An-Najah National University Faculty of Graduate Studies

Synthesis of aromatic thio-acid esters of 2-thiophenylethanol and exploring some of their biological activities

By

Maram Hawi

Supervisor Nidal Jaradat Co- Supervisor Ahmad Khasati

This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Pharmaceutical sciences, Faculty of Graduate Studies, An-Najah National University, Nablus – Palestine.

2020

Synthesis of aromatic thio-acid esters of 2-thiophenylethanol and exploring some of their biological activities

By Maram Ziad Salem Hawi

This thesis was defended successfully on 15/1/2020 and approved by :

Defense committee Members			<u>Signature</u>	
1.	Dr. Nidal Jaradat	/ Superviser	•••••	
2.	Dr. Ahmad Khasati	/ Co- Supervisor	•••••	
3.	Dr. Fuad Alremawi	/ External Examiner	•••••	
4.	Dr. Murad Abualhasan	/ Internal Examiner	•••••	

Dedication

To my husband Salah Alden for his support, love, and encouragement.

To my son Eyad for their patience for being far from me, as I was busy all the time.

To my parents for helping, taking care and praying for me.

To my sisters Manar and Sireen who supported me and shared my worries.

To my all family who supported me.

To my brothers Tariq and Salem for their love, sincere feelings and their moral support.

To my friends for their continuous support.

To all who prayed for me.

To all whom I loved and knew.

Acknowledgments

First, I need to express my deep gratitude to Almighty Allah who gifted me his blessings and reconciled me to accomplish my studies and get the Master's degree. Thanks to Allah for granting me more than what I deserve, and for Allah's continuous care and generosity.

I would like to thank both of my supervisors Dr. Nidal Jaradat and Dr. Ahmad Khasati for their support throughout the several months of work of my Master thesis, keeping me going when times were tough, asking insightful questions, and offering invaluable advice.

I am also grateful to Dr. Ahmad Hussein for his continuous support and guidance from day one of my Master's work.

I want to thanks Dr. Johnny Amer for helping me with the anti-cancer result and Dr. Mohammad Al Qadi for helping me with the antimicrobial tests.

I also appreciate the lab technicians at An-Najah National University. In this respect, I especially thank Linda.

Finally, my family, siblings, son and close friends deserve my deep gratitude. Thank you for being in my life, which made this achievement and success possible. Lastly and exclusively, my warmest thanks must be to my husband, Salah, for his continuous and unfailing love. With his support and understanding, he underpinned my persistence in my Master study and made the completion of my thesis possible الاقرار

انا الموقعة ادناه مقدم الرسالة التي تحمل العنوان:

Synthesis of aromatic thio-acid esters of 2-thiophenylethanol and exploring some of their biological activities

أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الاشارة إليه حيثما ورد، وأن هذه الرسالة ككل، أو أي جزء منها لم يقدم من قبل لنيل أي درجة أو بحث علمي أو بحثي لدى أي مؤسسة تعليمية أو بحثية اخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is the researcher's work and has not been submitted elsewhere for any other degree or qualification.

Student's name: اسم الطالب: Signature: التوقيع: Date: التاريخ:

vi List of Contents

No.	Subject	Page
	Dedication	Iii
	Acknowledgments	Iv
	Declaration	V
	List of Tables	Viii
	List of Figures	Ix
	List of Schemes	X
	List of appendices	Xi
	List of abbreviations	Xii
	Abstract	Xiii
	Chapter One: Introduction	1
1.1	Benzoic acid	1
1.2	Esterification and Thio-ester	3
1.3	Biological activity of some modified compounds	5
1.3.1	Anti-oxidants	5
1.3.2	Anti-microbial	7
1.3.3	Anti-cancer	8
1.3.4	Diabetes	9
1.3.5	a-Amylase Activity	10
1.3.6	Glucosides	12
1.3.7	Obesity	13
1.3.8	Anti-lipase activity	14
1.4	Aim of the study	16
	Chapter Two: Materials and Methods	17
2.1	Chemicals	17
2.2	Microorganisms	17
2.3	Physical Measurements	18
2.4	General procedure for the synthesis of thio-acid esters	18
2.4.1	Preparation of 2-(phenylthio) ethyl benzoate (I)	19
2.4.2	Preparation of 2-(thiophenyl) ethyl 2 hydroxybenzoate II)	20
2.4.3	Preparation of 2-(thiophenyl) ethyl 3-hydroxybenzoate (III)	21
2.4.4	Preparation of 2-(thiophenyl) ethyl 4-hydroxybenzoate (IV)	22
2.5	Biological activity assays	24

	V11	
2.5.1	The general procedure of anti-oxidant test for benzoate compounds	24
2.5.1.1	DPPH assay	24
2.5.1.2	β-carotene- linoleic acid method	25
2.5.2	The general procedure of anti-microbial test for benzoate compounds	26
2.5.3	The general procedure of Anti-cancer test for benzoate compounds	27
2.5.3.1	The general procedure of Anti-cancer test for benzoate compounds cell line	27
2.5.3.2	The general procedure of Anti-cancer test for benzoate compounds Flow cytometry analysis	28
2.5.4	The general procedure of α -glucosidase activity test for benzoate compounds	29
2.5.5	The general procedure of anti-lipase test for benzoate compounds	30
2.5.6	The general procedure of α -amylase inhibitory screening test for benzoate compounds	31
	Chapter Three: Results and Discussion	34
3.1	Identification of 2-thiophenoxyethanol benzoates	34
3.2	NMR	35
3.3	Anti-oxidant activity	35
3.3.1	DPPH Activity	35
3.3.2	β-carotene linoleic acid activity:	37
3.4	Antimicrobials activity testing	38
3.5	Anticancer activity	42
3.6	α-amylase inhibitory screening	45
3.7	α- Glycosidase activity of thio-acid esters	46
3.8	Assessment in-vitro porcine pancreatic lipase enzyme activity	48
3.9	Conclusion	49
	References	50
	Appendices	63
	الملخص	Ļ
		•

viii List of Tables

No.	Subject	
3.1	Percent inhibition of radicals by benzoate compounds at different concentrations	36
3.2	Microbial growth inhibition MIC values of synthesis compounds	41
3.3	The percent inhibition of the synthesized compounds compared with Acarbose	46
3.4	The percent inhibition of the synthesized compounds compared with Acarbose α - Glycosidase	47
3.5	The percent inhibition of the synthesized compounds compared with Orlistat porcine pancreatic lipase enzyme	48

ix List of Figures

No.	Subject	Page
1.1	General equation of Fischer esterification	3
3.1	%Inhibition of DPPH for the tested compounds	37
3.2	Anti-oxidant activities of synthesis compounds in β -Carotene-linoleic acid test.	38
3.3	averages of 3 different readings of (A) G1 phase (B) S phase and (C) G2-M phase following treatments with four compounds	43
3.4	Apoptosis and necrosis averages of synthesis compounds	45
3.5	The percent inhibition of the synthesized compounds compared with Acarbose α -amylase	46
3.6	The percent inhibition α - Glycosidase Enzyme for tested compounds	47
3.7	the percent inhibition and IC_{50} of the synthesized compounds compared with orlistat	49

List of Schemes

No.	Subject	
2.4	general reactions for acid esters	19
2.4.1	Scheme 2: Reaction of benzoic acid with 2-thiopheny	
	1 ethanol	19
2.4.2	Scheme 3: reaction of 2-thiophenyl ethanol with	20
	2-hydroxy benzoic acid	20
2.4.3	Scheme 4: reaction of 2-thiophenyl ethanol with	22
	3-hydroxy benzoic acid	
2.4.4	Scheme 5: reaction of 2-thiophenyl ethanol with	23
	4-hydroxy benzoic acid	23

xi List of Appendices

No	Subject	Page
Ι	Nuclear Magnetic Resonance Spectroscopy (NMR)	63
II	C 13	72

xii List of Abbreviations

Symbol	Abbreviation
BERC	Biodiversity & Environmental Research Center
NARC	National Agriculture Research Center
DPPH	1,1-Diphenyl-2-picryl-hydrazyl
PABA	<i>p</i> -amino benzoic acid
DCFC	Dry column flash chromatography
RNS	Reactive nitrogen species
ROS	reactive oxygen species

xiii Synthesis of aromatic thio-acid esters of 2-thiophenylethanol and exploring some of their biological activities

By Maram Hawi Supervisor Nidal Jaradat Co- Supervisor Ahmad Khasati Abstract

Four compounds of thio-acid esters were prepared from the reaction of benzoic acid derivatives including 2-hydroxy, 3-hydroxy, 4-hydroxy benzoic acid with 2-thiophenylethanol. The structures of these thioesters were established by Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance (¹H-NMR) and C13. The aromatic thioesters were tested for their anti-oxidant, anti-fungal, anti-bacterial, anticancer antidiabetic and anti-obesity activities. The compounds activity as antioxidants in DPPH was about (IC₅₀= $30\mu g/ml$), the same value for Gallic acid. The compounds were tested also for their antibacterial activity against: (Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Proteus Vulgaris, Enterococcus Faecium, Pseudomonas Aeruginosa, MRSA, and *Candida Albicans*) and showed MIC value average (3.125-6.25mg\ml), the MIC average for ampicillin antibiotic (0.001-3.125 mg\ml). While the cytotoxic property will be assessed on MCF-7, human carcinoma cells and showed the average (G2-M phase: 21.83, 8.13, 10.66, 14, 3.66). Moreover, for amylase (IC₅₀ = 10) which is the same as Acarbose.

Chapter One Introduction

1.1 Benzoic acid

Benzoic acid ($C_7H_6O_2$) is a simple aromatic carboxylic acid, a crystalline solid, colorless and odorless, with a sweetish and astringent taste. Benzoic acid is found in many plants and is synthesized by secondary metabolites. It is also found in several foods like grains, milk, eggs, and meat. Also, it is prepared by different methods, such as neutralization with the corresponding hydroxides or by heating with the corresponding concentrated carbonates. Benzoic acid and its derivatives have many industrial applications, such as food preservatives, plasticizers, and pediculicide agents, and they are used as hydroxyl-radical scavengers for antioxidant activity or as drugs for fibrotic skin disorders, such as Peroni's disease (1).

In many countries, the interest in phenols, polyphenols, and acid esters has increased, since several types of these compounds exert a wide variety of biological effects, in particular inflammation control, anti-atherogenic, inhibition of bacterial strains, and antiviral and anti-cancer activities. Also, they are used as food additives and preservatives. These effects may be due to their antioxidant role, though different mechanisms may be included (2).

Salicylic acid, which is a derivative of hydroxyl benzoic acids, and phenyl esters were proven to be some of the most important active compounds present in many plant sources (3, 4). It has been observed that the anti-

oxidative effect of acid esters and phenolic derivatives can be identified by their molecular structures and the hydroxyl group position (4, 5). For instance, the unpaired electrons can be delocalized to fix the formed radical after the observed reaction with the initiator radical(5). Some previous research carried out by scientific groups reported that the catechol observed moiety, with the 3, 4-dihydroxyl configuration, is a basic factor in the scavenging effect of this free radical for these phenolic and acid ester types of organic compounds (4). On the other hand, some studies have shown that this structure is not required for this activity (5). In addition, there are two other series of acid esters, thio-acid esters, and amino acid esters, but these have not yet been studied. Phenolic compounds and acid esters usually absorb wavelengths in the UV region, and so they are usually used in detectors in an HPLC or UV Vis detectors (6, 7). There is no single wavelength that is ideal for controlling all types of phenolic compounds because they show maximum absorbance values at various reported wavelengths (7). Most of the benzoic acid derivatives record their maxima wavelength at 246 262 nm, except gallic acid and syringic acid which exerted absorption maxima at 271 and 275 nm, respectively (8, 9). In addition, hydroxycinnamic acids absorb light in two UV regions, in the first one the maximum ranges between 225 and 235 nm and for the other the maximum ranges between 290 and 330 nm (10). At 320 nm, cinnamic acid derivative compounds may be recorded without any interference from benzoic acid derivatives that have an absorption value that is higher than

254 nm. Despite this, recording at 280 nm is the perfect alternative for the identification of both types of phenolic compounds (10).

1.2 Esterification and thio-acid esters

Esters are organic compounds derived from the reaction of an acid (organic or inorganic) and alcohol, catalyzed by a small amount of concentrated sulfuric acid or hydrochloric acid through a condensation reaction known as Fischer esterification, as illustrated in Figure 1.1 (11).

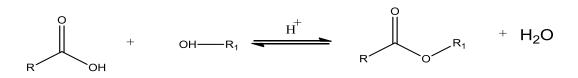


Figure 1.1: General equation of Fischer esterification.

Fischer esterification can be reversible with an equilibrium shifted forwards in simple alcohols and simple carboxylic acids, but also backwards when the alcohol and/or carboxylic acid are bulky. The process of hydrolysis is also preferred in aqueous solutions (11-13).

A none reversible scientific method for the preparation of none hindered esters is the reaction of alcohols with the known acid chloride (11, 14) or acid anhydrides, but the obtained yield for these bulky esters is still low (11).

Thioesters are organic compounds that have 'RSCOR' as the functional group. The preparation of these compounds is achieved by esterification

Among thiol and a carboxylic acid. In biochemistry, the most well-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA.

The process of the esterification of thiols (RSH) is one of the preferred chemical reactions in the organic lab, which concerns the synthesis of thioester derivatives (15-17). The S acylation of thiols is also an effective and inexpensive way to safely produce sulfhydryl groups (R-S-H) with multiple steps in the preparation of the synthetic organic compound (18, 19). Thioesters are important intermediate substances in food, medical applications, and also in cosmetic chemical synthesis, as well as for the production of new materials (20, 21). Furthermore, thioesters are organic structures, which are also widely used in the preparation of heterocyclic molecules, and structures that have carbonyl functional groups that are needed for chemical processes (22, 23). The structures of thioesters also form the skeleton of many antibiotics and natural products (24). The preeminent effect of thioesters in pharmaceutical, biological, and as well as industrial applications is the most valuable reason for developing the preference of these structures adopted by scientific researchers with the following tiny review (25, 26). Acylation of thiols has been reported in many protocols. The sources for the acyl group in these transformational syntheses are traditionally carboxylic acid as well as acid chlorides or acid anhydride, which are used with strong bases, such as triethylamine, pyridine or DMAP under reflux set up for a few hours in order to start the process. During the last decade, these traditional methods have been developed with some new protocols that use catalysts like triflates, CsF₃,

titanocenebis (perfluorooctanesulfonate), and dodecylbenzene sulfonic acid for thiol acylation assay (27-29).

1.3 Testing the biological effect of the various modified compounds

Producing or influencing a change in the living tested tissue or the ability to make an alteration in a biological process is the definition of biological activity of substances. The related effects among the molecular terminal part and the biological action can be assessed by obtaining the structure and its biochemical mechanism of action. The value of observing biological processes is that it provides a description of the functional relationships among the biological influences and the chemical species that are involved (30).

1.3.1 Compounds with antioxidant activity

Free radical scavenging species, also known as antioxidants, are expected materials that may prevent or delay several forms of cell damage by reacting with the cells and the inhibition effects of these free radicals can prevent cell damage and therefore prevent or delay various diseases. Also, these free radicals are well-known as highly reactive species that carry an odd number of negatively charged electrons in their structures, and this makes them highly reactive and they can damage cells which are called cellular pathologies. Some of these negative effects can result in cancer.

A biological system which involves oxygen and nitrogen will give rise to many free radicals and different reactive species, which are all known as 'reactive oxygen species' (ROS) and 'reactive nitrogen species' (RNS), respectively. They have dual roles as they are both beneficial and also deleterious species (31, 32). Antioxidants are valuable organic substances especially when designing new drugs. There are two types of these antioxidant compounds. The first type is created by natural pathways in our bodies; the second type is supplied to our bodies from external sources like smoking, sun exposure, and other dangerous pollution sources. However, the body also needs exogenous sources of antioxidants or dietary antioxidants from fruits and vegetables, which are named as external sources of antioxidants (33, 34).

The high reactivity of free radicals makes them a highly destructive species that can rapidly harm body cells. These radicals are produced when an atom or a molecule either gains or loses an electron (a tiny negatively charged particle present in atoms) (35).

'As the concentration of free radicals increases so too does the hazard that they pose to the body. They can damage important components of body cells, such as proteins, DNA, and cell membranes. Various forms of these mutagenic substances and carcinogens may act via the ejection of the oxygen radicals, due to the destruction of DNA. These conditions are the preferred environments for establishing and progressing cancer (36, 37).

1.3.2 Compounds with antimicrobial effects

Extremely small organisms that are identified under a microscope are referred to as microbes which are found in rocks, plants, air, soil, bodies and in water. Microbes can replicate and spread rapidly. These organisms are split into the following classes: bacteria, fungi, viruses, and protozoal types. Some microbes are responsible for disease and are called parasites. Furthermore, a variety of these organisms are present in the body as normal flora and are actually beneficial and not harmful to body cells (38).

Drugs, which have antimicrobial effects, are prepared in such a way so that they inhibit these microbes without having any bad effects on the human body (39). Antibiotics are valuable weapons for fighting bacterial strains, and the preparation of antibiotics has a strong relationship with the nature of life concerned with patients' healthy state. Nowadays, these health values have involved limitations due to natural selection; bacterial strains' resistance to these drugs is currently a critical issue. So, developing medicinal preparations derived from naturally occurring sources play a critical role in preventing and curing disorders in people (40). An antifungal medication is a medical preparation that selectively acts to get rid of fungal pathogens from the infected tissues with minimal side effects for the target (32). Compared with bacterial diseases, fungal diseases are more difficult to treat. Topical and oral treatments are long term and partially effective in managing these fungal infections. Several of these infections can be chronic and these treatments can stop the infection in body tissues, but there is evidence that in some cases the disease can reoccur (33).

The most available and widespread classes of all mycoses are usually related to fungal infections of the skin. They affect more than 20–25 percent of the world's population, and skin mycoses are the most common type of infection...(41).

1.3.3. Anti-cancer

Nowadays, cancer is the most important health issue in the world. In many countries, cancer is the second leading cause of death, after heart disease. The incidence of different carcinomas, worldwide, is estimated to be about 10 million, and half of these incidences are in developed countries (42, 43). Almost five decades of systemic drug discovery and developments have led to a respectable accumulation of useful and important chemotherapeutic agents (44, 45), and several important successes in the curing and management of human cancer (46). In the scientific literature, several citations reference epidemiological research that supports and shows significant differences in the occurrence of carcinoma between oriental and occidental populations (47, 48).

Since it was first used almost half a century ago, chemotherapy as a cancer treatment has faced dramatic problems. Also, the lack of selectivity by conventional anti-cancer agents, leading them to damage not only malignant but also normal body and blood cells, has confused scientists and made them aware of the need for more specifically selective medications (49). Another reported drawback that arose just after cancer chemotherapy was established, was the appearance of drug resistant cancer cells (50). This, in turn, increased the interest in searching for possible anti-cancer agents from the flora present in several countries, which are available in the market as "natural products" (51). There are no perfect and effective synthetic drugs present in the pharmacopeias. Therefore, scientists and chemists do their best to synthesize chemical compounds that may have anti-cancer activity. The compound Oenothein B, which is separated from the *Epilobium parvijlorum* plant, is used for the treatment of prostate disorders. It inhibits 5-of reductase and the 5- α reductase, which converts testosterone to the more potent androgen, dihydrotestosterone (DHT), in the prostate (52).

1.3.4 Diabetes

Diabetes mellitus (DM) is a chronic disease that presents as both postprandial or fasting hyperglycemia, with disturbances in metabolizing carbohydrates and proteins. Hyperglycemia in diabetes is caused by an absolute deficiency in either insulin secretion (type 1 DM) or insulin action (type 2 DM) or sometimes by both. The worldwide incidence of diabetes has increased in recent years. The estimated number of people with diabetes reached 30 million in 1985, 150 million in 2000, and then 246 million in 2007, based on information from the International Diabetes Federation which expects this number to hit 380 million by 2025 (53).

1.3.5 α-Amylase activity

Alpha amylase is defined as an enzyme, which catalyzes the biochemical pathway for the hydrolysis of starch (Latin asylum) into simple sugars. This enzyme is present in the saliva in the human body and in some other mammals' body saliva, where the enzyme starts the chemical process of digestion (54, 55). Foods such as bread, rice, and potatoes that contain a high percentage of starch, but low levels of simple sugars, may have a slightly sweet taste as they are chewed because the amylase degrades some of the starch into a simple sugar. In addition, the pancreas and salivary glands make amylase (alpha amylase) to digest dietary starch into disaccharides and trisaccharides which are then finally transformed by other enzymes into glucose in order to provide the body with energy (56). Plants and some bacterial strains can also produce amylase. As *diastase*, amylase was the first enzyme to be discovered and isolated (by Anselme Payen in the year of 1833). Specific amylase proteins are designated by different Greek letters. All types of amylase are glycoside hydrolases and their action depends on the α -1, 4-glycosidic bonds. The α -amylases (alternative names: 1, $4-\alpha$ -D-glucan glucanohydrolase; glycogenase) are calcium metalloenzymes. As they act at random locations along the starch chain, α -amylase as a result breaks down long-chain saccharides, finally producing either malt triose and maltose from amylose, or maltose, glucose, and "limit dextrin" from amylopectin.

Since this enzyme can act anywhere on its substrate, α -amylase seems to be faster acting than β -amylase. In animals, it is a major digestive enzyme, and its optimum pH is 6.7–7.0.

Both the salivary and pancreatic amylases in human physiology are α -amylases.

The α -amylases forms are also present in plants, fungi (ascomycetes and basidiomycetes), and bacteria (Bacillus).

The activity of α -amylase was usually determined by the method of McCue and Shetty, which involved starch as a substrate in a colorimetric chemical reaction using 3, 5-dinitrosalicylic acid. A standard calibration curve was established for the hydrolyzed products (reducing groups) using D-(+)maltose monohydrate. Then the activity was calculated as units per milligram of protein, as each one unit was defined as the amount of enzyme required to produce one mmol of maltose under these protocol conditions. Also, the protein content was estimated using the Bio-Rad protein assay kit. Data were reported as amylase inhibition (AI) index values, defined herein as the ratio of α -amylase activity of the control (just the enzyme) to that of the enzyme/clonal extract mixture and values greater than 1 indicate AI (57).

1.3.6 Glucosides

One of the non-reducing organic compounds the glycosides that by hydrolysis with acids, alkalis or enzymes will produce: A sugar part (or glycone, formed of one or more simpler sugar units). A non-sugar part (or aglycone, also called genin) (58).

An α -glucosidase, such as maltase, glucoinvertase, glucosidosucrase, maltase-glucoamylase, alpha-glucopyranosidase, glucosidoinvertase, alpha-D-glucosidase, alpha-glucoside hydrolase, alpha-1,4-glucosidase, or alpha-D-glucosideglucohydrolase, is a glucosidase found on the border of the small intestine which acts upon $\alpha(1_4)$ bonds. This is a contrast to betaglucosidase. Alpha-glucosidase hydrolyzes starch and disaccharides to glucose. Maltase seems to be a similar enzyme that cleaves maltose, which is almost functionally equivalent (59, 60).

Alpha-glucosidase breaks down terminal non-reducing $(1\rightarrow 4)$ -linked alpha-glucose residues to produce a single alpha-glucose residue(61). Alpha-glucosidase is a carbohydrate--hydrolase that produces alpha-glucose as opposed to beta-glucose. Beta-glucose residues can be produced by glucoamylase, a functionally similar enzyme. In addition, the substrate selectivity of alpha-glucosidase is related to the subsite affinities of the enzyme's active site. Two suggested mechanisms involve a nucleophilic displacement and an intermediate, which is an oxocarbenium ion (62).

1.3.7 Overweight and obesity

One of the recent widespread health problems is obesity, which can be defined as a medical case in which a high amount of body fat has increased to such a level that it may have serious effects on human health. In general, a person is characterized as obese when their measured body mass index (BMI), a measurement obtained by dividing the individual's weight by the square of the individual height, is more than 30 kg/m², and a BMI between 25 and 30 kg/m² is classed as overweight(63). Other countries in East Asia use lower values. Obesity leads to an increase in the occurrence of different conditions and diseases, like cardiovascular disorders, type two diabetes, sleep apnea (characterized by obstruction in the respiratory tract), specific forms of cancer, osteoarthritis conditions, and depression.

In general, obesity is due to several factors starting with a high food intake, then low physical training, and it may depend on genetic susceptibility (63, 64). A few cases have appeared to be primarily due to genes, endocrine disturbances, some ingested medications, or mentally related problems(65). The view that obese people eat little yet gain weight because of a slow metabolism has not been medically confirmed. On average obese individuals have higher energy expenditure than their normal counterparts, since more energy is needed to stabilize an increased measured body mass.

Obesity can mostly be restricted by various social changes and personal choices. Some changes in diet and exercising are the main treatments. The quality of diet can also be altered through a reduction in the consumption of

food rich in energy supply, like those high in fats or sugars, and by increasing the consumption of fibers. Drugs can be used, along with a suitable diet, to reduce appetite or interfere with fat absorption. In some cases, if diet, exercise, and also drugs are not effective, a gastric balloon or surgery may be the solution to reduce stomach volume or length of the intestines, resulting in feeling full earlier or decreasing the capacity to absorb nutrients from the obtained diet.

Obesity seems to be a preventable cause of death worldwide, with increasing rates in both adults and children. As reported in 2015, 600 million adults (12%) and 100 million children were recorded as obese in 195 countries. Obesity seems to be more common in women than in men. Authorities view it as one of the most serious public health issues of the 21st century. Obesity is stigmatized in much of the modern world (especially in the Western world), though it was seen as a symbol of wealth and fertility at certain times in history and still is in some parts of the world. Moreover, in 2013 the American Medical Association listed the condition of obesity as one of the present diseases (66, 67).

1.3.8 Anti lipase activity

Substances that are classified as lipase inhibitors are used due to their ability to reduce the action of lipases, which are present in the small intestine. In addition, lipases are ejected into the intestine from the pancreas as fat reaches this location. The function of lipase blockers is usually to reduce the absorption of these fatty materials by the GI. As a result, these fats will be flushed away in feces, without being absorbed in order to be used as a source of caloric energy, and this can result in weight loss in individuals. These inhibitory agents could be used for the treatment of some obesity conditions, that can lead to type II diabetes and cardiovascular disorders if not well controlled. A commonly used material for lipase inhibiting agents is Orlistat (68, 69).

The effect of lipase inhibitors on the amount of absorbed fat can be observed, as the lipase inhibiting agents are not absorbed until they reach the blood, so they cannot inhibit the absorption of fat until then. The binding of lipase inhibitors to lipase enzymes occurs in the intestine, and this blocks the breaking down of dietary triglycerides that are then transformed into monoglycerides and other fatty acids. This reduces the absorption of fatty substances that are present in the diet. Furthermore, lipase inhibitors are bonded to the serine active point on lipases by such strong covalent bonds that are relatively irreversible, meaning that the lipase inhibitor will stay attached to this digestive enzyme. Researchers have reported that lipase inhibitors perform best when 40% of the daily caloric intake by each individual is taken from fatty substances. Orlistat tends to stop the absorption of 30% of the total amount of ingested fatty food present in a meal, as orlistat is usually flushed away from the body digestive tract faster than the fatty materials can act (69, 70).

Aims of our study

Main objectives of this scientific study are the following:

- 1- To prepare a series of substituted benzoates of 2-phenoxyethanethiol
- 2- To explore some of the biological activity of these esters
- 3- To enrich the literature with the physical data of these esters

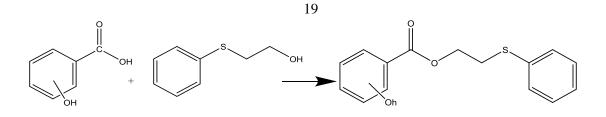
Chapter Two Materials and Methods

2.1 Chemicals and reagents

The following chemicals were needed for our experiment: 2-thiophenyl ethanol, ortho-hydroxybenzoic acid, benzoic acid, 3-hydroxy benzoic acid, para-hydroxyl benzoic acid, all of which were purchased from Aldrich. The following chemicals were purchased from Frutarom: ethyl acetate, NaHCO₃, brine, Na₂SO₄, cyclohexane, ethyl acetate, β -carotene, DPPH, Na₂HPO₄\NaH₂PO₄ (Disodium phosphate\Monosodium phosphate), NaCl, Porcine pancreatic amylase enzyme solution, starch, dinitrosalicylic acid (DNSA), methanol, Trolox, Gallic acid, pancreatic lipase enzyme, tri-HCl buffer, PNPB p-nitro phenylbutyrate acetonitrile, Orlistat, tocopherol, alpha glucosides, Na₂CO₃, acarbose. All of the chemicals were of analytical grade.

2.2 Microorganisms

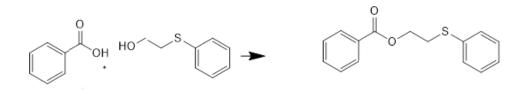
The microorganisms used in this experiment were from An-Najah University lab. / Nablus. The types of bacteria were: *Klebsiella pneumonia* (ATCC13883), *Staphylococcus aureus* (ATCC 25923), *Pseudomonas aeruginosa* (ATCC 9027), *Proteus vulgaris* (ATCC 8427), *Escherichia coli* (ATCC 25922), *Enterococcus faecium* (ATCC 700221), MRSA (Clinical strain), and *Candida albicans* (ATCC90028).


2.3 Physical measurements

The melting range of each compound was measured by start melting point apparatus, R00102618, while IR was detected by an infrared spectrophotometer (Nicolet Is5 - Id3) at An-Najah University. ¹H –NMR and Carbon13 were determined by a Bruker 500 MHz-Avance III at the University of Jordan/ Jordan.

2.4 General method for the preparation of thio-acid esters

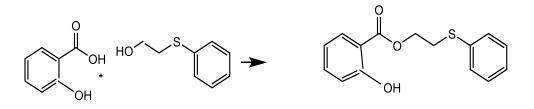
Thio-acid esters were synthesized by refluxing benzoic acid and its derivatives with 2-thiophenyl ethanol for two hours. The reaction was left overnight at ambient room temperature. The prepared compound was fully dissolved in 20 ml ethyl acetate and the residue was separated using saturated NaHCO₃ in a separator funnel. The organic layer was thoroughly washed with a saturated solution of NaCl, dried over Na₂SO₄, and then the solvent was evaporated off. The residues were purified by flash chromatography using the mobile phase of n-hexane-ethyl acetate and a silica gel as the stationary phase.


The following equation shows the expected general reactions for acid esters.

Where OH is a substituent in the places of Orth, Meta, or Para.

2.4.1 Preparation of 2-(phenylthio) ethyl benzoate (I)

Benzoic acid (3.062 g, 0.025 mol) and 2-thiophenylethanol (3.856 g, 0.025 mol) were refluxed for two hours, then left for one night. The reaction was catalyzed by adding 2 ml sulfuric acid. The product was dissolved in 20 ml ethyl acetate, then extracted with saturated sodium bicarbonate. The phases were washed with saturated sodium chloride, dried with sodium sulfate, and the solvent was evaporated. The final product was purified using flash chromatography using the mobile phase of 40% n-hexane 60% ethyl acetate and a silica gel as the stationary phase.


Scheme 2: Reaction of benzoic acid with thiophenyl ethanol.

Percentage yield is 68% and M.p. = 113–115°C. UV λ_{max} 240–270 IR v_{max} (1697 C=O, 1596 aromatic, 1242 ester, 1064 carboxylic acid cm⁻¹). ¹HNMR (DMSO):7.39 (2H, m; H2 and H6); 7.21 (1H, m; H4); 7.35 (2H, m; H3 and H5); 7.66 (1H, m; H15); 8.05 (2H, m; H13 and H17); 7.56 (2H, m; H14 and H16);) 4.17 (2H, t, *J*= 6Hz, -OCH₂); 3.54 (2H, t, *J*=6 Hz, CH₂.S).

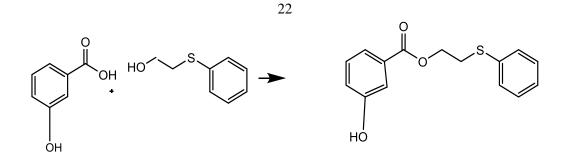
13CNMR (DMSO) δ: (171, C-ester), (158, C1'); (131.9, C4), (130.1, C-3' and C-5'), (129.0, C2- C6), (128.0, C3), (121.0, C4), (114.0, C2'-C6'), (69.4, CH₂), (66.9, CH₂) ppm.

2.4.2 Preparation of 2-(phenylthio) ethyl 2-hydroxybenzoate (II)

Firstly, 2-hydroxybenzoic acid (3.425 g, 0.025 mol) was added to 2–thiophenylethanol (3.850 g, 0.025 mol) and 2 ml sulfuric acid and then they were refluxed for half an hour, then the reaction was left for one night. The product was dissolved in 20 ml ethyl acetate then extracted with saturated sodium bicarbonate. The organic layer with 10% sodium chloride was washed, the solvent was dried with sodium sulfate, then evaporated. The product was purified by flash chromatography using the mobile phase of 40% n-hexane-60% ethyl acetate and silica gel as a stationary phase. The following scheme shows the chemical reaction of 2-(phenylthiol) ethyl 2-hydroxybenzoate.

Scheme 3: Reaction of 2-thiophenyl ethanol with 2-hydroxy benzoic acid.

Percentage yield is (76%) and M.p. = $234-237^{\circ}$ C. UV $\lambda_{max} 240-270$.


IR (3309 O-H, 1712 C=O, 1596 Aromatic ring, 1242 ester, 1069 carboxylic acid) cm⁻¹.

¹HNMR (DMSO): 7.39 (2H, H2, H6); 7.35 (2H, H3, H5), 7.21(1H, m, H-4); 7.72 (1H, H14); 7.37 (1H, m, H15); 7.54 (1H, m H16'); 7.17 (1H, H17) 4.17 (2H, t, *J*= 6Hz, -OCH₂); 3.54 (2H, t, *J*=6 Hz, CH₂. S), 10.9 (O-H) ppm.

¹³C-NMR (DMSO δ: 172, C- ester; 166, C1'; 156, C2; 135, C4; 131, C6'; 130 (C3' and C-5'); 121.0, C5'; 120, C4'; 119.0, C2'and C6'; 117.0, C1; 114.0, C3'; 69.2, O-CH₂; 62.1, CH₂-S) ppm.

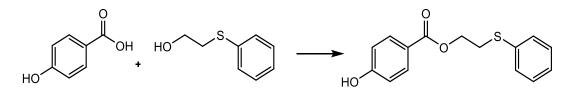
2.4.3 Preparation of 2-(phenylthio) ethyl 3-hydroxybenzoate (III)

Firstly, 3-hydroxybenzoic acid (3.45 g, 0.025 mol), was mixed with 2-thiophenylethanol (3.850 g, 0.025 mol) and catalyzed with 2 ml sulfuric acid and then refluxed for an hour, then the reaction was left for one night. The product was then dissolved in 20 ml ethyl acetate and extracted with saturated sodium bicarbonate. The layer with 10% sodium chloride was washed, the solvent was dried with sodium sulfate and then evaporated. The product was purified by flash chromatography using the mobile phase 60% ethyl acetate -40% n-hexane and silica gel as a stationary phase. The following scheme shows the chemical reaction of 2-(phenylthio) ethyl 3-hydroxybenzoate.

Scheme 4: Reaction of 2-thiophenyl ethanol with 3-hydroxy benzoic acid.

Percentage yield is 56% and M.p. = 165–167°C. UV λ_{max} 240–270.

IR v_{max} (3309 O-H, 1689 C=O, 1596 Aromatic, 1496, 1242ester, 1087 carboxylic acid alkene, 673, 692 CH2) cm⁻¹.


¹HNMR (DMSO):δ 7.39(2H,m,H2 and H6),7.21 (1H,H4);7.35 (2H, m,H3, H5'); 7.61 (1H, H13) 7.691H ,H14), 7.16 (1H ,H15)7.56 (1H, H17), 8.5(O-H), 4.17 (2H,t, *J*=7.0 Hz ,-OCH₂), 3.54 (2H, t, *J*=7 Hz, CH₂-S) ppm.

¹³CNMR (DMSO):165.8, C-ester; 157.8, C1'; 156.5, C3; 132.0, C1; 129.4,
C'3 and C5'; 125.9, C5; 124.9, C6; 120.8, C4'; 117.4, C2 and C4; 66.3, O-CH₂; 64.5, CH₂-S) ppm.

2.4.4 Preparation of 2-(phenylthio) ethyl 4-hydroxybenzoate (IV)

The 4-hydroxybenzoic acid (0.025 mol, 3.45 g), 2-thiophenylethanol (0.025 mol, 3.850 g) and 1 ml sulfuric acid were refluxed for an hour, then the reaction was left for one night. The product was then dissolved in 20 ml ethyl acetate and extracted with saturated sodium bicarbonate. The layer was washed with 10% sodium chloride, the solvent was dried with Na_2SO_4 and then removed. The product residue was purified by flash

chromatography using the mobile phase 40% n-hexane- 60% ethyl acetate and silica gel as a stationary phase. The following scheme shows the chemical reaction of 2-(phenylthio) ethyl 4-hydroxybenzoate.

Scheme 5: Reaction of 2-thiophenyl ethanol with 4-hydroxybenzoic acid.

Percentage yield is 63% and the melting point is in the range 224–228°C, while UV λ_{max} 240–270.

IR v_{max} (3308O-H, 1689 C=O, 1596 Aromatic, 1495, 1241 ester, 1087 carboxylic acid, 694 alkenes, 673, 481 –CH2) cm⁻¹.

¹HNMR (DMSO) δ: 7.39 (2H, m, H2 and, H6), 7.35 (2H, m, H3 and, H5), 7.21(H-4) 6.88 (2H, m, H14', H16'),7.88 (2H, H13, H17) 4.43 (2H, t, *J*=7.0 Hz,-OCH₂); 3.31 (2H, t, *J*=7 Hz, CH₂-S),8.3 (O-H) ppm.

¹³C-NMR (DMSO) δ: 167.1(C-ester), 160.4(C4), 156.8(C1') 132(C2 and C6); 129.9(C3 and C5'), 122. (C3' and C5), 121.0 (C4), 115.3 (C1'), 114.3(C2 and C6'), 69.2(O-CH₂), 62.2(CH₂-S) ppm.

2.5 Biological activity assays

2.5.1 Antioxidant activity

2.5.1.1 DPPH (2, 2-diphenyl-1-picryl-hydroxyl hydrate) assay

Four synthetic compounds were tested for the efficiency of scavenging free radicals matched with Trolox and Gallic acid as a basic. One mg/ml concentration solutions in methanol were prepared from the compounds and the solutions that were produced were used to prepare concentrations of 5, 10, 20, 30, 40, and 50 μ g/ml. The DPPH reagent (0.002% w/v) was dissolved in methanol before being mixed with working concentrations in ratios of 1:1:1 (compound: DPPH: methanol). The methanol solution was adopted as a blank. All the solutions were incubated for 30 min at room temperature in the dark. When the antioxidant compound reacts with DPPH, which can donate hydrogen, it is reduced. The color changes from deep violet to light. Absorbance values were estimated by using a UV–vis spectrophotometer, at a wavelength of 517 nm. The antioxidant potential percentage of each compound and Trolox and gallic acid was estimated according to the formula:

Inhibition Percentage = $(A_b - A_s)/A_b \times 100\%$,

where A_b is blank absorbance and A_s is sample absorbance. The IC₅₀ values for each compound and Trolox and gallic acid were determined from the curves (71).

2.5.1.2 β-carotene methods

The effectivity of the synthesized compounds was estimated using a modified method of Gazzani and Miller (72). The method was based on the coupled oxidation of β -carotene and linoleic acid emulsion. The bleaching mechanism of β -Carotene is produced from the hydro-peroxides that are created from linoleic acid (73). During the oxidation process, the characteristic orange color of β -carotene and the chromophore will be lost. The presence of antioxidants can hinder the extent of the β -carotene bleaching. Briefly, 1 mg β -carotene was dissolved in 2 mL chloroform and 20 mg linoleic acid, and 200 mg of Tween 20 was added. Chloroform was completely vaporized by a rotary evaporator at a temperature of less than 30°C, under reduced pressure. Then 200 mL of distilled water saturated with oxygen was added to the flask which was shaken strongly for 30 min. A sample (5 ml) of the prepared emulsion was transferred to a series of tubes each containing 0.1 ml of the synthesized compounds or tocopherol (2 mg/ml).

The control sample was prepared exactly the same way but without adding antioxidants. Each sample type was prepared in triplicate. The samples were placed in water bath at 50°C for 2 h. The absorbance of the sample was read spectrophotometrically at a wavelength of 470 nm, immediately after sample preparation and at 15-min intervals until the end (t = 120 min) of the experiment.

2.5.2 Testing the antimicrobial activity

Four bacterial strains were selected for antibacterial examination and they were supplied by the American Type Culture Collection (ATCC) and they were; Escherichia coli (ATCC 25,922); Pseudomonas aeruginosa (ATCC 27,853); Staphylococcus aureus (ATCC 25,923); and some clinical isolates of MRSA (Methicillin-Resistant Staphylococcus aureus) were also examined. The C. siliquastrum samples were examined against the growth of Candida albicans to assess the fungus inhibition ability of our compounds. Furthermore, the antimicrobial effect of C. siliquastrum in our study was reported using the broth micro dilution process (74, 75). Fifty grams of every compound were fully dispersed in 50 ml dimethyl sulfoxide to establish a final concentration of 1 mg/ml. Filter-sterilization was carried out on the resulting solution in order to serially micro-dilute it by twofold, six times under a sterilized nutrient broth. The dilution processes were carried out using aseptic conditions in the available 96 well dishes. Inside the micro-wells which were selected to examine the antibacterial ability of the tested compounds, the concentration ranged from 1.53 to 25 mg/ml. The same conditions existed inside the micro-wells of the compounds assigned to examine the antifungal effect where the concentration also ranged from 1.53 to25 mg/ml. Also there was a micro-well plate, holding number 11, which included compounds that were free of nutrient broth, and which was adopted as a positive control for the growth of microbes. In addition, micro-well holding number 12 included compounds free of nutrient broth that was kept away from the others and was not inoculated

with any of the examined microbes. Each of the bacterial pathogen and Candida Albicans samples was examined in duplicate in this assay. All the inoculated microplates were incubated at 35°C, and plates inoculated with the examined bacterial strains were incubated for 18 h and plates inoculated with examined *Candida albicans* were incubated for 48 h. The lowest value of the assessed concentration of *C. siliquastrum* at which there was no visible microbial growth in the micro-well was also recorded, and was defined as the minimal inhibitory concentration (MIC) of the tested compound (75). This micro-well was considered as a negative reported control of bacterial growth. The micro-wells with numbers ranging between 1–11 were also inoculated aseptically with the examined microbial strains. At the time of inoculation, the final concentrations of microbial cells were about 5×10^5 and $0.5-2.5\times10^3$ colony-forming unit (CFU)/ml for the examined strains of bacteria and *Candida albicans*, respectively. Each of the involved microbes in our study were assessed in duplicate.

2.5.3 Testing anti-cancer activity

2.5.3.1 Assessed cell line

The evaluated cytotoxicity was carried out by two cell lines, which were MCF-7 and MCF-10A. The examined MCF-7 is as known as a breast cancer cell line, characterized by the overexpression of a receptor-related to estrogen. In contrast, MCF-10A is not a tumorigenic epithelial breast cell line. The MCF-7 case was achieved by RPMI-1640 media (Germany, sigma) mixed with 10% fetal bovine serum (Germany, Sigma), 1% l-

glutamine (France, Sigma), 1% streptomycin and 1% penicillin (USA, Sigma), also a pH of 7.2 was controlled using Dulbecco's Phosphate Buffered Saline (DPBS) (USA, Sigma). The cells were grown in an atmosphere containing humidity and 95% air and 5% CO₂ at 37°C in an ESCO incubator adapted for cell-culture. Moreover, the construction of the MCF-10A case was carried out in DMEM-media (Sigma, Germany) that was nourished with 10% fetal bovine serum,1% l-glutamine, 1% streptomycin, and 1% penicillin, and the pH was kept at 7.2 using Dulbecco's Phosphate Buffered Saline (DPBS). The growth of cells was observed in an atmosphere with humidity and containing 95% air and 5% CO₂ at 37°C in an ESCO incubator adapted for cell-culture (76).

2.5.3.2 Flow cytometry analysis

After the culture applications, the MCF-7 and MCF-10A cells were collected and controlled to 106 /ml in staining buffer (in saline containing 1% bovine albumin; Israel, Biological Industries). For viability as well as for apoptosis reporting, propidium-iodide (PI) fragmented DNA was stained and phosphatidylserine was stained by Annexin V-conjugated to FITC (R&D Systems, Minneapolis, MN) were utilized depending on the manufacturer's information. Apoptosis usually defined as annexin-V (+) but propidium-iodide (-). Viable cells were defined as annexin-V (-) but propidium-iodide(-). Every experimental part involved set up, unstained controls, IgG isotype controls with FMO controls. In order to analyze the cell cycle using DNA, content quantitation was applied using the

propidium-iodide. The MCF-7 and MCF-10A cells were stabilized in cold 70% ethanol for nearly 30 min at 4°C. They were then washed by 2X in PBS and spun at 2000 rpm and the supernatant was discarded once finished. To ensure that only DNA was stained, the cells were treated with the ribonuclease enzyme (50 μ l of 100 μ g/ml RNase), stained with 5 μ l of 50 μ g propidium iodide/100ml and analysis was done using a flow cytometer (Immune fluorometry systems, Becton- Dickinson LSR II, Mountain View, CA) (77).

2.5.4 Measurement of α-glucosidase activity

The inhibition of α -glucosidase activity by the synthesized molecules was measured. The α -glucosidase inhibitory activity is expressed as percentages of inhibition (percentage): Inhibitory effect % = (A_b - A_s)/ A_b *100 %, where A_b and A_s are the absorbance values of the blank (containing PBS, α -glucosidase, and PNPG a colored substrate of glucosidase) and the tested sample (containing PBS, extract, α -glycosidase and PNPG), respectively.

The α -glucosidase activity was measured using 10 and 20 mg/ml of the synthesized molecules. Each concentration was recorded by using 1, 3, 6, 9, and 12 mm PNPG. α -Glucosidase action was detected depending on the assay previously mentioned. The inhibitory pattern was assessed using a Lineweaver–Burk plot. The constant Ki of enzyme inhibitory effect was determined.

2.5.5 Anti-lipase activity

A solution of 1 mg/ml of the synthesized compounds was mixed with 10% dimethyl sulfoxide (DMSO) and then diluted with 10% DMSO to produce five dilutions (0.2, 0.4, 0.6, 0.8, and 1 mg/ml). Orlistat was considered as a reference in this inhibition protocol for pancreatic lipase and was tested following the same steps that were used previously.

A freshly utilized stock solution of pancreatic lipase enzyme was established by suspending this enzyme in 10% DMSO to form 1 mg/ml. Firstly, 25 mg of lipase was suspended in a small amount of 10% DMSO, bringing the volume up to 25 ml in V.F (25 ml), this was then put in a water bath sonicator at 37°C for 15 min. The stock solution of PNPB was constructed depending on manufacture structures (20.9 mg was obtained from PNPB and dispersed in 2 ml of acetonitrile) by dissolving 104.5 mg of PNPB in acetonitrile brined up to the volume of 10 mL in V.F (10 ml). The pancreatic lipase (PL) inhibition assay was conducted by adopting the procedure in the references with slight modifications(78-80). From each working solution of the synthesized compounds prepared above, 200 µl of the synthesized compounds was taken and put in a separate test tube, then 100 µL of porcine pancreatic lipase (1 mg/ml) was added to it. The resulting mixture was then adjusted to 1000 μ l after addition the of 700 μ L of tris-HCl solution and then it was incubated in a water bath at 37°C for 15 min. After the incubation, 100 µl of PNPB (*p*-nitrophenyl butyrate) solution was added to each test tube. This mixture was then incubated again in a water bath at 37°C for 30 min. A solution characterized as negative control was constructed without the synthesized compounds, using 100 μ l of porcine pancreatic lipase (1 mg/ml) solution mixed with tris-HCl solution up to 1 ml after the addition of 900 μ l. The same procedure was adopted for Orlistat, which was a positive control. A tris-HCl buffer was used to zero UV-Vis spectrophotometer at 405 nm. The effect of the pancreatic lipase was reported by measuring the hydrolysis of *p*-nitrophenolate to *p*-nitro phenol at 405 nm using a UV-Vis spectrophotometer device. The lipase inhibition activity of the synthesized compounds, or Orlistat as a reference, was identified by measuring the effect on the enzyme reaction rate after the addition of the synthesized compounds and then comparing it with the control. The % inhibition of the synthesized compounds was calculated by using the following equation:

Inhibitory lipase percentage (%) = $[(A_b - A_s)/A_b]*100$.

2.5.6 α-amylase inhibitory screening

The α -amylase inhibitory assessment was based on the Wickramaratne et al. protocol (81) with some slight alterations in some steps. The experimental part was carried out by following the 3, 5-dinitrosalicylic acid (DNSA) procedure. Solutions of 20 mm sodium phosphate mono basic and sodium phosphate dibasic buffer involving 6.7 mm sodium chloride (NaH₂PO₄ and Na₂HPO₄ both including 6.7 mm NaCl, pH 6.9) were constructed by partially filling the beaker with the NaH₂PO₄ and NaCl solution, the mixture was subjected to a magnetic stirrer, while the pH was adjusted by inserting a calibrated pH electrode in the solution. Then, the Na_2HPO_4 and NaCl solution was gradually added until the pH reached 6.9. A weight of 5.36 g of 20 mm Na_2HPO_4 . 7H₂O and 0.39 g of 6.7 mm NaCl were dispersed in distilled water to make 1 L and a weight of 2.76 g of NaH_2PO_4 . H₂O and 0.39 g of NaCl dissolved in distilled water to make 1 L. The stock solution for the synthesized molecules had a concentration of 1 mg/ml and was put in in a minimum amount of 10% DMSO (1:100 dilution) and was then dispersed in a buffer of Na_2HPO_4/NaH_2PO_4 (0.02 M) and NaCl (0.006 M) at adjusted pH 6.9. Working solutions with concentrations of 0.01, 0.05, 0.1, 0.5, and 1 mg/ml were obtained by mixing 0.1, 0.5, 1, 5, and 10 ml of our synthesized molecules, respectively, and then diluting them with a buffer of Na_2HPO_4/NaH_2PO_4 (0.02 M) and NaCl (0.006 M) at pH 6.9 and then brined up to 10 mL using VF (10 ml). The acarbose was considered as a reference and was established following the same previous steps used for the synthesized molecules.

A solution of α-amylase was (2 unit/ml) was produced by dissolving 12.5 mg of amylase enzyme in a minimum amount of DMSO10 %, which was then brined up to 100 ml with the previous phosphates buffer in V.F (100 ml). A starch solution with a concentration of 1% (w/v) was prepared by suspending 1000 mg of starch in 100 ml of distilled water using V.F (100 mL), and then it was kept in water bath at 37°C until use, with occasional mixing to prevent starch precipitation. DNSA was used as reactive reagent to react with reducing sugars to produce 3-animo-5- nitro salicylic acid that is highly absorbent of light at about 540 nm. It was prepared by dissolving

12 g of sodium potassium tartratetetrahydrate in 8.0 ml of 2 M NaOH (8 g in 100 ml distill. water) then further dissolved in 20 ml of 96 mm of 3.5dinitrosalicylic acid solution.

3,5-dinitrosalicylic acid 3-amino,5-nitrosalicylic acid

Then, 200 µl of the amylase solution (2 unit/mL) was gently shaken with 200 µl of each of the VOs established working solutions and then this was incubated at 37°C for 10 min. Then 200 µl of the starch solution was added to each test tube and there was further incubation for 3 min at 37°C. The reaction was terminated by the addition of 200 µl DNSA and then boiling for 10 min at 85–90°C. The mixture was then cooled to room temperature and diluted with 5 mL of distilled water, and the absorbance was recorded at 540 nm using a UV-Vis. spectrophotometer. Replacement of the synthesized compounds with 200 µl of buffer was established to obtain the blank sample. In this protocol, acarbose was the positive control sample. The enzyme inhibitory activity was expressed as percent inhibition and the following equation was used in order to determine IC_{50} value for the tested compounds

$$\% \ \alpha \ amylase \ inhibition = \frac{Abs100\% \ control - AbsSample}{Abs100\% \ Control} \times 100$$

Chapter Three Results and Dissections

3.1 Identification of 2-thiophenoxyethanol benzoates:

The structures of products were established by their UV, Infrared, Proton NMR and ¹³C spectral data.

All IR bands for all functional groups in the prepared compounds are seen obviously; even those small deviations due to the fine differences in structures can be explained. The -CH₂-CH₂- stretching (symmetric and asymmetric) bands appear clearly for all products in the range 2800-3000 cm⁻¹. The aromatic proton bond stretching bands are seen just above 3000 cm⁻¹. The bands for the carbonyl groups vary according to the specific structure of each compound.

The conjugated carbonyl group, with an aromatic ring, is expected to show bands in the range 1700-1710 cm⁻¹, this has been seen with exceptions for the ortho- products. The bulkiness of these groups prevents an ideal conjugation by distorting the planarity required for that and increasing the wavenumber. The C-C stretching for aromatic rings is found around 1590 and 1490cm⁻¹. The C-O single bond of the ester stretches around 1240 cm⁻¹, that of the C-O of that with the aromatic ring is about 1280cm⁻¹, while that of the alcoholic C-O stretching is found around 1040 – 1060 cm⁻¹, following those found foresters of primary alcohols. The out of plane bending of the aromatic C-H bonds for the mono-substituted ring have been

found at around 690 and 750 cm⁻¹ and those for the di-substituted aromatic ring are found at the expected frequency.

3.2 NMR

The proton NMR spectra of the esters I – IV have been obtained and analyzed. The high resolution of the machine (500 MHz) has approximated the expected very complex spectra, such as the AA'XX' and AA'BB' for aromatic system into simple A_2X_2 , AX_2 and so on. The simple coupling constants can be calculated even for the aromatic protons. The coupling constant were averaged because the resolution is not enough to show the para and Meta coupling. The alcoholic part of the ester is the same and shows very similar signals in their charts. The ethylene group shows two triplets at δ 4.2 -4.6 ppm with an average coupling constant (4.2-4.5 Hz).

3.3 Anti-oxidant activity

3.3.1 DPPH RESULT:

DPPH (1, 1-Diphenyl-2-picryl-hydroxyl) is one of the methods used to measure the antioxidant activity of different compounds such as phenols and phenolic acid esters. The decrease in absorbance at 517nm induced by antioxidants determines the reduction capability on the DPPH. When antioxidants donate hydrogen atoms to the radicals, they lose their purple color. This, in turn, leads to decreased absorption. The decrease in absorption is taken as a measure of the extent of radical scavenging. All the compounds showed free radical scavenging activity near to the Gallic acid at concentrations 30 ug/ml table 3.1 and figure 3.1 the values of percent inhibition of the tested compounds. Also, the percent inhibition values of the compounds increased with increasing concentration, while the values of IC_{50} of both benzoate and 4-hydroxy is about 90% of the value of IC_{50} to the Gallic acid.

On the other hand, there is not much difference between the values of percent inhibition for the compounds. This means that the position of functional group as ortho-, para- or Meta- has a slight effect on the antioxidant activity. Our results are in good agreement with literature done on polyphenolic compounds, which showed that the structure did not affect the antioxidant activity (82).

 Table 3.1 Percent inhibition of radicals by benzoate compounds at

 different concentrations

Conc,	% Inhibition						
	benzoic	2-	3-	4-		Gallic	
comp	acid	hydroxy	hydroxy	hydroxy	Trolox	acid	
0	0	0	0	0	0	0	
5	36.8	32.5	40.8	33.6	61.5	12.5	
10	35.8	33.7	44.9	34.4	91.4	26.6	
20	43.2	37.7	40.7	42.2	97.3	36.1	
30	42.5	40.2	43.7	42.3	97.3	45.5	
40	43.4	46.1	38	41.7	97.3	61.3	
50	53.1	47.9	41.1	48.5	97.4	63.7	
IC50	48	>50	50	>50	4	35	

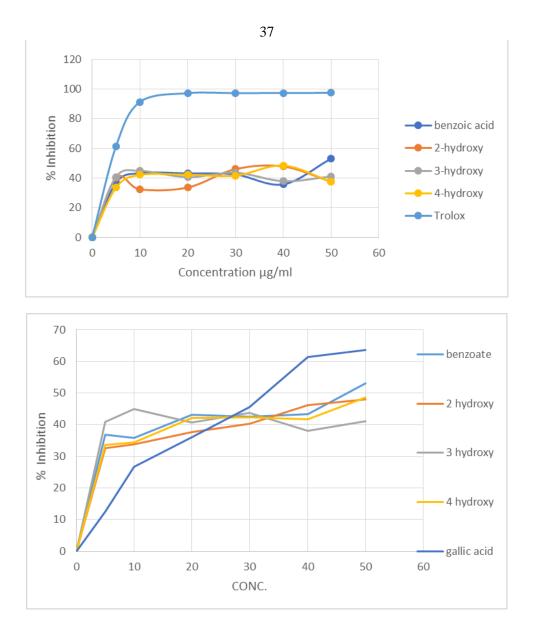


Figure 3.1: % Inhibition of DPPH for the tested compounds.

3.3.2 β-carotene linoleic acid activity:

The same compounds were tested for their antioxidant activity using the emulsion system of β -carotene linoleic acid depending on the fact that β -carotene loses its color in the absence of antioxidants(83, 84). The synthetic compounds (2-(phenylthio)ethyl benzoate and 2-(phenylthio)ethyl 2-hydroxy benzoate) showed higher antioxidant efficiency in concentration 0.2 mg/ml compared with water (control) and α -tocopherol and the other

synthetic compounds antioxidant which gave the lowest antioxidant efficiency. Figure 3:2 showed the antioxidant activities of the synthetic acid esters and positive reference standard with the coupled oxidation of β -carotene in concentration 0.2 mg/ml. The antioxidant activity of all the compounds gradually decreases with the increase of time. Water showed the highest β -carotene bleaching activity followed by α -tocopherol after 1 hour. (2-thiophenylethanol benzoate revealed the best antioxidant with absorbance 1.04 after 75 min compared with the other synthetic compounds. The second one is 2-thiophenylethanol 2-hydroxy benzoate, which showed absorbance 0.84 after 75 min.

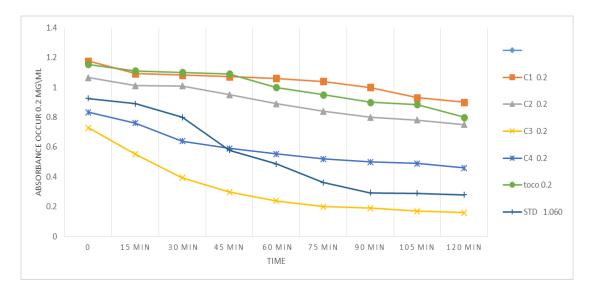


Figure 3:2. Antioxidant activities of synthesis compounds in β - Carotene-linoleic acid test.

3.4 Testing antimicrobial activity:

The benzoate compounds were tested against seven bacteria and one fungus that cause dermic and mucosal infections, besides other infections, in humans(52). For all the bacteria we tested here, we had four controls: 1)

positive control which contains media and bacteria; 2) negative control which only contains media; 3) compound control (compound+ media) to be sure that there is no contamination and turbidity and that the changes are not due to the compound itself (so compounds were serially diluted in this control); and 4) DMSO which were tested for every microbe separately to check the effect on each one, and the antimicrobial activity of DMSO was also considered.

All the compounds studied in this work showed antibacterial activity. The 2-thiophenylethanol 3-benzoate showed significant activity, especially at concentrations of 3.125–6.25 mg/ml against all the bacteria we tested, but *Candida* showed resistance. The second compound, 2-thiophenylethanol 4benzoate, showed good activity against all the bacteria for a concentration range of 3.125–6.25 mg/ml, except the MRSA and *Candida*, were resistant. The 2-thiophenylethanol benzoate was the only compound that showed some activity against *Candida* at a concentration of 1.56mg\ml and it had antibacterial activity against S. aureus, Proteus vulgaris, Enterococcus faecium, and MRSA at concentrations of 3.125, 6.25, 6.25, and 3.125 mg\ml, respectively. While 2-phenylthioethyl 2-hydroxy benzoate showed the highest antibacterial activity for S. aureus, Proteus vulgaris, Klebsiella, and MRSA with concentrations of 3.125, 3.125, 6.25, and 6.25 mg/ml, respectively. When we compared the MIC for the four compounds with good antibiotics, we found that benzoate 2-thiophenylethanol has the same MIC as fluconazole (1.56) for the inhibition of the growth of *Candida*. Moreover, benzoate 2-thiophenylethanol, 2 hydroxyl 2-thiophenylethanol, and 4 hydroxyl 2-thiophenylethanol have the same MIC as ampicillin (3.125) for the inhibition of the growth of *S. aureus* bacteria. It is noteworthy to take attention for those modified compounds although they possess less activity than synthetic antibiotics. It is important to prepare new therapeutics because some kinds of bacteria become resistant to certain drugs after a period of time.

	ATCC	ATCC	ATCC138	ATCC842	ATCC700	ATCC927	CLINICA	ATCC90028
	25923	25922	83	7	221		L STRAIN	
	S. aureu s	E coli	klebsiella	Proteus vulgaris	Enterococc us faeaium	Pseudomona s aeruginosa	MRSA	Candida Albian's
C1	3.125	R	R	6.25	6.25	R	3.125	1.56
C2	3.125	R	6.25	3.125	R	R	6.25	R
C3	6.25	6.25	6.25	6.25	3.125	6.25	6.25	R
C4	3.125	6.25	6.25	3.125	6.25	6.25	R	R
Fluconazole	R	R	R	R	R	R	R	1.56
Ampicillin	3.12	3.12	0.001	0.018	0.78	3.12	R	R
Ciprofloxacin	0.78	1.56	0.125	3.12	0.78	0.015	0.125	R

 Table 3.2: Microbial growth inhibition MIC values of synthesis compounds (mg\ml)

3.5 Anticancer activity:

Cytotoxicity: Compound inhibits the DNA cell cycle of MCF-7 cells. To investigate whether the compound could induce cell cycle perturbations in breast cancer cells, flow cytometry analyses of propidium iodide stained nuclei cells were performed. Cell cycle parameters were investigated for four compounds. The compounds were incubated with MCF-7 for 24 h at a concentration of 500 mg/ml). The figure shows a slight increase in the fraction of cells in the G1 phase following treatments with compounds. Around averages of 56% were obtained in the G1 phase following treatment of concentrations of four compounds as compared to 41% in untreated

Cells (P<0.05) (Fig 3.3).

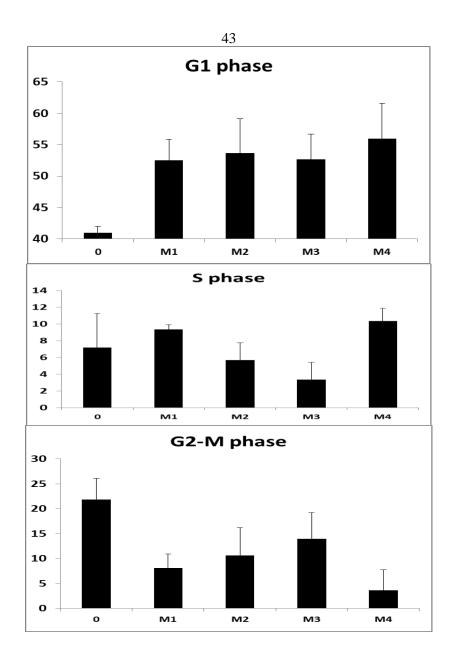


Figure 3.3: cell cycle phase treatment with four compound

Figure 3.3 shows averages of three different readings of (A) G1 phase (B) S phase and (C) G2-M phase following treatments with four compounds.

Also, significant elevations in the proportion of cells in the S phase were obtained following 500 mg/ml concentration of two compounds (C1=9.3% compared to 7.16 %, C4 10.3 %, compared to 7.16% untreated cell, respectively ;(Fig3 B) P<0.05).

The other compound decrease in the S phase. Cell cycle parameters were perturbed in MCF-7 cells in the G2/M phase in the 500 mg/ml FOUR COMPOUNDS leaves to 8.13%, 10.7%, 14%, and 3.67% respectively, as compared to 21.8 % in the untreated cells. P-value was significant between all groups (Fig. 3 C)

These results indicate four compounds as a potent inhibitor of cell cycle progression at the G2/M phase and might suggest anti-cancer properties.

We next determined whether the four compounds that perturb DNA content induce apoptosis (programmed cell death). Cells undergoing apoptosis have their phosphatidylserine (PS) phospholipid translocated from the inner face of the plasma membrane to the cell surface; therefore, apoptotic cells can be identified by the presence of PS on the cell surface. As mentioned in materials and methods, detection of PS was estimated by staining with a fluorescent conjugate of annexin-V, a protein that has a high affinity for PS, followed by flow cytometry analysis. Cells were also stained with propidium iodide (PI), which can enter the cell only when the plasma membrane is damaged. Early apoptosis evaluated by positive for PS, but negative for PI and was distinguished from late apoptotic and necrotic cells estimated by positive for both PS and PI.

Four compounds significantly decreased apoptosis to C1 47.3, C2 29, C3 10.6, C4 8.3%, while a large population of late apoptotic/necrotic cells. Figure 3.4 shows averages of treatment of MCF-7 cells with four compounds, respectively (P-value <0.05 in all groups).

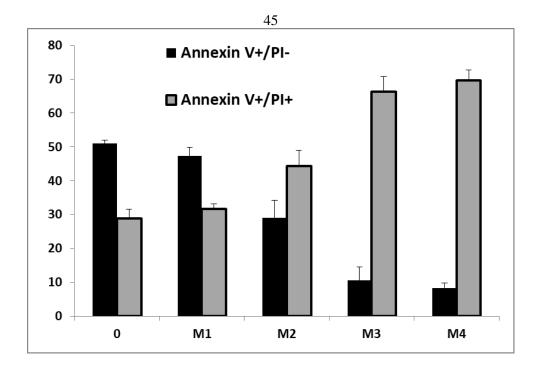


Figure 3.4: Apoptosis and necrosis averages of synthesis compounds

Taken together, the provided data suggest that four compounds could have an anti-cancer potential through the G2-M cell cycle phase arrest of MCF-7 and shifting the cells to necrosis.

3.6 α-amylase inhibitory screening

The α -amylase inhibitory activity was expressed as percent inhibition and calculated using equation 4. The percentage of α -amylase inhibition will be plotted against the concentration of the synthesized molecules and the IC₅₀values were obtained from the graph.

$$\% \ \alpha \ amylase \ inhibition = \frac{Abs100\% \ control - AbsSample}{Abs100\% \ Control} \times 100$$
Equation 4

Tables 3, 4 and figure 4 showed the percent inhibition of the synthesized compounds compared with Acarbose.

Conc	0.1	0.5	0.7	1	5			
compd.1	61.8±0.61	68±2.90	74.9±1.45	93.4±0.33	93.2±0.17			
compd.2	44.3±0.89	74.8±1.68	85.9±0.93	88.0±0.17	88.2±0.44			
compd.3	12±1.37	86.4±1.68	90.4±0.58	92.0±0.89	92.2±0.29			
compd.4	32±0.77	90.3±1.67	93.6±0.50	93.1±0.34	92.4±0.50			
Conc.								
µg/ml	% inhibition							
	Acarbose	Compd.1	Compd.2	Compd.3	Compd.4			
0	0	0	0	0	0			
10	53.22	61.8	44.3	12	32			
50	54.91	68.2	74.8	86.4	90.3			
70	66.1	74.9	85.9	90.4	93.6			
100	66.1	93.4	88	92	93.1			
500	72.54	93.2	88.2	92.2	92.4			
IC ₅₀	10	10	15	30	20			

 Table 3.3 Percent inhibition of the synthesized compounds compared

 with Acarbose.

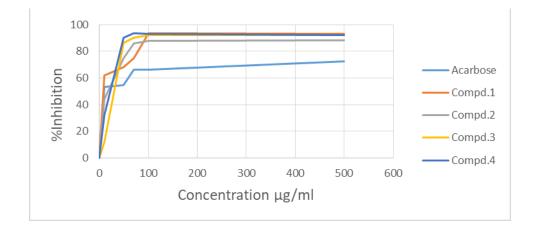


Figure 3.5: % Inhibition of α-amylase enzyme for the tested compounds

3.7 a- Glycosidase activity of thio-acid esters

Table 4 shows the percent inhibition and values of IC_{50} of the synthesized acid esters compared with Acarbose (standard compound). In general, those compounds revealed a significant effect. Compounds one and three showed

 IC_{50} values 50 and 53µg/ml respectively, which is more effective against enzyme Acarbose IC_{50} is 54, while compound two showed IC_{50} 90µg/ml. The results are reasonable and justified because the synthesized compounds are modified acid esters and have the same functional groups as phenolic compounds, such as Trans - p-coumaric acid.

Table 3.4 The the percent inhibition of the synthesized compounds compared with Acarbose α - Glycosidase

	% Inhibition					
Conc.µg/ml	Acarbose	Compd.1	Compd.2	Compd.3		
0	0	0	0	0		
100	65.8±0.42	74.2±0.97	59±1.32	68.6±1.11		
200	67.8±0.35	77.4±1.11	87.6±0.18	88.3±0.84		
300	73.2±0.42	84.5±0.32	88.3±00	89.0±0.48		
400	85.4±0.35	88.5±0.8	$88.4{\pm}0.48$	89.5±0.55		
500	92.2±0.11	91.8±0.32	92.2±0.48	90.8±0.83		
IC50	54	50	90	53		

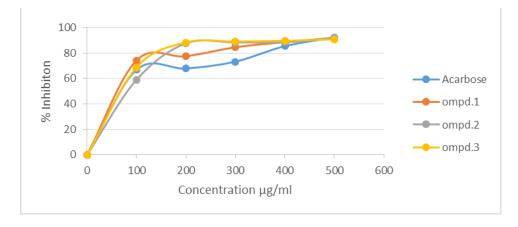


Figure 3.6: %Inhibition of α-Glycosidase enzyme for the tested compounds

3.8 Assessment in-vitro porcine pancreatic lipase enzyme activity

The hydrolysis of p- nitrophenyl butyrate to p-nitrophenyl was used to measure the influence of the synthetic acid esters on the porcine pancreatic lipase enzyme. The assay measures the percent inhibition of the compounds compared to with orlistat drug as a standard. The results of percentage inhibition and IC₅₀ values for the compounds and orlistat are shown in table 3.5 and figure 3.7.

Table 3.5 the percent inhibition of the synthesized compoundscompared with Orlistat porcine pancreatic lipase enzyme

Conc. µg/ml	% inhibition						
	Orlistat	Compd.1	Compd.2	Compd.3	Compd.4		
0	0	0	0	0	0		
50	91.1	34	35	6	40.4		
100	93.1	51.5	48.3	9.2	44.4		
200	94.3	57	50.9	37	56		
300	97.4	65	50.4	38.9	69.7		
400	97.5	69.2	54.7	58.3	74.4		
IC ₅₀	25	90	110	380	150		

Table 3.5 and figure 3.7 show the percent inhibition and IC_{50} of the synthesized compounds compared with orlistat. Compound one shows the best results of percent inhibition. The value of IC_{50} of compound four was fourth fold (25µg/ml) compared with orlistat ($IC_{50} = 25µg/ml$). The least active one against lipase enzyme was compound 3 which has ($IC_{50} = 380µg/ml$). Those results may be justified by the lack of our compounds to the amide group which is the main one in orlistat.

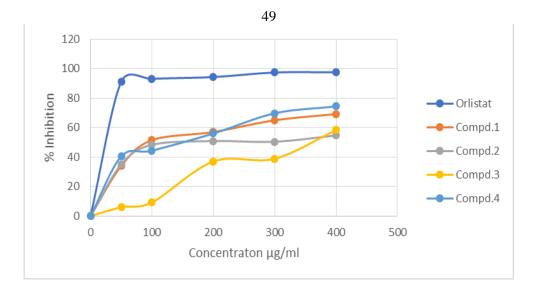


Figure 3.7: the percent inhibition and IC_{50} of the synthesized compounds compared with orlistat

Conclusion

The synthetic compounds were prepared easily by the reaction of acid esters and 2-thiophenyl ethanol. The compounds were identified depending on some physical properties such as melting points and thin-layer chromatography. The identity of the compound was confirmed using the spectroscopic method such as UV, IR, HNMR and carbon 13. The compounds were tested for their biological activities through many tests like antioxidant, antimicrobial, anticancer, anti- α -glucosidase, anti- α amylase, and lipase activities. They showed significant activity in most of the tests. The best results were in antimicrobial, anticancer, anti- α -amylase and α -glycosidase. These results encourage other researchers to complete studies of those compounds and make them as best choices of human drugs.

References

1. del Olmo A, Calzada J, Nuñez M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Critical reviews in food science and nutrition. 2017;57(14):3084-103.

2. Rahman A-u. Studies in natural products chemistry/edited by Attaur-Rahman: Amsterdam; New York: Elsevier; 2012.

3. Nair B. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. International Journal of Toxicology. 2001;20:23-50.

4. Chen JH, Ho C-T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of agricultural and food chemistry. 1997;45(7):2374-8.

5. Silva FA, Borges F, Guimarães C, Lima JL, Matos C, Reis S. *Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters*. Journal of Agricultural and Food Chemistry. 2000;48(6):2122-6.

 Nollet LM, Gutierrez-Uribe JA. Phenolic Compounds in Food: Characterization and Analysis: CRC Press; 2018. 7. Delage E, Bohuon G, Baron A, Drilleau J-F. *High-performance liquid chromatography of the phenolic compounds in the juice of some French cider apple varieties.* Journal of Chromatography A. 1991;555(1-2): 125-36.

8. Torres AM, Mau-Lastovicka T, Rezaaiyan R. *Total phenolics and high-performance liquid chromatography of phenolic acids of avocado*. Journal of agricultural and food chemistry. 1987;35(6):921-5.

9. Justesen U, Knuthsen P, Leth T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A. 1998;799 (1-2):101-10.

10. Nunes AR, Vieira ÍG, Queiroz DB, Leal ALAB, Maia Morais S, Muniz DF, et al. Use of flavonoids and cinnamates, the main photoprotectors with natural origin. Advances in pharmacological sciences. 2018;2018.

11. Qalalweh NMK. **Preparation of aromatic esters of 2phenoxyethanol and exploring some of their biological activities** 2015.

12. Khurana JM, Chauhan S, Bansal G. Facile hydrolysis of esters with **KOH-Methanol at ambient temperature**. Monatshefte für Chemie/Chemical Monthly. 2004;135(1):83-7.

13. Molinari EaT, H., editor. Treatis On General And IndustrialOrganic Chemistry. Forgotten Books , . , London, (1921).

14. Middleton W. One-step method for converting esters to acyl chlorides.The Journal of Organic Chemistry. 1979;44(13):2291-2.

15. Kim S, Yang S. A facile preparation of thiol esters from carboxylic acids and thiols. Chemistry Letters. 1981;10(1):133-4.

16. Liu H-J, Sabesan SI. *Direct transformation of carboxylic acids to thiol esters induced by phenyl dichlorophosphate*. Canadian Journal of Chemistry. 1980;58(23):2645-8.

17. Wakasugi K, Iida A, Misaki T, Nishii Y, Tanabe Y. Simple, Mild, and Practical esterification, Thioesterification, and amide formation utilizing p-toluenesulfonyl chloride and N-Methylimidazole. Advanced Synthesis & Catalysis. 2003;345(11):1209-14.

18. Ko J, Ham J, Yang I, Chin J, Nam S-J, Kang H. A simple one-pot synthesis of hydroxylated and carboxylated aryl alkyl sulfides from various bromobenzenes. Tetrahedron letters. 2006;47(39):7101-6.

19. Fowelin C, Schuepbach B, Terfort A. Aromatic Thioesters as Protecting Groups for Thiols Against 1, 2-Didehydrobenzenes. European journal of organic chemistry. 2007;2007(6):1013-7. 20. Ozaki S, Adachi M, Sekiya S, Kamikawa R. *Cyclization of aryl acyl radicals generated from S-(4-cyano) phenyl thiolesters by a nickel complex catalyzed electroreduction*. The Journal of organic chemistry. 2003;68(11):4586-9.

21. Tokuyama H, Yokoshima S, Yamashita T, Fukuyama T. A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents. Tetrahedron letters. 1998;39(20):3189-92.

22. Fukuyama T, Lin SC, Li L. Facile reduction of ethyl thiol esters to aldehydes: application to a total synthesis of (+)-neothramycin A methyl ether. Journal of the American Chemical Society. 1990;112(19):7050-1.

23. Corey E, Nicolaou KC. *Efficient and mild lactonization method for the synthesis of macrolides.* Journal of the American Chemical Society. 1974;96(17):5614-6.

24. Mukaiyama T, Araki M, Takei H. *Reaction of S-(2-pyridyl) thioates with Grignard reagents. Convenient method for the preparation of ketones.* Journal of the American Chemical Society. 1973;95(14): 4763-5.

25. Katritzky AR, Shestopalov AA, Suzuki K. A new convenient preparation of thiol esters utilizing N-acylbenzotriazoles. Synthesis. 2004;2004(11):1806-13.

26. Meshram H, Reddy GS, Bindu KH, Yadav J. **Zinc promoted convenient and general synthesis of thiol esters**. Synlett. 1998;1998(08):877-8.

27. Kawakami J-i, Mihara M, Kamiya I, Takeba M, Ogawa A, Sonoda N. **Platinum-catalyzed highly selective thiocarbonylation of acetylenes** with thiols and carbon monoxide. Tetrahedron. 2003;59(19):3521-6.

28. Zheng T-C, Burkart M, Richardson DE. A general and mild synthesis
of thioesters and thiols from halides. Tetrahedron Letters.
1999;40(4):603-6.

29. Xi Z, Hao W, Wang P, Cai M. Ruthenium (III) chloride catalyzed acylation of alcohols, phenols, and thiols in room temperature ionic liquids. Molecules. 2009;14(9):3528-37.

30. Jackson CM, Esnouf MP, Winzor DJ, Duewer DL. **Defining and measuring biological activity: applying the principles of metrology**. Accreditation and quality assurance. 2007;12(6):283-94.

31. Diplock A, Charuleux J-L, Crozier-Willi G, Kok F, Rice-Evans C, Roberfroid M, et al. *Functional food science and defence against reactive oxidative species*. British Journal of Nutrition. 1998;80(S1):S77-S112.

32. Davies K, Pryor W. The evolution ofFree Radical Biology & Medicine: A 20-year history. Free Radical Biology and Medicine.
2005;39(10):1263-4.

33. Hussein AIA. Modification of biologically active compounds from selected medicinal plants in Palestine 2009.

34. Halliwell B, Gutteridge JM. Free radicals in biology and medicine.1985.

35. Bouayed J, Bohn T. Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative medicine and cellular longevity. 2010;3(4):228-37.

36. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. *Free radicals and antioxidants in normal physiological functions and human disease*. The international journal of biochemistry & cell biology. 2007;39(1):44-84.

37. Ames BN. Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science. 1983;221(4617):1256-64.

38. Understanding Microbes in Sickness and in Health National Institute of Allergy and Infectious Diseases, [Internet]. (2006.

39. Aldomere YA. Synthesis, Characterization, Antibacterial Activities of Novel Polydentate Schiff's Bases and Their Transition Metal Complexes 2015. 40. Bhalodia NR, Shukla V. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. Journal of advanced pharmaceutical technology & research. 2011;2(2):104.

41. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2-15.

42. Abu-Dahab R, Afifi F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Scientia Pharmaceutica. 2007;75(3):121-46.

43. Figueroa-Hernández J, Sandoval GG, Ascencio VJ, Figueroa-Espitia J, Fernández GS, editors. **Plant products with anti-cancer properties employed in the treatment of bowel cancer: literature review 1985 and 2004**. Proceedings of the Western Pharmacology Society; 2005.

44. Mans DR, Da Rocha AB, Schwartsmann G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. The oncologist. 2000;5(3):185-98.

45. Schwartsmann G. Marine organisms and other novel natural sources of new cancer drugs. Annals of Oncology. 2000;11(suppl_3): 235-43.

46. Daniels AL, Van Slambrouck S, Lee RK, Arguello TS, Browning J, Pullin MJ, et al. Effects of extracts from two Native American plants on proliferation of human breast and colon cancer cell lines in vitro. Oncology reports. 2006;15(5):1327-31.

47. Hudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology and Prevention Biomarkers. 2000;9(11): 1163-70.

48. Siegers C-P, Steffen B, Röbke A, Pentz R. **The effects of garlic preparations against human tumor cell proliferation.** Phytomedicine. 1999;6(1):7-11.

49. Pisha E. CH, Lee I. S., Chagwedera T. E., Farnsworth N. R.,. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis, Nat. Med., 1, 1046-1050. . (1995).

50. Gottesman MM. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation award lecture. Cancer research. 1993;53(4):747-54.

51. Madhuri S, Pandey G. Some anticancer medicinal plants of foreign origin. Current science. 2009:779-83.

52. Evans BAJ, Griffiths K, Morton M. Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. Journal of Endocrinology. 1995;147(2):295-302.

53. Association AD. **Diagnosis and classification of diabetes mellitus. Diabetes care**. 2013;36(Supplement 1):S67-S74.

54. Hill R. The chemistry of life: eight lectures on the history of biochemistry: CUP Archive; 1970.

55. J S, editor. Biochemistry. 2. . New York, NY: Plenum.(1998). .

56. Meyers RA. Molecular biology and biotechnology: a comprehensive desk reference: John Wiley & Sons; 1995.

57. Patarra J. Evaluation of the in vitro biological activities of extracts from carob tree and Mediterranean oaks 2009.

58. Arora M, Gupta VK. Phytochemical ad biological studies on Salvadora persica wall: a review. Pharmacologyonline. 2011;1:591-601.

59. Rauf A, Jehan N. **Natural products as a potential enzyme inhibitors from medicinal plants.** Enzyme Inhibitors and Activators: InTech, Rijeka; 2017. p. 165-77.

60. SØRENSEN SH, NORÉN O, SJÖSTRÖM H, DANIELSEN EM. Amphiphilic Pig Intestinal Microvillus Maltase/Glucoamylase: Structure and Specificity. European journal of biochemistry. 1982;126(3):559-68. 61. Taha M, Ismail NH, Lalani S, Fatmi MQ, Siddiqui S, Khan KM, et al. *Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies*. European journal of medicinal chemistry. 2015;92:387-400.

62. Chiba S. Molecular mechanism in α-glucosidase and glucoamylase.Bioscience, biotechnology, and biochemistry. 1997;61(8):1233-9.

63. Sharma H, Chandola H. *Ayurvedic concept of obesity, metabolic syndrome, and diabetes mellitus.* The Journal of Alternative and Complementary Medicine. 2011;17(6):549-52.

64. Yazdi FT, Clee SM, Meyre D. **Obesity genetics in mouse and human:** back and forth, and back again. PeerJ. 2015;3:e856.

65. Bleich SN, Cutler D, Murray C, Adams A. Why is the developed world obese? Annual review of public health. 2008;29.

66. Pollack A. **AMA recognizes obesity as a disease**. The New York Times. 2013;18.

67. Elbaz R, Barakat LA, Nageb A, Sherif M. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms T-786c & 27bp (4b/4a) with Obesity in Egypt. International Journal of Biochemistry Research & Review. 2019:1-8.

68. Aronne L. Treating Obesity:Drug Treatment for Obesity". Treating Obesity. ... Medscape News. March 22, 2012.

69. Franson K, Rössner S. *Fat intake and food choices during weight reduction with diet, behavioural modification and a lipase inhibitor*. **Journal of internal medicine.** 2000;247(5):607-14.

70. Yun JW. **Possible anti-obesity therapeutics from nature–A review.** phytochemistry. 2010;71(14-15):1625-41.

71. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytotherapy research. 2000;14(5):323-8.

72. Gazzani G, Papetti A, Massolini G, Daglia M. Anti-and prooxidant activity of water soluble components of some common diet vegetables and the effect of thermal treatment. Journal of Agricultural and Food Chemistry. 1998;46(10):4118-22.

73. Jayaprakasha GK, Singh R, Sakariah K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food chemistry. 2001;73(3):285-90.

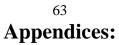
74. Forbes BA, Sahm DF, Weissfeld AS. Study Guide for Bailey and Scott's Diagnostic Microbiology-E-Book: Elsevier Health Sciences;
2016.

75. Wikler MA. **Performance standards for antimicrobial susceptibility testing: Seventeenth informational supplement**: Clinical and Laboratory Standards Institute; 2007. 76. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in threedimensional basement membrane cultures. Methods. 2003;30(3):256-68.

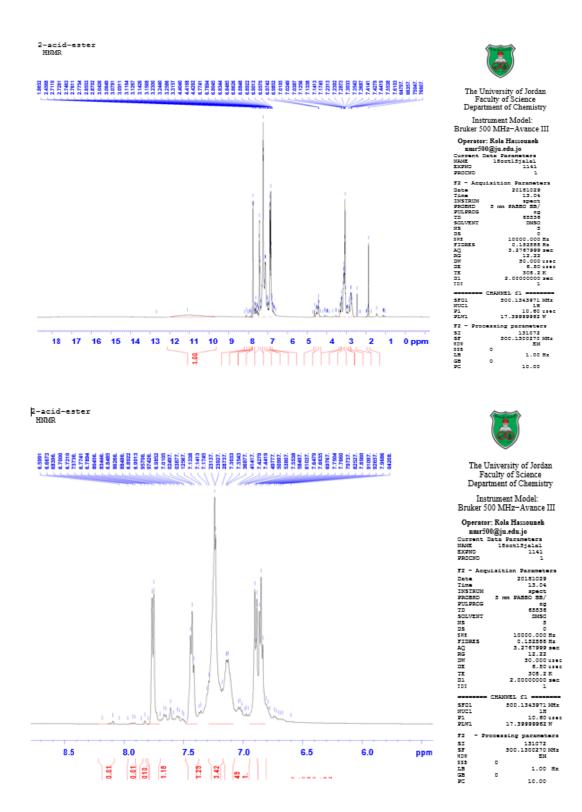
77. Nunez R. **DNA measurement and cell cycle analysis by flow cytometry.** Current issues in molecular biology. 2001;3:67-70.

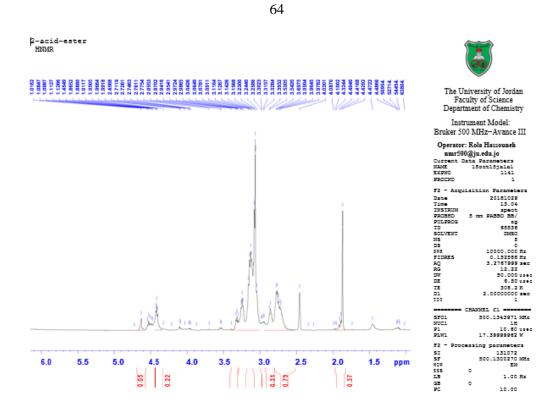
78. Bustanji Y, Al-Masri IM, Mohammad M, Hudaib M, Tawaha K, Tarazi H, et al. *Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba*. Journal of Enzyme Inhibition and Medicinal Chemistry. 2011;26(4):453-9.

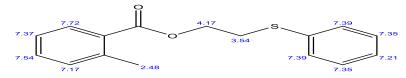
79. Jaradat NA, Zaid AN, Hussein F. **Investigation of the antiobesity and antioxidant properties of wild Plumbago europaea and Plumbago auriculata from North Palestine.** Chemical and Biological Technologies in Agriculture. 2016;3(1):31.

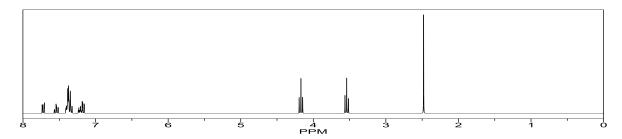

80. Keskes H, Mnafgui K, Hamden K, Damak M, El Feki A, Allouche N. In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pacific journal of tropical biomedicine. 2014;4:S649-S55.

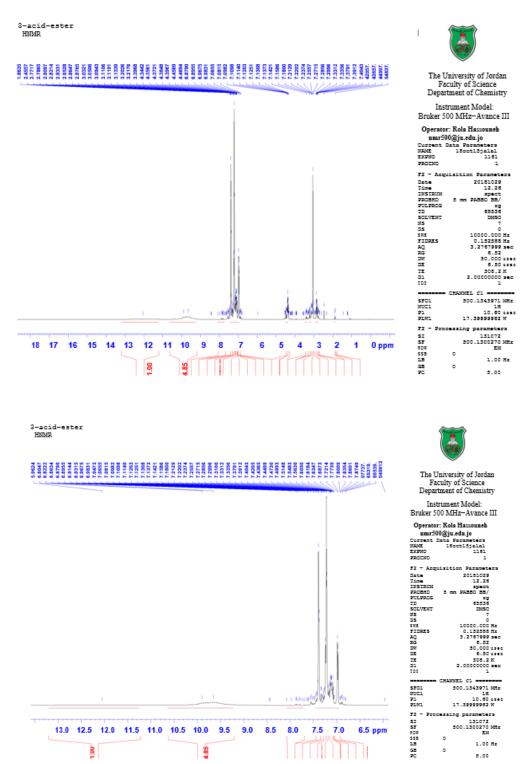
81. Wickramaratne MN, Punchihewa J, Wickramaratne D. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine.
2016;16(1):466.


82. Vitalone A, Guizzetti M, Costa LG, Tita B. *Extracts of various species of Epilobium inhibit proliferation of human prostate cells.* Journal of pharmacy and pharmacology. 2003;55(5):683-90.


83. Frankel E. Lipid Oxidation. Dundee. Scotland: The Oily Press LTD.1998.


84. Miller H. *A simplified method for the evaluation of antioxidants.* Journal of the American Oil Chemists' Society. 1971;48(2):91-.

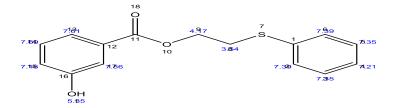




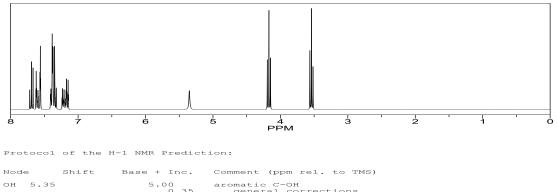
Estimation quality is indicated by color: good, medium, rough

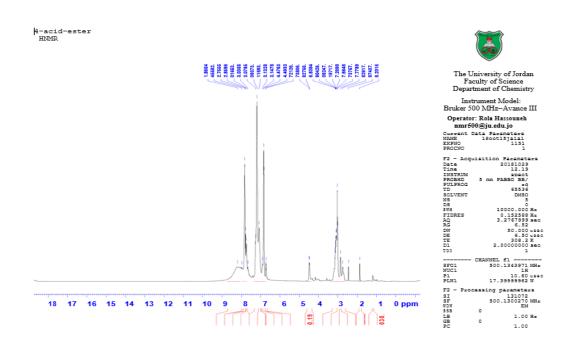
Protocol of the H-1 NMR Prediction:

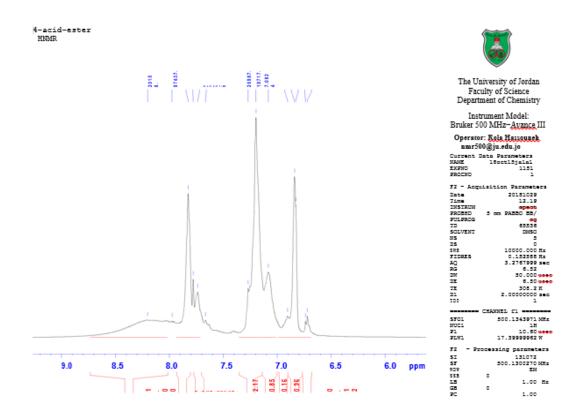
Node	Shift	Base -	+ Inc.	. Comment (ppm rel. to TMS)
СН 7.39		7	.26	l-benzene 3 l-S-C
сн 7.72		7	0.23	l general corrections 1-benzene
			0.71	2 l -C
СН 7.17		7	-0.13	1-benzene
			-0.11	
СН 7.39		7	0.00 .26 -0.08	1-benzene
СН 7.35		7	0.21	
			-0.10) 1 -s-c
СН 7.35		7	.26	l-benzene) l-S-C
сн 7.37		7	.26	1-benzene
			-0.13	
СН 7.54		7	0.19	1-benzene
			-0.12	2 1 -C
CH 7.21		7	.26	l-benzene
CH2 3.54		1	0.19	9 general corrections methylene
			1.44 0.42	1 alpha -S-1:C*C*C*C*C*C*1 2 l beta -OC(=0)-1:C*C*C*C*C*1
CH2 4.17		1	0.31 .37	methylene
			2.92) 1 beta $-s-1:c*c*c*c*c*c*1$
СНЗ 2.48		0	-0.42 .86 1.49	2 general corrections methyl 9 l alpha -l:C*C*C*C*C*C*1
			1.43	
			0.13	3 general corrections
1H NMR Cc	upling (0.10	gonorar correctione
shift a	tom inde	Constant	C Prec	gonorar correctione
		Constant ex coup 3	Ding 7.5	H-C*C-H
shift a 7.39	tom inde 2	Constant ex coup	= Prec	diction partner, constant and vector
shift a	tom inde	Constant ex coup 3 6 4 15	7.5 1.5 7.5	H-C*C-H H-C*C-H H-C*C-H H-C*CH H-C*C-H
shift a 7.39	tom inde 2	Constant ex cour 3 6 4	7.5 1.5 1.5 1.5 1.5	H-C*C-H H-C*C-H H-C*C-H H-C*CCH H-C*CCH H-C*CH H-C*CH H-C*C-H
shift a 7.39 7.72	itom inde 2 14	Constant ax coug 6 4 15 16 16 15	7.5 1.5 1.5 1.5 1.5 7.5 1.5 7.5 1.5	Joint Contractions partner, constant and vector H-C*C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H
shift a 7.39 7.72 7.17	14	Constant ax coup 3 6 4 15 16 16 15 5 2	7.5 1.5 1.5 1.5 1.5 1.5 7.5 1.5 7.5 1.5	H-C*C-H H-C*C-H H-C*C-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H
shift a 7.39 7.72 7.17	14	Constant ax coup 3 6 4 15 16 15 15 5 2 4	7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Aiction partner, constant and vector H-C*C-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*CC-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift a 7.39 7.72 7.17 7.39	14 17 6	Constant ax coup 3 4 15 16 16 15 5 2 4 6 4	7.5 1.5 1.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5	Justian partner, constant and vector H-C*C-H H-C
shift a 7.39 7.72 7.17 7.39	14 17 6	Constant ax coup 3 4 15 16 15 2 4 5 2 4 6 3	7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5	Justian partner, constant and vector H-C*C-H H H-C*C-H
shift a 7.39 7.72 7.17 7.39 7.35	14 17 6 5	Constant ax coup 3 4 15 16 15 24 6 4 3 2 4	7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Justion partner, constant and vector H-C*C-H H-C*C+C-H H-C*CH*C-H H-C*CH*C-H H-C*C+
shift a 7.39 7.72 7.17 7.39 7.35	14 17 6 5	Constant ax coup 3 6 4 15 16 15 16 15 5 2 4 4 4 3 2	7.5 1.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	Jiction partner, constant and vector H-C*C-H H-C*CC-H
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35	14 17 6 5 3 15	Constant ax coup 3 6 4 15 16 15 16 15 24 6 4 3 2 4 5	7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Justion partner, constant and vector H-C*C-H H-C*C+C-H H-C*CH*C-H H-C*CH*C-H H-C*C+
shift a 7.39 7.72 7.17 7.39 7.35 7.35	14 17 6 5 3	Constant ax cour 36 4 15 16 16 15 24 6 4 3 24 5 24 6 4 3 24 16 16 15 17	7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 5 7.5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 7.	Juction partner, constant and vector H-C*C-H H-C*C+G-H H-C*C-H
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35 7.37 7.54	14 17 6 5 3 15 16	Constant ax coup 3 6 4 15 16 15 2 4 5 2 4 5 2 4 5 2 4 5 14 5 14 17	7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 1.5 7.5 1.5 1.5 5 1.5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 5 1.5 5 7.5 7.	Aiction partner, constant and vector H-C*C-H H-C*CC-H H-C*C-H
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35	14 17 6 5 3 15	Constant 36 4 15 16 15 24 6 4 3 24 5 14 16 17 15 14 5 15 5 5	7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55	Juction partner, constant and vector H-C*C-H H-C*CH*C-H H-C*CH*C-H H-C*CH*C-H H-C*CH*C-H H-C*CH*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35 7.37 7.54	14 17 6 5 3 15 16	Constant 36 4 15 16 15 24 6 4 3 24 5 14 6 4 3 2 4 5 14 16 7 15 14 5 3 6	71.55 71.55 71.55 71.55 71.55 71.55 71.55 71.55 71.55 77.55	Aiction partner, constant and vector H-C*C-H H-C*CC+H
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35 7.37 7.54 7.21 3.54	14 17 6 5 3 15 16 4 8	Constant sx coup 3 4 15 16 16 16 15 5 2 4 6 4 3 2 4 5 2 4 5 14 16 17 11 14 5 3	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	Juction partner, constant and vector H-C*C-H H-C*CCH*C-H H-C*CH*C-H H-C*CCH*C-H H-C*CCH*C-H H-C*CCH H-C*CH
shift a 7.39 7.72 7.17 7.39 7.35 7.35 7.35 7.37 7.54 7.21	14 17 6 5 3 15 16 4	Constant 3 6 1 1 6 1 5 2 4 6 1 5 2 4 6 4 3 2 4 5 1 4 6 4 3 2 4 5 1 1 6 1 5 2 4 5 1 1 6 1 5 2 4 5 1 1 6 1 5 2 4 5 1 1 6 1 5 1 6 4 3 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 6 4 1 5 1 5 1 6 4 1 5 1 6 4 1 5 1 5 1 6 4 1 5 1 5 1 6 4 1 5 1 5 1 6 4 1 5 1 5 1 6 1 5 1 5 1 6 1 5 1 5 1 6 1 5 1 5	7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55	Juction partner, constant and vector H-C*C-H H-C*C-H H-C*C-H

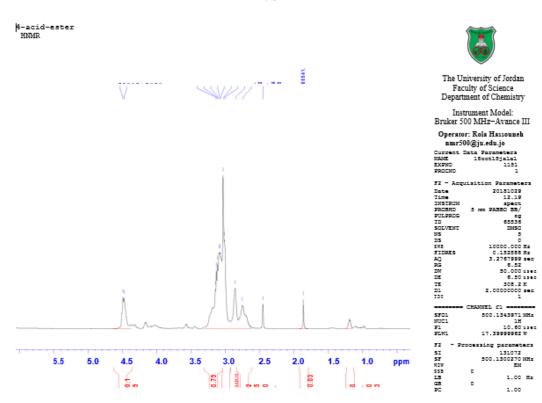


B

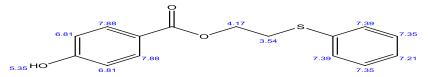

4.85


ChemNMR ¹H Estimation

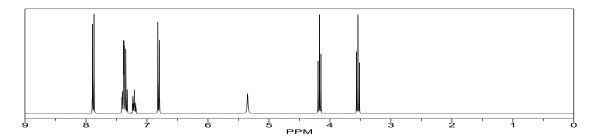

Estimation quality is indicated by color: good, medium, rough



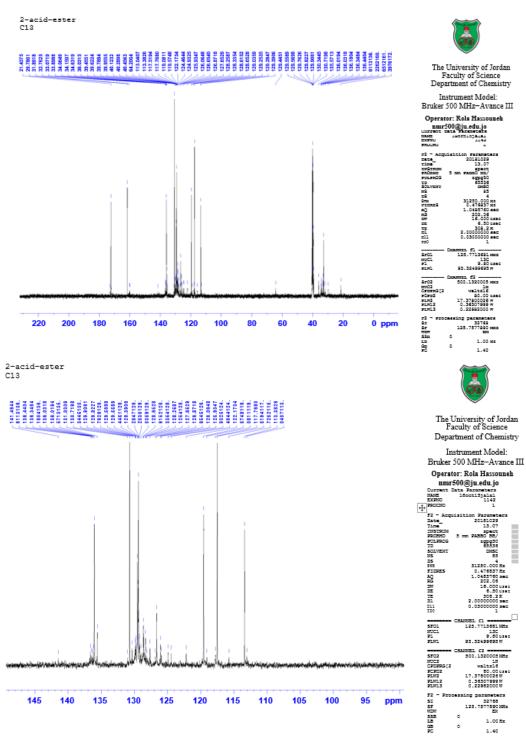
он 5.35		5.0		aromatic C-OH	
СН 7.39		7.2	0.35	l-benzene	
		-	0.08	8 1 -S-C	
СН 7.56		7.2	0.21	1 general corrections 1-benzene	
		-	0.53	3 1 -0	
			0.71	1 l -C(=O)OC 2 general corrections	
CH 7.61		7.2	6	1-benzene	
			0.44		
			0.08	8 general corrections	
CH 7.39		7.2	6	1-benzene	
			0.08		
СН 7.16		7.2	6	1-benzene	
		-	0.53	3 1 -0 1 1 -C (=0) OC	
			0.21	2 general corrections	
СН 7.35		7.2	6	1-benzene	
			0.10		
сн 7.69		7.2	6	1-benzene	
		-	0.17	7 1 -0 1 1 -C (=0) 0C	
			0.11	9 general corrections	
сн 7.35		7.2	6	1-benzene	
			0.10		
сн 7.21		7.2	0.19	9 general corrections 1-benzene	
		-	0.24	4 1 -s-c	
CH2 3.54		1.3	0.19	9 general corrections methylene	
0112 5.54			1.44	4 1 alpha -s-1:c*c*c*c*c*c*1	
			0.42	2 1 beta -oc(=0)-1:C*C*C*C*C*C*1	
CH2 4.17		1.3	0.31	1 general corrections methylene	
			2.92	2 1 alpha -OC(=O)-1:C*C*C*C*C*C*	1
			0.30	0 1 beta -S-1:C*C*C*C*C*C*1	
		_	0.42	z general corrections	
1H NMR C	oupling (Constant	Pred	diction	
shift	atom inde			diction partner, constant and vector	
shift 5.35	atom inde 19				
shift	atom inde	ex coupl	ing	partner, constant and vector $H-C*C-H$	
shift 5.35	atom inde 19	ex coupl 3 7 6 1	ing .5 .5	partner, constant and vector $H-C*C-H$ H-C*C-H	
shift 5.35 7.39	atom inde 19 2	ex coupl 3 7 6 1	ing .5 .5	partner, constant and vector $H-C*C-H$	
shift 5.35	atom inde 19	Ex coupl 3 7 6 1 4 1 15 1	ing .5 .5 .5	partner, constant and vector H-C*C-H H-C*C*C-H H-C*CH*C-H H-C*CH*C-H H-C*C*C-H	
shift 5.35 7.39 7.56	atom inde 19 2 17	Ex coupl 3 7 6 1 4 1 15 1	ing .5 .5 .5	partner, constant and vector H-C*C-H H-C*C*C-H H-C*CH*C-H	
shift 5.35 7.39	atom inde 19 2	Ex coupl 3 7 6 1 4 1 15 1 13 1 14 7	.5 .5 .5 .5 .5	<pre>partner, constant and vector H-C*C-H H-C*C+C-H H-C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H</pre>	
shift 5.35 7.39 7.56	atom inde 19 2 17	ex coupl 3 7 6 1 4 1 15 1 13 1 14 7 17 1	ing .5.5.5 .5.5.5 .5.5.5.5	<pre>partner, constant and vector H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H</pre>	
shift 5.35 7.39 7.56 7.61	atom inde 19 2 17 13	ex coupl 3 7 6 1 4 1 15 1 13 1 14 7 17 1	ing .5.5.5 .5.5.5 .5.5.5.5	<pre>partner, constant and vector H-C*C-H H-C*C+C-H H-C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H</pre>	
shift 5.35 7.39 7.56	atom inde 19 2 17	22 Coupl 3 7 6 1 4 1 13 1 14 7 17 1 15 1 14 7 17 1 5 7	ing .55.5 .55.5 .55.5 .55.5 .55.5	<pre>partner, constant and vector H-C*C-H H-C*CC+C-H H-C*CC+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C+C-H H-C*C+C+C-H H-C*C+C+C-H H-C*C+K</pre>	
shift 5.35 7.39 7.56 7.61	atom inde 19 2 17 13	2 Coupl 3 7 6 1 15 1 13 1 14 7 17 1 15 1 15 1 5 7 2 1	ing .55.5 .55.5 .55.5 .55.5 .55.5 .55.5 .55.5	<pre>partner, constant and vector H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H</pre>	
shift 5.35 7.39 7.56 7.61	atom inde 19 2 17 13	2 Coupl 3 7 6 1 15 1 13 1 14 7 17 1 15 1 15 1 5 7 2 1	ing .55.5 .55.5 .55.5 .55.5 .55.5 .55.5 .55.5	<pre>partner, constant and vector H-C*C-H H-C*CC+C-H H-C*CC+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C+C-H H-C*C+C+C-H H-C*C+C+C-H H-C*C+K</pre>	
shift 5.35 7.39 7.56 7.61 7.39	atom inde 19 2 17 13 6	22 Coupl 3 7 6 1 15 1 15 1 13 1 14 7 2 1 15 7 2 1 1 1 14 7	ing .55.55.55.55.55.55.55.55.55.55.55.55.55	<pre>partner, constant and vector H-C*C-H H-C*C*C-H H-C*CH*C-H H-C*CC+C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39	atom inde 19 2 17 13 6	a 7 3 7 6 1 15 1 13 1 14 7 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 14 1 14 7 17 1	ing 	<pre>partner, constant and vector H-C*C-H H-C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+K*C-H H-C*C+K*C-H H-C*C+K*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39	atom inde 19 2 17 13 6	3 7 6 1 15 1 15 1 17 1 17 1 5 7 2 1 1 5 1 1 7 1 1 1 1 7 1 1 7 1 1 1 1	ing 	<pre>partner, constant and vector H-C*C-H H-C*C*C-H H-C*CH*C-H H-C*CC+C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16	atom inde 19 17 13 6 15	22 Coupl 3 7 6 1 15 1 15 1 14 7 17 1 15 1 5 7 2 1 4 1 14 7 17 1 14 7 17 1 13 1 14 7 6 7 6 7	in 555 55 555 555 555 5	<pre>partner, constant and vector H-C*C+H H-C*C*C-H H-C*CH*C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16	atom inde 19 17 13 6 15	3 7 6 1 15 1 15 1 17 1 17 1 17 1 5 7 2 1 17 1 15 1 14 7 17 1 1 13 1 14 7 117 1 13 1 14 7 4 7 17 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	in 555 55 555 555 555 55	<pre>H=C*C=H H=C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C+K H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H H=C*C=H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16	atom inde 19 17 13 6 15	3 7 6 1 15 1 15 1 17 1 17 1 17 1 15 1 17 1 15 1 14 7 117 1 13 1 14 7 113 1 13 1 13 1 13 1 13 1 13 1	ing 555555555555555555555555555555555555	<pre>H-C*C-H H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35	atom inde 19 17 13 6 15 5	2 Coupl 3 7 6 1 15 1 15 1 14 7 15 1 15 1 15 1 15 1 14 7 1 15 1 15 7 1 15 7 1 13 1 1 15 7 1 13 7 1 1 1 1 1 1 1 1 1 1 1 1 1	ing 	<pre>Partner, constant and vector H-C*C+H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69	atom inde 19 17 13 6 15 5	2 Coupl 3 7 6 1 15 1 15 1 14 7 15 1 15 1 15 1 15 1 14 7 1 15 1 15 7 1 15 7 1 13 1 1 15 7 1 13 7 1 1 1 1 1 1 1 1 1 1 1 1 1	ing 	<pre>H-C*C-H H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35	atom inde 19 17 13 6 15 5 14	3 7 6 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 5 1 1 5 7 2 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	ingg 555 55 555 555 555 555 555 555 555 55	<pre>partner, constant and vector H-C*C+H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+C-H H-C*C*C+H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C*C-H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69	atom inde 19 17 13 6 15 5 14	3 7 4 1 15 1 14 7 17 1 15 1 14 7 17 1 15 1 14 7 17 1 15 1 14 7 17 1 15 1 1 1 1 1 1 5 7 4 1 1 1 5 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in 555 555 555 555 555 555 555 555 555 5	<pre>Partner, constant and vector H-C*C+H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69	atom inde 19 17 13 6 15 5 14	3 7 6 1 15 1 15 1 17 1 17 1 15 1 14 7 17 1 15 1 14 7 17 1 15 1 14 1 14 7 17 1 15 1 1 13 1 1 13 7 1 15 7 2 7 3 1 1 13 7 1 15 7 1 1 1 3 1 1 1 1 3 1 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1	in 555 555 555 555 555 555 555 555 555 5	<pre>H=C*C=H H=C*C=C H=C*C+C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C*C=H H=C*C+C=H H=C*C+C=H H=C*C+C+H H=C*C+H H=C*C+C+H H=C*C+C+H H=C*C+H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69 7.35	atom inde 19 17 13 6 15 5 14 3	2000001 3 7 6 1 15 1 15 1 13 1 15 1 17 1 15 7 2 1 14 7 17 1 15 7 4 1 14 7 17 1 15 7 4 1 13 7 17 1 15 7 4 7 17 1 17 1 17 1 17 7 17 7 15 7 7 7 7 7 7 7 7 7 7 7 7 7 7		<pre>partner, constant and vector H-C*C+H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69 7.35	atom inde 19 17 13 6 15 5 14 3	23 Coupl 3 7 6 1 15 1 13 1 15 1 17 1 15 7 2 1 14 7 17 1 15 7 4 1 14 7 17 1 15 7 4 1 13 7 17 1 15 7 4 1 14 7 17 1 15 7 4 7 17 1 15 7 7 17 5 1 1 1 1 1 1 1 1 1 1 1 1 1	ing 	<pre>H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C+H H-C*C*C+H H-C*C+C+H H-C*C+C+H H-C*C+C+H H-C*C+H</pre>	
shift 5.35 7.56 7.61 7.39 7.16 7.35 7.69 7.35 7.21	atom inde 19 17 13 6 15 5 14 3 4	23 Coupl 3 7 6 1 15 1 13 1 15 1 17 1 15 7 2 1 14 7 17 1 15 7 4 1 14 7 17 1 15 7 4 1 13 7 17 1 15 7 4 1 14 7 17 1 15 7 4 7 17 1 15 7 7 17 5 1 1 1 1 1 1 1 1 1 1 1 1 1	ing 	<pre>partner, constant and vector H-C*C+H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C*C-H</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69 7.35	atom inde 19 17 13 6 15 5 14 3	3 7 4 1 15 1 13 1 15 1 15 1 17 1 17 1 17 1 13 1 14 7 15 7 13 1 14 7 15 7 13 7 15 7 13 7 13 7 15 7 13 7 13 7 13 7 5 7 3 7 5 7 3 7 5 7 3 7 5 7 3 7 5 7 3 7 5 7 6 1 2	in 555 55 555 555 555 555 555 555 555 55	<pre>partner, constant and vector H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C</pre>	
shift 5.35 7.56 7.61 7.39 7.16 7.35 7.69 7.35 7.21	atom inde 19 17 13 6 15 5 14 3 4	2000001 3 7 6 1 15 1 15 1 15 1 17 1 15 7 2 1 17 1 15 7 2 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 19 7 10 7 1	in 555 555 555 555 555 555 555 555 555 1	<pre>partner, constant and vector H-C*C+H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C*C+H H-</pre>	
shift 5.35 7.39 7.56 7.61 7.39 7.16 7.35 7.69 7.35 7.21 3.54	atom inde 19 17 13 6 15 5 14 3 4 8	2000001 3 7 6 1 15 1 15 1 15 1 17 1 15 7 2 1 17 1 15 7 2 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 17 1 13 7 19 7 10 7 1	in 555 555 555 555 555 555 555 555 555 1	<pre>partner, constant and vector H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C-H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C+H H-C*C-H H-C</pre>	



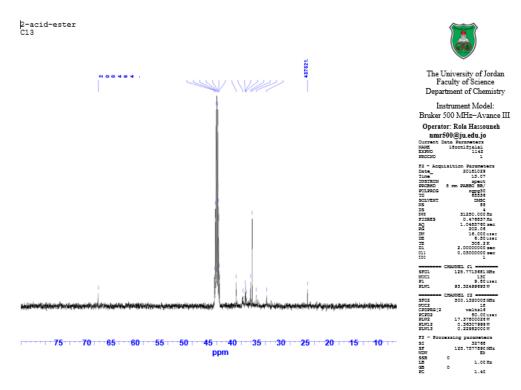
,

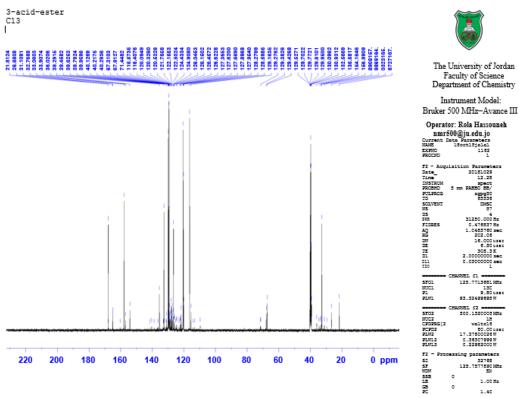


ChemNMR ¹H Estimation

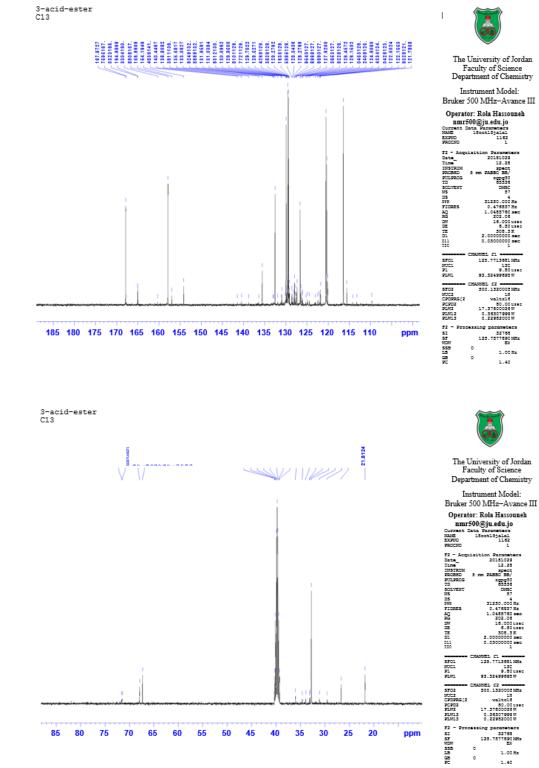


Estimation quality is indicated by color: good, medium, rough

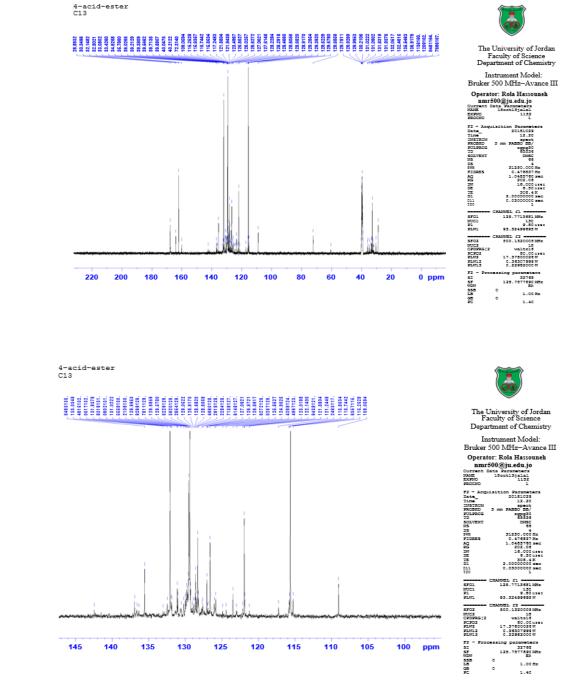


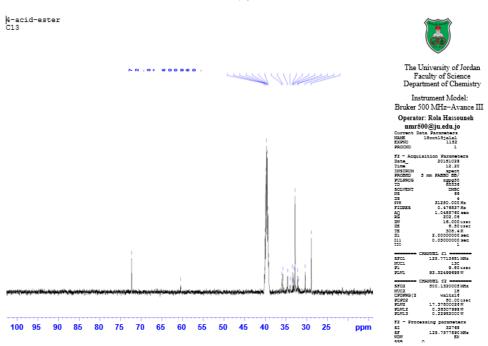

Protocol of the H-1 NMR Prediction:

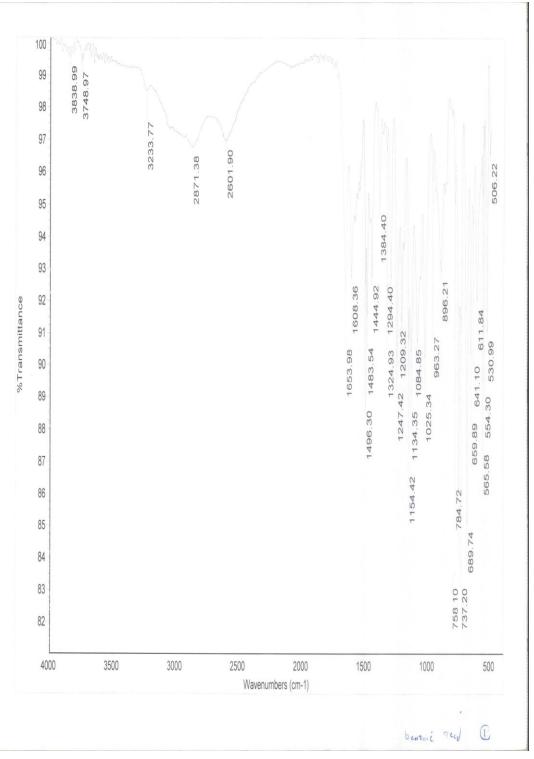
Node	Shift :	Base	+ Inc.	Comment (ppm rel. to TMS)
он 5.35		5	0.35	aromatic C-OH general corrections
СН 7.39		7	.26	l-benzene
			-0.08 0.21	1 -S-C general corrections
CH 6.81		7	-0.53	1-benzene
			0.11	1 -0 1 -C (=0) OC
сн 7.88		7	-0.03	general corrections 1-benzene
			-0.17 0.71	1 -0 1 -C (=0) OC
			0.08	general corrections
СН 7.39		7	.26 -0.08	1-benzene 1 -S-C
~~ ~ ~ ~		_	0.21	general corrections
СН 6.81			.26 -0.53	1-benzene 1 -0 1 -C (=0) 0C
			0.11	1 -C(=0)OC general corrections
СН 7.88		7	.26	1-benzene
			-0.17 0.71	1 -0 1 -C (=0) OC
сн 7.35		_	0.08	general corrections 1-benzene
CH 7.35			-0.10	1 -S-C
сн 7.35		7	0.19	general corrections 1-benzene
Cn 7.55			-0.10	1 -S-C
сн 7.21		7	0.19	general corrections l-benzene
			-0.24	1 -S-C
СН2 3.54		1	0.19	general corrections methylene
			1.44 0.42	1 alpha -S-1:C*C*C*C*C*C*1
			0.31	1 beta -oC(=0)-1:C*C*C*C*C*C*1 general corrections
CH2 4.17		1	37 2.92	methvlene
			0.30	l alpha -OC(=O)-1:C*C*C*C*C*C*1 1 beta -S-1:C*C*C*C*C*C*1 general corrections
			-0.42	general corrections
1H NMR C	oupling Co	nstan	-0.42	
	oupling Co atom index		-0.42 at Pred:	
shift 5.35	atom index 19		-0.42 at Pred:	iction
shift	atom index		-0.42 ht Pred: upling p	iction partner, constant and vector
shift 5.35	atom index 19	cou 3 6	-0.42 nt Pred: npling p 7.5 1 1.5 1	letion partner, constant and vector $A = C * C = H$
shift 5.35	atom index 19	сои 3 6 4	-0.42 nt Pred: npling p 7.5 1 1.5 1 1.5 1	lction partner, constant and vector H-C*C-H H-C*CH+C-H H-C*CH*C-H
shift 5.35 7.39	atom index 19 2	cou 3 6	-0.42 nt Pred: npling p 7.5 1.5 1.5 1.5 7.5	iction partner, constant and vector H-C*C-H H-C*CH*C-H H-C*CH*C-H
shift 5.35 7.39	atom index 19 2	3 6 4 13 16	-0.42 at Pred: apling p 7.5 1 1.5 1 1.5 1 1.5 1 1.5 1	iction partner, constant and vector H-C*C-H H-C*CH*C-H H-C*CC-H H-C*C-H H-C*CC-H
shift 5.35 7.39 6.81	atom index 19 2 14	cou 3 6 4 13	-0.42 it Pred: ppling p 7.5 1 1.5 1 1.5 1 1.5 1 7.5 1 7.5 1 7.5 1	iction partner, constant and vector H-C*C-H H-C*CH*C-H H-C*CH*C-H
shift 5.35 7.39 6.81	atom index 19 2 14	COU 3 6 4 13 16 14 17	-0.42 at Pred: 7.5 1.5	Action Partner, constant and vector H-C*C-H H-C*CH*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88	atom index 19 2 14 13	COU 36 4 13 16 14 17 52	-0.42 nt Pred: 7.5 1.5 1.5 1.5 7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Action partner, constant and vector H-C*C-H H-C*CH*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88	atom index 19 2 14 13	3 6 4 13 16 14 17 5	-0.42 nt Pred: 7.5 1.5 1.5 7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Action Partner, constant and vector H-C*C-H H-C*CH*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39	atom index 19 2 14 13 6	2000 3 6 4 13 16 14 17 5 2 4 17	-0.42 at Pred: 7.5 1.5	Action partner, constant and vector H-C*C-H H-C*CH*C-H H-C*CC-H H-C*C-H H-C*C-H H-C*C*C-H H-C*C*C-H H-C*C+C-H H-C*C+C-H H-C*C+C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39	atom index 19 2 14 13 6	3 6 4 13 16 14 17 5 2 4	-0.42 at Pred: apling 1 1.5 1	Action Partner, constant and vector H-C*C-H H-C*CCH*C-H H-C*CH*C-H H-C*C-H H-C*C-H H-C*C-H H-C*CC+H H-C*CC+H H-C*CC+H H-C*CC+H H-C*CC-H
shift 5.35 7.39 6.81 7.88 7.39 6.81	atom index 19 2 14 13 6 16	COU 364 1316 1417 524 1714 16	-0.42 at Pred: apling 1 1.5 11 1.5 1 1.5 11 1 1.5 11 1.	Action partner, constant and vector H-C*C-H H-C*CH H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81	atom index 19 2 14 13 6 16	COU 3 6 4 13 16 17 17 14 17 14 16 13	-0.42 at Pred: pling 1.5	Action partner, constant and vector H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88	atom index 19 2 14 13 6 16 17	COU 364 1316 1417 524 1714 16	-0.42 at Pred: apling 1.5	Action partner, constant and vector H-C*C-H H-C*CH H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35	atom index 19 2 14 13 6 16 17 5	COU 364 136 147 524 174 163 136 174	-0.42 at Pred: apling 1.5	Action partner, constant and vector H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88	atom index 19 2 14 13 6 16 17	3 6 4 13 16 14 17 14 16 17 14 16 13 24 17 14 16 13 2	-0.42 -0.42 Pred: -0.42 -0	Action partner, constant and vector H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C-H H-C*C+C-H H-C*C+C-H H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35	atom index 19 2 14 13 6 16 17 5	364 136 147 524 174 163 174 163 24	-0.42 at Pred: apling 1 1.5	Action partner, constant and vector H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35	atom index 19 2 14 13 6 16 17 5	364 136 147 524 174 113 643 245	-0.42 at Pred: pling 1.5	Hetion partner, constant and vector H=C*C=H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35 7.35	atom index 19 2 14 13 6 16 17 5 3	364 136 147 524 174 163 174 163 24	-0.42 -0.42 pling 1.5	Action partner, constant and vector H-C*C-H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35 7.35	atom index 19 2 14 13 6 16 17 5 3	364 136 417 11 63 11 643 145 536	-0.42 at Pred: pling 1.5 1	Action partner, constant and vector H-C*C-H H
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35 7.35	atom index 19 2 14 13 6 16 17 5 3	364 136 11 11 524 174 13 843 145 5362	-0.42 at Pred: pling 1.5 1	Action partner, constant and vector A-C*C-H A
shift 5.35 7.39 6.81 7.88 7.39 6.81 7.88 7.35 7.35 7.35	atom index 19 2 14 13 6 16 17 5 3 4	364 136 417 11 63 11 643 145 536	-0.42 at Pred: pling 1.5 1	Action partner, constant and vector H-C*C-H H

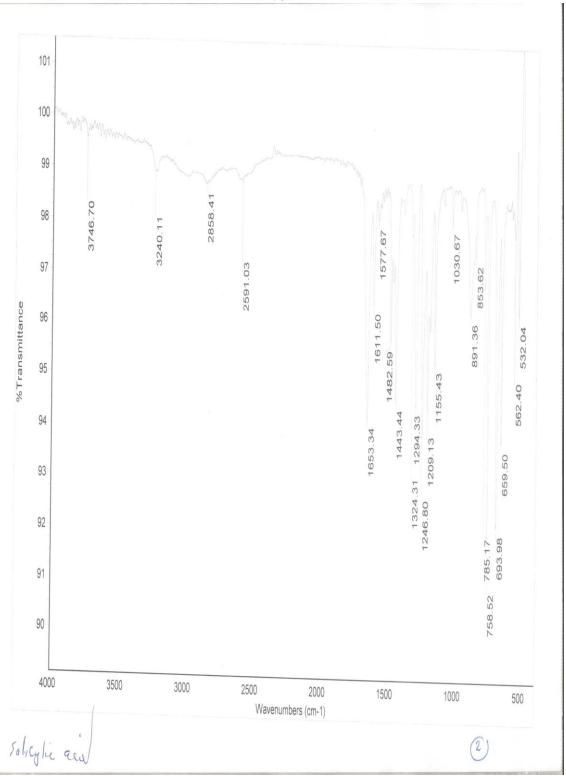


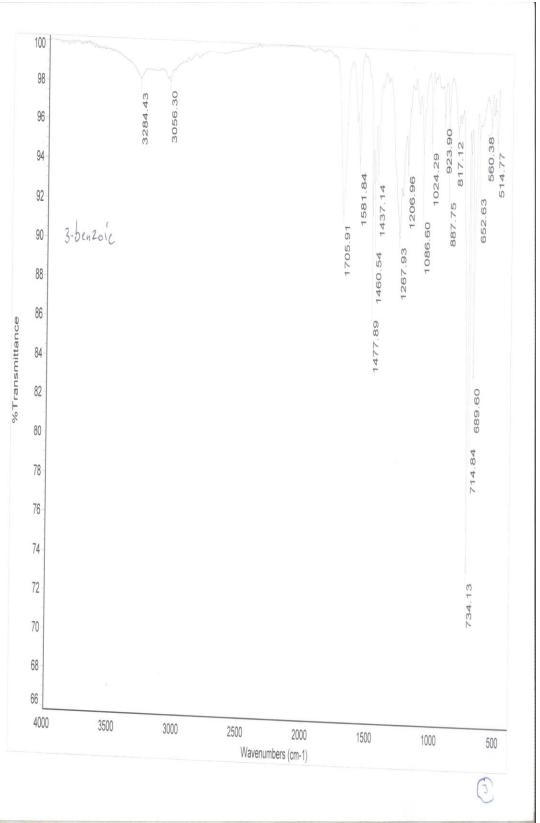
1.40

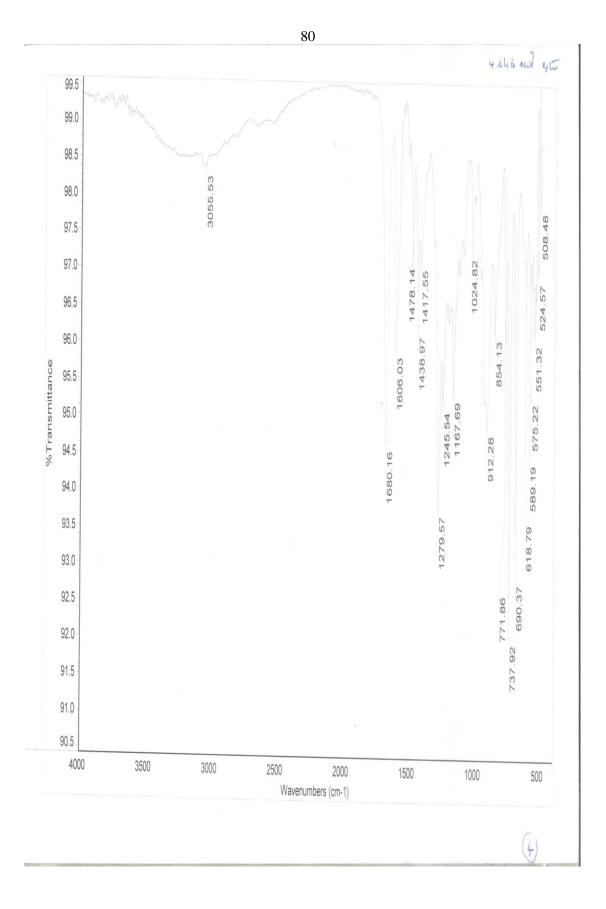





1.00 Mz


1.40


0



Proof-Reading-Service.com Ltd, Devonshire Business Centre, Works Road, Letchworth Garden City, Hertfordshire, SG6 1GJ, United Kingdom Company registration number: 8391405

26 February 2020

To whom it may concern,

RE: Proof-Reading-Service.com Editorial Certification

This is to confirm that the document described below has been submitted to Proof-Reading-Service.com for editing and proofreading.

We certify that the editor has corrected the document, ensured consistency of the spelling, grammar and punctuation, and checked the format of the sub-headings, bibliographical references, tables, figures etc. The editor has further checked that the document is formatted according to the style guide supplied by the author. If no style guide was supplied, the editor has corrected the references in accordance with the style that appeared to be prevalent in the document and imposed internal consistency, at least, on the format.

It is up to the author to accept, reject or respond to any changes, corrections, suggestions and recommendations made by the editor. This often involves the need to add or complete bibliographical references and respond to any comments made by the editor, in particular regarding clarification of the text or the need for further information or explanation.

We are one of the largest proofreading and editing services worldwide for research documents, covering all academic areas including Engineering, Medicine, Physical and Biological Sciences, Social Sciences, Economics, Law, Management and the Humanities. All our editors are native English speakers and educated at least to Master's degree level (many hold a PhD) with extensive university and scientific editorial experience.

Document title:	Synthesis of aromatic thio-acid esters of 2-thiophenylethanol and
	exploring some of their biological activities

Author(s): Maram ziad salem Hawi

Format: American English

Not supplied Style guide:

جامعة النجاح الوطنية كلية الدراسات العليا

تخليق ثيو – استر الحلقات الاروماتية من 2-ثيوفينيل ايثانول واستكشاف بعض أنشطتها البيولوجية

إعداد

مرام حاوي

إشراف

د. نضال جرادات

د. أحمد حسين

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في العلوم الصيدلانية، بكلية الدراسات العليا، في جامعة النجاح الوطنية، نابلس – فلسطين. تخليق ثيو - استر الحلقات الاروماتية من 2-ثيوفينيل ايثانول واستكشاف بعض

أنشطتها البيولوجية

إعداد مرام حاوي إشراف د. نضال جرادات د. أحمد حسين الملخص

موضوع هذه الرسالة هو تحضير أربعة مركبات من استرات حمض الثيو من نفاعل مشتقات حمض البنزويك (2-هيدروكسي، 3-هيدروكسي، 4-هيدروكسي حمض البنزويك مع ثيوفينيل إيثانول 2.

تم إنشاء هياكل استرات ثيو بواسطة Fourier Transform Infrared (FT-IR)، والرنين المغناطيسي النووي بروتون (H-NMR1) و 13C.

تم اختبار استرات ثيو العطرية لأنشطتها المضادة للأكسدة، ومضادة للفطريات، ومضادة للبكتيريا، ومضادة للسرطان، ومضادة للسكري، ومضادات السمنة.

أظهرت النتائج DPPH انه كان حوالي (IC50 = 30µg / ml)، نفس القيمة لحمض Gallic،

وتم اختبار المركبات أيضًا لنشاطها المضاد للبكتيريا ضد: (المكورات العنقودية الذهبية، الإشريكية القولونية، كليبسيلا الالتهاب الرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة القولونية، كليبسيلا الالتهاب الرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة القولونية، كليبسيلا الالتهاب الرئوي، عن البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة القولونية، كليبسيلا الالتهاب الرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة القولونية، كليبسيلا الالتهاب الرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة العصبية، والمبيخات المعوية المرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة العصبية، والمبيخات المنعابية الرئوي، البروتيوس الشائع، المعوية المعوية المكورات العنقودية الذهبية، الزائفة العصبية، والمبيلا الالتهاب الرئوي، البروتيوس الشائع، المعوية المكورات العنقودية الذهبية، الزائفة العصبية، والمبيخات المعوية المرئوي، البروتيوس الشائع، المعوية المعوية المكورات العنقودية الموتية، المعوية المعوية الموتية، النشاطية، المعوية المعوية المعوية المكورات العنقودية الذهبية، الزائفة العصبية، والمبيخات البيضاء) وأظهرت معدل قيمة (المالية المعوية المكورات العنودية المعوية الموتية، معدل قيمة (MIC معدل معدل معدل معدل معدل موتية، ما معدل المعوية المعوية المعوية المعالية المعولية، ما معدل المعوية المعولية، ما ما م

في حين تم تقييم الخاصية السامة للخلايا على خلايا سرطان الإنسان MCF-7 وأظهرت المتوسط (المرحلة G2-M: 21.83، 6.66، 14، 6.66).

ايضا، تم اختبار نسبه التثبيط لأميليز (IC50 = 10) الذي اظهر انه يشابه Acarbose.