RS structure expands and transforms to 

WZ and ZB. It is noticed that the transition pressure needed for the 

transformation of RS phase to CsCl phase decreases as going from Li to Cs 

in the periodic table. In addition, it is observed that the present calculations 

are in agreement with other experimental and theoretical results. The 

optimized lattice constant (a0) has been used to compute the elastic 

constants and their related properties. Elastic constants for XH compounds 
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decrease in going from Li to Cs in the periodic table, which means they 

become mechanically less stronger. The calculated elastic constants for the 

alkali hydrides satisfy the Born–Huang criteria except for LiH and NaH in 

CsCl structure. Satisfying the Born–Huang criteria means that they are 

mechanically stable. Elastic constant C11 and bulk modulus for these 

compounds in the RS structure increase with the applied pressure, C11 is 

more sensitive to pressure than C12, C44 and B. At high pressure, C44 

becomes negative for KH and RbH compounds and goes to zero for the 

others, indicating that these compounds are unstable under high pressure, 

and the RS structure transforms to CsCl structure. LiH compound is the 

hardest among the studied compounds, hardness decreases as the Alkali 

radius increased. The Poisson's ratio ν and Cauchy pressure (Cs=C12-C44) 

for the alkali hydrides compounds are in the range from 0.145 to 0.245 with 

a negative Cauchy pressure Cs for the cubic phases (RS, CsCl and ZB), 

they tend to form covalent bond in the RS, CsCl and ZB structures. Both 

KH and RbH are tending to form ionic bonds in WZ structure. From the 

value of B/S, these compounds represent a brittle nature, which agrees with 

the small value of the bulk modulus. LiH in RS structure has the most value 

of Vickers hardness (Hv) (the most hardness) and decreases as going from 

Li to Cs in the periodic table, on the other hand these compounds in the 

hexagonal system (WZ structure) have the least value of Hv.  

The calculated Young‟s modulus, indicates that the stiffness of XH (X=Li, 

Na, K, Rb, Cs) compounds decreases as going from Li to Cs in the periodic 

table. The RS structure is the stiffest among all structures, while WZ 
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structure has the least value of stiffness. This means that RS structure of 

these compounds is the more mechanically stronger among all phases, 

which is consistent with the bulk modulus and Hv values. Debye 

temperature, transverse velocity, longitudinal velocity and average velocity 

decrease as going from Li to Cs in the periodic table with all the considered 

structures. RS structure has the large value of Debye temperature, 

transverse, longitudinal and average velocity. Debye temperature and 

average wave velocity increase as the pressure increases, but for KH the 

average wave velocity starts to decrease above 8 GPa.  

Optical properties have been studied for XH compounds in RS, CsCl, ZB 

and WZ structures. For these compounds mBJ-GGA has a lower value of 

ɛ1(0) and this is mainly related to variation in electronic band structure. The 

maximum values of ɛ1(w) for the four structures shifted toward the high 

energy with decreasing in the intensity compared to PBE-GGA approach. 

The calculated dielectric constants indicate that the cubic structures of LiH 

are optically isotropic;     =   ; while the WZ structure is optically 

anisotropic;     ≠   . LiH compound has a high reflectivity against high-

energy photons; it is a good coating material to avoid and prevent solar 

heating.  

Our results are summarized in tables A, B, C and D in the appendix. 
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7.2 Published papers  

Four papers have been published from this work in an international journals 

with impact factors.   

1- R. Jaradat, M. Abu-Jafar, I. Abdelraziq, R. Khenata, D. Varshney, S. 

Bin-Omran and S. Al-Qaisi, 2017. High-pressure structural phase transition 

and electronic properties of the alkali hydrides compounds XH (X = Li, 

Na). Phase Transitions 90:914. DOI: 10.1080/01411594.2017.1286488 

2- R. Jaradat , M. Abu-Jafar , I. Abdelraziq, S. Bin-Omran , D. Dahliah, R. 

Khenata 2018. High-pressure structural phase transitions and electronic 

properties of the alkali hydride compounds XH (X=K, Rb and Cs) 

Materials Chemistry and Physics. 208: 132 

3- R. Jaradat, M. S. Abu-Jafar, I. Abdelraziq, D. Dahliah and R. Khenata 

2018. Elastic and thermodynamic properties of Alkali Hydrides XH (X= K, 

Rb and Cs). Chinese Journal of Physics 56:830 

3- R. Jaradat, M. S. Abu-Jafar, I. Abdelraziq, A. Mousa, T. Ouahrani, and 

R. Khenata, 2018 Insight into the structural, electronic, elastic and optical 

properties of the alkali hydride compounds, XH (X = Rb and Cs) AIP 

Advances 8, 045017 ; doi: 10.1063/1.5025002. 
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Future work 

1- The optical properties of LiH and NaH compounds in RS, CsCl, ZB and 

WZ  Structures will be the next target. 

2- The structural, electronic, elastic and optical properties of AlxMn1-xN 

alloys will be studied in different structures will be investigated.  
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Appendix I 

Table A: Structural parameters for XH (X=Li, Na, K, Rb, Cs) in RS, 

CsCl, ZB and WZ structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B: Elastic constants for XH (X=Li, Na, K, Rb, Cs) in WZ 

structure. 

C55 C33 C13 C12 C11 Compound 

33.1 69.5 5.32 4.25 68.3 LiH 

11.7 30.1 5.7 7.6 34.3 NaH 

4.3 19.0 9.3 7.7 16.2 KH 

4.6 17.9 5.1 5.8 15.3 RbH 

5.57 12.29 2.61 2.66 11.61 CsH 

 

 

 

 

 

 

Compound Structural 

parameters 

RS 

structure 

CsCl 

structure 

ZB 

structure 

WZ 

structure 

LiH 

 

a0( Å ) 

B0(GPa) 

B' 

4.018 

36.85 

4.02 

2.510          

33.60          

4.01            

4.307 

27.17 

3.94 

3.115 

27.91 

3.36 

NaH a0( Å ) 

B0(GPa) 

B' 

4.838   

23.30 

3.55 

2.965  

23.97  

3.83 

5.228 

17.49 

3.67 

3.748 

18.06  

3.90               

KH a0( Å ) 

B0(GPa) 

B' 

5.70 

13.41 

3.9 

3.41 

15.04 

4.00 

6.215 

9.85 

3.40 

4.492 

10.12 

3.62 

RbH a0( Å ) 

B0(GPa) 

B' 

6.054 

11.25 

3.87 

3.62 

13.64 

4.21 

6.598 

8.33 

3.25 

4.764 

8.135 

4.06 

CsH a0( Å ) 

B0(GPa) 

B' 

6.446 

8.9 

3.26 

3.863 

11.50 

4.45 

7.002 

6.47 

3.57
 

5.037 

6.374 

3.71
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Table C: Elastic constants for XH (X=Li, Na, K, Rb, Cs) in RS, CsCl 

and ZB structures.  

 

 

 

 

 

 

 

 

 

 

 

Table D: Energy gap for XH (X=Li, Na, K, Rb, Cs) in RS, CsCl, ZB 

and WZ structures. 

 

Compound Elastic 

constant 

RS 

structure 

CsCl 

structure 

ZB 

structure 

LiH 

 

C11 

C12 

C44 

70.2
 

10.2
 

50.4 

175 

-38 

-22 

35 

19.6 

33.4 

NaH C11 

C12 

C44 

39.1 

13.0 

24.1 

95.2 
-14 

-6.5 

19.5 

13.7 

16.0 

KH C11 

C12 

C44 

27.76
 

6.38
 

13.73 

56.36 

-4.67 

0.79 

13.41 

9.16 

11.27 

RbH C11 

C12 

C44 

25.29
 

5.07
 

8.44 

52.73
 

-2.78
 

1.67 

15.13 

7.8 

8.10 

CsH C11 

C12 

C44 

20.7
 

3.17
 

8.0 

38.21
 

-1.90
 

4.30 

16.2 

3.5 

6.1
 

Compound  GGA mBJ-GGA 

LiH RS X→X  3.170  X→X  5.170 

CsCl R→X  0.742   R→X  2.900 

ZB W→L  4.338        W→L 5.800 

WZ Λ→K 3.697        Λ→K 5.320 

NaH RS W→L 3.830         W→L 6.410 

CsCl R→X 1.119          R→X   4.532 

ZB W→L 3.751          W→L 6.222 

WZ Λ→Γ 3.803          Λ→Γ 6.482 

KH RS L→L 3.428                 L→L 6.012 

CsCl R→X  2.456                 R→X 4.971 

ZB W→L 3.671    X→X  6.801 

WS M→M 3.655                M→M 6.917 

RbH RS L→L   3.050  L→L   5.633               

CsCl R→X  2.397               R→X  4.474 

ZB X→X  3.379               X→X  6.466 

WS M→M 3.470     M→Σ 6.907 

CsH RS L→L  2.470 L→L  4.650 

CsCl  R→X 2.696  R→R 3.950 

ZB X→X 2.894                X→X 5.555 

WS M→Σ 3.145    M→M 5.974 
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لدراسة الخصائص التركیبیة و الالكترونیة  (FP-LAPW)استخدام طریقة 
                      والمرونیة والضوئیة لمركبات القمویات الهیدروجینیة

XH (X= Li, Na, K, Rb, Cs) 
 

 إعداد

 رائد توفیق عارف جرادات

 

 إشراف

 د. محمد سلامة أبو جعفر

 أ.د. عصام راشد الأشقر

 

 

 

 

بكمیة  ،درجة الدكتوراه في الفیزیاء الحصول عمى  لمتطمبات قردمت هذه الأطروحة استكمالاا 
 فمسطین. –نابمس  ،جامعة النجاح الوطنیة في ،الدراسات العمیا

8108 



 ب 

لدراسة الخصائص التركیبیة والالكترونیة والمرونیة والضوئیة  (FP-LAPW)استخدام طریقة 
 XH (X= Li, Na, K, Rb, Cs)لمركبات القمویات الهیدروجینیة 

 إعداد
 رائد توفیق عارف جرادات

 إشراف
 د. محمد سلامة أبو جعفر
 أ.د. عصام راشد الأشقر

 الممخص

بات و المبنیة عمى نظریة الدالة الوظیفیة لمكثافة باستخدام طریقة تم استخدام المبادئ الأولیة لمحسا
لدراسة خصائص الاستقرار اليیكمي   (FP-LAPW)الموجات المستویة المعدلة الخطیة لمجيد التام

لحالات بموریة مختمفة والضغط المسبب للانتقال من حالة لأخرى والخصائص الالكترونیة وثوابت 
المرونة والخصائص المیكانیكیة وخصائص الدینامیكا الحراریة وكذلك الخصائص الضوئیة 

 .(LiH, NaH, KH, RbH, CsH)لمركبات قمویات اليیدروجین 

 zinc-blendeو rock-salt (RS)دراسة ىذه المركبات في أربعة تراكیب بموریة ىي  وكذلك تم

(ZB) وcesium chloride (CsCl) و.wurtzite (W)  

تم التعامل معو  بطریقتین  (exchange correlation potential)أما جيد الارتباط والتبادل
 وىما: 

رنزىوفالتبادلي  لمجيد المعمم الإتجاىي المیل تقریب -1       ألارتباطي لبیردیو وبورك وا 
(PBE-GGA)وذلك لدراسة خصائص الاستقرار اليیكمي والضغط المسبب للانتقال والخصائص . 

الالكترونیة والخصائص المرونیة والخصائص المیكانیكیة وخصائص الدینامیكا الحراریة 
 والخصائص الضوئیة. 



 ج 

        ألارتباطي المعدل لبیكي وجونسون التبادلي لمجيد المعمم الإتجاىي المیل تقریب -2
(mBJ-GGA).وذلك لدراسة مقدار فجوة الطاقة والخصائص الضوئیة . 

 من ىذه الدراسة استطعنا التوصل لمنتائج التالیة:

في  (Cs)إلى ذرة السیزیوم   (Li)یزداد بالانتقال من ذرة المیثیوم a0)لوحظ أن ثابت الشبكة ) -1
 یقل.  (B)الجدول الدوري، بینما معامل الصلابة 

بینما  (PBE-GGA)بنیة أحزمة الطاقة ليذه المركبات ىي بنیة مواد شبو موصمة بطریقة  -2
 LiHفي جمیع الحالات البموریة، باستثناء المركبین  (mBJ-GGA)بنیتيا بنیة مواد عازلة بطریقة 

 .CsClفي التركیب البموري  CsHو 

واقرب إلى النتائج العممیة  (PBE-GGA)ىي أكثر دقة من طریقة  (mBJ-GGA)طریقة  -3
 في حساب مقدار فجوة الطاقة.

من حساب الثوابت المرونیة تبین أن ىذه المركبات مستقرة في جمیع الحالات البموریة باستثناء  -4
 .CsClفي التركیب البموري  NaHو  LiHالمركبین 

 .(RS)قمویات اليیدروجین ىي الحالة البموریة الممحیة أكثر الحالات البموریة استقرارا ل -5

 الثوابت المرونیة تتغیر بتغیر الضغط الواقع عمى ىذه المركبات. -6

ىذه المواد تعتبر مواد عازلة جیدة مع فجوة طاقة واسعة و مباشرة وتعتبر كذلك ممتصة جیدة  -7
 لمضوء وطیف الامتصاص ليا واسع.

وفوق البنفسجي  (MUV)وق البنفسجي المتوسط أقصى كمیة امتصاص تقع في منطقة ف -8
 .(FUV)البعید 

وطیف        والجزء الخیالي من ثابت العزل الكيربائي  α(w)تبین أن طیف الامتصاص  -9
 ، ليا أشكال متشابية.k(w)وكذلك طیف معامل الاضمحلال  L(w)الطاقة المفقودة 

في ىذه الدراسة تتفق جیدا مع الدراسات التجریبیة والدراسات  النتائج التي تم الحصول عمیيا
 .الأخرىالنظریة 


