FREE ODD PERIODIC ACTIONS ON THE SOLID KLEIN BOTTLE

Key words : Free action, Periodic action
Solid Klein Bottle .

Fawas M. Abudiak *


```
في هذا البحث تم دراسة الاقترانات المميومورفيه فردية الدوروة ذات بُمسوعة الثبات الفارغة على
زجاجة كلاين المصته . وقد تمّ إثبات أنه إذا افترضنا التكافؤ الضعيف للاقترانات فإنه يوجد اقتران
    واحد فقط من هذا النوع على زجاجة كلاين المصدته .
```


Abstract

The cyclic actions of odd period and empty fixed point set are studied on the solid Klein Bottle K. It is shown that up to weak equivalence there is only one such action.

\section*{1 - Notation and Preliminaries} D^{2}, R, S^{1} denote the unit disk [$\left.\mathrm{XER}^{2}:|x| \leqslant 1\right]$, the field of real numbers and the unit circle . A 3-manifold M is irreducible if every 2-sphere in \mathbf{M} bounds a 3 -cell in \mathbf{M}. The cyclic group generated by the periodic map h is denoted by $<h>$. If h is periodic on a space X, then the orbit space of h is the quotient space obtained by identifying each x with $h^{i}(x)$ for all i. The orbit space of h will be denoted by X / h. The identification map $p_{h}: X \rightarrow X / h$ is called the orbit

[^0]
map . Two actions of $\langle\mathrm{h}\rangle$ and $\langle\mathrm{f}\rangle$ on X are said to be weakly equivalent if there is a homeomorphism t of X such that $\left\langle\right.$ th $^{\left.t^{-1}\right\rangle=}$ $<\mathrm{f}>$ and that tht ${ }^{-1}=\mathrm{f}^{\mathrm{i}}$ for some i . Equivalently, h and f are weakly equivalent if there are homeomorphisms t and \bar{t} that make the diagram commutative, i.e $\cdot p_{h} \mathbf{t}=\boldsymbol{t} p_{f}$. The set $[x \in X: h(x)=x]$ of fixed points of h will be denoted by $F(h)$.

The solid Klein Bottle K is the space obtained form $D^{2} \times R$ by identifying (z, t) with $(\bar{z}, t+1)$. An element of this space with represantative (z, t) will be denoted by $[z, t]$.

2- Results.

The follwing is the main result :
Theorem A. Up to weak equivalence there is exactly one free $\mathrm{Z}_{2 \mathrm{r}+1}$ action on the solid Klein Bottle K.
First we prove the following two Lemmas .
Lemma 1. If $h: K \rightarrow K$ is a PL homeomorphism of period $2 r+1$ on K, then $F(h)$ is either empty or a simple closed curve (homeomorphic to S^{1}).

Proof. Let $n=2 r+1$. Then n can be written as

$$
\mathrm{n}=\mathrm{p}_{1}{ }^{\mathrm{t}_{1}} \mathrm{p}_{2}{ }^{\mathrm{t}_{2} \ldots \ldots . \mathrm{p}_{\mathrm{m}}^{\mathrm{t}_{\mathrm{m}}}}
$$

where p_{1}, \ldots, p_{m} are distinct odd primes and $t_{1}, t_{2}-\cdots, t_{m}$ are positive integers. If $m=1$, then h is of period $p_{1}{ }^{{ }_{1}}$ on k which is a homology 1 - sphere . Hence, we find that , by $\mid 1], F(h)$ is either \varnothing or a homology $1-$ sphere .

Since $F(h)$ can not be two dimensional (for $p_{1}{ }^{t}=2$) it is either \varnothing or \approx (home omorphic to) S^{1}. If $m=2$, then $n=p_{1}{ }^{t_{1}} p_{2}^{t_{2}}$ and $h^{p_{1}}{ }^{t_{1}}$ is of period $p_{2}{ }^{t_{2}}$.
 cause $F\left(h^{p_{1}}{ }^{t_{1}}\right)$ is invariant under h, then if $F\left(h^{p_{1}}{ }^{t_{1}}\right) \approx S^{1}$ and $F(h)=\varnothing$, then h is of period $p_{1}{ }^{t_{1}}$ on $F\left(h^{p_{1}}{ }^{t_{1}}\right) \approx S^{1}$. So , by [1], $F(h) \approx S^{1}$.
Now suppose that the result is true for $m=i$. Let $C=p_{1}{ }^{t_{1}} \ldots p_{i}{ }^{t_{i}}$.
Then the period of h is $c_{i+1}{ }^{t_{i}+1}$. Then $h^{p_{i}+1^{t_{i}+1}}$ is of period c on k, hence, by the induction hypothesis , $F\left(h^{p_{i+1}} 1^{t_{i}+1}\right)$ is eitgher \varnothing or $\approx S^{1}$.
If $F\left(\mathbf{h}^{\mathbf{p}_{\mathbf{i}+1}} \mathbf{t}^{\mathbf{t}_{\mathbf{+ 1}}}\right)=\varnothing$, then $\mathbf{F}(\mathbf{h})=\varnothing$.
If $F\left(h^{p_{i+1}}{ }^{t_{i}+1}\right) \approx S^{1}$, then by [1],F(h)$\approx S^{1}$ or \varnothing.
Remark . The proof above shows that if $F(h) \approx S^{1}$, then $F\left(h^{i}\right)=F(h) \approx S^{1}$ for all $1<\mathrm{i}<2 \mathrm{r}+1$.

Lemma 2. Let $\mathbf{h}: \mathbf{K} \rightarrow \mathbf{K}$ be a homeomorphism of period $2 \mathrm{r}+1$.
If h acts freely on K, then $K / h \approx K$.
Proof: Let $B=K / h$ and let $p: K \rightarrow B$ be the orbit map .
Since h acts freely on K, then K is a regular $2 r+1$ covering of B by [4]
Hence $p_{\#}\left(\pi_{1}(\mathrm{~K})\right)$ (which is infinite cyclic) is a normal subgroub of index 2 r +1 in $\pi_{1}(B)$.
So we have a short exact sequence

$$
\mathrm{O} \rightarrow \mathrm{Z} \xrightarrow{\mathrm{f}} \pi_{1}(\mathrm{~B}) \xrightarrow{\mathrm{g}} \mathrm{Z}_{2 \mathrm{r}+1} \rightarrow \mathrm{O}
$$

Since B is covered by a contractible space and no nontrivial finite group can act freely on a finite dimensional contractible space [3], π_{1} (B) has no torsion subgroup .

Let a be the image of a generator of Z under f and let b be such that $g(b)$ is a generator of $Z_{2 r+1}$ Since $p_{\#}\left(\pi_{1}(K)\right)$ is normal in $\pi_{1}(B)$, bab $^{-1} \epsilon<a>$. So $\mathbf{b a b}^{-1}=\mathbf{a}$ or \mathbf{a}^{-1}. If $\mathbf{b a b}^{-1}=\mathbf{a}^{-1}$, then $\pi_{1}(\mathrm{~B}) /\left[\pi_{1}(\mathrm{~B}), \pi_{1}(\mathrm{~B})\right]$ which is isomorphic to $H_{1}(B)$ is finite (for the coset $b^{-}-b+\left[\pi_{1}(B), \pi_{1}(B)\right]$ is of order
$2 \mathrm{r}+1$). Here $\cdot\left[\pi_{1}(\mathrm{~B}), \pi_{1}(\mathrm{~B})\right]$ is the commutator subgroup .
Hence the Euler characteristic , $\mathcal{X}(B)=\sum_{0}^{3}(-1)^{\mathrm{i}_{\mathrm{i}}}=1+\mathrm{r}_{2}$ because r_{1} $=0=r_{3}$ and $r_{3}=o$ because B is nonorientable.
But this implies that $\chi(B) \geqslant 1$, contradicting the fact that $\chi(B)=0$. Hence bab $^{-1} \not \neq^{\cdot} \mathrm{a}^{-1}$ and we must have bab ${ }^{-1}=a$ and so $\pi_{1}(B)$ is abelian . From the fundamental theorem of abelian groups we have

$$
\pi_{1}(\mathrm{~B})=\mathrm{Z}+\operatorname{Tor}\left(\pi_{1}(\mathrm{~B})=\mathrm{Z}\right.
$$

Note that B is compact, nonorientable, irreducible with a two dimensional Klein Bottle as its boundary. Moreover, B contains no 2 - sided projective plane p^{2}, because if B contains such p^{2}, then $p^{-1} \mathbf{p}^{2}$ will be a $2-$ sphere S, and since K is irreducible, S bounds a 3 - cell C. Then $p(C)$ is a 3 - manifold bounded by p^{2}.
Now, by [2] theorem 11-7, B is homeomorphic to K.
With these two lemmas at hand we now turn to prove our theorem .

Proof of theorem A.

Let $\mathrm{h}_{1}: \mathrm{K} \rightarrow \mathrm{K}$ be defined by

$$
h_{1}([z, t])=\left[z, t+\frac{2 r}{2 r+1}\right]
$$

The map h_{1} is a homeomorphism of period $2 r+1$ and $F\left(h^{i}\right)=\varnothing$ for all 1 $\leqslant \mathrm{i} \leqslant 2 \mathrm{r}$. Hence, by lemma $2, \mathrm{~K} / \mathrm{h}_{1} \approx \mathrm{~K}$. Now Let $\mathrm{h}: \mathrm{K} \rightarrow \mathrm{K}$ be any homeomorphism of period $2 r+1$ such that $F\left(h^{i}\right)=\varnothing$ for $1 \leqslant i \leqslant 2 r$. Lemma 2 implies that $K / h \approx K$. Let $p_{1}: K \rightarrow K / h_{1}$ and $p: K \rightarrow K / h$ be the orbit maps. - p_{1} and p are $(2 r+1)-$ covering projections of K / h_{1} and K / h, respectively . Let $t: K / h_{1} \rightarrow K / h$ be a homeomorphism .
Since t_{1} and p are $(2 r+1)-$ covering projections of K and since $\pi_{1}(K / h)($ is infinite cyclic) has a unique normal subgropup of index $2 r+1$, there is a homeomorphism $\overline{\mathbf{t}}: \mathrm{K} \rightarrow \mathrm{K}$ making the diagram

Commutative . Now by the commutativity of the diagram .

We obtain $p_{1}=p_{1} t^{--1} h \bar{T}$. That is $t^{--1} h \bar{t}$ is a nontrivial covering transformation on K with respect to p_{1}. Hence, $t^{--1} h \bar{t}=h_{1}{ }^{i}$ for some $1 \leqslant i \leqslant 2 r$, which means that h is weakly equivalent to h_{1}.
This completes the proof.

References

1 - E. E. Floyed, On periodic maps and Euler characteristic of associated spaces, Trans. Amer. Math . 72 (1952), 138-147.

2- J. Hemple, 3-manifolds, Ann . of Math . studies 86 , princeton University press, princeton, New Jersey, 1976.

3 - S. T. Hu, Homotopy theory, Academic press, New York 1959.
4- W. S. Massey , Algebraic Topology : An Introduction, Springer - Verlage ,GTM \# 56, 1967.

[^0]: * Assistant Prof., Department of Mathematics, Faculty of Science . An-Najah National University .

