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Abstract
The effects of magnetic and electric fields on the donor impurity states
confined in a GaAs two dimensional (2D) parabolic quantum dot has been
studied. The impurity energy and binding energy of the ground state and
some low-lying excited states were calculated. The Hamiltonian was solved
using 1/N expansion method within the effective mass approximation. The
results had been displayed as a function of physical parameters:
confinement strength w,, magnetic field strength w., and electric field

strength F.

In addition, we have studied the magnetic properties of the donor impurity
in the quantum dot by calculating the magnetization and the magnetic
susceptibility. The dependence of the magnetization and the magnetic
susceptibility quantities on temperature, confinement strength w,,
magnetic field w., and electric field strength F were investigated. The
comparisons show that our results are in very good agreement with

reported works
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Chapter One
Introduction

1.1 Low Dimensional Systems

A low dimensional system is one where the motion of electrons is restricted
from exploring the full three dimensions of our space. There has been great
interest in low dimensional quant um systems within the last two decades

for their importance in theoretical physics and practical applications.

So how are electrons restricted from moving in three dimensions? The
answer is the quantum confinement effect in the heterostructure
materials [1]. Quantization effects become very important when at least one
of the three dimensions of semiconductor structure reduced to a length
smaller than the Fermi wavelength (generally in the range from 1nm to

100nm) [2-3].

Low-dimensional structures are usually classified according to the number
of reduced dimensions they have. More precisely, the dimensionality refers
to the number of degrees of freedom for the particle momentum. Based on
the confinement direction, a quantum confined structure will be classified
into four categories as bulk structure, quantum well, quantum wire and

quantum dot [4].

In Three-dimensional (3D) structure or bulk structure: charge carriers
(electrons and holes) act free in the three spatial dimensions. In Two-
dimensional (2D) structure or quantum well: charge carriers are confined in

one direction, while the carriers are free to move in the other two
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directions. One-dimensional (1D) structure or quantum wire are formed
when two dimensions of the system are confined, leading to free movement
along only one direction. Eventually Zero-dimensional (0OD) structure or

quantum dot confine the charge carriers in all three dimensions [5-6].

As more number of dimensions are confined, more discrete energy levels
can be found. The discrete structure of energy levels leads to a discrete
absorption spectrum, which is in contrast to the continuous absorption
spectrum of a bulk semiconductor. Density of electron states in bulk, 2D,
1D and 0D semiconductor structure is shown in Figure (1.1). OD structures

have very well defined and quantized energy levels [7].

Quantum well Quantum wire Quantum dot
(2D) (1D)
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Figure (1.1): Density of states as function of energy for various confinement Systems: bulk

materials (3D), quantum well (2D), quantum wire (1D), and quantum dot (0D).



1.2 Quantum Dots

Quantum dots (QDs) were discovered in solids (glass crystals) in 1980, are
zero dimensional nanostructures made from semiconductor materials (like
GaAs/AlGaAs), in which charge carriers (electrons and holes) are confined
in all three spatial dimensions. Due to this confinement the electron states

are fully quantized into discrete and narrow electronic energy levels [8-10].

The electronic properties of quantum dots are closely related to their size
shape and composition. This allows properties such as the band gap, optical
emission color and absorption spectrum to be highly tunable, as the size
distribution of quantum dots can be controlled during fabrication. For
example, the band gap in a quantum dot, which determines the frequency
range of emitted light, is inversely related to its size [11]. Bigger dots emit
longer wavelengths like red, while smaller dots emit shorter wavelengths
like blue. This property suggests the potential for higher performance and

more efficient light emitting diodes (LEDs), displays, and lasers [12].


http://www.explainthatstuff.com/glass.html

Figure (1.2): Example of size-dependent fluorescence spectra of different colors for quantum

dots [13].

Because of the similarity between real atoms and quantum dots, quantum
dots are often called the artificial atoms. Both have discrete energy levels
and contain a small number of electrons. Electrons in both real and
artificial atoms are attracted to a central potential, in a real atom this is a
positively charged nucleus (coulomb potential). While in artificial atom

these electrons trapped in a bowl like parabolic potential.

The number of electrons in QD’s can be controlled by artificial external
potential whereas in real atoms by ionization. Moreover, the structure of
real atoms is three—dimensional, while most of the artificial quantum dots
can be regarded as large 2D atoms, since the lateral dimensions are in

most cases much larger than the vertical extension. Which mean that the
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number of electrons needed to fill each shell is different from real atoms.
Figure (1.3) shows a very schematic comparison of a real three-

dimensional atom and a disk-shaped quantum dot [14].

Real Atom (3D) Quantum Dot (2D)

o e
= 0.1 nm

2= 10 - 100 nm

Vootl/r . Voor?

E =10 eV E = 10 meV

Figure (1.3): a schematic comparison of a real three-dimensional atom and a disk-shaped

quantum dot.

QDs had been the subject of interest research due to its many important
applications, from lighting and optical applications to use in quantum

computing and biological applications.

QDs are being used for all sorts of applications where the control of
colored light is important. The easily tunable band gap of quantum dots
allows for relatively monochromatic light emission with pure and saturated
color. A thin filter made of quantum dots has been developed so it can fit
on top of a fluorescent or led lamp particularly for increasing the red

emission [15].
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There is an active interest in the use of quantum dots in computer screens
and displays because they offer many important advantages, conventional
LCD use color filters (red, green and blue crystals) that illuminated from
behind by a very bright backlight this white light passed through color
filters to create the desired color pixel, since much of the light spectrum is
absorbed by the filters, energy efficiency is not optimized. In contrast
quantum dot display use quantum dot instead of these filters these quantum
dots can be tuned to give the light of any color of the spectrum so the
colors of a quantum dot display are likely to be much more realistic,
moreover, quantum dots produce light themselves so they need no
backlight making them much more energy efficient. Finally, quantum dot is
much smaller than liquid crystals so they would give a much higher

resolution image [16].

1.3 Literature survey

The study of impurities in semiconductor quantum dots (QDs) has attracted
much attention in recent years, because of the fact that their presence can
dramatically affect the performance of semiconductor devices and their

electrical, optical and transport properties.

The investigations of impurity states in semiconductor nanostructures can
date back to the early 1980s by Bastard [17]. In spite of growing interest in
the topic of impurity doping in nanocrystallites, A great number of
theoretical and experimental works have been devoted for understanding

the energy levels of donor impurities in low dimensional semiconductor
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QDs [18-21], for example Kostic and Stojanovic have investigated the
states of a center donor impurity in a spherical CdTe/ZnTe QD using a

spherically confining potential of finite depth [22].

The binding energy of donor impurities in QD’s depends on materials,
geometry, size, and shape. The impurity binding energy may strongly
depend on the position of the impurity along the heterostructures as well as
on the typical dimensions of the heterostructures. In particular, Perez-
Merchancano et al. [23] and Zhu et al. [24] made the first studies about the
confinement effects on the impurity states in QDs. They calculated binding
energies for the ground and excited states as a function of dot size and the
impurity position. Xie [25] and Zhu et al. [26] have investigated the
binding energy of hydrogenic donor impurity in a parabolic quantum dot

using diagonalization method.

Calculations of the binding energy of an on-center and off-center shallow
hydrogenic impurity in a GaAs quantum dot under hydrostatic pressure
were carried out in 2007 by Perez-Merchancano and Bolivar-Marinez using

variational approach [27].

As the state of charge carrier's change in the presence of hydrogenic
impurity, it also changes in the presence of electric and magnetic fields.
External fields are effective tools for studying the properties of impurities
in semiconductor QD’s. The effects of an applied magnetic and electric
fields of arbitrary strength on the energy and binding energy of donor

impurity in a quantum dot had been studied by many authors using
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different computational approaches [28-31]. Elsaid had used 1/N
expansion method to calculate the energy states of an electron bound to the
donor impurity in the presence of a magnetic field of arbitrary strength

[32].

The combination effects of the electric and magnetic fields on the binding
energy of an on-center donor impurity in disc-shaped GaAs/Al0.3Ga0.7As
quantum dots was studied by Zaiping Zeng et al in 2014 [33].

In 2004 John Peter and coworkers have used a variational method for the
calculations of the electric and magnetic fields on the binding energies of
hydrogenic donors in a parabolic diluted magnetic semiconductor QD [34].
Rezaei and kish had applied the direct matrix diagonalization method to
study the electric and magnetic field effects on a hydrogenic donor

impurity confined in a 2D parabolic quantum dot [35].

Boda and Chatterjee studied the transition energies and magnetic
properties of a neutral donor complex in a Gaussian GaAs QD in the

presence of an external magnetic field in 2016[36].

The binding energies of the ground state of a hydrogenic impurity in a
GaAs QD dots subjected to external electric and magnetic fields have been
calculated by Zhang Hong, Zhai Li-Xue, Wang Xue, Zhang Chun-Yuan

and Liu Jian-Jun using the finite-difference method [37].

J-H Yuan et al. investigated theoretically the low-lying states and optical

absorption properties of a hydrogenic impurity in a parabolic QD
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modulation by the applied electric field. Bzour searched in the effects of
hydrostatic pressure and temperature on the properties of the GaAs single
QD in an external magnetic field with the help of exact diagonalization
technique [39]. In 2015 Shaer studied the heat capacity of two electrons
QD in an external magnetic field by using variational method [40]. Very
recently, Elsaid et al. had used variational and exact diagonalization
methods to study the electronic, thermodynamic and magnetic properties of

single and coupled QDs [41-46].
1.4 Research Objectives
This work has two main objectives, which can be summarized as follows;

1- We have employed the shifted 1/N expansion method to solve the QD
Hamiltonian and then to obtain the energies (eigenvalues) of the donor
impurity in a parabolic confinement in an external electric and magnetic
field of arbitrary strength. The complete energy spectra of the system were
calculated as a function of magnetic field strength (w.), confinement

strength (wy), and electric field strength (F).

2- We have used the computed (eigenenergies) to calculate the magnetic
properties of the donor impurity like the magnetization (M) and the

magnetic susceptibility (x) quantities.
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1.4 Thesis Layout.

In this work, the donor impurity energy and binding energy for the ground
state and low-lying excited states of GaAs quantum heterostructure had
been calculated as a function of the confinement strength w,, magnetic
field strength w,, and electric field strength F. The shifted 1/N expansion
method has been used to solve the QD Hamiltonian to obtain the
eigenvalues. Then, the magnetization and the magnetic susceptibility had
been investigated as a magnetic property of the QD system, the
magnetization and the magnetic susceptibility were calculated as a function
of the magnetic field strength w, at different values of the temperature T,

confinement strength w, and electric field strength F.

The rest of this thesis is organized as follows: the donor impurity
Hamiltonian, the principle of shifted 1/N expansion technique and how to
calculate the magnetization and the magnetic susceptibility from the
statistical energy expressions are presented in chapter two, in chapter three
the results of energy, binding energy, magnetization and magnetic
susceptibility has been displayed and discussed. The final chapter devoted

to conclusions and future work.
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Chapter Two
Theory

The model and the method used for our -calculations will be
discussed in details in this chapter. So the three main parts are: quantum
dot Hamiltonian, the shifted 1/N expansion method, and the magnetic

properties of the donor impurity in the quantum dot.
2.1 Donor Impurity Hamiltonian

Our model consists of a system of one electron with effective
mass (m™*) and charge (e), moving in atwo dimensional (2D) parabolic
quantum dot (PQD) (like a disc) under the effects of external uniform
electric and magnetic fields, in the presence of a center donor
impurity. The Hamiltonian of the impurity in a parabolic QD is given as:

1
2m#*

H=

P +5R)2 — S~ eFr +/,(1) )

P’ refers to the electron momentum operator corresponding to the electron
position coordinate r(x,y). A s the magnetic vector potential which is
related to the applied magnetic field B by B= V x A. The vector
potential is chosen to be in the symmetric gauge as A= g(-y, X, 0), Bis
assumed to be uniform and normal to the 2D QD plane along the z-
axis. € represented the dielectric constant of GaAs quantum dot, ¢ is
the speed of light, and F is the strength of the electric field in

the radial direction.
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Finally, V.(r) is the confining potential:

Ve() = 5 m’ wo?r? @)
In which w, is the strength of the confinement potential frequency.

Now, the Hamiltonian of the system Eqg. (1) is:

—~ 2 5 e =
A== PP+e—2AA+2 P]———eFr+ —m*wj r?

2msx c
A= -02v2 + SE 4 28 (xp, — yp)| - S~ eFr + 2mrw) r?

T 2mx c? 4 C 2 y — Vix Er 2 0
’\_—hz 2 1 x 2.2 1 92 1 x 2.2
H = Ve+r—mwir*+-wll, — ——eFr+-—m'wjr

2ms 8 2 er 2

7 —h? o2 2..2 e’

H=— v +3 ImrQ2re 4 L mlh———eFr (3)

L, symbolized the orbital angular momentum for the electron along the z-
direction with eigenvalue m;h, m; = 0,41, +2 is the magnetic quantum

number.

Q=(wi + “’Tg)% Is the effective frequency depends on both the magnetic

field cyclotron frequency (a)c=nefc), also on the confinement

frequency wy.

Throughout this work we will use the effective Rydberg R;,= as the

2h2

unit of energy and the effective Bohr radius ap = ﬁ as the unit of

length. In these dimensionless effective units the Hamiltonian assumes the

A=-v2+1022 4+ Lom -2 _Fr (4)
2 Er
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We have applied the shifted 1/N expansion technique to solve the above

Hamiltonian Eqg. (4) and obtained the eigenenergies.
2.2 Shifted 1/N Expansion Method

The shifted 1/N expansion method is a powerful technique to solve
Schrodinger equation for spherically symmetric potential V(r); it
produces exact results for the harmonic oscillator and for the Coulomb

potential cases.

The technique is quite simple and it gives an accurate result. Its starts by

writing radial Schrodinger equation in N spatial dimensions as:

[+ 22 4y D v(9] ¢ () = E 6 (1) (5)
Where
V(r)=—r3+iﬂzr2+%ml—Fr (6)

[(l+ N —2) is the eigenvalue of the square of the orbital angular

momentum operator in N dimension space and [ = |m,].

The main idea of the shifted 1/N expansion method is to rewrite Eq. (5) by

using a parameter k, k = N + 2l and a suitable shift parameter a.

In terms of the shifted variable, k = k — a one has:

@ 72 [1-0-a)/K1-G-a)/k] v<r>

[ +k2( N $(r) =E () (7)
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Where Q is a scaling constant to be determined later. For large k, the main
contribution to the energy E comes from the effective potential, and the

Kinetic energy becomes negligible.

1 V(r)
Verf =7t =4 (8)

V(r) is supposed to be well behaved so that V,r has a minimum r, given

by the relationship:

215V (1)=Q 9)

It is appropriate to shift the origin of coordinates to the position of the

minimum (r,) of the effective potential (V.rr) by defining a new

variable x.

k1/2

X = (r—r1y) (10)

To

If Eq. (7) expands around r, (respectively x = 0) an analytical equation
similar to the Schrodinger equation of the one dimensional anharmonic
oscillator is found. So it is easy to compare the coefficients of both
equations to define all the anharmonic oscillator parameters in terms of k,
Q, rp, and the potential derivatives in order to obtain the energy spectrum.

(See Appendix)

For any value of n, (radial quantum number) and for any value of m,; the
energy E (n,, m;) is given by an expression in powers of 1/k (up to third

order) as:

E = E0+E1+E2 + E3 (11)
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Where E,, E;, E,, E5 are given in Appendix.

The shift parameter a is chosen so as to make E; vanishes. So,
a=2-02n+)w (12)
w is the anharmonic oscillator frequency given in Appendix. (Equation
A.4).

The constant Q chosen such as to make Egs. (5) and (7) equals. This

means:

k=.Q (13)

By using Egs. (9), (equation A.4), and (12), an equation for determining the

root (rp) Is given below:

1/2

28V’ ()" =2+ 20— 2+ @n, + 1D 3+ 252 "

With this value of r,, one can determine w,a and every identified
parameters, which completes all necessary steps to compute the energy

eigenvalues of V(r).

By substituting the applied potential V(r) in Egs. (9), (14), (Equation A4)

we get:
Q = 41y + Q%ryf — 2F73 (15)

{4ry + Q%1 — 2Fr$}/2 =

(—4/m8+Q%1y/2) }1/2

2+2l-2+(@2n,+1) {3 T gt 2 F)

(16)

_ (=4/1§+®%/210) \1/2
®=(3 + (2/r¢+®21y/2) ) (17)



16
One can calculate the binding energy (EB) of a hydrogenic donor impurity

as:
EB=E°—E (18)
E°: The eigenvalue of the system without hydrogenic impurity.

E : The eigenvalue of the system with hydrogenic impurity.

2.3 The Magnetic Properties of the Quantum Dot.

The Magnetization (M) of donor impurity can be calculated by
differentiating the average statistical energy of the 2D QD system with

respect to the magnetic field strength B.

M(T, wo, B, F) = === (19)
N ~Eq(B)/kpT

Where <E>=z 1% (20)
a=

By substituting Eqg.(20) in Eq.(19), we can express the magnetization (M)

in a common standard from as:

ZN 9Eq(B) ,—Eq(B)/kpT
a=1_9B

N
Z e—Ea(B)/kpT
a=1

The magnetic susceptibility (x), in the presence of the donor impurity, can

M(T,wy, B,F) = — (21)

be obtained by differentiating the magnetization(M) with respect to the

magnetic field strength B:

_ oM
"~ 9B

(22)
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Chapter Three
Results and Discussions

In this chapter we will discuss our computed numerical results for a single
donor impurity located at the center of a GaAs two dimensional quantum
dot, confined by a parabolic potential of strength w,, under the effect of an
applied uniform magnetic field of strength w,, in addition to a uniform

electric field of strength F.

The physical parameters used for GaAs medium in numerical computations
are: the effective mass of an electron (m* = 0.067m,), the dielectric
constant of the material (e=12.5), and the effective Rydberg
(R* = 5.83 meV).

3.1 Energy Spectra

In the first stage of our present computational task, we have calculated the
ground state energy for the donor impurity of GaAs/AlGaAs QD at various
magnetic field values and for two values of the confinement frequency
strength w, In the reason of comparison, namely w,=5.412 R* and
wo = 3.044 R*, for zero electric field case. The accuracy of our obtained
results is compared with previous reported work [32] as shown in Table
(3.1). The comparison obviously shows excellent agreement between both

works.
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Table (3.1): The ground-state energies (in units of R*) at different

values of the magnetic field strength (w.) and for different values of

wy, calculated by 1/N expansion method, compared with the reported

work Ref [32].
wo=5.412 R* wo=3.044 R*
W, E(present work) (R*) E(Ref[32]) E(present work) E(Ref[32])
(R) (RY) (R")

(R")
2 -2.1197 -2.15 —3.28049 -3.29
4 -1.9704 -2.00 —3.1004 -3.11
6 -1.7343 -1.76 —2.7967 -2.80
10 -1.0454 -1.06 —-1.9231 -1.92
18 0.9457 0.93 0.2892 0.28
20 1.5272 1.52 0.9133 0.91

In Figure (3.1) we have shown the effect of the confinement potential

frequency w, on the ground state energy of donor impurity for zero

electric and magnetic fields. It is clearly seen that: as the confinement

strength w, increases, the ground state energy increases also due to the

confinement enhancement.

-3.80

-3.85 -

-3.90

Energy(R')

-3.95

-4.00 P ——
0.6 0.8

1.0

wo(R7)

T2

T4

Figure (3.1): The donor impurity ground state energy (in units of R*) as a function

confinement frequency ( wy), for zero electric and magnetic fields.

of
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In Figure (3.2) we display the ground state energy as a function of the
confinement strength w,, the solid line indicates the absence of the
impurity, and the dashed one indicates the presence of the impurity. The
Figure shows a reduction in the energy of the electron because the donor
impurity lowers the energy of the heterostructure due to its negative

coulomb attraction.

— Without impurity - = = with impurity

Energy(R")
1

1
[
——

Figure (3.2): The ground state energy of the heterostructure (in units of R*) as a function of

confinement strength w, , for zero electric and magnetic fields.

In Figure (3.3) we have shown the energy of low-lying excited states as a
function of the confinement strength w, in the presence of the donor
impurity, and for zero electric and magnetic fields. As Figure (3.3) clearly

shows, the donor impurity energy of these states increases as w, increases
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similar to the behavior of the donor impurity energy in the ground state

(Figure 3.1).
— E(0,%1) - - - E(0,%2) ----.- E(0,13)
E_ T T T T T T T T T T T T T T T T T T
5F »
4t e
3 e _ -
.':-3' . - ? -
E I - - -
@ - -
: L - - - — -
w 2' - - — -

0.6 08 10 12 14
wy(R7)

Figure (3.3): The energy for low-lying excited states of the impurity (in units of R*) as a

function of the confinement strength w, , for zero electric and magnetic fields.

Figure (3.4) shows the dependence of the ground state binding energy of
the impurity on the confinement strength w,, for zero electric and magnetic
fields. As the Figure clearly shows, the binding energy (BE) increases as
w, increases, since the electron becoming more confined toward the
center of the quantum dot where the donor impurity resides (coulomb term

Increases).
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5.4

Binding Energy(R")

4.4 " L L " s L . " L L " s " L " " i L
0.6 0.8 1.0 1.2 1.4

wy(R°)

Figure (3.4): The binding energy for the ground state of the impurity (in units of R*) as the

function the of confinement frequency w, for zero electric and magnetic fields.

In addition, we have shown the dependence of the binding energy on the
confinement strength w, for low-lying excited states as shown in Figure
(3.5), in the presence of donor impurity and for zero electric and magnetic
fields. As the Figure clearly shows, the binding energy (BE) increases
as wg increases, similar to the behavior of the donor impurity binding

energy in the ground state (Figure 3.4).



22

—— E(0,1) - - - E(0,%2) ------ E(0, 13)

=
m

=
=1 ]

=
B

Binding Energy (R")
> i

0.8/
0.6
06 08 10 12 14
wo(R7)

Figure (3.5): The binding energy of the impurity for low-lying excited states (in units of R*)

as a function of the confinement strength w,, for zero electric and magnetic fields.

3.2 Electric and Magnetic Fields Effects on the Donor Impurity Energy

and Binding Energy

In this section, we display the effects of external electric and magnetic
fields on the energy and the binding energy for the ground state and low-
lying excited states of a donor impurity confined in a GaAs two

dimensional PQD.

The dependence of the ground state energy and binding energy of the
donor impurity on the magnetic field strength ( w,) for different values of
confinement strength (w,) are presented in Figure (3.6) for the energy,
and Figure (3.7) for the binding energy, for zero electric field case. It is

obvious that both the energy and the binding energy for the ground state of
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the impurity increase with the magnetic field because of the increasing

compression of the wave function with the magnetic field.

—_— wy=5 R

----- - wWy=1 R"

- - - wy=2/3 R"

-3.80
~3.65/
-3.70]
~3.75[

-3.80

Energy(R’)

-3.85[

—-3.90|

-3.95[

—4.00L0
0

Figure (3.6): The energy for the ground state of the impurity (in units of R*) as a function of

magnetic field of strength w,, for three different quantum confinements, and zero electric field.

—_— wy=.5 R"

cmimem =1 R"

- — - Wy=2/3 R"

LA A
P W

BInding Energy(R")
o
]

2 3 4
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Figure (3.7): The binding energy for the ground state of the impurity (in units of R*) as a

function of magnetic field of strength w,, for three different quantum confinements, for zero

electric field.



24

In Figure (3.8) the dependence of the impurity energy on the magnetic field
for excited states are presented in the absence of the electric field. It is
interesting to note that the degeneracy of the states is removed by applying
magnetic field, the energy of m, #0 states is affected not only by the
diminished area of localization due to the growth of w, , but also due to

the addition of the positive or negative (for m,= %1, £ 2, £3) energy of

azimuthal motion of the electron in the magnetic field (%mlh).

—— E(0,1) - - - E(0,-1) —— E(0,2)
PP E(0,-2) ------ E{0,3) - --- E(0,-3)

Energy (R)

Figure (3.8): The energy for low-lying excited states of the impurity (in units of R*) as a
function of the magnetic field of strength w,, for wy = 2/3R* and zero electric field.
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Figure (3.9) and (3.10) show the effect of the electric field on the energy
and the binding energy for the ground state of the donor impurity
respectively. It is clearly seen that both the energy and the binding energy
of the donor impurity decrease with the increase of the electric field(F).
With the increase of the electric field, the coulomb potential is more and
more weak because of the change of the distribution of the electronic
probability density (Increasing the electric field causes the weaker

confinement of carriers in the QD. This lead to lower the value of energy).

—_— w,=2(R) - - - W,=3(R)

----- - W= 4(R)

Energy(R")

=4 .6 L L L 1 L L 1 1 L L 1 1 L 1 1 1 L ! L 1
0

2 4 B 8 10
F(kvicm)

Figure (3.9): The energy for the ground state of the impurity (in units of R*) as a function of

the electric field , calculated for various values of w., and wy = 2 R*.
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Figure (3.10): The ground state binding energy of the donor impurity (in units of R*) as a

function of the electric field , for various values of w,, and w, = 2.5 R*.

Next, we have calculated the average statistical energy of the QD as
shown in Figure (3.11) and Figure (3.12). These Figures show the
dependence of the average statistical energy < E > on the magnetic field
strength w,, for different values of temperature(T), namely T = 10K
and T = 100k, respectively. The solid line indicates the absence of the
impurity, and the dashed one indicates the presence of the impurity, it is
clear from the Figures that the effect of the impurity is to decrease the
average statistical energy < E > of the system. The presence of donor
impurity lowers the energy of the heterostructure due to its negative

coulomb attraction.
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— without impurity — - - with impurity
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Figure (3.11): The average statistical energy < E > (in units of R*) as a function of the

magnetic field of strength w,, calculated at: T = 10K, w, = 1R*, and zero electric field.
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Figure (3.12): The average statistical energy < E > (in units of R*) as a function of the
magnetic field of strength w,, calculated at: T = 100K, wy = 1R*, and zero electric field.

(The inset figure explains the variation of < E > of the system with impurity using small step in

energy).
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Figure (3.13) describes the average statistical energy against the magnetic
field for PQD. By focusing on the Figure obtained we can see that at higher
temperature (T = 70,90,100 K ) the energy decreases as the magnetic
field increases, this behavior continues up to a certain value of w,, then the
energy starts increasing as the magnetic field increases. On the other hand,
in the region of low temperatures (T = 1,50K) the energy increases as the

magnetic field increases for all values of w,.

As the temperature increases, from 1K to 100 K, the average statistical
energy curve of the QD shows a great enhancement. This behavior is due to
the significant increment in the thermal and the confinement energy

contributions.

Figures (3.13, 3.14 and 3.15) show the effect of the confinement frequency
w, on the behavior of the curve of the statistical energy < E > against the
magnetic field strength w. at different temperatures. The Figures show
clearly a change in the behaviors of the statistical energy curves as we

increase the confinement frequency w, from: 0.5 tol R*.



T=TOK

-3.0

—3.2| 1

<E>

Figure (3.13): The average statistical energy < E > as the function of magnetic field w,
calculated at w, =05 R* ,F=0 and various  temperatures:
T = 1K,50K ,70K,90K and 100K.

T=7T0OK

Figure (3.14): The average statistical energy < E > as the function of magnetic field w,
calculated at Wo =0.8 R* , F=0 and various
temperatures T = 1K, 50K ,70K,90K and 100K.
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Figure (3.15): The average statistical energy < E > as the function of magnetic field w,
calculated at wy =1 R*,F=0and various temperatures: T = 1K,50K ,70K,90K and 100K.

We plotted in Figure (3.16) the average statistical energy < E > against the
magnetic field strength w,. at different values of electric field F.
Calculated at: T = 10K and w, = 1.5 R*. The Figure shows obviously that
the statistical energy increases as the magnetic field increases for all values
of w.. Moreover, it can be seen that as the electric field decreases, from
5kV/cm to 0, the average statistical energy curve of the QD shows a great

enhancement.
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----- - F=0 == F=2.5KV/cm — — - F=5KV/cm

-3.4

<E>

Figure (3.16): The average statistical energy < E> as a function of magnetic field w,,
calculated at wy =1.5 R* and various electric field strength: F = 0,2.5,5 kV/cm and T = 10k.

3.3 Magnetic Properties of the Donor Impurity in Quantum Dot

The second stage in our work is the calculation of the magnetization(M),
and the magnetic susceptibility (y) of a QD as a function of various

parameters (w., w,, T and F).

To study the effect of the presence of donor impurity on the
magnetization M, Figures (3.17) and (3.18) show the dependence of the
magnetization M upon the magnetic field strength w,, for two values of
temperature (T), namely T = 10K and T = 100K respectively. It is clear
from the Figures that the effect of the impurity is to increase the
magnetization M. This is due to the effect of the impurity on the statistical
energy behavior as shown in Figures (3.11) and (3.12). For high

temperature T = 100K, the magnetization in the presence of donor
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impurity consequently increases, reaching a peak value then it starts
decreasing, while at low temperature T = 10K, the magnetization
decreases for all values of w,, this explain the corresponding magnetic
susceptibility () behavior shown in Figures (3.19) and (3.20) for T=10k
and T=80k, respectively. It is observed that when T = 10 K the magnetic
susceptibility of the system is negative, which means the system is
diamagnetic. On the other hand, for the case T = 100 K it is found that at a

certain value of w, the system turns from diamagnetic to paramagnetic.

—— without impurity - - - with impurity

(Magnetization fpg)

0 1 2 3 4
w:(R")
Figure (3.17): The magnetization (in unit of effective Bohr magneton HB::_I:*:
0.87 meV /T for GaAs) against the magnetic field

strengthw, (in units of R*), computed at wy = 1R*, F =0and T = 10K.
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—— without impurity - - — with impurity

1 == T T
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(Magnetlzatlon/pg)
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Figure (3.18): The magnetization (in unit of effective Bohr magneton ugzzf:*z
0.87 meV /T for GaAs) against the magnetic field strength

w. (inunits of R*), computed at wy, = 1R*, F =0and T = 100K.

—— without impurity - - - with impurity

susceptibllity (x/pa)

w.(R)

Figure (3.19): The magnetic susceptibility (x) (in unit of effective Bohr magneto pp = h

2m*
0.87 meV /T for GaAs) against the magnetic field
strength w, (in units of R*) computed at: wy = 1R*,F =0 and T = 10K.
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Figure (3.20): The magnetic susceptibility () (in unit of effective Bohr magneto pgz = h_

2m*
0.87 meV /T for GaAs) against the magnetic field
strength w, (in units of R*) computed at: wy = 1R*,F =0 and T = 100K.

The variation of the magnetization M in the presence of donor impurity as a
function of w, at various values of T is shown in Figure (3.21), for fixed
value of confinement strength w, and zero electric field. One can observe
from the Figure that as the magnetic field w, is increased, the
magnetization M consequently increases, reaching a peak value then it
starts decreasing. Also, the effect of the temperature on the magnetization
curve is very significant. As the temperature decreases, the peak value in
the magnetization curve decreases and becomes flat for fixed value of w,
and F. At a high temperature the thermal energy (Exw=KgT) becomes very

significant and in this case it affects greatly the average statistical energy
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behavior of the system as shown in Figure (3.13). This leads to a linear

increase in the magnetization curve against the magnetic field strength w,.

— T=1K -~ - T=50K =— T=TO0K

— = = T=80K - T=100K

(Magnetization fpg)

w:(R")

Figure (3.21): The magnetization (in unit of effective Bohr magneton HB:ﬂ:

2m*
0.87 meV /T for GaAs) against the magnetic field
strength w, (in units of R*) , calcualted at wy, = 0.5R*, F =0 and various temperatures:

T = 1K,50K ,70K,90K and 100K.

In addition, the effect of the confinement frequency w, on the
magnetization was also studied by taking different w, values, for example:
(wy=0.8 R*) as in Figure (3.22) and ( wy=1R") as in Figure (3.23). By
looking at the three Figures (3.21, 3.22 and 3.23), we can notice the effect
of changing the confinement frequency w, on the behavior of the
magnetization curve at different temperatures. At higher temperatures when

the confinement frequency w, increased, the peaks shifted to the left,
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towards a lower magnetic field strength and their values decrease and
become flat. This is due to the effect of the confinement frequency w, on
the statistical energy behavior as shown in Figures: (3.13, 3.14 and 3.15).
But at low temperatures the magnetization increase with a relative small
amount as the confinement frequency w, increases as seen in Figure

(3.24).

— T=1K === T=50K me—— T=70K
= == T=90K - T=100K
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Figure (3.22): The magnetization (in unit of effective Bohr magneton Wp =5— =

0.87 meV /T for GaAs) against the magnetic field

strength w, (in units of R*) , calcualted at w, = 0.8R*, F = 0 and various temperatures:

T = 1K,50K ,70K, 90K and 100K.
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Figure (3.23): The magnetization (in unit of effective Bohr magneton Wp =5 — =

0.87 meV /T for GaAs) against the magnetic field
strength w. (in units of R*) , calcualted at wy, = 1R*, F =0 and various temperatures:
T = 1K,50K ,70K,90K and 100K.
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£
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Figure (3.24): The magnetization (in unit of effective Bohr magneton HB:;—;‘*:
0.87 meV /T for GaAs) against the magnetic field

strength w, (in units of R*), calculated at: F = 0,
T = 10K and various confinement strengths: w, = 0.5, 0.8, 1R".
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Figures 3.25, 3.26 and 3.27 show the corresponding magnetic susceptibility
(¥) as a function of the magnetic field strength w, at different
temperatures. The Figures show clearly great change in the behavior of the
magnetic susceptibility curves as we increase the confinement strength w,
from 0.5t0 0.8 to 1 R*. In Figure (3.25) it is observed that for lower values
of temperature (T = 1 ,50 K) the magnetic susceptibility of the system is

negative, which means the system is diamagnetic.

On the other hand, for the higher values of the temperature (T =
70,90,100 K) it is found that at a certain value of w, the magnetic
susceptibility (y) of the donor impurity flips its sign from positive to
negative, which means that the system turns from paramagnetic to

diamagnetic.

T=7TOK

15

-
[=]
T

4]
— g

Susceptibliity (x/pz)

Figure (3.25): The magnetic susceptibility (x) (in unit of effective Bohr magneton pp = % =
0.87 meV /T for GaAs) against the magnetic field
strength w. (in units of R*) , calculated at : wy = 0.5 R*, F =0, and various temperatures:
T = 1K,50K ,70K,90K and 100K.
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T=1K ---.- T=50K

T=70K
— = - T=90K - o T=100K

Susceptibllity (x/ps)

Figure (3.26): The magnetic susceptibility (x) (in unit of effective Bohr magneton pp = h

2m*
0.87 meV /T for GaAs) against the magnetic field
strength w. (in units of R*) , calculated at : wy, = 0.8 R*, F =0, and various temperatures:
T = 1K,50K ,70K,90K and 100K.

T=1K ---- - T=50K

T=70K
— — - T=90K - - T=100K

susceptibllity (x/ps)

Figure (3.27): The magnetic susceptibility () (in unit of effective Bohr magneton pp = 2612* =

0.87 meV /T for GaAs) against the magnetic field
strength w, (in units of R*) , calculated at: wy = 1R*, F =0, and various temperatures:
T = 1K, 50K ,70K,90K and 100K.
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In order to understand the dependence of magnetization M upon the electric
field strength, the variation of M as a function of w, at different values of
F is shown in Figure (3.28), it is clear from the figure that the
magnetization decrease with increasingF, furthermore this Figure shows
that the magnetization curve has only negative values, this can attributed to
the effect of the electric field strength on the statistical energy behavior as

shown in figure (3.16)

—— F=0 o F=2.5 KVicm - - - F=5 KVicm

(Magnetization/pg)

0 1 2 3 4
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Figure (3.28): The magnetization (in unit of effective Bohr magneton Mp =5— =

0.87 meV /T for GaAs) against the magnetic field
strength w. (in units of R*), calculated at: T = 10K, wy, = 1.5 R*and various electric
field strength: F = 0,2.5 and 5 kV/cm.

Finally, In order to understand the dependence of magnetic susceptibility
(x) upon the electric field strength F , the variation of y as a function of

w,. at different values of F is shown in Figure (3. 29), it is clear from the
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Figure that as the electric field increases from 0 to 5 kV/cm, the magnetic
susceptibility (y) of the donor impurity flips its sign from negative to
positive, which means that the system turns from diamagnetic to

paramagnetic.

------ F=0 = F=2.5KVicm = - - F=5KVicm
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Figure (3.29): The magnetic susceptibility (x) (in unit of effective Bohr magneton pp = 2612* =
0.87 meV /T for GaAs) against the magnetic field
strength w. (in units of R*) , calculated at: T = 90K, w, = 1.5 R*and various electric
field strength: F = 0,2.5 and 5 kV /cm.
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Chapter Four
Conclusions and Future Work

In conclusion, using the shifted 1/N expansion method, we have studied the
energies and binding energies of an electron bound to an on center impurity
confined in a parabolic two dimensional quantum dot. Then the effects of
externally applied magnetic and electric fields have been investigated for
the ground state and low-lying excited states, our results show that the
donor impurity energy and binding energy depends strongly on the
confinement strength w,, magnetic field strength w., and electric field
strength F. The dependence can be summarized as follows : the donor
impurity energy and binding energy increase with increasing the
confinement strength w,. Moreover, the confinement effects enhance
(reduce) and then the energy and the binding energy increase(decrease)

with increasing external applied magnetic (electric )field.

We have next studied the magnetization and the magnetic susceptibility of
a donor impurity in quantum dot, it has been observed that the effect of the
impurity is to increase the magnetization M. Also, the magnetization and
the magnetic susceptibility were calculated as function of the magnetic
field strength (w,) at different values of the temperature(T), confinement
strength w, and electric field strength F. The computed results allowed us
to study the effect of the confinement strength w, and the temperature
(T) on the behavior of the peaks in the magnetization curves. And then on
the corresponding magnetic susceptibility, it is found that at a certain

values of w., T and F the system turns from paramagnetic to diamagnetic.
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In this work the impurity presence, the confinement strength w, , the
externally applied magnetic and electric fields effects on the energy and
binding energy has been studied. Also the magnetization and the magnetic
susceptibility had been investigated as a magnetic property of the QD
system. The electronic, thermodynamic and magnetic properties of donor
Impurities in quantum dot are very interesting issues duo to their potential
device applications. This hot research topic requires further investigations

in the future.
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Appendix
Shifted 1/N Expansion Method

If Eq.7 expands around (r) one has:

d? k 3x2  4x3 5x* (2-a)
[t (v - 55 +;‘c—2_ =)= (- )
(1 a)(3—-a) 2x 3x? 7‘02_k V! (ro)réx?
+— (1 =7 + 2 )+ 2 (V(1p) +——+
V" (r)rdx3 _
LUIBE )] 6 =22 p(r) (A1)

The Schrodinger equation for one - dimensional anharmonic oscillator is

given as:

2

— 40P’ + € + V()] $(x) = 1 p(x) (A2)
Where the perturbation V (x) is given by:

V(x) = g% (eyx + €3x3) + g(e,x% + €,x*) + g3/2(8,x + 83x3 +

85x°) + g2(6,x% + 8,x* + 6¢x°) (A3)

We can compare Egs. (Al) and (A2) term by term to define all the

anharmonic Parameters in terms of k, Q, r, and the potential derivatives.

Proceeding in a straightforward way we obtain the following

identifications:

_ 215V (1) /2 _ oV (7o) 1/2
w=[3+2] T <[54 )] (A4)
_1 B8
g8=% A=%
kK (2-a) (1-a)(3- )
€=yt V( o) (A5)
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(=), =220, o= 14D
_ 5 rev""(ro) __(-9G-a) _ (1-a)(3-a)
€=51 24Q 01 = > ’ Oy =—7 —
_ —_ Ty
63 =22 —a), 54:_M 55:_3+r0V (ro)’

2 2 120Q

6 _ l TOBV”””(T'())
67 4 7200

For any value of n, (radial quantum number) and for any value of m,, the
energy E (n,, m;) is given by an expression in powers of 1/k (up to third

order) as:

E == E0+E1+E2 + E3

Where
- 1 V(ry)
Ey = kz[ﬁ'l'To]
_k 1), _ 2
El_rg[(nr-l_z)w 2 ]

E, =51 - )3 - a) +{(1+2n,)& + 3&,(1 + 2n, +2n,%)} -

o
= (&, + 6(1 + 2n,)&&; + (11 + 30n, + 30n,%)é3}]
E, = %[{(1 +2n,) 8, + 3(1 + 2n, + 2n,2)8, + 5(3 + 8n, + 61,2 +
4n,3)6}— %{(1 +2n,)é5 +12(1 + 2n, + 2n,2)EE, + 2(21 +
59n, + 51n,2 + 34n,3)éZ + 26,8, + 6(1 + 2n,)é, 85 + 30(1 + 2n, +

2n,2)é 65 + 6(1 + 2n,)é38; + 2(11 + 30n, + 30n,2)é;65 + 10(13 +
40n, + 42n,% + 28n,3)é;8:} + ﬁ{éle”lze”z +36(1 + 2n,)é €,€; +

8(11 + 301, + 30n,2)&,€2 + 24(1 + 2n,)é2E, + 8(31 + 78n, +
78n,2)& E5€, + 12(57 + 189n, + 225n,2 + 150n,%)é2¢,
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+ :—3{851253 + 108(1 + 2n,)E?E2+48(11 + 30n, + 30n,2)E €5 +
30(31 + 109n, + 141n,2 + 94n,3) €3)

Where

~ Ej . )
Ej_a)j/z’ j_a)j/z' = 1,4,5, ... ... J
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