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Numerical Methods for Solving Nonlinear Fredholm Integral
Equations
By
Hiba Jalal Mahmoud Odeh
Supervisor
Prof. Dr. Naji Qatanani

Abstract

In this thesis we focus on the numerical treatment of nonlinear
Fredholm integral equation of the second kind due to their enormous

importance in many applications in various fields.

After addressing the basic concepts of nonlinear Fredholm integral
equation of the second kind, we focus on the numerical treatment of this
equation. This will be accomplished by implementing two numerical
methods, namely, Haar Wavelet method and Homotopy Analysis method
(HAM). The mathematical framework of these numerical methods will be

presented.

These numerical methods will be illustrated by solving some

numerical examples with known exact solutions.

Numerical results show clearly that the Homotopy analysis method
is more effective in solving nonlinear Fredholm integral equations in

comparison with its counter parts.
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Introduction

The subject of integral equations is one of the most important
mathematical tools in both pure and applied mathematics. Integral
equations play a very important role in modern science such as numerous
problems in engineering and mechanics. They have attracted the attention
of many scientists and researchers in recent years. In fact, many physical
problems are modeled in the form of linear and nonlinear integral equations
specially Fredholm integral equation. Fredholm integral equation has
received considerable attention in recent years, as in a potential theory and
Dirichlet problem [3] and [36], electrostatics [34], mathematical problems
of radiative equilibrium [19], the particle transport problems of
astrophysics and reactor theory [22], and radiative heat transfer problems

[40].

Various numerical methods for solving Fredholm integral equations
have been developed by many researchers. In [6] Babolian and
Shahsavaran proposed a method for solving nonlinear Fredholm integral
equations of the second kind based on the Haar wavelets. Ahmad
Shahsavaran and Akbar Shahsavaran [44] proposed a method based on
Lagrange interpolations for solving nonlinear Fredholm integral equations
of the power function type. In [13] Jafari Emamzadeh approximated the
solution of the nonlinear Fredholm integral equation using Quadrature
methods. Borzabadi and Fard [9] introduced an approach via optimization

methods to find approximate solutions for nonlinear Fredholm integral
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equations of the first kind. In [42], some numerical methods were used for
solving nonlinear Fredholm integral equation of the second kind as: The
Direct Computation method, The Series solution method, The Adomian

Decomposition method, and The Successive Approximations method.

In this work, some numerical methods for solving the nonlinear
Fredholm integral equation of the second kind will be investigated. These

methods are: Haar wavelet method and Homotopy analysis method (HAM).

The Haar wavelet method is one of the most important numerical
method which was used in recent years. Alfred Haar was the first pioneer
who proposed the Haar wavelet method. Many types of wavelets were used
for solving integral equations like Daubechies [46], Hermit-type
trigonometric [10], Walsh functions [43], Cohen [30], and Albert [21]
wavelets. Ulo Lepik and Enn Tamme in [26] used Haar wavelet method to
solve the integral equations. Then in [41], Reihani and Abadi proposed
another method based on Haar wavelet for solving linear Fredholm and
Volterra integral equations of the second kind. In [7], E. Babolian and A.
Shahsavaran presented a numerical method for solving nonlinear Fredholm
and Volterra integral equations of the second kind which is based on the
use of Haar wavelets and collocation method. In [51], Mingxu Yi and
Yiming Chen proposed a Haar wavelet operational matrix for solving
Fractional Partial differential equations. In [17], G. Hariharan applied the
Haar wavelet method for solving linear and nonlinear Klein-Gordon

equations. Imran Aziz and Siraj-ul-Islam in [4] proposed a two new
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algorithms based on Haar wavelets for solving nonlinear Fredholm and

Volterra integral equations.

Homotopy analysis method is also an important numerical method
which was used in recent years. In fact, Shijun Liao was the first to
introduce the Homotopy analysis method for nonlinear problems in general
in [31]. Hossein Zadeh, Jafari and Karimi in [20] used Homotopy analysis
method for solving integral and integro-differential equations. In [32],
Shijun Liao used Homotopy analysis method in nonlinear differential
equations. Then in [2], Allahviranloo and Ghanbari introduced the discrete
Homotopy analysis method for solving nonlinear Fredholm integral
equations. In [18], Edyta Hetmaniok, Damian Stota, Tomasz Trawi nski
and Roman Wituta presented an application of the homotopy analysis
method for solving the nonlinear and linear integral equations of the second

kind.

This thesis is organized as follows: In chapter one, we introduce
some basic concepts of integral equations and investigate the existence and
unigueness of the solution of the nonlinear Fredholm integral equation of
the second kind. In chapter two, we present some numerical methods for
solving the nonlinear Fredholm integral equation of the second kind. These
include: Haar Wavelet method and Homotopy Analysis method (HAM).
Numerical examples implementing the aforementioned numerical methods
together with a comparison between the analytical and numerical results

are presented in chapter three. Conclusions have been drawn.



Chapter One

Theoretical Background
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Chapter One
Theoretical Background
Basic Definitions and Mathematical Introductions
1.1 Preliminaries
Definition (1.1) [49]: Integral Equation:

An integral equation is an equation in which the unknown function
appears under an integral sign. The general form of an integral equation can

be written as:

RGOU(E) = gOOF () + A ) ke Du(t)dt (L1)

a

where u(x) is unknown function called the solution of the integral
equation, a(x) and B(x) are limits of integration, A is a nonzero constant
parameter, g(x) is a function determines the homogeneity of the equation,
h(x), f(x) and k(x, t) are known functions and k(x, t) is called the kernel

or the nucleus of the integral equation.

1.1.1 Classification of integral equations

There are several types of integral equations. These are:
1. Volterra Integral equation

This equation has the general form:
ROu(x) = g f () + 4 [F k(x, Hu)de (1.2)

where the upper limit of integration is variable.
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e If h(x) = 0, then equation (1.2) is called Volterra integral equation

of the first kind.

e If h(x) =1, then equation (1.2) is called Volterra integral equation

of the second kind.
2. Fredholm integral equation

The general form of this type is:
h()u(x) = gG)f(x) + 2 [ k(x Hu(t)dt (1.3)
where the limit of integration D is a closed bounded set in R.

e If h(x) = 0, then equation (1.3) is called Fredholm integral equation

of the first kind.

e If h(x) = 1, then equation (1.3) is called Fredholm integral equation

of the second kind.
3. Volterra-Fredholm integral equation
The standard form of this type is:
u(x) = £ + [ ks (e, Du®)dt + [ ky(x, Hu(t)dt (1.4)

where k; (x, t) and k,(x, t) are two given functions called kernels of

the equation (1.4).



4. Singular integral equation
It is an integral equation in which the kernel becomes infinity in the

domain of integration or when one or both limits of integration are infinite.
5. Integro-differential equation

The general form of this type is:

RGOUT™ (@) = f() + A [58 k(x, Hut)dt (15)

where m = 1,2, ..., n represents the m*" derivative of u(x).

Equation (1.5) can be classified into either Fredholm integro-
differential equation, Volterra integro-differential equation or Volterra-

Fredholm integro-differential equation [3], [48].
1.1.2 Linearity concept of integral equations

Definition (1.2) [49]: If the exponent of the unknown function u(x) inside
the integral sign is one then the equation is called linear. On the other hand
if the unknown function u(x) has exponent other than one, or the equation

contains nonlinear functions of u(x) then the equation is called nonlinear.
1.1.3 Nonlinearity of Fredholm integral equation of the second kind

Nonlinear Fredholm integral equation of the second kind has many
general forms, which depends on the presence of the unknown function

u(x) under the integral sign.
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There are some well-known examples:

. Urysohn form: the unknown function u(x) is part of the kernel k, has

the general form:
u(x) = f(x) + )Lf(f k(x, t,u(t))dt a<x<bh (1.6)
where f:[a,b] = R.

Hammerstein form: the unknown function u(x) is separate from the

kernel k, has the general form:
u(@) = f() + [, k(x,)P(®)dt  a<x<b (1.7)

where f: [a, b] = R, @ is a function depends on u. The following

equations are examples of Hammerstein form:

Equation with power nonlinearity, has the form:

u(x) = f(x) + 4[] k(x, Hur(e)dt

I. Equation with exponential nonlinearity, has the form:

u(x) = f(x) + A [ k(x, t)exp(Bu(t))dt
Equation with trigonometric nonlinearity, has the form:
u(x) = f(x) + A f, k(x, O)sin(Bu(t))dt
u(x) = f(x) + A f, k(x, t)cos(Bu(t))dt

u(x) = f(x) + 4 [ k(x, )tan(Bu(e))dt



9

u(x) = () + 2 [, k(x, t)cot(Bu(t))dt
iv. Equation with logarithmic nonlinearity, has the form:
u(x) = f(x) + A f, k(x, O)In(Bu(t))dt
v. Equation with hyperbolic nonlinearity, has the form:
u(x) = f(x) + 2 [, k(x, t)sinh(Bu(t))dt
u(x) = f(x) + A J, k(x,t)cosh(Bu(t))dt
u(x) = f(x) + A f, k(x, t)tanh(Bu(t))dt
u(x) = f(x) + A f k(x, )coth(Bu(t))dt
3. Other equations of general forms:
L u(@) = f@) + 1) k(lx, the@®)dt
i u(x) = F(0) + 4 [, k(x, Ot ut))dt
iii. w(x) = £(¥) + 1 [, u(xt)p(t, u(®))dt
iv. u(x) = £(0) + A [, ulx + BOo(t, u(®))dt
1.1.4 Homogeneity concept of integral equations

Definition (1.3) [49]: An integral equation is called homogeneous if f(x)
Is identically zero. On the other hand if f(x) is not identically zero then the

equation is called nonhomogeneous.



10

1.1.5 n-dimensional integral equation

For the n-independent variables X = (x4, x,, ..., x,,), the n-dimensional

integral equation has the general form:
hXuX) = fX) + [ kX, SHu(S) ds (1.8)
where X,S € R,G S R™.

1.2 Types of Kernels

Integral equations involve different types of kernels. These are the

following:

1. Degenerate Kernel (Separable kernel)

Definition (1.4): Separable kernel [37]: The kernel k(x,y) is called

degenerate kernel if it has the form:
k(x,y) = Xizo Xi ()Y (y) (1.9)
2. Symmetric (Hermitian) kernel

Definition (1.5): Symmetric kernel [37]: The real kernel is

symmetric if:

k(x,y) = k(y, x) (1.10)
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3. Cauchy kernel

Definition (1.6): Cauchy kernel: The form of this kernel is:

_ Hxy)
k(x,y) = P (1.11)

where H(x, y) is a differentiable function of (x, y) with
H(x,y) # 0.
4. Hilbert kernel

Definition (1.7): Hilbert kernel: The form of this kernel is:

k(x,y) = cot%, x=20,y<2m (1.12)

Hilbert kernel has a relation with Cauchy kernel with the following
simple relation in the case of the unit circle:
i = %(cot? + i)dx
where t = e, 1 = e®.
5. Skew-symmetric kernel

Definition (1.8): Skew-symmetric kernel: It is of the form:

k(x,y) = —k(y,x) (1.13)
1.3 Overview of spaces

Definition (1.9) [47]: Lipschitz condition: Let f be a function such that
f:R = R then f is called a Lipschitz-continuous function on R if there

exists a non-negative constant M such that:
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lfG)—fI<Mlx—yl, xyeR (1.14)
M is constant called a Lipschitz constant for the function f on R.

Definition (1.10) [11]: Fixed point: A point £ € X is a fixed point of
F:X - Xif and only if F(¢) =¢.

e Metric space:

Definition (1.11): Let X be a nonempty set, and a metric d such that d: X x

X = R,, then (X,d) is called a metric space if d satisfies the following

conditions:
dlx,y) =0 & x =y, (Positive definiteness)
d(x,y) = d(y,x), (Symmetry)
d(x,y) <d(x,z) +d(zy), (Triangle inequality)

where x,y, z € X.

Definition (1.12): Let X be a metric space, then a mapping F:X - X is
called contraction if and only if there exist a constant k € (0,1) such that

for all x;, x, € X, F satisfies:
d(F(x1),F(x3)) < kd(xq,x5) (1.15)
e Theorem (1.1): Contraction Mapping Theorem:
Suppose that:

I. X Is a nonempty metric space
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ii. F: X — X is acontraction

iii. The sequence {x, };-, IS defined by:

Xni1 = F(xp)

where x, € X is arbitrary, then F has a unique fixed point £ € X and
lim d(x,,§) = 0.
n—-oo

e Vector space (linear space):

Definition (1.13):Vector space: Let X be a nonempty set of vectors
element, and F is a field, then a vector space over F is a nonempty set

X that satisfy two algebraic operations: vector addition and multiplication

of vectors such that:

1. Vector addition:

Ifx,y EXthenx+y€eX

. x +y =1y + x, addition is commutative.

x + (y +z) = (x + y) + z addition is associative.

. 0+ x = x4+ 0 = x, exist of identity element of addition.

x + (—x) = (—x) + x = 0, exist of addition inverse.

multiplication of vectors:

calx+y)=ax+ay
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. 1*xx=x,Vx€X
iii. (ab)x = a(bx)
iv. (a+b)x =ax+ bx
where x,y,z€ Xand a,b € F.
e Linear operator:

Definition (1.14): Linear operator: Let X,Y be two vector spaces, then

the operator T: X — Y is linear if it is satisfy the following:
i. T(xqy +x,) =T(xy)+ T(x,) forall x;,x, € X.
li. T(ax) =aT(x) foralla € Fand x € X.
e Inner product space:

Definition (1.15): Inner product space: Let X be a vector space, and F be
a field (F = R or C), then X is called inner vector product over F with the

map (.,.): X x X — F if (.,.) satisfy the following:

i (x,x) =0 & x =0
. (x,x) =0
iii. (ax,y) = a(x,y)

V. (x+y,z)=(x,z)+ (y,2)

V. (x,y) = (y,x), where (y, x) is the conjugate of (x, y).
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where x,y,z € X,a € F.

e Orthogonality:
Definition (1.16): Orthogonality: Let x, y be two vectors in inner product

space X, then x is orthogonal to y if (x, y) = 0, we denoted it by x L y.
e Orthonormal sets:

Definition (1.17): Orthonormal sets: Let X = {x;, x5, ..., x;} € R™ is a set
of vectors, then X is orthonormal if:

(0 ifi#]
<xi'xf)_{1 ifi=j

e Normed space:

Definition (1.18): Normed space: Let X be a vector space and let F be a
field (F = R or C), X is a vector space over F with a function ||.||: X = F

then X is a normed space if:
i llxl=0 & x=0
i, |lax|| = [alllx]
i lx +yll < llxll + Iyl

where x,y € X,a € F, and a function ||. || is called the norm.
e Cauchy sequence:

Definition (1.19): Cauchy sequence: Let X be a space, then the sequence
{x}n=o € X is called a Cauchy sequence if for every positive number € > 0

there exists a natural number N such that for all n,m > N, then:
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|, — x| < €.
e Convergent sequence:

Definition (1.20): Convergent sequence: Let X be a space, then the
sequence {x},—, S X is convergent in X if and only if there exist x € X
such that for any € > 0 there exists a natural number N, such that for all
n = N then:

|x,, — x| < € and,

lim|x, —x| =0
n—-0oo

e Convergence uniformly:

Definition (1.21): Convergent uniformly: For the real valued function, let
{f,.} be a sequence of real valued functions defined on D < R, then {f,,} is
convergence uniformly to the function f if and only if Vx € D such that

for any € > 0 there exists a natural number N, such that for all n > N then:

() = F(0)] < e and,
lim |£,(x) = ()] = 0

e Complete space:

Definition (1.22): Complete space: Let X be a space, then X is called a
complete space if every Cauchy sequence of points in X has a limit in X or

every Cauchy sequence in X converges in X.
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e Banach space:

Definition (1.23): Banach space: It is a complete normed vector space.
e Hilbert space:

Definition (1.24): Hilbert space: It is complete inner product space.
e L? functions and L? spaces:

Definition (1.25): L? functions: Let x be a real variable on the interval

[a, b], then L? functions is a complex valued function f(x) such that:
b
JIf@)|7dx < oo (1.16)

Definition (1.26): Function space: L?: The set of all functions in

(1.16) is called the function space L?on [a, b], such that:
b
1[a,b] = {f:[a,b] » C; [}1f()[2dx < oo} (1.17)
where C is the complex numbers.

e L% is a Hilbert space with the inner product:
b _
(f.9)2=J, F()g(x)dx, f,g € L

and the corresponding norm is:
b
Il = [1FColdx
a

For more details, see [38], and [24].
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1.4 Existence and uniqueness of the solution of nonlinear Fredholm

integral equation of the second kind

The previous definitions and the following theorems are necessary for the

existence and the uniqueness of the nonlinear Fredholm integral equation:
Theorem (1.2) [5]: Existence and Uniqueness of the solution:
If equation (1.3) satisfies the following conditions:
i. The function f(x) is continuous and bounded, |f(x)| < R,
ina<x<b.

ii. There exist a constant K such that the function k(x,t u(t)) is

integrable and bounded where |k(x, t,u(t))| < K,a < x,t < b.

iii. The function k(x, t,u(t)) satisfies the Lipschitz condition (1.14)

lk(x,t,z) —k(x,t,z")| < M|z — Z'|.

1
I(b—a)’

)andM, then there exists a unique solution u € C([a,b],R).

If 1<

where [ is the largest number of K(1+

R
|A|K(b—a)

Moreover, for any starting function u, € C([0,1], R), the sequence {u,, }n-o

such that:
1
Un1(X) = F0) + A [, g(x,t,u, (2))dt (1.18)
satisfies:

lim maxyepo )|t () = u(x)] = 0 (1.19)
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Proof:

Define X = C([0,1],R) and d:X xX - R, such that d(x;,x,) =

lx; — x, || for all x;, x, € X where ||.|| is a norm defined for x € C([0,1], R) by:
|lx]| = max{|x(s)|:s € [0,1]}

Then X is a complete metric space and also, the first condition of the

contraction mapping theorem (1.1) is satisfied.

Now, to verify whether the second condition of contraction mapping

theorem is satisfied we define F: X — X by:
(Fu)(x) = f(x) + A [, g(x. t,u(®))dt (1.20)
where u € X and x € [0,1], then:
d((Fuy), (Fup)) = I(Fuy) = (Fup)ll = maxyepo | (Fuy) — (Fuy) (x)]
= maxyefo,11| (Fuq) (x) — (Fuz) (%)

Now, from (1.18) we have:

d((Fuy), (Fuy)) = maxeeqoq | (0) + 4 f; g (x, t,u, () dt — £ (x) -
A fol 9(x, t,u, (t))dt|

= MaXye[01) |/1 folg(x, t,u (t))dt — 2 folg(x, t, U, (t))dt|
= |Almazyeon |f; 9 (6, t. s (©))dt — f) g(x, t,uy(0))dt]

< |Almaxyepoq f01|g(x, t, ul(t)) — g(x, t, uz(t))|dt
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Then by Lipchitz Condition (1.14) we have:

d((Ful), (Fuz)) < |A|lmax folMlul(t) —u,(t)|dt

= A1 f; Mlu; () — up()dt < AIM [ maxeepo s (x) — up ()| dt
= [AIMIluy — up|l [ dt = |2|Md (uy,u,)

It is clear that if |[A|M < 1 then F satisfies (1.14) with the constant
|A|M, then the second condition of the contraction mapping theorem

satisfied.

By theorem (1.3), the sequence {u,},—, of functions u, €
C([0,1],R) defined by (1.18) u,,, = F(u,) with any starting function

u, € X converges to some u € C([0,1],R). So,
lim d(u,,u) = lim ||u,, — ul|
n—-oo n—oo

= lim max,epo 17|un(x) —u(x)| = 0.

n—oo

u is a unique fixed point of F satisfy definition (1.10) (F(u) = u and
F(u(x)) = u(x)) for all x € [0,1], therefore u is a unique solution of the

nonlinear equation (1.3). This complete the proof of theorem (1.3).
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integral equations of the second kind
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Chapter two

Numerical methods for solving nonlinear Fredholm
integral equations of the second kind

There are several numerical methods for solving nonlinear integral
equations. In this chapter we propose two methods, namely; Haar wavelet

method and the Homotopy analysis method.
2.1 Haar Wavelet Method

Definition (2.1): Wavelet [45]: The wavelet defined as a small wave,

which oscillates rapidly, and must satisfy the following conditions:

i 2 lp®ldt < oo (2.1)
ii. [7 lp(®)lde = 0 (2.2)
it [ BOL g < oo (23)

where 1) is the Fourier transform of 1.

Definition (2.2) [45]: The Mother wavelet function y is given by:

l/)a,b(t) = \/%IIJ (?) Cl,b eER,a# 0 (24)

where a is the scaling parameter and b is location parameter.
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2.1.1 Wavelet Transform

Wavelet transforms are generally divided into two types: The
Continuous Wavelet Transform (CWT), and the Discrete Wavelet

Transform (DWT).
1. Continuous wavelet transform:

Definition (2.3): Continuous wavelet transform [1]: Let f(x) be any

square integrable function, the continuous wavelet transform w,,(f) of the

function f € L,(R) with respect to v is defined as:

Wyf(a,b) = [ f(© J—w(—)dt (2.5)

where 1 is the complex conjugate of the function .

Definition (2.4) [1]: If W,,f(a, b) is a continuous wavelet transform of a

function f(x) with respect to a mother wavelet i, then the inverse of

continuous wavelet transform can be reconstructed by:

O = Iy [ oo e Waf (@ by ()dadb | (2.6)

where C,, is a constant called the admissibility constant, given by:

Iw(w)l
Cp = [ i do <o (2.7)

The inverse of continuous wavelet transform exists if €y, is positive

and finite.
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2. Discrete wavelet transform

Instead of use a family of wavelets in (2.4), for the discrete wavelet

transform we use the family of wavelets:
Vi) = ag"*(ag’x — kby) (2.8)
wherea, > 1, by > 0, fixed f or j,k€Z

Definition (2.5) [23] [25]: For f € L?, the discrete wavelet transform of the

function f is define by:
Wy f (270, k 27) = 272 [ F(ep (2t — Ryt 29)

In equation (2.5) we replace the scaling parameter a by 27/ and the

translation parameter b by k 27/ to get equation (2.9).
2.1.2 Wavelet Transform and Fourier Transform

The main differences between Wavelet transform and Fourier
transform are that in the Fourier transform we have no time localization
parameter (i.e. when we use Fourier transform to convert signals from the
time domain to the frequency domain the time information will be lost,
either in the case of wavelet conversion the time information will not be
lost which makes it very important in some fields [28]), and that in Fourier
transform we have cosine and sine functions instead of a wavelet

function[1].
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2.1.3 Wavelet Series and Wavelet Coefficients
Definition (2.6) [45]: For f € L?, the wavelet series of f is given by:
Yiez Xkez i)k (6) (2.10)
where (f, ;) is the wavelet coefficients of the function f.
Definition (2.7) [45]: The wavelet coefficients of f is given by:
Fobju) = dje = [, FO P (D)t (2.11)
2.1.4Haar Wavelet
Haar scaling function, Mother Haar wavelet, and Haar wavelet family
Definition (2.8) [8]: Haar scaling function ¢(t) can be described as:
1 0<t<1

(1) = ho(t) = {0 otherwise. (2.12)

and the graph of the scaling function ¢(t) is given as:

y
) 1
L )
|
|
¢ x) I
I
0 | 0
& —@ - x
0 1

Fig.2.1: The scaling function ¢(t)
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Definition (2.9): The scaling function can be written as:

p(x)= e2x)+ p2x—1) (2.13)

Definition (2.10) [8]: Letj be a nonnegative integer. The space of step

function at level j is the set V; , which is the space of piecewise constant

functions of finite support with discontinuities contained in the set: {2’{—}}1{ :
€Z

V;is defined to be the space spanned by the set {p(2/x — k)} _ .

Remarks:

1. Function of finite support means that the function vanishes outside a

finite interval.
2. If f €V}, then f is a finite sum of the form:
f=Xkaxp(2'x—k), ar€R (2.14)
3. VocVicl,ccViycV,clViyy c
here the containment is strict (i.e. V; € Vj, 4 but V., € V).
Theorem (2.1) [8]:
e A function f(x) belongs to V, if and only if f (2/x) belongs to V.
e A function f(x) belongs to V; if and only if f (27/x) belongs to V.

Proof: see [8], theorem (4.5).

Theorem (2.2) [8]: The set of functions {2§<p(21x - k)} form a basis of

Vi, jEZ
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Definition (2.11) [8]: The Haar wavelet function can be written as:
Px) = (2x) —p(2x — 1) (2.15)
Note: Equation (2.15) is true when ) satisfies the following conditions:
e Y =Yrarp(2/x — k), where the sum is finite, a;, € R.
e 1 is orthogonal to any element on V.

Definition (2.12) [8]: Let j be a nonnegative integer. The space of the
function at level j is the set W; , W;defined to be the space spanned by the

set {(2/x — k)}, _. then f € W can be expressed as:

f=Yrap(2'x—k), k€Za,€R (2.16)

Theorem (2.3) [8]: W; is orthogonal complement of V; in V., and

Vir = V@ W,

Theorem (2.4) [8]: The space L?(R) can be decomposed as an infinite

orthogonal direct sum, then:
L2(R) =V, W,® W, ® W, ...
f(x) € L?(R)can be written as:
f(x) = fo + Xi=o Wk (2.17)
where f, € V, and wy, € W,.

Definition (2.13) [42]: The Haar wavelet family for t € [0,1) is defined as

follows:
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1 fort € [£1(D), & (D]
Pi(t) =41 fort € [E,(1), &5 (D] (2.18)
0 otherwise

where the notations:

) k-1 ) k-0.5
E(D) = e & () =

m

, E3() = % are introduced.

The integer m = 2/(j = 0,1, ..., ) indicates the level of the wavelet.
1 <k <m+ 1is the translation parameter. J is an integer determining

the maximal level of the resolution. The index i is calculated by the
formulai = m + k — 1, where the maximal value isi = 2M and M = 2/,

For i = 0, the function y,(t) is the scaling function @(t) given in
equation (2.12).

Fori =1, the function y,(t) is the mother wavelet function Y (t)
given in following definition.

The first eight Haar functions on the interval [0,1) are illustrated in

figure (2.1).

Fig.2.2: The first eight Haar function (Haar wavelet i, (t)).
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Note [50]: The sequence {i;};2, is a complete orthonormal system in

L?[0,1], and for the series Y. ,{f,y,,), ¥, is convergence uniformly to f,
f € C[0,1], where (f,,) = [ fp, (t)dL.

Definition (2.14) [8]: The mother wavelet function ¥ (t) on the interval

[0,1) can be described as:

1 0St<%
YO=h®={_1 lop<q
2

0 otherwise.

(2.19)

The graph of function ¥ (t) is shown in figure (2.3).

X 1
0 = -*- \ —
[ |
|
s | 1 —
1 |
1 |
] |
0.0 | -
I i .
L . I J ._-.
- [ | o
[ 1
0 - - - —
i |
[u] 1

Fig.2.3: The Mother wavelet function v (t)

Theorem (2.5) [27] [29]: Haar wavelet functions are orthogonal to each

other and also forms an orthogonal basis as:

277, i=1=2/+k+1

Jy vow@de =27 kr (2.20)
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2.1.5 Integration of Haar function

Definition (2.15) [27]: The integrals of Haar functions on the interval

[A, B] are given by:

1

Poi() = [} [} [ i©dt? = = [ (x — "y (0)de (2.21)

v—times

wherev =1,2,...,.n, i=12,..,2M.

Equation (2.21) can be solved analytically, and then we obtain:

( 0 x> E1(D)

é ~lx—&®]° x € [€,(D), £5(D)]
PaiC) =1 Ly — g, (0] - 20x - £,(0]) x € [£,(0), £()]

[ﬁ{[x SO -2 - 5O + - &O1F x> &)

(2.22)

Formula (2.22) true wheni > 1,fori=1wehave &, = A, &, =& =

B, then:
Pai(x) = =[x — 4] (2.23)
For the Haar wavelet we have the following integrals [28]:
pi1(t) = f(fl/}i(t)dt (2.24)
pip() = [ pip-a(Odt, v=23,.. (2.25)

in virtue of equation (2.18) and by performing integration in (2.24) -

(2.25) we get:
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t_(.c:l t e [81,82]

Pia(t) =1&—t  tE€[EE] (229
0 otherwise
r 0 t €[0,&]
L&) tel6,&)] (&0
pi,z(t) = < 4;2 —%(83 . t)2 t € [E,,E]
\ﬁ t € [E3,1]
£ 0 t €10,&]
HED% t € [€1,€;] (&0
Piz(t) = 3 4;2 (t— &) —%(83 —1)% t€e[&, &)
\ 4;2 (t— &) t €&, 1]
0 t €[0,&]
Le—e® te[6&]
Pia(t) =4 #(t —&,)% — i(83 —-t)*+ 1921m4 t € [£;, 5]
\ 8;12 (t—&)*+ 1921m4 tel&s 1]
(2.29)

2.1.6 Haar wavelet matrices
Definition (2.16) [16] [28]: Define the 2M x 2M Haar wavelet coefficient
matrix Has H(i,j) = h;(j).

wet meft )

Definition (2.17) [16] [28]: Define the 2M x 2M Haar wavelet integral

matrix P, as B,(i,j) = py.: ().
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Note: Divide the interval [0,1) into 2M parts of equal length, then the grid

points is given by:
t(j) = (j - %) At,  j=12,..2M (2.30)

where At = — ,and M = 2/.
2M

Definition (2.18) [16]: The row vector of Haar coefficient matrix is given

by:
h (0 = Y () = [Y1(0, Y2 (6), ., Y1 (O] (2.31)
where u = 2M = 2/+1,

Definition (2.19) [41]: The Haar coefficient matrix H is given by:

Hey = Tha (ﬁ) R (i) ) (%)]T (2.32)
where Hepy = [1], Hip) = H _11]

Definition (2.20) [16]: The 2M square operational matrix of integration P,

is defined by:
Pt (8) = [ ;(8)dt (2.33)

Definition (2.21) [28]: The operational matrix of integration P is defined

as follow:
2uPpp —Hp
p_ 1| 2% 2" (2.34)
WX ou |He w™t Opge
2 2 2 2

2

where O is a square zero matrix of size % and P, = 0.5.
2
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2.1.7 Functions expansion of Haar wavelet series

Definition (2.22) [17] [41]: For any function f € L?[0,1), then f(x) can be

expanded into Haar wavelet series by the form:
f(&x) =Xg a;hi(x), i€{0}UN (2.35)
where a; denotes the Haar wavelet coefficients given by the form:
a, = folf(x)ho(x)dx, a, =2/ folf(x)hi(x)dx such that;
i=2/+k—-1,j=0 0<k<2/, xe€[0,1)
The discrete form of (2.35) is:
flx) =20 ashi(x) = AT gyhamy(x) ,m=2/,i € {0JUN  (2.36)

whereA” .,y = [ao, ay, ..., ay—1] is the coefficient vector, and h, (x) =

[ho(x), hy(%), ..., hyy—1(x)]Tis the Haar function vector.

Definition (2.23) [17] [41]: Assume f(x) is differentiable function with
If(x)| <K, Vx € (a,b) such that |f(x)| < K.

where K is a positive constant. The Haar wavelet approximation

function for f(x) is given by:

fu(x) = XL a;hi(x) (2.37)

Definition (2.24) [17] [41]: The error function E of the wavelet

approximations is defined as:



34

E = [J[f(x) - f)]?dx (2.38)

f (x) denotes the approximation of f(x).

The discrete form of (2.37) is:
E; = Ax BiZo[f (x) — £ (x)]? (2.39)
2.1.8 Convergence analysis of Haar wavelet

Definition (2.25) [15]: The square of the error norm of wavelet
approximation is given by:

K3

£ ) = fu @I = o (2.40)

The maximum absolute error = E, = max. |f¢,(x) — f¢,(x)].

Eoo

The maximum relative error = E,,; = 7.
|re,col

where f€, is the exact Haar solution, f¢, is the approximate Haar

solution at the i*" colocation point x; ,i = 1,2, ...,2m.
2.1.9 Numerical simulation of the Haar wavelet method

For Haar wavelet approximation of the function f(x) we use the

following grid (collocation) points:

Xj = , j=12,...2M (2.41)

Definition (2.26) [4]: Any square integrable function can be approximated

using Haar wavelet by:
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f(x) = X8 azhi(x) (2.42)
Substitute the collocation point (2.41) in equation (2.42) to get:
f(x]) = lZiVIl aihi(xj) , ] = 1,2, ,2M (243)

Equation (2.43) isa 2M x 2M linear system of equations. In matrix form

equation (2.43) is:

F = AH (2.44)
where:

F=1h fo = famlfi=fx), A=[0 G - dapy],

H = [hy], hij=hi(x), i,j=12,..2M

Theorem (2.6) [4]: The solution of the system (2.44) is given by:

a; = — 32 f(x)) (2.45)
In general:

cq=%@ﬁmf@0—ZL&Hf@0) i=23,..2M (2.46)
where:

a=plc—1)+1,

B=plo-1D+%,

Y = po,
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P=—"
o=1—T1,
T = 2llogz(i-1)]

Proof: see [4].

Substituting equations (2.45) and (2.46) into equation (2.42) to get:

@) = 5 B3 FOha (O + B2 (E1 0 () = 2V gy f(5) Ju(x) (247)
Note: For two variable functions g(x, y); equation (2.42) becomes:

g0, y) = X2 ai()hi () (2.48)

then substitute the collocation points (2.41) into equation (2.48) to

get:
g(x, )’j) =% a;(x)h;(y;) (2.49)

a; is the variable coefficient can be evaluated using the following

corollary.

Corollary (2.1) [4]: The unknown coefficients a; in equation (2.49) are

given by:
a;(x) = -2 g(x,y)) (2.50)

and in general:

a;(x) = %(Zfzag(% V) =X g 9%, Yj))» 1=23,..2M 2.51)
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where a, B,v, p, o, and t are defined in theorem (2.6).
2.1.10 Haar wavelet method for nonlinear Fredholm integral equation

Consider the nonlinear Fredholm integral equation of the second

kind:
u(x) = f(x) + A f, k(x, DOt u(®))dt (2.52)

where k € L?[0,1] x L?[0,1] and f € L?[0,1] are known real valued
functions, @ is a nonlinear function, and u(x) is the unknown function

that is to be determined.

Approximating the function Ak(x, t)@(u(t)) using definition (2.21)
to get:

Ak (x, )B(w()) = T2 a;(x)hy () (2.53)
Substituting equation (2.53) into equation (2.52) we obtain:

u(x) = f(x) + X a;(x) f, hi(t)dt (2.54)
Then equation (2.54) can be written as:

u(x) = f(x) + a, (x) (2.55)
By corollary (2.1), equation (2.55) becomes:

ux) = £ + 5, T2 k()0 (u(y) (2.56)

Appling the collocation point (2.41) into equation (2.56) yields:
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ux) = £ + 2 52 k(x;, )9 (u(s) (2.57)
where i,j = 1,2, ...,2M.

Equation (2.57) is a system of nonlinear algebraic equations with the

following matrix form:

ul fl kll klZ oo kl oM
w || |y Ak ko - K 2 (2.58)
5 5 2M| P
Yam fam ko1 kopro oo kZM . ®2M
where u; = u(xl-), fl = f(xi)7 k” = k(xl.’ t])’ wi — Q)(u(tl)),

i,j=1,2,..2M . System (2.58) can be solved for u(x;) using

Newton's Raphson method [26].
2.2 Homotopy Analysis Method

Definition (2.25) [32]: Let f and g be two continuous functions such
thatf, g € Cla, b], then f can be deformed continuously into g which can

construct a Homotopy as follows:
H:f(x)~g(x)
H(x;q) = (1 —q)f (x) + qg(x) (2.59)

where x € [a, b] is independent variable, g € [0,1] is called the
embedding parameter, H(x; q) is called Homotopy, and f(x) and g(x) are

called Homotopic.
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Notes:
1. H(x; q) not only depend into x but also into gq.

2. When g =0 we have H(x;0) = f(x) and when g =1 we have
H(x; 1) = g(x). So that as q increase from 0 to 1, the real function
H(x; q) varies continuously from f(x) to g(x), (this kind of

continuous variation is called deformation in topology).

3. g(x) must be a continuous function, (i.e. a continuous real function

can't be deformed continuously into a discontinuous function).
2.2.2 Homotopy derivatives and series

Here, some definitions and theorems will be presented for the

deduced high-order deformation equation.

Definition (2.26) [33]: Let N[u(t)] be a nonlinear equation, and @ be a

function of the Homotopy parameter g whose Maclaurin series is given by:
0 =XZowq' (2.60)
(2.60) is called a Homotopy series.

Definition (2.27) [33]: The m®"* order Homotopy derivatives of the

function @ is denoted by D,,, (@) and it is of the form:

Dp(®) = =22 (2.61)

m!oqm™m

where m is a positive integer.
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Theorem (2.7) [33]: Malabahrami and Khani’s theorem: For Homotopy
series (2.60), it holds that:

Dm(®k) =

m &1 Tk-3 Tk—2
r1=0 um_’l ZTZ:O uTrTz z:rk_2=0 urk—3_rk—2 Zrk_1=0 urk—z_rk—lurk—l

(2.62)

wherem > 0and k > 1.

Proof: see [33].

Theorem (2.8) [33]: Let f and g be two functions independent of the

Homotopy parameter g, then for Homotopy series:
D =Xilo uq', Y= Z;o:o quj
it holds that:

Dm(f(z) + gl/)) = fDm((Z)) + gDm(w) (2.63)

Proof: see [33].
Theorem (2.9) [33]: For Homotopy series:
6 =Y2owq", Y=XY2vq’
it holds that:
1. D (@) = up,

2. Dm(qk(z)) = D (D)
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3. D (DY) = 221 Di(@) D () = XiZ1 Di (W) Dy (D)
4. Dy (@™P") = XLy Dy(@™) Dy (1) = X2 Di (') Dy (9™
wherem > 0,n > 0,1 = 0,and 0 < k < m are integers.
Proof: see [33].

Theorem (2.10) [33]: Let £ be a linear operator independent of the

Homotopy parameter g, then for the Homotopy series (2.60) it holds that:
D, (L®) = L[D,,(?)] (2.64)
Proof: see [33].
Theorem (2.11) [33]: For the Homotopy series (2.60), it holds that:

Dy(e?) = e

Din(€®) = T (1 = D (€°) Dire (8)

Dy (sin(@)) = sin(uo), Doy(cos(®)) = cos(u)

D (sin(®)) = Ty (1 = ) Dy (sin(8)) Dy ic (D)

Din(c0s(®)) = T (1 = 2Dy (cos(8)) Dy i ()

where m > 1 is an integer.

Proof: see [33].
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Theorem (2.12) [33]: If the two Homotopy series:
D =il wq', Y= Z;ozo quj

satisfy® = ¢ in the domain q € [0,a), then D, (®) = D,,(y) and

u,, = v,, for any integer m > 0 and any real number a > 0.
Proof: see [33].
2.2.3 Deformation equations

There are two types of deformation equations in HAM; zero-order

deformation equation and high-order deformation equation.

In this section we will use the definitions and theorems of the

previous section to deduce deformation equations.

Construct a Homotopy:

(1= L[B(x; @) —uo ()] — qhH (N[ (x; )] = H[B(x; 9), uo (x), H (%), h, q](2.65)

where H(x) # 0 is an auxiliary function, £ is an auxiliary linear
operator with property £(u(x)) = 0 when u(x) = 0, uy(x) is an initial
guess of u(x), g € [0,1] is an embedding parameter, @(x;q) unknown
function, N nonlinear operator, and h # 0 is an auxiliary parameter which
IS very important in convergence of the Homotopy series (2.55), it is also

called the convergent control parameter.
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1. Zero order deformation equation:

Definition (2.28) [32]: Given two equations; the original equation u; and
the initial equation u,, with the solutions x; and x,. If one can construct a
Homotopy of equation @(q): uy~u, that as the Homotopy parameter q €
[0,1] increase from O to 1, @(q) deforms continuously from the initial
equation u, to the original equation u, , and the solutions varies
continuously from the known solution x, to the unknown solution x,, then
this kind of Homotopy equations is called zeroth-order deformation

equation.

Definition (2.29) [31]: The zero order deformation equation is of the form:
(1 = q)L[B(x; q) — up(x)] = qghH(x)N[D(x; q)] (2.66)
where L, q, @, uy, h, H(x), N are defined in (2.65).

Note: We have freedom to choose L, h, H(x),u, according with the

property £(u(x)) = 0 when u(x) = 0.

In fact, when (2.65) is equivalent to zero we have the zero order

deformation equation.
Now in equation (2.66), when g = 0 we have:
D(x;0) = ug(x) (2.67)
and when g = 1 we have:

D(x; 1) = ulx) (2.68)
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So that as q increases from 0 to 1, @(x; q) varies from wuy(x) to

u(x).

Now, to find mt" order deformation equations take m®* order
Homotopy derivative in both sides of zero order deformation equation

which mentioned in the following.
2. High order deformation equation

Definition (2.30) [32]: Given a nonlinear equation N[u(x)] which has at
least one solution u(x). Let @(q) denoted the zeroth-order deformation
equation which has a solution, then the Homotopy Maclaurin series (2.60)

can be written as:
B0 @) ~up(x) + Xim=1 Um(x)q™ (2.69)
and the Homotopy series @(x; 1) is:
D(x; D) ~ug(x) + Y=g U (x) (2.70)

The equations related to the unknown wu,,(x) are called the m®"-

order deformation equations.

Definition (2.31) [31]: Let u,, = {uy(x),u,(x), ..., u,(x)} be a vector, the

m*" order deformation equation is of the form:
Lm (%) = XmUm-1()] = RHOR, (Um-1(x)), m=12,.. (2.71)

where R,,, is called the m*® Homotopy derivative of (2.66), and:



1 ™ IN[O(x;q)]

Rin(thn-1) = oo —0mr la=0 (2.72)
0 m<1
m={ i (2.73)

Definition (2.32) [39]: Define the linear right inverse operator L* of L such

that:
LLu()] =ulx) +k(x), LL=1 (2.74)

where I is the identity linear operator. Then the m®" order

deformation equation is given by:
U () = XmUm—1 (%) + AL [H )Ry (um—1(x))] + k(x) (2.75)

Definition (2.33) [32]: If the solution of the zeroth-order deformation

equation exists, then we have the Homotopy series solution:

u(x) = uo(x) + Xpp=1 Um (x) (2.76)

The n!" -order approximate solution and the exact solution

respectively is:

U (x) = up(x) + Xim=1 U (%) (2.77)

u(x) = lim @, (x) (2.78)
2.2.4 Convergence theorem
Theorem (2.13) [14]: If the following series:

U () + Xm=1 U (x)
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IS convergent, then the limit of this series is an exact solution of the

nonlinear equation N[u(t)] = 0.
Proof: see [14].
Theorem (2.14) [39]: If (2.76) is convergent then we have the sequence:

X, = Xm—1 R (x)convergent to zero, where R,,(x) is defined on

(2.72).
Proof: see [39].

2.2.5 Homotopy analysis method for nonlinear Fredholm integral

equation

Consider the nonlinear Fredholm integral equation of the second

kind (2.47).

First choose an initial approximation u,(x) = f(x) and the auxiliary
linear operator L[@(x; g)] = @(x; g).Then according to equation (2.47) we

define the nonlinear operator:
N[@(x; )] = B(x;9) — f(x) — Mf k(x, t)F[O(t; g)]dt (2.79)

with assumption H(x) =1, construct the zero-order deformation

equation as:

(1 =[98 q) — f(©)] = hpN[D(x; q)] (2.80)

wheng =0, @(x;0) = f(x) andwheng = 1, @(x; 1) = u(x).
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Now, to find the mt*-order deformation equation; by using the m*"-
order Homotopy derivative (2.61):

1 d™@(x;q)

and differentiate m —times with respect to g then divide by m!, we

obtain:
U (X) = XmUm—1(x) + AR, (Up—1), m=1 (2.81)
where
R b 1 9™ F[0(x;9)]

R (1) = Xmttm-1(6) = A [ kO, O o= =5 dt (2.82)
0 ,m=1 )

and y,, = {1 m>1 then:

1 am-lFm(x:q)]l _ 1 am—lF[zi-’ioui(x)qill _
m-1! aqmt 1970 Gno)) agm-1 =0 ~ (2.83)

A [ug g, oo Upq] = A1 (8

where A4,,_1(t) is called the Adomian polynomials. For more details

about Adomian polynomials see [49].
Then we can write equation (2.82) as:
— b
Rm(um—l) = Xmum—l(x) -4 fa k(x; t)Am—l(t)dt» m=1 (284)

where A;(t) are the Adomain polynomial for the nonlinear term

Flu(t)] in equation (2.47).

Now, using equation (2.81) and according to equation (2.84) we can

compute u,, and the Homotopy series solution of equation (2.47) is:
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u(x) = up(x) + Lm=1 Um(x) (2.85)
and the nt"-order approximation solution is:
Un () = up(x) + Y=g um(x), n=1 (2.86)

According to theorem (2.13) equation (2.86) is the exact solution of

equation (2.47) [2].
2.2.6 h-Curve

As mentioned previously, the value of h is very important for the
convergence of equation (2.87). So that, the series solution converges fast

enough in a large enough region.

When we solve equation (2.47) we have a series of solution with two
variables x and h. In order to determine the optimal value of h we use the

so-called h-curve.

Because h is an independent variable, it is easy to plot a curve versus
h. There will be an interval over that. By taking different values of h from
this interval, they all go to the exact value of the solution. Therefore, if the
solution is unique, all the values of h are converge to the same value with
different speed of convergent. So in h —curve there is a horizontal line

segment corresponds to an area called the area valid for h denote by R;,.

In conclusion, h —curve provides us with a suitable way to show the
effect of h on the convergence area and the rate of solution of the

series[31].
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Chapter Three

Numerical Examples and Results
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Chapter Three
Numerical Examples and Results

In this chapter we will present some illustrative examples and carry
out comparison between the accuracy and convergence of the two methods;

Haar Wavelet method and Homotopy Analysis method.

These examples are based on a methodology for finding a solution of
nonlinear Fredholm integral equation of the second kind using Maple and

Matlab software.
Example 3.1

Consider the nonlinear Fredholm integral equation of the second
Kind:

14 (x cos mx) 1
u(x) = cosTx + o + J, xt cosmxu(t)dt (3.1)

TL'Z
with the exact solution u(x) = cos x.

The Haar wavelet method and Homotopy Analysis method were

used to solve equation (3.1).
(a) Haar Wavelet method
Here we use | = 2M for simplicity.

To solve equation (3.1) using Haar wavelet method, the following

algorithm was implemented using the Matlab software:
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Algorithm (3.1):
1. Input the fixed positive integer [, Maximum iteration, and Tolerance.
2. Calculate the collocation points (2.41) x, and t,, r,p =0,1,..,1
3. Input f(x), k(x,t)
4. Calculate f(x,), k(x,,tp)
5. Input @(u(t))
6. Calculate @(u(t,))

7. Calculate the algebraic nonlinear system u(x;.)

u(xr) = f(xr) +)lL k(xr’ P)® U(tp)

ki1 kiz - kim
l ‘ + L k:21 k:22 kz 2M
f2M ®2M

kZM 1 kZM 2 kZM 2M

8. Solve the Algebraic nonlinear system u(x,.)using Newton Raphson

method for nonlinear equations to get the solution of the system.
Therefore, the following results have been obtained:

Figure (3.1) shows a comparison plot between exact and

approximate solutions at [ = 2.
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Exact solution

Approximate solution =

-\.\___\_\--

-1 T——

Fig. (3.1): Comparison between exact and approximate solutions at I = 2.

Table (3.1): Shows the exact and approximate solutions, errors and

relative errors for equation (3.1) at I = 8:

x Exact solution | Approximate solution Error Relative error
0.0625 | 0.9807852804 0.9808419174 57%x107% | 58x107°
0.1875 | 0.8314696123 0.8316136561 1.4 x107* 1.7 x 107*
0.3125 | 0.5555702329 0.5557306446 1.6 x 1074 29x 1074
0.4375 | 0.1950903220 0.1951691827 7.9 x 107> 4,04 x 1074
0.5625 | —0.1950903220 —0.1951917143 1.01 x 10™* 5.2x 107%
0.6875 | —0.5555702329 —0.5559231386 3.6 x107* 6.4 x 1074
0.8125 | —0.8314696123 —0.8320938020 6.2 x107* 7.5x 107%
0.9375 | —0.9807852804 —0.9816348366 8.5x107* 8.7 x 1074

Figure (3.2) shows a comparison

approximate solutions at [ = 8.

plot between exact and
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Exact solution —

Approximate solution =

Fig. (3.2): Comparison plot of exact and approximate solution at I = 8.
(b) Using Homotopy Analysis method:
Here we take the initial approximation uy(x) = f(x)

To solve equation (3.1) using Homotopy Analysis method the

following Algorithm was implemented with help of Maple software.

Algorithm (3.2):
1. Input @(u(t)), ue(t), k(x,t), f(x), the positive fixed integer m and
Lampda
2. Calculate Adomian polynomial A4;(t).
3. Input x,,.
4. Calculate R,,,, and u,,, we get the following results:
U, (x) = 0.2433 h x cos(mx)
U, (x) = 0.3938 h? x cos(mx) + 0.2433 h x cos(mx)
uz(x) = 0.6664h3 x cos(mx) + 0.7876 h? x cos(mx) +

0.2433 h x cos(mx)
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uy(x) = 1.1747 h* x cos(mx) + 1.9994 h3 x cos(mx) +

1.1814 h? x cos(mx) + 0.2433 h x cos(mx)

us(x) = 2.1462 h°x cos(mx) + 4.6991 h* x cos(mx) +
3.9988h3 x cos(mx) + 1.5752 h? x cos(mx) + 0.2433 h x cos(mx)

figure (3.3) shows the 8" 9t"and 10" order approximation

solutions with respect to h at x = 1 (the h-curve):

]
—1 05- O 0.5 1
] T <
8" order approximation solution — i . .
- 500 N \
] \
9tharder approximation solution ___ ; \ \
1000 ] . \\
10" order approximation selution i 1
1500 - \
\
—-2000 4 \
t.
—-2500 |
|
—-3000 - !
\
-3500 -
\

Fig.(3.3): the h-curve of 8%, 9t" and 10" order approximation solutions with
respecttohatx = 1.

Table (3.2): Shows the values of the percentage relative errors in
reconstruction of the exact solution at several values of h when x = 1:

m h=-1 h=-0.7 h=-05 h=-03 | h=-01
2 6.5 X 1072 9.9 x 1073 1.3 x 1072 4.7 x 1072 0.1129

4 5.6 X 1072 1.7 x 1073 1.8x 1073 1.6 x107%2 |8.1x1072
10 0.1099 4,02 x 1075 1.1x 1073 8.7%x107%* |3.2x%x1072
16 0.3960 1.7 x 107° 3.4x 1078 6.2x 107> | 1.3x 1072
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From table (3.2) it is clear that at h = —0.5 gives the smallest

Table (3.3): The following table shows the exact and approximate

solutions, errors and relative errors at different points of x € [0,1]

with h = —0.5 and m = 8:

x Exact solution Approximate solution Error Relative error
0 1 1 0 0
0.1 | 0.9510565163 0.9510619365 54 x10°° 5.7%x10°°
0.2 | 0.8090169943 0.8090262154 9.2x107° 1.1 x107°
0.3 | 0.5877852522 0.5877953016 1x10°° 1.7 x 107°
0.4 | 0.3090169938 0.3090240382 7.04 X 107 2.3x1075
0.5 0 —2.05x 10710 2.05 x 10710 -
0.6 | —0.3090169942 —0.3090275606 1.05 x 107° 3.4 x107°
0.7 | —0.5877852527 —0.5878087012 23x107° 4x1075
0.8 | —0.8090169945 —0.8090538791 3.7x 1075 4.6 X 107°
0.9 | —0.9510565165 —0.9511052969 49 x10°° 5.1 x 1075
1 -1 —1.000056990 5.7 x 1075 5.7x 1075

Table (3.4): The following table shows the exact and approximate

solutions, and errors at different point of x € [0,1] with h = —0.5 and

m = 16:
x Exact solution Approximate solution Error Relative error
0 1 1 0 0
0.1 0.9510565163 0.9510565132 3.1x107° 3.3x107°
0.2 0.8090169943 0.8090169886 5.7 x 107° 7.05 x 10~°
0.3 0.5877852522 0.5877852460 6.2 x 107° 1.05 x 108
0.4 0.3090169938 0.3090169896 4.2 x107° 1.4 x 1078
0.5 0 —2.05 x 10710 2.05x 10710 —
0.6 | —0.3090169942 —0.3090169878 6.4 x 107° 2.1x1078
0.7 | —0.5877852527 —0.5877852385 1.4 x 1078 2.4x1078
0.8 | —0.8090169945 —0.8090169720 2.3x10°8 2.8x 1078
0.9 | —0.9510565165 —0.9510564854 3.1x 1078 3.3x 1078
1 -1 —0.9999999660 3.4x1078 3.4x1078
In figure (3.4) we plot the exact and approximate solutions of

example (3.1) at m = 16:
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Exact solution —

Approximate solution =

=
ih

Fig.(3.4): Comparison between exact solution (Solid line) and approximate solution (Dot

line) atm = 16 (x € [0,1]).

Results in tables (3.1) and (3.3) show clearly the maximum relative

errors are 8.7 x 10~* atl = 8 and 5.7 x 1075 at m = 8 respectively.

As a result, it is clear that in example (3.1) Homotopy analysis

method is more accurate than Haar wavelet method.
Example 3.2

Consider the nonlinear Fredholm integral equation of the second

Kind:

1
u(x) = —x? —E(Zﬁ — 1)+ 2+ [ xtJu(t)dt (3.2)
with exact solution u(x) = 2 — x2.

The Haar wavelet method and Homotopy Analysis method were

used to solve equation (3.2).
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(a) Haar wavelet method:

Algorithm (3.1) implements the Haar Wavelet method using Matlab

software. Therefore, we obtain the following results:

Figure (3.5) shows a comparison plot between exact and approximate

solutions at [ = 2.

i Exact solution —
1.8 Approximate solution =
1.6+
1.4
1.2

1 -

02

0.4 0.6
xX

08 1

Fig. (3.5): Comparison between Exact and Approximate solutions at I = 2.

Table (3.5): Shows the exact and approximate solutions, errors and

relative errorsatl = 8:

X Exact solution | Approximate solution Error Relative error
0.0625 | 1.996093750 1.9961605859 6.6 X 1075 3.3x107°
0.1875 | 1.964843750 1.9650442577 2x107* 1x107*
0.3125 | 1.902343750 1.9026779296 3.3x10™* 1.7 x 107"
0.4375 | 1.808593750 1.8090616015 4.6 X 107* 25x107*
0.5625 | 1.683593750 1.6841952733 6x107* 3.5x107*
0.6875 | 1.527343750 1.5280789452 7.3x107* 48 x107*
0.8125 | 1.339843750 1.3407126170 8.6 x 10~* 6.4x 107*
0.9375| 1.121093750 1.1220962889 1x1073 8.9 x 10~*
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Figure (3.6) shows a comparison plot between exact and

approximate solutions at [ = 8.

- Exact selution —_—
Approximate selution -
1.8
1.6
1 44
1 2
1 -
0 oz

Fig. (3.6): Comparison between exact and approximate solutions at I = 8.
(b)Homotopy Analysis method:
Here we take the initial approximation uy(x) = f(x)

Then, Algorithm (3.2) implements the Homotopy Analysis method

using Maple software. Therefore, we obtain the following results:
uy(x) = —0.512hx

u,(x) = —0.418h%x — 0.512hx

us(x) = —0.328h3x — 0.836h%x — 0.512hx

uy(x) = —0.239h*x — 0.984h3x — 1.255h*x — 0.512hx
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us(x) = —0.152h°x — 0.959h*x — 1.968h3x — 1.673h?x — 0.512hx

Figure (3.7) shows the 6, 7" and 8" order approximation

solutions with respectto h at x = 1:

200+
6"order approximation solution -
7™Marder approximation solution —
1504
8™ Marder approximation solution
\ 100
\ Z
l. -
! 50
\- -
\.
—
-3 7 -2 -1
rd A
/
/

Fig.(3.7): The h-curve of 6%, 7t" and 8"order approximation solutions with respect

tohatx =1.

Table (3.6): Shows the values of the percentage relative errors in

reconstruction of the exact solution at several values of h when x = 2:

m h=-1 h=-0.8 h =-0.75 h=-0.5 h=-0.2
2 [37%x1073| 5.7x107% | 7.6 x 1072 0.2019 0.4213
4 136%x107%| 41x1073 | 78x107% | 6.3 x 1072 0.2901
5 [21x107%| 1.04x107% | 24%x1073 | 3.5x 1072 0.2403
8 [79%x1075| 1.2x1075° | 59x107% | 58x1073 0.1361
10 |45x107°| 22x107% | 59%x107°® | 1.7x 1073 9.2 x 1072
16 |52x107%| 49x1077 | 47%x107°% | 1.7x1073 9.2 x 1072
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From table (3.6) it is clear that as m goes to infinity h = —0.8 gives

the smallest relative error.

Table (3.7): the following table shows the exact solution, approximate

solution, and errors at different point of x € [0, 1] with h = —0.8 and

m = 8:

X Exact solution | Approximate solution Error Relative Error
0 2 2 0 0

0.1 1.99 1.989998712 1.2x10°° 6.4 X 1077
0.2 1.96 1.959997424 2.5x10°° 1.3x10°°
0.3 1.91 1.909996137 3.8x10°° 2.02x10°°
0.4 1.84 1.839994848 5.1x107° 2.8x10°°
0.5 1.75 1.749993560 6.4 X 10°° 3.6 X 10°°
0.6 1.64 1.639992272 7.7 X107° 4.7 x10°°
0.7 1.51 1.509990982 9.01 x 10°° 5.9 X 10~°
0.8 1.36 1.359989696 1.03 x 107° 7.5%x 107°
0.9 1.91 1.189988410 1.1 x107° 9.7 X 107°
1 1 0.9999871194 1.2 x107° 1.2 x107°

In Figure (3.8) we plot the exact and approximate solutions of

example (3.1) at m = 8:

L p— —‘I‘—____-\‘--
-\"_\_\_ .
Exact solution —
1.8
Approximate solution
1 .6
1.4
1.2
1 - ¥ L] - T T -
0 o2 O .4 0.6 0.8 1

Fig.(3.8): Comparison between exact sofution (Solid line) and approximate solution

(Dot line) at m = 8 (x € [0,1]).
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Results in tables (3.5) and (3.7) show clearly the maximum relative

errorsare 8.9 x 10~ * at I = 8 and 1.2 x 10~> at m = 8 respectively.

As a result, it is clear that in example (3.2) Homotopy analysis

method is more accurate than Haar wavelet method.
Example 3.3

Consider the nonlinear Fredholm integral equation of the second

kind:
1

u(x) =xIn(2) + f

0

- (3.3)
1+ u(t) dt

with exact solution u(x) = x.

The Haar wavelet method and Homotopy Analysis method were

used to solve equation (3.3).
(a) Haar wavelet method:

Algorithm (3.1) implements the Haar wavelet method using Matlab

software. Therefore, we obtain the following results:

Figure (3.9) displays both the exact and approximate solutions at [ = 2.
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Exact solution

Approximate solution =

Fig. 3.9: Comparison between Exact and Approximate solutions at [ = 2.

Table (3.8): Shows the exact and approximate solutions, errors and

relative errorsat l = 32:

x Exact solution Approximate solution Error Relative error
0.0156 0.015625 0.0156254280 43 x1077 2.7 x 1075
0.1718 0.171875 0.1718797087 4.7 x 1076 2.7 x 1075
0.3281 0.328125 0.3281339893 8.9 x 107 2.7 x 1075
0.4843 0.484375 0.4843882700 1.3x107° 2.7 x 1075
0.6406 0.640625 0.6406425507 1.6 X 107° 2.7 x 1075
0.7968 0.796875 0.7968968313 2.2x1075 2.7 x 1075
0.9531 0.953125 0.9531511120 2.6 X 1075 2.7 x 1075
0.9843 0.984375 0.9844019681 2.8x1075 2.7 x 1075

Figure (3.10) shows a comparison plot between exact and

approximate solutions at [ = 32.
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1A
Exact solution S
Approximate solution =
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0.6
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0 02 0.4 0.6 0.3 1
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Fig. 3.10: Comparison between exact and approximate solutions at [ = 32.
(b) Homotopy Analysis method:
Here we take the initial approximation uy(x) = f(x)

Then, Algorithm (3.2) implements the Homotopy Analysis method

using Maple software. Therefore, we obtain the following results:
uy(x) = —0.3467hx

u,(x) = —0.3981h%x — 0.3467hx

us(x) = —0.6454h3x — 0.7961h%*x — 0.3467hx

uy(x) = —0.5548h*x — 1.3961h3x — 1.1942h%*x — 0.3467hx

us(x) = —0.6753hx — 2.2192h*x — 2.7922h3x — 1.5923h%x —
0.3467hx
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Figure (3.11) show the 6", 7t" and 8t"order approximation solutions with

respectto h at x = 1:

3q

14

- o -
N P
~i-.n ”
o~ P
x.\. /
v
oy

6'"order approximation solution ..
7t"order approximation solution =

8"order approximation solution

= 100
— 200
— 300

— 400

Fig.(3.11): The h-curve of 6%, 7t" and 8t"order approximation solutions with respect

tohatx =1.

Table (3.9): Shows the values of the percentage relative errors in

reconstruction of the exact solution at several values of h when x = 1:

m h=-1 h=-09 h=-0.6 h=-0.5 h=-0.2
2 1.2%x107% | 52%x107% | 3.4x 1072 6 x 1072 0.1841

4 19%x1073 | 41x107* | 45x107% | 1.3x1072 0.1110

5 87x107% | 14x10™%* | 1.7x1073 | 59x 1073 8.6 X 1072
8 1.1x107% | 75x107% | 89x107° | 6.2x107* 4.1 %1072
10 | 32x107° | 1.2x107°% | 1.3x107™°> | 14x107* 2.5 % 1072
16 |1.04%x107°| 65%x107° | 44x1078% | 1.9x107° 5.8 x 1073
20 | 1.2x1077 | 23x107'° | 1.03x107°| 1.07 x 10~° 2.2x 1073

the smallest relative error.

From table (3.9) it is clear that as m goes to infinity h = —0.9 gives
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Table (3.10): The following table shows the exact and approximate

solutions, and errorsat h = —0.9 and m = 20:

x Exact solution | Approximate solution Error Relative Error
0 0 0 0 -

0.1 0.1 0.0999999999 23x10711 2.3 x1071°
0.2 0.2 0.1999999999 45x 10711 2.3 x1071°
0.3 0.3 0.2999999999 6.8 x 10711 2.3x1071°
0.4 0.4 0.3999999999 9.07 x 10711 2.3x10°1°
0.5 0.5 0.4999999999 1.1x 10710 2.3 x1071°
0.6 0.6 0.5999999999 1.4 x 10710 2.3 x1071°
0.7 0.7 0.6999999999 1.6 x 10710 2.3x 10710
0.8 0.8 0.7999999999 1.8 x 10710 2.3x1071°
0.9 0.9 0.8999999999 2.04 x 10710 2.3x1071°
1 1 0.9999999999 2.3 x1071° 2.3 x10719

In figure (3.12) we plot the exact and approximate solutions of

example (3.1) at m = 20:

0.3+

0.6 4

0 .4

Exact solution

Approximate solution =

a

DI_Z

L 0.6

-

0S8

1

Fig.(3.12): Comparison between exact solution (Solid line) and approximate solution (Dot

line) at m = 20 (x € [0, 1]).

Results in tables (3.8) and (3.10) show clearly the maximum relative

errors are 2.7 x 1075 at I = 32 and 2.3 x 10719 at m = 20 respectively.




66
As a result, it is clear that in example (3.3) Homotopy analysis

method is more accurate than Haar wavelet method.
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Conclusions

In this work, two numerical methods for solving nonlinear Fredholm
integral equation of the second kind are presented. These are: Haar Wavelet

method and Homotopy Analysis method (HAM).

In addition, these numerical methods we implemented in a form of
algorithms to solve some numerical examples with known analytical
solutions. Numerical results have shown to be in a close agreement with the
analytical ones. Moreover, the Homotopy Analysis Method is one of the
most powerful numerical technique for solving nonlinear Fredholm integral

equation of the second kind in comparison with other numerical methods.
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Appendix

Matlab Code for example (3.1) (a):
clc;

clearall;

M =2;

z=1;

MaxlIter = 400;

tol =.00001;

fori= 1: 1: 2*M

X(z) = (i - 0.5)/(2*M);
Z=17+1,

end

Y =@(X) cos(pi*x)+(14/9)*((x*cos(pi*x))/(pi*2));
k=1;
fori=1:2*M
F(k) = Y (x(1));
k=k+1;
end
F=F'
YY = @(Xx,y) X*y*cos(pi*x);
for j=1:2*M
fori=1:2*M
Ui(,i) = 2*M)*YY (x(j),x(i));
end
end
U=[eye(2*M,2*M),-U1];
A =sym(A', [M 4]);
A=A";
A=A();
A=sort(A");
k =1;
fori = (2*M+1):4*M
A(i) = A(K)"3;
k =k+1;
end
newsystem=A*U",
newsystem = [newsystem-F'];
system=[U,F];
formatlong
Anew = [A(1:2*M)];

fori =1: 2*M

pO(1,i) =.5;

end

J = jacobian(newsystem);
w= zeros(Maxlter,2*M);
w(1,:) = pO0;

dsnorm = inf;
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iter =1,
whiledsnorm>tol&&iter<MaxIter
g=subs(J,Anew,w(iter,:));
ds = -inv(q)*subs(newsystem,Anew,w(iter,:))";

w(iter+1,:) = w(iter,:) + ds’;
dsnorm = norm(ds, inf);
iter = iter+1;

end
w = w(l:iter,)

Maple Code for example (3.1) (b):

> restart
> with(Student) :
> Digits == 10 :

> Uex = x—cos(Pi-x) :

SFi= uou:

>u[0] = COS(TE')C) + ﬁw .
? s

>u1[0] = COS(TE‘)C) + ﬁm :

? T

> = (x,t) —x-t-cos(Pi-x) :
Pmi=4:a:=0:b:=1:Lampda = 1:v:=1:
> 4[0] := F(u[0]) :

q"
n

dp

>f0rnfrom0tomd0A[n] = L'
n!

F[Zu[i]-piJ]; od:

i=0
>p = 0:

>forifromO0tomdoA[i] == subs(x=t, A[i]); od:
> xm = Array(0.m) :

>xm[0] == 0:xm[1] == 0:

>for i from2tomdoxm[i] = 1; od:

>
for /from 1 tomdo

’

b
R[] = eva[f[xm[l]~u1[l —1] —Lampda-J k(x,t)-A[l — 1] dt

ul(l] = evalf(xm[1]-ul[l — 1] + h-R[I]);
ull] == subs(x=t,ul[l]);
A[l — 1] = A[l —1];
od:
> U22 = evalf (sum(ul[s],s=0.m —2)) :
> U33 = evalf (sum(ul[s],s=0.m — 1)) :
> U44 = evalf (sum(ul[s],s=0.m)) :
> U2 = unapply(U22,x, h) : U3 = unapply(U33,x, h) : U4 := unapply(U44,x, h) :
> plot([U2(v, h), U3(v, h), U4(v, h) ], h=-1..1, color = ["Red", "Blue", "Green"])



Matlab Code for example (3.2) (a):
clc;

clearall;

M =2;

z=1;

MaxIter = 400;

tol =.00001;

fori= 1: 1: 2*M

X(z) = (i - 0.5)/(2*M);
Z=17+1,

end

Y =@(X) -x"2-(x/3)*(2*sqrt(2)-1)+2;
k=1;
fori=1:2*M
F(k) = Y (x(1));

k=k+1;
end
F=F'
YY = @(xy) X*y;
for j=1:2*M
fori=1:2*M
Ui(,i) = Y 2*M)*YY (x(j),x(i));
end
end
U=[eye(2*M,2*M),-U1];
A =sym(A’, [M 4]);
A=A";
A=A();
A=sort(A");
k=1,
fori = (2*M+1):4*M
A(i) = sqrt(A(K));

k =k+1;
end
newsystem=A*U",
newsystem = [newsystem-F'];
system=[U,F];
formatlong
Anew = [A(1:2*M)];
fori = 1: 2*M
pO(1,i) =.5;
end
J = jacobian(newsystem);
w= zeros(Maxlter,2*M);

w(1,:) = pO0;
dsnorm = inf;
iter =1;

whiledsnorm>tol&&iter<MaxlIter
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g=subs(J,Anew,w(iter,:));
ds = -inv(q)*subs(newsystem,Anew,w(iter,:))";

w(iter+1,:) = w(iter,:) + ds’;
dsnorm = norm(ds, inf);

iter = iter+1;
end
w = w(l:iter,:)

Maple Code for example (3.2) (b):
> restart

> with(Student) :

>Digits =10

> Uex = x—2 — x°

SFi=u—Ju:

>ul0] =3 — %~(2-\/7— 1) +2:

>ul[0] ==-x* — %(2-5— 1) +2:

Zf= (x,t) —>xt:
Pmi=4:a:=0:b:=1:Lampda = 1:v:=1:
> 4[0] := F(u[0]) :

n .
>fornfrom0tomd0A[n] = % ddn [F[Zu[i]-p’]]; od:
Codp i=0

>p=0:

>forifromO0tomdoA[i] == subs(x=t, A[i]); od:
> xm = Array(0.m) :

>xm[0] == 0:xm[1] == 0:

>for i from2tomdoxm[i] = 1; od:

>
for /from 1 tomdo

b}

b
R[] = eva[f[xm[l]~u1[l —1] —Lampda-J k(x,t)-A[l — 1] dt

ul(l] = evalf(xm[1]-ul[l — 1] + h-R[I]);
ul[l] == subs(x=t,ul[l]);
A[l — 1] = A[l —1];
od:
> U22 = evalf (sum(ul[s],s=0.m—2)) :
> U33 = evalf (sum(ul[s],s=0.m — 1)) :
> U44 = evalf (sum(ul[s],s=0.m)) :
> U2 = unapply(U22,x, h) : U3 = unapply(U33,x, h) : U4 = unapply(U44,x, h) :
> plot([U2(v, h), U3(v, h), U4(v, h) ], h=-3 .2, color = ["Red", "Blue", "Green"])

Matlab Code for example (3.3) (a):
clc;
clearall;
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M =2;
z=1;
MaxIter = 400;
tol =.00001;
fori=1:1: 2*M
X(z) = (i - 0.5)/(2*M);
z=12z+1;
end
Y =@(x) log(2)*x;
k=1;
fori=1:2*M
F(k) = Y (x(D);
k=k+1;
end
F=F'
YY = @(xy) X*y;
for j=1:2*M
fori=1:2*M
Ui(,i) = Y 2*M)*YY (x(j),x(i));
end
end
U=[eye(2*M,2*M),-U1];
A =sym(A’, [M 4]);
A=A";
A=A();
A=sort(A");
k=1,
fori = (2*M+1):4*M
A(i) = /(1+AK));
k =k+1;
end
newsystem=A*U",
newsystem = [newsystem-F];
system=[U,F];
formatlong
Anew = [A(1:2*M)];
fori = 1: 2*M
pO(1,i) =.5;
end
J = jacobian(newsystem);
w= zeros(Maxlter,2*M);

w(1,:) = p0;
dsnorm = inf;
iter =1;

whiledsnorm>tol&&iter<MaxIter
g=subs(J,Anew,w(iter,:));
ds = -inv(q)*subs(newsystem,Anew,w(iter,:))";

w(iter+1,:) = w(iter,:) + ds’;
dsnorm = norm(ds, inf);
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iter = iter+1;
end
w = w(l:iter,:)

Maple Code for example (3.3) (b):
> restart

> with(Student) :

> Digits == 100 :

> Uex = x—x:

>F:: u—

1 +u :

>u[0] = In(2) x:

>ul[0] == In(2)x:

Zfko= (x,t) —>xt:
Pmi=5:a:=0:b:=1:Lampda = 1:v:=1:
> A[0] :== F(u[0]) :

n .
>fornfrom0tomdoA[n] = % dn [F[Zu[i]'p’]]; od:
: i=0

>p =0

>forifromO0tomdoA[i] == subs(x=t,A[i]); od:
> xm = Array(0.m) :

>xm[0] == 0:xm[1] == 0:

>for i from2tomdoxm[i] = 1; od:

>
for /from 1 tomdo

’

b
R[] = eva[f[xm[l]~u1[l —1] —Lampda-J k(x,t)-A[l — 1] dt

ul[l] == evalf(xm[l]-ul[l — 1] + h-R[[]);
ull] == subs(x=t,ul[l]);
A[l — 1] = A[l —1];
od:
> U22 = evalf (sum(ul[s],s=0.m —2)) :
> U33 = evalf (sum(ul[s],s=0.m — 1)) :
> U44 = evalf (sum(ul[s],s=0.m)) :
> U2 = unapply(U22,x, h) : U3 = unapply(U33,x, h) : U4 = unapply(U44,x, h) :
> plot([U2(v, h), U3(v, h), U4(v, h) ], h=-3 .2, color = "Red", "Blue", "Green"])
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