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in GaAs Quantum Dot 
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Abstract 

The effects of magnetic and electric fields on the donor impurity states 

confined in a GaAs two dimensional (2D) parabolic quantum dot has been 

studied. The impurity energy and binding energy of the ground state and 

some low-lying excited states were calculated. The Hamiltonian was solved 

using 1/N expansion method within the effective mass approximation. The 

results had been displayed as a function of physical parameters: 

confinement strength   , magnetic field strength   , and electric field 

strength  . 

In addition, we have studied the magnetic properties of the donor impurity 

in the quantum dot by calculating the magnetization and the magnetic 

susceptibility. The dependence of the magnetization and the magnetic 

susceptibility quantities on temperature, confinement strength   ,  

magnetic field   ,  and electric field strength   were investigated. The 

comparisons show that our results are in very good agreement with 

reported works 
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Chapter One 

Introduction 

1.1 Low Dimensional Systems 

A low dimensional system is one where the motion of electrons is restricted 

from exploring the full three dimensions of our space. There has been great 

interest in low dimensional quant um systems within the last two decades 

for their importance in theoretical physics and practical applications. 

So how are electrons restricted from moving in three dimensions? The 

answer is the quantum confinement effect in the heterostructure       

materials [1]. Quantization effects become very important when at least one 

of the three dimensions of semiconductor structure reduced to a length 

smaller than the Fermi wavelength (generally in the range from 1nm to 

100nm) [2-3]. 

Low-dimensional structures are usually classified according to the number 

of reduced dimensions they have. More precisely, the dimensionality refers 

to the number of degrees of freedom for the particle momentum. Based on 

the confinement direction, a quantum confined structure will be classified 

into four categories as bulk structure, quantum well, quantum wire and 

quantum dot [4].  

In Three-dimensional (3D) structure or bulk structure: charge carriers 

(electrons and holes) act free in the three spatial dimensions. In Two-

dimensional (2D) structure or quantum well: charge carriers are confined in 

one direction, while the carriers are free to move in the other two 
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directions. One-dimensional (1D) structure or quantum wire are formed 

when two dimensions of the system are confined, leading to free movement 

along only one direction. Eventually Zero-dimensional (0D) structure or 

quantum dot confine the charge carriers in all three dimensions [5-6].  

As more number of dimensions are confined, more discrete energy levels 

can be found. The discrete structure of energy levels leads to a discrete 

absorption spectrum, which is in contrast to the continuous absorption 

spectrum of a bulk semiconductor. Density of electron states in bulk, 2D, 

1D and 0D semiconductor structure is shown in Figure (1.1). 0D structures 

have very well defined and quantized energy levels [7].  

 

Figure (1.1): Density of states as function of energy for various confinement Systems: bulk 

materials (3D), quantum well (2D), quantum wire (1D), and quantum dot (0D). 
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1.2 Quantum Dots 

Quantum dots (QDs) were discovered in solids (glass crystals) in 1980, are 

zero dimensional nanostructures made from semiconductor materials (like 

GaAs/AlGaAs), in which charge carriers (electrons and holes) are confined 

in all three spatial dimensions. Due to this confinement the electron states 

are fully quantized into discrete and narrow electronic energy levels [8-10].      

The electronic properties of quantum dots are closely related to their size 

shape and composition. This allows properties such as the band gap, optical 

emission color and absorption spectrum to be highly tunable, as the size 

distribution of quantum dots can be controlled during fabrication. For 

example, the band gap in a quantum dot, which determines the frequency 

range of emitted light, is inversely related to its size [11]. Bigger dots emit 

longer wavelengths like red, while smaller dots emit shorter wavelengths 

like blue. This property suggests the potential for higher performance and 

more efficient light emitting diodes (LEDs), displays, and lasers [12].    

http://www.explainthatstuff.com/glass.html
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Figure (1.2): Example of size-dependent fluorescence spectra of different colors for quantum 

dots [13]. 

Because of the similarity between real atoms and quantum dots, quantum 

dots are often called the artificial atoms. Both have discrete energy levels 

and contain a small number of electrons. Electrons in both real and 

artificial atoms are attracted to a central potential, in a real atom this is a 

positively charged nucleus (coulomb potential). While in artificial atom 

these electrons trapped in a bowl like parabolic potential. 

The number of electrons in QD’s can be controlled by artificial external 

potential whereas in real atoms by ionization. Moreover, the structure of 

real atoms is three–dimensional, while most of the artificial quantum dots 

can be regarded as large 2D atoms, since the lateral dimensions are in 

most cases much larger than the vertical extension. Which mean that the 
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number of electrons needed to fill each shell is different from real atoms. 

Figure (1.3) shows a very schematic comparison of a real three-

dimensional atom and a disk-shaped quantum dot [14]. 

 

Figure (1.3): a schematic comparison of a real three-dimensional atom and a disk-shaped 

quantum dot. 

QDs had been the subject of interest research due to its many important 

applications, from lighting and optical applications to use in quantum 

computing and biological applications. 

QDs are being used for all sorts of applications where the control of 

colored light is important. The easily tunable band gap of quantum dots 

allows for relatively monochromatic light emission with pure and saturated   

color. A thin filter made of quantum dots has been developed so it can fit 

on top of a fluorescent or led lamp particularly for increasing the red 

emission [15]. 
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There is an active interest in the use of quantum dots in computer screens 

and displays because they offer many important advantages, conventional 

LCD use color filters (red, green and blue crystals) that illuminated from 

behind by a very bright backlight this white light passed through color 

filters to create the desired color pixel, since much of the light spectrum is 

absorbed by the filters, energy efficiency is not optimized. In contrast 

quantum dot display use quantum dot instead of these filters these quantum 

dots can be tuned to give the light of any color of the spectrum so the 

colors of a quantum dot display are likely to be much more realistic, 

moreover, quantum dots produce light themselves so they need no 

backlight making them much more energy efficient. Finally, quantum dot is 

much smaller than liquid crystals so they would give a much higher 

resolution image [16]. 

1.3 Literature survey 

The study of impurities in semiconductor quantum dots (QDs) has attracted 

much attention in recent years, because of the fact that their presence can 

dramatically affect the performance of semiconductor devices and their 

electrical, optical and transport properties. 

The investigations of impurity states in semiconductor nanostructures can 

date back to the early 1980s by Bastard [17]. In spite of growing interest in 

the topic of impurity doping in nanocrystallites, A great number of 

theoretical and experimental works have been devoted for understanding 

the energy levels of donor impurities in low dimensional semiconductor 
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QDs [18-21], for example Kostic and Stojanovic have investigated the 

states of a center donor impurity in a spherical CdTe/ZnTe QD using a 

spherically confining potential of finite depth [22]. 

The binding energy of donor impurities in QD’s depends on materials, 

geometry, size, and shape. The impurity binding energy may strongly 

depend on the position of the impurity along the heterostructures as well as 

on the typical dimensions of the heterostructures. In particular, Perez-

Merchancano et al. [23] and Zhu et al. [24] made the first studies about the 

confinement effects on the impurity states in QDs. They calculated binding 

energies for the ground and excited states as a function of dot size and the 

impurity position. Xie [25] and Zhu et al. [26] have investigated the 

binding energy of hydrogenic donor impurity in a parabolic quantum dot 

using diagonalization method. 

Calculations of the binding energy of an on-center and off-center shallow 

hydrogenic impurity in a GaAs quantum dot under hydrostatic pressure 

were carried out in 2007 by Perez-Merchancano and Bolivar-Marinez using 

variational approach [27]. 

As the state of charge carrier's change in the presence of hydrogenic 

impurity, it also changes in the presence of electric and magnetic fields. 

External fields are effective tools for studying the properties of impurities 

in semiconductor QD’s. The effects of an applied magnetic and electric 

fields of arbitrary strength on the energy and binding energy of donor 

impurity in a quantum dot had been studied by many authors using 
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different computational approaches [28-31].  Elsaid had used 1/N 

expansion method to calculate the energy states of an electron bound to the 

donor impurity in the presence of a magnetic field of arbitrary strength 

[32].  

The combination effects of the electric and magnetic fields on the binding 

energy of an on-center donor impurity in disc-shaped GaAs/Al0.3Ga0.7As 

quantum dots was studied by Zaiping Zeng et al in 2014 [33].    

In 2004 John Peter and coworkers have used a variational method for the 

calculations of the electric and magnetic fields on the binding energies of 

hydrogenic donors in a parabolic diluted magnetic semiconductor QD [34]. 

Rezaei and kish had applied the direct matrix diagonalization method to 

study the electric and magnetic field effects on a hydrogenic donor 

impurity confined in a 2D parabolic quantum dot [35].  

 Boda and Chatterjee studied the transition energies and magnetic 

properties of a neutral donor complex in a Gaussian GaAs QD in the 

presence of an external magnetic field in 2016[36]. 

The binding energies of the ground state of a hydrogenic impurity in a 

GaAs QD dots subjected to external electric and magnetic fields have been 

calculated by Zhang Hong, Zhai Li-Xue, Wang Xue, Zhang Chun-Yuan 

and Liu Jian-Jun using the finite-difference method [37]. 

J-H Yuan et al. investigated theoretically the low-lying states and optical 

absorption properties of a hydrogenic impurity in a parabolic QD 
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modulation by the applied electric field. Bzour searched in the effects of 

hydrostatic pressure and temperature on the properties of the GaAs single 

QD in an external magnetic field with the help of exact diagonalization 

technique [39]. In 2015 Shaer studied the heat capacity of two electrons 

QD in an external magnetic field by using variational method [40]. Very 

recently, Elsaid et al. had used variational and exact diagonalization 

methods to study the electronic, thermodynamic and magnetic properties of 

single and coupled QDs [41-46]. 

1.4 Research Objectives 

 This work has two main objectives, which can be summarized as follows; 

1- We have employed the shifted 1/N expansion method to solve the QD 

Hamiltonian and then to obtain the energies (eigenvalues) of the donor 

impurity in a parabolic confinement in an external electric and magnetic 

field of arbitrary strength. The complete energy spectra of the system were 

calculated as a function of magnetic field strength (  ), confinement 

strength (  )  and electric field strength ( )  

2- We have used the computed (eigenenergies) to calculate the magnetic 

properties of the donor impurity like the magnetization ( ) and the 

magnetic susceptibility ( ) quantities. 
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1.4 Thesis Layout. 

In this work, the donor impurity energy and binding energy for the ground 

state and low-lying excited states of GaAs quantum heterostructure had 

been calculated as a function of the confinement strength      magnetic 

field strength   , and electric field strength    The shifted  1/N expansion 

method has been used to solve the QD Hamiltonian to obtain the 

eigenvalues. Then, the magnetization and the magnetic susceptibility had 

been investigated as a magnetic property of the QD system, the 

magnetization and the magnetic susceptibility were calculated as a function 

of the magnetic field strength    at different values of the temperature  , 

confinement strength    and electric field strength  . 

The rest of this thesis is organized as follows: the donor impurity 

Hamiltonian, the principle of shifted 1/N expansion technique and how to 

calculate the magnetization and the magnetic susceptibility from the 

statistical energy expressions are presented in chapter two, in chapter three 

the results of energy, binding energy, magnetization and magnetic 

susceptibility has been displayed and discussed. The final chapter devoted 

to conclusions and future work. 
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Chapter Two 

Theory 

The  model  and  the  method   used  for  our  calculations  will be  

discussed in  details  in  this  chapter. So the three main parts are: quantum 

dot Hamiltonian, the shifted 1/N expansion method, and the magnetic 

properties of the donor impurity in the quantum dot. 

2.1 Donor Impurity Hamiltonian  

Our    model    consists   of  a   system    of  one  electron   with effective 

mass  (  ) and charge ( ), moving  in  a two dimensional   (2D) parabolic  

quantum  dot (PQD) (like a disc) under  the  effects of   external uniform   

electric  and    magnetic fields,  in the presence  of a  center  donor   

impurity. The Hamiltonian of the impurity in a parabolic QD is given as: 

 ̂ = 
 

    
( ⃗⃗  

 

 
 ⃗⃗ )    

  

   
     +  ( )                                                      (1)  

  ⃗⃗⃗   refers to the electron momentum operator corresponding to   the electron 

position coordinate   (   ).   ⃗⃗  ⃗  is the magnetic vector potential which is 

related   to the applied   magnetic  field  ⃗⃗  by   ⃗⃗ = ∇ x  ⃗⃗   The vector 

potential  is chosen to be  in the symmetric gauge as   ⃗⃗ =  
 

 
(-y, x, 0), B is 

assumed  to  be   uniform and normal to the 2D QD plane along the z- 

axis.     represented the  dielectric  constant  of  GaAs quantum dot,  c   is  

the speed of light,  and      is   the   strength   of   the   electric   field   in   

the radial direction. 
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Finally,    ( )  is the confining potential:  

  ( ) = 
 

  
    

                                                                                         (2)                        

In which      is the strength of the confinement potential frequency. 

Now, the Hamiltonian of the   system Eq. (1) is: 

 ̂= 
 

    
0  ⃗⃗   ⃗⃗  

  

   ⃗⃗   ⃗⃗  
  

 
 ⃗⃗   ⃗⃗ 1   

  

   
        

 

  
    

                                 

 ̂ = 
 

    
0    ∇  

  

  

    

 
 

  

 

 

 
(       )1   

  

   
       

 

  
    

              

 ̂ = 
   

    
   

 

  
    

    
 

  
       

  

   
        

 

  
    

                               

 ̂ = 
   

    
    

 

  
       

  

  
    

  

   
   F                                         (3) 

   symbolized the orbital angular momentum for the electron along the z-

direction with eigenvalue    ,              is the magnetic quantum 

number. 

   = (  
  

  
 

 
 )

 

   is the effective frequency depends on both the magnetic 

field cyclotron frequency  (   
  

   
), also on the confinement 

frequency    . 

Throughout this work we will use the effective Rydberg   
 = 

    

      as the 

unit of energy and the effective Bohr radius   
  =  

   

      as the unit of 

length. In these dimensionless effective units the Hamiltonian assumes the 

form: 

 ̂ =     
 

 
     

   

  
   

 

   
                                                          (4) 
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We have applied the shifted 1/N expansion technique to solve the above 

Hamiltonian Eq. (4) and obtained the eigenenergies. 

 2.2 Shifted 1/N Expansion Method 

The shifted 1/N expansion method is a powerful technique to solve 

Schrodinger equation    for spherically symmetric potential V(r); it 

produces exact results for the harmonic oscillator and for the Coulomb 

potential cases. 

The technique is quite simple and it gives an accurate result. Its starts by 

writing radial Schrodinger equation in N spatial dimensions as: 

 [-  (
  

    + 
     

 
 
 

  
 ) + 

 (     )

  +V(r)]  ( ) = E  ( )                                (5)   

Where     

V(r) =  
 

  
 

 

 
     

  

  
     F                                                         (6) 

 (     ) is the eigenvalue of the square of the orbital angular 

momentum operator in   dimension space and     |  |. 

The main idea of the shifted   ⁄  expansion method is to rewrite Eq. (5) by 

using a parameter           and a suitable shift parameter  . 

In terms of the shifted variable,  ̅       one has: 

 [- 
  

    + ̅
 ( 

  ,  (   )  ̅⁄ -,  (   )  ̅⁄ -

     + 
 ( )

 
 )]  ( ) = E  ( )                      (7) 
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Where Q is a scaling constant to be determined later. For large  ̅, the main 

contribution to the energy   comes from the effective potential, and the 

kinetic energy becomes negligible.  

     
 

    
 ( )

 
                                                                                           (8) 

 ( ) is supposed to be well behaved so that       has a minimum    given 

by the relationship: 

   
   (  )=                                                                                                 (9) 

It is appropriate to shift the origin of coordinates to the position of the 

minimum (  ) of the effective potential (    )  by defining a new 

variable  . 

  
 ̅  ⁄

  
(    )                                                                                       (10) 

If Eq. (7) expands around     (                ) an analytical equation 

similar to the Schrodinger equation of the one dimensional anharmonic 

oscillator is found. So it is easy to compare the coefficients of both 

equations to define all the anharmonic oscillator parameters in terms of   ̅, 

Q,    and the potential derivatives in order to obtain the energy spectrum. 

(See Appendix) 

For any value of    (radial quantum number) and for any value of    the 

energy   (   ,   ) is given by an expression in powers of    ̅⁄  (up to third 

order) as: 

    +  +                                                                                      (11)  
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Where      ,          are given in Appendix. 

The shift parameter   is chosen so as to make    vanishes. So, 

    (   +1)                                                                                    (12) 

  is the anharmonic oscillator frequency given in Appendix. (Equation 

A.4).  

The constant   chosen such as to make Eqs. (5) and (7) equals. This 

means: 

  ̅  √                                                                                                    (13)   

By using Eqs. (9), (equation A.4), and (12), an equation for determining the 

root (  ) is given below: 

 (   
   (  ))

  ⁄
        (     ) 0  

   
  (  )

  (  )
1
  ⁄

                (14) 

With this value of    , one can determine  ,   and every identified 

parameters, which completes all necessary steps to compute the energy 

eigenvalues of   ( ). 

By substituting the applied potential  ( ) in Eqs. (9), (14), (Equation A4) 

we get:  

           
      

                                                                          (15) 

*        
      

 +  ⁄  

       (     ) {  
(    

 ⁄        )

 (   
 ⁄       ⁄   )

 }
  ⁄

                                  (16)    

 =(  
(    

 ⁄   ̅    )⁄

 (   
 ⁄   ̅    ⁄ )

 )  ⁄                                                                       (17) 



16 

One can calculate the binding energy (  ) of a hydrogenic donor impurity 

as: 

                                                                                                   (18) 

    The eigenvalue of the system without hydrogenic impurity. 

  : The eigenvalue of the system with hydrogenic impurity. 

2.3 The Magnetic Properties of the Quantum Dot. 

The Magnetization (M) of donor impurity can be calculated by 

differentiating the average statistical energy of the 2D QD system with 

respect to the magnetic field strength  . 

 (        )   
    

  
                                                                          (19)                                                 

Where   <E> = ∑
      ( )    ⁄

    ( )    ⁄

 

   
                                                          (20)  

By substituting Eq.(20) in Eq.(19), we can express the magnetization ( ) 

in a common standard from as:  

  (        )    
∑

   ( )

  
      ( )    ⁄

 

   
    

 ∑     ( )    ⁄
 

   
   

                                             (21) 

The magnetic susceptibility ( ), in the presence of the donor impurity, can 

be obtained by differentiating the magnetization( ) with respect to the 

magnetic field strength  : 

    
  

  
                                                                                                     (22)                                                             
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Chapter Three 

Results and Discussions 

In this chapter we will discuss our computed numerical results for a single 

donor impurity located at the center of a GaAs two dimensional quantum 

dot, confined by a parabolic potential of strength    , under the effect of an 

applied uniform magnetic field of strength     in addition to a uniform 

electric field of strength  . 

The physical parameters used for GaAs medium in numerical computations 

are: the effective mass of an electron (          ), the dielectric 

constant of the material (  =12.5), and the effective Rydberg               

(           ). 

3.1 Energy Spectra 

In the first stage of our present computational task, we have calculated the 

ground state energy for the donor impurity of GaAs/AlGaAs QD at various 

magnetic field values and for two values of the confinement frequency 

strength     in the reason of comparison, namely     =5.412    and 

               for zero electric field case. The accuracy of our obtained 

results is compared with previous reported work [32] as shown in Table 

(3.1). The comparison obviously shows excellent agreement between both 

works. 
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Table (3.1): The ground-state energies (              ) at different 

values of the magnetic field strength (   ) and for different values of 

      calculated by 1/N expansion method, compared with the reported 

work Ref [32]. 

     =5.412         =3.044     

    

(  ) 

E(present work) (  ) E(Ref[32])

(  ) 

E(present work) 

(  ) 

E(Ref[32]) 

 

(  ) 

2 -2.1197 -2.15          -3.29 

4 -1.9704 -2.00         -3.11 

6 -1.7343 -1.76         -2.80 

10 -1.0454 -1.06         -1.92 

18 0.9457 0.93        0.28 

20 1.5272 1.52        0.91 

In Figure (3.1) we have shown the effect of the confinement potential 

frequency      on the ground state energy of donor impurity for zero 

electric and magnetic fields. It is clearly seen that: as the confinement 

strength     increases, the ground state energy increases also due to the 

confinement enhancement. 

 

Figure (3.1): The donor impurity ground state energy (              ) as a function    of 

confinement frequency(   )  for zero electric and magnetic fields. 
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In Figure (3.2) we display the ground state energy as a function of the 

confinement  strength      the solid line indicates the absence of the 

impurity, and the dashed one indicates the presence of the impurity. The 

Figure shows a reduction in the energy of the electron because the donor 

impurity lowers the energy of the heterostructure due to its negative 

coulomb attraction. 

 

Figure (3.2): The ground state energy of the heterostructure (              ) as a function    of 

confinement strength     , for zero electric and magnetic fields. 

In Figure (3.3) we have shown the energy of low-lying excited states as a 

function of the confinement strength     in the presence of the donor 

impurity, and for zero electric and magnetic fields. As Figure (3.3) clearly 

shows, the donor impurity energy of these states increases as     increases 
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similar to the behavior of the donor impurity energy in the ground state 

(Figure 3.1). 

 

Figure (3.3): The energy for low-lying excited states of the impurity (              ) as a 

function of the confinement strength     , for zero electric and magnetic fields. 

Figure (3.4) shows the dependence of the ground state binding energy of 

the impurity on the confinement strength   , for zero electric and magnetic 

fields.  As the Figure clearly shows, the binding energy (BE) increases as 

     increases, since the electron becoming more confined toward the 

center of the quantum dot where the donor impurity resides (coulomb term 

increases). 
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Figure (3.4): The binding energy for the ground state of the impurity (              ) as the 

function the of confinement frequency     for zero electric and magnetic fields. 

In addition, we have shown the dependence of the binding energy on the 

confinement strength     for low-lying excited states as shown in Figure 

(3.5), in the presence of donor impurity and for zero electric and magnetic 

fields.  As the Figure clearly shows, the binding energy (BE) increases 

as      increases, similar to the behavior of the donor impurity binding 

energy in the ground state (Figure 3.4). 
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Figure (3.5): The binding energy of the impurity for low-lying excited states (              ) 

as a function of the confinement strength       for zero electric and magnetic fields. 

3.2 Electric and Magnetic Fields Effects on the Donor Impurity Energy 

and Binding Energy 

  In this section, we display the effects of external electric and magnetic 

fields on the energy and the binding energy for the ground state and low-

lying excited states of a donor impurity confined in a GaAs two 

dimensional PQD. 

 The dependence of the ground state energy and binding energy of the 

donor impurity on the magnetic field strength (   ) for different values of 

confinement strength (   ) are presented  in Figure (3.6) for the energy, 

and Figure (3.7) for the  binding energy, for zero electric field case. It is 

obvious that both the energy and the binding energy for the ground state of 
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the impurity increase with the magnetic field because of the increasing 

compression of the wave function with the magnetic field. 

 

Figure (3.6): The energy for the ground state of the impurity  (              )  as a function  of 

magnetic field of strength       for three different quantum confinements, and zero electric field. 

Figure (3.7): The binding energy for the ground state of the impurity (              ) as a 

function of magnetic field of strength       for three different quantum confinements, for zero 

electric field. 
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In Figure (3.8) the dependence of the impurity energy on the magnetic field 

for excited states are presented in the absence of the electric field. It is 

interesting to note that the degeneracy of the states is removed by applying 

magnetic field, the energy of    ≠0 states is affected not only by the 

diminished area of localization due to the growth of       , but also due to 

the addition of  the positive or negative (for   = ±1, ± 2, ±3) energy of 

azimuthal motion of the electron in the magnetic field ( 
  

  
   ). 

 

Figure (3.8): The energy for low-lying excited states of the impurity (              ) as a 

function of the magnetic field of strength      for           and zero electric field. 
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Figure (3.9) and (3.10) show the effect of the electric field on the energy 

and the binding energy for the ground state of the donor impurity 

respectively. It is clearly seen that both the energy and the binding energy 

of the donor impurity decrease with the increase of the electric field( ). 

With the increase of the electric field, the coulomb potential is more and 

more weak because of the change of the distribution of the electronic 

probability density (Increasing the electric field causes the weaker 

confinement of carriers in the QD. This lead to lower the value of energy). 

 

Figure (3.9): The energy for the ground state of the impurity (              ) as a function of 

the electric field   calculated for various values of                    
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Figure (3.10): The ground state binding energy of the donor impurity (              ) as a 

function of the electric field   for various values of      and          . 

Next, we have calculated the average statistical energy of the QD as 

shown in Figure (3.11) and Figure (3.12). These Figures show the 

dependence of the average statistical energy       on the magnetic field 

strength    , for different values of temperature( ), namely       

and       , respectively. The solid line indicates the absence of the 

impurity, and the dashed one indicates the presence of the impurity, it is 

clear from the Figures that the effect of the impurity is to decrease the 

average statistical energy       of the system. The presence of donor 

impurity lowers the energy of the heterostructure due to its negative 

coulomb attraction. 
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Figure (3.11): The average statistical energy < E > (              ) as a function of the 

magnetic field of strength      calculated at:                  and zero electric field. 

 

Figure (3.12): The average statistical energy < E > (              ) as a function of the 

magnetic field of strength      calculated at:                   and zero electric field. 

(The inset figure explains the variation of < E > of the system with impurity using small step in 

energy). 
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Figure (3.13) describes the average statistical energy against the magnetic 

field for PQD. By focusing on the Figure obtained we can see that at higher 

temperature (              ) the energy decreases as the magnetic 

field increases, this behavior continues up to a certain value of   , then the 

energy starts increasing as the magnetic field increases. On the other hand, 

in the region of low temperatures (       ) the energy increases as the 

magnetic field increases for all values of      

As the temperature increases, from 1K to 100 K, the average statistical 

energy curve of the QD shows a great enhancement. This behavior is due to 

the significant increment in the thermal and the confinement energy 

contributions. 

Figures (3.13, 3.14 and 3.15) show the effect of the confinement frequency 

    on the behavior of the curve of the statistical energy       against the 

magnetic field strength     at different temperatures. The Figures show 

clearly a change in the behaviors of the statistical energy curves as we 

increase the confinement frequency     from: 0.5 to1    . 
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Figure (3.13): The average statistical energy < E > as the function of magnetic field      

calculated at      =0.5          and   various temperatures: 

                            

 

Figure (3.14): The average statistical energy < E > as the function of  magnetic field      

calculated at      =0.8     ,     and   various 

temperatures                             
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Figure (3.15): The average statistical energy < E > as the function of  magnetic field      

calculated at      =1     , F=0 and   various temperatures:                               

We plotted in Figure (3.16) the average statistical energy < E > against the 

magnetic field strength      at different values of electric field  . 

Calculated at:       and           . The Figure shows obviously that 

the statistical energy increases as the magnetic field increases for all values 

of      Moreover, it can be seen that as the electric field decreases, from 

5kV/cm to 0, the average statistical energy curve of the QD shows a great 

enhancement.  
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Figure (3.16): The average statistical energy < E> as a function of magnetic field       

calculated at      =1.5     and various electric field strength             kV/cm and T = 10k. 

3.3 Magnetic Properties of the Donor Impurity in Quantum Dot 

The second stage in our work is the calculation of the magnetization( ), 

and the magnetic susceptibility ( ) of a QD as a function of various 

parameters (               ). 

To  study  the effect of the presence of  donor impurity on the 

magnetization  , Figures (3.17) and (3.18)  show the dependence of the 

magnetization   upon the magnetic field strength     , for two values of  

temperature ( ), namely       and          respectively. It is clear 

from the Figures that the effect of the impurity is to increase the 

magnetization  . This is due to the effect of the  impurity  on the statistical 

energy behavior as shown in Figures (3.11) and (3.12). For high 

temperature       , the magnetization in the presence of donor 
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impurity consequently increases, reaching a peak value then it starts 

decreasing, while at low temperature      , the magnetization 

decreases for all values of     , this explain the corresponding magnetic 

susceptibility ( ) behavior  shown in Figures (3.19) and (3.20) for T=10k 

and T=80k, respectively. It is observed that when          the magnetic 

susceptibility of the system is negative, which means the system is 

diamagnetic. On the other hand, for the case         it is found that at a 

certain value of     the system turns from diamagnetic to paramagnetic. 

 

Figure (3.17): The magnetization (in unit of effective Bohr magneton      
  

    

         ⁄    for GaAs) against the magnetic field 

strength   (             
 ),                              and       .  
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Figure (3.18): The magnetization (in unit of effective Bohr magneton      
  

    

         ⁄    for GaAs) against the magnetic field strength 

   (             
 ),                              and       .  

 

Figure (3.19): The magnetic susceptibility ( ) (in unit of effective Bohr magneto    
  

    

         ⁄   for GaAs) against the magnetic field 

strength    (             
 )                            and      .  
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Figure (3.20): The magnetic susceptibility ( ) (in unit of effective Bohr magneto    
  

    

         ⁄   for GaAs) against the magnetic field 

strength    (             
 )                            and       .  

The variation of the magnetization   in the presence of donor impurity as a 

function of     at various values of   is shown in Figure (3.21), for fixed 

value of confinement strength      and zero electric field. One can  observe 

from the Figure that as the magnetic field    is increased, the 

magnetization   consequently increases, reaching a peak value then it 

starts decreasing. Also, the effect of the temperature on the magnetization 

curve is very significant. As the temperature decreases, the peak value in 

the magnetization curve decreases and becomes flat for fixed value of      

and  . At a high temperature the thermal energy (Eth=KBT) becomes very 

significant and in this case it affects greatly the average statistical energy 



35 

behavior of the system as shown in Figure (3.13). This leads to a linear 

increase in the magnetization curve against the magnetic field strength    .  

Figure (3.21): The magnetization (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                               and various temperatures: 

                            

In addition, the effect of the confinement frequency      on the 

magnetization was also studied by taking different     values, for example: 

(   =0.8   ) as in Figure (3.22) and (   =1  ) as in Figure (3.23). By 

looking at the three Figures (3.21, 3.22 and 3.23), we can notice the effect 

of changing the confinement frequency      on the behavior of the 

magnetization curve at different temperatures. At higher temperatures when 

the confinement frequency       increased, the peaks shifted to the left, 
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towards a lower magnetic field strength and their values decrease and 

become flat. This is due to the effect of the confinement frequency      on 

the statistical energy behavior as shown in Figures: (3.13, 3.14 and 3.15). 

But at low temperatures the magnetization increase with a relative small 

amount as the confinement frequency     increases as seen in Figure 

(3.24). 

 

Figure (3.22): The magnetization (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                               and various temperatures: 
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Figure (3.23): The magnetization (in unit of  effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                             and various temperatures: 

                            

 

Figure (3.24): The magnetization (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength     (             
 )                   , 

       and                                              . 
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Figures 3.25, 3.26 and 3.27 show the corresponding magnetic susceptibility 

( ) as a function of the magnetic field strength       at different 

temperatures. The Figures show clearly great change in the behavior of the 

magnetic susceptibility curves as we increase the confinement strength      

from 0.5 to 0.8 to 1   . In Figure (3.25) it is observed that for lower values 

of temperature (          ) the magnetic susceptibility of the system is 

negative, which means the system is diamagnetic.  

On the other hand, for the higher values of the temperature (  

             ) it is found that at a certain value of     the magnetic 

susceptibility ( ) of the donor impurity flips its sign from positive to 

negative, which means that the system turns from paramagnetic to 

diamagnetic.  

 

Figure (3.25): The magnetic susceptibility ( ) (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                            0, and various temperatures: 
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Figure (3.26): The magnetic susceptibility ( ) (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                             0, and various temperatures: 

                            

 

Figure (3.27): The magnetic susceptibility ( ) (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                           0, and various temperatures: 

                            



41 

In order to understand the dependence of magnetization   upon the electric 

field strength, the variation of   as a function of       at different values of  

  is shown in Figure (3.28), it is clear from the figure that the 

magnetization decrease with increasing , furthermore this Figure shows 

that the magnetization curve has only negative values, this can attributed to 

the effect of the electric field strength on the statistical energy behavior as 

shown in figure (3.16)   

Figure (3.28): The magnetization (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength       (             
 ) ,                                   and various electric 

field strength                        . 

Finally, In order to understand the dependence of magnetic susceptibility 

( ) upon the electric field strength     , the variation of   as a function of 

   at different values of    is shown in Figure (3. 29), it is clear from the 
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Figure that as the electric field increases from 0 to 5 kV/cm, the magnetic 

susceptibility ( ) of the donor impurity flips its sign from negative to 

positive, which means that the system turns from diamagnetic to 

paramagnetic. 

Figure (3.29): The magnetic susceptibility ( ) (in unit of effective Bohr magneton    
  

    

         ⁄   for GaAs) against the magnetic field 

strength      (             
 )  ,                                    and various electric 

field strength                        . 
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Chapter Four 

Conclusions and Future Work 

In conclusion, using the shifted 1/N expansion method, we have studied the 

energies and binding energies of an electron bound to an on center impurity 

confined in a parabolic two dimensional quantum dot. Then the effects of 

externally applied magnetic and electric fields have been investigated for 

the ground state and low-lying excited states, our results show that the 

donor impurity energy and binding energy depends strongly on the 

confinement strength   , magnetic field strength   , and electric field 

strength  . The dependence can be summarized as follows : the donor 

impurity energy and binding energy increase with increasing the 

confinement strength   . Moreover, the confinement effects enhance 

(reduce) and then the energy and the binding energy increase(decrease) 

with increasing external applied magnetic (electric )field. 

We have next studied the magnetization and the magnetic susceptibility of 

a donor impurity in quantum dot, it has been observed that the effect of the 

impurity is to increase the magnetization  . Also, the magnetization and 

the magnetic susceptibility were calculated as function of the magnetic 

field strength (  ) at different values of the temperature( ), confinement 

strength    and electric field strength  . The computed results allowed us 

to study the effect of the confinement strength    and the temperature 

( ) on the behavior of the peaks in the magnetization curves. And then on 

the corresponding magnetic susceptibility,  it is found that at a certain 

values of     ,   and    the system turns from paramagnetic to diamagnetic. 
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In this work the impurity presence, the confinement strength    , the 

externally applied magnetic and electric fields effects on the energy and 

binding energy has been studied. Also the magnetization and the magnetic 

susceptibility had been investigated as a magnetic property of the QD 

system. The electronic, thermodynamic and magnetic properties of donor 

impurities in quantum dot are very interesting issues duo to their potential 

device applications. This hot research topic requires further investigations 

in the future. 
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Appendix 

Shifted 1/N Expansion Method 

If Eq.7 expands around (  ) one has: 
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The Schrodinger equation for one - dimensional anharmonic oscillator is 

given as: 
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Where the perturbation  ( ) is given by: 
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We can compare Eqs. (A1) and (A2) term by term to define all the 

anharmonic Parameters in terms of    ̅, Q,    and the potential derivatives. 

Proceeding in a straightforward way we obtain the following 

identifications: 
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For any value of    (radial quantum number) and for any value of      the 

energy   (   ,   ) is given by an expression in powers of    ̅⁄  (up to third 

order) as: 
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في نقطو كميو مصنوعو  المانحةسي والكيربائي عمى مستويات الشوائب تأثير المجالين المغناطي
 GaAsمن ماده 

 إعداد
 اسماء زىير مدحت ياسين

 إشراف
 أ.د. محمد السعيد
 د. موسى الحسن

 الممخص

في ىذا العمل تم حساب طاقو المستوى الارضي وبعض المستويات العموية لمشوائب المانحة 
تحت تأثير كل من المجالين المغناطيسي  GaAs من مادهالمحصورة في نقطو كميو مصنوعو 

, بالإضافة الى حساب طاقو (N/1)والكيربائي, وذلك عن طريق حل دالة ىاممتون بطريقة مفكوك 
الربط لتمك المستويات. لقد قمنا بدراسة التأثير المشترك  لممجال الكيربائي والمغناطيسي عمى طاقو 

نت النتيجة بانو مع زياده شده المجال المغناطيسي فان طاقو المستويات وعمى طاقو الربط, وكا
المستويات وكذلك طاقو الربط تزداد, اما بالنسبة لممجال الكيربائي فان الطاقة وطاقو الربط لتمك 
المستويات تقل. وفيما بعد قمنا بدراسة الخصائص المغناطيسية لتمك النقطة الكميو من خلال 

ميو التمغنط  وتم فحص اعتماد كمية التمغنط وقابميو التمغنط عمى كل دراستنا لمتمغنط وكذلك قاب
ارة والمجال المغناطيسي وجيد الحصر والمجال الكيربائي, اظيرت ر من المتغيرات التالية: درجة الح

المقارنات المعروضة في الاطروحة تطابقا كبيرا بين النتائج التي حصمنا عمييا مع الاعمال 
 المنشورة.
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