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Abstract

In this paper, we construct simplex linear codes over the ring F, + VF, of

types a and B, where v’ =V and F, = {0,1}. We also determine some of
their properties. These codes are extension and generalization of simplex
codes over the rings Z,,Z, andF, +UF, whereu® =0.
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1. Introduction

There are various binary linear codes such as the Hamming codes, the
first order Reed Muller codes and the simplex codes. Any nonzero codeword
of the simplex code has many of the properties that we would expect from a
sequence obtained by tossing a fair coin 2" —1 times. This randomness
makes these codewords very useful in number of applications such as range-
finding, synchronizing, modulation scrambling etc. Hamming code is the
dual of the simplex code. All these codes have been generalized to codes
over the Galois fields GF(Q). Recently there has been much interest in

codes over finite rings, especially the rings Z  where Z . denotes the ring

of integers modulo 2°. In particular, codes over Z, and F, +UF, have been
widely studied. See (Bonnecaze & Udaya, 1999, p. 1250-1254), (Dougherty,
et al., 1999, p.32-45), (Dougherty, et al., 1999, p.2345-2360), (Gupta, 2000,
p. 1-98), (Rains & Sloane, 1998, p. 1-140) and (EL-Atrash & AL-Ashker,
2003, p. 53-68).

More recently Z,-simplex codes and their Gray images have been
investigated by Bhandari, Lal and Gupta in (Bhandrri, et al., 1999, p. 170-
180). Good binary linear and non-linear codes can be obtained from codes
over Z, via the Gray map. In (Gupta, et al., 2001, p. 112-121) Gupta, Clyun
and Gulliver studied senary simplex codes of type « and two versions of
types (f and y), self-orthogonality, torsion codes weight distribution and

weight hierarchy properties were investigated. They gave a new construction
of senary codes via their binary and ternary counter part and show that types
a and f simplex codes can be constructed by this method. In (AL-Ashker,

2005, p. 277-285) and (AL-Ashker, 2005, p. 221-233) respectively simplex
codes of types a and f over the rings F, +UF, where u’ =0 and the ring

n=s . . . . .
Z:nzou”F2 were given as generalizations and extensions of simplex codes
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over Z, and Z25 . In this paper we describe linear simplex codes and their

properties over the ring R =F, +VF, where v> =V and F, = {0,1}.

2. Definitions and preliminaries

The commutative ring R = F, + vF, = {0,1, v,1 + v} , Where vV’ =vandF, ={0,1},
was introduced in (Bachoc, 1997, p. 92-119) to construct lattices. In
(Dougherty, et al., 1999, p.2345-2360) it was shown that this ring is
isomorphic to the ring F, xF,. Addition and multiplication operations over
R are given in the following tables:

+ 0 1 v 1+4+v . 0 1 v | 14v
0 0 1 v 14v 0 0 0 0 0
1 1 0 14+v v 1 0 1 v | 14v
v v 14v 0 1 v 0 v \ 0
1+v | 1+4v \Y 1 0 1+v | 0 | 14v | O | 14v

The above table shows that v and 1+V are orthogonal idempotents and
their sum is equal to 1. Following (Dougherty, et al., 1999, p.2345-2360),
this ring is a semi-local ring with two maximal ideals; (v)and (1+V).

Observe that R/(v) and R/(1+V) are isomorphic to F,. The Chinese
Remainder Theorem (CRT) (Dougherty, et al., 1999, p. 253-283) tells us that

R=W)®(1+V).
We also have

a+vb=(a+b)+a(v+1),forall a,beF,.
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2.1 Codes

A linear code C of length n over R is an R-submodule of R". An
element of C is called a codeword of C. A generator matrix of C is a
matrix whose rows generate C. There are three different weights for codes
over R known, namely the Hamming, Lee and Bachoc weights, see
(Bachoc, 1997, p. 92-119), (Betsumiya & Harada, 2004, p. 356-358) and
(Betsumiya, et al., 2003, p.171-186). The Hamming weight of a codeword is
the number of nonzero components. The Lee weights of the elements
0,1,vand1+vVv are 0,2,1and 1 respectively. The Bachoc weight is defined in
(Bachoc, 1997, p. 92-119) and the weights of the elements 0,1,vand1+vV
are 0,1,2and 2 respectively. The Lee and Bachoc weights of a codeword are
the rational sums of the Lee and Bachoc weights of their components,
respectively. The Lee weight for a codeword X = (X, X,,........ ,X,)eR" is

defined by, wt, (x)=" wt, (x,), where

0 if x, =0,
wt (X)=4q1 if X, =vorl+v.
2 if x, =1.

The Bachoc weight is given by the relation wt;(X) = Zin:thB(Xi) , where
0 if x, =0,
Wt () =11 if x, =1
2 if x,=vorl+v.
Remark 2.1 Let n,(x) be the number of components i for which x, =0,

n(x) be the number of components i for which x =1 and
n,(X)=n-ny,(x)—n,(x) i.e., n, be the number of v's and (1+Vv)’s in Xx.
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Then the Lee weight wt (x) (respectively the Bachoc weight wtg (X)) of
X=(X;,%,,.....X,) €R" can also be obtained as follows: wt, (x)=n,(x)+2n,(X)
and wt;(X)=n,(X)+2n,(X). For Xx=(X,Xcervr... X)), Y = (Vs Voreeeenenene ,¥.)eR",
d, (X, y)=[{i=x #Y,}| is called the Hamming distance between x and y,
which is equal the number of coordinates in which x and y differ.

The Lee distance between x and yeR" is denoted by
d (X, y)=wt (x=y)=>"" wt (X - V).

The Bachoc distance between X and y € R" is denoted by
dg (X, Y) =Wty (X=y) =D Wty (X = ¥)).

The minimum Hamming, Lee and Bachoc weights, d,,,d, andd; of C

are the smallest Hamming, Lee and Bachoc weights among all non-zero
codewords of C, respectively. We define two inner products (X,y) and

[X,y] of x and yeR". The Euclidean inner product is defined as
(X, ¥Y)=XY, +X,Y, +...+X,Y, and the Hermitian inner product is defined as
[X,y]= xlyz + x2§2 +.+ xnyn, where 0=0,1=1,v=v+landv+1=v.
The dual code C* with respect to the Euclidean inner product of C is
defined as, C* ={xeR"|(X,y)=0forally €eC} and the dual code C" with
respect to the Hermitian inner product of C is defined as,
C'={xeR"|[x,y]=0forall ye C}, C is Euclidean self-dual if
C=C" and C is Hermitian self dual if C=C". C is called self orthogonal
if CcC* and C is called Hermitian self-orthogonal if C c C". For
R=F,+VF, we say C and C' are equivalent if either C or C’ are

permutation equivalent or C is permutation equivalent to the code obtained
from C’ by interchanging v and 1+V in all coordinates.
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Definition 2.1 Consider the map ¢:F," +vF," > F," xF," defined as

P(X+Vvy)=(x,x+Yy) for all x,yeF,. ¢ is called Gray map and it can be
shown that ¢ is an isomorphism, see (Betsumiya & Harada, 2004, p. 356-
358), (Dougherty, et al., 1999, p. 253-283). This map can be extended
naturally from (F, +VF,)" to F,". The Lee weight of Xx+Vy is the Hamming
weight of its gray image. In (Betsumiya & Harada, 2004, p. 356-358) it was
shown that if C is a code over R, then there are binary codes C, and C,

such that C =¢7'(C,,C,).

Proposition 2.1 (Betsumiya & Harada, 2004, p. 356-358) Let d,, and
d, be the minimum Hamming and Lee weights of C=¢"(C,,C,),
respectively. Then d, =d, =min{d(C,),d(C,)}, where d(C,) denotes the
minimum weight of a binary code C, .

Definition 2.2 A self-dual code for the Euclidean dot product is doubly
even (Type 1) if the Lee weight of all its words is divisible by 4 and singly
even otherwise.

Theorem 2.2 (Bachoc, 1997, p.92-119) If C < R" is a self-dual
Hermitian code, then d, < 2(1+L2J).

Codes meeting that bound with equality are called extremal.

Definition 2.3 We say that a self-dual code with the highest minimum
Bachoc weight among all self-dual codes of that length is optimal.

2.2 The Macwilliams relations (Dougherty, et al., 1999, p. 2345-2360)

The Hamming weight enumerator for a code over R is defined by:
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n

WC (X, y) — zxn—wt(u)ywt(u) — ZAan—iyi‘

ueC i=0

Where A = A(C) is the number of codewords of weight i in the codes
C.

The complete weight enumerator for a code over R is defined by:

CWeg (X, X5 X, X, ) = D CWE(C),

ceC
where cwt(c) = Hano(c)bnl(c)cn"(c)d "1 () and n, is the number of times
a appears in the codeword C.

Now define the Lee composition of X say L;(X)=0,1,2 as the number

of entries in X of Lee weight i. The symmetrized weight enumerator (swe)
is defined by:

swec (a’ b’ C) — ZaLO(X)bL] (X)CLZ(X)
xeC

and is given by

swe. (a,b,c) = cwe(a,c,b,b).

2.3 Binary structure of codes over R

Following (Dougherty, et al., 1999, p. 2345-2360), any code over R is
permutation equivalent to a code generated by the following matrix:

Ikl VB, (I+v)A (1+v)A +vB, (1+V)A +VB,
0 1+l 0 (I+Vv)A, 0
0 0 vIk3 0 vB,
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where A and B; are binary matrices. Such a code is said to have rank
24,22 29y,
If H is acode over R, let H"(respectivdy H™) be the binary code such
that (1+Vv)H" (respectislyvH") is read H mod Vv (respectively H mod (1+V)).
We have
H=(1+vV)H ®&vH".
With,
H"={s|3teF, " |(1+V)s+vte H};
H ={t|3seF|(1+Vv)s+vte H}.

The code H™ is permutation equivalent to a code with generator matrix
of the form

L, 0 A A A
0 A 0

0 1

b

where A are binary matrices.

And the binary code H™ is permutation equivalent to a code with
generator matrix of the form:

. B 0 B, B
0 0 I, 0 B}

where B, are binary matrices. The preceding statements show that any code
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H over R is completely characterized by its associated codes H" and H~
and conversely.

3. R-Simplex codes of type «

Following (Bhandrri, et al., 1999, p.170-180), (Gupta, et al., 2001,
p-112-121) and (Gupta, 2000, p. 1-98), we construct simplex codes over the
ring R of type « in the following way.

For convenience we set W=1+V. Let G, be a k x2”* matrix over R

defined inductively by:
00 0 |11 I |w v ww w
G, G, G,_, G,_, (3.1

where G, = (01vw).

The columns of G, consist of all distinct k — tuples over R. The code

SZ generated by G, has length 2%¢.

The following observations are useful to obtain Hamming, Lee, Bachoc
and distribution weights of S;.

Remark 3.1 If A_, denotes the (4*'x4“") array consisting of all
codewords in SZ, and i = (i,i,...,i), then the (4*x4*) array of codewords of
S, is given by
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Ac Aa Aci Aci
Ao THAG VHAL WHA
Ao VHAG VHAL A |
A WHAC Ag WHA

Remark 3.2 If R, R,,...,R, denote the rows of the matrix G,’, then
- wt, (R)=3-2"" wt, (VR) = wt,, (WR,) = 2*"".
- wt (R) =2, wt (VR)=wt (WR))=2%*".
- Wty (R)=5.2"" wty (VR)) = wtz (WR,) = 2.

It may be observed that each element of R occurs equally often in every
row of G, .

Let c=(c,,C,,...,C,) €C. Foreach jeR,let w;(c)=[{i|c; = j}|, we

have the following lemma.

Lemma3.1Let ceS/,c#0. Then
- Iffor at least one i, ¢; is a unit, then Vj e R, ; = 44
- If Vi,c; €{0,v}, then Vj € {0,v}, w; =2*" inc.
- If Vi,c; €{0,w}, then Vj € {0, W}, w; =2*" inc.

Proof. By Remark (3.1) any xS, gives rise to the following four

codewords of S/ .

= Y = (XXX X).
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- Y, =(X|1+X|V+X|W+X).
- Y, =(X|V+X|V+X]|X).
- Y, =(X|W+X|W+X]|X).
The assertion follows by induction.

Now we will give some facts about binary simplex codes.

Let G(S,) (columns consisting of all nonzero binary k-tuples) be a

generator matrix for an [n,k] binary simplex code S, . Then the extended

binary simplex code S, generated by the matrix.

G(Sk)=[0]G(S)].

Inductively,
00 --- 0 11---1
A A A A
G(Sk)=|G(Sk-1)| G(S«k-1)]|, with G(S1)=1[01] (3.2).

Lemma 3.2 The H"(or H™) binary codes of S;” are equivalent to the
N
2% copies of Sk.

Proof. First we will prove the H™ case by induction on k. Observe that
the binary H" code of S/ is the set of codewords obtained by replacing w
by 1 in all w— linear combination of the rows of the matrix WG, (where G,
is defined in 3.1). For k =2 the result holds and.
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0000 | 1111 |vvw |wwww
G, =|0lvw |Olvw [Olvw | Olvw

0000| 1111|0000 1111
H*=|0101| 0101 | 0101 | 0101

A
If WG, , is permutation equivalent to 2" copies of WG(S«-1), then the

matrix WG, takes the form:

00---0 | WW -+ W | 00---0 | WW - W 1

AN A N N AN AN AN AN
[WG(Sk-l)“'WG(Sk-l) WG (Sk1) |- |[WG(Sk1) [WG(Skaa) |-+ | WG (Ska) WG(Sk—l)“‘lWG(Sk—l)‘.

Now regrouping the columns according to (3.2) gives the desired result. The
proof for the H™ case is similar to the above case.

Definition 3.1 For each
1<i <n,letA, (i) (A (i)or Ag(i))be the number of code words of Hamming, Lee

or Bachoc weight i in the code C,
Then
{A(0), Ay (1), Ay (M3, (HAL0), AL(D),.... AL(M)}) 01 ({Ag(0), Ag(1),......Ag(N)})

is called the Hamming (Lee) or (Bachoc) weight distribution of C .

The Hamming, Lee and Bachoc weight distributions of S are given in
the following theorem.
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Theorem 3.3 Hamming, Lee and Bachoc weight distributions of S;* are:
- A 0)=1,A,2*"=22"-1)and A, (3.2° ") =2* -1)2" -1).
- AO)=1,A 2% =2.2"-1)and A_(4") =" -1)2" -1).

— A0 =1L A(#) =2-(2F 1), A (527 = 24 12" - 1),

Proof. Note that
A (0)=A(0)= A (0) =1, A, 2" = A (2"") = A;(4")=2(2" ~1) and
A (3-225y=A (4= A,(5-2°* ") =(2" -1)(2* 1) . By remark (3.2)
each nonzero codeword of S has Hamming weight either 3-2**" or 2°*',
Lee weight is either 4“ or 2*' and Bachoc weight is either 5-2°*" or 4%
And by

Lemma (3.2), the dimension of H" code of S is k, thus the number of
codewords is 4* and there will be (2% —1)(2* —1) codewords of Hamming
weight 3-2°*" . Therefore the number of codewords having Hamming
weight 277" is
42 -1 =D)+1]=4 [ 22 +141]=4 -4 +2.2 —2=2.2—2=2(% -1).
Similar arguments hold for the other weights.

The symmetrized weight enumerator (swe) of S, is given by the
following formula,

-1 k-1 2k -1 2k-1 2k -1
4 2 2 2
yt oz z

SWe (X, y,2) = X" + 320 x4 +2-3%"x
Remark 3.3

- the Simplex code S;’ is not equidistant with respect to Hamming, Lee
and Bachoc distances.
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- The minimum weights of S are: d,, =2*',d, =2%*"and d, = 2%

4. Simplex codes of type [

The length of S/ is large and increases fast, so we can omit some

columns from G; to obtain good codes over R of smaller length and we
will call the simplex codes of type £.

Let 4, be the kx2*(2* —1) matrix defined inductively by A, =[1v] and

A= A G, G, A

for k >2 and let &, be the kx2*(2" —1) matrix defined inductively by
o, =[1w] and

% =| 9

G

VW---V
-1

WW- - - W
G

For k >2 where G, is the generator matrix of S, .

Now let G/ be the k x[(2* —1)(2* —1)] matrix defined inductively by

11111 0| w | ww
G/=|0lvw| 1 |1lw| 1v
and for k > 2.
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11---1
Gkﬂ= G,

G/,

VV---V
5k—1

A (4.1).

Note that the generator matrix G/ is obtained by deleting 2**' -1
columns of the generator matrix G, . By induction it is easy to verify that no

two columns of G/ are multiple of each other.

Now let S/ be the code generated by G/, to determine the weight

distribution of S/ we first make the following observations.

Remark 4.1 Each row of G/ has Hamming weight 2**[3(2“ -1)-1],
Lee weight 2*(2* —1) and Bachoc weight 2¥[2(2*" —1)+2"7].

Proposition 4.1 Each row of G/ contains 2**™" units and
a)v — a)w — 22(|(71) _2k71 — 2k71(2k71 _1) )

Proof. The result can be easily verified for k = 2. Assume that the result
holds for each row of G, . Then the number of units in each row of G/, is
equal to 2°*? . By Lemma (3.1), the number of units in any row of G, is
2°%7  Hence the total number of units in any row of G/ will be

273 4 2. 2%k = 22D = 41 A similar argument holds for the number of
V's and W's.

Theorem 4.2 The Hamming, Lee and Bachoc weight distributions of S/
are:

- A0=LA,27BE -D)-1)=2~1)(Z ~DandA, (272 ~1))=2(Z -1).
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- A0)=1,A Q72 -1))=2(2"~1and A 2" (2" ~1)) = 2“ -1)(2* 1)
- AOFLACQRE -D)+27)=(2 -1)(3-2")andA, (2 (2 ~1))=2-37(Z 1)
Proof. Similar to the proof of theorem(3.3).
Remark 4.2
- The minimum Hamming weight of S/ isd, =2 (2" -1).
- The minimum Lee weight of S/ isd, =2""(2"-1).

- The minimum Bachoc weight of S/ is d, =2(2(2" —=1)+2"?).
g <95 op
- dH—dLSTforSk.

Now we will give the Macwilliams relations of S/.

Remark 4.3
W, (X, y) = X" +q(k)x" "y 4 px" 1Oy 1)
where q(k)=2(2" 1), h(k) =2"2* -1), f (k) =2"2(32* -1)-1).
swe(X, Y, z) = X" + nx?®yotznrto=ot ook _1yxnhtazhta

where
n=_Lk)=2"-D2"-1),h(k)=2""2" -1), p(k) = L(k-1) = 2" —=1D2*" = 1) and 5 (k) = 2.
Remark 4.4

- SZ(S/) are Hermitian self-orthogonal codes.
- S7Z is self-orthogonal codes with Euclidean inner product, but S/ is not.

- The SZ(S/) codes do not a chive the inequality
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n
dg s2(1+L§J),

and so they are not Hermitian self-dual codes.

4.1 Conclusion

In this paper we have studied simplex codes of types ¢ and S over the

ring F, +VF, . This study can be extended to study simplex codes over more

rings such as F,+VF, where p is prime integer.We hope we can find the

number of errors which simplex codes will detect and correct.
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