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Smart-Sustainable Home Healthcare Vehicle Routing Problem Model 

Considering Patient’s condition and Quality of Service 

By 

Ahmed R. Asaad 

Supervisor 

Dr. Mohammed Othman 

Abstract 

The demand on home healthcare services has increased dramatically, due to 

the escalating expenses of the typical healthcare services and the frequent 

diagnosis of chronic diseases patients. This research aims at solving a home 

healthcare vehicle routing problem model that considers the three pillars of 

sustainability, to be executed in smart cities. More specifically, our approach 

intends on taking advantage of the technology available in smart cities, by 

placing body sensors on patients to keep updating their condition and 

prioritizing critical conditions in service. In addition to the dynamism and 

uncertainty caused by the variation in patient's condition, our approach 

extends the reality of the model by considering parameters and variables 

which enhance its practicability, such as assuming different patient’s 

importance (priority) levels. Furthermore, to ensure a sustainable flow of 

business, the model considers electric vehicles which will result in saving 

fuel costs and preserving the environment from greenhouse gases. Also, the 

social aspect was tackled by maximizing patient’s and employee’s 

satisfaction through improving quality of service and managing workload 

respectively. The model was solved using a metaheuristic algorithm 

approach, via Ant Colony Optimization algorithm along with Non-
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dominated Sorting technique due to the ability of such combination to work 

out with dynamic models with uncertainties and multi-objectives. Sensitivity 

analyses showed the benefits of using heart rate sensor in the developed 

model, especially in improving the quality of service. In addition to the 

arising in quality costs when increasing the importance levels of patients. 

The implementation of this model in the healthcare sector comes with a great 

advantage for service providers, due to the continuous monitoring of 

patient’s status, as well as, the classification of patient’s importance levels 

(based on medical status); thus, ensuring healthy satisfied patients. 
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Chapter One 

Introduction 

 General Background 

Home healthcare (HHC) is a broad set of medical and non-medical services 

which are provided to patients at their own premises. Such medical services 

include diagnoses and treatment of diseases, medical injections, changing 

wound dressing, and monitoring vital signs. Whereas non-medical services 

may include helping the elderly with daily activities such as dressing, 

bathing, housekeeping and eating. The aforementioned services are provided 

by either medically-certified personnel such as doctors, registered nurses, 

certified nursing assistant and therapists, or skilled caregivers whom aren’t 

medically-certified (World Health Organization, 2015).  

According to the World Health Organization (WHO), by 2050 the rate of 

people living in their sixties and above will increase rapidly to reach two 

billions, which is due to the phenomena of population aging caused by the 

increase of life expectancy and infertility rates (World Health Organization, 

2015). In addition, HHC is believed to be usually cheaper, more convenient 

and in many situations provides services as effective as traditional hospital 

healthcare (Alodhayani, 2017). Therefore, the demand for HHC services has 

evolved rapidly (OECD, 2013). According to Market Analysis Report 

(2020), about 7.9% compound annual growth rate of HHC market size is 

expected from 2020 to 2027 as presented in Figure 1.1, which shows the 

market size of HHC in the United States from 2016 to 2027. This growth in 
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demand inspires HHC companies and researchers in the field to provide 

patients with comprehensive 

 

Figure 1.1: United States HHC Market size 2016-2027 in Billions of USD (Market 

Analysis Report, 2020) 

wide range of services with a fleet of qualified personnel (Erdem & Koç, 

2019; Fathollahi-Fard et al., 2018; Shi et al., 2017).  

In HHC services, a nurse (or any certified HHC worker) leaves his/her 

location whether it’s a pharmacy, HHC company or home to the patient’s 

location to provide the necessary healthcare service, using transportation 

means such as cars or public transportation. According to Zhang et al. (2014), 

transportation possess the largest share in pollution of environment among 

other logistic and supply chain systems. In addition, the growing demand of 

HHC service will result in tens of millions of miles travelled by nurses and 

caregivers to provide requested services. In 2013, 7.88 billion miles were 

driven by HHC workers to meet the needs of 718 million patients (Erdem & 

Koç, 2019). Therefore, Vehicle Routing Problem (VRP) and scheduling 

should be considered in order to perform services in an effective and efficient 
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manner, as well as, reducing the impact on environment. Various efforts 

were made in the field of HHC Vehicle Routing Problem (HHCVRP) with 

different objectives, some studies investigated the possibility of reducing 

costs by minimizing fuel consumption and other associated operational costs 

( Wang et al., 2008; Zhang et al., 2017), while other efforts considered the 

well-being of mother nature by minimizing the effect of HHC routing and 

practices on the environment, mainly by decreasing the emissions of 

Greenhouse Gases (GHG) caused mainly by the burn of fuel (Fathollahi-Fard 

et al., 2018; Kramer et al., 2015). GHG are gasses that are responsible for 

trapping heat in the atmosphere surrounding the earth, where transportation 

is one of the major sources of such gases (Asrawi et al., 2017). In addition, 

many articles in the literature presented more complex and realistic HHC 

vehicle routing models, which are multi-objective, considering different 

tradeoff between conflicting goals and solved by novel heuristics algorithms 

(Fathollahi-Fard et al., 2019; Shi et al., 2017).   

Quality management is a well-known and important form of practices that is 

essential for business and market success. In the last century, many efforts 

were presented to improve quality in different sectors. Due to its 

significance, quality improvement actions are sought in operational, tactical 

and strategic levels of decision making. In the literature of VRP, many 

contributions were made to improve the quality of service (Bulhoes et al., 

2018; Expósito et al., 2019), most of these efforts discussed time windows 

for service time and patients’ preferences as a measure of quality. However, 

such measures are intuitive and don’t use any quality models or tools to 
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measure and improve quality of service. Therefore, using such tools will 

significantly improve VRP models and promote the issue of quality 

management in vehicle routing to the next level. 

According to Streitz (2015), the United Nations estimates a growth of 

population to reach 9.5 billion by 2050, of which 6.5 billion will be located 

in cities. Indeed, such facts and numbers raised many concerns. Challenges 

and issues will exist and will be associated with the increase of citizens in 

urban cities. Challenges in transportation, delivery of services, healthcare, 

education, pollution and waste management must be expected. An effective 

way to face such challenges is to adapt the concept of smart cities. 

Ismagilova et al. (2019) presented different definitions by various authors 

for smart cities. However, all of them agreed that smart cities must be 

enabled by technology to be smart. Therefore, smart cities are cities which 

promote the use of information and communication technologies (ICT) as 

well as artificial intelligence in its various sectors to improve the quality of 

life and the well-being of its stakeholders and the environment. 

This research aims at formulating a novel and smart HHC vehicle routing 

and scheduling model. This model considers the concept of smart mobility 

which is one of the eight pillars of smart cities introduced by Singh (2015), 

smart cities facilitate the use of various types of technologies to gain 

operational efficiency and citizens well-being. In addition, the issue of 

sustainability of the HHC system is considered and measured using the 

Triple Bottom Line (TBL) concept. While economic and environmental 

aspects of TBL are frequently addressed in research, the social aspect is 
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usually ignored (Vega-Mejía et al., 2019). Therefore, one of our goals in this 

study is to tackle this aspect. Moreover, this work analyzes and measures the 

level of the provided services. Thus, including the three pillars of 

sustainability in a comprehensive well-defined approach integrated with 

smart mobility concept, as well as, analyzing the risk of poor service quality 

will lead to a positive remark and contribution to HHCVRP. 

 Research Problem 

The request for HHC services evolved dramatically in recent years, mainly 

because of the global phenomena of aging societies, the presence of chronic 

diseases, the high costs of traditional healthcare system in hospitals and 

lately due to social distancing policies to stop the spread of Covid-19 

pandemic. In addition, patients noted that it would be more convenient and 

easier in terms of money and effort wise to receive medical care in their 

homes rather than hospitals and medical centers. In a traditional HHC 

system, nurses travel from a single or multi depot to serve one or more 

patients using different types of transportation in predefined time windows. 

As the demand for HHC service increases, a great necessity for adequate 

planning and scheduling for nurses’ activities arise, such plans embrace 

matching the right nurses to right patients based of the demanded services 

and qualifications, allocating different patients and nurses and route 

planning, in addition to several operational, tactical and strategic levels of 

planning. The importance of route planning lies on the fact that as demand 

increases the fleet size for both nurses and vehicles increases, therefore, 
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planning vehicle routing possess a significant importance in HHC companies 

from money and time perspectives, where enhancing profitability and level 

of service could be achieved through cutting travel costs and meeting 

customer demands in a professional and timely fashion. Moreover, in 

addition to profitability, HHC companies have social and environmental 

responsibilities to be addressed in vehicle route planning, since the increase 

in operational activities may lead to harmful violations to the environment 

and staff. Furthermore, to present a realistic HHCVRP model, research goals 

must be matched with real world needs, problems and trends. Trends such as 

shifting toward technology-based life style, which makes use of technology 

to assist the execution (and the process of problem solving) of nearly all 

activities, must be addressed by HHCVRP researchers. Similarly, to develop 

a realistic model, the issue of rivalry among different service providers and 

the matter of customer’s satisfaction should be considered, to ensure success 

and financial prosperity. Therein lays the importance of measuring quality 

of service, to guarantee a pioneer service execution and gain customers 

satisfaction. In this context, this study aims at creating and solving a smart-

sustainable HHCVRP (SSHHCVRP) with service quality optimization 

which is feasible for implementation in real life applications. To the best of 

our knowledge, the variants in the proposed model are either considered 

alone or not considered at all (the case of smart HHCVRP and measuring the 

quality of service) in the reviewed literature of HHCVRP services. 

Therefore, developing a realistic and comprehensive model considering the 

three pillars of sustainability, as well as, different constraints that make it 
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applicable for the emerging concept of smart cities is a worthy contribution 

to the literature of HHCVRP. 

 Research Significance 

From what has been discussed earlier, a model solving the HHCVRP with 

service quality concerns which support sustainability concept to be 

employed in smart cities is expected to improve the current models in the 

literature. Since logistical activities are one of the most important and 

developing industries in the world; vehicle routing and planning process 

becomes more complex and forked. Therefore, considering different variants 

and constraints of VRP with the aim of developing a realistic scenario that 

ensures a smooth flow of the process, is the first contribution of the model. 

In addition, the concept of sustainability has been addressed, in terms of 

shifting to a green environment, while considering profitability and corporate 

social responsibility of the firm. Moreover, the integration of rich-

sustainable VRP with smart logistics and smart healthcare systems that uses 

different types of technology plays a significant role in the continuous efforts 

of enhancing and optimizing smart cities. Finally, the analysis of service 

quality will mitigate the possibility of failures and thereby a better experience 

for the patient and higher profitability of HHC companies. Therefore, the 

aforesaid contributions justify the significance of this study, since using ICT 

and Internet of Things (IoT) technologies in HHCVRP is a novel notion, as 

well as, the innovative approach of measuring customer’s satisfaction on 

quality of service for the first time in VRP, by measuring the gap between 
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expected and perceived service, which wasn’t considered before by 

researchers in VRP as debated in literature review chapter. 

 Summary of the Solution Methodology 

The methodology used to conduct this research is as follows: first, a deep 

review in the literature of HHCVRP was done to analyze and understand 

previous contributions, for the reason of defining research gaps and thereby 

defining the research problem. After that, a mathematical model was 

developed to translate the problem into mathematical equations and related 

constraints; the model was presented as a Mixed Integer Nonlinear 

Programming (MINLP) model. Then, data was generated hypothetically and 

from some related existing studies. MATLAB 2014a software was used to 

solve the mathematical model and make it ready for validation and providing 

solutions. Since VRP is considered as an NP-hard problem, and addressing 

real world problems is associated with a lot of complexities in variables, 

parameters and constraints, using exact methods to solve the optimization 

problem is nearly impossible. Thus, approximate methods were used for the 

optimization problem; namely a combination of Ant-Colony algorithm and 

Non-dominated Sorting are used to provide solutions for the proposed 

problem. At this point, computational results are generated to provide 

solutions and test whether results are logical and applicable. Finally, 

sensitivity analysis is conducted to understand how the variation of 

independent input variables would impact the dependent output ones which 

is referred to as model robustness. Figure 1.2 summarizes the HHCVRP at 
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hand and shows the flow of the process, which was adopted from the thesis 

of Reyes-Rubiano (2019), and modified to address the structure and 

contributions of the developed model. The aim of this thesis is to develop a 

HHCVRP model that considers the use of technology in performing services, 

as well as, taking in to account the three pillars of sustainability and the gap 

between expected and perceived quality of service. 

 

Figure 1.2: Structure and contributions of the proposed HHCVRP model (Reyes-

Rubiano, 2019). 

  Thesis Organization 

The rest of this thesis is organized as follows: chapter two is the literature 

review which includes a presentation of previous contributions in classical 

VRP, HHCVRP, Smart VRP, Sustainable VRP and measuring quality of 

service in VRP. In this chapter, a better understanding of the relationship 
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between various aspects of the proposed SSHHCVRP model is achieved; 

moreover, research gaps are given. In chapter three, the developed 

mathematical model is discussed; the MINLP model that includes indices, 

definitions, parameters, decision variables and constraints is presented and 

explained in details. Chapter four discusses the research methodology. In 

chapter five, the obtained results are discussed and explained, where the 

results for the targeted objective functions are presented. Chapter six 

presents the sensitivity analyses on the model. Specifically, different values 

of parameters are applied to verify that each value will present acceptable 

and reliable solutions. Finally, chapter seven provides conclusions, 

recommendations and future work. 
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Chapter Two 

Literature Review 

 Chapter Overview 

In this chapter, a detailed review on the literature of optimizing Smart and 

Sustainable Home Healthcare Vehicle Routing Problem (SSHHCVRP) is 

presented. The aim of this literature review is to build a strong foundation of 

knowledge on the research problem, as well as, identifying previous 

contributions related to the aforementioned aspects by summarizing their 

objectives, solution methodologies and results. This review is expected to 

reveal gaps in the literature for the aim of developing a realistic model which 

is applicable for implementation in real life practices. This chapter includes 

five sections which are selected based on their relevance to the research 

problem. These sections are organized as follows: 

• Classical Vehicle Routing. 

• Sustainable Vehicle Routing. 

• Home Healthcare Vehicle Routing. 

• Quality of Service in Vehicle Routing. 

• Smart Vehicle Routing. 

 Classical Vehicle Routing Problem 

VRP is the process of finding the optimal route which yields minimum 

operational costs (by using less vehicles and shorter routes) to visit 

geographically-distributed customers while satisfying some constraints 
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(Yeun et al., 2008). Earlier, in classical VRP, the route starts and ends at an 

initial depot, and in between different nodes with different demands should 

be visited ones using one vehicle (Belfiore et al., 2009). However, different 

variants were introduced by time. VRP was introduced for the first time by 

Dantzig and Ramser (1959), the authors introduced a fleet of gasoline 

delivery trucks which delivers gasoline to different service stations. The 

objective was to satisfy all customers’ demands while minimizing the 

mileage traveled by the trucks using linear programming formulation. Clarke 

and Wright (1964) modified the work of Dantzig and Ramser (1959) by 

considering a fleet of trucks with varying capacities to serve geographically-

scattered customers from a central depot to create the optimal network of 

routes while considering the covered distance. However, when dealing with 

real life applications, a great deal of complexities will appear which wasn’t 

considered in earlier models, while on the contrary, the current VRP models 

aim at integrating such complexities (Braekers et al., 2016a). Those 

complexities such as traffic congestions, customer demands and time 

windows, offer a more realistic approach to model and solve VRP.  

Eksioglu et al. (2009) contributed to the literature of VRP by introducing a 

taxonomy methodology for VRP researches which examines 1021 articles 

between 1959 and 2008. Their work was motivated by the difficulty of 

tracking the development in VRP research; they argue that the literature was 

disjoint and disparate. Inspired by the work of Eksioglu et al. (2009), 

Braekers et al. (2016a) introduced a comprehensive taxonomy framework 

which classifies 277 VRP articles between 2008 and mid-2015 based on the 
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method used, individual characteristics, combination of characteristics and 

specific problems of real life aspects. The result of their work showed that 

researchers tend to pay more attention to real life aspects; such approach will 

promote their work to be more realistic and applicable for practical 

implementation.  

To gain a better and wider perspective on the literature, different variants and 

modifications of VRP should be observed. Capacitated VRP (CVRP) is an 

extension VRP which considers the capacity of vehicles while planning to 

deliver the demand of customers (Toro et al., 2015), it considers a fixed fleet 

of vehicles with even capacities. Baldacci et al. (2004) added a new integer 

programming formulation based on two commodity flow approach to solve 

CVRP. On the other hand, Baldacci et al. (2010) and Lysgaard et al. (2004) 

examined the use of exact algorithms and branch-and-cut algorithm 

respectively  to solve the problem with large instances. 

Another popular variant which often arises in the literature of VRP is Vehicle 

Routing Problem with Time Windows (VRPTW). It is used for efficient 

utilization of vehicles to serve various geographically-distributed customers 

within pre-defined time window considering vehicle capacity, with the aim 

of travel cost minimization (Desrochers et al., 1988). Therefore, VRPTW is 

a generalization of VRP with service time and capacity constraints (Ellabib 

et al., 2002). The combination of routing and scheduling made VRPTW 

feasible to solve many real life applications (Yeun et al., 2008). Kim et al. 

(2006) studied the waste management VRPTW, considering multiple 

disposal depots, commercial waste, single start depot and lunch breaks. This 
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article contributed to the literature by adding two objective functions which 

are route compactness maximization and balancing tasks among vehicles. In 

addition, a Production Scheduling and Vehicle Routing with Time Windows 

(PS-VRPTW) was addressed by Chen et al. (2009), their work introduced a 

model in which the supplier decides the quantity of perishable food to be 

produced, starting time of producing and the optimal route to pick. 

Additionally, Periodic VRP (PVRP) was defined as the process of planning 

the service pattern of clients in a pre-defined time horizon (say in a two day 

time horizon, client A should be visited twice while client B should be visited 

once) (Campbell & Wilson, 2014; Gulczynski et al., 2011). Then each client 

is assigned to a vehicle route. Recently, Rodríguez-Martín et al. (2019) 

introduced a model of PVRP with driver consistency where each customer 

is served by the same vehicle (driver) with one or more visits in a planning 

period based on demand. This work was motivated by different real-life 

applications such as logistics, distribution companies, trading and elderly 

healthcare services in which a driver develops  knowledge about the 

customer, which allows him/her to forecast demand or special needs (in case 

of elderly healthcare). 

Referring to the problem of information ambiguity regarding instances, 

where some data arises during service execution such as customer new 

requests or change order in demand and service time, a Dynamic VRP 

(DVRP) was introduced for the first time by Psaraftis (1988). In regard to 

this problem the author suggested that the dispatching of vehicles will follow 

a dynamic trend similar to real life instances. A detailed review on the 
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problem was proposed by Pillac et al. (2013), different applications such as 

maintenance, transportation and emergency services, as well as, solving 

methods ranging from linear programming to meta-heuristics were 

discussed. Figure 2.1 presents an example of DVRP, figure t0 shows a 

predefined set of customers to be served, whereas, figures t1 and tf shows two 

new customers to be served that must be included in the vehicle routing plan. 

Moreover, López-Santana et al. (2016) studied DVRP in HHC sector; the 

authors discussed the issue of receiving new service requests while providing 

the pre-defined services. To solve the problem a multi-agent approach was 

used to manage new requests as well as, a mathematical model to create 

routing plan.   

Most of the studies presented in this section considered single constraint or 

variant in VRP, however, nowadays the tendency is to imitate the real-life 

complexities so that proposed models can be generalized and applicable for 

realistic implementation in various industries and services as suggested by 

Braekers et al. (2016a). 

Figure 2.1: Example of DVRP (Pillac et al., 2013) 
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 Due to this tendency another extension of VRP known as Rich VRP (RVRP) 

arises. RVRP deals with real life complexities such as uncertainty, dynamic 

operations, multiple constraints, environmental issues, smart operations and 

citizens’ welfare (Caceres-cruz et al., 2015). In addition, the authors 

presented a classification of solving optimization problems which is 

applicable for VRP as shown in Figure 2.2. Since real life issues are 

considered routing problems having large instances to be analyzed, which 

can’t be solved in a reasonable amount of time using exact optimization 

algorithms therefore, heuristic and meta-heuristic algorithms were used 

(Pellegrini et al., 2007). The authors argued that thanks to technological 

advancement and powerful computing powers the proposed algorithms can 

be solved more efficiently. Osaba et al. (2017) addressed the problem of 

newspaper distribution and recycling, an Asymmetric and Clustered VRP 

with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden 

Paths (AC-VRP-SPDVCFP) model was proposed to handle the complex 

nature of the problem. It’s noteworthy that the complexity is due to the 

following restrictions with the aim of delivering as realistic conditions as 

possible: (i) traveling from node A to node B and vice versa have asymmetric 

travel costs, (ii) Clients are clustered in different geographical areas, (iii) two 

types of nodes exist in the problem, one for newspaper delivery and the other 

of newspaper pick up for recycling, (iv) variable travel time due to rush hours 

and weather conditions for example, (v) forbidden paths such one way 

routes. Additionally, a Discrete Firefly Algorithm (DFA) was used to solve 

the problem. 
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Figure 2.2: Classical methods of solving optimization problems (Caceres-cruz et al., 

2015) 

 Sustainable Vehicle Routing 

In general, sustainability is defined as the set of practices where current 

generations can achieve their needs without compromising the ability of 

other generations to develop and meet their necessities (WCED, 1987). Such 

practices should sustain resources (economical & environmental) and human 

well-being rather than dwindling and relying on them. Similarly, in routing 

(logistics) a broad concept which takes into account the Triple Button Line 

(TBL) aspects, where economic, environmental and social implication on 

practices is considered in various models (Macharis et al., 2014). The 

literature of vehicle routing considering the 3 pillars of sustainability are 

discussed separately in the following sections. 
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2.3.1 Economic Dimension 

The economic dimension of sustainability in vehicle routing mainly focuses 

on maximization of profit and minimization of cost considering different 

constraints. Zhang et al. (2017) considered vehicle loading and time 

windows constraints in their work with an objective function of minimizing 

traveling distance which in return will reduce fuel consumption and 

minimizes cost. However, other constraints such as traveling time affects 

profit indirectly, Kramer et al. (2015) studied pollution routing problem, 

which is a variant VRP that considers pollution of environment. The authors 

argued that higher vehicle speed can be achieved in shorter travel time and 

therefore lower fuel consumption. Their objectives aim at minimizing 

operational costs such as salaries and fuel, and greenhouse gases emission 

costs. Additionally Wang et al. (2008) studied the effect of loading capacity 

on vehicle routing costs, by solving a Container Loading Problem. The 

authors suggested that by optimizing the container space usage, the number 

of needed trips to deliver all goods is minimized and thereby, minimizing 

fuel consumption and cost. Since most of VRP models seek to minimize 

costs, vehicles fuel consumption is the first aspect to be examined. In their 

research, Demir et al. (2014) introduced a summary of factors affecting fuel 

consumption as shown in Figure 2.3. It is worth mentioning that the three 

pillars of sustainability are interrelated, mainly the environmental and social 

dimensions impacts can be translated into economic costs indirectly as 

shown in the results of Vega-Mejía et al. (2019). For instance, minimizing 

CO2 emissions is a result of fuel consumption reduction and workload 
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balancing among driver will result in higher loyalty and productivity of 

workers. 

2.3.2 Environmental Dimension 

This dimension deals with the issues in vehicle routing that affect the 

environment and the prosperity of nature. In vehicle routing, such practices 

are referred to as Green VRP (GVRP). It is defined as the branch of green 

logistics where different techniques and practices are considered in route 

planning in a way that green gases emission, travel time, vehicle speed, fuel 

consumption and vehicle capacity are utilized to have minimum impact on 

the environment (Lin et al., 2014; Vega-Mejía et al., 2019) 
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Figure 2.3: Factors affecting fuel consumption (Demir et al., 2014) 

 Lin et al. (2014) presented an extensive review and classification of GVRP. 

Their methodology consists of comprehensive review on classical VRP, 

literature from 2006 to 2014 on GVRP and the interaction between GVRP 

and various VRP variants. On the other hand, Demir et al. (2014) studied the 

impact of transportation on the environment and introduced various factors 

affecting fuel consumption and CO2 emissions. In addition, different fuel 
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consumption estimation models were discussed, which aided the researchers 

to develop the following conclusions: (i) the literature focused on limited 

factors affecting the environment such as speed and load of vehicles, (ii) light 

duty vehicles are preferred than medium and heavy  duty ones, (iii) road 

gradient should be considered while route planning, (iv) fuel consumption 

models and other traffic externalities (rather than CO2 emissions) should be 

studied. Recently, Niu et al. (2018) discussed the possibility of outsourcing 

logistic services to a third party, for the purpose of  reducing costs. An Open 

VRP (OVRP) approach was used since outsourced vehicles aren’t requested 

to return to initial depot. Therefore, a rich vehicle routing tactic was followed 

by combining three variants to develop a Green Open VRPTW 

(GOVRPTW) model. Also, a Comprehensive Modal Emission Model 

(CMEM) was used to estimate fuel emissions cost. Finally, results showed 

that open routing methodology leads to 20% reduction in the total cost. 

2.3.3 Social Dimension 

This dimension focuses on the human’s well-being. It’s usually debated that 

social impacts are a result of economic and environmental attributes, for 

example air pollution caused by transportation and other industries results in 

a risk on health conditions. Despite the importance of social impact since it 

deals with the most important resource (human being), it’s usually ignored 

and given less focus in the researches of sustainability and supply chain 

context (Bhinge et al., 2015; Seuring, 2013). Regardless the difficulty in 

measuring the social aspects, several attempts were found in the literature. 
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Yang et al. (2015a) studied VRP by introducing a multi-objective model 

which considers maximizing customer satisfaction levels as a social 

dimension. Moreover, Wang et al. (2015) investigated the impact of speed 

variations (among other factors) on travel safety, therefore, minimizing the 

risk of accidents or maximizing travel safety could be considered as a 

measure of social aspect in sustainability. Workload equity in VRP where 

workload (in terms of time and travel distance) are distributed among drivers 

was presented by Matl et al. (2018). On the other hand, Habibnejad-Ledaria 

et al. (2019) developed a multi objective model with the aim of minimizing 

operational costs, maximizing customer’s satisfaction and reducing the 

number of staff in each service. In their model the social dimension was 

triggered twice, first, from customer’s perspective by including constraints 

such as staff preferences where the assignment of caregivers is based on the 

patient preferences regarding service, secondly, from the employee’s 

perspective by considering maximum working hours and cross training. 

 Home Healthcare Vehicle Routing 

As mentioned earlier, HHC services are emerging rapidly. Moreover, it was 

noticed that due to the importance of logistics many of HHC models connects 

HHC with vehicle routing, in fact Bahadori-Chinibelagh et al. (2019) argued 

that HHC is a variant of VRP given the fact that each caregiver needs to 

travel through nodes to service patients. Therefore, it is reasonable to address 

the HHCVRP for proper optimization in terms of planning, scheduling and 

allocation of vehicle routing scheme and the caregivers carrying out the 
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service. To a certain extent the first work on HHCVRP was first introduced 

by Fernandez et al. (1974) with a model considering working days of 

community nurses to identify the ideal location of service providing nurses. 

The authors studied the effect of travel and visit times on the level of service 

quality. Recently, various articles have addressed this problem with different 

VRP variants. Furthermore, Fikar and Hirsch (2017) suggested that in 

contrast to classical VRP (which focuses in minimizing travel distance), 

HHCVRP models paid more attention to minimizing travel cost and travel 

time, as shown in the work of Yuan et al. (2015) that minimizes travel cost 

and penalty costs, and the work of Rest and Hirsch (2016) that minimizes 

travel and waiting times. 

Braekers et al. (2016b) presented a novel model that studies the tradeoff 

between the well-known conflicting objectives cost and service quality. This 

model considers tight and loose time windows, nurse qualification and 

overtime costs. The objectives of the model were minimizing total costs 

(including travel and overtimes) and patients’ inconvenience. Similarly, Ait 

Haddadene et al. (2019) developed a HHCVRP model with a bi-criteria 

nature to minimize travel costs and maximize patients’ preferences of 

service. The authors considered that each patient will ask for a specific 

service type with time constraints for the duration, start and end of service 

time. Shi et al. (2019) developed a robust optimization model that considers 

uncertainty in travel and service times. The authors suggested that there is a 

considerable degree of uncertainty in the field of HHCVRP mainly with 

respect to caregiver travelling time to reach patients in addition to the service 
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providing time; therefore, treating the problem in a non-deterministic 

approach is more realistic. The single depot model had an objective function 

of minimizing total travel costs. Likewise, Doulabi et al. (2020) addressed 

the issue of uncertainty by studying the HHCVRP with stochastic travel and 

service times, along with synchronized visits and scheduling. The model was 

solved using two-stage integer programming approach that minimizes 

various costs such as travel, overtime and waiting costs. Figure 2.4 shows an 

example of the problem. 

Figure 2.4: HHCVRP with two nurses and synchronized jobs (Doulabi et al., 2020). 

In order to address real life challenges, several researches were conducted in 

HHCVRP to provide models which is applicable in real life applications. To 
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achieve such models, a multi-objective approach was used to include as 

many objectives and constraints as needed. Hiermann et al. (2013) presented 

a multi objective model that considers customer and staff satisfaction. The 

authors included 13 objective functions which are divided into hard 

constraints violations (such as violation of nurse availability), soft 

constraints violations (such as the deviation from the start time window) and 

additional aspects such as travel and work times that impact the solution 

quality. The model results prove its ability to solve real life instances, 

however, due to the complexity of the model, significant computational time 

is needed to solve each instance. On the other hand, Decerle et al. (2019) 

argued that a tradeoff between conflicting objectives is essential for the 

applicability of HHCVRP models. The authors proposed a multi-objective 

model which considered workload balancing between nurses and auxiliary 

nurses to fulfill three objectives, namely minimizing total working time, 

patient waiting time and maximal working difference between nurses. The 

model was solved using a memetic algorithm. 

Green HHC (GHHC) services were discussed by many authors in the 

literature to reduce the impact of those services on the environment toward 

creating sustainable cities. Fathollahi-Fard et al. (2018) presented a green 

model with the aim of minimizing transportation costs and green emissions 

to reduce environmental pollution. Additionally, this model considered a 

penalty for exceeding predetermined maximum travel distance. The authors 

argue that this is the first model to consider the issue of greenhouse gas 

emissions and environmental pollution in solving HHCVRP models. 
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Furthermore, Fathollahi-Fard et al. (2019) suggested that HHC could be 

treated as a supply chain where HHC companies provide service to clients 

(patients) using a certain process (routing and scheduling), thus a Green 

HHC supply Chain (GHHCSC) model was developed. The aforementioned 

model uses a location-allocation-routing strategy so that location of patients, 

pharmacies and laboratories are set, then each patient is allocated to one 

pharmacy (nurse) and finally route planning decisions took place. 

In the context of smart mobility and the use of technology in vehicle routing, 

Erdem and Koç (2019) proposed a novel approach which uses electric 

vehicle (EV) in HHCVRP. The multi-objective problem consists of multi 

depots where each nurse starts from one depot to serve one or several patients 

with a possibility of visiting charging stations. The model includes 

constraints about the vehicle battery capacity, charging status and 

synchronized jobs where one than one nurse is required to serve a patient. 

The use of electric vehicles reduces the impact of green emissions caused by 

fuel combustion and thereby preserves the environment; besides using the 

technology to produce electrical engines rather than fuel combustion ones 

promote the implementation of smart mobility and transportation sector in 

the promising smart cities. 

After reviewing the literature of HHCVRP, we concluded that researches had 

covered many aspects that promote their models to be applicable in real life 

applications by including different type of costs, time constraints, green 

practices, location and allocation of resources, workload balancing and many 

other objectives in their models. Despite that inclusion, to the best of our 
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knowledge, none of the previous approaches linked HHCVRP to the concept 

of smart sustainable cities in terms of developing models that take into 

account the use of ICT, IoT and other forms of technology in the  process of 

planning and solving the routing problem. 

 Quality of Service in Vehicle Routing 

There is no argument about the importance of quality management in any 

organization. Indeed, measuring and planning quality in manufacturing and 

production industries is easier than service industries, since measuring the 

quality of tangible products with physical characteristics is easier than 

measuring the quality of intangible services.  Nevertheless, actions and 

efforts must be taken to improve quality for the purposes of reducing costs, 

satisfying customers, reducing waste, meeting standards and building 

reputations. 

Despite the importance of quality, there is a lack of models considering 

quality in the literature of vehicle routing. However, the work of Paquette et 

al. (2009) provides different definitions of quality in service sector by 

including different dimensions of quality and quality related constraints. The 

authors reviewed previous studies that take into account improving quality 

in vehicle routing by including time windows, waiting times and other 

constraints that define quality of service. Most of the mentioned models tend 

to define and measure quality of service by the difference between expected 

and actual time of service, a strict time interval with start and end of service 

periods is used as a reference. It is believed that by complying with the 
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planned time of service customers will be satisfied and therefore adequate 

level of quality of service is met. Expósito et al. (2019) tackled the issue of 

quality by improving customer’s satisfaction which is done by minimizing 

response time of service. The model contains time dependent constraints in 

form time windows with start and end times. In addition to minimizing the 

response time, this model includes another classical objective of minimizing 

travel cost. Results showed promising and effective solutions for improving 

quality and satisfaction in vehicle routing. Bullo et al. (2011) studied the 

dynamic VRP, and suggested two criterions for measuring quality of service; 

firstly is the waiting time for service delivery, and secondly the fraction of 

demands delivered successfully. Moreover, Yang et al. (2015b) discussed 

dynamic VRP with time windows and multiple priorities. The authors 

included uncertainty of demand and classified customers based on their 

priority level. Quality of service was measured by the difference between the 

arrival time and the upper bound of service interval which the planned time 

to start the service. The objectives of the model were minimizing travel 

distance as well as the penalty associated with service time delay. Without a 

doubt, by optimizing the service levels customers’ expectations and 

satisfaction will be gained. Bulhoes et al. (2018) solved a vehicle routing 

model with service level constraints, their model aimed at minimizing the 

transportation costs and lost profits. Meeting the requirements of different 

customers in various locations to achieve the desired service level will 

encounter some deal of complexity to the problem. Therefore, the authors 

achieved solutions by using mathematical modeling, branch and price 
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algorithm and hybrid genetic algorithm. Similarly, Orlis et al. (2020) 

measured quality by studying the service level requirements; customers will 

set minimum acceptable level of service which is if not meet by service 

provider penalties will be incurred. The model is a variant of VRP which is 

capacitated vehicle routing with profit and service level requirement, with 

the objective of maximizing total profit which is the difference between 

revenues from provided service and transportation costs with penalties if 

failure in service delivery happens.  

Khorshidi and Hejazi (2011) measured the quality of service using the well-

known SERVQUAL model. The authors argued that obtaining data for 

SERVQUAL model that includes expected and perceived level of service is 

not always applicable and doesn’t provide continuous data, therefore internal 

measures specified by experts were used along with SERVQUAL model to 

measure quality and maximize customer’s satisfaction. This effort will create 

a continuous measure of quality of service without using questionnaires. 

Finally, Ghannadpour and Zarrabi (2019) published a research which aimed 

at maximizing customer’s satisfaction by measuring any deviation from the 

desired time of service. In their VRP model, a triangular membership 

function was used to measure the above-mentioned deviation with the 

presence of earliest and latest time windows for different customers. In 

addition, different customers with different importance levels (casual and 

important customers) and priority of service are considered, where high 

importance customers are serviced with a hard time windows to ensure 

precision in service, whereas, less importance ones are served with soft more 
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flexible time windows. As a result, a product of customer’s priority level and 

the deviation from the desired time of service was calculated for different 

importance level customers, which present the customer satisfaction level on 

the quality of provided service. 

After reviewing the literature of measuring quality of service in vehicle 

routing, it was noticed, to the best of our knowledge, that there is vagueness 

and no precision in measuring quality. Indeed, including time related 

constraints such as time of service, waiting time, time intervals to perform 

service and service duration, in addition to service level requirements 

constraints will eventually standardize the service and therefore improving 

quality. However, many scenarios may happen where service providers 

perform what they believe is sufficient without investigating the opinion of 

customers, especially in sensitive services such as in healthcare services. 

Given what had been discussed, our research aims at fulfilling this gap by 

studying and measuring quality of service to evaluate the actual and expected 

performance and apply suitable actions, combining quality measuring 

methods and quality related constraints such as time of service is believed to 

produce promising results.  

 Smart Vehicle Routing 

The emergence of smart city concept was noticed lately; many initiatives 

called for the implementation of those cities. As they believe it can handle 

the challenges of growing urbanization and environmental exhaustion, as 

well as, to enhancing the quality of life for citizens and create a green 
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sustainable environment. Such cities foster the use of Information and 

Communication Technologies (ICT) mainly the innovative solution of 

Internet of Things (IoT), so that citizens can engage and be connected with 

every aspect of the smart city using technologies such as wireless 

communication and clouding. Similarly, smart mobility is one of the 

components of smart cities which use technology and ICT to improve traffic, 

transportation and all types of logistics for the purpose of preservation of 

environment, secure and safe transport system and making life easier and 

smarter for citizens (Albino et al., 2015). Waste management is one 

important field in the transportation network. Proper waste collection routing 

and scheduling planning will result in saving labor, operational and various 

other costs. The work of Mamun et al. (2016), Hannan et al. (2018), and 

Ramos et al. (2018) studies the combination of ICT along with the decision-

making process of planning routes and scheduling waste bin visits. Mamun 

et al. (2016) introduced a novel model and a sensing algorithm that provides 

continuous real time data regarding the status of waste bins. The authors 

argued that using such network of sensors that instantly provides data will 

significantly contribute in reducing cost and harmful emissions. Also, 

Hannan et al. (2018) studies the capacitated VRP in solid waste collection. 

The authors introduced a model that selects the optimal path to follow, as 

well as, selecting which waste bin to visit and which one is not depending on 

the waste threshold level. The decision-making process is supported by real 

time data obtained from ultrasonic sensors and load sensors to measure waste 

bin level and waste weight respectively. Moreover, Ramos et al. (2018) 



34 

presented a smart waste collection model which considers uncertainty in 

terms of waste bins fill levels. The authors suggested the use of volume 

sensors to provide real time data about full levels to decide bins to be visited 

and plan vehicle routing. Likewise, in the field of waste collection, Hrabec 

et al. (2019) proposed a novel approach by developing a quantity predictive 

model which takes into account the current status of waste bin levels and 

predicting that level for the upcoming days and thereby planning the future 

routes. The authors believe that such a model can be both deterministic and 

stochastic by providing real time reading from the bin as well as including 

and solving the randomness of future waste bin levels. The authors assumed 

that waste bins are equipped with sensors and wireless technology devices. 

 On the other hand, Liu et al. (2019) employed Radio Frequency 

Identification (RFID), the fourth generation of broadband cellular network 

(4G) and Geographic Information system (GIS) technologies to develop a 

smart logistics model, so real time data are transmitted and analyzed. Finally, 

route planning and optimization take place with an objective of minimizing 

total delivery and delay penalty costs. Furthermore, in logistics sector, Ding 

et al. (2020) introduced a review on smart logistics by exploring the 

employment of IoT technologies in logistics. Different modes of 

transportation were reviewed including road, railway and water way 

transportation. In addition, the review showed various IoT technologies used 

in logistics, including RFID, WSNs, 4G, barcodes and ZigBee. However, 

despite the comprehensiveness of the provided review, a lack of smart VRP 

in logistics was found in the above mentioned review. 
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Given what had been discussed earlier in this section, it was noticed that the 

employment of ICT and IoT solutions in VRP was explicit to the logistics 

distribution and waste management sectors at least to the extent of our 

knowledge. Moreover, dynamic routing (in a sense that the path of the 

vehicle changes while routing and serving customers or patients) due to 

provided real-time data from IoT technology wasn’t considered. Therefore, 

a gap was found in the literature of smart vehicle routing which is not 

including such smart practices in other sectors mainly healthcare sector. 

Thus, in this research we are attempting to use ICT and IoT solutions in 

solving a HHC vehicle routing model and exploring the benefits associated 

with it to business owners, patients and society, in addition to integrating 

such a model in smart cities concept. 

 Body Sensor Networks 

To carry on this research, a review on the sensors used in healthcare 

including types and functionality is essential. According to Lai et al. (2013), 

Body Sensor Networks (BSNs) is a division of Wireless Sensor Networks 

(WSNs), which through the rapid development of technology, is employed 

in many sectors such as healthcare, sports and social welfare. BSNs can be 

classified into two categories based on the signal type to: (1) sensors that 

measure continuous signal that supports real-time data acquisition, such as 

Electrocardiography (ECG) and Electromyography (EMG) sensors. (2) 

Sensors measuring discrete time signals with low sampling frequency, such 

as temperature, blood oxygen and glucose sensors (Lai et al., 2013). 
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Moreover, Hao and Foster (2008) provided a comprehensive review on 

BSNs and its application in the healthcare sector. Their work aimed at 

reviewing the development of wireless sensors technology in monitoring 

physiological responses of patients such as ECG and EMG. In addition, the 

authors suggested that wireless sensors improve the effectiveness and 

efficiency of the healthcare system by: (1) Alerting the patient if there is a 

potential emergency in vital signs. (2) Alerting the medical emergency 

system if any up normal readings arises. (3) Providing real-time continuous 

bio-data. Finally, the monitoring of health status using sensors was classified 

as critical monitoring such monitoring patients with heart diseases, and non-

critical monitoring such as monitoring physical condition of athletes while 

exercising. Other researches were conducted in the employment of BSNs in 

healthcare sector, they suggest that the integration between BSNs and 

various healthcare applications creates patients and physician’s convenience 

through improving the effectiveness and efficiency of service (Gope & 

Hwang, 2015; Ying et al., 2019). A general architecture of BSNs is shown 

in Figure 2.5. As shown in the figure, different types of body sensors with 

different functions and purposes are employed on patient’s body, then the 

data will be collected and processed to be ready for transmission to a base 

station. Finally, the gathered data are shared over the internet to a predefined 

address. Note that different transmission methods could be used to deliver 

data from patients to physicians or service providers.  
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Figure 2.5: General BSNs architecture (Lai et al., 2013). 

To the extent of our knowledge, the employment of BSNs was not considered 

before in the literature of VRP in general or the literature of HHCVRP in 

particular. Therefore, one of our objectives in this research is the successful 

employment of BSNs on patients to establish a continuous monitoring data 

of patients while they are at home. Mainly, heart rate sensor was considered 

in this research to monitor patients with heart related conditions. Note that 

according to Anaya et al. (2018), ethical issues arises when using wearable 

technology, such as privacy and security concerns. However, in this research, 

all ethical obligations are assumed to be met, since the aim of using sensors 

is only measuring patients’ heart rate. 
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Chapter Three 

Model Formulation 

3.1 Chapter Overview 

This chapter takes the research to the next level by converting the generated 

ideas, defined gaps in the literature and assumptions on the research problem 

to a mathematically-presented model. This model translates all aspects of the 

problem to mathematical equations, which on the other hand were solved to 

generate results. In addition, the proposed model was formulated as an 

MINLP model. The structure of this chapter is as follows: Section (3.2) 

presents a review on Mixed Integer Non-Linear Programming to gain a broad 

knowledge of linear programming, integer programming, MILP and MINLP. 

Next, section (3.3) is model description which includes a detailed description 

on the problem presentation, problem assumptions (to define necessary 

assumptions to carry out the model), model sets and parameter, defining 

equation (to illustrate how certain parameters were calculated), decision 

variables, objective functions and finally model constraints. 

3.2 Mixed Integer Non Linear Programming (MINLP) 

Since the proposed model was developed as MINLP model, it’s essential to 

understand and define MINLP models. To do so, some terms must be 

defined. Linear Programming (LP) is an optimization method to minimize or 

maximize a function, however, to apply this optimization technique the 

objective function, as well as, the constraints in the model must satisfy 
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linearity conditions. LP may produce solutions that include fractional 

numbers, which are sometimes unacceptable and not realistic in real life 

applications, due to the fact that rounding numbers up or down might 

produce infeasible or suboptimal solutions (Sam et al., 2018). Therefore, 

Integer Linear Programming (ILP) was introduced to deal with this issue. 

ILP generates integer results to the unknown variables, while demanding the 

same linearity conditions such as in LP. However, the complexity of 

problems has increased due to the efforts by researchers to solve real life 

problems and include multi objectives to the developed models. Therefore, 

some solutions must produce integer results while others must present 

continuous fractional results, in this case Mixed Integer Linear Programming 

(MILP) optimization technique should be used. In order to apply MILP, three 

conditions must be met. First, objective functions must be characterized as 

linear function. Second, constraints should be linear, and finally linear 

functions must have either minimizing or maximizing objective. Due to the 

growing demands to solve real life problems, researches tend to place huge 

efforts to address these problems. As a result, the developed models may 

include nonlinear objective function or constraint or both. Therefore, to 

address this issue Mixed Integer Non-Linear Programming (MINLP) 

approach is used to solve optimization models. Thus, MINLP is an 

optimization technique that uses mathematical programming to minimize or 

maximize a desired nonlinear objective function subject to nonlinear 

constraints, in addition, MINLP support the inclusion of integer (discrete) 

and fractional (continuous) variables. MINLP is used in many applications 
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including logistics, transportation, supply chain management, waste 

collection and manufacturing, since it supports the addition of many real 

conditions and decision variables. In the proposed SSHHCVRP model, a 

great deal of complexity is presented due to the efforts of addressing a real-

life problem, such efforts lead to a more realistic model. On the other hand, 

the model includes many decision variables with different values. For 

instance, variables such as heart rate sensor reading are binary variables, 

whereas, battery sate of electric vehicle is fractional. Variables such as level 

of customer satisfaction are real numbers (∈ [0,1]). Thus, the use of MINLP 

for optimization is more reasonable and yields more realistic results. 

3.3 Model Description 

In this section, a detailed presentation of the research problem and the 

developed model are introduced. In addition, model assumptions are stated; 

finally, the developed model is presented including a detailed description of 

each parameter, variable, constraint and objective function. 

3.3.1 Problem Presentation 

The demand on HHC services witnessed a great leap recently. Possibly due 

to the high expenses of the healthcare system in hospitals and clinics 

compared to HHC services. And most recently, the presence covid-19 

pandemic that demanded preventive measures including social distancing 

.There is no doubt that HHC services can’t replace the services provided in 

hospitals. However, in many cases patients might need low to medium 
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medical service skills in repetitive periods of time. Such patients include the 

elderly, chronic diseases patients and patients recovering from injuries or 

surgeries. In recent years, researchers studied the HHCVRP and inserted 

different variants and objectives of VRP in their models, such as minimizing 

costs, GHG emissions, travel times and patients preferences consideration. 

Also, authors assume different scenarios including single depot, multi 

depots, multi vehicles / caregivers and uncertainty in travel times and 

services. By time, HHCVRP becomes more and more complex to meet the 

persistent necessities to address real life problems. However, none of these 

previous efforts considered the use of technology for the benefits of HHC 

service providers and patients, compared to other industries such as waste 

collection where technology were employed to ensure more efficient actions 

(Ramos et al., 2018). In addition, there is no evidence from the reviewed 

literature of VRP that there is a clear and direct measurement of service 

quality and the level of customer’s satisfaction. Therefore, in this research 

our aim is to spotlight on the integration of technology and quality of service 

measurement with HHCVRP. Regarding technology use, this model presents 

a novel approach that uses heart rate sensors to identify patients with normal 

or critical conditions. Given so, the developed model presents a multi-

objective SSHHCVRP which aims at achieving the following goals: (1) 

minimizing travel time from one node (patient) to another while considering 

patient’s condition (normal or critical) and the type of route, (2) maximizing 

the velocity of the vehicle travelling between nodes while considering 

patient’s condition and route type, (3) minimizing costs related to the 
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deviation from the average workload of a caregiver, (4) minimizing the 

penalty costs due to poor quality of service, by measuring the difference 

(gap) between the expected and perceived quality of service. To the best of 

our knowledge, this model presents a novel approach by adding two 

innovative (not considered before) elements to HHCVRP which are the use 

of technology (sensors) and measuring the quality of service by measuring 

and minimizing the gap between expectation and perception. Also, this 

research supports its intends to present a more comprehensive and realistic 

model by considering the three pillars of sustainability together, in terms of 

minimizing travel time (which eventually minimizes fuel consumption), the 

use of electric vehicles and considering the minimization of deviating from 

the average workload which yields a better working condition. The proposed 

model can be described as follows. In a network of single depot, multiple 

vehicles (caregivers) and a predefined number of nodes (patients), a 

caregiver travels in a vehicle to service a predefined set of geographically 

distributed patients. These patients could have two conditions, either normal 

condition or critical condition. The status of the patient is judged to be 

normal or critical using a heart rate sensor which provides continuous 

reading of the patient and transmits the data to the HHC service provider. 

The technology of data transmission is not considered in the model, so we 

assume that transmission is done by other third party. In addition, patients 

are assumed to have chronic cardiovascular conditions or recovering from 

any heart surgeries. In this model, one type of vehicles is assumed which is 

the electric vehicle. Such vehicles are operated by electrical energy rather 
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than fuel, thus, there is no fuel combustion and no emissions of GHG. The 

model considers battery charging status, charging duration and charging 

stations for the electric vehicles as shown in the work of (Erdem & Koç, 

2019). The battery level of this vehicle is represented by a percentage. 

Battery levels before and after visiting the charging station as well as, when 

arriving and leaving patient nodes must be monitored. Additionally, if the 

battery level reaches 10%, the driver (caregiver) should visit a charging 

station. Using such vehicles presents an environment friendly HHCVRP 

(Erdem & Koç, 2019). Figures 3.1 and 3.2 illustrate an example of the 

proposed problem that considers electric vehicles and heart rate sensors. 

Figure 3.1 shows an example of HHCVRP with a single depot, two EV, two 

charging stations and five patients under normal conditions to be servied, the 

problem includes duration of service with a predefined time windows to 

conduct the service. Also, energy levels of the electric vehicle at each patient 

node is considered. On the other hand, Figure 3.2 demonstrations the 

situation where one patient shows critical heart rate readings and thus, a 

higher priority of service was given to him. Moreover, it’s assumed that there 

is more than one available route between each two nodes; specifically there 

are four types of routes, each route corresponds to different speed range, 

energy consumption and different terrain nature (such as rural areas, urban 

areas and highways) (Hosseini-Nasab & Lotfalian, 2017). Furthermore, each 

caregiver is assigned with a defined number of jobs each day, the model 

considers the normalized time duration for each service and the deviation 

from this normalized time to calculate any deviations from the predefined 
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workload for each caregiver complying with labor laws and regulations. If 

any deviation from these workloads exists, costs will be incurred in form of 

overtimes paid to caregivers and penalties for breaking regulations. In 

addition, with regard to caregivers, this model considers their satisfaction by 

minimizing the workload deviation from its average working hours. 

 

Figure 3.1: An example of the proposed HHCVRP with normal condition patients 

Planned Path:  

EV 1: 1-2-3 

EV 2: 4-5 



46 

 

Figure 3.2: An example of the proposed HHCVRP with on critical condition patient 

In order to develop a more comprehensive and realistic model, this research 

offers a novel approach in VRP by measuring the quality of service using 

quality-related models. The work of Khorshidi and Hejazi (2011) was 

adopted to measure the quality of the provided HHC service, as well as, 

internal measures set by experts in the field of HHC, where patient’s needs 

and expectations are measured using internal measures. The normalized 

relationship between quality-related dimensions and the internal measure 

will be calculated and used along with the degree of fulfillment of the defined 

internal measure, to calculate the expected quality of service. Moreover, the 

work of Ghannadpour and Zarrabi (2019) was adopted to measure patient’s 

perceived satisfaction. The patients in our model are classified in to two 

categories, casual and urgent to assign different levels of priority in service 

based on medical necessities. Casual patients are given a priority of service 

Executed Path:  

EV 1: 1-3-2 

EV 2: 4-5 
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ranging from 1 to 3 (from a 5 scale) depending of their medical status. 

Whereas, urgent patients are given a priority level either 4 or 5. Note that 

among different quality dimensions, reliability and responsiveness 

dimensions are considered in this model in form of meeting the patient’s 

desired time of service with a predefined acceptable time windows of service 

(reliability), as well as, being able to serve critical condition patients quickly 

using the data from the employed sensors (responsiveness). The difference 

between expectations and perceptions is multiplied with a penalty which is 

the cost of poor quality of service, with the aim of minimizing such costs. 

3.3.2 Model Assumptions 

1. Single depot (staring point) and multi destination points (patients to be 

served). 

2. All vehicles are assumed to be identical in terms of energy consumption 

and battery capacity. 

3. The patients to be served are assumed to have cardiovascular conditions, 

such as patients recovering from heart diseases or patients with chronic 

heart conditions. 

4. All patients must be visited by a caregiver and their demand must be met.  

5. Two types of patients were assumed: patients under normal and critical 

medical conditions. 

6. Normal patients are assumed to have heart rate between 60 and 100 beats 

per minute (BPM), whereas, heart beats below 60 BPM and above 100 

BPM classifies a patient as under critical conditions (Avram et al., 2019).  
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7. Two types of services are assumed: normal service and critical service, 

where each type involves different skills and training requirements. 

8. The technology used for transmitting data from patients using heart rate 

sensor are assumed to be transmitted by a third party, in other words this 

model doesn’t consider how the data is transmitted (technical wise). Such 

technologies may include Cellular technologies (3G, 4G and 5G in some 

regions), Fiber Optics and internet clouding.  

9. There are four types of routes with different terrains and velocities, which 

was adopted from the work of Hosseini-Nasab and Lotfalian (2017). 

I. Route one (1-30 Km/hr.): such as in cities and urban areas, this speed 

limits leads to high fuel consumption. 

II. Route two (31-55 Km/hr.): such speed limits drops fuel 

consumption, as seen in routes in rural and sub-urban areas. 

III. Route three (56-80 Km/hr.): such as in rural areas and highways 

leads to the ideal fuel consumption. 

IV. Route Four (81-120 Km/hr.): in this speed limit fuel consumption 

rises due to high engine Revolutions Per Minute (RPM) which leads 

to high fuel burning and therefore high consumption. This type of 

routes includes multi-lane highways.  

10. Driving along different type of routes yields to different distances 

between the same couple of nodes. 

11. Limited battery capacity of the electric vehicle is assumed. 

12.  The electric vehicle must visit a charging station if battery capacity falls 

below 50%. 
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13. The location of charging stations is assumed to be fixed. 

14.  Electric vehicle battery capacity should be 100% charged after visiting a 

charging station. 

15. Electric vehicle energy consumption differs from one route to another, 

and was classified according to Younes et al. (2013) as follows: 

I. Route 1: 0.14 (kwh/km). 

II. Route 2: 0.12 (kwh/km). 

III. Route 3: 0.1 (kwh/km). 

IV. Route 4: 0.13 (kwh/km). 

16.  The degree of patient’s importance (priority) is based on the complexity 

of their medical condition, needed care and how they are affected by time 

of service i.e. time of medication and needed checkups. 

3.3.3 Sets and Indices 

i Set of source node, i = 0, 1, ..., N 

j Set of destination node under normal conditions, j = 0, 1, ..., N 

j′ Set of destination node under critical conditions, j′ = 1, ..., N 

p Index of patient p under normal conditions, p = 1, 2, ..., P,  𝑝 ∈ 𝑁  

c Index of patient c under critical conditions, c = 1, 2, ..., C, 𝑐 ∈ 𝑁 

PC Index of casual patients, 𝑃𝐶 ∈ 𝑁 

PU Index of urgent patients, 𝑃𝐼 ∈ 𝑁 

r Index of type of route, r = 1,2,3,4 
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hc Index of caregiver, hc = 1,..., HC 

d Index of day, d = 0,1,..., D 

t Index of time slot, t = 0,1,….., T 

k Index of electric vehicles, 𝑘 ∈ 𝐸 

S Set of recharging stations. 

S′ Set of dummy recharging stations to allow multiple visits. 

q Index of quality dimensions, q = 1,2,…..,Q 

𝛼 , β Index of internal measures of quality of service. 𝛼 , β =1,2,..,Q 

3.3.4 Model Parameters 

𝑇𝑖𝑚𝑒𝑑 Normalized work time at day d. 

𝐶ℎ𝑐𝑑 Costs associated with caregiver hc's workload deviation from 

the normalized value at day d. 

𝐾ℎ𝑐𝑑 Maximum working time in a single day for caregiver hc at day 

d. 

𝑆𝐻𝑅 Heart rate sensor reading for any patient T. 

𝑉𝐸𝐿𝑖𝑗𝑟 Velocity of travel between node i and node j along route r (Km/hr.) 

𝑉𝑟 The upper speed limit allowed on route r (Km/hr.) 

𝑒𝑖 Earliest arrival time within time window of service at patient node 

i. 
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𝑙𝑖 Latest arrival time within time window of service at patient node i. 

𝑓𝑖 The duration of service time at patient node i. 

𝑢′𝑖 The desired time of service at patient node i. 

𝜔𝑖 Waiting time at patient node i. 

𝑃𝑅𝑖 Importance degree of patient at node i based on medical status and 

needed service. 

𝑡𝑟𝑘 Total travel time of vehicle k. 

M Sufficiently large positive number. 

𝜎 Constant for violating the hard time windows. 

𝑠𝑖𝑗𝑟 Travel time from node i to node j along route r (i, j ∈ 𝑁 ∪ 𝑆′). 

𝑑𝑖𝑠𝑖𝑗𝑟 Travel distance from node i to node j along route r (i, j ∈ 𝑁 ∪ 𝑆′). 

𝛿𝑘 Recharging rate of electric vehicle k. 

𝑌𝑘 Battery capacity of electric vehicle k. 

𝜆𝑘 Consumption rate of electric vehicle k. 

𝑅𝑛𝑜𝑟𝑚
𝑞𝛼 The normalized relationship between the qth service quality 

dimension and the αth internal measure of service. 

𝛾𝛼𝛽 Presents the dependencies and correlation between internal 

measures where α&β ∈ M. 
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𝑅𝑞𝛽 The relationship between the qth service quality dimension and the 

βth internal measure of service. 

𝑃𝑒𝑛𝑞 The cost ($) of poor quality of service for the qth dimension of 

service quality. 

𝑊𝑇𝑍𝑖
 Pre-defined target weight for objective function Zi, set by 

administrators and decision makers. 

𝑍𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Summation of all objective functions with their weights (value of 

the near optimal solution). 

3.3.5 Decision Variables 

 

𝑥𝑖𝑗𝑝𝑟 =  { 
1, if a caregiver travels from 𝑖 to 𝑗 through route 𝑟  

serving patients (𝑝) under normal conditions
0, otherwise

    

𝐶𝑖𝑗′𝑐𝑟 =  {
1, if a caregiver travels from 𝑖 to 𝑗′ through route 𝑟 

𝑠erving patients (𝑐) under critical conditions
0, otherwise

   

𝑆𝑅𝐻𝑅 =  { 
1, if heart rate of a patient  is within critical range

0, otherwise
  

𝑦𝑖𝑘 Battery state of an electric vehicle k ∈ E at node i. 

𝑔𝑖𝑘 Battery state of an electric vehicle k ∈ E after visiting a 

charging station 𝑖 𝜖 𝑆′. 

𝑡𝑜𝑡. 𝑙𝑜𝑎𝑑ℎ𝑐𝑑 The total workload of caregiver hc on day d. 

𝑊𝑖𝑘 Electric vehicle charging duration(𝑖 𝜖 𝑆′). 
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𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞 Real number where 𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞  ∈ [0,1] that presents the 

expected level of customer satisfaction from the qth dimension 

of service quality. 

𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞 Real number where 𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞  ∈ [0,1] that presents the 

perceived level of customer satisfaction from the qth dimension 

of service quality. 

𝐹𝑢𝑙𝛼 Real number where 𝐹𝑢𝑙𝛼  ∈ [0,1] that shows the level of 

fulfillment of the αth internal measure. 

𝜇𝑖(𝑡𝑖) Membership function of patient node i. 

𝜂𝑖 Control variable for each patient at node i. 

𝑎𝑡𝑖 Actual arrival time at patient node i. 

𝑡𝑖 Start time of service at patient node i. 
 

3.3.6 Defining Equations 

𝑇` = 𝑝 ∪ 𝑐                                                                                                             (1) 

• Equation (1) defines a set T which is the total patients considered in this 

model including the two types of patients, whether under normal 

medical conditions (p) or under critical conditions (c). 

𝑆𝑅𝐻𝑅  =  {

1 𝑖𝑓 0 ≤ 𝑆𝐻𝑅 ≤ 60   
  0 𝑖𝑓 60 < 𝑆𝐻𝑅 < 100 

1 𝑖𝑓 100 ≤ 𝑆𝐻𝑅         
                                                                   (2)    

• Equation (2) shows the conversion of heart rate sensor 𝑆𝐻𝑅 readings to 

binary numbers where readings between 60 BPM and 100 BPM are in 
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normal range and yields to 𝑆𝐻𝑅  = 0 , on the contrary readings below 60 

BPM or above 100 BPM are considered critical which results in 𝑆𝐻𝑅  = 1. 

𝑉𝐸𝐿𝑖𝑗𝑟𝑘 ≠ 0      ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗, 𝑘 𝜖 𝐸                                      (3)    

𝑉𝐸𝐿𝑖𝑗′𝑟𝑘 ≠ 0     ∀ 𝑖, 𝑗′ ∈ 𝑁, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗′, 𝑘 𝜖 𝐸                                   (4)      

• Equations (3) and (4) specify that the velocity parameter doesn’t equal 

to zero when traveling to serve both patients under normal and critical 

conditions. 

𝑅𝑛𝑜𝑟𝑚
𝑞𝛼 =  

∑ 𝑅𝑞𝛽 𝛾𝛽𝛼
𝑀
𝛽=1

∑ ∑ 𝑅𝑞𝛼
𝑀
𝛽=1 𝛾𝛼𝛽

𝑀
𝛼=1

                                                                               (5)    

• Equation (5) defines the normalized relationship between service 

quality element and a pre-defined internal measure (specified by 

experts) which was adopted from the work of Khorshidi and Hejazi 

(2011). 

𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞 =  ∑ 𝑅𝑛𝑜𝑟𝑚
𝑞𝛼 𝐹𝑢𝑙𝛼    ∀ 𝑞 ∈ 𝑄                                                 (6)𝑀

𝛼=1   

• Equation (6) shows the level of the expected customer satisfaction, 

which is calculated using equation (5) and the degree of fulfillment of a 

particular internal measure (Khorshidi and Hejazi, 2011). 

𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞 =  ∑ 𝜇𝑖(𝑡𝑖)     ∀ 𝑞 ∈ 𝑄                                                                     (7)

𝑁

𝑖=1

 

• Equation (7) calculates the perceived satisfaction on the provided 

service, which is measured using the triangular membership 
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function 𝜇𝑖(𝑡𝑖), which on the other hand illustrates the service time 

windows elements as cited from Ghannadpour and Zarrabi (2019). 

𝜇𝑖(𝑡𝑖) =  (
(𝑎𝑡𝑖 + 𝜔𝑖) −  𝑒𝑖

𝑢′𝑖 − 𝑒𝑖
) . (1 − 𝜂𝑖) + (

𝑙𝑖 − (𝑎𝑡𝑖 + 𝜔𝑖)

𝑙𝑖 − 𝑢′𝑖
) . 𝜂𝑖  ∀ 𝑖

∈ 𝑃𝑈                                                                                                   (8) 

𝜇𝑖(𝑡𝑖) =  (
(𝑎𝑡𝑖 + 𝜔𝑖) − (𝑒𝑖 − 𝜎)

𝑢′𝑖 − (𝑒𝑖 − 𝜎)
) . (1 − 𝜂𝑖)

+ (
(𝑙𝑖 + 𝜎) − (𝑎𝑡𝑖 + 𝜔𝑖)

(𝑙𝑖 + 𝜎) − 𝑢′𝑖
) . 𝜂𝑖     ∀ 𝑖 ∈ 𝑃𝐶                                  (9) 

(𝑢′𝑖 − (𝑎𝑡𝑖 + 𝜔𝑖)). 𝜂𝑖 + ((𝑎𝑡𝑖 + 𝜔𝑖) − 𝑢′𝑖). (1 − 𝜂𝑖) < 0 ∀ 𝑖

∈ 𝑃𝑈 ∪ 𝑃𝐶                                                                                            (10) 

• Equations (8-10) show how to compute the perceived satisfaction levels 

for different patients (urgent and casual) using the earliest, latest, 

desired and actual time of service. The variable 𝜂𝑖 is used to control if 

the start of service is before or after the desired time of service 

(Ghannadpour and Zarrabi, 2019). 

𝑍𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = ∑ 𝑊𝑇𝑍𝑖
. 𝑍𝑖                                                        

4

𝑖=1

                                  (11) 

• The total near optimal solution is shown in equation (11), which is the 

summation of the product of each objective function with its pre-

determined weight. 
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3.3.7 Objective Functions 

 

min 𝑍1 = ∑ ∑ (∑ ∑(𝑠𝑖𝑗𝑟 𝑥𝑖𝑗𝑝𝑟 (1 − 𝑆𝑅𝐻𝑅))

𝑃

𝑝=1

𝑁

𝑗=1

    

4

𝑟=1

𝑁

𝑖=0

+  ∑ ∑ 𝑠𝑖𝑗′𝑟  𝐶𝑖𝑗′𝑐𝑟 𝑆𝑅𝐻𝑅)

𝐶

𝑐=1

𝑁

𝑗′=1

)                                                 (12) 

• First objective function is shown in equation (12) which aims at 

minimizing the overall travelled time, which was adopted and modified 

from Erdem and Koç (2019) research. The left hand side of equation 

(12) minimizes the travel time between a set of predefined patients 

under normal medical conditions which is judged by the reading of the 

employed sensor. However, the right hand side minimizes the travel 

time between predefined patients whenever any of them experience 

abnormal critical medical condition. 

max 𝑍2 = ∑ ∑ (∑ ∑(𝑉𝐸𝐿𝑖𝑗𝑟 𝑥𝑖𝑗𝑝𝑟 (1 − 𝑆𝑅𝐻𝑅))

𝑃

𝑝=1

𝑁

𝑗=1

 

4

𝑟=1

𝑁

𝑖=0

+  ∑ ∑(𝑉𝐸𝐿𝑖𝑗′𝑟  𝐶𝑖𝑗′𝑐𝑟 𝑆𝑅𝐻𝑅)

𝐶

𝑐=1

𝑁

𝑗′=1

)                                          (13) 

• Second objective function is presented in equation (13) which aims at 

maximizing the travel speed from one node (patient) to another. Similar 

to equation (12) the left hand side of this objective function maximizes 

the travel speed when visiting stable patients, on the other hand, the 

maximization of speed when serving un stable patients is shown in the 
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right hand side of equation (13), the decision of serving either stable or 

unstable patients is made based on the heart rate sensor readings. Note 

that this objective function was adopted from the work of Hosseini-

Nasab and Lotfalian (2017) and modified to match and fit in the 

developed model. 

min 𝑍3 = ∑ ∑ ∑ ∑ (∑ ∑ (𝐶ℎ𝑐𝑑 . |𝑇𝑖𝑚𝑒𝑑 . 𝑥𝑖𝑗𝑝𝑟 −𝑃
𝑝=1

𝑁
𝑗=1

𝐻𝐶
ℎ𝑐=1

𝐷
𝑑=1

4
𝑟=1

𝑁
𝑖=0

 𝑡𝑜𝑡. 𝑙𝑜𝑎𝑑ℎ𝑐𝑑|(1 − 𝑆𝑅𝐻𝑅)) +  ∑ ∑ (𝐶ℎ𝑐𝑑 . |𝑇𝑖𝑚𝑒𝑑 . 𝑥𝑖𝑗𝑝𝑟 −𝐶
𝑐=1

𝑁
𝑗′=1

 𝑡𝑜𝑡. 𝑙𝑜𝑎𝑑ℎ𝑐𝑑|  𝐶𝑖𝑗′𝑐𝑟 𝑆𝑅𝐻𝑅))                                                                                 (14)  

• The third objective function is shown on equation (14), which aims at 

minimizing the costs related to having a deviation from the average 

daily workload for a caregiver, which results in economic and 

behavioral disputes between HHC companies and caregivers. A 

deviation more or less than the average workload will cause costs in 

form of overtimes or not adequately allocate workload among 

employees. 

min 𝑍4 = ∑ ∑ ∑ (∑ ∑((𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞

𝑃

𝑝=1

𝑁

𝑗=1

𝑄

𝑞=1

4

𝑟=1

𝑁

𝑖=0

− 𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞)𝑃𝑅𝑖 . 𝑃𝑒𝑛𝑞 . 𝑥𝑖𝑗𝑝𝑟  (1 − 𝑆𝑅𝐻𝑅)) 

+  ∑ ∑((𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞

𝐶

𝑐=1

𝑁

𝑗′=1

− 𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞)𝑃𝑅𝑖 . 𝑃𝑒𝑛𝑞 . 𝐶𝑖𝑗′𝑐𝑟 𝑆𝑅𝐻𝑅))  (15) 
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• Equation (15) presents the fourth objective function that aims at 

minimizing the cost of poor quality of service, which is the product of 

penalties of poor service and the difference between patient’s expected 

and perceived satisfaction on the provided health service. Similar to the 

first two objective functions, the left hand side considers patients under 

normal status and the right side shows patients under risky state. 

3.3.8 Constraints 

∑ 𝑥𝑖𝑗𝑝𝑟 = 1  ∀𝑗 ∈ 𝑁, 𝑝 ∈ 𝑃 𝑟 = 1, … ,4, 𝑖 ≠ 𝑗                                           (16)

𝑁

𝑖=0

 

∑ 𝐶𝑖𝑗′𝑐𝑟 = 1  ∀𝑗′ ∈ 𝑁, 𝑐 ∈ 𝐶 𝑟 = 1, … ,4, 𝑖 ≠ 𝑗′                                         (17)

𝑁

𝑖=0

 

∑ ∑ ∑ 𝑥𝑖𝑗𝑝𝑟 = 1 ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗                                                                (18)

4

𝑟=1

𝑃

𝑝=1

𝑁

𝑗=1

 

∑ ∑ ∑ 𝐶𝑖𝑗′𝑐𝑟 = 1 ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗′                                                              (19)

4

𝑟=1

𝑃

𝑝=1

𝑁

𝑗′=1

 

∑ ∑ 𝑥𝑖𝑗𝑝𝑟 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 

4

𝑟=1

                                                                   (20)

𝑃

𝑝=1

 

∑ ∑ 𝐶𝑖𝑗′𝑒𝑟 ≤ 1 ∀𝑖, 𝑗′ ∈ 𝑁, 𝑖 ≠ 𝑗′ 

4

𝑟=1

                                                                (21)

𝐶

𝑐=1

 

∑ ∑ 𝑥𝑖𝑙𝑝𝑟 −  ∑ ∑ 𝑥𝑙𝑗𝑝𝑟

4

𝑟=1

𝑁

𝑗=0

= 0 ∀𝑙 ∈ 𝑁, 𝑝 ∈ 𝑃 , 𝑖 ≠ 𝑗 ≠ 𝑙 

4

𝑟=1

                     (22)

𝑁

𝑖=0

 

∑ ∑ 𝐶𝑖𝑙𝑐𝑟 −  ∑ ∑ 𝐶𝑙𝑗′𝑐𝑟

4

𝑟=1

𝑁

𝑗′=0

= 0 ∀𝑙 ∈ 𝑁, 𝑐 ∈ 𝐶 , 𝑖 ≠ 𝑗′ ≠ 𝑙 

4

𝑟=1

                   (23)

𝑁

𝑖=0
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∑ ∑ ∑ 𝑥𝑖𝑗𝑝𝑟

4

𝑟=1

𝑃

𝑝=1

𝑁

𝑗=1

  ≤ 1 ∀𝑗 ∈ 𝑆′                                                                          (24) 

𝑡𝑜𝑡. 𝑙𝑜𝑎𝑑ℎ𝑐𝑑 ≤  𝐾ℎ𝑐𝑑               ∀  𝑑, 𝑡 ∈ 𝑇                                                       (25) 

𝑎𝑡𝑖 + 𝜔𝑖 + 𝑓𝑖 + 𝑠𝑖𝑗𝑟 − (1 − 𝑥𝑖𝑗𝑝𝑟)𝑀 ≤  𝑡𝑟𝑘   ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑟 = 1,2,3,4, 𝑖

≠ 𝑗                                                                                                       (26) 

𝑎𝑡𝑖 + 𝜔𝑖 + 𝑓𝑖 + 𝑠𝑖𝑗𝑟 − (1 − 𝑥𝑖𝑗𝑝𝑟)𝑀 ≤  𝑎𝑡𝑗    ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑟 = 1,2,3,4, 𝑖

≠ 𝑗                                                                                                       (27) 

𝑒𝑖  ≤  𝑎𝑡𝑖 + 𝜔𝑖  ≤  𝑙𝑖            ∀ 𝑖 ∈ 𝑃𝑈                                                               (28) 

𝑒𝑖 −  𝜎 ≤  𝑎𝑡𝑖 + 𝜔𝑖  ≤  𝑙𝑖 +  𝜎          ∀ 𝑖 ∈ 𝑃𝐶                                               (29) 

𝑎𝑡𝑖 +  (𝑠𝑖𝑗𝑟 + 𝑓𝑖 + 𝜔𝑖)𝑥𝑖𝑗𝑝𝑟 +  𝑊𝑖′𝑘  ≤  𝑎𝑡𝑗 + 𝛿𝑘𝑌𝑘(1 −  𝑥𝑖𝑗𝑝𝑟) ∀ 𝑖, 𝑗

∈ 𝑁, 𝑖′ ∈ 𝑆′ 𝑝 ∈ 𝑃, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗                                     (30) 

0 ≤  𝑦𝑗𝑘  ≤  𝑦𝑖𝑘 −  𝑠𝑖𝑗𝑟𝜆𝑘𝑥𝑖𝑗𝑝𝑟 +  𝑌𝑘 (1 −  𝑥𝑖𝑗𝑝𝑟)∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐸 ,

𝑝 ∈ 𝑃, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗                                                            (31) 

0 ≤  𝑦𝑗𝑘  ≤  𝑔𝑖′𝑘 −  𝑠𝑖𝑗𝑟𝜆𝑘𝑥𝑖𝑗𝑝𝑟 +  𝑌𝑘 (1 −  𝑥𝑖𝑗𝑝𝑟)∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐸, 𝑖′

∈ 𝑆′, 𝑝 ∈ 𝑃, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗                                                  (32) 

𝑦𝑗𝑘  ≤  𝑔𝑖𝑘  ≤  𝑌𝑘  ∀ 𝑗 ∈ 𝑁, 𝑖 ∈ 𝑆′, 𝑘 ∈ 𝐸                                                       (33) 

𝑤𝑖𝑘  ≥  𝛿𝑘 (𝑔𝑖𝑘 −  𝑦𝑖𝑘)  ∀ 𝑖 ∈ 𝑆′, 𝑘 ∈ 𝐸                                                         (34) 

𝑉𝐸𝐿𝑖𝑗𝑟 ≤ 𝑉𝑟 𝑥𝑖𝑗𝑝𝑟 ∀𝑖, 𝑗 ∈ 𝑁, 𝑝 ∈ 𝑃 𝑟 = 1, … ,4, 𝑖 ≠ 𝑗                                (35)  

𝑥𝑖𝑗𝑝𝑟 +  𝐶𝑖𝑗′𝑐𝑟 = 1  ∀ 𝑖, 𝑗, 𝑗′ ∈ 𝑁, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑟 = 1,2,3,4 , 𝑖 ≠ 𝑗 ≠ 𝑗′       (36) 

𝑥𝑖𝑗𝑝𝑟  ∈  {0,1}                                                                                                       (37) 
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𝐶𝑖𝑗′𝑐𝑟  ∈  {0,1}                                                                                                     (38) 

𝑦𝑖𝑘  ≥ 0, 𝑡𝑖𝑘  ≥ 0  ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐸                                                                   (39) 

𝑔𝑖𝑘  ≥ 0, 𝑤𝑖𝑘  ≥ 0  ∀ 𝑖 ∈ 𝑆′, 𝑘 ∈ 𝐸                                                                 (40) 

0 ≤ 𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞  ≤ 1  ∀ 𝑞 ∈ 𝑄                                                                           (41) 

0 ≤ 𝑆𝑎𝑡. 𝑝𝑒𝑟𝑞  ≤ 1  ∀ 𝑞 ∈ 𝑄                                                                            (42) 

0 ≤ 𝐹𝑢𝑙𝛼  ≤ 1  ∀ 𝛼 ∈ 𝑀                                                                                 (43) 

3.3.9 Equations description 

Equations (16) and (17) shows constraints which specify that from patient 

node i any patient could be visited in both normal and critical conditions. 

Constraints which guarantee that each patient is visited once only are shown 

in equations (18) and (19). Moreover, the Constraints shown in equations 

(20) and (21) ensure that under normal and critical conditions only one route 

must be selected to travel from one patient to another. The law of flow 

conservation and the continuity of paths are shown on equations (22) and 

(23). The constraint in equation (24) states that a charging station could be 

visited or not and it is not mandatory to recharge the vehicle. Furthermore, 

equation (25) restricts caregivers from exceeding a predefined workload so 

that a maximum daily working hours is not encroached. The maximum 

allowable travel time of each vehicle is restricted and controlled using the 

constraint presented in equation (26). The arrival times as well as the service 

time windows are defined in equations (27-29). Note that time windows for 
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urgent patients is shown in equation (28), whereas time windows for casual 

patients is defined in equation (29). On the other hand, constraint (30) 

safeguards time feasibility but differs from constraint (27) by considering 

recharging duration of electrical vehicles. The battery status is shown in 

constraints (31) and (32) where consumption is restricted to be between 

nodes. Equation (31) shows battery levels at patient j after visiting patient i 

considering consumption rate and battery capacity; in addition equation (32) 

shows battery level at patient j after visiting charging station and restricts 

energy consumption to be between the patient and the charging station. 

Constraint (33) restricts battery capacity levels to be less than or equal 

(doesn’t exceed) maximum capacity after visiting charging station, yet it 

restricts capacity levels to be greater than or equal to the node before visiting 

charging station. Constraint (34) shows the charging duration considering 

energy consumption of electric vehicle k and the difference in battery 

capacities before and after visiting the charging station. Equation (35) 

defines a constraint that limits the speed of travel when serving stable 

patients to the upper speed limit of the selected route. on the other hand, 

constraint (36) implies that a caregiver travels to serve either patients with 

normal conditions or patients with critical conditions. The domain of 

decision variables is shown in Constraints (37) and (38). Constraint (39) and 

(40) restricts a positive value of battery level, charging duration of vehicles 

and service time. Finally the constraints in equations (41-43) define the 

boundaries of the variables, note that those variables are real numbers 

between 0 and 1 i.e. ∈  [0,1]. 
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4 Chapter Four 

Solution Methodology  

4.1 Chapter Overview 

In this chapter, the methodology used to translate the mathematical model to 

programming codes and then numerical results is presented and discussed. 

This methodology was carried out using a metaheuristic algorithm; which 

was shown and explained including each stage of the process in this chapter. 

This chapter shows the methodology used including the software used for 

coding and other hardware specifications, in addition to sub-sections to 

present the used algorithm. The next chapter presents the obtained results 

with sub-sections that discuss each aspect of the model. 

4.2 Optimization Methodology 

As mentioned in previous chapters, due to the complexity of the problem at 

hand, using exact methods to generate solutions for the proposed model is 

infeasible. Therefore, in this research approximate optimization 

methodology is used, mainly by using a metaheuristic algorithm that 

combines and based on Ant Colony Optimization algorithm (ACO) and non-

dominated sorting (NDS) approach. The use of the proposed Non-dominated 

Sorting Ant Colony Optimization (NS-ACO) algorithm is due to the need of 

a metaheuristic algorithm that deals with the dynamism of the proposed 

model in addition to the multi-objective functions. Such algorithm will 

generate near-optimal solutions compared to the exact optimization methods 
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which produce global optimal solutions (Rader, 2010). The use of NS-ACO 

algorithm is justified by its appropriateness in solving multi-objective 

complex NP-hard optimization problems including VRP, as shown in many 

researches in the literature (Bagherinejad & Dehghani, 2016; Gupta & Garg, 

2017; Kalhor et al., 2011). As discussed in previous chapters, the nature of 

the presented SSHHCVRP model requires a decision to be made after each 

visited node to select which node to visit next, depending on the condition 

of patients which is transmitted continuously by the employed sensors, as 

well as, the energy level of the vehicle. However, this is not the only issue to 

be solved by the proposed algorithm; the presence of multi-objective 

functions must be considered.  Therefore, ACO is used to handle the issue of 

dynamic vehicle routing that arises in two situations, first when changing the 

planned routing path depending on the medical condition of patients (normal 

or critical), and the second situation is related to the energy levels of the 

electric vehicle to make a decision to visit a charging station or not. Whereas, 

the NDS technique is used to find and sort the best solutions generated from 

ACO algorithm, and thereby, presenting the Pareto front solutions. The 

proposed NS-ACO algorithm was coded using Matlab software along with a 

personal computer with windows 10 operating system, 3.00 GHz CPU, Intel 

i5 processor, and 8.00 GB of RAM. 

4.2.1 Ant Colony Optimization (ACO) 

ACO is categorized as one of the optimization techniques that follow the 

swarm intelligence optimization methodology. Swarm intelligence 
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optimization approaches were developed based on the observed behavior of 

insects such as bees and ants. The surprisingly socially coordinated behavior 

of such insects inspired scientists to develop algorithms that solve complex 

real life problems by simulating the social structure and activities of insects. 

Therefore, ACO is a meta-heuristic optimization approach that provides 

solution for complex problems based on and aided by the behavior of ants, 

in terms of their team work and travel from their nest (colony) to food 

sources in different unique paths. In ACO artificial ants are assumed to travel 

from one node to another and thereby, each ant produces a solution for the 

problem at hand. In real world ants use a unique system for gathering food 

and traveling from nest to food source and back, however, ants can’t 

communicate with each other and plan the process. Each ant leaves the nest 

to take one of many routes to reach food. Each ant selects randomly the route 

to follow, and this random selection of routes continues ant each junction 

until reaching food. Logically, each route has different travel distance than 

other routes; therefore, each ant covers different travel distance compared to 

other ants. While traveling ants deposit a chemical substance called 

pheromones which used for communication between ants to tail and follow 

the optimal path. As mentioned, ants select route randomly, but when sensing 

pheromones they will follow the route which contains pheromones, as the 

process continues shorter (faster) route will possess the largest amount of 

pheromones since ants will leave nest and return more often compared to 

other ants taking longer routes. Therefore as the number of ants taking the 

same route increases, the probability of other ants to join the same route 
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increases due to the large amount of pheromones in those routes. This form 

of communication between ants using pheromones enables this species of 

insects to survive and get food, as well as, solve problems whenever a barrier 

appears between them and food. In addition, pheromones evaporates as the 

probability of taking the longer route by ants decreases, thus, the level of 

pheromones in this route decreases and the existing pheromones evaporates. 

However, the random selections of routes remains but with lower 

probability. This random selection of routes enables ants to survive and helps 

them in the process of finding and navigating alternatives route when 

obstacles appear. This trail selection process is the foundation of ACO to 

solve complex real life problems, especially problems where each node in 

the routing plan owns different importance than other nodes and must be 

given a higher probability for the vehicle (in case of VRP) to visit. According 

to Bell and McMullen (2004), the first implementation of ACO in VRP was 

introduced by the doctoral dissertation of Dorigo (1992), and with time the 

use of ACO in solving VRP continues with various and continuous 

improvements in the algorithm (Wang et al., 2019; Zheng et al., 2020). 

Figure 4.1 shows the ACO algorithm flowchart as shown in the work of 

Khanna et al. (2015). 
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Figure 4.1: ACO algorithm flowchart (Khanna et al., 2015) 
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4.2.2 Non-dominated Sorting  

Non-dominated sorting (NDS) is a technique used in optimization problems 

to sort solution based on their dominance according to the principle of Pareto. 

This technique doesn’t provide one optimal solution for the problem; it rather 

delivers Pareto-Optimal solutions at each irritation.  In NDS a Pareto-optimal 

solution exists for the multi objective problem where those solutions are not 

dominated by any other solution and can’t be enhanced without worsening 

at least one of the other objectives. These solutions are led by the most 

feasible solutions referred to as Pareto front solutions. According to Deb et 

al. (2000) the NDS process consists of two stages, non-dominated sorting 

and crowding distance. NDS starts with non-dominated sorting stage to rank 

each solution in the population by comparing it with other solutions in the 

same population to find if it is dominated by other solution or not. The 

process continues until finding the first class (Pareto front) solutions, the 

other ranks are done by removing the Pareto front and repeat the same 

process above. The next and final stage is crowding distance which is used 

to rank solutions of the first front (Pareto front) solutions which is based on 

the density of solutions that border a particular point as shown in Figure 4.2, 

where Pareto front solutions are presented in solid circles and the crowding 

distance is shown as a dashed cuboid. Therefore, the rank and selection of 

solutions is based on the fitness of the solution and the crowding distance if 

two solutions have the same rank (lower crowding distance solution is 

selected). 
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Figure 4.2: Crowding distance process (Deb et al., 2000) 

4.2.3 Solution Presentation 

As discussed earlier, in the proposed SSHHCVRP model caregivers will 

travel from a depot to serve a predefined set of patients and return back to 

the depot, while considering the condition of patients through the 

information provided by a heart rate sensor, and the decision to visit a 

charging station or not. This situation creates uncertainty when planning the 

routing plan and must be solved as a dynamic routing problem. Generally, 

the proposed problem should be presented as a five dimension matrix that 

includes depot node, normal condition patient’s destination node, critical 

condition patient’s destination node, charging station node and route type. 

However, in the suggested metaheuristic algorithm the problem can be 

presented by a two dimension matrix. The solution for our optimization 

problem starts with ACO algorithm to generate a population of feasible 

solutions for the problem, the nature of ACO helps to overcome the dynamic 

routing problem. Then, NDS takes place to provide the best possible 

solutions for the problem. 
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The first step of the solutions is constructing different routes. At each 

repetition of the algorithm, an ant which represents a vehicle will travel from 

the depot node to visit different nodes that represent patients. After visiting 

each node, the ant will make a decision to visit another node based on the 

level of pheromones, where higher levels of pheromones results in a higher 

probability of taking that route. The probability of selecting the destination 

node is calculated using the following formula. 

𝑗 = arg max{(𝜏𝑖𝑢)(𝜂𝑖𝑢)𝛽}  𝑓𝑜𝑟 𝑢 ∉  𝑀𝑘 , 𝑖𝑓 𝑞 ≤ 𝑞0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑆       (44) 

Where 𝜏𝑖𝑢 is the level of pheromones between the current node i and the 

possible destination node u, 𝜂𝑖𝑢 is the inverse of the distance between nodes 

i and u, 𝛽 is a parameter that shows the importance of pheromone levels 

compared to distance. Moreover, 𝑀𝑘 represents the memory of the ant where 

visited nodes are memorized and can’t be visited twice.  𝑞 is a random 

number  ∈  [0,1], whereas, 𝑞0 is a predefined parameter where 0 ≤ 𝑞0 ≤ 1. 

In a situation where 𝑞 ≥ 𝑞0 a random variable 𝑆 will be selected by the ant 

to be the next patient based on the following probability (𝑝𝑖𝑗). 

𝑝𝑖𝑗 =  
(𝜏𝑖𝑗)(𝜂𝑖𝑗)

𝛽

∑ (𝜏𝑖𝑗)(𝜂𝑖𝑗)
𝛽

𝑢 ∉ 𝑀𝑘

  𝑖𝑓 𝑗 ∉  𝑀𝑘 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                (45) 

Therefore, the travelling ant may follow a desirable route (exploitation) that 

had been established, or it could take a new random route (exploration) based 

on the probability is equation 45 that favors higher pheromone levels and 

shorter distance. However, in our proposed model, a higher probability must 

be given to critical condition patients (if there is one) and chagrining stations 
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if the energy level is low. For the purpose of ensuring that the algorithm will 

prioritize critical condition patients and charging nodes whenever needed. 

To do so, the level of pheromones must be altered at routes leading to those 

nodes, and thereby guarantees that the virtual ants (vehicles) will follow 

those routes. Equation 46 shows the specified probability of taking the 

aforementioned routes in different situations.  

𝜏𝑖𝑗 =  {

    0.1     , 𝑖𝑓 (𝑆)𝑖𝑠 𝑛𝑜𝑡 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 > 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

0.9        , 𝑖𝑓 (𝑆) 𝑖𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 > 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

  1              , 𝑖𝑓 (𝑆) 𝑖𝑠 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙  
< 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

(46)  

From equation 46, when a critical node is found, the level of pheromones 

will increase to 90% which in return will increase the probability in equation 

45 for the vehicle to take the shortest route to that node. Similarly, when the 

node is not critical and energy levels are above minimum, the level of 

pheromones will be 10% and the probability of selecting different routes will 

depend in the distance between nodes. Finally, when the energy levels are 

below the minimum allowable level, the pheromone levels will be 100% 

directed to the route which leads to a charging station. Note that at each 

iteration the level of pheromones is updated at each route depending on the 

status of patients and energy levels. 

The next step is trial updating where the level of pheromones is updated 

continuously in each route. The process consists of two types of trial 

updating, local and global updating. After the generation of solutions, local 

updating is used to lower the levels of pheromones at each route to show the 



72 

idea of pheromone evaporation and ensuring that no solution is too dominant. 

Local trial updating is shown in equation 47. 

𝜏𝑖𝑗 =  (1 − 𝛼)𝜏𝑖𝑗 + (𝛼)𝜏0                                                                                (47) 

Where α is the speed of pheromone evaporation and 𝜏0 is the initial level of 

pheromone at each route. Moreover, global trial updating is used to add more 

levels of pheromones in the best (near optimal) route which was taken by 

one of the ants as shown in equation 48, where L is the value of the best 

solution. 

𝜏𝑖𝑗 =  (1 − 𝛼)𝜏𝑖𝑗 + 𝛼(𝐿)−1                                                                            (48) 

After creating different solutions for the problem using ACO algorithm, the 

next step is selecting the Pareto front solutions which are the fittest ones 

using NDS and crowding distance operator. In addition to finding Pareto 

front solutions, NDS is used to deal with the multi-objective functions in the 

model. Figure 4.3 shows a detailed flowchart that illustrates how the ACO 

algorithm was conducted, where sets m, N, J and T correspond to the set of 

ants, node number, destination nodes and iteration number, respectively. In 

addition, patient’s condition and vehicle’s energy level are continuously-

updated, and possess the highest priority when needed as shown in Figure 

4.3. Moreover, a process flowchart that presents the steps of conducting the 

proposed NS-ACO algorithm is shown in Figure 4.4. 
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 Figure 4.3: ACO algorithm flowchart for the proposed SSHHCVRP 
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Figure 4.4: NS-ACO flowchart 
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Chapter Five 

Research Results 

 Chapter Overview 

In this chapter, the obtained results after solving the proposed SSHHCVRP 

are presented, discussed and explained. First, the numerical data used in 

solving the model is presented. Then the obtained results are shown 

including routing plan, costs functions, workload and quality of service. 

 Results and Discussion 

This section presents the obtained numerical results after solving the 

developed model. Hypothetical data was used to solve the model, which was 

adopted from literature or generated randomly using MATLAB software. 

Due to the use of hypothetical data rather than real world scenarios, different 

sized instances were tested to validate and verify the solvability of this 

model. First, small instances were used to present results, while medium to 

large instances were shown later on this chapter. 

5.2.1 Numerical Data 

As mentioned earlier, the set of numerical data used is either adopted from 

literature or generated randomly. In this section, the adopted data were 

presented for the purpose of evaluating the developed model compared to 

previous work in the literature. In addition, the inclusion of numerical data 

previously used in validated models will improve the robustness of our 
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model. Table 5.1 shows the used numerical data used in the model. The 

numerical data used for the velocity of vehicle and the distance of travel from 

one node to another through one of the assumed routes was adopted from the 

work of Hosseini-Nasab and Lotfalian (2017). The velocity and distance 

follows a uniform distribution ranging from 10-50 km and 1-120 km/hr. 

respectively, where the decision regarding the near optimal velocity and 

distance is done by the model based on the selected route to follow. 

Moreover, the values of electric vehicle consumption rate and battery 

capacity are in consistence with (Statista Research Department, 2018; 

Younes et al., 2013). Also, with respect to battery capacity, the threshold at 

which a charging station must be visited was set to 50% of total battery 

capacity. In addition, the cost of deviating from the average workload per 

working day for each caregiver, was set hypothetically to 30 $/hr. In addition, 

the penalty of poor service where patient’s perception doesn’t meet the 

expectations was set to 100 $. Also, the priority of service 𝑃𝑅𝑖 is defined to 

be between 1 and 5 (i.e. ∈ {1,2,3,4,5}), where the value of 1 shows a patient 

with the least priority in service, whereas 5 is the highest as discussed in 

previous chapters. Finally the workload was set to 8 hours per working day, 

whereas the maximum workload was proposed to be 10 hours per working 

day. Note that due to the nature of HHC services, three shifts should be 

planned to cover a continuous 24 hours of service, however, in this research 

one shift of 8 hours will be considered and the same analysis applies to the 

remaining shifts. With regard to routes, Table 5.2 summarizes the 
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characteristics of each route type in terms of maximum allowable velocity, 

maximum length and energy consumption. 

Table 5.1: Numerical data used in the proposed SSHHCVRP model 

Parameter Value 

𝑑𝑖𝑠𝑖𝑗𝑟 U [10,50] km 

𝑉𝐸𝐿𝑖𝑗𝑟 U [1,120] km/hr. 

𝜆𝑘 ≥ 0.1 

𝑌𝑘 43 kwh 

𝑌𝑘 Threshold 50% 

𝐶ℎ𝑐𝑑 30 $/hr. 

𝑃𝑒𝑛𝑞 100 $ 

𝑃𝑅𝑖  ∈ {1,2,3,4,5} 

Workload ( 𝑇𝑖𝑚𝑒𝑑) 8 hours 

𝐾ℎ𝑐 ≤ 10 hours 
 

Table 5.2: Assumed characteristics of each route 

Route type 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 

𝑉𝑟 (Km/hr.) 30 55 80 120 

Maximum 𝑑𝑖𝑠𝑖𝑗𝑟 (km) 10 20 30 50 

𝜆𝑘 (kwh/km) 0.14 0.12 0.1 0.13 
 

5.2.2 Numerical Results 

After solving the developed model, the results regarding the near optimal 

route, parameters, decision variables and objective functions were presented 

and debated. A network of thirteen patients, single depot and two charging 

stations was assumed. Figure 5.1 reveals the optimal routes for serving a pre-

defined number of patients. In the aforementioned figure, the depot and 

charging stations are assumed to be number 1, 15 and 16 nodes respectively, 

where both nodes are presented by symbols as shown in the legend. 
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Moreover, normal condition patients are presented along with natural sensor 

sign, whereas, critical patients are distinguished with red sensor sign. Note 

that at each node the model updates the condition of patients and battery 

status and the updated information is used to make a decision about the next 

node to be visited. As shown in Figure 5.1 the first caregiver started with 

patient 2 since the data transmitted from the sensors showed a critical argent 

condition, after that the route continues to serve patients 4, 6 and 14 until 

another critical condition arises at patient node 9 and so on. In addition, after 

visiting node 13 the model makes a decision to visit a charging station (node 

15) since the battery capacity dropped below the minimum predefined level 

which was presented in details later on in this section. Moreover, as shown 

in the route followed by EV 2, the model made a decision to visit patient 12 

after patient 8 due to his/her critical condition, rather than visiting patient 11 

who is closer and visiting him/her directly would resulted in saving time and 

money, however, patient’s well-being is the first priority. 
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Figure 5.1: Near optimal route for the developed SSHHCVRP model 

On the other hand, along with the near optimal route, Table 5.3 spotlights on 

the arrival and departure times into and from different patient’s nodes, in 

addition to the battery status after each visited node. Be noted that the battery 

capacity drains as the electric vehicle travel from one patient to another until 

a certain threshold point where visiting a charging station must be done. It 

was assumed in the proposed model that the battery capacity shouldn’t drop 

below 50% of total capacity; therefore, as shown in Table 5.3 the decision to 

visit a charging station wasn’t done until after visiting patient node 13 (in 

route 1) and patient 11 (in route 2), where battery status was 21.24 kWh and  
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21.06 kWh respectively. Changing the abovementioned threshold will result 

in more or less visits to charging station. After visiting each node, the model 

updates and checks the battery status to alter the routing plan if needed, 

which illustrates the dynamism of our proposed model. Moreover, the time 

constraint variables are shown in the table in terms of arrival and departure 

times, which follows a pre-defined time schedule for visits. Additionally, the 

relationship between the number of patients, time windows and working 

hours must be planned carefully, to ensure an adequate time of service within 

the daily working hours. Such relationship was discussed in the following 

chapter. Finally, the patient’s condition is included in Table 5.3, where a 

value of 1 indicates a critical conditioned patient.  

Table 5.3: Near optimal route results with arrival/departure times and 

battery status 

Source 

Node 

Destination 

Node 

Patient's 

Condition 

𝑺𝑹𝑯𝑹 

Arrival 

Time  𝒂𝒕𝒊 

(hr.) 

Departure 

Time 𝒃𝒊 (hr.) 

Battery 

Status 𝒚𝒊𝒌 

(kwh) 

1 2 1 8:51 9:03 34.30 

2 4 - 9:13 9:53 32.62 

4 6 - 10:22 10:52 30.22 

6 14 - 11:40 12:12 24.76 

14 9 1 12:34 12:46 23.64 

9 13 1 13:20 14:30 21.24 

13 15 - 15:04 15:34 43.00 

15 1 - 16:08 - 38.45 

1 5 - 8:40 8:52 38.32 

5 10 - 9:14 9:26 37.62 

10 8 - 10:19 10:31 31.77 

8 12 1 11:09 11:33 29.07 

12 3 1 12:05 12:17 26.91 

3 11 - 13:01 13:19 21.06 

11 16 - 13:53 14:25 43.00 

16 7 - 15:02 15:17 38.71 

7 1 - 15:48 - 33.51 
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Furthermore, Tables 5.4 and 5.5 demonstrate the near optimal route along 

with decision variables and parameters linked with each route. Specifically, 

the near optimal velocity, route type, travel time and energy consumption 

which are incorporated with each route as shown in Table 5.4. For example, 

the route from patient node 8 to patient node 12 (using EV 2) was executed 

due to the critical condition of patient 12 and therefore a higher service 

priority was given. The near optimal velocity for this route was 78 km/hr. 

and the travel time between the two patients was 0:32 hr., also the electric 

vehicle consumed 2.70 kWh of energy. Note that the velocity, distance and 

energy consumption are consistent with the pre-defined characteristics of 

each route. On the other hand, Table 5.5 shows the variables linked with each 

route at which a decision is made to travel from one patient node to another. 

For each path between two nodes, eight decisions could be made in terms of 

route type and the status of patients which are shown in the table. As an 

example at the trip between nodes (4, 6) a decision was made to travel from 

node 9 to node 13 through route type 2 to service patient number i.e. 𝑥4602 =

1, whereas other variables are 0’s. 
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Table 5.4: Near optimal values of the model parameters and variables 

Source Node Destination Node Energy Consumption (kwh) Route type (𝒓) 𝑽𝑬𝑳𝒊𝒋𝒓 (Km/h) 𝒔𝒊𝒋𝒓 (hr.) 

1 2 2.70 3 73 0:20 

2 4 1.68 2 67 0:29 

4 6 2.40 2 56 0:56 

6 14 5.46 4 103 0:22 

14 9 1.12 1 22 0:34 

9 13 2.40 3 72 0:30 

13 15 2.60 3 90 0:32 

15 1 4.55 4 102 0:39 

1 5 1.68 1 27 0:22 

5 10 0.70 2 59 0:54 

10 8 5.85 4 95 0:38 

8 12 2.70 3 78 0:32 

12 3 2.16 3 81 0:44 

3 11 5.85 4 96 0:34 

11 16 5.2 4 100 0:36 

16 7 4.29 4 108 0:34 

7 1 5.2 4 90 0:28 
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Table 5.5: Near optimal route and patient’s condition decision variables 

Served Destinations 
Route Type and Patient’s Condition 

𝒙𝒊𝒋𝒑𝟏  𝒙𝒊𝒋𝒑𝟐  𝒙𝒊𝒋𝒑𝟑  𝒙𝒊𝒋𝒑𝟒  𝑪𝒊𝒋′𝒄𝟏  𝑪𝒊𝒋′𝒄𝟐  𝑪𝒊𝒋′𝒄𝟑  𝑪𝒊𝒋′𝒄𝟒  

(1,2) 0 0 0 0 0 0 1 0 

(2,4) 0 1 0 0 0 0 0 0 

(4,6) 0 1 0 0 0 0 0 0 

(6,14) 0 0 0 1 0 0 0 0 

(14,9) 0 0 0 0 1 0 0 0 

(9,13) 0 0 0 0 0 0 1 0 

(13,15) 0 0 1 0 0 0 0 0 

(15,1) 0 0 0 1 0 0 0 0 

(1,5) 1 0 0 0 0 0 0 0 

(5,10) 0 1 0 0 0 0 0 0 

(10,8) 0 0 0 1 0 0 0 0 

(8,12) 0 0 0 0 0 0 1 0 

(12,3) 0 0 0 0 0 0 1 0 

(3,11) 0 0 0 1 0 0 0 0 

(11,16) 0 0 0 1 0 0 0 0 

(16,7) 0 0 0 1 0 0 0 0 

(7,1) 0 0 0 1 0 0 0 0 
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Table 5.6 shows the arrival and departure times at each visited patient’s node, 

for the purpose of measuring the total workload on each day for the assigned 

caregiver. The difference between the average and actual workload is shown 

in the table and multiplied with the cost of workload deviation 𝐶ℎ𝑐𝑑 to find 

the total costs of workload deviation. For instance, Table 5.6 presents two 

different trips, where each trip is executed by two different drivers (driver 1 

and driver 2). For instance, the second trip resulted in total workload of 9 

hours and 5 minutes (9:05) for driver 1 and a total workload of 7:38 hours 

for driver 2. In this trip the deviation from average workload for driver 1 was 

1:05 hours, which resulted in 33 $ of cost due to deviating from the average 

workload. Whereas for driver 2 the deviation from average workload was 

0:22 hours resulting in 11 $ of cost. Similarly in trip 1, where the workload 

was 8:08 hours and 7:48 hours for driver 1 and driver 2 respectively. Note 

that costs will be incurred in both situations where the total workload is more 

or less than the average, as a mean to achieve resources utilization, as well 

as, fairness between caregivers and HHC companies. Moreover, Table 5.7 

presents the results of patients satisfaction levels at each node in addition to 

the costs related to dissatisfaction from the provided service. As shown in 

the table, the model assumes five levels of priority where 5 and 1 have the 

highest and the lowest priority respectively. Note that different priority levels 

represent different patient’s conditions in terms of needed monitoring and 

care in addition to the excessive need of precision in service times.
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Table 5.6: Workload deviation results and costs. 

D
ri

v
er

 1
 

Patient’s node 1 2 4 6 14 9 13 15 1 
- Deviation from avg. 

workload (hr.) 
0:08 

Arrival time - 8:51 9:13 10:22 11:40 12:34 13:20 15:04 16:08 - Total Cost ($) 4 

Departure time 8:12 9:03 9:53 10:52 12:12 12:46 14:30 15:34 - - Total working hours (hr.) 8:08 

              

D
ri

v
er

 2
 

Route 1 5 10 8 12 3 11 16 7 1 
Deviation from avg. 

workload (hr.) 
0:12 

Arrival time - 8:40 9:14 10:19 11:09 12:05 13:01 13:53 15:02 15:48 Total Cost ($) 6 

Departure time 8:12 8:52 9:26 10:31 11:33 12:17 13:19 14:25 15:17 - Total working hours (hr.) 7:48 

              

D
ri

v
er

 1
 

Route 1 8 7 9 4 11 15 3 5 1 
Deviation from avg. 

workload (hr.) 
1:05 

Arrival time - 8:39 9:01 10:47 11:14 12:37 13:40 15:20 16:05 17:05 Total Cost ($) 33 

Departure time 8:12 8:51 10:27 10:59 12:05 13:02 14:15 15:45 16:33 - Total working hours (hr.) 9:05 

              

D
ri

v
er

 2
 

Route 1 10 12 2 14 6 13 16 1 - 
Deviation from avg. 

workload (hr.) 
0:22 

Arrival time - 8:30 9:10 10:02 10:47 12:08 13:40 14:40 15:38 - Total Cost ($) 11 

Departure time 8:12 8:49 9:37 10:27 11:40 13:10 14:10 15:10 - - Total working hours (hr.) 7:38 
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Table 5.7: Patient’s satisfaction and quality costs 

Patient’s 

node 

Urgent / 

Casual 
𝑺𝑹𝑯𝑹 𝑷𝑹𝒊 𝒂𝒕𝒊 𝝎𝒊 𝒖′𝒊 𝒆𝒊 𝒍𝒊 𝝁𝒊(𝒕𝒊) 𝑺𝒂𝒕. 𝒆𝒙𝒑𝒒 

Quality costs 

($) 

2 Urgent 1 4 8:51 0:06 8:45 8:30 9:00 100% 80% 0 

4 Urgent 0 4 9:13 0:01 9:15 9:00 9:30 93% 86% 0 

6 Casual 0 3 10:22 0.09 10:30 10:00 10:45 73% 85% 36 

14 Urgent 0 4 11:40 0.02 11:45 11:30 12:00 80% 75% 0 

9 Casual 1 2 12:34 0:03 12:30 12:15 13:00 100% 86% 0 

13 Casual 1 3 13:20 0:06 13:30 13:00 13:45 100% 84% 0 

5 Casual 0 2 8:40 0:03 8:45 8:30 9:15 86% 80% 0 

10 Casual 0 2 9:14 0:08 9:15 9:00 9:45 77% 86% 18 

8 Urgent 0 5 10:19 0:06 10:30 10:15 10:30 67% 75% 40 

12 Casual 1 2 11:09 0:05 11:15 10:45 11:30 100% 84% 0 

3 Urgent 1 4 12:05 0:04 12:00 11:45 12:15 100% 70% 0 

11 Casual 0 3 13:01 0:03 13:00 12:30 13:15 73% 90% 51 

7 Casual 0 1 15:02 0:01 15:00 14:45 15:30 90% 75% 0 
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Different parameters and variables related to the arrival times at patient’s 

nodes and time windows of service are shown in the table, where higher 

priority (levels 4 &5) urgent patients are served with a restricted time 

windows compared with the soft ones applied to lower priority (levels 1-3) 

casual patients. As discussed in previous sections, 𝜇𝑖(𝑡𝑖) shows patient’s 

satisfaction by measuring the deviation from the desired time of service using 

equations (8) and (9). However, when a critical condition arises a caregiver 

skips other patients (temporarily) to serve critical ones, and therefore the 

satisfaction was assumed to be 100% as shown at patient’s nodes 2, 9, 13, 12 

and 3. On the other hand, the expected satisfaction 𝑆𝑎𝑡. 𝑒𝑥𝑝𝑞 was calculated 

as shown and explained in Equation (6). And so, the gap between the 

perceived and expected satisfaction was calculated and the incurred costs 

which presents the costs of poor quality of service were shown in the last 

column of Table 5.7. It’s worth mentioning that in addition to serving critical 

condition patients first whenever needed, our model prioritize higher priority 

patients for service. 
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Chapter Six 

Sensitivity Analysis 

6.1 Chapter Overview 

For the sake of revealing the effect of different patient’s priority levels on 

different variables of the model including routing plan, time windows of 

service and quality costs, this chapter presents the results of the conducted 

sensitivity analysis on different patient’s priority levels. In addition a 

sensitivity analysis was performed on having different weights of the 

introduced objective function, for the purpose of understanding the effect of 

each objective function on the total near optimal solution. The following 

sections present the results of the conducted sensitivity analysis.  

6.2 The Effect of Using BSNs (Heart Rate Sensor)  

To assess the effectiveness and the efficiency of the followed approach and 

the developed model, two scenarios were tested and analyzed in this section 

to reveal how model variables are sensitive to the employment of the 

proposed heart rate sensor. Where scenario 1 shows a situation that includes 

the employment of heart rate sensors that transmit real-time data for the 

purpose of route planning. On the other hand, scenario 2 presents a situation 

where heart rate sensors weren’t used. In this situation, a predefined routing 

plan was assumed and no real-time data was considered. Table 6.1 shows the 

results when solving the model, while considering scenario 1 and 2. The 

results shown in Tables 6.1 are the average results after solving the model 
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for five runs. As shown in the table, the value of the first objective function 

Z1 showed a 22 minutes more travel time in scenario 1 compared to scenario 

2, since the presence of critical conditions requires a detour from the planned 

near optimal route, thus more travel time will be incurred. With regard to the 

velocity of the EV shown in Z2, the average velocity of the five tested runs 

was considered, where the near optimal value was 78.3 km/hr. for scenario1 

and 93.7 km/hr. in scenario 2. Such difference in velocities is because of the 

availability of different route types, as well as, the presence of critical 

conditions which results in following different routes in each scenario. In 

addition the results related to cost functions were as follows: the workload 

deviation costs presented by Z3 showed a slight difference between the two 

scenarios with a 3--$ increase in such costs when using sensors. On the other 

hand, quality costs shown in the fourth objective function Z4 were 

significantly affected the employment of sensors. As shown in Table 6.1, in 

scenario 1 quality costs were 69.2 $, however, in scenario 2 where sensors 

wasn’t considered, quality costs noticed a significant leap to reach 375.2 $. 

The major difference between quality costs is justified by the advantage of 

using the heart rate sensor which allows caregivers to serve critical condition 

patients immediately, and thereby ensuring a 100% satisfaction from those 

patients (thus, zero poor service quality costs). Figure 6.1 shows the incurred 

quality costs in each of the five tested runs for each scenario. Finally, the last 

column in Table 6.1 shows the energy consumed by the EV. In both 
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scenarios, the amount of consumed energy while routing is almost the same, 

therefore, using sensors have no clear effect on the energy consumed. The 

results of this sensitivity analysis, especially the results related to quality 

costs, proved the benefits of employing sensors which provides continuous 

data about patient’s condition.  

Table 6.1: Sensitivity analysis on the employment of heart rate sensor 

Experiment 

Number 
Z1 (hr.) 

Avg. Z2 

(km/hr.) 
Z3 ($) Z4 ($) 

Energy 

Consumption 

(kwh/km) 

Scenario 1 

(with heart rate 

sensors) 

9:13 78.3 19.5 69.2 48.2 

Scenario 2 

(without heart 

rate sensors) 

8:51 93.7 16.8 375.2 49.8 

 

 

 

 

 

 

 

 

Figure 6.1: The difference in quality costs between the two proposed scenarios 
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6.3 The Effect of Different Patient’s Priority Levels  

To understand the effect of having different patient’s importance level, four 

different scenarios were proposed which are: 1) all patients have neutral 

importance levels i.e. there is no priority given to any patient (𝑃𝑅𝑖 = 1); 2) 

all patients possess low importance levels i.e. priority levels are 1, 2 and 3 

which corresponds to casual patients; 3) a combination of low and high 

importance levels are assumed in this scenario, where patient’s levels are 

uniformly distributed; 4) all patients enjoy high importance levels i.e. 

priority levels are 4 and 5. Indeed, altering the patient’s importance levels 

and thereby the priority in serving those patients, will directly affect the total 

quality costs shown in the fourth objective function (Z4), therefore, such 

relationship must be analyzed perceptively to ensure an optimal trade-off 

between patient’s satisfaction and the service provider’s satisfaction. In 

addition to costs, different priority levels results in different time windows 

of service and routing plan. As shown in Table 6.2, the four proposed 

scenarios of different patient’s importance (priority levels) are presented. 

Those scenarios are presented along with the executed route, total quality 

cost of the route, average deviation from the desired time of service 

(triangular membership function) and the percentage of change between 

different scenarios. As expected, when relaxing the model from service 

priority levels i.e. 𝑃𝑅𝑖 = 1 as shown in scenario 1, results showed the least 

quality costs compared to other scenarios (127.8 $). Such results are justified 

by the absence of strict / hard time windows to service high importance 

patients whom if not served urgently within desired times, quality costs will 
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be incurred. On the other hand, the results when assuming lower importance 

patients whom aren’t prioritized in service compared to higher importance 

ones, yields in quality costs of 372.9 $ as shown in scenario 2 with a 192% 

increase compared to the first scenario. However, in scenario 3 the patients 

are assumed to follow a uniform distribution in terms of the priority of 

service, in a sense that different importance levels will be presented (i.e. 1-

5) including urgent and casual patients, as shown in Table 6.2 scenario 3 

resulted in a 548.6 $ of quality costs with a 47% escalation compared to 

scenario 2. Finally, when all patients are assumed to enjoy high levels of 

importance as shown in scenario 4, quality costs are increased by 23% 

compared to scenario 3, resulting in 677.2 $ of costs. 
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Table 6.2: The effect of different patient’s importance level on the quality cost’s function 

Experiment 

Number 

Patient’s 

Importance level 
Route Z4 ($) Avg. 𝝁𝒊(𝒕𝒊) 

Percentage of 

Change of Z4 (%) 

Scenario 1 1 
EV1: 2→5→4→9→7→6→15 

EV2: 3→13→10→8→12→16→14→11 
127.8 86 % - 

Scenario 2 1,2,3 
EV1: 5→3→12→4→10→15 

EV2: 14→7→9→13→6→8→16→11 
372.9 83 % 192% 

Scenario 3 1,2,3,4,5 
EV1: 2→5→3→12→4→10→15 

EV2: 14→7→9→13→6→8→16→11 
548.6 81 % 47% 

Scenario 4 4,5 
EV1: 2→12→5→3→9→15→13 

EV2: 10→4→11→7→8→15→6→14 
677.2 80 % 23% 
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Figure 6.2: The relationship of the effect of different patient’s importance levels on the quality cost function 
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Moreover, Figure 6.2 graphically presents the resulting quality costs when 

changing importance level. The explored relationship between patient's 

importance level and quality costs could be interpreted by the scheduled time 

windows of service, where higher importance patients are prioritized in 

service with more strict time windows. In other words, as the time window 

becomes tighter, any deviation from the desired time of service will yield in 

more costs compared to softer tie windows due to its tied margin of error. 

Note that the presented quality costs are strongly associated with the penalty 

of poor quality of service 𝑃𝑒𝑛𝑞 as shown in equation (15). Due to the lack 

of references of such parameter (𝑃𝑒𝑛𝑞) in the literature of HHCVRP, it was 

assumed that 100 $ is the penalty of poor quality of service. Therefore, 

altering this value will result in different quality cost function possibly to 

more realistic values if the aforementioned penalty was measured 

adequately.  

6.4 The Effect of Altering Objective Functions Weights  

To realize the effect of each single objective function on the total near 

optimal solution, the weights of the objective functions will be changed 

alternately, by assigning a higher weight for each function at a time. Table 

6.3 shows the results of the total near optimal solution when varying the 

weights of the four objective functions. As shown in the table, five scenarios 

were suggested including equivalence status where all functions have the 

same weight.



98 

Table 6.3: Sensitivity analysis on the effect of different objective function weights on the near optimal quality 

cost’s function 

Experiment 

Number 
𝑾𝑻𝒁𝟏

 𝑾𝑻𝒁𝟐
 𝑾𝑻𝒁𝟑

 𝑾𝑻𝒁𝟒
  𝒁𝒐𝒑𝒕𝒊𝒎𝒂𝒍 ($) 

Scenario 1 1 1 1 1 1220.92 

Scenario 2 2 1 1 1 1230.14 

Scenario 3 1 2 1 1 2343.92 

Scenario 4 1 1 2 1 1240.42 

Scenario 5 1 1 1 2 1290.12 
 

 

Figure 6.3:  The effect of different objective function weights on the near optimal quality costs function
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Upon analyzing the obtained results, it was found that the second objective 

function which aims at maximizing the velocity when serving normal and 

critical condition patients has the highest effect on the total near optimal 

solution where 𝑍𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 2343.92 $, in contrast to other objective 

functions which caused a minor non-significant change on the total near 

optimal solution. Figure 6.3 describes the track of the near optimal solution 

when altering the weights of the objective functions. It is apparent that 

objective functions Z1, Z3 and Z4 which aim at minimizing travel time, 

workload deviation from the normalized workload, and quality costs, 

respectively, merely change the value of the solution when doubling their 

weights individually at a time. On the other hand, objective function Z2 had 

a significant impact of the solution when changing its weight, where the 

value of the total solution  𝑍𝑜𝑝𝑡𝑖𝑚𝑎𝑙 went from 1220.92 $ to 2343.92 $. 

Therefore, HHC companies should emphasize on the velocity of the vehicle 

while serving patients. Moreover, the velocity of the proposed EVs in our 

model is directly related to the consumed energy as shown and interpreted 

by Younes et al. (2013), thus, series attention that should be placed on the 

velocity function is due to two reasons. First, optimizing energy levels will 

result in satisfied HHC companies due to the saving in energy and thus 

reducing operational costs of the service. Second, maximizing the velocity 

will increase the probability of reaching patients at the exact desired time of 

service which is specified by the patients, hence ensuring satisfied and 

healthy patients which is the core goal of any HHC company. In addition, 

proper decisions must be made when selecting routes to follow, since each 



100 

route type corresponds to different speeding ranges depending on its nature 

and traffic volume. Furthermore, the minor effect of cost functions (Z3 and 

Z4) is an opportunity for HHC companies to allow overtimes for caregivers 

within the allowable working hours specified by laws and regulations. Such 

opportunity will enable HHC companies to serve additional patients or 

current patients but with more flexible working times without the need for 

other caregivers and thus saving costs, since paying overtimes is more 

economically feasible compared to assigning a new caregiver or piecework 

pay. However, although quality costs shown in the fourth objective function 

Z4 don’t crucially affect the total near solution, neglecting such costs will 

result in tremendous subsequences of unsatisfied patients and accumulated 

costs of poor quality of service. 

6.5 Managerial Insights 

In many countries especially western ones where the management of aging 

societies and HHC services has a great interest and needs special concern, 

presenting simple HHC models with simplified objectives is not feasible and 

unsatisfactory. Therefore, in this research, a smart and sustainable HHCVRP 

model that considers patient’s condition, quality of service and employs the 

use of technology was developed, to answer the complexity of real world 

applications and thus be prepared for practical implementation. Practicality 

requires a rich model with multi-objectives and constraints that simulate 

reality, as well as, validity to provide managerial insights that support 

decision making. In that context, the results and the conducted sensitivity 
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analysis in our research can be used to support such decision making process. 

Therefore, practically, the results of the conducted sensitivity analysis 

spotlight on the benefits of implementing such HHCVRP model. First and 

foremost, the results shown in Table 6.1 and Figure 6.1 reveal the added 

value and advantage when using BSNs compared to a situation where such 

sensors aren’t used. The main advantage is seen in the significant reduction 

in quality costs when using heart rate sensors to monitor patient’s health 

status. Indeed, serving patients immediately when an emergency occurs will 

improve the quality of service and results in satisfied and healthy patients. 

Furthermore, no clear benefits were noticed related to other variables such 

as time of travel and workload deviation costs when using the proposed 

sensors. However, the trade-off between variables is inevitable in real-life 

practices, in addition, it is well-known that quality of service is critical and 

any degradation in quality will result in many other incurred costs. 

Therefore, the improvement in quality of service associated with the 

implementation of our model is an advantage point even if it’s associated 

with extra travel time or overtime costs. Moreover, in Table 6.2 and Figure 

6.2 at which the relation between patient’s importance level and quality costs 

is presented, provides supportive suggestions for HHC companies in terms 

of balancing patient’s satisfaction and costs. Such suggestion may include 

allocating and grouping patients in a way that combines different importance 

(priority) levels to avoid a situation where satisfaction will cause significant 

costs, since in typical HHC system a caregiver (or more) is assigned to a 

group of patients. Finally, a sufficient attention must be placed on the 
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velocity of the EV due to its significant impact on the total routing solution 

compared to other objectives as shown in Table 6.3 and Figure 6.3. Actions 

such as selecting the optimal route type to follow based on velocity and the 

resulting energy consumption rate of EVs will optimize the total solution 

further, although the use of EVs was due to its ability to save energy and 

protect the environment from GHG. 
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Chapter Seven 

Conclusions 

7.1  Summary 

In this research, a SSHHCVRP was developed and presented that promotes 

the use of technology, as well as, aims at achieving the three pillars of 

sustainability for the well-being of Patients, environment and the profitable 

HHC companies. In addition, different patient’s importance levels were 

considered which is correlated with prioritizing higher important patients in 

service. The importance of patients were set depending on only the medical 

condition, where higher importance indicates a medically critical status 

which should be prioritized in service. Moreover, a novel approach was 

introduced which includes a function that aims at measuring and minimizing 

the gap between expected and perceived quality of service. The expected part 

was measured using internal measures (related to time of service) by experts 

and then the degree of fulfilling such measures by the HHC service provider 

formulated the expected quality of service. Whereas, the perceived quality 

of service was measured using a triangular membership function that 

calculated the deviation from the desired time of service. Due to the 

consideration of patient’s condition (critical or normal), EV battery levels 

and the complexity of the model to simulate reality, a dynamic programming 

approach was adopted using NS-ACO algorithm, to ensure a continuous 

update of data and therefore updating the routing plan at each node. The total 

near optimal solution resulted from this model could be optimized further by 
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grouping patients with different importance levels to avoid a situation where 

all patients are important with strict time windows of service, and thereby 

minimizing costs of poor quality of service. In addition, planning which 

route to follow between the 4 types of routes will optimize the near optimal 

solution. Furthermore, due to the significant effect of the second objective 

function (velocity maximization) on the total solution, such suggestion is 

justified by the limited ranges of velocities at each route type. 

7.2  Thesis Contributions 

This research contributes to the literature of VRP in general and HHCVRP 

in particular mainly in two dimensions. First, the use of technology directly 

in planning the routing path for vehicles, since the proposed heart rate 

sensors are used to transmit real time data to show the medical status of 

patients, and the collected data is used to update the routing path. To the best 

of our knowledge, the use of technology especially body sensors in VRP 

hasn’t been considered before. The second contribution is the novel approach 

of integration of measuring the gap in expected and perceived service 

quality, customer satisfaction level and penalty of poor quality of service. 

Generally, the above mentioned gap is measured using a structured 

questionnaire; however, such approach is impractical in terms of effort, time 

and patient’s status in HHC services. Therefore, in our research the perceived 

level of service is calculated and the expected service was set by experts 

using specific internal measures as explained in previous sections, for 

continuous and more applicable assessment of quality of service as cited by 
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Khorshidi and Hejazi (2011). Such approach wasn’t pursued by any 

researcher in the literature of VRP to the extent of the researcher’s 

knowledge. 

7.3  Imitations 

Despite all the attempts to develop a realistic model that tackle real-life 

applications and complexities, some limitations were found that may hinder 

the practicality of the model. The model limitations are: 

• Hypothetical data: although most of the data used to solve the 

proposed model were driven from the literature, however, some data 

was assumed hypothetically. Applying real-world data and instances 

from the literature (if available), will improve the model and enhance 

its applicability. 

• BSNs challenges and limitations: the heart rate sensor plays a 

significant role in the flow of the proposed model. However, it was 

assumed that the sensors are flawless and no risk on the functionality 

of those sensors was included in the model. Some of the possible 

challenges that may occur while using BSNs are debated by Hao and 

Foster (2008). 

7.4  Future work 

For future researches, this study could be extended and enhanced to answer 

to real world applications by many improvements to the proposed model. 

Such improvements may include adding caregivers driving behavior in terms 
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of being risk taker, risk averse or neutral risk taker. Such approach was 

introduced for the first time in VRP by Abu Al Hla et al. (2019), and wasn’t 

considered in HHCVRP yet. Adding the driving behavior of caregivers will 

improve the reality of the model, in addition to improving the total near 

optimal solution by linking the behavior to other functions especially quality 

cost function. Moreover, in addition to the assumed costs in our model shown 

in Z3 and Z4, the consideration of other operational costs such as the 

presented in the work of Wang et al. (2021) that includes fixed, 

transportation, energy consumption and damage costs is a solid addition to 

our model. Such financial parameters are important for the HHC companies 

to analyze the feasibility of the provided service, as well as, linking those 

costs with the customer satisfaction aspect in our model where a trade-off 

between cost, customer satisfaction and quality of service is clarified and be 

available for decision makers, again for the purpose of providing a robust 

and realistic model.   
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 الملخص 

زاد الطلب على خدمات الرعاية الصحية المنزلية بشكل كبير مؤخرًا ، بسبب تصاعد نفقات خدمات  
الرعاية الصحية التقليدية والتشخيص المتكرر لمرضى الأمراض المزمنة. وبالتالي، يهدف هذا البحث  

ركائز الثلاث  إلى حل نموذج مشكلة توجيه مركبات الرعاية الصحية المنزلية الذي يأخذ في الاعتبار ال
للاستدامة، والتي يمكن تنفيذها في المدن الذكية. علاوة على ذلك، يهدف نهجنا إلى الاستفادة من 
التكنولوجيا المتاحة في المدن الذكية ، من خلال وضع أجهزة استشعار للجسم على المرضى لمواصلة  

ضافة إلى الديناميكية وعدم  تحديث حالتهم الصحية وإعطاء الأولوية للظروف الحرجة في الخدمة. بالإ
من خلال   المقترح  النموذج  واقعيةاليقين الناجمين عن التباين في حالة المريض، فإن نهجنا يوسع  

قابليته للتطبيق، مثل افتراض مستويات مختلفة    تهدف الى تعزيز  التيو    اضافة عوامل ثابتة و متغيرة
ان التدفق المستدام للأعمال ، يأخذ النموذج من الأهمية )الأولوية( للمريض. علاوة على ذلك، لضم 

من  البيئة  والحفاظ على  الوقود  تكاليف  توفير  إلى  التي ستؤدي  الكهربائية  المركبات  الاعتبار  في 
غازات الاحتباس الحراري. أيضًا، تمت معالجة الجانب الاجتماعي من خلال زيادة رضا المرضى 

ة عبء العمل على التوالي. تم حل النموذج باستخدام والموظفين من خلال تحسين جودة الخدمة وإدار 
جنبًا إلى   Ant Colony Optimizationعبر خوارزمية  و تحديداً  ،  metaheuristicنهج خوارزمية  

تقنية   مع  النماذج   Non-dominated Sorting  جنب  مع  العمل  على  المزيج  هذا  لقدرة  نظرًا 
أظهر تحليل الحساسية فوائد استخدام مستشعر .  أهداف متعددةالمتغيرة و التي تتضمن  الديناميكية  

معدل ضربات القلب في النموذج المطور خاصة في تحسين جودة الخدمة. بالإضافة إلى ارتفاع  
مرضى ، ومن بين الوظائف الموضوعية المقترحة ، يكون تكاليف الجودة عند زيادة مستويات أهمية ال 

يأتي تطبيق هذا النموذج في قطاع الرعاية   .لوزن وظيفة السرعة التأثير الأكبر على الحل شبه الأمثل



 ج 

تصنيف  وكذلك  المريض،  لحالة  المستمرة  المراقبة  بسبب  الخدمات،  لمقدمي  كبيرة  بميزة  الصحية 
إرشادات  توفير  ى الحالة الطبية(؛ وبالتالي، ضمان رضا المرضى، و مستويات أهمية المريض )بناءً عل

 . لتخطيط المسار في حالات عدم اليقين في حالة المريض


