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A Comparison Study of the Regularization Parameter Estimation 

Methods for the EEG Inverse Problem   

By 

Mohammed Jamil Aburidi 

Supervisor 

Dr. Adnan Salman  

Abstract 

Investigation of the functional neuronal activity in the human brain 

depends on the localization of Electroencephalographic (EEG) signals to 

their cortex sources, which requires solving the source localization inverse 

problem. The problem is ill-conditioned and under-determinate, and so it is 

ill-posed. To find a treatment of the ill-posed nature of the problem, a 

regularization scheme must be applied. A crucial issue in the application of 

any regularization scheme, in any domain, is the optimal selection of the 

regularization parameter. The selected regularization parameter has to find 

an optimal tradeoff between the data fitting term and the amount of 

regularization. 

Several methods exist for finding an optimal estimate of the regularization 

parameter of the ill-posed problems in general. In this thesis, we 

investigated three popular methods and applied them to the source 

localization problem. These methods are: L-curve, Normalized Cumulative 

Periodogram (NCP), and the Generalized-Cross Validation (GCV). Then 

we compared the performance of these methods in terms of accuracy and 
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reliability. We opted the WMNE algorithm to solve the EEG inverse 

problem with the application of different noise levels and different 

simulated source generators. The forward solution, which maps the current 

source generators inside the brain to scalp potential, was computed using 

an efficient accurate Finite Difference Method (FDM) forward solver. Our 

results indicate that NCP method gives the best estimation for the 

regularization parameter in general. However, for some levels of noise, 

GCV method has similar performance. In contrast, both NCP and GCV 

methods outperforms the L-curve method and resulted in a better average 

localization error.  

Moreover, we compared the performance of two inverse solver algorithms, 

eLORETA and sLORETA. Our results indicate that eLORETA outperform 

sLORETA in all localization error measures that we used, which includes, 

the center of gravity and the spatial spreading.  
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Chapter One 

Introduction 

1.1 Source Localization Problem 

In neuroscience, the accuracy of brain imaging techniques like 

electroencephalography (EEG) (Grechet al, 2008) and 

magnetoencephalography (MEG) (Uitertet al, 2003), require solving, what 

is called, the source localization problem. The source localization problem 

is the problem of inferring an estimate of the brain current sources that 

generates the electric potentials on the scalp and the magnetic field near the 

scalp. These fields are measured using recording sensors technologies 

(Tucker, 1993).Electromagnetic-based (EM) imaging techniques like EEG 

and MEG provide direct measurement of the neural activity in the range of 

milliseconds temporal resolution. However, due to the ill-posed nature of 

the neuroscience source localization problem and the volume conduction 

characteristics of the human head, the spatial resolution is limited to few 

centimeters. In contrast, indirect imaging modality such as functional 

Magnetic Resonance Imaging (fMRI) (Liu et al, 1998) and Positron 

Imaging Tomography (PET) (Cherry et al, 1996), provide indirect 

measurements of brain spatiotemporal activity in the range of seconds 

temporal resolution and millimeter spatial resolution. Therefore, improving 

the spatial resolution of EM based imaging will allow achieving a high 

spatiotemporal brain functional imaging. 
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Two approaches are used in solving the source localization problem: 1) the 

equivalent dipole model, and 2) the distributed dipole model. The 

equivalent dipole model is based on the assumption that the scalp EEG 

signal is generated by one or few current dipoles, whose locations and 

moments are to be determined using a nonlinear search algorithm (Fender, 

1987 and Scherg et. al, 1985). The drawback of this approach is the 

required specification of the number of dipoles. Underestimating them 

causes biased results by the missing dipoles. Overestimating them, causes 

the dipoles to fit any data. In the distributed model approach, the primary 

current sources are assumed to be current dipoles distributed inside the 

brain. The number of dipoles must be large enough (~2,000 - 10,000)to 

cover the cortex with an optimal resolution. Then, the potentials due to 

these dipoles at the scalp electrodes is computed using the forward solver 

of Poisson equation to obtain a lead field matrix (LFM), which provide the 

linear relationship between the current dipoles and the potentials at the 

scalp electrodes, 𝛷 =  𝐾𝐽 +  𝜖. Then, the goal of the source localization 

problem is to invert the forward equation to find an estimate of the current 

sources J, given the LFM K and scalp measurements Φ𝐸𝐸𝐺.  

However, since the LFM K is 1) ill-condition (has high condition number), 

which causes a highly-sensitive solutions to noise and 2) underdetermined, 

where the number of dipoles (columns) is much higher than the number of 

electrodes (rows), which means the solution is not unique and there is an 

infinitely many solutions that would explain a given EEG signal. One 

approach to find a unique and stable solution is to apply a regularization 
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scheme. In this approach the inverse solution is approximated by a family 

of stable solutions. However, these regularization schemes involve a 

regularization parameter 𝛼 that controls a tradeoff between the stability of 

the solution and the goodness of the fit to the data. Overestimating  𝛼 , 

results in a stable solution, but bad fit to the data. Underestimating  𝛼 , 

causes a good fit to the data, but unstable solution. Therefore, tuning and 

finding the optimal value of𝛼 is crucial to the quality and stability of the 

solution. In the literature, there exist several methods for tuning the 

regularization parameter includes: L-curve (Hansen, 1993 and Hansen, 

1994), Normalized Cumulative Periodogram (NCP) (Hansen, 2006 and 

Hansen, 2007), and the Generalized-Cross Validation (GCV) (Wahba, 1977 

andGolub, 1979). However, the quality of each method is likely depends on 

the characteristic of the particular inverse problem. In this thesis, we 

investigated the quality of these methods in tuning the regularization 

parameter for neuroscience source localization problem. We compared 

their performance and the quality of the inverse solution using three 

measures of error, localization error, center of gravity, and spatial 

spreading.   

1.2 Previous Studies 

Non-invasive brain imaging techniques such as MEG, EEG, fMRI and PET 

allow researchers and physicians to explore the brain functional activities 

and problems without invasive neurosurgery. These techniques has many 

important applications in several domains including cognitive neuroscience 
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(Srinivasan, 2007), psychology (Klimesch, 1996), and medicine (Min and 

Luo, 2009).     

A high spatiotemporal resolution of these techniques in the range of 

millimeter and milliseconds is necessary in most applications. However, 

the spatiotemporal resolution depends on the underlying process used in 

each technique. MEG and EEG are based on the electromagnetic signal 

induced by the activated regions in the cortex and measured on the scalp. 

Therefore, these techniques typically have a high temporal resolution. In 

contrast, fMRI and PET are based on hemodynamic changes and 

metabolism processes of the brain active regions (Liu et al, 1998; Cherry et 

al, 1996), respectively. Consequently, their temporal resolution is poor. In 

this thesis our focus is on the EEG imaging modality due to its reliability, 

low cost, and comfort to the subject. 

EEG is a neuroimaging technique was first developed by Hans Berger in 

1924 (Tudor et al, 2005). It provides direct measurements for the neural 

activity in the range of milliseconds temporal resolution, but with low 

spatial resolution in the range of centimeters. It has been used to diagnose 

different neural disorders such as epilepsy and tumors.   

Considerable efforts have been made in order to improve the spatial 

resolution of EEG modality throughout the years. Nunez (Nunez et al, 

1994) and Sidman (Sidman et al., 1991) developed two distinct methods to 

estimate the cortical surface potentials from the scalp potential. Further, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Srinivasan%20N%5BAuthor%5D&cauthor=true&cauthor_uid=17434421
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Law and others (Law et al, 1993, Srinivasan et al. 1996, Babiloni et al, 

1996) presented a method to estimate the cortical surface Laplacians.  

Several methods have been developed to solve and improve the spatial 

resolution of the source localization problem. Most of these methods are 

based on two approaches, the parameter approach (or the equivalent dipole 

methods), and the imaging approach (the distributed dipole methods). A 

comprehensive survey of these and other methods can be found in (Darvas 

et al, 2004; Baillet and Mosher, 2001).  

1.2.1 Parameter approach methods    

The parametric approach uses the equivalent dipole model to represent a 

focal brain activity. In this model, multiple equivalent dipoles are used to 

model multiple active brain regions. The model is based on the assumption 

that the scalp EEG signal is generated by one or few equivalent dipoles 

whose locations and moments (six parameters for each dipole) are 

unknown (Fender, 1987; Scherg et. al, 1985). The number of equivalent 

dipoles can't exceed the number of measuring electrodes. Then, an estimate 

of these parameters are obtained by minimizing the objective function, 

                𝐸(𝑟𝑞𝑖 , 𝑑𝑞𝑖) =  ‖Ф𝐸𝐸𝐺(𝑟) − Ф𝑚𝑜𝑑𝑒𝑙(𝑟, 𝑟𝑞𝑖 , 𝑑𝑞𝑖) ‖
2
                 (1.1) 

where: Ф(𝑟, 𝑟𝑞𝑖 , 𝑑𝑞𝑖)  is the electric potential at sensor location r 

corresponding to a current dipole 𝑑𝑞𝑖  located at  𝑟𝑞𝑖. The electric potentials 

at the sensors can be computed using a certain forward model. Additional 

constraints on the estimated number of dipoles, which parameters are fixed, 
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and whether to consider the time-series of the EEG data are generally 

applied (Frank, 1952; Rush and Driscoll, 1968).   

The main difficulty of this approach is in finding an optimal estimate of the 

number of dipoles. Overestimating their number causes the dipoles to fit 

any data and requires intensive computation due to increasing 

dimensionality. Underestimating their number, results in a biased solution 

by the missing dipoles. The accuracy of predicting the number of dipoles is 

questionable. 

1.2.2 The imaging approach methods 

The distributed dipole methods (imaging approach) are developed to 

overcome the requirement of identifying the optimal number of dipoles in 

the parametric approach.  In these methods, a large number of current 

dipoles are distributed inside the brain. Since the position of each dipole is 

a potential location of a current source associated with a brain activity, the 

number of dipoles must be large enough to cover the brain with an optimal 

resolution. The electric potential due to each dipole at the scalp electrodes 

are then calculated using the forward solution to form a lead field matrix 

(LFM) K. The LFM K maps the current dipole generators inside the brain 

to the electric potential at the scalp electrodes in what is called the forward 

equation, 

                                                          KJ ,                                            (1.2) 

 



7 

 

where   is the electric potentials at the scalp electrodes, J  is the current 

density at each dipole, and   is noise. Then, for a given EEG data EEG  the 

goal of the inverse problem is to invert the forward equation to find an 

estimate of the current density Ĵ  at each dipole location. Unfortunately, the 

problem is underdetermined and there exit an infinite number of different 

current configurations that would explain a given EEG data. Further, the 

problem is ill-conditioned, which results in an unstable solution in the 

presence of noise. Therefore, the problem is ill-posed. To overcome the 

first issue, methods impose a priori constraints on the solution to select a 

unique solution. To find a treatment for the second issue, methods take 

regularization schemes into account.  

In the literature several inverse methods with different techniques and 

algorithms were developed. Hȁmȁlȁinen and Ilmoniemi introduced the 

minimum norm estimate (MNE) (Hȁmȁlȁinen and Ilmoniemi, 1984), which 

is the first discrete approach to solve the MEG inverse problem. MNE 

approach uses the least-squares method to determine the current dipoles 

that induce the scalp signals. However, solutions obtained using the MNE 

method is biased toward the superficial sources. Further, the method failed 

to handle deep current sources.  

In order to overcome the preference of the superficial sources in the MNE 

method, Lin and his group proposed the weighted minimum norm estimate 

(WMNE) (Lin et al, 2006). The WMNE compensates for the bias of MNEs 

of favoring weak and surface sources.   
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Low resolution brain electromagnetic tomography (LORETA) is an 

algorithm presented by Pascual-Marquis and his team to estimate a good 

accuracy of source localization, by achieving the smallest 2nd derivatives 

of the current density distribution (Pascual-Marqui et al, 1994).   

Pascual-Marquis developed another minimum norm approach with zero 

localization error and with a location wise weighting, unlike the method 

introduced by Dale (Dale et al, 2000), which has systematic non-zero 

localization. The method is called Standardized low resolution brain 

electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002).  It based 

on images of standardized current density (Pascual-Marqui, 1999). 

Another powerful algorithm based on recursive, weighted minimum norm 

estimate has been developed to treat the EEG inverse problem by 

Gorodnitsky and his group (Gorodnitsky et al, 1995). Termed FOCUSS 

(FOCal Underdetermined System Solution). 

Shrinked  Loreta-FOCUSS  (sLOFO)  by Liu (Liu et al, 2004), 

Standardized  Shrinked Loreta-FOCUSS (ssLOFO) by (Schimpf et al, 

2004) and sLORETA-FOCUSS by Khemakhem and his team (Khemakhem 

et al, 2008) are different algorithms treat the source reconstruction inverse 

problem.    

1.2.3 Regularization parameter 

A crucial issue in the application of any regularization scheme, in any 

domain, is the optimal selection of the regularization parameter. Several 
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methods have been developed to automatically tune it.  A well known 

method, called the discrepancy principle, (Morozov, 1966) is based on a 

priori knowledge about the upper abound on the noise level. Unfortunately, 

the method is highly sensitive to the upper bound estimation on noise.   

Later on, Hansen proposed the L-curve criterion (Hansen et al, 1993 and 

Hansen, 1994) that do not require a priori estimate on the noise. The L-

curve method is based on a log-log plot of the norm of a regularized term 

versus the data fitting term. The idea is that the regularization parameter 

corresponds to the corner of the curve, where it provides a good balance 

between the two norms.  The corner can be obtained by calculating the 

curve curvature (Hansen, 2001). 

A more recent method called the U-curve (Krawczyk-Stando and Rudnicki, 

2007; Krawczyk-Stando and Rudnicki, 2008) is based on a plot of the sum 

of the reciprocals of the regularized solution norm and the residual norm. 

U-curve criterion selects the regularization parameter according to the 

maximum curvature close to the left vertical part of the U-curve.   

Another popular method that doesn't require an upper bound on the noise is 

the Generalized cross-validation (GCV) (Golub et al, 1979 and Wahba, 

1977).  The method  considers a statistical approach that seeks to minimize 

the predictive mean-square error. The GCV method works with the GCV 

function in finding the regularization parameter that archives the minimum 

value of the function. 
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Another statistically-based method, called normalized cumulative 

periodogram (NCP) (Hansen et al, 2006) was developed recently.  The 

method tries to find a regularization parameter that can acquire the most 

amount of information from the residual vector. NCP chooses the 

regularization parameter that make the residual vector resemble the white 

Gaussian noise vector.  This method is based on the power spectrum of the 

residual vector and it uses the Fourier transform in its procedures.   

Further,  Bazan (Bazani, 2008) proposed the Fixed-point iterations method 

based on the zero crossing method (Gulrajani and Johnston, 1997; 

Gulrajani and Johnston, 2006). Johnston and Gulrajani use zero crossing 

method to determine a regularization parameter of the inverse problem of 

electrocardiography.  

Ventouras and his team studied the minimum product criterion to 

determine the Tikhonov regularization parameter in real evoked potentials 

data inversions of MEG inverse model (Ventouras et al, 2001), when the 

amount of noise present in the measured data is unknown.  

1.3 Objectives of the Study 

The main goal of this study is to improve the spatial resolution of the 

source localization problem for EEG source imaging under noise by 

finding the optimal method for regularization parameter estimation. To 

achieve this goal, the study will conduct the following: 
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1) Estimation of the regularization parameter using L-curve, NCP and 

GCV methods. We will apply these methods using different levels of 

white Gaussian noise, and using several test dipole's positions and 

orientations. 

2) Application of the WMNE algorithm to solve the EEG inverse 

problem using the estimated regularization parameter by the above 

methods. 

3) Evaluation of the localization error and the focus of the solution 

according to three measures, distant to the dipole with maximum 

estimated current, center of gravity, and spatial spreading.  

4) A comparison study between these methods according to the quality 

of the solution and the performance.  
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Chapter Two 

Theoretical Formulation and Methods and Materials 

The general aim of electroencephalogram (EEG) source localization is to 

estimate the brain activity from given EEG data that arise by 

electromagnetic sources; it consists of solving forward and inverse 

problems. The forward problem is to compute the electric potential on the 

scalp for a given current dipole source inside a brain, Section 2.1: show 

information about forward problem. Inverse problem is to estimate the 

current sources inside the brain for a given electric potential. Several 

algorithms are existed to solve the inverse problem; the inverse problem is 

discussed in details in section 2.2. In this section, we also introduce some 

mathematical concepts which are important to well understand the inverse 

problem, these techniques are: least squares method and regularization, 

singular value decomposition, truncated singular value decomposition, 

Discrete Picard Condition and Tikhonov regularization. Methods of 

choosing the regularization parameter are discussed in section 2.3, 

mathematical details of three regularization parameter methods (L-curve, 

NCP, and GCV) have been illustrated in this section. Section 2.4 illustrates 

some of the inverse problem algorithms, which are MNE, WMNE, 

sLORETA and eLORETA. Finally, in section 2.6: we present three error 

measures are used as an evaluation tools for the perfectness of the inverse 

problem solution. 
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2.1 Forward Problem  

In response to external stimuli, thousands or tens of thousands of arranged 

neurons are activated in a way that their induced current adds up. This net 

current is strong enough to propagate through the head tissues to the scalp 

where it can be measured using EEG sensors. These current generators are 

well accepted to be modeled as current dipole sources, because the 

measuring sensors are far away from the current source region. Computing 

the electric potential on the scalp for a given current dipole source inside a 

brain is a well-defined problem, called the EEG forward problem (Rubio 

and Troparevsky, 2006). Formally, it can be stated as follows: Given a 

volume conductor with boundary  𝛺 , current sources within the volume 

induce electric and magnetic fields which can be calculated on the surface. 

If the conductivities 𝜎 and the current sources 𝑆 are known, the electric and 

magnetic fields inside the volume are fully described by the quasi-static 

approximation of Maxwell’s equations–Poisson equation (Hȁmȁlȁinenet 

al, 1993), 

                                         ∇. (𝜎∇𝛷) = 𝑆,                                              (2.1) 

inΩ, with no-flux Neumann boundary conditions on the scalp,  

                                           𝜎(∇𝛷). 𝑛 = 0,                                                    (2.2) 

where 𝜎is the conductivity tensor, 𝛷is the potential, 𝑆 is the current source, 

and 𝑛 is the normal to the surface boundary. The solution of Equation (2.1) 

depends on the volume conduction properties, geometry and conductivity 
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and its solution can be obtained using numerical methods such as Finite 

Difference Method (FDM) and Finite Element Method (FEM). In this 

thesis, we used a FDM solver that we already have (Hallez H et al, 2005). 

2.2 Inverse Problem  

Several approaches are used to solve the source localization inverse 

problem (Darvas F et al, 2004; Baillet S, 2001; Pascual-Marqui R, 

1999).But, in this thesis, we only consider models based on the distributed 

dipole approach. In this approach, the brain is covered with a large number 

of dipoles𝑁  (𝑁~ 5,000 − 10,000). Then the electrical potential due to 

each dipole at the scalp electrodes, called the lead field (the potential 

atM ~ 32 − 512 scalp electrodes) is computed using the forward solver for 

the three orthogonal orientations of the dipole moment, 𝑥, 𝑦, and 𝑧.  

 

 

 

Fig. (2.1): Three orthogonal orientations (x, y, z), red line represents the dipole moment. 

 

 

 

Fig. (2.2): illustration of EEG source localization process 
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The resulted matrix of the lead fields is called the 𝑓𝑖𝑒𝑙𝑑 𝑚𝑎𝑡𝑟𝑖𝑥𝐾, and it 

has the dimension of 𝑀 × 3𝑁 . The lead field matrix defines the 

relationship between the dipole current density 𝐽 and the electric potentials 

at the scalp electrodes 𝛷, in what is called, the forward linear equation, 

                                              𝛷 =  𝐾𝐽 +  𝜖,                                           (2.3) 

where 𝐾 ∈ ℝ𝑀×3𝑁is the Lead Field matrix with three coordinates for each 

current dipole, each element in 𝐾 represents the electric potential due its 

current source, 𝐽 ∈ ℝ3𝑁×1 is the primary current density vectors,  𝜖  is a 

perturbation error, and 𝛷 ∈ ℝ𝑀×1 is a vector containing scalp 

electricpotentials measured at 𝑀 sensors. Every row in 𝐾  is a lead field 

corresponding to a current dipole obtained by solving the forward problem. 

The goal of the inverse problem is to invert Equation (2.3) to find an 

estimate of the current densities column vector �̂�.  

The lead field matrix (LFM) 𝐾 ∈ ℝ𝑀×3𝑁 is a matrix with three coordinates 

for each current dipole, each element in 𝐾 represents the electric potential 

due its current source. The LFM 𝐾 has the following structure:   

[

𝑘1,1 ⋯ 𝑘1,𝑁

⋮ ⋱ ⋮
𝑘𝑀,1 ⋯ 𝑘𝑀,𝑁

] 

With𝑘𝑖,1 ∈ ℝ1×3, for  𝑖 =  1, … , 𝑀, and for 𝑙 =  1, … , 𝑁. Note that  𝑘𝑖,𝑙 =

(𝑘𝑖,𝑙
𝑥 , 𝑘𝑖,𝑙

𝑦
, 𝑘𝑖,𝑙

𝑧 ) . Where the 𝑘𝑖,𝑙
𝑥  is the scalp electric potential at the 𝑖𝑡ℎ 

electrode. 
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2.2.1 Least squares method and regularization  

In this section we review the methods used to solve the source localization 

ill-posed problem based on the distributed dipole model. The goal of the 

inverse problem is to invert the forward equation, 

                                                    KJ                                             (2.4) 

To find an estimate for the current sources J that best explain a given EEG 

data EEG . The standard approach is to use the ordinary least square method 

seeking to minimize the sum of the squared residuals, 
2

KJ . However, 

in this case, the linear system is ill-posed where a unique and stable 

solution does not exist. Two issues must be addressed in finding a useful 

solution for the problem. 

1) The system is underdetermined, since the number of unknowns (the 

locations and orientations of the distributed dipoles is in the range of 

thousands) is significantly larger than the number of constraints (the 

number of electrodes in the range of hundreds). 

2) The system is ill-conditioned, since a small perturbation in the right hand 

side EEG  due to noise or a small perturbation to the coefficient matrix K 

would result in a large change in the solution. 

To address these issues, a regularization term is added in order to give a 

preference to a particular solution with some desirable properties, and also 

to improve the conditioning of the problem and obtain a unique and stable 
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solution. Then instead of minimizing the sum of the squared residuals only, 

a regularization term is added, and the problem become to minimize, 

                            

22
)( JKJJf EEG   ,                           (2.5) 

Where
2

J  is the constraints and regularization term,
2

EEGKJ  is the data 

fitting term or residual norm, and   is the regularization parameter. The 

regularization parameter  must find a good compromise between the two 

norms in order to minimize the error in the regularized solution. 

Overestimating  results in a stable solution but a bad fit to the data. 

Underestimating  results in a good fit to the data, but unstable solution. 

The difference between different source localization methods that apply 

regularization scheme is in the constraints   that they apply. In this thesis, 

we consider the MNE (Hamalainen1984), method where I  (which 

corresponds to Tikhonov regularization scheme (Tikhonov,1963)), and the 

weighted minimum norm (WMNE), where R , is a weighting matrix. 

Other constraints are used in the literature, for instance, in LORETA, they 

used  , to enforce smoothness of the current generators. 

In case of MNE and WMNE,   is independent of J, then, the solution of 

Equation (2.5) can be found by differentiating the equation with respect to J 

and then setting the derivative to zero. 
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       (2.6) 

Differentiating Equation (2.6) with respect to J, and using the fact

A
x

AxxT

2
)(





, A

x

AxT




 )(
, also, noticing that the third  term is just the 

transpose of the second term and both terms are scalars, so their derivative 

is the same, 

JKKJK T

EEG

TT  2220  

 

Solving for J, we get  

                                  EEG

TTT KKKJ  1)(                            (2.7) 

Notice that, if 0 , the solution becomes that corresponds to the ordinary 

least square solution. 

EEG

TT KKKJ  1)(  

2.2.2 Singular value decomposition 

The case of Tikhonov regularization when I , can be analyzed further to 

give more insight about the structure and conditioning of the problem via 

the singular value decomposition. The singular value decomposition (SVD) 

of a matrix K with dimension nm  is, 
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The SVD decomposition has the following properties. 

1. IVVUU TT   

2. 
mxmRU  and

nxnRV   

3. The dimension of  is the same as the dimension of K 

4. If m < n, the matrix  is 
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And N  21 the diagonal elements of Σ are called the singular 

values of K. The columns of U are the left singular vectors and the columns 

of V are the right singular vectors. 

5. The orthonormal set of vectors V  are mapped by the matrix K into the 

orthonormal set of vectors  U, and the orthonormal set of vectors U  are 

mapped by the matrix KT into the orthonormal set of vectors  V, 

               
TTTTTT

TT

VUUVUUVUK

UVVUVVUKV





)()(

)()(

                      

                                                                                                          (2.11)
 

6. Since the singular values are mrr     011  (m < n), it 

follows that rKrank )( , and the vectors  ni uuu 1
 
from the range of K 

and the vectors of  ni vvv 1 from the range of TK . Also, the vectors of
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 ni uuu 1  from the Null space of K , while the vectors  ni vvv 1  

from the null space of TK . 

7. The condition number of the matrix K  is, 
N

cond


1 . Since N 1 , the 

condition number is large and the problem is ill conditioned. Therefore, in 

terms of SVD decomposition, we can write the solution of the linear system

bKx  , as 

                         










i

i

i

Τ

i

ΤΤ

Τ

T

v
σ

bu

bUVΣ

b)(UΣUx

bxVU
1

                                      (2.12) 

Here, we see that the singular values decay toward zero and that small 

value cause the instability in the solution.  

2.2.3 Truncated SVD Decomposition (TSVD) 

The SVD solution x  obtained in Equation (2.12) can be used to obtain a 

method for computing a regularized approximate solution. The idea is to 

filter out those SVD components that are dominated by noise (those 

components with small singular values). The resulted methods is the 

Truncated SVD (TSVD)  

                                       

Nkv
bu

x
k

i

i

i

T

i
k 



,
1 

 ,                                  (2.13) 
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where k is the truncation parameter.  The idea is hopefully to damp the 

contribution from the errors in the right hand side. Thus, the TSVD of the 

matrix A is defined as the rank-k matrix, 

        




k

i

T

iii

T

kk vuVUA
1

  , where, 
mxn

k Rdiag  )0,,0,,,( 21   , 

Here k  is the same as  except that the smallest kn singular values are 

replaced by zeros. When the truncation parameter k is chosen properly, the 

condition number k /1 of the TSVD will be small, and so the problem is 

well conditioned. The TSVD solution then, bAx kk

1 , where 
1

kA , is the 

pseudoinverse of matrix kA  is insensitive to noise in b and A. One 

observation is that TSVN regularization filters out the contributions to the 

solution corresponding to the smallest singular values. 

2.2.4 Discrete Picard Condition   

Equation 2.12 shows that for the solution x to converge, the SVD 

coefficients buT

i must decay on average faster than the corresponding 

singular values i . This condition is called the Discrete Picard Condition. If 

the Picard condition is satisfied, the regularized solution has same  

properties as exact solution, since the SVD components of the exact 

solution with largest magnitude are those coefficient that are well 

approximated, i

exactT

ii

T

i bubu  //   , (Hansen, 2001). Because of the 

presence of the noise, we don't expect to compute exact solution to the 

discrete inverse problem. Therefore, investigating Picard condition is 

necessary to find out whether a useful solution can be obtained. If the 
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Picard Condition is not satisfied, there is no reason to solve the ill-posed 

problem. To do this, we made the plots of the discrete Picard for the 

simulated EEG potential concerning all the three locations of the current 

dipoles (Superficial, at the middle and deeply located dipoles).  

2.2.5 SVD and Tickonov Regularization 

In case of  Tickonov regularization, if we use the SVD decomposition of 

the matrix K in the solution (3), we get,  

i
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Comparing this regularized solution with the un-regularized solution (see 

Equation (2.12)), we see that the regularization adds a small value, 








2

2

i

i
if , to the singular values. As   increases the solution becomes 

more stable. Further, we see that the filter factor 


if is close to one when 

i  is larger than , corresponding to large contribution of the  SVD 
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components to the solution. On the other hand, the SVD components are 

filtered out for i  much smaller than  , 
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2.3 Methods of Choosing Regularization Parameter 

In this thesis, the methods we use to estimate the regularization parameter 

are, L-curve method, generalized cross validation (GCV) and normalized 

cumulative peirdogram (NCP). We present a theoretical illustration of these 

three methods.  

2.3.1 L-Curve Method  

The L-curve method (Hansenet al, 1993 and Hansen, 1994) considers a 

log-log plot of the regularized norm of the inverse solution versus the 

residual norm. The curve shows a trade-off between the size of the 

regularized term ||𝛤𝐽||2 and the data fitting term ||𝛷𝐸𝐸𝐺 − 𝐾𝐽||2 . The 

resulting shape has the shape of an 'L'. The optimal value of 𝛼corresponds 

to the corner of the curve since this point corresponds to a compromise 

between the two quantities. However, in practical applications the corner 

serves as a guide only since it is rarely provide the optimal solution. The 

corner of the curve can be computed by finding the maximum curvature of 

the curve 𝜅 (Hansen, 2001).  
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To find the curvature of the curve where the optimal value is assumed, we 

employ the Singular Value Decomposition (SVD) of the LFM matrix 𝐾 

The SVD of matrix 𝐾 is given by, 

                                     𝐾 =  ∑ 𝑢𝑖𝜎𝑖𝑣𝑖
𝑇3𝑁

𝑖=1                                             (2.14) 

where𝑢𝑖 and 𝑣𝑖 are  orthonormal singular vectors, 𝜎𝑖 is the singular values 

which appear in non-decreasing order. In terms of SVD of the LFM 𝐾, the 

regularized solution can be written as 

                                      𝐽 =  ∑ 𝑓𝑖
𝑢𝑖

𝑇𝛷𝐸𝐸𝐺

𝜎𝑖

3𝑁
𝑖=1 𝑣𝑖                                  (2.15) 

where𝑓𝑖 =
𝜎𝑖

2

𝜎𝑖
2+𝛼2

is the Tikhonov filter.  

Now, we can write the regularized and residual norms in terms of SVD, 

                            || 𝐽||2 =  ∑ (𝑓𝑖
𝑢𝑖

𝑇𝛷𝐸𝐸𝐺

𝜎𝑖
𝑣𝑖)23𝑁

𝑖=1 ,                                    (2.16) 

           ||𝐾𝐽 −  𝛷𝐸𝐸𝐺||2 =  ∑ ((1 − 𝑓𝑖)𝑢𝑖
𝑇𝛷𝐸𝐸𝐺)23𝑁

𝑖=1 ,                           (2.17) 

                          𝜂 =  || 𝐽||2, 𝜌 = ||𝐾𝐽 −  𝛷𝐸𝐸𝐺||2,                               (2.18) 

                         �̂� = log 𝜂,                            𝜌 ̂ = log 𝜌,                        (2.19) 

By plugging in the above expressions into the definition of the curvature 

from calculus, 𝜅is given by (Hansen, 2001),  

                           𝜅 = 2
�̂̈��̂̇�−�̂̈��̂̇�

((�̂̇�)
2

+( �̂̇� )2)3 2⁄
                                       (2.20) 



25 

 

The corner of the curve separates the flat and vertical parts of the curve 

where the solution is dominated by regularization errors and perturbation 

errors, respectively. There are two limitations of the L-curve method 

(Hansen, 2001 and Hansen1994). The first one, is the faller of the method 

when the solution is very smooth, in which the SVD coefficients decay 

rapidly to zero, these solutions is dominated by the first few SVD 

components. The second one is related to the method asymptotic behavior. 

As the problem size increases, the method leads to over determined value 

of 𝛼 . Both limitations depend on the characteristics of the particular 

problem being considered. 

2.3.2 Generalized Cross Validation  

This method (Golubet al, 1979 and Wahba, 1977) represents a statistical 

approach to choose the regularization parameter 𝛼. This technique has the 

following basic idea: the good value of regularization parameter should 

make 𝐾 𝐽𝛼 able to predict the missing value in the right hand side (𝛷𝑒𝑥𝑎𝑐𝑡 

in our case). Therefore, the goal is to minimize the predictive mean-square 

error ||𝐾𝐽 − 𝛷𝑒𝑥𝑎𝑐𝑡||2 . Because of 𝛷𝑒𝑥𝑎𝑐𝑡 is unknown, the GCV works 

instead with GCV function. So, the optimal value of 𝛼 corresponds to the 

minimum value of the GCV function  𝐺, 

                          𝐺𝛼 =  
|| 𝐾𝐽 − 𝛷𝐸𝐸𝐺||2

(𝑀−∑ 𝑓𝑖
3𝑁
𝑖=1 )2                             (2.21) 

Two difficulties of finding 𝛼 using this method, the first one is due to the 

flat part, since GCV function has a very flat minimum, and it is not easy to 
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localize the minimum itself. The second difficulty is that GCV can 

sometimes mistaken correlated noise of a signal (Golubet al, 1979).  

2.3.3 Normalized Cumulative Peirodogram (NCP)  

In this technique, the strategy is to extract more statistical information 

about the Tikhonov residual vector𝑟𝛼, by showing the relationship between 

the residual components and the amount of information that is available in 

the noisy data. The idea is to choose the largest regularization parameter 

that makes the residual vector resemble white noise vector (Wegman and 

Martinez, 2000; Hansenet al, 2006). We start to choose a large 𝛼  and 

reduce it until having a residual vector that looks like white noise vector in 

terms of the frequencies of the power spectrum of the residual vector. Since 

the low frequency components of the exact solution 𝛷𝑒𝑥𝑎𝑐𝑡 will dominate 

its power spectrum, in contrast with power spectrum of the white noise 

components that will have the same expected value at all frequencies. This 

difference can be used to extract an optimal or near optimal regularization 

parameter.  

According to singular value decomposition, we can express the residual 

vector in terms of singular vectors of Lead-field matrix 𝐾. The residual 

vector of the Tikhonov solution can be written as, 𝑟𝛼 = 𝛷𝐸𝐸𝐺 − 𝐾𝐽 = 

∑ 𝑢𝑖
𝑇𝑓𝑖𝑢𝑖𝛷𝐸𝐸𝐺

3𝑁
𝑖=𝑘𝑐+1 . Where 𝑘𝑐  is the cut off index that separates the 

smallest singular values generated by noise in 𝛷𝐸𝐸𝐺  from the largest 

singular values, and 𝑓 is a high pass filter and equalto 
𝜎𝑖

2

𝜎𝑖
2+𝛼2

. 𝜎 is the 

singular values of the matrix 𝐾. The optimum 𝛼is near the cut off index 𝑘𝑐. 



27 

 

NCP analysis considers the 𝛷𝑒𝑥𝑎𝑐𝑡  as a signal which appear distinctly 

different from the noise vector 𝜖. The goal is to find alpha for which the 

residual changes behavior from being signal-like to being noise-like 

(Hansenet al, 2006).  

This method views the residual vector as a time series (Hansen and Kilmer, 

2007). It uses Fourier Transform to change the time domain of the residual 

vector to be in frequency domain in order to compute its normalized 

cumulative periodgram𝐶(𝑟𝛼). The power spectrum (peridogram) 𝑃𝛼 of the 

residual vector 𝑟𝛼 can be obtained by using Discrete Fourier transforms as 

                           𝑃𝛼 = (|𝑟1̂|2, |𝑟2̂|2, … . . , |𝑟𝑞+1̂ |
2

)𝑇                              (2.22) 

The definition of the NCP for the Tikhonov residual vector 𝑟𝛼can be as the 

vector 𝐶(𝑟𝛼) whose elements involve the cumulated sums of the power 

spectrum (Hansenet al,2006),  

                           𝐶(𝑟𝛼)𝒊 =  
(𝑃𝛼)𝟐+⋯+ (𝑃𝛼)𝒊+𝟏

(𝑃𝛼)𝟐+⋯+ (𝑃𝛼)𝒒+𝟏
                         (2.23) 

The optimum alpha for NCP is the corresponding to the minimum value of 

the function𝐷, 

                              𝐷(𝛼) = ||𝐶(𝑟𝛼) − 𝐶𝑤ℎ𝑖𝑡𝑒  ||2                             (2.24) 

The advantage of this technique, its suitability for large scale problems, 

since it is computationally inexpensive (Hansenet al,2006). However, the 

assumption of using standard parameter-choice methods, like the NCP 



28 

 

method, is that the right hand side 𝛷𝑒𝑒𝑔  must satisfy the discrete Picard 

condition and it must consist of white noise.  

2.4 Algorithms of solving the EEG Inverse Problem     

In the literature, different localization methods with different techniques 

and algorithms have been developed to provide a solution to instantaneous, 

distributed, discrete, linear EEG inverse problem. In this subsection, we 

show three methods with brief mathematical details, which are Minimum 

Norm estimate MNE, weighted MNE, sLORETA and eLORETA.  

2.4.1 Minimum Norm Estimate (MNE), I  

The simplest constraint to apply is, I , which corresponding to Tikhonov 

regularization, and is the approach used in the Minimum Norm Estimate 

method (Hamalainen, 1984). This constraint corresponds to selecting the 

solution that has a minimum norm among the infinitely many possible 

solutions. In this case, the solution in Equation (2) becomes,  

                              EEG

TT KIKKJ  1)(                                  (2.25) 

The main concern about this approach is that there is no justification why 

the solution with the minimum norm is the best among all other solutions. 

Further, since the method selects the solution with minimum norm, this 

method is biased toward superficial sources (Pascual-Marqui, 1999), 

because less activity is required in superficial solution locations to give a 

certain surface potential distribution compared to deeper sources. 
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Consequently, MNE fails to address the issue of the deep sources onto the 

outermost cortex.    

2.4.2 Weighted Minimum Norm Estimate (WMNE)    

In order to handle deep current sources, different weighted strategies will 

be proposed. The weighted matrix is a structured block-diagonal matrix 𝑊, 

where all matrix elements are zero except for the diagonal sub-blocks 

denoted as𝑊𝑖 ∈ ℝ3×3. In this approach, each dipole has the same chance to 

be activated, even in deeper current sources. 

The diagonally weighted MNE solution is given by, 

𝐽𝑤 = arg min||𝛷𝐸𝐸𝐺 − 𝐾𝐽||
2

+ 𝛼 ||𝑊𝐽||
2

, 

                                    =  𝑊−1𝐾𝑇[𝐾𝑊−1𝐾𝑇 +  𝛼 𝐼 ]†𝛷𝐸𝐸𝐺                   (2.26) 

The following iterative algorithm converges to the block-diagonal 

weights 𝑊, (Pascual-Marqui et al, 2007), 

1- 1- Given the lead filed matrix K, and a regularization parameter 𝛼 ≥ 0 

2- Initialize the weight matrix 𝑊 as the identity matrix 

3- 2- Set   M = ( 𝐾𝑊−1𝐾𝑇 + 𝛼𝐻)† 

4- 3- For j = 1 …𝑁𝑣 do:  

The symmetric square root of the matrix [𝐾𝑖
𝑇𝑀𝐾𝑖] 

5- 4- Go to step 2 until no changes in 𝑊.     

(where 𝐻 = 𝐼 − 1 1𝑇 1𝑇⁄ 1 with 𝐻 ∈ ℝ𝑀×𝑀denoting the centering matrix) 
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2.4.3 Standardized low resolution brain electromagnetic tomography 

(sLORETA)     

The problem of addressing deep sources can be solved using sLORETA 

technique (Pascual-Marqui, 2002). sLORETA computes the statistical 

maps from the EEG/MEG data to localize the positions of the dipoles by 

standardizing the MNE current density using its variance. Statistical 

parametric maps combines the statistical interference which is based on 

standardized current density. This method gives zero localization error in 

absence of the noise. It takes into account the variance of both actual 

sources and noisy measurements (Pascual-Marqui, 2002). So, the electric 

potential variance is due to the noisy measurements 𝑆𝛷
𝑛𝑜𝑖𝑠𝑒 =  𝛼 𝐻  and 

actual (prior) source variance 𝑆𝐽
𝑝𝑟𝑖𝑜𝑟

=  𝐼, 𝐼 ∈ ℝ3𝑁×3𝑁 

                     𝑆𝛷 = 𝐾 𝑆𝐽,𝑝𝑟𝑖𝑜𝑟𝐾𝑇 + 𝑆𝛷
𝑛𝑜𝑖𝑠𝑒 = 𝐾𝐾𝑇 +  𝛼 𝐻                   (2.27) 

Where 𝐻 = 𝐼 − 1 1𝑇 1𝑇⁄ 1  with 𝐻 ∈ ℝ𝑀×𝑀 denoting the centering matrix 

which is the average reference operator (Pascual-Marqui, 2002).  

The variance 𝑆𝐽 of the estimated current density 𝐽 is given by,  

                           𝑆𝐽 = 𝑅 = 𝐾𝑇[𝐾𝑆𝐽,𝑝𝑟𝑖𝑜𝑟𝐾𝑇 +  𝛼 𝐼 ]
†

 𝐾                        (2.28) 

Where 𝑅 is the resolution matrix. It can be seen as a linear projection from 

the original source dipoles to the variance estimation in absence of noise. 

Finally, sLORATA metric for the source location 𝑙  corresponds to the 
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following estimates of standardized current density power (Pascual-

Marqui, 2002). 

                                                    𝑗�̂�
𝑇[𝑆𝐽]

𝑙𝑙

−1
𝑗�̂�                                           (2.29) 

Where 𝑗�̂� ∈ ℝ3×1is the current nsity estimate at the 𝑙𝑡ℎ voxel, and [𝑆𝐽]
𝑙𝑙

is 

3 × 3 block diagonal element.  

2.4.4 Exact low resolution brain electromagnetic tomography 

(eLORETA)     

There have been considerable efforts in order to reduce the localization 

error of the source localization by considering the weight matrix in a more 

appropriate way. eLORETA is a method gives solution with zero 

localization error even in the presence of the measurement and structural 

biological noise (Pascual-Marqui, 2007). This method was developed as 

working project in the University of Zurich in 2005(Pascual-Marqui, 2007).  

Linear imaging methods are parameterized by a symmetric matrix 𝐶 ∈

ℝ𝑁×𝑁, such that,  

                              𝑗�̂� = [(𝐾𝑖
𝑇𝐶𝐾𝑖)−1/2𝐾𝑖

𝑇𝐶]𝛷                                 (2.30) 

where 𝑗�̂� ∈ ℝ3×1is an estimator calculation for the electric neural activity at 

the 𝑖𝑡ℎvoxel,which could be current density.  

In neuroimaging, localization inference based on the squared amplitude of 

the estimator for neuronal activity. The localization properties of a linear 
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imaging method are elaborated by considering the actual source as an 

arbitrary point in the 𝑗𝑡ℎvoxel, which assumes that,  

                                               𝛷 =  𝐾𝑗𝐴                                              (2.31) 

where  𝐾𝑗 ∈ ℝ𝑁×3 is a vector contains the potentials due to a certain source 

dipole with three coordinates,𝐴 ∈ ℝ3×1and is an arbitrary vector contains 

non zero dipole moments for the source. By plugging equation (2.30) into 

equation (2.31) and taking the square amplitude, one can write for the 

estimation values as: 

                         ‖𝑗�̂�‖2 =  𝐴𝑇𝐾𝑗
𝑇𝐶𝐾𝑖(𝐾𝑖

𝑇𝐶𝐾𝑖)†𝐾𝑖
𝑇𝐶𝐾𝑗𝐴                        (2.32) 

For the case of eLORETA, the current density estimator at the ith voxel can 

be written as:           𝑗�̂� =  𝑊𝑖
−1𝐾𝑖

𝑇( 𝐾𝑊−1𝐾𝑇 + 𝛼𝐻)†𝛷                       (2.33)                              

Where 𝑊 ∈ ℝ𝑀×𝑀is the symmetric weight matrix, where all its elements 

are zero except for the diagonal sub-blocks. The exact zero localization can 

be achieved when weights 𝑊𝑖satisfy the equation,  

                            𝑊𝑖 =  [𝐾𝑖
𝑇( 𝐾𝑊−1𝐾𝑇 + 𝛼𝐻)†𝐾𝑖]1/2                     (2.34) 

2.5 Localization Error Evaluation Measures 

In this study, we considered three error measures to evaluate the influence 

of the number of scalp sensors 𝑁𝑒 and solution space resolution on the 

source localization accuracy. The first measure is the Localization error 

(Pascual- Marqui, 2002). It was defined as the distance between the actual 

test source and the location of the maximum estimated current.  
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The second measure is the spatial spreading or blurring of the solution 

(Pascual-Marqui, 1999). It corresponds to a measure of spatial standard 

deviation of the imaging method centered at the actual test sources. 

Defined as,  

          𝑆𝑝𝑟𝑒𝑑𝑖𝑛𝑔 =  √∑ ||𝑟𝑖 − 𝑟𝑡𝑒𝑠𝑡||2||𝑗�̂�||2 ∑ ||𝑗�̂�||2𝑀
𝑖=1   ⁄𝑀

𝑖=1              (2.35)                        

where 𝑟𝑡𝑒𝑠𝑡 is the actual test dipole location, 𝑟𝑖  is the location of the 𝑖𝑡ℎ 

source, and 𝑗�̂� is the estimate of the current density.  

The final measure that we sued is the Eculidean distance between the actual 

dipole location and the center of gravity (COG) of eLORETA source 

estimate scores, defined as (Salman et al, 2014), (Baillet, 1998),          

                                   𝐶𝑂𝐺 = |
∑ ||�̂�𝑖|| ||�̂�𝑖||𝑀

𝑖=1

∑ ||�̂�𝑖|| 𝑀
𝑖=1

||�̂�𝑡𝑒𝑠𝑡|||                                     (2.36) 
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Chapter Three 

Methodology 

3.1 Introduction 

Solving the source localization problem using the distributed dipole 

model approach require first solving the forward problem that maps a 

current source generator inside the brain to the scalp potentials at the 

electrodes. The forward problem is a well posed problem that have a 

unique solution. We used an efficient FDM solver that we already have 

(Salman et al, 2014) to obtain the forward solution. Then, the forward 

solver is used to generate a generic LFM (gLFM) that maps the current 

source generators modeled as current dipoles placed at every gray matter 

voxel in the brain to the scalp  potentials at the electrodes. Once, the 

gLFM is obtained for a head model, a LFM can be obtained by down 

sampling from the generic LFM as discussed below. 

After calculating the LFM, we tested whether a useful solution of the ill-

posed problem is possible or not using the Picard Condition test. Then,  a 

simulated  EEG data corresponding to different current dipole sources, 

placed at known locations, are generated. For each location, we 

considered several dipole orientations. Then, for each simulated EEG 

data set, several white Gaussian noise level was considered in the 

evaluation.  
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In this study we considered two distributed dipole methods, the MNE 

and the eLORETA. For each method, we used three automatic 

regularization parameters methods, L-curve, GCV, and NCB. Then we 

compared the solution obtained in each case for each simulated EEG data 

with the exact known solution using three measures described in section 

(2.5). The gLFM was generated in previous work using high 

performance computing solver implemented in c++. The rest of the work 

was done using Matlab.  

In this chapter we describe the methodology we used in conducting the 

study. The chapter is organized as follows. In section 3.2 and 3.3, the 

computational head model and the generation of the gLFM are 

discussed, respectively. In section 3.4, down sampling a LFM from the 

gLFM is described. In section 3.5, we provide detailed discussion about 

the generation of the simulated EEG data with different noise level. In 

Section 3.6, we present the methodology in obtaining the regularization 

parameter 𝛼 and solving the Inverse Problem. 

3.2 Modeling the Human Head Electromagnetic 

To solve the forward problem described in Section (2.1), first we need to 

build a computational head model. In this model, the human head is 

modeled as a volume conductor consists of 5 different uniform tissues. 

The computational model requires a geometry model of the different 

tissues of human head, and a conductivity model to assign a conductivity 

for each tissue. 
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The geometry model, the geometry model defines the boundaries 

between different tissues of the human head. Medical imaging such as 

Magnetic Resonance Imaging (MRI) provide images of anatomical 

details with resolution better than 1mm3. These images can be segmented 

to a number of tissues where each tissue is assumed to have uniform 

electrical properties. In this study, we used the geometrical model 

obtained from an MRI image with resolution of 1mm3 for a subject, 

segmented into five uniform tissues, white matter, gray matter, CSF, 

skull and scalp. Figure (3.1) shows these tissues.  The segmented image 

is obtained from previous work done at Neuroinformatic Center 

(University of Oregon) and Electrical Geodescs Incorporated (EGI).  

 

 

 

   

Gray matter Skull Scalp White matter 

Fig. (3.1): Geometric model of the tissues of the human head 

The conductivity model, once different tissues of the human head are 

identified from the segmented MRI image, a conductivity model and 

values must be specified. In this study we assumed the conductivities of 



37 

 

all tissues are isotropic and have values obtained from the literature and 

shown in Table (3.1).  

Table (3.1): Tissues Parameters in realistic head model (Salman et 

al,Ferreeet al, 2000)  

Tissue Type 𝝈(𝜴−𝟏𝒎−𝟏) Reference  

Gray matter  0.25 Geddes (1967) 

Csf 1.79 Daumann (1997) 

Skull 0.0180 Law (1993) 

Scalp  0.44 Burger (1943) 

White matter  0.35 Ferree (2000) 

The forward solver algorithm, In this study we used the Alternating 

Direction Implicit (ADI) method, which is a finite difference method 

FDM to solve Poisson equation as described in Section (2.1). The solver 

was implemented in previous work (Salman et al, 2014).  The solver is 

efficient and can handle only isotropic tissues. Using the forward solver, 

we can calculate the potential at the scalp electrodes for a given current 

source modeled as a current dipole inside the brain. 

The current source model, it is well accepted to model a current source 

generator inside the brain as a current dipole consists of a current source 

and a current sink placed close to each other. To obtain the potential due 

to a current dipole source with arbitrary orientation, we first computed 

the potential due to three orthogonal unit dipoles placed  along the x-, y-, 

and z-axis to obtain their potentials x ,  y , and z , respectively, at the 

scalp electrodes. Then, since Poisson equation is linear regarding current 

sources, the potential corresponding to a dipole placed at the three 
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orthogonal dipoles  location with arbitrary orientation, given by the 

direction cosines ( ),,  can be calculated  by the superposition 

principle,  

zyx  
                                     (3.1)

 

 

Fig.(3.2): The potential corresponding to a dipole with arbitrary orientation is a 

linear combination of the potential due to three orthogonal unit dipoles. 

3.3 The generics LFM (gLFM)  

The generic Lead Field Matrix (gLFM) construct introduced in (Salman 

et al, 2014)serves as generators of LFMs. It maps the orthogonal generic 

dipolar sources to generic electrodes potentials. Three orthogonal generic 

distributed dipoles are placed at every voxel in the gray matter and the 

generic electrodes are placed at 1mm3 inter-spacings on the scalp. Once a 

gLFM is computed using the forward solver, many different LFMs can 

z 

x 

y 

ϒ 

β α 

Scalp electrode 
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be sampled based on different constraints or resolution imposed on the 

sources (e.g., the number and locations of the electrodes). This can be 

achieved efficiently by sampling from the rows and columns of the 

gLFM appropriately. The computation of a gLFM factor out the common 

and computationally intensive part of the analysis from the application of 

different inverse algorithms. In the case of distributed dipole models, the 

appropriate columns corresponding to imposing constraints on the 

sources are sampled as well. Then different distributed dipoles 

algorithms can be applied. In this study we used a gLFM matrix that was 

computed previously at University of Oregon computing cluster. The 

structure of the gLFM is shown below, 
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where, each row contains the potential due to three orthogonal dipole 

moments placed at every dipole location at a scalp electrode. And, every 

three column correspond to the potential due to three orthogonal dipoles 

at all electrodes. 

3.4 Sampling the Lead field Matrix 

Different LFMs with different distributed dipoles configuration and 

different scalp electrodes configuration can be down sampled from the 

gLFM. This is achieved by down sampling from the rows and columns 
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of the gLFM. In this study, we selected 128-electrodes uniformly 

distributed on the scalp from the generic electrodes and we sampled 

2500 current dipoles from the generic distributed dipoles, using the 

method illustrated in (Salman et al, 2014) at resolution of 7 𝑚𝑚. Fig.(2), 

shows a distributed dipoles sampling at resolution of 7 𝑚𝑚.  

 

 

 

 

Fig.(3.3): Generic scalp sensors (red) and 128-sampled scalp sensors (blue) (left). Sampling 

64-sensors using uniformly distributed points on a unit sphere (middle). Sampling distributed 

dipoles at resolution of 7 mm (right) (Salman et al, 2014).  

3.5 EEG Simulated data (Synthetic Data) 

To test the accuracy of the inverse solution using different automatic 

regularization parameter tuning methods, we simulated the EEG data 

corresponding to a current dipole source placed at certain location and 

have a certain orientation as follows,  

1) From the generic dipoles set, we selected a dipole in a location p. 

2) The potentials zyx  ,,  due to the three orthogonal dipoles zyx ddd ,,  

in that location at the electrodes are then extracted from the gLFM. 
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3) For a certain dipole moment orientation ),,(  , we calculated the 

potential using Equation 3.1, to obtain the simulated EEG potential,

zyxEEG  
.
 

4) A white Gaussian noise with different levels is added to EEG , to 

simulate noisy data. We used the Matlab function awgn() to generate 

the white Gaussian noise. This new generated potential vector 

represents the EEG potentials 𝛷𝐸𝐸𝐺 ∈ ℝ𝑀×1. 

3.6 Tuning the regularization parameter  𝜶 and solving the Inverse 

Problem 

 For this study, we selected several EEG data sets as described above 

corresponding to three locations inside the brain. One location is  

superficial (D1), which is close to the surface of the brain. The second 

location is in the middle region of the brain, at about the middle distance 

between the center of the brain and the surface of the brain (D2). The 

third location is deep inside the brain close to the center (D3). The reason 

for these choices is to include into consideration the fact that the MNE 

method is biased toward superficial sources. Table (2) shows the id’s and 

the coordinates of the selected three dipole locations.  
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Table (3.2): The Identification number and the coordinates of each 

selected dipole at the solution space. 

Location at the 

cortex  

ID  Coordinates 

 X Y Z 

Superficial  147633 82 101 212 

At the middle  409823 161 84 146 

Deep  215425 99 100 143 

For each dipole location we considered 30 different orientations selected 

by uniformly distributing 30 points on a unit sphere centered at each 

dipole location as shown in Figure (3.3). For each dipole location and 

orientation we considered 128 electrodes uniformly distributed on the 

scalp. Then, we used distributed dipole grid spacing of 7 mm to localize 

each dipole location and orientation. We considered three measures to 

evaluate the source localization accuracy when applying the L-curve, 

GCV, and NCB methods for tuning the regularization parameter.  The 

first measure is the Euclidean distance between the actual dipole location 

and the location of the dipole with maximum estimated current. The 

second measure is the Euclidean distance between the actual dipole 

location and the location of the center of gravity (COG) of the sources 

estimated current (localization error) computed by the inverse method.  

The third measure is the spatial spreading or blurring of the estimated 

currents as described in Section (2.6).  For each location the average 

localization error of the 30 dipole orientations is evaluated and 

considered as the error. This evaluation is repeated twice, first by using 

the MNE inverse method and the second by using the WMNE method. 
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Fig.(3.3): 30 points uniformly distributed on a unit sphere, each point represents one 

orientation. 
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Chapter Four 

Results and Calculations  

4.1 Discrete Picard Plots   

All data and figures were analyzed using Matlab software. As a first step in 

solving the EEG inverse problem, the Discrete Picard Plots were obtained 

for the simulated EEG data sets corresponding to the dipole locations D1, 

D2 and D3.  The simulated EEG data is obtained for the radial orientations 

of these test dipoles. A noise level of SNR ratio of 4 and 12 is added to the 

simulated EEG data sets. Figure (4.1) shows the Discrete Picard Plots of 

these data sets. The Discrete Picard Plots describes the decaying rate of the 

absolute values of the SVD coefficients (𝑢𝑖
𝑇𝛷𝐸𝐸𝐺) and the decaying rate of 

the corresponding singular values 𝜎𝑖   in addition to the decaying rate of 

their ratio.   

We found that, the Discrete Picard Condition is satisfied for all data sets. It 

is clear from the plots that the rate of decay of the Fourier coefficients 

(black stars) is fairly faster than the decay rate of the singular values (blue 

dots) for small indexed singular values, as shown in the figure. For higher 

singular values the decay rate of the singular values becomes faster. These 

singular values correspond to noise and must be truncated to obtain a useful 

solution as discussed in Section (2.2.3).  Also, we see in the figure that the 

rate of the decay of the Fourier coefficients increases as the SNR increases 

for the small indexed singular values as expected. Further, we 
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D1:           (A) SNR = 4                                               (B) SNR = 12 

  

 

 

 

D2: 

 

 

 

 

D3 

 

 

 

Fig. (4.1): Discrete Picard Plots for the D3 with radial orientation at different SNR (4, 8, 12 and 

16). The blue dots are the singular values, the Fourier coefficients are shown in green and red 

circles are Fourier coefficients divided by singular values. 
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see that the location of the dipole does not affect the decaying rate of the 

singular values and the Fourier coefficients. However, we must consider 

more locations to make such a conclusion. The satisfaction of the Picard 

condition indicates that it is possible to obtain a useful solution for the ill-

posed problem.  

4.2 The L-curve, GCV and NCP curves  

We computed the regularization parameter using the simulated EEG data 

sets corresponding to the three dipole locations with different orientations 

using L-curve, GCV and NCP methods. We added different levels of noise 

to the simulated EEG data. The results of these methods and their curves is 

discussed in the following subsections.  

4.2.1 The L-curve   

The L-curves corresponding to the three data sets are shown in Fig. (4.2). 

From these figures, we see that the shape of the L-curve converges to its 

characteristic shape ‘L’ and gives a clear corner for the three data sets. 

However, when we choose larger SNR, we see a better convergence and 

the corner of the curve manifested better. Further, we see that for data sets 

corresponding to the shallow dipole (D1), the curve converges better and 

the corner appears better compared to the data sets corresponding to deeper 

current dipoles. 
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D1:                        (A) SNR = 4                                                    (B) SNR = 12 

 

 

 

 

 

D 2: 

 

 

 

 

D 3: 

 

 

 

 

Fig. (4.2): The L-curve for D1, D2 and D3, for two signal to noise rations (4 and 12). The 

residual norm is on x-axis and solution norm on the y-axis.  
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D1:     (A) SNR = 4                                                      (B) SNR = 12     

 

 

 

 

D2:  

 

 

 

 

D3:   

 

  

 

 

Fig. (4.3): The GCV functional for D1, D2 and D3 for two levels of SNR (4 and 12). The 

regularization parameter is on x-axis and GCV functional on the y-axis.  
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4.2.2 The GCV functional curve 

Using the same three data sets that we used for the L-curve method, we 

plotted the GCV function curves discussed in Section (2.3.2) using two 

levels of added SNR noise of 4 and 12. We see from the plots shown in 

Fig. (4.3) that the GCV curves have a clear minimum for all data sets when 

both values of the SNR are used. However, for smaller SNR, the GCV 

curves looks somewhat flat. It is slightly differ from its characteristic 

shape.       

 

 

 

 

 

 

 

 

Fig.(4.4): The NCPs for the synthetic exact 𝛷 (Blue line), and the NCP of the synthetic data 

after adding white Gaussian noise.  
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 4.2.3 NCP curves  

 NCPs of the exact 𝜱 

As a first step, in order to observe the effect of the white Gaussian noise, 

we plotted the NCP of the simulated EEG data 𝛷  corresponding to the 

dipole location D1 without noise and after adding white noise with SNR = 

6. In Fig.(4.4), we see that the noisy data set𝛷  (green line) fits within 

Kolmogorov-Smirnoff (KS) limits, which means that it is dominated by 

low frequency components. The two gray lines in the figure correspond to 

the KS limits. 

 Estimation of α using NCP method, NCPs curves 

The NCPs curves for the three simulated EEG data sets corresponding to 

the dipoles (D1, D2 and D3) with radial orientation are shown in Fig. (4.5). 

As the figure shows, some curves have a high frequency component, while 

others have a low frequency components. Curves above the blue line 

correspond to high frequency components. While those below the blue line 

corresponds to low frequency component. The blue line represents the 

optimal NCP, which corresponds to the optimal regularization parameter. 

On the other hand, for smaller SNR = 4, most of the NCP curves are below 

the blue line KS, corresponds to low frequency components. This means 

that these components have higher white noise compared to 16-SNR case 

as expected. Also, we can see that for deep current sources in the brain (D3 

and D2), the NCPs of the residual vector become closer to each other and 

they fit within KS limits. The difference can be noticed in the Fig. (4.5) 

part A.   
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D1:          (A) SNR = 4                                                   (B) SNR = 12 

 

 

 

 

D2: 

 

 

 

 

D3: 

 

 

 

 

Fig. (4.5): The NCPs curves for shallow (D1), mid (D2), deep (D3) dipoles for two levels of 

signal to noise ratio (from left to right). The red thick line represents the optimum NCP, which 

corresponds to the optimum regularization parameter. 
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Table (4.1): A Comparison between the regularization parameters, 

obtained using L-curve, GCV and NCP methods using different SNR 

for simulated EEG data corresponds to three dipole locations and 

different radial orientations. 

Location at the 

cortex  

SNR 

L-curve GCV NCP  

Superficial (D1) 4 2.7217 2.9972 0.8946 

Superficial (D1) 12 1.5288 1.8763 0.0172 

At the middle (D2) 4 3.8049 3.0972 0.5322 

At the middle (D2) 12 2.0440 2.1167 0.1641 

Deep (D3) 4 0.1209 1.5188 0.9771 

Deep (D3) 12 4.5434 3.4539 0.1659 

Table (4.1) lists the values of the regularization parameter α obtained using 

the three methods and the three simulated data sets with different SNRs. It 

can be seen that each method generates different value of α. This simply 

reflects the fact that a unique solution of the ill posed problems does not 

exist.  Our goal is to find an optimal one. In the next section, we show our 

results obtained by solving the EEG inverse problem and finding an 

estimate of the current sources  𝐽  that explain the simulated EEG data. 

WMNE algorithm is used to solve the inverse problem.   

4.3 Solving the Inverse Problem  

In this section, we present the results of our comparative study between the 

accuracy of the solution of the EEG inverse problem obtained using two 

inverse algorithms, weighted minimum norm estimate (WMNE) and 

eLORETA.  For each inverse method, we used the regularization parameter 

obtained using the L-curve, GCV and NCP methods. 
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First, we generated simulated EEG data sets using the procedure described 

in Section (3.5). These data sets correspond to three dipole locations listed 

in Table (3.2).  For each dipole location, we considered 30 different radial 

orientations. These orientations are generated by uniformly distributing 30 

points on a unit sphere centered at the dipole location. Next, the potential 

corresponds to each dipole location and orientation is sampled from the 

gLFM, and different noise levels are added. This procedure is described in 

details in Section (3.5).  Next, for each simulated EEG data set, we found 

the regularization parameter using the three methods (L-curve, GCV and 

NCP).  These values of the regularization parameters are then used in  

solving the inverse problem 30 times for each inverse method, WMNE and 

eLORETA. For each solution, we calculated the three measures described 

in Section (2.6), localization error, center of gravity and spatial spreading,.  

Finally, we computed the mean and the standard deviation of the 30 error 

measures. This procedure was repeated for each test dipole location D1, 

D2, and D3. The results were evaluated by plotting the means of measures 

as a function of noise level.  

4.3.1 Estimating the solution using WMNE algorithm 

Here we present the results obtained using WMNE algorithm.  We solved 

the problem using the regularization parameter computed by the three 

methods (L-curve, GCV and NCP). Fig. (4.6), (4.7) and (4.8) shows the  
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Shallow dipole 

A)    

 

 

 

. 

 

 B)                

 

 

 

C) 

 

 

Fig.(4.6): Using WMNE algorithm, for shallow dipole ,  A) The localization error (mm) in 

terms of SNR after obtaining α from L-curve, GCV and NCP. B) Distance from the center of 

gravity (mm) in terms of SNR. C) Spatial spreading in terms of SNR. 
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Results in terms of the three error measures, localization error, center of 

gravity and spatial spreading, respectively.    

Fig.(4.6.a), Fig.(4.7.a) and Fig.(4.8.a) show the localization measures 

obtained by using WMNE method. For these solutions the optimal 

regularization parameter α was obtained using the L-curve (green line), 

GCV (black line) and NCP (red line).  The synthetic data sets used 

corresponds to three test dipole locations. The first data set corresponds to a 

shallow current dipole location close to the surface of the brain. The second 

(middle) corresponds to dipole location at the middle distance between the 

center of the brain and the surface. The third dipole (deep) corresponds to 

dipole locations close to the center of the brain.   

It can be seen that for the three dipole locations, the localization error is 

highest when WMNE method uses the regularization parameter obtained 

using the L-curve method compared to those obtained when using the NCP 

and GCV method.  On the other hand, the localization error is smaller when 

WMNE algorithm uses the NCP methods compared to the error obtained 

when GCV method is used.  For instance at SNR = 14, the error was 22.3 

mm when using the L-curve compared to 20.2 mm when using GCV and 

19.4 mm when using NCP. 

Furthermore, it is clear that the localization errors decrease with increasing 

the signal-to-noise ratio (SNR) when using the three methods for all dipole 

locations. These results agree with the intuition. Further, we see that the 

localization error is slightly increases at SNR values of 2 and 4 as  
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Mid dipole:  

 

A)  

 

 

 

B)  

 

 

 

C)  

 

 

Fig. (4.7): Using WMNE algorithm, for mid located dipole, A) The localization error (mm) in 

terms of SNR after obtaining α from L-curve, GCV and NCP. B) Distance from the center of 

gravity (mm) in terms of SNR. C) Show the spatial spreading in terms of SNR.    
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Deep dipole:  

 

A)  

 

 

 

B)  

 

 

 

C)  

 

 

 

Fig. (4.8): Using WMNE algorithm, for deep located dipole, A) The localization error (mm) in 

terms of SNR after obtaining α from L-curve, GCV and NCP. B) Distance from the center of 

gravity (mm) in terms of SNR. C) Spatial spreading (mm) in terms of SNR.    

 

 



58 

 

the depth of the test dipole location increases, but it does not change much 

at SNR = 14. These results indicate that the WMNE can overcome the bias 

toward superficial sources of the MNE method and the method can handle 

deep current source generators as well. These error results are the average 

of using 30 uniformly distributed orientations for each test dipole location. 

Fig. (4.6.b), Fig. (4.7.b) and Fig. (4.8.b) show the errors measure defined as 

the distance of the location of the center of gravity of the estimated current 

to the actual dipole location (COG error). Using this measure, our results 

indicate similar to localization error measure performance result.  It can be 

seen that when α, obtained using the  L-curve  method, used  in the 

WMNE, the COG error is the highest for the three dipole locations.  In 

contrast, the accuracy obtained using the NCP and GCV methods are 

almost the same according to this measure. However, in some cases the 

GCV method outperforms the NCP method.  Furthermore, it is clear that 

the COG measure decreases with increasing the signal to noise ratio when 

using the three methods for the all data sets corresponding to three dipole 

locations. A cording to this measure, a small increase in the errors is 

noticed when we move from the superficial dipole to deep dipole locations, 

in particular when we used low SNRs, such as 2 and 4, as it is shown in 

Fig. (4.6.b), Fig.(4.7.b) and Fig.(4.8.b). But, when SNR = 12, or 14, the 

positions of the dipole did not affect the COG error, since they reach the 

same amount of errors.  
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The third measure we considered is the spatial spreading, which provides a 

measure of how the solution is focused in space. A focused solution gives a 

distribution of the estimated current values such that it is high around the 

active region while it is low far away from the active region. It is desired to 

obtain a focused solution.  According to the spatial spreading measure, our 

result shown in Fig.(4.6.c), Fig.(4.7.c) and Fig.(4.8.c), indicate that the 

solution obtained using the  L-curve gives the least focused solution 

compared to the solution obtained using the NCP and GCV methods.  

Further, solutions obtained using the NCP are slightly more focused than  

the solution obtained using GCV method. Further, it is clear that the spatial 

spreading measure decrease with increasing the signal to noise ratio, which 

means larger noise produce blurred less focused solutions. Moreover, the 

focus of the solution remains the same as we move to deeper locations. 

In summary, for the three measures, the algorithm gives the highest errors 

when it uses α obtained using L-curve, then GCV and NCP, respectively. 

Although, the algorithm with α obtained using GCV method sometimes 

gives error values similar to these obtained using the NCP method. Also, 

WMNE handled the three locations without any bias, since it gives similar 

localization error at the three dipole locations. 

4.3.2 Solving the inverse problem using eLORETA and sLORETA 

In this section, we solved the inverse problem using sLORETA and 

eLORETA algorithms. The regularization parameter inserted into the 

algorithms manually. The results are shown as a comparative study 
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between sLORETA and eLORETA. We choose the dipole to be in the 

middle to generate the simulated EEG data, the orientation of the dipole . 

After that, we calculated the errors using the previous illustrated measures.  

Fig.(4.9.a), shows the localization error (in mm) for both eLORETA and 

sLORETA at different signal to noise ratios. It’s clear that eLORETA gives 

small amount of errors in a comparison with sLORETA. Further, 

eLORETA reached zero localization error even in the presence of the noise 

at (SNR =10), while sLORETA did not.                         

Fig.(4.9.b), illustrates the center of gravity errors (in mm) for eLORETA 

and sLORETA at different signal to noise ratios. eLORETA also gives 

better results than sLORETA at all levels of signal to noise ratio.  

eLORETA reached the zero error even in the presence of the noise. 

Fig.(4.9.c), shows the spatial spreading errors, for eLORETA and 

sLORETA at different signal to noise ratios. Its noticeable that eLORETA 

also gives better results than sLORETA at all levels of signal to noise ratio.  

Since when the SNR was to be equal 14, the error was to 25, whereas, 

sLORETA gives larger error (35).  
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A) 

 

 

 

B) 

 

 

 

 

C)   

 

 

 

 

 

Fig.(4.9): Blue line (eLORETA), red line (sLORETA), A) Localization errors using eLORETA 

and sLORETA at different signal to noise ratio. B) Center of gravity errors, C) spatial spreading 

measure.  
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Chapter Five 

Conclusion 

In this thesis, we solved the inverse problem of the source localization of 

the EEG signals. Source localization aims to find the sources of the neural 

activities inside the brain. The inverse ill-posed problem is characterized 

with a difficulty of tuning the regularization parameter of the Tikhonov 

regularization. As a comparative study, we applied three automatic 

regularization parameter selection methods (L-curve, GCV and NCP) to 

find an optimal regularization parameter that improves the localization 

error in finding an estimated solution of the problem. WMNE algorithm is 

used as a solver of the inverse problem. In the first part of the thesis, we 

considered several radial orientations of the current dipole.  

Three dipole locations have been selected to generate the synthetic EEG 

data (shallow location, at the middle of the cortex and deep located dipole) 

with different noise levels. 

The application of the L-curve and NCP methods, requires the problem to 

satisfy the Picard Condition and the noise must be white Gaussian. In order 

to check the satisfaction of these conditions, we checked the Picard 

condition for the three dipole locations with two signals to noise ratios after 

taking into account the radial orientation of the dipole generator.  

The L-curve, GCV curve and the NCPs curve have been plotted. The plots 

correspond to the three test dipole locations. The next step was to tune the 
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regularization parameter using the three-parameter choice methods (L-

curve, GCV and NCP), we inserted those parameters into the WMNE 

algorithm to solve the inverse problem. We evaluated the WMNE solution 

using three measures (Localization error, center of gravity and spatial 

spreading). Overall, NCP gives the best estimate of the parameter 

according to the amount of the errors, then GCV and finally the L-curve. 

In the second part, another comparative study was conducted. We 

compared the performance of two popular inverse solvers, sLORETA and 

eLORETA. In this study, the orientations have been chosen as follows: 30 

different orientations selected by 30 points distributed in a uniform way on 

a unit sphere centered at each dipole location. The regularization parameter 

was inserted manually in this part.  The solutions of both algorithms were 

evaluated using the same measures (Localization error, center of gravity 

and spatial spreading). Our results indicate that eLORETA outperform 

sLORETA on all measures. It produces solution with zero localization error 

even in the presence of the noise. In contrast, sLORETA did not. These 

results agree with previous study.                       
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Appendix A 

Localization errors, Errors using center of gravity and Spatial spreading 

errors have been shown in the tables below. The errors are shown after 

inserting the estimated regularization parameter from the three methods (L-

curve, NCP and GCV). WMNE is the used inverse problem solver.    

1- Using shallow dipole to generate the synthetic EEG data:    

Table A.1: Localization errors using WMNE algorithm after 

substituting the regularization parameter from the three methods (L-

curve, NCP and GCV). Shallow dipole is used to generate the synthetic 

data.  

SNR 
Localization error (mm) 

L-curve GCV NCP 

2 45.734 37.345 37.419 

4 41.904 36.456 32.387 

6 37.335 33.214 32.439 

8 33.456 29.871 27.399 

10 30.434 25.234 25.473 

12 27.345 20.243 20.484 

14 22.343 20.280 19.494 
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Table A.2: Errors using COG measure, after substituting the 

regularization parameter from the three methods (L-curve, NCP and 

GCV). Shallow dipole is used to generate the synthetic data.  

 

SNR 

Errors using Center of gravity 

measure 

L-curve GCV NCP 

2 29.736 27.345 29.219 

4 24.904 22.456 23.389 

6 22.363 20.215 22.494 

8 23.456 18.872 17.393 

10 20.423 16.234 15.433 

12 19.345 16.244 16.444 

14 19.314 14.282 15.447 

Table A.3: Errors using Spatial Spreading measure, after substituting 

the regularization parameter from the three methods (L-curve, NCP 

and GCV). Shallow dipole is used to generate the synthetic data. 

 

 

 

 

 

 

 

 

 

SNR 

Spatial Spreading Errors   

L-curve  GCV NCP 

2 70.734 66.345 64.419 

4 67.904 62.456 63.387 

6 66.333 61.214 60.439 

8 62.456 53.871 51.399 

10 55.432 45.234 45.473 

12 53.345 47.243 48.484 

14 50.341 46.280 38.494 
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2- Using dipole at the middle to generate the synthetic EEG data: 

Table A.4: Localization errors using WMNE algorithm after 

substituting the regularization parameter from the three methods (L-

curve, NCP and GCV). Mid dipole is used to generate the synthetic 

data.    
 

 

SNR 

Localization error(mm) 

L-curve  GCV  NCP 

2 53.716 45.345 40.419 

4 51.904 36.452 32.387 

6 44.332 34.214 32.439 

8 43.456 29.871 29.399 

10 35.431 27.232 27.473 

12 27.345 25.243 22.484 

14 25.343 23.280 19.494 

Table A.5: Errors using COG measure, after substituting the 

regularization parameter from the three methods (L-curve, NCP and 

GCV). Mid dipole is used to generate the synthetic data.  

 

 

SNR 

Errors using Center of gravity 

measure 

L-curve  GCV NCP 

2 35.73416 29.345 31.419 

4 34.904 25.456 26.38789 

6 31.33 20.2145 22.4394 

8 27.456 18.8712 23.3993 

10 25.43 18.234 19.4733 

12 23.345 16.2434 16.4844 

14 20.34 15.2802 14.4947 
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Table A.6: Errors using Spatial Spreading measure, after substituting 

the regularization parameter from the three methods (L-curve, NCP 

and GCV). Mid dipole is used to generate the synthetic data. 

 

 

SNR 

Spatial spreading errors 

 

L-curve  GCV NCP 

2 75.734 69.345 65.419 

4 70.904 66.456 63.387 

6 66.332 61.214 62.439 

8 66.456 56.871 54.399 

10 63.431 50.233 45.473 

12 61.345 47.243 43.484 

14 63.343 49.280 38.494 

3- Using deep located dipole to generate the synthetic EEG data: 

Table A.7: Localization errors, after substituting the regularization 

parameter from the three methods (L-curve, NCP and GCV). Deep 

dipole is used to generate the synthetic data. 

 

 

 

 

 

 

 

SNR 

Localization errors 

L-curve  GCV NCP 

2 61.73416 48.345 46.419 

4 57.904 39.456 35.38789 

6 56.33 37.2145 32.4394 

8 44.456 29.8712 29.3993 

10 33.43 27.234 28.4733 

12 35.345 26.2434 22.4844 

14 25.34 18.2802 19.4947 
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Table A.8: Errors using COG measure, after substituting the 

regularization parameter from the three methods (L-curve, NCP and 

GCV). Deep dipole is used to generate the synthetic data. 

  

 

SNR 

Errors using Center of gravity 

measure 

L-curve GCV NCP 

2 39.734 29.745 31.419 

4 34.504 26.456 28.387 

6 33.332 23.214 22.339 

8 30.456 20.871 24.399 

10 27.434 18.634 19.073 

12 23.945 16.293 16.684 

14 22.345 19.280 18.494 

Table A.9: Errors using Spatial Spreading measure, after substituting 

the regularization parameter from the three methods (L-curve, NCP 

and GCV). Deep dipole is used to generate the synthetic data. 

 

SNR Spatial Spreading Errors   

L-curve GCV NCP 

2 79.734 69.345 67.419 

4 72.904 65.456 63.387 

6 66.332 63.214 63.439 

8 64.456 58.871 56.399 

10 61.431 56.234 48.473 

12 61.345 49.243 45.484 

14 58.344 47.280 43.494 
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Appendix B 

Localization errors, errors using center of gravity and Spatial spreading 

errors have been shown in the tables below, using two algorithms for 

solving the inverse problem (eLORETA and sLORETA). Mid dipole is 

used to generate the synthetic EEG data.  

Table B.1: Localization errors of eLORETA and sLORETA 

algorithms.   

 

 

SNR 
Localization errors 

eLORETA sLORETA 

2 10.419 16.286 

4 8.387 13.256 

6 5.439 10.267 

8 3.399 8.265 

10 0 7.236 

12 0 6.852 

14 0 6.284 

Table B.2: Errors using COG measure of eLORETA and sLORETA 

algorithms.   

 

 

SNR 

Errors using Center of 

gravity measure 

eLORETA sLORETA 

2 9.387 26.976 

4 8.893 18.665 

6 6.214 15.652 

8 5.871 13.723 

10 4.234 10.235 

12 1.243 7.236 

14 0.000 4.325 
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Table B.3: Spatial Spreading errors of eLORETA and sLORETA 

algorithms.   

 

 

SNR 

Spatial Spreading errors 

eLORETA sLORETA 

2 40.233 47.343 

4 42.349 46.326 

6 39.234 45.562 

8 35.099 43.765 

10 32.390 40.215 

12 29.382 38.215 

14 25.920 35.254 
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 مقارنة لطرق تقدير معامل التسوية في مسألة تخطيط كهربية الدماغ المعاكسةدراسة 
 إعداد

 محمد جميل ابوريدي

 إشراف
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 الملخص

  EEGالتحقيق في نشاط الخلايا العصبية في دماغ الانسان يعتمد على ربط اشارات جهاز 
بالنسبة الى المصدر المولد لها في قشرة الدماغ، والذي يتطلب حل المسألة العكسية لايجاد 

 underوالثانية انها   ill conditionالمصدر. هذه المسألة تحتوي على مشكلتين: الاولى انها 
determinate لذلك تعتبر ،ill posed لايجاد حل لمثل هذا النوع من المسائل، يجب تطبيق .

سوية. تكمن الصعوبة في تطبيق التسوية في اختيار معاملها المثالي. معامل التسوية المثالي الت
 يكون بحيث يوازي كمية التسوية المضافة والحد الاصلي من المسألة العكسية.  

معامل التسوية المثالي لهذا النوع من المسائل، في هذه الاطروحة  العديد من الطرق وضعت لايجاد
قمنا بتطبيق ثلاثة طرق لايجاد معامل التسوية في المسألة العكسية لايجاد مصدر اشارات ال 

EEG ( وهي .NCP ،GCV ،L-curve  ومن ثم قمنا بمقارنة اداء هذه الطرق من حيث الدقة .)
لحل المسألة العكسية مع اضافة العديد من مستويات  WMNEوالموثوقية. واخترناخورازمية 

الضجيج الى مولدات الاشارة المختلفة التي تم محاكاتها. الحل الامامي والذي من خلاله يتم ايجاد 
. نتائج هذه الدراسة FDMالجهد الكهربائي الناتج من كل مصدر على الرأس تم حسابه من خلال 

ضل تقدير لمعامل التسوية بشكل عام. عند بعض اعطت اف  NCPاشارت الى ان طريقة 
 L-curve، على النقيض من NCPنتائج مشابهة لطريقة  GCVمستويات الضجيج اعطت طريقة 

 التي اعطت اعلى نسبة خطأ.
                  لحل المسألة العكسية وهما  خوارزميتانعلاوة على ذلك، تم مقارنة اداء 

sLORETAوeLORETA أشارت النتائج الى أن .eLORETA  اعطت افضل نتائج من حيث
 طأ.نسبة الخ
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