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Numerical Methods for Solving Nonlinear Fredholm Integral 

Equations 

By 

Hiba Jalal Mahmoud Odeh 

Supervisor 

Prof. Dr. Naji Qatanani 

Abstract 

In this thesis we focus on the numerical treatment of nonlinear 

Fredholm integral equation of the second kind due to their enormous 

importance in many applications in various fields. 

After addressing the basic concepts of nonlinear Fredholm integral 

equation of the second kind, we focus on the numerical treatment of this 

equation. This will be accomplished by implementing two numerical 

methods, namely, Haar Wavelet method and Homotopy Analysis method 

(HAM). The mathematical framework of these numerical methods will be 

presented. 

These numerical methods will be illustrated by solving some 

numerical examples with known exact solutions. 

Numerical results show clearly that the Homotopy analysis method 

is more effective in solving nonlinear Fredholm integral equations in 

comparison with its counter parts.  
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Introduction 

The subject of integral equations is one of the most important 

mathematical tools in both pure and applied mathematics. Integral 

equations play a very important role in modern science such as numerous 

problems in engineering and mechanics. They have attracted the attention 

of many scientists and researchers in recent years. In fact, many physical 

problems are modeled in the form of linear and nonlinear integral equations 

specially Fredholm integral equation. Fredholm integral equation has 

received considerable attention in recent years, as in a potential theory and 

Dirichlet problem [3] and [36], electrostatics [34], mathematical problems 

of radiative equilibrium [19], the particle transport problems of 

astrophysics and reactor theory [22], and radiative heat transfer problems 

[40]. 

Various numerical methods for solving Fredholm integral equations 

have been developed by many researchers. In [6] Babolian and 

Shahsavaran proposed a method for solving nonlinear Fredholm integral 

equations of the second kind based on the Haar wavelets. Ahmad 

Shahsavaran and Akbar Shahsavaran [44] proposed a method based on 

Lagrange interpolations for solving nonlinear Fredholm integral equations 

of the power function type. In [13] Jafari Emamzadeh approximated the 

solution of the nonlinear Fredholm integral equation using Quadrature 

methods. Borzabadi and Fard [9] introduced an approach via optimization 

methods to find approximate solutions for nonlinear Fredholm integral 
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equations of the first kind. In [42], some numerical methods were used for 

solving nonlinear Fredholm integral equation of the second kind as: The 

Direct Computation method, The Series solution method, The Adomian 

Decomposition method, and The Successive Approximations method.  

In this work, some numerical methods for solving the nonlinear 

Fredholm integral equation of the second kind will be investigated. These 

methods are: Haar wavelet method and Homotopy analysis method (HAM). 

The Haar wavelet method is one of the most important numerical 

method which was used in recent years. Alfred Haar was the first pioneer 

who proposed the Haar wavelet method. Many types of wavelets were used 

for solving integral equations like Daubechies [46], Hermit-type 

trigonometric [10], Walsh functions [43], Cohen [30], and Albert [21] 

wavelets. Ulo Lepik and Enn Tamme in [26] used Haar wavelet method to 

solve the integral equations. Then in [41], Reihani and Abadi proposed 

another method based on Haar wavelet for solving linear Fredholm and 

Volterra integral equations of the second kind. In [7], E. Babolian and A. 

Shahsavaran presented a numerical method for solving nonlinear Fredholm 

and Volterra integral equations of the second kind which is based on the 

use of Haar wavelets and collocation method. In [51], Mingxu Yi and 

Yiming Chen proposed a Haar wavelet operational matrix for solving 

Fractional Partial differential equations. In [17], G. Hariharan applied the 

Haar wavelet method for solving linear and nonlinear Klein-Gordon 

equations. Imran Aziz and Siraj-ul-Islam in [4] proposed a two new 
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algorithms based on Haar wavelets for solving nonlinear Fredholm and 

Volterra integral equations. 

Homotopy analysis method is also an important numerical method 

which was used in recent years. In fact, Shijun Liao was the first to 

introduce the Homotopy analysis method for nonlinear problems in general 

in [31]. Hossein Zadeh, Jafari and Karimi in [20] used Homotopy analysis 

method for solving integral and integro-differential equations. In [32], 

Shijun Liao used Homotopy analysis method in nonlinear differential 

equations. Then in [2], Allahviranloo and Ghanbari introduced the discrete 

Homotopy analysis method for solving nonlinear Fredholm integral 

equations. In [18], Edyta Hetmaniok, Damian Słota, Tomasz Trawi´nski 

and Roman Wituła presented an application of the homotopy analysis 

method for solving the nonlinear and linear integral equations of the second 

kind. 

This thesis is organized as follows: In chapter one, we introduce 

some basic concepts of integral equations and investigate the existence and 

uniqueness of the solution of the nonlinear Fredholm integral equation of 

the second kind. In chapter two, we present some numerical methods for 

solving the nonlinear Fredholm integral equation of the second kind. These 

include: Haar Wavelet method and Homotopy Analysis method (HAM). 

Numerical examples implementing the aforementioned numerical methods 

together with a comparison between the analytical and numerical results 

are presented in chapter three. Conclusions have been drawn. 
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Chapter One 

Theoretical Background 

Basic Definitions and Mathematical Introductions 

1.1 Preliminaries 

Definition (1.1) [49]: Integral Equation:  

An integral equation is an equation in which the unknown function 

appears under an integral sign. The general form of an integral equation can 

be written as: 

ℎ(𝑥)𝑢(𝑥) = 𝑔(𝑥)𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
        (1.1) 

where 𝑢(𝑥) is unknown function called the solution of the integral 

equation, 𝛼(𝑥) and 𝛽(𝑥) are limits of integration, 𝜆 is a nonzero constant 

parameter, 𝑔(𝑥) is a function determines the homogeneity of the equation, 

ℎ(𝑥), 𝑓(𝑥) and 𝑘(𝑥, 𝑡) are known functions and 𝑘(𝑥, 𝑡) is called the kernel 

or the nucleus of the integral equation. 

1.1.1 Classification of integral equations 

There are several types of integral equations. These are: 

1. Volterra Integral equation 

This equation has the general form: 

ℎ(𝑥)𝑢(𝑥) = 𝑔(𝑥)𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝑎
  (1.2) 

where the upper limit of integration is variable. 
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 If ℎ(𝑥) = 0, then equation (1.2) is called Volterra integral equation 

of the first kind. 

 If ℎ(𝑥) = 1, then equation (1.2) is called Volterra integral equation 

of the second kind. 

2. Fredholm integral equation 

The general form of this type is: 

ℎ(𝑥)𝑢(𝑥) = 𝑔(𝑥)𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝐷

  (1.3) 

where the limit of integration 𝐷 is a closed bounded set in 𝑅. 

 If ℎ(𝑥) = 0, then equation (1.3) is called Fredholm integral equation 

of the first kind. 

 If ℎ(𝑥) = 1, then equation (1.3) is called Fredholm integral equation 

of the second kind. 

3. Volterra-Fredholm integral equation 

The standard form of this type is: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 + ∫ 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

𝑥

0
  (1.4) 

where 𝑘1(𝑥, 𝑡) and 𝑘2(𝑥, 𝑡) are two given functions called kernels of 

the equation (1.4). 
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4. Singular integral equation 

It is an integral equation in which the kernel becomes infinity in the 

domain of integration or when one or both limits of integration are infinite. 

5. Integro-differential equation 

 The general form of this type is: 

ℎ(𝑥)𝑢(𝑚)(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 
𝛽(𝑥)

𝛼(𝑥)
  (1.5) 

where  𝑚 = 1,2,… , 𝑛 represents the 𝑚𝑡ℎ derivative of 𝑢(𝑥). 

Equation (1.5) can be classified into either Fredholm integro-

differential equation, Volterra integro-differential equation or Volterra-

Fredholm integro-differential equation [3], [48]. 

1.1.2 Linearity concept of integral equations 

Definition (1.2) [49]: If the exponent of the unknown function 𝑢(𝑥) inside 

the integral sign is one then the equation is called linear. On the other hand 

if the unknown function 𝑢(𝑥) has exponent other than one, or the equation 

contains nonlinear functions of 𝑢(𝑥) then the equation is called nonlinear. 

1.1.3 Nonlinearity of Fredholm integral equation of the second kind 

Nonlinear Fredholm integral equation of the second kind has many 

general forms, which depends on the presence of the unknown function 

𝑢(𝑥) under the integral sign. 
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There are some well-known examples: 

1. Urysohn form: the unknown function 𝑢(𝑥) is part of the kernel 𝑘, has 

the general form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡              𝑎 ≤ 𝑥 ≤ 𝑏  
𝑏

𝑎
  (1.6) 

where 𝑓: [𝑎, 𝑏] → 𝑅. 

2. Hammerstein form: the unknown function 𝑢(𝑥) is separate from the 

kernel 𝑘, has the general form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)∅(𝑢(𝑡))𝑑𝑡
𝑏

𝑎
          𝑎 ≤ 𝑥 ≤ 𝑏   (1.7) 

where 𝑓: [𝑎, 𝑏] → 𝑅, ∅ is a function depends on 𝑢. The following 

equations are examples of Hammerstein form: 

i. Equation with power nonlinearity, has the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
  

ii. Equation with exponential nonlinearity, has the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)exp(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

iii. Equation with trigonometric nonlinearity, has the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)sin(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)cos(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)tan(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
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𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)cot(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

iv. Equation with logarithmic nonlinearity, has the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)ln(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

v. Equation with hyperbolic nonlinearity, has the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)sinh(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)cosh(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)tanh(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)coth(𝛽𝑢(𝑡))𝑑𝑡
𝑏

𝑎
  

3. Other equations of general forms: 

i.  𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(|𝑥, 𝑡|)𝜑(𝑢(𝑡))𝑑𝑡
𝑏

𝑎
 

ii. 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝜑(𝑡, 𝑢(𝑡))𝑑𝑡
𝑏

𝑎
 

iii. 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑢(𝑥𝑡)𝜑(𝑡, 𝑢(𝑡))𝑑𝑡
𝑏

𝑎
 

iv. 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑢(𝑥 + 𝛽𝑡)𝜑(𝑡, 𝑢(𝑡))𝑑𝑡
𝑏

𝑎
 

1.1.4 Homogeneity concept of integral equations 

Definition (1.3) [49]: An integral equation is called homogeneous if 𝑓(𝑥) 

is identically zero. On the other hand if 𝑓(𝑥) is not identically zero then the 

equation is called nonhomogeneous. 
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1.1.5 𝒏-dimensional integral equation 

For the 𝑛 -independent variables  𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛),  the 𝑛 -dimensional 

integral equation has the general form: 

ℎ(𝑋)𝑢(𝑋) = 𝑓(𝑋) + ∫ 𝑘(𝑋, 𝑆)𝑢(𝑆)
𝐺

𝑑𝑆  (1.8) 

where 𝑋, 𝑆 ∈ 𝑅, 𝐺 ⊆ 𝑅𝑛. 

1.2 Types of Kernels 

Integral equations involve different types of kernels. These are the 

following: 

1. Degenerate Kernel (Separable kernel) 

Definition (1.4): Separable kernel [37]: The kernel 𝑘(𝑥, 𝑦)  is called 

degenerate kernel if it has the form: 

𝑘(𝑥, 𝑦) = ∑ 𝑋𝑖(𝑥)𝑌𝑖(𝑦)
𝑛
𝑖=0   (1.9) 

2. Symmetric (Hermitian) kernel 

Definition (1.5): Symmetric kernel [37]: The real kernel is 

symmetric if: 

𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥)     (1.10) 
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3. Cauchy kernel 

Definition (1.6): Cauchy kernel: The form of this kernel is: 

𝑘(𝑥, 𝑦) =
𝐻(𝑥,𝑦)

𝑥−𝑦
  (1.11) 

where 𝐻(𝑥, 𝑦) is a differentiable function of (𝑥, 𝑦) with 

 𝐻(𝑥, 𝑦) ≠ 0. 

4. Hilbert kernel 

Definition (1.7): Hilbert kernel: The form of this kernel is: 

𝑘(𝑥, 𝑦) = cot
𝑥−𝑦

2
,                   𝑥 ≥ 0, 𝑦 ≤ 2𝜋  (1.12) 

Hilbert kernel has a relation with Cauchy kernel with the following 

simple relation in the case of the unit circle: 

𝑑𝑡

𝑡−𝜏
=
1

2
(cot

𝑥−𝑦

2
+ 𝑖)𝑑𝑥  

where 𝑡 = 𝑒𝑖𝑥, 𝜏 = 𝑒𝑖𝑦 . 

5. Skew-symmetric kernel 

Definition (1.8): Skew-symmetric kernel: It is of the form: 

𝑘(𝑥, 𝑦) = −𝑘(𝑦, 𝑥)  (1.13) 

1.3 Overview of spaces 

Definition (1.9) [47]: Lipschitz condition: Let 𝑓 be a function such that 

𝑓: 𝑅 → 𝑅  then 𝑓  is called a Lipschitz-continuous function on 𝑅 if there 

exists a non-negative constant 𝑀 such that: 
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|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦|,          𝑥, 𝑦 ∈ 𝑅     (1.14) 

𝑀 is constant called a Lipschitz constant for the function 𝑓 on 𝑅. 

Definition (1.10) [11]: Fixed point: A point 𝜉 ∈ 𝑋  is a fixed point of 

𝐹: 𝑋 → 𝑋 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐹(𝜉) = 𝜉. 

 Metric space: 

Definition (1.11): Let 𝑋 be a nonempty set, and a metric 𝑑 such that 𝑑: 𝑋 ×

𝑋 → 𝑅+, then (𝑋, 𝑑) is called a metric space if 𝑑  satisfies the following 

conditions: 

𝑑(𝑥, 𝑦) = 0 ⇔  𝑥 = 𝑦,  (Positive definiteness) 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),  (Symmetry) 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦),  (Triangle inequality) 

where 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Definition (1.12): Let 𝑋  be a metric space, then a mapping 𝐹: 𝑋 → 𝑋  is 

called contraction 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 there exist a constant 𝑘 ∈ (0,1) such that 

for all 𝑥1, 𝑥2 ∈ 𝑋, 𝐹 satisfies: 

𝑑(𝐹(𝑥1), 𝐹(𝑥2)) ≤ 𝑘𝑑(𝑥1, 𝑥2)        (1.15) 

 Theorem (1.1): Contraction Mapping Theorem:  

Suppose that: 

i. 𝑋 is a nonempty metric space 
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ii. 𝐹: 𝑋 → 𝑋 is a contraction 

iii. The sequence {𝑥𝑛}𝑛=0
∞  is defined by: 

𝑥𝑛+1 = 𝐹(𝑥𝑛)  

where 𝑥0 ∈ 𝑋 is arbitrary, then 𝐹 has a unique fixed point 𝜉 ∈ 𝑋 and 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝜉) = 0. 

 Vector space (linear space): 

Definition (1.13):Vector space: Let 𝑋  be a nonempty set of vectors 

element, and 𝐹  is a field, then a vector space over 𝐹  is a nonempty set 

𝑋 that satisfy two algebraic operations: vector addition and multiplication 

of vectors such that: 

1. Vector addition: 

i. If 𝑥, 𝑦 ∈ 𝑋 𝑡ℎ𝑒𝑛 𝑥 + 𝑦 ∈ 𝑋 

ii. 𝑥 + 𝑦 = 𝑦 + 𝑥, addition is commutative. 

iii. 𝑥 + (𝑦 +  𝑧)  =  (𝑥 +  𝑦)  +  𝑧, addition is associative. 

iv. 0 + 𝑥 = 𝑥 + 0 = 𝑥, exist of identity element of addition. 

v. 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0, exist of addition inverse. 

2. multiplication of vectors: 

i. 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 
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ii. 1 ∗ 𝑥 = 𝑥, ∀𝑥 ∈ 𝑋 

iii. (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) 

iv. (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥 

where 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑎, 𝑏 ∈ 𝐹. 

 Linear operator: 

Definition (1.14): Linear operator: Let 𝑋, 𝑌 be two vector spaces, then 

the operator 𝑇: 𝑋 → 𝑌 is linear if it is satisfy the following: 

i. 𝑇(𝑥1 + 𝑥2) = 𝑇(𝑥1) + 𝑇(𝑥2) for all 𝑥1, 𝑥2 ∈ 𝑋. 

ii. 𝑇(𝑎𝑥) = 𝑎𝑇(𝑥) for all 𝑎 ∈ 𝐹 and 𝑥 ∈ 𝑋. 

 Inner product space: 

Definition (1.15): Inner product space: Let 𝑋 be a vector space, and 𝐹 be 

a field (𝐹 = 𝑅 𝑜𝑟 𝐶), then 𝑋 is called inner vector product over 𝐹 with the 

map 〈. , . 〉: 𝑋 × 𝑋 → 𝐹 if 〈. , . 〉 satisfy the following: 

i. 〈𝑥, 𝑥〉 = 0 ⇔ 𝑥 =0 

ii. 〈𝑥, 𝑥〉 ≥ 0 

iii. 〈𝑎𝑥, 𝑦〉 = 𝑎〈𝑥, 𝑦〉 

iv. 〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉 

v. 〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅, where 〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅  is the conjugate of 〈𝑥, 𝑦〉. 
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where 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑎 ∈ 𝐹. 

 Orthogonality: 

Definition (1.16): Orthogonality: Let 𝑥, 𝑦 be two vectors in inner product 

space 𝑋, then 𝑥 is orthogonal to 𝑦 if 〈𝑥, 𝑦〉 = 0, we denoted it by 𝑥 ⊥ 𝑦. 

 Orthonormal sets: 

Definition (1.17): Orthonormal sets: Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖} ∈ 𝑅
𝑛 is a set 

of vectors, then 𝑋 is orthonormal if: 

〈𝑥𝑖 , 𝑥𝑗〉 = {
0       𝑖𝑓 𝑖 ≠ 𝑗
1       𝑖𝑓 𝑖 = 𝑗

  

 Normed space: 

Definition (1.18): Normed space: Let 𝑋 be a vector space and let  𝐹 be a 

field (𝐹 = 𝑅 𝑜𝑟 𝐶), 𝑋 is a vector space over 𝐹 with a function ‖. ‖: 𝑋 → 𝐹 

then 𝑋 is a normed space if: 

i. ‖𝑥‖ = 0 ⇔   𝑥 = 0 

ii. ‖𝑎𝑥‖ = |𝑎|‖𝑥‖ 

iii. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

where 𝑥, 𝑦 ∈ 𝑋, 𝑎 ∈ 𝐹, and a function ‖. ‖ is called the norm. 

 Cauchy sequence: 

Definition (1.19): Cauchy sequence: Let 𝑋 be a space, then the sequence 

{𝑥}𝑛=0
∞ ⊆ 𝑋 is called a Cauchy sequence if for every positive number 𝜖 > 0 

there exists a natural number 𝑁 such that for all 𝑛,𝑚 ≥ 𝑁, then: 
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|𝑥𝑛 − 𝑥𝑚| < 𝜖. 

 Convergent sequence: 

Definition (1.20): Convergent sequence: Let 𝑋  be a space, then the 

sequence {𝑥}𝑛=0
∞ ⊆ 𝑋 is convergent in 𝑋 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 there exist 𝑥 ∈ 𝑋 

such that for any 𝜖 > 0 there exists a natural number 𝑁, such that for all 

𝑛 ≥ 𝑁 then: 

|𝑥𝑛 − 𝑥| < 𝜖 and, 

lim
𝑛→∞

|𝑥𝑛 − 𝑥| = 0  

 Convergence uniformly: 

Definition (1.21): Convergent uniformly: For the real valued function, let 

{𝑓𝑛} be a sequence of  real valued functions defined on 𝐷 ⊆ 𝑅, then {𝑓𝑛} is 

convergence uniformly to the function 𝑓 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  ∀𝑥 ∈ 𝐷 such that 

for any 𝜖 > 0 there exists a natural number 𝑁, such that for all 𝑛 ≥ 𝑁 then: 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖 and, 

lim
𝑛→∞

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0  

 Complete space: 

Definition (1.22): Complete space: Let 𝑋 be a space, then 𝑋 is called a 

complete space if every Cauchy sequence of points in 𝑋 has a limit in 𝑋 or 

every Cauchy sequence in 𝑋 converges in 𝑋.   
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 Banach space: 

Definition (1.23): Banach space: It is a complete normed vector space. 

 Hilbert space: 

Definition (1.24): Hilbert space: It is complete inner product space. 

 𝑳𝟐 functions and 𝑳𝟐 spaces: 

Definition (1.25): 𝑳𝟐  functions: Let 𝑥 be a real variable on the interval 

[𝑎, 𝑏], then 𝐿2 functions is a complex valued function 𝑓(𝑥) such that: 

∫ |𝑓(𝑥)|2𝑑𝑥
𝑏

𝑎
< ∞  (1.16) 

Definition (1.26): Function space: 𝑳𝟐: The set of all functions in 

(1.16) is called the function space 𝐿2on [𝑎, 𝑏], such that: 

𝐿2[𝑎, 𝑏] = {𝑓: [𝑎, 𝑏] → 𝐶; ∫ |𝑓(𝑥)|2𝑑𝑥 < ∞
𝑏

𝑎
}  (1.17) 

where 𝐶 is the complex numbers. 

 𝐿2 is a Hilbert space with the inner product: 

〈𝑓, 𝑔〉2 = ∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
𝑏

𝑎
 , 𝑓, 𝑔 ∈ 𝐿2 

and the corresponding norm is: 

‖𝑓‖2 = ∫|𝑓(𝑥)|
2𝑑𝑥

𝑏

𝑎

 

For more details, see [38], and [24]. 
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1.4 Existence and uniqueness of the solution of nonlinear Fredholm 

integral equation of the second kind 

The previous definitions and the following theorems are necessary for the 

existence and the uniqueness of the nonlinear Fredholm integral equation: 

Theorem (1.2) [5]: Existence and Uniqueness of the solution:  

If equation (1.3) satisfies the following conditions: 

i. The function 𝑓(𝑥) is continuous and bounded, |𝑓(𝑥)| < 𝑅, 

in 𝑎 ≤ 𝑥 ≤ 𝑏. 

ii. There exist a constant K such that the function 𝑘(𝑥, 𝑡, 𝑢(𝑡))  is 

integrable and bounded where |𝑘(𝑥, 𝑡, 𝑢(𝑡))| < 𝐾, 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏.      

iii. The function 𝑘(𝑥, 𝑡, 𝑢(𝑡))  satisfies the Lipschitz condition (1.14) 

|𝑘(𝑥, 𝑡, 𝑧) − 𝑘(𝑥, 𝑡, 𝑧′)| < 𝑀|𝑧 − 𝑧′|. 

If 𝜆 <
1

𝑙(𝑏−𝑎)
,  where  𝑙  is the largest number of 𝐾 (1 +

𝑅

|𝜆|𝐾(𝑏−𝑎)
) 𝑎𝑛𝑑 𝑀 , then there exists a unique solution  𝑢 ∈ 𝐶([𝑎, 𝑏], 𝑅) . 

Moreover, for any starting function 𝑢0 ∈ 𝐶([0,1], 𝑅), the sequence {𝑢𝑛}𝑛=0
∞  

such that: 

𝑢𝑛+1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢𝑛(𝑡))𝑑𝑡
1

0
  (1.18) 

satisfies: 

lim
𝑛→∞

𝑚𝑎𝑥𝑥∈[0,1]|𝑢𝑛(𝑥) − 𝑢(𝑥)| = 0     (1.19) 
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Proof:  

Define 𝑋 = 𝐶([0,1], 𝑅)  and 𝑑: 𝑋 × 𝑋 → 𝑅+  such that 𝑑(𝑥1, 𝑥2) =

‖𝑥1 − 𝑥2‖ for all 𝑥1, 𝑥2 ∈ 𝑋 where ‖. ‖ is a norm defined for 𝑥 ∈ 𝐶([0,1], 𝑅) by: 

‖𝑥‖ = max {|𝑥(𝑠)|: 𝑠 ∈ [0,1]}  

Then 𝑋 is a complete metric space and also, the first condition of the 

contraction mapping theorem (1.1) is satisfied. 

Now, to verify whether the second condition of contraction mapping 

theorem is satisfied we define 𝐹: 𝑋 → 𝑋 by: 

(𝐹𝑢)(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡
1

0
  (1.20) 

where 𝑢 ∈ 𝑋 and 𝑥 ∈ [0,1], then: 

𝑑((𝐹𝑢1), (𝐹𝑢2)) = ‖(𝐹𝑢1) − (𝐹𝑢2)‖ = 𝑚𝑎𝑥𝑥∈[0,1]|(𝐹𝑢1) − (𝐹𝑢2)(𝑥)|  

= 𝑚𝑎𝑥𝑥∈[0,1]|(𝐹𝑢1)(𝑥) − (𝐹𝑢2)(𝑥)|  

Now, from (1.18) we have: 

𝑑((𝐹𝑢1), (𝐹𝑢2)) = 𝑚𝑎𝑥𝑥∈[0,1] |𝑓(𝑥) + 𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢1(𝑡))𝑑𝑡
1

0
− 𝑓(𝑥) −

𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢2(𝑡))𝑑𝑡
1

0
|  

= 𝑚𝑎𝑥𝑥∈[0,1] |𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢1(𝑡))𝑑𝑡
1

0
− 𝜆 ∫ 𝑔(𝑥, 𝑡, 𝑢2(𝑡))𝑑𝑡

1

0
|  

= |𝜆|𝑚𝑎𝑥𝑥∈[0,1] |∫ 𝑔(𝑥, 𝑡, 𝑢1(𝑡))𝑑𝑡
1

0
− ∫ 𝑔(𝑥, 𝑡, 𝑢2(𝑡))𝑑𝑡

1

0
|  

≤ |𝜆|𝑚𝑎𝑥𝑥∈[0,1] ∫ |𝑔(𝑥, 𝑡, 𝑢1(𝑡)) − 𝑔(𝑥, 𝑡, 𝑢2(𝑡))|𝑑𝑡
1

0
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Then by Lipchitz Condition (1.14) we have: 

𝑑((𝐹𝑢1), (𝐹𝑢2)) ≤ |𝜆|𝑚𝑎𝑥 ∫ 𝑀|𝑢1(𝑡) − 𝑢2(𝑡)|𝑑𝑡
1

0
  

= |𝜆| ∫ 𝑀|𝑢1(𝑡) − 𝑢2(𝑡)|𝑑𝑡
1

0
≤ |𝜆|𝑀 ∫ 𝑚𝑎𝑥𝑥∈[0,1]|𝑢1(𝑥) − 𝑢2(𝑥)|𝑑𝑡

1

0
  

= |𝜆|𝑀‖𝑢1 − 𝑢2‖∫ 𝑑𝑡
1

0
= |𝜆|𝑀𝑑(𝑢1, 𝑢2)  

It is clear that if |𝜆|𝑀 < 1 then 𝐹 satisfies (1.14) with the constant 

|𝜆|𝑀 , then the second condition of the contraction mapping theorem 

satisfied. 

By theorem (1.3), the sequence {𝑢𝑛}𝑛=0
∞  of functions 𝑢𝑛 ∈

𝐶([0,1], 𝑅)  defined by (1.18) 𝑢𝑛+1 = 𝐹(𝑢𝑛)  with any starting function 

𝑢0 ∈ 𝑋 converges to some 𝑢 ∈ 𝐶([0,1], 𝑅). So, 

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑢) = lim
𝑛→∞

‖𝑢𝑛 − 𝑢‖  

= lim
𝑛→∞

𝑚𝑎𝑥𝑥∈[0,1]|𝑢𝑛(𝑥) − 𝑢(𝑥)| = 0. 

𝑢 is a unique fixed point of 𝐹 satisfy definition (1.10) (𝐹(𝑢) = 𝑢 and 

𝐹(𝑢(𝑥)) = 𝑢(𝑥)) for all 𝑥 ∈ [0,1], therefore 𝑢 is a unique solution of the 

nonlinear equation (1.3). This complete the proof of theorem (1.3). 
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Chapter two 

Numerical methods for solving nonlinear Fredholm 

integral equations of the second kind 

There are several numerical methods for solving nonlinear integral 

equations. In this chapter we propose two methods, namely; Haar wavelet 

method and the Homotopy analysis method. 

2.1 Haar Wavelet Method 

Definition (2.1): Wavelet [45]: The wavelet defined as a small wave, 

which oscillates rapidly, and must satisfy the following conditions: 

i. ∫ |𝜓(𝑡)|𝑑𝑡
∞

−∞
< ∞        (2.1) 

ii. ∫ |𝜓(𝑡)|𝑑𝑡
∞

−∞
= 0        (2.2) 

iii. ∫
|�̂�(𝑡)|

2

|𝜔|
𝑑𝜔

∞

−∞
< ∞        (2.3) 

where �̂� is the Fourier transform of 𝜓. 

Definition (2.2) [45]: The Mother wavelet function 𝜓 is given by: 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓(

𝑡−𝑏

𝑎
)            𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0  

(2.4) 

where 𝑎 is the scaling parameter and 𝑏 is location parameter. 
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2.1.1 Wavelet Transform 

 Wavelet transforms are generally divided into two types: The 

Continuous Wavelet Transform (CWT), and the Discrete Wavelet 

Transform (DWT). 

1. Continuous wavelet transform: 

Definition (2.3): Continuous wavelet transform [1]: Let 𝑓(𝑥) be any 

square integrable function, the continuous wavelet transform 𝑊𝜓(𝑓) of the 

function 𝑓 ∈ 𝐿2(𝑅) with respect to 𝜓 is defined as: 

𝑊𝜓𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑡)
1

√|𝑎|
𝜓(

𝑡−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑡

∞

−∞
       (2.5) 

  where 𝜓 ̅is the complex conjugate of the function 𝜓. 

Definition (2.4) [1]: If 𝑊𝜓𝑓(𝑎, 𝑏) is a continuous wavelet transform of a 

function 𝑓(𝑥)  with respect to a mother wavelet 𝜓 , then the inverse of 

continuous wavelet transform can be reconstructed by: 

𝑓(𝑥) =
2

𝐶𝜓
∫ [∫

1

|𝑎|2
𝑊𝜓𝑓(𝑎, 𝑏)𝜓𝑎,𝑏(𝑥)𝑑𝑎𝑑𝑏

∞

−∞
]

∞

0
  

     (2.6) 

where 𝐶𝜓 is a constant called the admissibility constant, given by: 

𝐶𝜓 = ∫
|�̂�(𝜔)|

|𝜔|

∞

−∞
𝑑𝜔 < ∞       (2.7) 

 The inverse of continuous wavelet transform exists if 𝐶𝜓 is positive 

and finite.  
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2. Discrete wavelet transform 

 Instead of use a family of wavelets in (2.4), for the discrete wavelet 

transform we use the family of wavelets: 

𝜓𝑗,𝑘(𝑥) = 𝑎0
−𝑗 2⁄

𝜓(𝑎0
−𝑗
𝑥 − 𝑘𝑏0)    (2.8) 

where 𝑎0 > 1, 𝑏0 > 0, 𝑓𝑖𝑥𝑒𝑑 𝑓  𝑜𝑟  𝑗, 𝑘 ∈ 𝑍 

Definition (2.5) [23] [25]: For 𝑓 ∈ 𝐿2, the discrete wavelet transform of the 

function 𝑓 is define by: 

𝑊𝜓𝑓(2
−𝑗 , 𝑘 2−𝑗) = 2−

𝑗

2 ∫ 𝑓(𝑡)𝜓(2𝑗𝑡 − 𝑘)𝑑𝑡
∞

−∞
    (2.9) 

In equation (2.5) we replace the scaling parameter 𝑎 by 2−𝑗 and the 

translation parameter 𝑏 by 𝑘 2−𝑗  to get equation (2.9). 

2.1.2 Wavelet Transform and Fourier Transform 

The main differences between Wavelet transform and Fourier 

transform are that in the Fourier transform we have no time localization 

parameter (i.e. when we use Fourier transform to convert signals from the 

time domain to the frequency domain the time information will be lost, 

either in the case of wavelet conversion the time information will not be 

lost which makes it very important in some fields [28]), and that in Fourier 

transform we have cosine and sine functions instead of a wavelet 

function[1]. 
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2.1.3 Wavelet Series and Wavelet Coefficients 

Definition (2.6) [45]: For 𝑓 ∈ 𝐿2, the wavelet series of 𝑓 is given by: 

∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)𝑘∈𝑍𝑗∈𝑍    (2.10) 

where 〈𝑓, 𝜓𝑗,𝑘〉 is the wavelet coefficients of the function 𝑓. 

Definition (2.7) [45]: The wavelet coefficients of 𝑓 is given by: 

〈𝑓, 𝜓𝑗,𝑘〉 = 𝑑𝑗,𝑘 = ∫ 𝑓(𝑡)
∞

−∞
𝜓𝑗,𝑘(𝑡)𝑑𝑡   (2.11) 

2.1.4 Haar Wavelet 

Haar scaling function, Mother Haar wavelet, and Haar wavelet family 

Definition (2.8) [8]: Haar scaling function  𝜑(𝑡) can be described as: 

𝜑(𝑡) = ℎ0(𝑡) = {
1          0 ≤ 𝑡 < 1
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (2.12) 

and the graph of the scaling function 𝜑(𝑡) is given as: 

 

Fig.2.1: The scaling function 𝜑(𝑡) 
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Definition (2.9): The scaling function can be written as: 

𝜑(𝑥) =  𝜑(2𝑥) + 𝜑(2𝑥 − 1)   (2.13) 

Definition (2.10) [8]: Let 𝑗 be a nonnegative integer. The space of step 

function at level 𝑗 is the set 𝑉𝑗 , which is the space of piecewise constant 

functions of finite support with discontinuities contained in the set: {
𝑘

2𝑗
}
𝑘∈𝑍

. 

𝑉𝑗is defined to be the space spanned by the set {𝜑(2𝑗𝑥 − 𝑘)}
𝑘∈𝑍

. 

Remarks: 

1. Function of finite support means that the function vanishes outside a 

finite interval. 

2. If 𝑓 ∈ 𝑉𝑗, then 𝑓 is a finite sum of the form: 

𝑓 = ∑ 𝑎𝑘𝜑(2
𝑗𝑥 − 𝑘),     𝑘 𝑎𝑘 ∈ 𝑅   (2.14) 

3. 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ ⋯ ⊂ 𝑉𝑗−1 ⊂ 𝑉𝑗 ⊂ 𝑉𝑗+1 ⊂ ⋯,  

here the containment is strict (i.e. 𝑉𝑗 ⊂ 𝑉𝑗+1 but 𝑉𝑗+1 ⊄ 𝑉𝑗). 

Theorem (2.1) [8]:  

 A function 𝑓(𝑥) belongs to 𝑉0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓𝑓 (2
𝑗𝑥) belongs to  𝑉𝑗. 

 A function 𝑓(𝑥) belongs to 𝑉𝑗  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓𝑓 (2
−𝑗𝑥) belongs to  𝑉0. 

Proof: see [8], theorem (4.5). 

Theorem (2.2) [8]: The set of functions {2
𝑗

2𝜑(2𝑗𝑥 − 𝑘)} form a basis of  

𝑉𝑗  , 𝑗 ∈ 𝑍. 
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Definition (2.11) [8]: The Haar wavelet function can be written as: 

𝜓(𝑥) =  𝜑(2𝑥) − 𝜑(2𝑥 − 1)   (2.15) 

Note: Equation (2.15) is true when 𝜓 satisfies the following conditions: 

 𝜓 = ∑ 𝑎𝑘𝜑(2
𝑗𝑥 − 𝑘)𝑘 , where the sum is finite, 𝑎𝑘 ∈ 𝑅. 

 𝜓 is orthogonal to any element on 𝑉0. 

Definition (2.12) [8]: Let 𝑗  be a nonnegative integer. The space of the 

function at level 𝑗 is the set 𝑊𝑗 , 𝑊𝑗defined to be the space spanned by the 

set {𝜓(2𝑗𝑥 − 𝑘)}
𝑘∈𝑍

, then 𝑓 ∈ 𝑊𝑗 can be expressed as: 

𝑓 = ∑ 𝑎𝑘𝜓(2
𝑗𝑥 − 𝑘),     𝑘 𝑘 ∈ 𝑍, 𝑎𝑘 ∈ 𝑅  (2.16) 

Theorem (2.3) [8]: 𝑊𝑗  is orthogonal complement of 𝑉𝑗   in  𝑉𝑗+1   and   

𝑉𝑗+1 = 𝑉𝑗⨁ 𝑊𝑗. 

Theorem (2.4) [8]: The space 𝐿2(𝑅) can be decomposed as an infinite 

orthogonal direct sum, then: 

𝐿2(𝑅) = 𝑉0⨁ 𝑊0⨁ 𝑊1⨁ 𝑊2⨁…  

𝑓(𝑥) ∈ 𝐿2(𝑅)can be written as: 

𝑓(𝑥) = 𝑓0 + ∑ 𝑤𝑘
∞
𝑘=0   (2.17) 

where 𝑓0 ∈ 𝑉0 and  𝑤𝑘 ∈ 𝑊𝑘. 

Definition (2.13) [42]: The Haar wavelet family for 𝑡 ∈ [0,1) is defined as 

follows: 
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𝜓𝑖(𝑡) = {
1               𝑓𝑜𝑟 𝑡 ∈ [ℰ1(𝑖), ℰ2(𝑖)]
−1            𝑓𝑜𝑟 𝑡 ∈ [ℰ2(𝑖), ℰ3(𝑖)]
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2.18) 

where the notations:  

ℰ1(𝑖) =
𝑘−1

𝑚
,  ℰ2(𝑖) =

𝑘−0.5

𝑚
,    ℰ3(𝑖) =

𝑘

𝑚
 are introduced. 

The integer 𝑚 = 2𝑗(𝑗 = 0,1,… , 𝐽) indicates the level of the wavelet. 

1 ≤ 𝑘 < 𝑚 + 1 is the translation parameter. 𝐽 is an integer determining 

the maximal level of the resolution. The index 𝑖  is calculated by the 

formula 𝑖 = 𝑚 + 𝑘 − 1, where the maximal value is 𝑖 = 2𝑀 and 𝑀 = 2𝐽.  

For 𝑖 = 0, the function 𝜓0(𝑡) is the scaling function 𝜑(𝑡)  given in 

equation (2.12). 

For 𝑖 = 1,  the function 𝜓1(𝑡) is the mother wavelet function 𝜓(𝑡)  

given in following definition. 

The first eight Haar functions on the interval [0,1) are illustrated in 

figure (2.1). 

 

 

 

 

 

 

Fig.2.2: The first eight Haar function (Haar wavelet 𝜓𝑖(𝑡)). 
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Note [50]: The sequence {𝜓𝑖}𝑖=0
∞  is a complete orthonormal system in 

𝐿2[0,1], and for the series ∑ 〈𝑓, 𝜓𝑛〉𝑖 , 𝜓𝑛  is convergence uniformly to 𝑓 , 

𝑓 ∈ 𝐶[0,1], where 〈𝑓, 𝜓𝑛〉 = ∫ 𝑓𝜓𝑛(𝑡)𝑑𝑡
1

0
. 

Definition (2.14) [8]: The mother wavelet function 𝜓(𝑡) on the interval 

[0,1) can be described as: 

𝜓(𝑡) = ℎ1(𝑡) = {

1          0 ≤ 𝑡 <
1

2

−1          
1

2
≤ 𝑡 < 1

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  
   (2.19) 

The graph of function 𝜓(𝑡) is shown in figure (2.3). 

 

Fig.2.3: The Mother wavelet function 𝜓(𝑡) 

Theorem (2.5) [27] [29]: Haar wavelet functions are orthogonal to each 

other and also forms an orthogonal basis as: 

∫ 𝜓𝑖(𝑡)𝜓𝑙(𝑡)
1

0
𝑑𝑡 = {

2−𝑗  ,    𝑖 = 𝑙 = 2𝑗 + 𝑘 + 1
0  ,                              𝑖 ≠ 𝑙

     (2.20) 



30 

2.1.5 Integration of Haar function 

Definition (2.15) [27]: The integrals of Haar functions on the interval 

[𝐴, 𝐵] are given by: 

𝑝𝑣,𝑖(𝑥) = ∫ ∫ …∫ 𝜓𝑖(𝑡)𝑑𝑡
𝑣𝑥

𝐴

𝑥

𝐴

𝑥

𝐴⏟            
𝑣−𝑡𝑖𝑚𝑒𝑠

=
1

(𝑣−1)!
∫ (𝑥 − 𝑡)𝑣−1𝜓𝑖(𝑡)𝑑𝑡
𝑥

𝐴
  

(2.21) 

where 𝑣 = 1,2,… , 𝑛,       𝑖 = 1,2,… ,2𝑀.  

Equation (2.21) can be solved analytically, and then we obtain: 

𝑝𝛼,𝑖(𝑥) =

{
 
 

 
 

0                                                                            𝑥 > ℰ1(𝑖)
1

𝛼!
[𝑥 − ℰ1(𝑖)]

𝛼                                                                 𝑥 ∈ [ℰ1(𝑖), ℰ2(𝑖)]

1

𝛼!
{[𝑥 − ℰ1(𝑖)]

𝛼 − 2[𝑥 − ℰ2(𝑖)]
𝛼}                                 𝑥 ∈ [ℰ2(𝑖), ℰ3(𝑖)]

1

𝛼!
{[𝑥 − ℰ1(𝑖)]

𝛼 − 2[𝑥 − ℰ2(𝑖)]
𝛼 + [𝑥 − ℰ3(𝑖)]

𝛼}                𝑥 > ℰ3(𝑖)

  

(2.22) 

Formula (2.22) true when 𝑖 > 1, for 𝑖 = 1 we have ℰ1 = 𝐴, ℰ2 = ℰ3 =

𝐵, then: 

𝑝𝛼,1(𝑥) =
1

𝛼!
[𝑥 − 𝐴]𝛼  (2.23) 

For the Haar wavelet we have the following integrals [28]: 

𝑝𝑖,1(𝑡) = ∫ 𝜓𝑖(𝑡)𝑑𝑡
𝑡

0
   (2.24) 

𝑝𝑖,𝑣(𝑡) = ∫ 𝑝𝑖.𝑣−1(𝑡)𝑑𝑡
𝑡

0
,         𝑣 = 2,3,…   (2.25) 

in virtue of equation (2.18) and by performing integration in (2.24) -

(2.25) we get: 
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𝑝𝑖,1(𝑡) = {
𝑡 − ℰ1        𝑡 ∈ [ℰ1, ℰ2]
ℰ3 − 𝑡        𝑡 ∈ [ℰ2, ℰ3]
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2.26) 

𝑝𝑖,2(𝑡) =

{
 
 

 
 
0                              𝑡 ∈ [0, ℰ1]
1

2
(𝑡 − ℰ1)

2              𝑡 ∈ [ℰ1, ℰ2]

1

4𝑚2
−
1

2
(ℰ3 − 𝑡)

2 𝑡 ∈ [ℰ2, ℰ3]

1

4𝑚2
                           𝑡 ∈ [ℰ3, 1]

  

   (2.27) 

𝑝𝑖,3(𝑡) =

{
 
 

 
 
0                                              𝑡 ∈ [0, ℰ1]

1

6
(𝑡 − ℰ1)

3                               𝑡 ∈ [ℰ1, ℰ2]

1

4𝑚2
(𝑡 − ℰ2) −

1

6
(ℰ3 − 𝑡)

3   𝑡 ∈ [ℰ2, ℰ3]

1

4𝑚2
(𝑡 − ℰ2)                           𝑡 ∈ [ℰ3, 1]

  

   (2.28) 

 

𝑝𝑖,4(𝑡) =

{
 
 

 
 
0                                                                      𝑡 ∈ [0, ℰ1]
1

24
(𝑡 − ℰ1)

4                                                    𝑡 ∈ [ℰ1, ℰ2]

1

8𝑚2
(𝑡 − ℰ2)

2 −
1

24
(ℰ3 − 𝑡)

4 +
1

192𝑚4
     𝑡 ∈ [ℰ2, ℰ3]

1

8𝑚2
(𝑡 − ℰ2)

2 +
1

192𝑚4
                              𝑡 ∈ [ℰ3, 1]

  

 (2.29) 

2.1.6 Haar wavelet matrices 

Definition (2.16) [16] [28]: Define the 2𝑀 × 2𝑀 Haar wavelet coefficient 

matrix 𝐻as 𝐻(𝑖, 𝑗) = ℎ𝑖(𝑗). 

𝐻1 = 1, 𝐻2 = [
1 1
1 −1

] 

Definition (2.17) [16] [28]: Define the 2𝑀 × 2𝑀  Haar wavelet integral 

matrix 𝑃𝑣 as 𝑃𝑣(𝑖, 𝑗) = 𝑝𝑣,𝑖(𝑗).  
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Note: Divide the interval [0,1) into 2𝑀 parts of equal length, then the grid 

points is given by: 

𝑡(𝑗) = (𝑗 −
1

2
) ∆𝑡,         𝑗 = 1,2,… ,2𝑀   (2.30) 

where ∆𝑡 =
1

2𝑀
 , and  𝑀 = 2𝐽. 

Definition (2.18) [16]: The row vector of Haar coefficient matrix is given 

by: 

ℎ(𝜇)(𝑡) = 𝜓(𝜇)(𝑡) = [𝜓1(𝑡), 𝜓2(𝑡),… , 𝜓𝜇−1(𝑡)]
𝑇   (2.31) 

where 𝜇 = 2𝑀 = 2𝐽+1. 

Definition (2.19) [41]: The Haar coefficient matrix 𝐻 is given by: 

𝐻(𝜇) = [ℎ(𝜇) (
1

2𝜇
) , ℎ(𝜇) (

3

2𝜇
) , … , ℎ(𝜇) (

2𝜇−1

2𝜇
)]𝑇   (2.32) 

where 𝐻(1) = [1],   𝐻(2) = [
1 1
1 −1

]. 

Definition (2.20) [16]: The 2𝑀 square operational matrix of integration 𝑃, 

is defined by: 

𝑃𝜇×𝜇𝜓𝜇(𝑡) = ∫ 𝜓𝑗(𝑡)𝑑𝑡
𝑡𝑗
0

     (2.33) 

Definition (2.21) [28]: The operational matrix of integration 𝑃 is defined 

as follow: 

𝑃𝜇×𝜇 =
1

2𝜇
[

2𝜇𝑃𝜇
2
×
𝜇

2
−𝐻𝜇

2
×
𝜇

2

𝐻𝜇

2
×
𝜇

2

−1 𝑂𝜇
2
×
𝜇

2

]   (2.34) 

where 𝑂𝜇
2
×
𝜇

2
  is a square zero matrix of size  

𝜇

2
, and 𝑃1 = 0.5. 
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2.1.7 Functions expansion of Haar wavelet series 

Definition (2.22) [17] [41]: For any function 𝑓 ∈ 𝐿2[0,1), then 𝑓(𝑥) can be 

expanded into Haar wavelet series by the form: 

𝑓(𝑥) = ∑ 𝑎𝑖ℎ𝑖(𝑥),
∞
0      𝑖 ∈ {0} ∪ 𝑁   (2.35) 

where 𝑎𝑖 denotes the Haar wavelet coefficients given by the form: 

𝑎0 = ∫ 𝑓(𝑥)ℎ0(𝑥)𝑑𝑥
1

0
,   𝑎𝑛 = 2

𝑗 ∫ 𝑓(𝑥)ℎ𝑖(𝑥)𝑑𝑥 
1

0
such that: 

𝑖 = 2𝑗 + 𝑘 − 1, 𝑗 ≥ 0, 0 ≤ 𝑘 < 2𝑗 , 𝑥 ∈ [0,1)  

The discrete form of (2.35) is: 

𝑓(𝑥𝑖) = ∑ 𝑎𝑖ℎ𝑖(𝑥𝑖) = 𝐴
𝑇
(𝑚)ℎ(𝑚)(𝑥)

𝑚−1
0    , 𝑚 = 2𝑗 , 𝑖 ∈ {0} ∪ 𝑁   (2.36) 

where𝐴𝑇(𝑚) = [𝑎0, 𝑎1, … , 𝑎𝑚−1] is the coefficient vector, and ℎ(𝑚)(𝑥) =

[ℎ0(𝑥), ℎ1(𝑥), … , ℎ𝑚−1(𝑥)]
𝑇is the Haar function vector. 

Definition (2.23) [17] [41]: Assume 𝑓(𝑥) is differentiable function with 

|𝑓(𝑥)| ≤ 𝐾, ∀𝑥 ∈ (𝑎, 𝑏) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  |𝑓(𝑥)́ | ≤ 𝐾. 

where  𝐾  is a positive constant. The Haar wavelet approximation 

function for 𝑓(𝑥) is given by: 

𝑓𝑀(𝑥) = ∑ 𝑎𝑖ℎ𝑖(𝑥)
2𝑀
𝑖=1    (2.37) 

Definition (2.24) [17] [41]: The error function 𝐸  of the wavelet 

approximations is defined as: 



34 

𝐸 = ∫ [𝑓(𝑥) − 𝑓(𝑥)]2𝑑𝑥
1

0
   (2.38) 

𝑓(𝑥) denotes the approximation of  𝑓(𝑥). 

The discrete form of (2.37) is: 

𝐸𝑖 = ∆𝑥∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖)]
2∞

𝑖=0   (2.39) 

2.1.8 Convergence analysis of Haar wavelet 

Definition (2.25) [15]: The square of the error norm of wavelet 

approximation is given by: 

‖𝑓(𝑥) − 𝑓𝑀(𝑥)‖
2 =

𝐾3

12𝑀2
   (2.40) 

The maximum absolute error  = 𝐸∞ = 𝑚𝑎𝑥. |𝑓
𝑒
𝑖
(𝑥) − 𝑓𝑎

𝑖
(𝑥)|. 

The maximum relative error  = 𝐸𝑟𝑒𝑙 =
𝐸∞

|𝑓𝑒𝑖(𝑥)|
. 

where  𝑓𝑒
𝑖
  is the exact Haar solution,  𝑓𝑎

𝑖
 is the approximate Haar 

solution at the 𝑖𝑡ℎ colocation point 𝑥𝑖  , 𝑖 = 1,2,… ,2𝑚. 

2.1.9 Numerical simulation of the Haar wavelet method 

For Haar wavelet approximation of the function 𝑓(𝑥) we use the 

following grid (collocation) points: 

𝑥𝑗 =
𝑗−0.5

2𝑀
 ,     𝑗 = 1,2,… ,2𝑀   (2.41) 

Definition (2.26) [4]: Any square integrable function can be approximated 

using Haar wavelet by: 
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𝑓(𝑥) = ∑ 𝑎𝑖ℎ𝑖(𝑥)
2𝑀
𝑖=1    (2.42) 

Substitute the collocation point (2.41) in equation (2.42) to get: 

𝑓(𝑥𝑗) = ∑ 𝑎𝑖ℎ𝑖(𝑥𝑗)
2𝑀
𝑖=1  ,    𝑗 = 1,2,… ,2𝑀   (2.43) 

Equation (2.43) is a 2𝑀 × 2𝑀 linear system of equations. In matrix form 

equation (2.43) is: 

𝐹 = 𝐴𝐻     (2.44) 

where: 

𝐹 = [𝑓1 𝑓2 ⋯ 𝑓2𝑀], 𝑓𝑖 = 𝑓(𝑥𝑖) ,   𝐴 = [𝑎1 𝑎2 ⋯ 𝑎2𝑀], 

𝐻 = [ℎ𝑖𝑗],   ℎ𝑖𝑗 = ℎ𝑖(𝑥𝑗),   𝑖, 𝑗 = 1,2,… ,2𝑀.  

Theorem (2.6) [4]: The solution of the system (2.44) is given by: 

𝑎1 =
1

2𝑀
∑ 𝑓(𝑥𝑗)
2𝑀
𝑗=1    (2.45) 

In general: 

𝑎𝑖 =
1

𝜌
(∑ 𝑓(𝑥𝑗)

𝛽
𝑗=𝛼 − ∑ 𝑓(𝑥𝑗)

𝛾
𝑗=𝛽+1 ) ,    𝑖 = 2,3,… ,2𝑀     (2.46) 

where: 

𝛼 = 𝜌(𝜎 − 1) + 1,  

𝛽 = 𝜌(𝜎 − 1) +
𝜌

2
,  

𝛾 = 𝜌𝜎,  
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𝜌 =
2𝑀

𝜏
, 

𝜎 = 𝑖 − 𝜏, 

𝜏 = 2⌊log2(𝑖−1)⌋. 

Proof: see [4]. 

Substituting equations (2.45) and (2.46) into equation (2.42) to get: 

𝑓(𝑥) =
1

2𝑀
∑ 𝑓(𝑥𝑗)ℎ1(𝑥)
2𝑀
𝑗=1 + ∑

1

𝜌
(∑ 𝑓(𝑥𝑗)

𝛽
𝑗=𝛼 − ∑ 𝑓(𝑥𝑗)

𝛾
𝑗=𝛽+1 )ℎ𝑖(𝑥)

2𝑀
𝑖=2    (2.47) 

Note: For two variable functions 𝑔(𝑥, 𝑦); equation (2.42) becomes: 

𝑔(𝑥, 𝑦) = ∑ 𝑎𝑖(𝑥)ℎ𝑖(𝑦)
2𝑀
𝑖=1    (2.48) 

then substitute the collocation points (2.41) into equation (2.48) to 

get: 

𝑔(𝑥, 𝑦𝑗) = ∑ 𝑎𝑖(𝑥)ℎ𝑖(𝑦𝑗)
2𝑀
𝑖=1    (2.49) 

𝑎𝑖  is the variable coefficient can be evaluated using the following 

corollary. 

Corollary (2.1) [4]: The unknown coefficients 𝑎𝑖  in equation (2.49) are 

given by: 

𝑎1(𝑥) =
1

2𝑀
∑ 𝑔(𝑥, 𝑦𝑗)
2𝑀
𝑗=1    (2.50) 

and in general: 

𝑎𝑖(𝑥) =
1

𝜌
(∑ 𝑔(𝑥, 𝑦𝑗)

𝛽
𝑗=𝛼 − ∑ 𝑔(𝑥, 𝑦𝑗)

𝛾
𝑗=𝛽+1 ),    𝑖 = 2,3, … ,2𝑀    2.51) 
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where 𝛼,𝛽, 𝛾, 𝜌, 𝜎, 𝑎𝑛𝑑 𝜏 are defined in theorem (2.6). 

2.1.10  Haar wavelet method for nonlinear Fredholm integral equation 

Consider the nonlinear Fredholm integral equation of the second 

kind: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)∅(𝑡, 𝑢(𝑡))𝑑𝑡
1

0
   (2.52) 

where 𝑘 ∈ 𝐿2[0,1] × 𝐿2[0,1] and 𝑓 ∈ 𝐿2[0,1] are known real valued 

functions, ∅ is a nonlinear function,  and 𝑢(𝑥)  is the unknown function 

that is to be determined. 

Approximating the function 𝜆𝑘(𝑥, 𝑡)∅(𝑢(𝑡)) using definition (2.21) 

to get: 

𝜆𝑘(𝑥, 𝑡)∅(𝑢(𝑡)) ≅ ∑ 𝑎𝑖(𝑥)ℎ𝑖(𝑡)
2𝑀
𝑖=1   (2.53) 

Substituting equation (2.53) into equation (2.52) we obtain: 

𝑢(𝑥) = 𝑓(𝑥) + ∑ 𝑎𝑖(𝑥) ∫ ℎ𝑖(𝑡)𝑑𝑡
1

0
2𝑀
𝑖=1    (2.54) 

Then equation (2.54) can be written as: 

𝑢(𝑥) = 𝑓(𝑥) + 𝑎1(𝑥)   (2.55) 

By corollary (2.1), equation (2.55) becomes: 

𝑢(𝑥) = 𝑓(𝑥) +
𝜆

2𝑀
∑ 𝑘(𝑥, 𝑡𝑗)∅ (𝑢(𝑡𝑗))
2𝑀
𝑗=1    (2.56) 

Appling the collocation point (2.41) into equation (2.56) yields: 
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𝑢(𝑥𝑖) = 𝑓(𝑥𝑖) +
𝜆

2𝑀
∑ 𝑘(𝑥𝑖 , 𝑡𝑗)∅ (𝑢(𝑡𝑗))
2𝑀
𝑗=1    (2.57) 

where 𝑖, 𝑗 = 1,2,… ,2𝑀. 

Equation (2.57) is a system of nonlinear algebraic equations with the 

following matrix form: 

[

𝑢1
𝑢2
⋮
𝑢2𝑀

] = [

𝑓1
𝑓2
⋮
𝑓2𝑀

] +
𝜆

2𝑀
[

𝑘11 𝑘12 ⋯ 𝑘1 2𝑀
𝑘21 𝑘22 ⋯ 𝑘2 2𝑀
⋮ ⋮ ⋱ ⋮

𝑘2𝑀 1 𝑘2𝑀 2 ⋯ 𝑘2𝑀 2𝑀

] [

∅1
∅2
⋮
∅2𝑀

] 
    (2.58) 

where 𝑢𝑖 = 𝑢(𝑥𝑖), 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑡𝑗), ∅𝑖 = ∅(𝑢(𝑡𝑖)),  

𝑖, 𝑗 = 1,2,… ,2𝑀 . System (2.58) can be solved for 𝑢(𝑥𝑖)  using 

Newton's Raphson method [26]. 

2.2 Homotopy Analysis Method 

Definition (2.25) [32]: Let 𝑓  and 𝑔  be two continuous functions such 

that𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏], then 𝑓 can be deformed continuously into 𝑔 which can 

construct a Homotopy as follows: 

𝐻: 𝑓(𝑥)~𝑔(𝑥)  

𝐻(𝑥; 𝑞) = (1 − 𝑞)𝑓(𝑥) + 𝑞𝑔(𝑥)   (2.59) 

where  𝑥 ∈ [𝑎, 𝑏]  is independent variable, 𝑞 ∈ [0,1] is called the 

embedding parameter, 𝐻(𝑥; 𝑞) is called Homotopy, and  𝑓(𝑥) and 𝑔(𝑥) are 

called Homotopic. 
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Notes: 

1. 𝐻(𝑥; 𝑞) not only depend into 𝑥 but also into 𝑞. 

2. When 𝑞 = 0  we have 𝐻(𝑥; 0) = 𝑓(𝑥)  and when 𝑞 = 1  we have 

𝐻(𝑥; 1) = 𝑔(𝑥). So that as 𝑞 increase from 0 to 1, the real function 

𝐻(𝑥; 𝑞)  varies continuously from  𝑓(𝑥)  to 𝑔(𝑥) , (this kind of 

continuous variation is called deformation in topology). 

3. 𝑔(𝑥) must be a continuous function, (i.e. a continuous real function 

can't be deformed continuously into a discontinuous function).  

2.2.2 Homotopy derivatives and series 

Here, some definitions and theorems will be presented for the 

deduced high-order deformation equation. 

Definition (2.26) [33]: Let 𝑁[𝑢(𝑡)] be a nonlinear equation, and ∅ be a 

function of the Homotopy parameter 𝑞 whose Maclaurin series is given by: 

∅ = ∑ 𝑢𝑖𝑞
𝑖∞

𝑖=0   (2.60) 

(2.60) is called a Homotopy series. 

Definition (2.27) [33]: The 𝑚𝑡ℎ  order Homotopy derivatives of the 

function ∅ is denoted by 𝐷𝑚(∅) and it is of the form: 

𝐷𝑚(∅) =
1

𝑚!

𝜕𝑚∅

𝜕𝑞𝑚
|𝑞=0  (2.61) 

where 𝑚 is a positive integer. 
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Theorem (2.7) [33]: Malabahrami and Khani’s theorem: For Homotopy 

series (2.60), it holds that: 

𝐷𝑚(∅
𝑘) =

∑ 𝑢𝑚−𝑟1
𝑚
𝑟1=0

∑ 𝑢𝑟1−𝑟2
𝑟1
𝑟2=0

…∑ 𝑢𝑟𝑘−3−𝑟𝑘−2
𝑟𝑘−3
𝑟𝑘−2=0

∑ 𝑢𝑟𝑘−2−𝑟𝑘−1𝑢𝑟𝑘−1
𝑟𝑘−2
𝑟𝑘−1=0

  

(2.62) 

where 𝑚 ≥ 0 and 𝑘 ≥ 1. 

Proof: see [33]. 

Theorem (2.8) [33]: Let 𝑓  and 𝑔  be two functions independent of the 

Homotopy parameter 𝑞, then for Homotopy series: 

∅ = ∑ 𝑢𝑖𝑞
𝑖∞

𝑖=0 ,    𝜓 = ∑ 𝑣𝑗𝑞
𝑗∞

𝑗=0   

it holds that: 

𝐷𝑚(𝑓∅ + 𝑔𝜓) = 𝑓𝐷𝑚(∅) + 𝑔𝐷𝑚(𝜓)  (2.63) 

Proof: see [33]. 

Theorem (2.9) [33]: For Homotopy series: 

∅ = ∑ 𝑢𝑖𝑞
𝑖∞

𝑖=0 ,    𝜓 = ∑ 𝑣𝑗𝑞
𝑗∞

𝑗=0   

it holds that: 

1. 𝐷𝑚(∅) = 𝑢𝑚 

2. 𝐷𝑚(𝑞
𝑘∅) = 𝐷𝑚−𝑘(∅) 
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3. 𝐷𝑚(∅𝜓) = ∑ 𝐷𝑖(∅)𝐷𝑚−𝑖(𝜓)
𝑚
𝑖=1 = ∑ 𝐷𝑖(𝜓)𝐷𝑚−𝑖(∅)

𝑚
𝑖=1  

4. 𝐷𝑚(∅
𝑛𝜓𝑙) = ∑ 𝐷𝑖(∅

𝑛)𝐷𝑚−𝑖(𝜓
𝑙)𝑚

𝑖=1 = ∑ 𝐷𝑖(𝜓
𝑙)𝐷𝑚−𝑖(∅

𝑛)𝑚
𝑖=1  

where 𝑚 ≥ 0, 𝑛 ≥ 0, 𝑙 ≥ 0, and 0 ≤ 𝑘 ≤ 𝑚 are integers. 

Proof: see [33]. 

Theorem (2.10) [33]: Let ℒ  be a linear operator independent of the 

Homotopy parameter 𝑞, then for the Homotopy series (2.60) it holds that: 

𝐷𝑚(ℒ∅) = ℒ[𝐷𝑚(∅)]           (2.64) 

Proof: see [33]. 

Theorem (2.11) [33]: For the Homotopy series (2.60), it holds that: 

𝐷0(𝑒
∅) = 𝑒𝑢0  

𝐷𝑚(𝑒
∅) = ∑ (1 −

𝑘

𝑚
)𝐷𝑘(𝑒

∅)𝐷𝑚−𝑘(∅)
𝑚−1
𝑘=0   

𝐷0(sin (∅)) = sin (𝑢0),     𝐷0(cos (∅)) = cos(𝑢0)  

𝐷𝑚(sin (∅)) = ∑ (1 −
𝑘

𝑚
)𝐷𝑘(sin (∅))𝐷𝑚−𝑘(∅)

𝑚−1
𝑘=0   

𝐷𝑚(cos (∅)) = ∑ (1 −
𝑘

𝑚
)𝐷𝑘(cos (∅))𝐷𝑚−𝑘(∅)

𝑚−1
𝑘=0   

where 𝑚 ≥ 1 is an integer. 

Proof: see [33]. 
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Theorem (2.12) [33]: If the two Homotopy series: 

∅ = ∑ 𝑢𝑖𝑞
𝑖∞

𝑖=0 ,    𝜓 = ∑ 𝑣𝑗𝑞
𝑗∞

𝑗=0   

satisfy∅ = 𝜓  in the domain 𝑞 ∈ [0, 𝑎) , then 𝐷𝑚(∅) = 𝐷𝑚(𝜓)  and 

𝑢𝑚 = 𝑣𝑚 for any integer 𝑚 ≥ 0 and any real number 𝑎 > 0. 

Proof: see [33]. 

2.2.3 Deformation equations 

There are two types of deformation equations in HAM; zero-order 

deformation equation and high-order deformation equation. 

In this section we will use the definitions and theorems of the 

previous section to deduce deformation equations.  

Construct a Homotopy: 

(1 − 𝑞)ℒ[∅(𝑥; 𝑞) − 𝑢0(𝑥)] − 𝑞ℎ𝐻(𝑥)𝑁[∅(𝑥; 𝑞)] = �̂�[∅(𝑥; 𝑞), 𝑢0(𝑥), 𝐻(𝑥), ℎ, 𝑞](2.65) 

where 𝐻(𝑥) ≠ 0  is an auxiliary function, ℒ  is an auxiliary linear 

operator with property ℒ(𝑢(𝑥)) = 0  when 𝑢(𝑥) = 0 , 𝑢0(𝑥)  is an initial 

guess of 𝑢(𝑥) , 𝑞 ∈ [0,1]  is an embedding parameter,  ∅(𝑥; 𝑞)  unknown 

function, 𝑁 nonlinear operator, and  ℎ ≠ 0 is an auxiliary parameter which 

is very important in convergence of the Homotopy series (2.55), it is also 

called the convergent control parameter. 
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1. Zero order deformation equation: 

Definition (2.28) [32]: Given two equations; the original equation 𝑢1 and 

the initial equation 𝑢0, with the solutions 𝑥1 and 𝑥0. If one can construct a 

Homotopy of equation ∅(𝑞): 𝑢0~𝑢1 that as the Homotopy parameter 𝑞 ∈

[0,1]  increase from 0 to 1, ∅(𝑞)  deforms continuously from the initial 

equation 𝑢0  to the original equation 𝑢1 , and the solutions varies 

continuously from the known solution 𝑥0 to the unknown solution 𝑥1, then 

this kind of Homotopy equations is called zeroth-order deformation 

equation. 

Definition (2.29) [31]: The zero order deformation equation is of the form: 

(1 − 𝑞)ℒ[∅(𝑥; 𝑞) − 𝑢0(𝑥)] = 𝑞ℎ𝐻(𝑥)𝑁[∅(𝑥; 𝑞)]   (2.66) 

where ℒ, 𝑞, ∅, 𝑢0, ℎ, 𝐻(𝑥),𝑁 are defined in (2.65). 

Note: We have freedom to choose ℒ, ℎ, 𝐻(𝑥), 𝑢0  according with the 

property ℒ(𝑢(𝑥)) = 0 when 𝑢(𝑥) = 0. 

In fact, when (2.65) is equivalent to zero we have the zero order 

deformation equation. 

Now in equation (2.66), when 𝑞 = 0 we have: 

∅(𝑥; 0) = 𝑢0(𝑥)   (2.67) 

and when 𝑞 = 1 we have: 

∅(𝑥; 1) = 𝑢(𝑥)   (2.68) 
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So that as q increases from 0 to 1, ∅(𝑥; 𝑞) varies from  𝑢0(𝑥) to 

𝑢(𝑥). 

Now, to find 𝑚𝑡ℎ  order deformation equations take 𝑚𝑡ℎ  order 

Homotopy derivative in both sides of zero order deformation equation 

which mentioned in the following. 

2. High order deformation equation 

Definition (2.30) [32]: Given a nonlinear equation 𝑁[𝑢(𝑥)] which has at 

least one solution 𝑢(𝑥) . Let ∅(𝑞)  denoted the zeroth-order deformation 

equation which has a solution, then the Homotopy Maclaurin series (2.60) 

can be written as: 

∅(𝑥; 𝑞)~𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)𝑞
𝑚∞

𝑚=1    (2.69) 

and the Homotopy series ∅(𝑥; 1) is: 

∅(𝑥; 1)~𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
∞
𝑚=1    (2.70) 

The equations related to the unknown 𝑢𝑚(𝑥) are called the 𝑚𝑡ℎ -

order deformation equations. 

Definition (2.31) [31]: Let �⃗� 𝑛 = {𝑢0(𝑥), 𝑢1(𝑥), … , 𝑢𝑛(𝑥)} be a vector, the 

𝑚𝑡ℎ order deformation equation is of the form: 

ℒ[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℎ𝐻(𝑥)𝑅𝑚(�⃗� 𝑚−1(𝑥)), 𝑚 = 1,2,…   (2.71) 

where 𝑅𝑚 is called the 𝑚𝑡ℎ Homotopy derivative of (2.66), and: 
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𝑅𝑚(�⃗� 𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[∅(𝑥;𝑞)]

𝜕𝑞𝑚−1
|𝑞=0     (2.72) 

𝜒𝑚 = {
0     , 𝑚 ≤ 1
1     , 𝑚 > 1

     (2.73) 

Definition (2.32) [39]: Define the linear right inverse operator ℒ∗ of ℒ such 

that: 

ℒ∗ℒ[𝑢(𝑥)] = 𝑢(𝑥) + 𝑘(𝑥),   ℒ∗ℒ = 𝐼   (2.74) 

where  𝐼  is the identity linear operator. Then the 𝑚𝑡ℎ  order 

deformation equation is given by: 

𝑢𝑚(𝑥) = 𝜒𝑚𝑢𝑚−1(𝑥) + ℎℒ
∗[𝐻(𝑥)𝑅𝑚(𝑢𝑚−1(𝑥))] + 𝑘(𝑥)   (2.75) 

Definition (2.33) [32]: If the solution of the zeroth-order deformation 

equation exists, then we have the Homotopy series solution: 

𝑢(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
∞
𝑚=1    (2.76) 

The  𝑛𝑡ℎ -order approximate solution and the exact solution 

respectively is: 

�̂�𝑛(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
𝑛
𝑚=1      (2.77) 

𝑢(𝑥) = lim
𝑛→∞

�̂�𝑛(𝑥)     (2.78) 

2.2.4 Convergence theorem 

Theorem (2.13) [14]: If the following series:  

𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
∞
𝑚=1   
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is convergent, then the limit of this series is an exact solution of the 

nonlinear equation 𝑁[𝑢(𝑡)] = 0. 

Proof: see [14]. 

Theorem (2.14) [39]: If (2.76) is convergent then we have the sequence: 

𝑋𝑛 = ∑ 𝑅𝑚(𝑥)
𝑛
𝑚=1 convergent to zero, where 𝑅𝑚(𝑥) is defined on 

(2.72). 

Proof: see [39]. 

2.2.5 Homotopy analysis method for nonlinear Fredholm integral 

equation 

Consider the nonlinear Fredholm integral equation of the second 

kind (2.47). 

First choose an initial approximation 𝑢0(𝑥) = 𝑓(𝑥) and the auxiliary 

linear operator 𝐿[∅(𝑥; 𝑞)] =  ∅(𝑥; 𝑞).Then according to equation (2.47) we 

define the nonlinear operator: 

𝑁[∅(𝑥; 𝑞)] = ∅(𝑥; 𝑞) − 𝑓(𝑥) − 𝜆 ∫ 𝑘(𝑥, 𝑡)𝐹[∅(𝑡; 𝑞)]𝑑𝑡
𝑏

𝑎
   (2.79) 

with assumption 𝐻(𝑥) = 1 , construct the zero-order deformation 

equation as: 

(1 − 𝑞)[∅(𝑥; 𝑞) − 𝑓(𝑡)] = ℎ𝑝𝑁[∅(𝑥; 𝑞)]      (2.80) 

when 𝑞 = 0, ∅(𝑥; 0) = 𝑓(𝑥) and when 𝑞 = 1, ∅(𝑥; 1) = 𝑢(𝑥). 
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Now, to find the 𝑚𝑡ℎ-order deformation equation; by using the 𝑚𝑡ℎ-

order Homotopy derivative (2.61): 

𝑢𝑚(𝑥) =
1

𝑚!

𝜕𝑚∅(𝑥;𝑞)

𝜕𝑞𝑚
|𝑞=0  

and differentiate 𝑚 −times with respect to 𝑞 then divide by 𝑚!, we 

obtain: 

𝑢𝑚(𝑥) = 𝜒𝑚𝑢𝑚−1(𝑥) + ℎ𝑅𝑚(�⃗� 𝑚−1),    𝑚 ≥ 1   (2.81) 

where 

𝑅𝑚(�⃗� 𝑚−1) = 𝜒𝑚𝑢𝑚−1(𝑥) − 𝜆 ∫ 𝑘(𝑥, 𝑡)[
1

(𝑚−1)!

𝜕𝑚−1𝐹[∅(𝑥;𝑞)]

𝜕𝑞𝑚−1
]𝑑𝑡

𝑏

𝑎
   (2.82) 

and  𝜒𝑚 = {
0     , 𝑚 = 1
1     , 𝑚 > 1

, then: 

1

(𝑚−1)!

𝜕𝑚−1𝐹[∅(𝑥;𝑞)]

𝜕𝑞𝑚−1
|𝑞=0 =

1

(𝑚−1)!

𝜕𝑚−1𝐹[∑ 𝑢𝑖(𝑥)𝑞
𝑖∞

𝑖=0 ]

𝜕𝑞𝑚−1
|𝑞=0  =

𝐴𝑚−1[𝑢0, 𝑢1, … , 𝑢𝑚−1] = 𝐴𝑚−1(𝑡)  

 (2.83) 

where 𝐴𝑚−1(𝑡) is called the Adomian polynomials. For more details 

about Adomian polynomials see [49]. 

Then we can write equation (2.82) as: 

𝑅𝑚(�⃗� 𝑚−1) = 𝜒𝑚𝑢𝑚−1(𝑥) − 𝜆 ∫ 𝑘(𝑥, 𝑡)𝐴𝑚−1(𝑡)𝑑𝑡
𝑏

𝑎
,    𝑚 ≥ 1   (2.84) 

where  𝐴𝑖(𝑡)  are the Adomain polynomial for the nonlinear term 

𝐹[𝑢(𝑡)] in equation (2.47). 

Now, using equation (2.81) and according to equation (2.84) we can 

compute 𝑢𝑚 and the Homotopy series solution of equation (2.47) is: 
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𝑢(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
∞
𝑚=1    (2.85) 

and the 𝑛𝑡ℎ-order approximation solution is: 

�̂�𝑛(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
𝑛
𝑚=1 ,     𝑛 ≥ 1   (2.86) 

According to theorem (2.13) equation (2.86) is the exact solution of 

equation (2.47) [2]. 

2.2.6 h-Curve 

As mentioned previously, the value of ℎ is very important for the 

convergence of equation (2.87). So that, the series solution converges fast 

enough in a large enough region. 

When we solve equation (2.47) we have a series of solution with two 

variables 𝑥 and ℎ. In order to determine the optimal value of ℎ we use the 

so-called ℎ-curve. 

Because ℎ is an independent variable, it is easy to plot a curve versus 

ℎ. There will be an interval over that. By taking different values of ℎ from 

this interval, they all go to the exact value of the solution. Therefore, if the 

solution is unique, all the values of ℎ are converge to the same value with 

different speed of convergent. So in ℎ −curve there is a horizontal line 

segment corresponds to an area called the area valid for ℎ denote by 𝑅ℎ. 

In conclusion, ℎ −curve provides us with a suitable way to show the 

effect of ℎ  on the convergence area and the rate of solution of the 

series[31]. 
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Chapter Three 

Numerical Examples and Results 

In this chapter we will present some illustrative examples and carry 

out comparison between the accuracy and convergence of the two methods; 

Haar Wavelet method and Homotopy Analysis method. 

These examples are based on a methodology for finding a solution of 

nonlinear Fredholm integral equation of the second kind using Maple and 

Matlab software. 

Example 3.1 

Consider the nonlinear Fredholm integral equation of the second 

kind: 

𝑢(𝑥) = cos 𝜋𝑥 +
14

9

(𝑥 cos𝜋𝑥)

𝜋2
+ ∫ 𝑥𝑡 cos 𝜋𝑥 𝑢3(𝑡)𝑑𝑡

1

0
    (3.1) 

with the exact solution 𝑢(𝑥) = cos𝜋𝑥. 

The Haar wavelet method and Homotopy Analysis method were 

used to solve equation (3.1). 

(a) Haar Wavelet method 

Here we use 𝑙 = 2𝑀 for simplicity. 

To solve equation (3.1) using Haar wavelet method, the following 

algorithm was implemented using the Matlab software: 
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Algorithm (3.1): 

1. Input the fixed positive integer 𝑙, Maximum iteration, and Tolerance. 

2. Calculate the collocation points (2.41) 𝑥𝑟  𝑎𝑛𝑑 𝑡𝑝,   𝑟, 𝑝 = 0,1, . . , 𝑙 

3. Input 𝑓(𝑥), 𝑘(𝑥, 𝑡) 

4. Calculate 𝑓(𝑥𝑟), 𝑘(𝑥𝑟 , 𝑡𝑝) 

5. Input ∅(𝑢(𝑡)) 

6. Calculate ∅(𝑢(𝑡𝑝)) 

7. Calculate the algebraic nonlinear system 𝑢(𝑥𝑟) 

𝑢(𝑥𝑟) = 𝑓(𝑥𝑟) +
𝜆

𝑙
∑ 𝑘(𝑥𝑟 , 𝑡𝑝)∅ (𝑢(𝑡𝑝))
𝑙
𝑗=1   

[

𝑢1
𝑢2
⋮
𝑢2𝑀

] = [

𝑓1
𝑓2
⋮
𝑓2𝑀

] +
𝜆

2𝑀
[

𝑘11 𝑘12 ⋯ 𝑘1 2𝑀
𝑘21 𝑘22 ⋯ 𝑘2 2𝑀
⋮ ⋮ ⋱ ⋮

𝑘2𝑀 1 𝑘2𝑀 2 ⋯ 𝑘2𝑀 2𝑀

] [

∅1
∅2
⋮
∅2𝑀

]  

8. Solve the Algebraic nonlinear system 𝑢(𝑥𝑟)using Newton Raphson 

method for nonlinear equations to get the solution of the system. 

Therefore, the following results have been obtained: 

Figure (3.1) shows a comparison plot between exact and 

approximate solutions at 𝑙 = 2. 
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Fig. (3.1): Comparison between exact and approximate solutions at 𝒍 = 𝟐. 

Table (3.1): Shows the exact and approximate solutions, errors and 

relative errors for equation (3.1) at 𝒍 = 𝟖: 

𝒙 Exact solution Approximate solution Error Relative error 

0.0625 0.9807852804 0.9808419174 5.7 × 10−5 5.8 × 10−5 

0.1875 0.8314696123 0.8316136561 1.4 × 10−4 1.7 × 10−4 

0.3125 0.5555702329 0.5557306446 1.6 × 10−4 2.9 × 10−4 

0.4375 0.1950903220 0.1951691827 7.9 × 10−5 4.04 × 10−4 

0.5625 −0.1950903220 −0.1951917143 1.01 × 10−4 5.2 × 10−4 

0.6875 −0.5555702329 −0.5559231386 3.6 × 10−4 6.4 × 10−4 

0.8125 −0.8314696123 −0.8320938020 6.2 × 10−4 7.5 × 10−4 

0.9375 −0.9807852804  −0.9816348366 8.5 × 10−4 8.7 × 10−4 

Figure (3.2) shows a comparison plot between exact and 

approximate solutions at 𝑙 = 8. 
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Fig. (3.2): Comparison plot of exact and approximate solution at 𝒍 = 𝟖. 

(b) Using Homotopy Analysis method: 

Here we take the initial approximation 𝑢0(𝑥) = 𝑓(𝑥) 

To solve equation (3.1) using Homotopy Analysis method the 

following Algorithm was implemented with help of Maple software. 

Algorithm (3.2): 

1. Input ∅(𝑢(𝑡)), 𝑢0(𝑡), 𝑘(𝑥, 𝑡), 𝑓(𝑥), the positive fixed integer 𝑚 and 

𝐿𝑎𝑚𝑝𝑑𝑎 

2. Calculate Adomian polynomial 𝐴𝑖(𝑡). 

3. Input 𝜒𝑚. 

4. Calculate 𝑅𝑚, 𝑎𝑛𝑑 𝑢𝑚, we get the following results: 

𝑢1(𝑥) = 0.2433 ℎ 𝑥 𝑐𝑜𝑠(𝜋𝑥)  

𝑢2(𝑥) = 0.3938 ℎ
2 𝑥 cos(𝜋𝑥) + 0.2433 ℎ 𝑥 cos(𝜋𝑥)  

𝑢3(𝑥) = 0.6664ℎ
3 𝑥 cos(𝜋𝑥) + 0.7876 ℎ2 𝑥 cos(𝜋𝑥)  +

0.2433 ℎ 𝑥 cos(𝜋𝑥)  
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𝑢4(𝑥) = 1.1747 ℎ
4 𝑥 cos(𝜋𝑥) + 1.9994 ℎ3 𝑥 cos(𝜋𝑥) +

1.1814 ℎ2 𝑥 cos(𝜋𝑥) + 0.2433 ℎ 𝑥 cos(𝜋𝑥)  

𝑢5(𝑥) = 2.1462 ℎ
5𝑥 cos(𝜋𝑥) + 4.6991 ℎ4 𝑥 cos(𝜋𝑥) +

3.9988ℎ3 𝑥 cos(𝜋𝑥) + 1.5752 ℎ2 𝑥 cos(𝜋𝑥) + 0.2433 ℎ 𝑥 cos(𝜋𝑥)  

⋮ 

figure (3.3) shows the 8𝑡ℎ , 9𝑡ℎ𝑎𝑛𝑑 10𝑡ℎ order approximation 

solutions with respect to ℎ at 𝑥 = 1 (the ℎ-curve): 

 

 

 

 

 

 

Fig.(3.3): the 𝒉-curve of 𝟖𝒕𝒉, 𝟗𝒕𝒉, 𝒂𝒏𝒅 𝟏𝟎𝒕𝒉order approximation solutions with  

respect to 𝒉 at 𝒙 = 𝟏. 

Table (3.2): Shows the values of the percentage relative errors in 

reconstruction of the exact solution at several values of 𝒉 when 𝒙 = 𝟏: 

𝑚 ℎ = −1 ℎ = −0.7 ℎ = −0.5 ℎ = −0.3 ℎ = −0.1 

2 6.5 × 10−2 9.9 × 10−3 1.3 × 10−2 4.7 × 10−2 0.1129 

4 5.6 × 10−2 1.7 × 10−3 1.8 × 10−3 1.6 × 10−2 8.1 × 10−2 

10 0.1099 4.02 × 10−5 1.1 × 10−5 8.7 × 10−4 3.2 × 10−2 

16 0.3960 1.7 × 10−6 3.4 × 10−8 6.2 × 10−5 1.3 × 10−2 
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From table (3.2) it is clear that at ℎ = −0.5  gives the smallest 

relative error. 

Table (3.3): The following table shows the exact and approximate 

solutions, errors and relative errors at different points of 𝒙 ∈ [𝟎, 𝟏] 

with 𝒉 = −𝟎. 𝟓 and  𝒎 = 𝟖: 

𝑥 Exact solution Approximate solution  Error  Relative error 

0 1 1 0 0 

0.1 0.9510565163 0.9510619365 5.4 × 10−6 5.7 × 10−6 

0.2 0.8090169943 0.8090262154 9.2 × 10−6 1.1 × 10−5 

0.3 0.5877852522 0.5877953016 1 × 10−5 1.7 × 10−5 

0.4 0.3090169938 0.3090240382 7.04 × 10−6 2.3 × 10−5 

0.5 0 −2.05 × 10−10 2.05 × 10−10 − 

0.6 −0.3090169942 −0.3090275606 1.05 × 10−5 3.4 × 10−5 

0.7 −0.5877852527 −0.5878087012 2.3 × 10−5 4 × 10−5 

0.8 −0.8090169945 −0.8090538791 3.7 × 10−5 4.6 × 10−5 

0.9 −0.9510565165 −0.9511052969 4.9 × 10−5 5.1 × 10−5 

1 −1 −1.000056990 5.7 × 10−5 5.7 × 10−5 

Table (3.4): The following table shows the exact and approximate 

solutions, and errors at different point of 𝒙 ∈ [𝟎, 𝟏] with 𝒉 = −𝟎. 𝟓 and  

𝒎 = 𝟏𝟔: 
𝑥 Exact solution Approximate solution  Error  Relative error 

0 1 1 0 0 

0.1 0.9510565163 0.9510565132 3.1 × 10−9 3.3 × 10−9 
0.2 0.8090169943 0.8090169886 5.7 × 10−9 7.05 × 10−9 
0.3 0.5877852522 0.5877852460 6.2 × 10−9 1.05 × 10−8 

0.4 0.3090169938 0.3090169896 4.2 × 10−9 1.4 × 10−8 

0.5 0 −2.05 × 10−10 2.05 × 10−10 − 

0.6 −0.3090169942 −0.3090169878 6.4 × 10−9 2.1 × 10−8 

0.7 −0.5877852527 −0.5877852385 1.4 × 10−8 2.4 × 10−8 

0.8 −0.8090169945 −0.8090169720 2.3 × 10−8 2.8 × 10−8 

0.9 −0.9510565165 −0.9510564854 3.1 × 10−8 3.3 × 10−8 

1 −1 −0.9999999660 3.4 × 10−8 3.4 × 10−8 

In figure (3.4) we plot the exact and approximate solutions of 

example (3.1) at 𝑚 = 16: 
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Fig.(3.4): Comparison between exact solution (Solid line) and approximate solution (Dot 

line) at 𝒎 = 𝟏𝟔 (𝒙 ∈ [𝟎, 𝟏]). 

Results in tables (3.1) and (3.3) show clearly the maximum relative 

errors are 8.7 × 10−4 at 𝑙 = 8 and 5.7 × 10−5 at 𝑚 = 8 respectively. 

As a result, it is clear that in example (3.1) Homotopy analysis 

method is more accurate than Haar wavelet method. 

Example 3.2  

Consider the nonlinear Fredholm integral equation of the second 

kind: 

𝑢(𝑥) = −𝑥2 −
𝑥

3
(2√2 − 1) + 2 + ∫ 𝑥𝑡√𝑢(𝑡)𝑑𝑡

1

0
       (3.2) 

with exact solution 𝑢(𝑥) = 2 − 𝑥2. 

The Haar wavelet method and Homotopy Analysis method were 

used to solve equation (3.2). 
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(a) Haar wavelet method: 

Algorithm (3.1) implements the Haar Wavelet method using Matlab 

software. Therefore, we obtain the following results: 

Figure (3.5) shows a comparison plot between exact and approximate 

solutions at 𝑙 = 2. 

 

 

 

 

 

 

Fig. (3.5): Comparison between Exact and Approximate solutions at 𝒍 = 𝟐. 

Table (3.5): Shows the exact and approximate solutions, errors and 

relative errors at 𝒍 = 𝟖: 

𝑥 Exact solution Approximate solution Error Relative error 

0.0625 1.996093750 1.9961605859 6.6 × 10−5 3.3 × 10−5 

0.1875 1.964843750 1.9650442577 2 × 10−4 1 × 10−4 

0.3125 1.902343750 1.9026779296 3.3 × 10−4 1.7 × 10−4 

0.4375 1.808593750 1.8090616015 4.6 × 10−4 2.5 × 10−4 

0.5625 1.683593750 1.6841952733 6 × 10−4 3.5 × 10−4 

0.6875 1.527343750 1.5280789452 7.3 × 10−4 4.8 × 10−4 

0.8125 1.339843750 1.3407126170 8.6 × 10−4 6.4 × 10−4 

0.9375 1.121093750 1.1220962889 1 × 10−3 8.9 × 10−4 



58 

Figure (3.6) shows a comparison plot between exact and 

approximate solutions at 𝑙 = 8. 

 

 

 

 

 

 

 

Fig. (3.6): Comparison between exact and approximate solutions at 𝒍 = 𝟖. 

(b) Homotopy Analysis method: 

Here we take the initial approximation 𝑢0(𝑥) = 𝑓(𝑥) 

Then, Algorithm (3.2) implements the Homotopy Analysis method 

using Maple software. Therefore, we obtain the following results: 

𝑢1(𝑥) = −0.512ℎ𝑥  

𝑢2(𝑥) = −0.418ℎ
2𝑥 − 0.512ℎ𝑥  

𝑢3(𝑥) = −0.328ℎ
3𝑥 − 0.836ℎ2𝑥 − 0.512ℎ𝑥  

𝑢4(𝑥) = −0.239ℎ
4𝑥 − 0.984ℎ3𝑥 − 1.255ℎ2𝑥 − 0.512ℎ𝑥  
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𝑢5(𝑥) = −0.152ℎ
5𝑥 − 0.959ℎ4𝑥 − 1.968ℎ3𝑥 − 1.673ℎ2𝑥 − 0.512ℎ𝑥  

⋮ 

Figure (3.7) shows the 6𝑡ℎ , 7𝑡ℎ 𝑎𝑛𝑑 8𝑡ℎ order approximation 

solutions  with respect to ℎ at 𝑥 = 1: 

 

 

 

 

 

 

 

Fig.(3.7): The 𝒉-curve of 𝟔𝒕𝒉, 𝟕𝒕𝒉 𝒂𝒏𝒅 𝟖𝒕𝒉order approximation solutions with respect  

to 𝒉 at 𝒙 = 𝟏. 

Table (3.6): Shows the values of the percentage relative errors in 

reconstruction of the exact solution at several values of 𝒉 when 𝒙 = 𝟐: 

𝑚 ℎ = −1 ℎ = −0.8 ℎ = −0.75 ℎ = −0.5 ℎ = −0.2 

2 3.7 × 10−3 5.7 × 10−2 7.6 × 10−2 0.2019 0.4213 

4 3.6 × 10−4 4.1 × 10−3 7.8 × 10−3 6.3 × 10−2 0.2901 

5 2.1 × 10−4 1.04 × 10−3 2.4 × 10−3 3.5 × 10−2 0.2403 

8 7.9 × 10−5 1.2 × 10−5 5.9 × 10−5 5.8 × 10−3 0.1361 

10 4.5 × 10−5 2.2 × 10−6 5.9 × 10−6 1.7 × 10−3 9.2 × 10−2 

16 5.2 × 10−5 4.9 × 10−7 4.7 × 10−6 1.7 × 10−3 9.2 × 10−2 
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From table (3.6) it is clear that as 𝑚 goes to infinity  ℎ = −0.8  gives 

the smallest relative error. 

Table (3.7): the following table shows the exact solution, approximate 

solution, and errors at different point of 𝒙 ∈ [𝟎, 𝟏] with 𝒉 = −𝟎. 𝟖 and  

𝒎 = 𝟖: 
𝑥 Exact solution Approximate solution Error Relative Error 

0 2 2 0 0 

0.1 1.99 1.989998712 1.2 × 10−6 6.4 × 10−7 

0.2 1.96 1.959997424 2.5 × 10−6 1.3 × 10−6 

0.3 1.91 1.909996137 3.8 × 10−6 2.02 × 10−6 

0.4 1.84 1.839994848 5.1 × 10−6 2.8 × 10−6 

0.5 1.75 1.749993560 6.4 × 10−6 3.6 × 10−6 

0.6 1.64 1.639992272 7.7 × 10−6 4.7 × 10−6 

0.7 1.51 1.509990982 9.01 × 10−6 5.9 × 10−6 

0.8 1.36 1.359989696 1.03 × 10−5 7.5 × 10−6 

0.9 1.91 1.189988410 1.1 × 10−5 9.7 × 10−6 

1 1 0.9999871194 1.2 × 10−5 1.2 × 10−5 

In Figure (3.8) we plot the exact and approximate solutions of 

example (3.1) at 𝑚 = 8: 

  

 

 

 

 

Fig.(3.8): Comparison between exact solution (Solid line) and approximate solution 

 (Dot line) at 𝒎 = 𝟖 (𝒙 ∈ [𝟎, 𝟏]). 
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Results in tables (3.5) and (3.7) show clearly the maximum relative 

errors are 8.9 × 10−4 at 𝑙 = 8 and 1.2 × 10−5 at 𝑚 = 8 respectively. 

As a result, it is clear that in example (3.2) Homotopy analysis 

method is more accurate than Haar wavelet method. 

Example 3.3 

Consider the nonlinear Fredholm integral equation of the second 

kind: 

 𝑢(𝑥) = 𝑥 ln(2) + ∫
𝑥𝑡

1 + 𝑢(𝑡)
𝑑𝑡

1

0

    (3.3) 

with exact solution 𝑢(𝑥) = 𝑥. 

The Haar wavelet method and Homotopy Analysis method were 

used to solve equation (3.3). 

(a)  Haar wavelet method: 

Algorithm (3.1) implements the Haar wavelet method using Matlab 

software. Therefore, we obtain the following results: 

Figure (3.9) displays both the exact and approximate solutions at 𝑙 = 2. 
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Fig. 3.9: Comparison between Exact and Approximate solutions at 𝑙 = 2. 

Table (3.8): Shows the exact and approximate solutions, errors and 

relative errors at 𝒍 = 𝟑𝟐: 

𝑥 Exact solution Approximate solution Error Relative error 

0.0156 0.015625  0.0156254280 4.3 × 10−7 2.7 × 10−5 

0.1718 0.171875 0.1718797087 4.7 × 10−6 2.7 × 10−5 

0.3281 0.328125 0.3281339893 8.9 × 10−6 2.7 × 10−5 

0.4843 0.484375 0.4843882700 1.3 × 10−5 2.7 × 10−5 

0.6406 0.640625 0.6406425507 1.6 × 10−5 2.7 × 10−5 

0.7968 0.796875 0.7968968313 2.2 × 10−5 2.7 × 10−5 

0.9531 0.953125 0.9531511120 2.6 × 10−5 2.7 × 10−5 

0.9843 0.984375 0.9844019681 2.8 × 10−5 2.7 × 10−5 

Figure (3.10) shows a comparison plot between exact and 

approximate solutions at 𝑙 = 32. 

 

 

 

 



63 

 

 

 

 

 

 

Fig. 3.10: Comparison between exact and approximate solutions at 𝑙 = 32. 

(b)  Homotopy Analysis method: 

Here we take the initial approximation 𝑢0(𝑥) = 𝑓(𝑥) 

Then, Algorithm (3.2) implements the Homotopy Analysis method 

using Maple software. Therefore, we obtain the following results: 

𝑢1(𝑥) = −0.3467ℎ𝑥  

𝑢2(𝑥) = −0.3981ℎ
2𝑥 − 0.3467ℎ𝑥  

𝑢3(𝑥) = −0.6454ℎ
3𝑥 − 0.7961ℎ2𝑥 − 0.3467ℎ𝑥  

𝑢4(𝑥) = −0.5548ℎ
4𝑥 − 1.3961ℎ3𝑥 − 1.1942ℎ2𝑥 − 0.3467ℎ𝑥  

𝑢5(𝑥) = −0.6753ℎ
5𝑥 − 2.2192ℎ4𝑥 − 2.7922ℎ3𝑥 − 1.5923ℎ2𝑥 −

0.3467ℎ𝑥  

⋮ 
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Figure (3.11) show the 6𝑡ℎ , 7𝑡ℎ 𝑎𝑛𝑑 8𝑡ℎorder approximation solutions  with 

respect to ℎ at 𝑥 = 1: 

 

 

 

 

 

 

Fig.(3.11): The 𝒉-curve of 𝟔𝒕𝒉, 𝟕𝒕𝒉 𝒂𝒏𝒅 𝟖𝒕𝒉order approximation solutions with respect  

to 𝒉 at 𝒙 = 𝟏. 

Table (3.9): Shows the values of the percentage relative errors in 

reconstruction of the exact solution at several values of 𝒉 when 𝒙 = 𝟏: 

𝑚 ℎ = −1 ℎ = −0.9 ℎ = −0.6 ℎ = −0.5 ℎ = −0.2 

2 1.2 × 10−2 5.2 × 10−3 3.4 × 10−2 6 × 10−2 0.1841 

4 1.9 × 10−3 4.1 × 10−4 4.5 × 10−3 1.3 × 10−2 0.1110 

5 8.7 × 10−4 1.4 × 10−4 1.7 × 10−3 5.9 × 10−3 8.6 × 10−2 

8 1.1 × 10−4 7.5 × 10−6 8.9 × 10−5 6.2 × 10−4 4.1 × 10−2 

10 3.2 × 10−5 1.2 × 10−6 1.3 × 10−5 1.4 × 10−4 2.5 × 10−2 

16 1.04 × 10−6 6.5 × 10−9 4.4 × 10−8 1.9 × 10−6 5.8 × 10−3 

20 1.2 × 10−7 2.3 × 10−10 1.03 × 10−9 1.07 × 10−9 2.2 × 10−3 

From table (3.9) it is clear that as 𝑚 goes to infinity  ℎ = −0.9  gives 

the smallest relative error. 

  

𝟔𝒕𝒉order approximation solution 

𝟕𝒕𝒉order approximation solution 

𝟖𝒕𝒉order approximation solution 

 



65 

Table (3.10): The following table shows the exact and approximate 

solutions, and errors at 𝒉 = −𝟎. 𝟗 and  𝒎 = 𝟐𝟎: 

𝑥 Exact solution Approximate solution Error Relative Error 

0 0 0 0 − 

0.1 0.1 0.0999999999 2.3 × 10−11 2.3 × 10−10 

0.2 0.2 0.1999999999 4.5 × 10−11 2.3 × 10−10 

0.3 0.3 0.2999999999 6.8 × 10−11 2.3 × 10−10 

0.4 0.4 0.3999999999 9.07 × 10−11 2.3 × 10−10 

0.5 0.5 0.4999999999 1.1 × 10−10 2.3 × 10−10 

0.6 0.6 0.5999999999 1.4 × 10−10 2.3 × 10−10 

0.7 0.7 0.6999999999 1.6 × 10−10 2.3 × 10−10 

0.8 0.8 0.7999999999 1.8 × 10−10 2.3 × 10−10 

0.9 0.9 0.8999999999 2.04 × 10−10 2.3 × 10−10 

1 1 0.9999999999 2.3 × 10−10 2.3 × 10−10 

In figure (3.12) we plot the exact and approximate solutions of 

example (3.1) at 𝑚 = 20: 

 

 

 

 

 

 

Fig.(3.12): Comparison between exact solution (Solid line) and approximate solution (Dot 

line) at 𝒎 = 𝟐𝟎 (𝒙 ∈ [𝟎, 𝟏]). 

Results in tables (3.8) and (3.10) show clearly the maximum relative 

errors are 2.7 × 10−5 at 𝑙 = 32 and 2.3 × 10−10 at 𝑚 = 20 respectively. 
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As a result, it is clear that in example (3.3) Homotopy analysis 

method is more accurate than Haar wavelet method. 
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Conclusions 

In this work, two numerical methods for solving nonlinear Fredholm 

integral equation of the second kind are presented. These are: Haar Wavelet 

method and Homotopy Analysis method (HAM). 

In addition, these numerical methods we implemented in a form of 

algorithms to solve some numerical examples with known analytical 

solutions. Numerical results have shown to be in a close agreement with the 

analytical ones. Moreover, the Homotopy Analysis Method is one of the 

most powerful numerical technique for solving nonlinear Fredholm integral 

equation of the second kind in comparison with other numerical methods. 
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Appendix 

Matlab Code for example (3.1) (a): 
clc; 

clearall; 

M =2; 

z = 1; 

MaxIter = 400; 

tol = .00001; 

fori= 1: 1: 2*M 

x(z) = (i - 0.5)/(2*M); 

    z = z+1; 

end 

Y =@(x) cos(pi*x)+(14/9)*((x*cos(pi*x))/(pi^2)); 

k=1; 

fori=1:2*M 

F(k) = Y(x(i)); 

    k=k+1; 

end 

F=F'; 

YY = @(x,y) x*y*cos(pi*x); 

for j=1:2*M 

fori=1:2*M 

U1(j,i) = 1/(2*M)*YY(x(j),x(i)); 

end 

end 

U=[eye(2*M,2*M),-U1]; 

A = sym('A', [M 4]); 

A=A'; 

A=A(:); 

A=sort(A'); 

k =1; 

fori = (2*M+1):4*M 

A(i) = A(k)^3; 

    k =k+1; 

end 

newsystem=A*U'; 

newsystem = [newsystem-F']; 

system=[U,F];  

formatlong 

 Anew = [A(1:2*M)]; 

 

fori = 1: 2*M 

p0(1,i) =.5; 

end 

J = jacobian(newsystem); 

w= zeros(MaxIter,2*M); 

w(1,:) = p0; 

dsnorm = inf; 
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iter = 1; 

whiledsnorm>tol&&iter<MaxIter 

      q=subs(J,Anew,w(iter,:)); 

ds = -inv(q)*subs(newsystem,Anew,w(iter,:))'; 

 

w(iter+1,:) = w(iter,:) + ds'; 

dsnorm = norm(ds,inf); 

iter = iter+1; 

 

end 

w = w(1:iter,:) 

 

Maple Code for example (3.1) (b): 

>  
>  
>  
>  
>  
>  

>  

>  
>  
>  

>  

>  
>  
>  
>  
>  
>  

>  
>  
>  
>  
>  
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Matlab Code for example (3.2) (a): 
clc; 

clearall; 

M =2; 

z = 1;  

MaxIter = 400; 

tol = .00001; 

fori= 1: 1: 2*M 

x(z) = (i - 0.5)/(2*M); 

    z = z+1; 

end 

Y =@(x) -x^2-(x/3)*(2*sqrt(2)-1)+2; 

k=1; 

fori=1:2*M 

F(k) = Y(x(i)); 

    k=k+1; 

end 

F=F'; 

YY = @(x,y) x*y; 

for j=1:2*M 

fori=1:2*M 

U1(j,i) = 1/(2*M)*YY(x(j),x(i)); 

end 

end 

U=[eye(2*M,2*M),-U1]; 

 A = sym('A', [M 4]); 

A=A'; 

A=A(:); 

A=sort(A'); 

k =1; 

fori = (2*M+1):4*M 

A(i) = sqrt(A(k)); 

    k =k+1; 

end 

newsystem=A*U'; 

newsystem = [newsystem-F']; 

system=[U,F]; 

formatlong 

 Anew = [A(1:2*M)]; 

fori = 1: 2*M 

p0(1,i) =.5; 

end 

J = jacobian(newsystem); 

w= zeros(MaxIter,2*M); 

w(1,:) = p0; 

dsnorm = inf; 

iter = 1; 

whiledsnorm>tol&&iter<MaxIter 
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      q=subs(J,Anew,w(iter,:)); 

ds = -inv(q)*subs(newsystem,Anew,w(iter,:))'; 

 

w(iter+1,:) = w(iter,:) + ds'; 

dsnorm = norm(ds,inf); 

iter = iter+1; 

end 

w = w(1:iter,:) 

 

Maple Code for example (3.2) (b): 

>  
>  
>  
>  
>  
>  

>  

>  
>  
>  

>  

>  
>  
>  
>  
>  
>  

>  
>  
>  
>  
>  
 

Matlab Code for example (3.3) (a): 
clc; 

clearall; 
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M =2; 

z = 1;  

MaxIter = 400; 

tol = .00001; 

fori= 1: 1: 2*M 

x(z) = (i - 0.5)/(2*M); 

    z = z+1; 

end 

Y =@(x) log(2)*x; 

k=1; 

fori=1:2*M 

F(k) = Y(x(i)); 

    k=k+1; 

end 

F=F'; 

YY = @(x,y) x*y; 

for j=1:2*M 

fori=1:2*M 

U1(j,i) = 1/(2*M)*YY(x(j),x(i)); 

end 

end 

U=[eye(2*M,2*M),-U1]; 

 A = sym('A', [M 4]); 

A=A'; 

A=A(:); 

A=sort(A'); 

k =1; 

fori = (2*M+1):4*M 

A(i) = 1/(1+A(k)); 

    k =k+1; 

end 

newsystem=A*U'; 

newsystem = [newsystem-F']; 

system=[U,F]; 

formatlong 

 Anew = [A(1:2*M)]; 

fori = 1: 2*M 

p0(1,i) =.5; 

end 

J = jacobian(newsystem); 

w= zeros(MaxIter,2*M); 

w(1,:) = p0; 

dsnorm = inf; 

iter = 1; 

whiledsnorm>tol&&iter<MaxIter 

      q=subs(J,Anew,w(iter,:)); 

ds = -inv(q)*subs(newsystem,Anew,w(iter,:))'; 

 

w(iter+1,:) = w(iter,:) + ds'; 

dsnorm = norm(ds,inf); 
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iter = iter+1; 

 

end 

w = w(1:iter,:) 

 

Maple Code for example (3.3) (b): 

>  
>  
>  
>  
>  

>  
>  
>  
>  
>  

>  

>  
>  
>  
>  
>  
>  

>  
>  
>  
>  
>  
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 الملخص

طية ، تم التركيز على المعالجة العددية لمعادلة فريدهولم التكاملية غير الخفي هذه الرسالة
 ميتها الهائلة في العديد من التطبيقات في مختلف المجالات.من النوع الثاني بسبب أه

، تم ملية غير الخطية من النوع الثانيبعد معالجة المفاهيم الأساسية لمعادلة فريدهولم التكا
طريقتين التركيز على المعالجة العددية لهذه المعادلة. حيث تم تحقيق ذلك من خلال تطبيق 

وطريقة هوموتوبي التحليلية. حيث تم عرض الإطار الرياضي ، هما طريقة مويجات هار عدديتين
 لهذه الطرق العددية.

تم توضيح هذه الطرق العددية عن طريق حل بعض الأمثلة العددية وتم إجراء مقارنة 
بينها. أظهرت النتائج العددية بوضوح أن طريقة هوموتوبي التحليلية كانت أكثر فاعلية في حل 

 .بطريقة مويجات هارملية غير الخطية من النوع الثاني مقارنة معادلات فريدهولم التكا

 


