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Topological concepts on certain fuzzy topological spaces including
intuitionistic fuzzy topological spaces
By
Mus'ab Bassam Ahmad Issa
Supervised
Dr. Mohammad Al-Amleh
Abstract

In this thesis the topological concepts of fuzzy topological spaces and
intuitionistic fuzzy topological spaces were investigated and have been

associated with their duals in classical topological spaces.

Fuzzy sets, fuzzy points, fuzzy functions and fuzzy relations were
presented along with their properties. Many topological concepts and

properties were proved to be true in non fuzzy setting.

Intuitionistic Fuzzy sets, Intuitionistic fuzzy points, Intuitionistic fuzzy
functions and Intuitionistic fuzzy relations were presented along with their
properties. Many topological concepts and properties were proved to be

true in fuzzy setting.

Also different approaches of separation axioms were investigated using Q-
neighborhood and fuzzy points and Intuitionistic fuzzy points, and we
studied another types of separation axioms on fuzzy setting and

Intuitionistic fuzzy setting.
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Finally, fuzzy compactness and Intuitionistic fuzzy compactness were

introduced with a theorem proved the way they are related.



Chapter One

Introduction To Fuzzy Sets
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Chapter One
Introduction To Fuzzy Sets

Introduction

Fuzzy sets, in mathematics, are sets having elements with a degree of
membership. This concept was first generalized by Zadeh in 1965 in his

famous paper [ 26 ], where the concept of fuzzy sets was introduced.

In classical set theory, an element either belongs or doesn’t belong to the
set, but in fuzzy set it is different, here, the element has a degree of
membership between zero and one, which leads to a new definition of

characteristic function.
1.1 Fuzzy Sets

In set theory a subset A of a set X can be identified with the
characteristic function X, that maps X to {0,1} by taken all elements in A
to 1, while taken an elements in X - A to 0.

. 1, fxeA
e Xalx) = {o, ifxeX—A

zadeh in [ 26 ] extended the definition of the characteristic function by

replacing the set {0,1} by the closed interval [0,1] which is the basis to the

new definition of fuzzy sets.
Definition 1.1.1: [ 26 ]

Let X be nonempty ( crisp ) regular set, a fuzzy subset u, of X is

characterized by a membership function u,(x) that maps X to the closed



3
interval [0,1]; i.e uy4 : X — [0,1] and the value of u,(x) at x representing

the grade of membership of x in u,.

In the case of characteristic function X, : X — {0,1}, if X,(x) =0,
then the grade of membership is 0, and this means that x doesn’t belong to
A, while if X,(x) = 1, then the grade of membership is 1, and this means
that x belongs to A. But in the case of fuzzy sets; u,(x) could be any other
number from O to 1, the value O is used to represent complete
nonmembership, the value 1 is used to represent complete membership, and
values in between are used to represent intermediate degrees of

membership.
Example 1.1.2:

Let X be nonempty regular set, u, is fuzzy subset of X. u,(x) = 0.95 may
mean that x is more likely to be in u,, us(x) = 0.5 then x may be half

way between belonging to u, and not belonging to u,.

It’s clear that fuzzy subsets of X are generalize of regular subsets of X,
on the other word, regular subset of X are a special case of fuzzy sets

called crisp fuzzy sets where u,(x) € {0,1} < [0,1].

We can represent a fuzzy subset of X by using different ways, in the

following example we describe some of these ways:



Example 1.1.3:

Consider the regular set X where X = {a,b,c,d} and let u, be a fuzzy

subset of X that maps X to [0,1] by mapping:

a—>03 b—->08 c—-0 d-05

We may represent u, as the set of order pairs :

pa = {(a,0.3),(b,0.8),(c,0),(d,0.5)}
Or we may write it as: u, = {ag3, bos, o, dos}-
Example 1.1.4:

Take X to be a set of people of age 25, a fuzzy subset “FAT” may be
defined to be the answer of the question “to what degree a person x is fat”?

the answer could come on a membership function based on a person’s fat:

0 if x <40
FAT(x) = We‘ght;(’)f X740 if 40 < x < 80

1 if x>80
Graphically:

f ]
40 80

We may say that the percentage of belonging for any person with weight
> 80 to being FAT is 100%, while a person with weight 70 kg fat has a

percentage 75% and we write:
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FAT(70) = 0.75 or 75%

This grade of membership function is linear, but we may have the

nonlinear function that reflects the importance of the fat needed. For

example:
0 if x <40
. AM2
FAT(x) = (We‘ghig’go" 207 if 40 < x < 80
1 if x>80

I
40

There are other types of fuzzy subsets, one of them is the fuzzy constant
subset of X, which is the function that takes all elements of X to a constant

c, where ¢ € [0,1], and it is denoted by c.
Special fuzzy constant subsets are 1 and 0.
1.2 Operations on Fuzzy sets

After these new concepts of fuzzy sets were defined, we extend the
usual operations on classical sets; including the union, intersection and

complementation, to fuzzy sets as follows:



Definition 1.2.1: [ 26 ]
Let u, and up be two fuzzy subsets of X, we say:

Ua € pup iff pyu(x) < pg(x) forall x inX.
Definition 1.2.2: [ 26 ]

Let u, and ug be two fuzzy subsets of X, the intersection, union and
complement of fuzzy subsets, denotes respectively as ps A ug, sV Ug,

u,€ are also a fuzzy subsets of X and defined as follows:

Intersection:  (u4 A pug)(x) = min{u, (x), ug(x)}
Union: (ta V up)(x) = max{uy(x), up(x)}
Complement:  u,°(x) =1 —pu,(x)

These definition are generalized to any number of fuzzy subsets of X;

so, for any family {u,, : @ € T'} of fuzzy subsets of X, where Tis an

index set, then we define:
(Vatta,)(x) = sup{py, : a €T}
(/\a'.uAa)(x) = inf {p,, a€l}

We illustrate the previous definitions by the following examples:



Example 1.2.3:

(1) Consider the regular set X where X={a,b,c,d, e}, take the fuzzy

subsets:
ta = {aos bo3, o9, do, €07}
ts = {a0.1, boes Co.9, do.ar €05}
Then taVug = {ags boe Coo doar €07}
ta A g = {ao.1,bo3,Co9, do, €05}
And ta® ={ags bo7, co1,dy, €03}

(2) consider the regular set X where X={ a, b, c }, take an infinite number

of fuzzy subsets:
ta, = {069 bo11,Cos }
ta, = { @0.699,bo.101, Cos }

Ha, = { @0.6999,Do.1001) Cos }

Then V2, pa, ={a07,b011,Co5 }
And - A2y pa; = {069 D01, Cos }

In case of continuous graph:



Example 1.2.4:

Take X=[0,5], u4 and ug are as follow :

Then

HaV Up Ha N\ Up Uy

To show that this definition extends the union, intersection and

complementation applied on regular subset of X, we have:

(anp) (x) = min { g4 (x), up(x) }

If x€Aand x € B then p,(x) = 1and ug(x) =1, which implies that

min { ua(x), up(x) } = 1,50 (uanp)(x) = 1; ie x EANB,

But; if x¢& A or x € B, then pu,(x) =0or ug(x) =0, which implies

that min { py(x), ug(x) } = 0; 50 (ugnp)(x) =0; i.e x &€ ANB.

Which complies with the classical definition of * Intersection”.
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In similar manner, we may show the same for union and complementation.

The next theorem shows that we can extend Demorgan’s laws from

regular(crisp) sets to fuzzy sets:

Theorem 1.2.5: [ 26 ]

Let uy(x) and ug(x) be two fuzzy subsets of X, we have:
(1) (ua V) (x) = (ua® A pp©)(x)

(2) (ua A ) (x) = (Ua® V pp©) ()

Proof: (1) (ua V pp) (x) = 1 = (ua V pp) (%)

= 1 — max{p, (x), up(x)}

{1 —pa(x), if pa(x) = pp(x)
1—pup(x), if up(x) = pus(x)

_ {1 —pa(x), if T—pu(x) <1 —pgx)
1—pp(x), if 1—pp(x) <1—puyux)

=min {1 — pu(x), 1 - pp(x) }
=min { 4s°(x), up®(x)}
= (1a® A g )(x)

(2) (aApp)(x) =1—(uaApp)(x)

= 1 —min{u, (x), up(x)}

:{1_“’*(’0' it a(x) < pp(x)
1— (), if () < pa(x)
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={1_#A(x); if 1—pa(x)=1— pp(x)
1—pp(x), if 1—pg(x) 21— pu(x)

=max {1 —p,(x), 1—pg(x) }
=max { (s (x), pg(x)}
= (Ua“ V g )(x)

This theorem can be generalized to any family of fuzzy subsets of X,

specifically:
(Va AuAa)c = (/\a .L‘Aac) and (/\a MAa)C = (Va .uAaC)'

Notion of a — level is one of the basic notions of fuzzy sets, defining in

the following definition:
Definition 1.2.6: [ 24 ]

The o — level set of a fuzzy subset u, denoted by u,® is a non-fuzzy
subset of X, such that the grade of membership of its elements > a, where

o > 0, that 1s:
s ={x € X : uy(x) = a} where o>0.
Also, we define 0 — level in case of X is the real line by:
us® = the closure of ({x € X : py(x) >0}) in RL

The support of u,, denoted by supp(u,), is a crisp subset of X whose

elements all have nonzero membership grades in p,.
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i.e supp(ug) = {x € X : uy(x) > 0}
It is obvious that supp(u,) =@ iff uy =0i.e uy(x) = 0forall x € X.

We say that a fuzzy subset u, of X, where X is infinite, is countable

whenever supp(u,) is countable.

How we found the o — level ? the answer of this question in the next

example:
Example 1.2.7:
(1) In discrete case:

Consider a regular  set X, where X={ a,b,c,d},

let uy = {aps, b7, Cos doa} be afuzzy subset of X, then
The 0.4 —level =u,%* ={b,c,d}

The 0.8 —level =u,%2 = { ¢}

The 0.9 —level =u,%° =@

And the supp(uy) ={a,b,c,d} =X

(2) In continuous case:

Consider X = R! = (—o0, ), and the fuzzy subset of X given as

x—3 )
3 if x €[3,6]
Ua(x) = 1 if x €[6,8]
9—x if x €[8,9]

k 0 elsewhere
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Graphically: 1=

0.5 =

The 0.3 — level at this fuzzy subset is 1,%3 = {x € X : u,(x) = 0.3}

X
TZO.S = x =39

9—x=>203 = x<87
Hence; u %3 =1[3.9, 8.7].

In general, ( with respect to the previous example ); the o — level can be

found as follows: pu,* = [ x{, x5 ]
a
-3
a=x13 = x{ =3a+3
and a=9—-x% = xfy=9—-a

So, u,*=[3a+3,9—«a].
1.3 Convex Fuzzy Sets

The convex of fuzzy sets was introduced by Zadeh in his famous paper,

we assume for concreteness that X is a real Euclidean space R™.
Definition 1.3.1: [ 12 ]
Let uy: R*—->1[0,1]

(1) A fuzzy set uy, is convex if and only if
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pa(txy + (1 —t)xz) = min { g (x1), palxz) }
For xi,x, eR™ te€[0,1]
(2) A fuzzy set u, is strongly convex if and only if

pa(txy + (1 —t)xz) > min { g (x1), palxz) }
For x,,x, ER™ te€(0,1).

Note that any strongly convex fuzzy set is convex, but the converse is

not.

A basic property of convex fuzzy sets is expressed by the following

theorem:
Theorem 1.3.2:[12]

If u,and ug are two convex fuzzy sets, then their intersection also a

convex fuzzy set.
Proof: Let uc = uy A ug
pe(txy + (1 —t)x) = min { pu(tx; + (1 = t)xy),
pp(tx, + (1 —t)x,) }
Now; since u, and ug are convex
pa(tx; + (1 —t)xy) = min { pa(xq), pa(xy) }

pp(tx; + (1 — t)xp) = min { ug(xy), pp(xz) }
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And hence
pe(tx; + (1 —t)x;) = min { min { pa(xq), pa(x2) },
min { up(x1), pp(x2) 3}

=min {min { 4 (x1), ug(xy) }min{ py (x,), pp(xz)}}
=min { pc(x1), pc(x2) }

Thus uc(txy + (1 —t)xz) = min { uc(xy), pc(xz) }

Therefor; uc is convex.

Theorem 1.3.3: [ 12]

(@) If w, is convex fuzzy set, then support of w, ( supp(u,) ) is a

convex set.
(b) If uy isstrongly convex fuzzy set, then supp(u, ) = R™

Proof. (a) It is implied directly by definition of convex fuzzy set and

definition of support of .

(b) If uy is strongly convex fuzzy set, then from definition of strongly

fuzzy set, forany x;, x, € R*, x, # 0 and t = % we obtain:

1 1
pa(x1) = Uy (E(’ﬁ +x3) + E(x1 - x2)>

>min{ uy (g +x3), Halxy —x2) 320

i.e x € supp( Uy)
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Therefor; supp( uy) = R™ Q.E.D

Remark: From now we will replace a notation of fuzzy subset u, by A

for more simply.
1.4 Fuzzy Points

There are many types of fuzzy subsets, one of them is a fuzzy point, it’s
defined by Wong [24], and later on, other definitions were presented by
Srivatava [22], Ming and Liu [19].

Definition 1.4.1: [ 24 ]

Let X be a regular set, let x be a fixed element of X, a fuzzy point p isa
fuzzy subset of X with the membership function :

A if x =a where 1€ (0,1]
0 elsewhere

»(x) ={

On the other word; a fuzzy point p is a fuzzy subset of X that take an
element o to a number A € (0,1] and the remaining elements to 0, and it

will be denoted by p = a;.
Itis clear that supp(p) =a, p(a) =1 and p(X —{a}) = 0.

For example: If X ={a,b,c}, then the point by, is a fuzzy subset

{ao,bg7,co }.
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Definition 1.4.2: [ 24 ]

Let p = a, be a fuzzy point and A a fuzzy subset of X, then we may say

p in A or A contains p denoted p € A ifandonlyif A < A(a).
l.eay€EA & A< A(a).

For example: if X={a,b,c} and A = {ays, by3,Coo } then ay 5 € A but
boe & A.

Definition 1.4.3: [ 24 ]

(1) A fuzzy point p = a; in X is quasi-coincident with the fuzzy subset
A of X, denoted by p QA ifand only if A+ A(a) > 1 and it’s clear
that a; Q A < a; & A°.

For example: Let X = {a,b,c,d} and A ={ayq,bp3 Cog doo}, then
Coe Q A since 0.5« 0.4

(2) A fuzzy subset A of X is quasi-coincident with the fuzzy subset B of
X ifand only if 3Jx € X suchthat A(x)+ B(x) > 1, and we write

A Q B.

Note that:

() AQB < BQA.

(i) AQB = A N B=+0.

([ii)pQ A and A S B (i.e A(x) < B(x), foreach x in X, then p Q B.
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(ivy A €SB < A and B€ are not quasi-coincident.
Proposition 1.4.4

We can write any fuzzy set A of X as the union of all fuzzy points in 4, i.e

A= UpeA p.
1.5 Fuzzy Membership:

In 1974, C.K Wong [ 24 ] define the concept of belonging of fuzzy point
to a fuzzy set. Later on, different definitions of the same concept were
added by M.Sarker [21] and Wong [ 24 ]. These definition were given
independently. At the first look the definitions seem to be the same but

after investigation they are found to be different in many aspects.
Proposition 1.5.1:

Let p = x; be a fuzzy point in X and let A be any fuzzy set in X, then we

can write A as a union of its fuzzy points.
ie;A=V{(x,4):0< A< A(x) where x € supp(4)}
or we may write A =V p: p < A.

In the following definition we classify the different definitions of the

relation “belonging” or €.
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Definition 1.5.2:

Let A be a fuzzy subset of a nonempty set X and let p = x; be a fuzzy

point in X, we define the relation € as follow:
1) x; €, Aifandonlyif 1 < A(x)

2) x3 €, Aifandonlyif 1 < A(x)

3) x3 €5 Aifandonlyif A = A(x)
Remarks 1.5.3:

1) x, € AVB if and only if x; € A or x; € B, which is true for all

2

definitions of “ € ”.

For €;: x; €, AVB means A <max{A(x),B(x)} so A< A(x) or

A<Bx)&e x;€4A or x; €, B.
The same will be true if we replace €, by €, and €.

2) x, € AAB if and only if x; € A and x, € B, which is true for all

2

definitions of “ € ”.

For €;: x; €, AAB means A <min{ A(x),B(x)} so A< A(x) and

A<B(x) e x;€ A and x; €, B.
The same will be true if we replace €; by €, and €.

We can extend the previous remark to any finite number of fuzzy sets

Ay, Ay, o Ay,
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In the case of arbitrary families of fuzzy sets {A,:a €T}, there is a
different between definitions of “ € ”, we will explain this different in the

following:
Lemma 1.5.4:

Let { A,: « € T } be a family of fuzzy subset of X, then x, € A, for some «

has three cases about union:

1) x, €, A, forsomea & x; €, VA,.

2) x, €, A, forsomea = x; €, VA,.

3) The statement x; €5 A, forsome a < x; €5 V A, Iis false.

Proof. (1) let x; €, A, for some a then A< A, (x) for some «a, so

A<sup{d,(x):a €T}, then A < (VA,) (x).
Therefor x; €, VA,.

Conversely, let x; €, VA, then A < sup{A,(x): a € T}, that is there exist
at least one Aq (x) say Ag, (x) S.tA < Ay (x) < sup{d,(x):a €T}

Therefor x; €, A, for some a.

(2) straightforward.

The converse of (2) may not be true, the following examples show that:
Example [1] : let X = {a, b}

and A; = {ags, boeo)



20

A; ={ags,bo699}

Then V;A; ={ags, bors}

Now; by; €, V;A, but by, &, A; foreach i.

Example [2] :let X ={m} and A; = {mﬁ} =12, ..
ThenV; A, ={m; }andm; €, V; A, but m; &, A; foreach i.
(3) To show the statement is not true, we give a counter example:
Example: let X = {a, b}

and A; ={ags, bogo}

A; ={ags,boe99}

Then V; A, = {aos, bo7}

We observe that by; €5 V;A; but by, €; A; foreach iand byeq €5 A4
but boeo &3 Vi4;.

Lemma 1.5.5:[25]

Let { A,: « € T} be a family of fuzzy subset of X, then x; € A A, has three

cases:

Dx, e, NA, = x, € A, forall a.
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2)x, E, N A, & x;€, A, forall a.
3) The statement x;, €5 A A, = x, €5 A, forall a isnot true.
1.6 Functions on Fuzzy Sets

The concept of fuzzy function was defined between two families of

fuzzy subsets corresponding to a function between two regular sets.
Remark: we will use F(X) to be the family of all fuzzy subsets of X.
Definition 1.6.1: [ 25]

Let X and Y be two regular sets, and let f be any function from X into Y
(i,e f: X — Y ), for any fuzzy subset A of X and for any fuzzy subset B of
Y, we define f* to be a fuzzy function between F(X) and F(Y) that takes a
fuzzy subset of X to a fuzzy subset of Y, by :

fF(X) — F(Y)

sup{Ax) :x € fr(y)} if ) #0
0 if ff) =90

Fr D) =
So; if A isafuzzy subset of X, then f*(A) isa fuzzy subset of Y.
Also we define the fuzzy function (f*)* as (f*)1(B) by :

(fHB)(x) =B(f(x)

So; if B is a fuzzy subset of Y, then (f*)1(B) is a fuzzy subset of X.
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Example 1.6.2:
Consider X ={a,b,c,d,e}and Y ={t,u,v,w} and f:X — Y by
a—>t, bc-u de-v;
Let A be the fuzzy subset of X such that A = {ay.7, bo.a, Co s, dos €08}
Then f*(A) is the fuzzy subset of Y defined as :
fr(A):Y —=[01]

t—> 0.7, u- max{A(D), A(c)} =max{0.4,0.5} =05 v - 0.8
and w — 0, since f1(w) = 0.
Example 1.6.3:
Consider X ={a,b,c,d,e}and Y ={t,u,v,w} and f: X — Y by
a—>t, bc-u de-v;
Let B be the fuzzy subset of Y such that B = {t, s, Ug.4, Vo, Wo g}
Then (f*)1(B) is the fuzzy subset of X defined as :

(B : X - [01]
a—->05 b->04 ¢c—>04 d-0 e—-0.

We know that the image of fuzzy subset of X is a fuzzy subset of Y, and
the invers image of a fuzzy subset of Y is also a fuzzy subset in X;(by

definition).
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In special case of fuzzy subset, fuzzy point, but the question is “ Is this
notion true for fuzzy point” ? that is, if p is a fuzzy pint in X, is the image
of p a fuzzy pointin Y ? and if g is a fuzzy point in Y, is the invers image

of g afuzzy pointin X?
The answer of these questions are given in the following theorem:
Theorem 1.6.4: [ 25]

(1) If p = a; is afuzzy pointin X, then f*(p) is a fuzzy point in Y, call it
g, where f*(p) = f(a); = g. Such that f(a) is the supp(g) and A is the

value of g.

Proof: If f1(y) = ¢,then g(y)=0.

If f1(y) # ¢, then g(y) = sup{ p(x) : x € f1(y)} and we have two

cases:
Case (1) : If a € f1(y), then
g(y) = sup{ p(x) : x € f*(f(a))} = {4,0,0,..} = 2
Case (1) : If a & f1(y), then
g(y) = sup{0,0, ... }.
Therefore; f*(p) = f(a), = g isafuzzy pointin Y.

(2) If g = b, is a fuzzy point in Y, then (f*)(g) may not be a fuzzy

point in X.



24

The following examples explain this result:

Example (1): If f1(b) =@, then (f*)1(g) = ® which is not a fuzzy

point.

Example (2): If f1(b) has at least two elements (not singleton), say
f1(b) = {l,m}, then (f*)'(g) = {l,,m,,0,0,..} which is not a fuzzy

point.

According to the previous two examples, the only case that imply “if
g = b, is a fuzzy point in Y, then (f*)1(g) is a fuzzy point in X is if
f71(b) is singleton.

i.e if f1(b) is singleton, then (f*)1(qg) is a fuzzy point in X.

The following theorem shows what the fuzzy functions do on the quasi-

coincident relation between fuzzy sets:
Theorem 1.6.5: [ 25]

Let f:X — Y be a function, and f*: F(X) — F(Y) be a fuzzy function,
then for any fuzzy point p = a; in X and for any fuzzy subset A of X, we

have: If » Q@A then f*(p) Q f*(A).
Proof: we have p = a, thisimpliesthat £*(p) = f(a),
Now, we want to show that £*(p) @ f*(A). i.e A+ f*(A)(f(a)) > 1
A+ fH(A(f(@) = 2+ sup{Ax) : x € f(f ()
> 1+ A(a)

> 1 since pQA
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The next theorem generalize the previous theorem for any fuzzy

subsets:
Theorem 1.6.6: [ 25 ]

Let f:X — Y be a function, and f*: F(X) — F(Y) be a fuzzy function,

then for any fuzzy subsets A and B of X, we have:
If A QB then f*(A) Q f*(B)

Proof. Since A Q B; let m € X be a fixed element such that A(m) +
B(m) >1

Consider  f*(A)(f(m)) + f*(B)(f(m)) = sup{A(x) : x € f(f(m))}
+sup{B(x) : x € f1(f(m))} = A(m) + B(m) > 1.

Theorem 1.6.7: [ 25 ]
Under the previous assumption

Let g = b, be a fuzzy point in Y such that f'(b) = {a} and B a fuzzy
subset of Y, thenwe have: if g @ B then (f*)1(g) @ (f*)1(B)

Proof: 7+ (f)*(B)(a) =7+ B(f(a)) =7+ B(b)
But g @B i.er+B(b)>1

Thatis, (f)'(g) @ (f)'(B).
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Chapter Two

Intuitionistic Fuzzy Sets
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Chapter Two
Intuitionistic Fuzzy Sets

2.1 Intuitionistic Fuzzy Sets
Definition 2.1.1: [ 2]

Let X be a nonempty set, we define an intuitionistic fuzzy set ( IFS for
short) as an object having the form A = (4,, A,) where A; andA, are fuzzy

subsets of X such that 0 < A;(x) + A,(x) < 1 forall x € X,
A1 (x) the degree of membership of x in A.
A, (x) the degree of nonmembership of x in A.

Note that, the ordinary fuzzy set A is special case of IFS, that can be
written as (A4, A€), i.e if A, isthe complement of A; then the IFS become

a fuzzy set.

Remark: The IFS 0 = (0, 1) is the empty IFS, and 1 = (1, 0) is the whole
IFS.

Example 2.1.2:
Consider the regular set X, where X ={a, b, c,d}
And let A; = {ag3, bo.4, Cos dos}and A, = {ag7, bos oz dos}

Then A = (A1, 4,) is IFS and as well is a fuzzy subset of X, since
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Example 2.1.3:

(I if 0<x<?2

Let A;(x) =+ if 2=x<4 be the degree of membership of x in
if 4<x<5

2
\ 0 elsewhere

if 0<x<

elsewhere

1
And A,(x) = {Z 4 be the degree of nonmembership of x in
0
A.

Then A = (A4,,4,) is IFS of X and graphically as :

1 -'________T________T'__'I 1 -'________T_______'T'__'I
0.5 =4 -~
0.25 :
I 1
2 4 5

2.2 Some Basic Operations on IFS’s
Definition 2.2.1: [ 4, 13 ]

Let A = (4,,4,) and B = (B,, B,) are two intuitionistic fuzzy subsets of

X, we define inclusion, complement, union and intersection of them as:
(1) ACSB & A;(x) <By(x) and A,(x) = B,(x); Vx € X.

(2) AC = (42, A1)
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3Y)AUB=(A,VB;, A,AB,)
(4)cAnB = (Al/\Bl' A2VBz>
definitions (3) and (4) could be extended to any family of IFS’s.

i.e |If CAi = <Ai1’ Ai2> where i € A, then UiAi = <ViAi1' /\iAi2> and

Nid; = (N Ay, Vidy).

We illustrate the previous definition by the following example:

Example 2.2.2:

Consider the regular set X, where X ={ a, b, c }, and let

A = (Ay,A;) be IFS where A; ={ag3,boe Co6} Az = { o5 D03 Coa }

And B = (B4, B,) where By ={ags, bo7 Cos} B2 ={a0.1,bo2 o1}

Since  A;(x) <B;(x) and A,(x) = B,(x); vx€X then A CB.
AUB=(A;VBy, A,AB,)=(By, B,)

And ANB=(A,ABy, A,VB,)=(A4, 4,)

From this example we can see that since A< B ; AUB =B and

A NB = A, as in classical set theory.

The next theorem shows that we can extend Demorgan’s laws from regular

sets to IFSs:
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Theorem 2.2.3: [ 3]

Let.A and B betwo IFSs of X, we have:

(1) (AN B) = A UB

(2) (A UB)E = A° NB°

Proof is clear.

Note: It can be generalize to any number of IFSs.
Here are the basic properties of inclusion and complementation:
Corollary 2.2.4:[3]

Let A,B,C and A; be IFSsin X, where i € T, then:
1) ASB andBESC = ACC

2) A; €SB foreachiel' = U;A; €SB

3) BS A; foreachi el = BCS N;A;

4) ACB & B C A

5) (0)°=1 and (1)¢=0
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2.3 Intuitionistic Fuzzy Points

This definition deals with a natural generalization of fuzzy point given

by Pu-Liu [19]; that what we call “Intuitionistic Fuzzy Point”.
Definition 2.3.1: [ 8]

Let X be a nonempty set and let ¢ € X a fixed element in X. If « € (0,1]
and f €[0,1) such that a4+ f <1, then the intuitionistic fuzzy set
P = Clap) = (CaCc1-p) is called an intuitionistic fuzzy point (IFP for
short) in X, where a denotes the degree of membership of cin g and S

the degree of nonmembership of ¢ in p.
Other definition of IFP:
Definition 2.3.2: [ 10 ]

Let X be a nonempty set, and let «,8 € [0,1] with 0 <a+ B < 1. An
intuitionistic fuzzy point £ written as ¢ p) is defined to be an
intuitionistic fuzzy subset of X, given by:

- _ _((a,p) if x=c

P = Cap() = { (0,1)  otherwise

IFPs in X can sometimes be inconvenient when we express an IFS in X

in terms of IFPs. This situation will occur if an IFS A contains some
points x € X such that A,;(x) =0 and A,(x) € [0,1). Therefor we shall

define “Vanishing IFPs” as follows:
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Definition 2.3.3: [ 10 ]

Let X be a nonempty set and ¢ € X a fixed element in X, if § € [0,1) then
the IFS 5 = Cp) = (0, c“1-p) is called vanishing intuitionistic fuzzy point

( VIFP for short) in X,

The following definition present some types of inclusion of an IFPs to an

IFSs:
Definition 2.3.4: [ 8]
(1) let p = ¢ pybean IFPin X, and A = (4;,4;) be an IFS in X, we

may say £ contained in A (p € A for short) if and only if 7 = cqp) S

A.
On the other word, p € A ifandonlyif a < A,(c) and B = A,(c).

(2) let £ = cgy bea VIFP in X, and A = (A4,A4,) an IFS in X, # is said

to bein A (4 € A for short) if and only if A;(c) = 0and B = A4,(c).
Result 2.3.5:

In intuitionistic fuzzy set theory, specifically in intuitionistic fuzzy

points, we have in general an IFP 5 = ¢, gy Where a, € [0,1] such that

0 < a+ f <1, then we have the following cases:

1) Ifa+ 0andp # 1, then £ is regular intuitionistic fuzzy point, and we

call it intuitionistic fuzzy point ( IFP ).
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2) If a=0andp # 1, then £ become vanishing intuitionistic fuzzy

point ( VIFP ) and we denote it by 4.
For example: # = (0, 0) it’s VIFP.
3) If a =1, then its become a regular fuzzy point.
4) If § =1 — a, then its become a regular fuzzy point.

The following definition generalize the notion of quasi-coincident from

fuzzy sets to IFS:

Definition 2.3.6: [ 10 ]

(1) An IFP 5 = c(qp) in X is said to be quasi-coincident with the IFS
A = (A1, 4,), denoted by 5 Q A ifand only if a>A,(c) or <

A4 ().

(2) Two IFSs A = (A,,A,) and B = (B, B,) in X, are said to be quasi-
coincident, denoted by A Q B if and only if there exists an element x €

Xsuch that A;(x) > B,(x) or A,(x) < B;(x).

Note: we denote the negation of A Q@ B by the symbol A Q B.
Example 2.3.7:

Let X = {u, v, w} and consider the IFS

A = (Uga Vo5 Wo.7), (Ups, Vg2, Wo3) ) IN X, take ¢ = u then we write:

U(0.6,0.3) QA, U(0.3,0.1) QA
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but 05y @ A since 0.2 < A,(u) and 0.5 > A;(w).

2.4 Intuitionistic Fuzzy Functions

We will define an IF functions between two families of IFSs by using a
function between two fuzzy subsets corresponding to a function between

two regular sets.

Remark: we will use IF(X) to be a family of all intuitionistic fuzzy subsets

of X.
Definition 2.4.1: [ 14 ]

Let X and Y be two nonempty regular sets, and let f:X - Y and let
f i F(X) = F(Y) be a fuzzy function, then we define j_f: IF(x) = IF(Y) to

be an IF function.
We define the image and the preimage of IFSs by:

(i) If A =(4,,4,)isan IFS in X, then the image of A4 under f is an IFS
in'Y defined by :

fA) =(f"(4), f°A-4Y))

where

FanG) = WP 4G X ESTOIL L [0) %0

0 : other wise

And
f*c(l—Az)(y)={ inf { 45(x) : fo 'W1if fffo)#0

other wise
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That’s to say

_ (\/ 4@, [\ 4@) it o) =o
f(dq)z{ \/ 1\X /\ 2 X 1 y

x€f~1(y) Az (%)

0 if ffly)=0

(i) if B = (By, B,)isan IFSinY, then the preimage of B under f isan
IFS in X defined by :

OB =(f"'B), [f7B)
Where
£ (B () = By (f(x))

And
1B (x) = By(f (%))
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Chapter Three
Fuzzy Topological Spaces

3.1 Definition of fuzzy topology
Definition 3.1.1: [ 11 ]

A fuzzy topology on a nonempty set X is a family 1 of fuzzy subset of X (

1.e =< F(X) ) satisfy the following conditions:
(i)1,0 € .
(i) IfFA,Ber,thenAABET.
(iii) If {A,: a € T'} is any family of fuzzy sets in T, then V, A, € T.

The pair (X, 1) is called a fuzzy topological space and the member of t are

called open fuzzy sets, and their complements are called closed fuzzy sets.

As ( regular ) topology; the indiscrete fuzzy topology contains only )
1 and 0, while the discrete fuzzy topology contains all fuzzy sets, and the

set of all crisp fuzzy sets in X is also a fuzzy topology.
Theorem 3.1.2: [ 6]

1) If 7; and t, are fuzzy topologies on a nonempty set X, then their

intersection is a fuzzy topology on X.
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2) Under the previous assumption, 7, U 7, may not be a fuzzy topology.

Proof: (1)(i) 1 and 0 belongs to 7, and 7,, then 1 €7, N7, and 0 € 7; N

Ty.
(i LetA,Bet; N1, then A,B €1, and A, B € t,,Hence AAB € 1, N T,.

(iii) Let {A,:a €T} €T, N1y, then A, €T, and A, € T, for all a €T,

Hence V,er 4, € 71 N T5.
(2) we consider the following example:

Let X = {a, b, c}, and

Let T, = {6; i;A1 ={ag7, by, c1},A; ={ag7,bos, o3}, A1 UA, =

{ao7,bos, c1}, A1 N A; = {ag 7, by, Co.3}}

T, = {(_), 1,B; = {ags, bos, Co.s}} are two fuzzy topologies on X.
7, UT, ={0,1,4,,4,,4, UA,, Ay N Ay, By}

NowA; NB; €T, UT,

Then 1, U T, is not a fuzzy topology.

The previous theorem can be generalize to any number of fuzzy topologies

on X.
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3.2 Neighborhood system:
Remark: we will use € for €,.
Definition 3.2.1: [ 19 ]

Let (X,7) be a FTs, a fuzzy set G in (X, 1) is a neighborhood ( nbd for
short) of a fuzzy point p = x;, iff there exist a fuzzy open set U such that

In general, we can say that G is a nbd of a fuzzy set A iff there exists a

fuzzy opensetUst. A< U <G.
Note : The nbd system is the family of all nbds of a fuzzy point x;.
Theorem 3.2.2: [ 19]

Let A be a fuzzy set in a fuzzy topological space (X, ), then the following

are equivalent:

1) A is fuzzy open.

2) Foreachp = x; € A, Aisanbd of p.

Proof: (1) = (2) is a straightforward. It remains to show (2) = (1)

The assumption ensure that for each p € A, there exists a fuzzy open set

U, st. peU, <A, itfollowsthat V,c,p <VU, <A

by proposition 1.4.4 implies A <V U, < A and consequently A =V U,

which is fuzzy open. Therefor A is fuzzy open.
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Theorem 3.2.3: [ 21 ]

A fuzzy set A is open iff for each fuzzy set B contained in A, A is a nbd of

B.

Proof: = clear.

& since A < A, there exist an open fuzzy setU st. AU <A
Hence A = U and A is open fuzzy set. Q.E.D
3.3 Interior and Closure of fuzzy sets

Definition 3.3.1: ( Interior) [ 20 ]

Let A and B be fuzzy sets in FTs (X, 7) and let B c A, then B is called an

interior fuzzy set of A iff A is a nbd of B.

The union of all interior fuzzy sets of A is called the interior of A and

denoted by A°.
ileA*=V{U:UE€rt U<A}
Theorem 3.3.2: [ 20 ]

Let A be a fuzzy set in a FTs (X, 1), then A° is fuzzy open and it’s the

largest open fuzzy set contained in A.

Proof: By definition 3.3.1, clearly, A° is itself an interior fuzzy set of A,
hence there exists an open fuzzy set U s.t. A° c U c A, but U is an interior

fuzzy set of A (U interior because U € U € A), hence U c A°, which
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implies that A° = U. Thus A° is fuzzy open and it’s the largest open fuzzy

set contained in A.

Corollary 3.3.3: [ 20 ]

The fuzzy set A isopen ifand only if A = A°.

Proof: = Aisopen, A € A° and A° € A, thisimplies A = A°.
& A= A° and A° is open, which implies A is open.
Definition 3.3.4: ( Closure ) [ 20 ]

Let (X,7) be a FTs and let A be any fuzzy subset of X, then the closure of
A denoted by cl(A) or A is defined by :

cl(A)=N{F:F°et, A<F}

We will consider some examples to compute the closure and the interior of

some fuzzy sets in a FTs:
Example 3.3.5:
Given the following fuzzy sets A,B,C and D of X = [0, 1]

A




C o .41 )
0.5 1

Where t ={0,1,4, B, C}
To find D°, D

Firstly we find the fuzzy closed sets which are the complements of the

members of t:

A :
BC
\‘. :
0.5 1
11 ,
: ;
0.5 1
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Now, the fuzzy closed set contaning in D are A€, C€ and 1.
Therefor D = ASACS A1 = A°.

And the interior is D° = 0.

Example 3.3.6:

Let T be the fuzzy topology generated by the fuzzy sets A, B and C such

that A ={agsg b2 1}
B ={agg bos Coa}
C ={ao.6 bo.s Co6}
Thent ={0,1,4,B,C, {ao.s, D02, Co.a} {A0.6, bo2s Co6} {00.6) Po6s Coa b
{ao.6 D02 €04}, {008, boe, 1}, {08 bos, Co.e}}
Now, its clear that A° = A

To find cl(B), we need the fuzzy closed sets which are :
0,1, {ao2,bog €0} {02, bo.4,Co6} {004, D4 €043 {A0.2) Do g) Co6}
{a0.4,bog) 0.4} {004, bo.4, Co.63:{0.4 Po g €06} 100 2, Do as Co}

{ao2, D04, Coa}

Hence cl(B) = 1.
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Lemma 3.3.7: [ 20 ]

Le A be a fuzzy setinaFTs (X, 1), then cl(A) is fuzzy closed set.
Proof: We have cl(A) = {A, F,: F fuzzy closed and A < F,}

(AL E,)¢ = V4 E,© which is fuzzy open.

Theorem 3.3.8: [ 20 ]

Let (X, 1) be a fuzzy topological space, a fuzzy set A is fuzzy closed if and

only if A = cl(4).

Proof: Assume that A = cl(A4), but cl(A) is fuzzy closed, therefor A is

fuzzy closed.

Conversely, assume A is fuzzy closed, then by definition 3.3.4(closure),

A < F, foreach F,. Hence A < A\, F,
Which implies A < cl(A4)

Now, cl(A) = A{F : F¢ € 1, A < F}, that is cl(A) is the smallest closed

fuzzy set containing A, but A is closed fuzzy set, this implies cl(4) < A.
Therefor A = cl(A4).
Lemma 3.3.9:[20]

Let (X, 7) be a fuzzy topological space, then for any A and B fuzzy subsets

of X the following are true:
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1)AVB =AVB.
2)(AVB) = A°VB°.
3) (A°)°¢ = 4°.

4) (A)° = (A°)".

Proof: (1) AVB = A\ F,:F,closedand AVB < F,

But
i \r Vs
F closed K closed
AS<F B<K

= \@ v
Fi,K

As<F;
B=<K;

Il
t~
L

L¢ closed
AVB=L¢

=AVB
(2) ASAVB= A< (AVB)°
B<AVB=B°<(AVB)°

Hence A°VB° < (AV B)".
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B)1-A=1-V{U:Uer, USA}
=AN{1-U:U€r, USA}
=AN{1-U:U€r, 1-U=21-4}
=AN{F:F‘€r, F21-A4A}
= AC.

4 1-A=1—-AN{F:1-F€t, A<F}
=V{1-F:1-Fe€rt, ASF}
=V{U:U€r, U<1-A4}
= (A°)°.

Corollary 3.3.10: [ 20 ]

Let (X, 7) be a fuzzy topological space and let A, B be two fuzzy sets, then
the following are true :

1)AANB =ANAB.

2) (ANB) < A°AB°.

Proof : Straightforward.
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Chapter four

Intuitionistic fuzzy topological spaces
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Chapter four
Intuitionistic fuzzy topological spaces
4.1 Definition of intuitionistic fuzzy topology
Recall : (1) IFS(X) means all intuitionistic fuzzy sets of a set X.
(2) T means fuzzy topology.
Definition 4.1.1: [ 9]

Let X be a nonempty set and let 7 € IFS(X) then <t is called an
intuitionistic fuzzy topology on X (IFT, for short) if its satisfies the

following conditions:

1)0,1€t

2)IfA,Bet, thenANBET.
If{A,:a€el} et thenU,A, ET.

The pair (X, 7) is called an intuitionistic fuzzy topological space (IFTS) and
the members of 7 are called intuitionistic fuzzy open sets (IFO) and their

complement are called intuitionistic fuzzy closed sets (IFC).

It’s clear that if (X, tp) is a fuzzy topological space, then (X, 7) is an IFTS,

where 7 = { (4, A°) : A € 1x}.
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Example 4.1.2

(1) Let X be a nonempty set and let 7,4 = {0, 1}, then clearly 7,4 is an

IFTS. In this case, t;,4 IS called intuitionistic fuzzy indiscrete topology.

(2) Let X be a nonempty set and let 74, = IFS(X), then clearly 74 is an

IFTS. In this case, T4 is called intuitionistic fuzzy discrete topology.
Example 4.1.3
Let X = {a,b,c}

A= {ao.s» bo,s C0.4}; {ao.2,bo.4,Co.4})

B = ({ap4, boe Co2}{a05, P03, Co3})

C = ({aos, bo.6 €04} {@0.2,bo3, €03} )

D = ({ap.4,bos, o2}, {05, bo4,Co4})

Then the family = = {0,1, 4, B,C, D} is an IFT on X.
Lemmad4.1.4:[9]

If (X,7r) be a fuzzy topological space such that Tz be not indiscrete, then

we can construct two IFTSs on X as follow:
(1)t ={0,1} U {(4,,0): A, € 71}.
(2) 72 ={0,T} U {(0,4,°) : Ay € 15 }.

Where 7 = {0,1} U { A,} where a € T..
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Proof : straightforward by definition of IFT.
Notation 4.1.5:
(@) IFO(X) denotes the set of all IFOs in X.
(b) IFC(X) denotes the set of all IFCs in X.
Theorem 4.1.6: [ 15 ]
Let (X, 1) be IFTS, then the following are true:
1) 0,1 € IFC(X)
2) If A;, A, € IFC(X), then A; U A4, € IFC(X).
3) If {4, : a €T} € IFC(X), then N, A, € IFC(X).
Proof: (1) 0 € t = 0¢ = 1 € IFC(X).
1et=1¢=0 € IFC(X).
(2) suppose 4,, A, € IFC(X), then 4;¢, A,° € IFO(X)
A°n A, = (A, U A))° € IFO(X)
So A; U A, € IFC(X).
(3) suppose { A, : a € T'} € IFC(X), then A,° € IFO(X) for a € T.
So UgA,° € IFO(X)

But UaAaC = ( naAa)c
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Hence N, A4, € IFC(X).
From the previous theorem we conclude the following result.
Result 4.1.7

If (X,7) is finite IFTS, then the complement of elements in 7 forms an

IFTS, and its true for fuzzy topology and general topology.
Definition 4.1.8: [ 9, 16 ]

Let (X,71), (X,7,) be two IFTSs, then 7, is said to be contained in t, if

and only if for each A € 7, implies A € t,.
Theorem 4.1.9: [ 9]

(1) Let {r; : i € A} be a family of IFTs on X. Then ;e T; IS also an
IFT on X.

(2) Let 7,, T, betwo IFTs on X. Then 7, U 7, may not be an IFT on X.

Proof: (1) Let {z; : i € A} be a family of IFTs on X, we want to show that

Niep T; iSan IFT on X,
[i(] 0€t;: ViEA = 0 € Njep ;.
Similarly, T € Nyep ;.
[ii] Let A;,A, € Niea T;, then A;, A, € 7; foreachi € A and

hence A, N A, € t; foreachi € A
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Thus, A; N4, € Niea T;.
[liijLet{A, : @ €T} S Nicp Tithen{A,:a €T} CS1;: ViEA
and hence U,er A, € 1; fOreveryi € A.
Thus Uger 44 € Niea T
(2) By counter example:
Let X= {a, b}
Let 7; = {6; 1,({ags bos} {ao2 bos}) },
Let 7, = {6; 1, ({ao3,bo 2} {ao6 bo3}) },
Thent, UT, = {6, 1, ({ags bos} {ao2, boad) ({aos, b2}, {aoe bos}) }
({aos, bos} {ao2, boa}) N {{ags, bo2} {age bos}) € 71 U T,
Thent, U, isnotan IFT.
Theorem 4.1.10

If (X,#) be any fuzzy topological space, then 7 = {(4,A4¢): A € #}isan
IFTS.

Proof: (i) @ €4 = (0,0°) =(0,X)=(0,1)=0€r.
and XeEF=(XX)=(X0)=(1,0=1€r.

(li) Iet A11A2 € # - (Al,Alc) N <A2,A2C> = (Al /\Az, A1C VAZC)
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But A;AA,efandA,“VA,CEF
Thus (A, AA,, A,V AC)ET.
(iii)let{ A, :a €T} #
NoW, UefAa, Aq“) = (Vo Aa Ag Ac°) = (Vo Ag, (Vo Ar)) E T
4.2 Basis and subbasis for IFTS
Proposition 4.2.1: [ 23 ]
We can write any IFS A in X as the union of all IFPs in A.
e A=Ugep
Definition 4.2.2: [ 23]

Let (X,7) be an IFTS, then the collection B < t is called a base of IFT ¢
if for every p € G, where G is any IFOS = 3 B € 8B such that p € B <
G.

The following is another definition of basis of IFT:
Definition 4.2.3: [ 23]

A collection B of IFSs on X is said to be basis ( or base ) for an IFT 7 on

Xif:

(i) forevery p in X, 3B € Bsuch that p € B.
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(i) if p € B; N B, where B, B, € B, then 3 B; € Bsuchthat pH € B; <
B, N B,.

Theorem 4.2.4

Let (X,7)bean IFTSand let B is a base for 7, thenthe IFSG et < G=

Uger B, Where B, € B,Va € T.

Proof : = suppose G € t, then forany p € G, 3B € Bsuchthat p € B C
G (by definition 4.2.2)

Now, by proposition 4.2.1 we have G = U e B.

& clearly B c 1, since t is an IFT on X, therefor any arbitrary union of

members of B belongs to 7. That is UgerBy, ET aS B, € B.
Definition 4.2.5: [ 23]

Let (X,7) be an IFTS, then a subfamily # of 7 is called a subbase for t if

the family of finite intersection of members of # forms a base for z.

Given any collection # of IFSs in X containing 0 and 1, then the set t
consisting of arbitrary unions of finite intersection of members of # forms
an IFT on X. This is the smallest IFT on X containing # and is called the

IFT generated by #.
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4.3 Intuitionistic fuzzy neighborhood
Definition 4.3.1: [ 16 ]

Let » be an IFP of an IFTS (X, 7). An IFS IV is called an Intuitionistic
fuzzy neighborhood ( IFN for short ) of £ if there is an IFOS G in X such
that p € G S V.

Theorem 4.3.2: [ 16 ]

Let (X, t) be an IFTS, then an IFS A of X is an IFOS if and only if Ais an

IFN of p for every p € A.
Proof : let A be an IFOS, clearly A is an IFN of every p € A.

Conversely, suppose that A is an IFN of every IFP belonging to A. Let
P € A, since A is an IFN of g, there is an IFOS G;_ in X such that

P EGy, A

So we have 4 = Uy{ o Pu € A} S Uo{G,,: $u € A} S A and hence
A=U4{G;,: Pa € A}. Since each G, is an IFOS, then 4 is also an IFOS

in X.
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4.4 Interior and closure of IFS
Definition 4.4.1: [ 9]

Let (X,7) be an IFTS and A be an IFS in X, then the Intuitionistic fuzzy

interior and Intuitionistic fuzzy closure of A are defining by :
int(A) =U {G : Gis an IFOS in X and G S A}
cl(lA) =N {F : Fis an IFCS in X and A € F}

We denote the interior of A by int(4) or A°. Also we denote the closure of

Abycl(4) or A.

Note that int(A4) is an IFOS and cl(A4) is an IFCS in X.
Theorem 4.4.2: [ 9]

Let (X,7) be an IFTS and A be an IFS in X, then :
1) Ais an IFOS in X ifandonlyif A" = A.

2) Ais an IFCS in X ifandonly if cl(A) = A.
Proof is trivial.

Now we consider the following example to compute the interior and

closure of IFS in IFTS X:
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Example 4.4.3:[9]

In example 4.1.3, if K = ({agss, boss, Coas} (@03, boa Co3} ) then:
intKk)=U{G:G €tand G S K} =D

and cl(K)=N {F:F is an IFCS in X and K € F} =1.

Theorem 4.4.4: [ 9]

Forany IFS A inan IFTS (X, ), we have :

1) cl(4°) = (A)°¢

2) (4°) = (A)°

Proof : (1) let A = (A, A,) and suppose that the family {Ga = (Gq,, Gg,) ¢

a € I'} be the IFOSs contained in A.
Then A" =(V,Gqa,, NaGg,)
Hence  (A)°=(AgGa,, VaGa)) coorriinnns (*)

Now A°=(A4,A;) and G, <A; and G,, = A, forevery a €T, we
obtain that {G,° = (G,,, G,,) : a € T'}is the family of IFCSs containing
A°, which implies cl(A°) = ( Ay Ge,» VaGa,) oeeriinn, (**)

Hence from (*) and (**) we get cl(4¢) = (4")°.
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(2) let A = (A, A,) and suppose that the family {F, = (F, ,F, ) a €T} be

the IFOSs containing A.
Then A= (AqFy,, VaFy,)
Hence (A =(VoFy,, NaFo)) i, (*)

Now A€ =(4;,A4;) and A; <F, and A, =F,, forevery a €T, we
obtain that {F,° = (F,,, F, ) : a € '} is the family of IFOSs contained in
A thatis (A°) =(VaFy,, NaFa)) ()

Hence from (*) and (**) we get (4°)° = (A)°.

Theorem 4.4.5: [ 9]

Let (X,7) bean IFTS and A, B be an IFSs in X, then the following hold :
1) int(A) < A.

2) A S cl(A).

3) A € B = int(A) < int(B).

4)A € B = cl(4) S cI(B).

5) int(int(4)) = int(4).

6) cl(cl(4)) = cl(4).

7) int(A N B) = int(A4) N int(B).



8) cl(4A U B) = cl(4) U cI(B).

9)int(l)=1 and cl(1) =1.

10)cl(0) =0 and int(0) = 0.
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Chapter five

Compactness and separation axioms for fuzzy topology
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Chapter five
Compactness and separation axioms for fuzzy topology
5.1 compact fuzzy topological spaces
Definition 5.1.1: [ 5]

A family C of fuzzy sets is a cover of fuzzy set B if and only if B c

{c:c € C}.

It is an open cover if and only if each members of C is an open fuzzy set.
A subcover of C isasubfamily of ¢ which is also a cover.
Definition 5.1.2: [ 5]

A fuzzy topological space (X,t) is compact if every cover of X by

elements of T contains a finite subcover.

leif A;et:i el and Vi A; =1, then there are finitely many index
iy,15,...,1, € I'such that V}LlAij =1.

On the other world (X, t) is compact if and only if each open cover of X

has a finite subcover.
Definition 5.1.3: [ 5]

A fuzzy topological space (X, t) will be called regular if for each fuzzy
point p and each fuzzy closed set F such that p A F = 0, there exists

fuzzy openset U and V suchthat p €U and FcV.
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Definition 5.1.4: [ 1]

Let (X,7) be a fuzzy topology and Y fuzzy subset of X, then the pair

(Y,7,) is called a fuzzy topological subspace if the family 7, = {G N

Y: G € t} satisfies the following conditions:
)VHeET,3F;€1°st.Y—H= FynY.
2)VFet,3Gretst.Y—(FNY)= GpNY.
Theorem 5.1.5:

Every subspace of regular space is also regular.

Proof : Let X be a fuzzy regular space and A be a subspace of X. We have
to prove that A is regular. Recall that 7, = {G, : G € 1}, where G =
{(X, ug(x) : x € X} and G4 = {(X, ugja(x)) : X € A}. Let p be fuzzy point
in A and F, is closed set of A such that p € F,. Since A is a subspace of X,
therefore p € X and there is a closed set F in X, which generated the closed
subset F, of A. Since X is regular space and p A F = 0 there exist open

sets U and V such that p € U = (X, uy) and F € V = (X, uy). Thus Uy =
(X, Uyja)s Va = (X, pya)are open sets in A such that p € Uy and Fy € V.

Hence A is a regular subspace of X.
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Definition 5.1.6: [ 7 ]

A fuzzy topological space (X, ) is normal if for each pair of closed sets
F,;,F, suchthat F; A F, =0, there exist fuzzy open sets G, and G, such

that F;€G;:i=12 and G, A G, = 0.
Theorem 5.1.7
A closed subset of normal space is normal.

Proof : let (X, 7) be a fuzzy normal space and let A be closed subset of X,

then (X, t,) is a subspace.

Take F;, F, any two fuzzy closed subsets of A with F; € A — F,, since A is
fuzzy closed subset of X = F; € X — F, and since (X, ) is normal then

there exist G, , G, € Tsuchthat F; € G;:i=1,2 and G, A G, = 0.

Now, A A G, and A A G, are two fuzzy open subset of 7, such that

FFCAANG, F,cAANG,and (AAG)AN(A A Gy) =0.
5.2 Separation axioms
Definition 5.2.1: [ 22 ]

A fuzzy topological space (X,t) is said to be fuzzy T, if and only if
Vx,y €X, x +#y,3U €t such that either U(x) =1 and U(y) =0 or
Ux)=0and U(y) =1.

Another definition for fuzzy T,:
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Definition 5.2.2: [ 22 ]

A fuzzy topological space (X, 1) is said to be fuzzy T, if and only if for any
X3, Ys two fuzzy singletons with x # y, there exist a fuzzy open set U

suchthat x; < U < y,€ or y, < U < x;°.
Definition 5.2.3[ 21 ]

A fuzzy topological space (X,t) is said to be fuzzy T, if and only if
Vx,yeEX,x+y, AU, Vertsuchthat(x)=1,U(y)=0and V(y) =1,
V(x) = 0.

Another definition for fuzzy T; :
Definition 5.2.4[ 21 ]

A fuzzy topological space (X, 7) is said to be fuzzy T; if and only if for any
X3, Ys two fuzzy singletons with x # y, there exists two fuzzy open set

U,V suchthat x; < U <y,° and y, <V < x;°.

It is obvious that (X,7) is fuzzy T, = (X, 1) is fuzzy T,.
The following example shows a T, space may not be T;:
Example 5.2.5

Let X = {a,b}, 7 ={0,1,{ag, bo3}, {0099, P03}, - }

For any a,;, b, there exist U neighborhood of a; such that ay € U <

brc = {ay, by 7}.
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Therefor tis fuzzy T,.

But it is not fuzzy T, by taking a;, by., there is no V € t such that

b0_4 el < a,lc = {al—ﬂ.i bl}
Definition 5.2.6: [ 7 ]

A fuzzy topological space (X, 7) is said to be fuzzy strong - T; (in short T

or F -T,) if and only if every fuzzy singleton is closed fuzzy set.
Example 5.2.7

Let X = {a,b}, T ={0,1,{ay, b;},{ay, b, },{ay, b,}: VAT € (0,1)}
Then 1 is T space because every fuzzy singleton is closed.
Theorem 5.2.8[ 21 ]

A fuzzy topological space (X,7) is fuzzy T, if and only if every crisp

singleton is closed.

It is clear that if (X, 7) is fuzzy Ty then (X, 1) is fuzzy Tj;.
Theorem 5.2.9

Every subspace of T;-space is Ty.

Proof : let X be a T; fuzzy topological space and A be a subspace of X. so

Ty = {GA: GA = (x,‘llclA),G € T}.

Let x,y € A such that x # y, then x, y € X are two distinct points and as X

is Ty, there exist U,V € T suchthat U(x)=1,U(y)=0andV(y) =1,



66
V(x) =0. Then U, and V, are fuzzy open set of A such that U,(x) =1,
Us(y) =0and Vu(y) =1, Vu(x) =0.

This shows that A is T;.
Definition 5.2.10 [ 21 ]

A fuzzy topological space (X, 7) is said to be fuzzy Hausdorff or fuzzy T,
if and only if for any two distinct fuzzy points p, g € X there exist

disjoint U,V et withp e U and g € V.
Definition 5.2.11 [ 21 ]

A fuzzy topological space (X, 1) is said to be fuzzy T, if and only if for any

X3, Vs two fuzzy singletons with x # y, there exists two fuzzy open set

U,V suchthat x; < U<y and y, <V <x;°and U < V°.

Definition 5.2.12: [ 7 ]

A fuzzy topological space (X, 7) is said to be fuzzy Urysohn (fuzzy T,. ) if
2

and only if for every x,, y, two fuzzy singletons with x # y, there exists
two fuzzy open set U,V suchthat x; < U <y, and y, <V < x;¢ and

cl(U) < (cl(V))°.
It is easy to show that if (X,7)isfuzzy T,: then (X,7) isfuzzy T.
Definition 5.2.13: [ 7]

A fuzzy topological space (X, t) is said to be fuzzy strong - T5 ( F - Ty) if

and only if itis T; or F - T; and regular.
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In classical topological spaces, if we have a regular T, space (X,7) then

(X, 1) Is T5 space, but in fuzzy topological spaces, if we have a regular T,
space (X,7) then (X, 7) is fuzzy Urysohn space (T, ).
2

Theorem 5.2.14
Every subspace of T; space is also T;.

Proof : we know that T; is regular T, space, and every subspace of T;-
space is T; (by theorem 5.2.9) and every subspace of regular space is
regular ( by theorem 5.1.4), this implies that every subspace of T; space is

T;.
Definition 5.2.15: [ 7]

A fuzzy topological space (X, t) is said to be fuzzy strong - T, (F - T,) if

and only if itis T, or F - T; and normal.
Theorem 5.2.16 [ 7]
Every closed subspace of T, space is also T,.

Proof : we know that T, is normal T, space, and every subspace of T;-
space is T; (by theorem 5.2.9) and every closed subspace of normal space

is normal, therefor every closed subspace of T, space is T,.
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Chapter six

Compactness and separation axioms for IFTS
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Chapter six
Compactness and separation axioms for IFTS
6.1 compact Intuitionistic fuzzy topological spaces

Definition 6.1.1: [ 9]

Let (X,7) be an IFTS, if a family {(4,, A4;,):i € T} of IFOSs in X satisfy
the condition U {(A;,,4z,):i € T} = 1, then its called an IF open cover of

X.

A finite sub family of IFO cover {(4;,,4,):i € T'} of X, which is also an

IFO cover of X is called a finite subcover of {(4,,4,,):i € T}.

Definition 6.1.2: [ 9]

An IFTS (X, 1) will be called IF compact if and only if every IFO cover of

X has a finite subcover.
Example 6.1.3

Consider the IFTS (X, 1) where X = {a, b}.

A, :<(ai,bn_+1),(aL,bL>) and 7 ={0,1} U {4,:n € N}

n+1 n+2 n+2 n+3

Note that U, eyA, 1S an IFO cover for X but this cover has no finite

subcover.

Therefor the IFTS (X, ) is not compact.
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Definition 6.1.4: [ 9]

Let (X,7) be an IFTS and 4 an IFS in X , if a family {(4,, 4, ):i € T} of
IFOSs in X satisfy the condition A  {(4,,, 4,,):i € T}, then its called an

IF open cover of A.

A finite sub family of IFO cover {(4;,, 4,,):i € T’} of A, which is also an

IFO cover of A is called a finite subcover of {(4,,, 4,,):i € T'}.

Definition 6.1.5: [ 9]

An IFS A = (A4, A,) inan IFTS (X, 1) is called IF compact if and only if

every IFO cover of A has a finite subcover.
Definition 6.1.6: [ 17 ]

An IFTS (X, 1) is called IF regular space if for every IFP % and every
IFCS F such that  n F = 0, there exists an IFOSs U,V such that p € U
and F C V.

Theorem 6.1.7: [ 17 ]

If (X,7) is regular IFTS then for any IFOS U and an IFP 4 such that
P NUE =0, there existan IFOS V suchthat f €V €V c U,

Proof: suppose that (X, ) is regular IFTS such that fNnU¢ =0, U=
(A1, A,) then U¢ = (A4,,A,) is an IFCS in X. since X is regular, 3 two
IFOSs V,G suchthat g € V, U € GandV NG = 0.
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Now, G€ is an IFCS in X such that V € G S U. Thus g€V SV and
VeG‘cUsoVeU.

Hence p eV CV C U.

Theorem 6.1.8

Every subspace of IF regular space is also IF regular.
Definition 6.1.9: [ 17 ]

An IFTS (X, 1) is called normal IFTS if for every pair of IFCSs F,,F,
such that F; N F, = 0 then there exists IFOSs G,, G, such that F; € Gy,

Fngzand G10G2=(~)
Theorem 6.1.10: [ 17 ]

If (X,7) is normal IFTS then for every IFCS F of X and any IFOS U of X

such that F n U¢ = 0, there exists an IFOS G suchthat FS G S G C U.

Proof: suppose that (X, ) is normal IFTS. Let F be an IFCS in X and U be
an IFOS in X suchthat F nU¢ =0, then F € U.

Since X is normal and U€ is an IFCS in X, then 3 two IFOSs G and G, such

that GNnG, =0 and F € U, U € G,.

This implies that G,°< U and G € G, but G,° is IFCS, therefor
GCS G, Thus FSGCSGCU.
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6.2 separation axioms in IFTS
Definition 6.2.1: [ 23 ]

An IFTS (X,7) is called IF T, if and only if for any x,y € X,x # y,
AU,V et such that U(x)=(10), U(y)=(0,1) or V(x)=(01),

V(y) = (1,0).
Definition 6.2.2: [ 23 ]

An IFTS (X,7) is called IF T, if and only if for any x,y € X,x # y,
AU,V et suchthat U(x)=(1,0), U(y)=(0,1) and V(x) = (0,1),

V(y) = (1,0).
Definition 6.2.3: [ 18 ]

An IFTS (X, 1) is called IF T,(or, Hausdorff ) if for any pair of disjoint
IFPs or VIFPs 4,4 in X, there exist U,V €t suchthat peU,geV
andU NV =0.

Example 6.2.4: [ 23]

Let X = {a,b} and let T ={0,1, ((ay, bo), (ag, b1)), {(ag, by), (ar, bo))}

then (X,t) isan IFTS anditisan IF T,, T; and T, spaces.

It obvious that if (X,7)isIFT, = (X,7)isIFT; = (X,t) is IF T, but

none of the implication are reversible.
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Definition 6.2.5: [ 23 ]

An IFTS (X,7) is called IF q — T, if for every pair of distinct IFPs or
VIFPs 4,4 in X, there exist U,V €t suchthat peU, g€V and
Ucve.

We have (X,7) isanlIF T, = (X,t) isan IF g — T, but none of the

implication are reversible.

Theorem 6.2.6: [ 23 ]

Every subspace of T, space is Tj.

Proof : let X bea T, IFTS and A be a subspace of X.

S0 1, ={Gs = (Ugla Via): x € A, G € T} Where G = (ug, v;).

Let x,y € X such that x # y. Since X is T, then 3 U,V € T such that

Ux) = (1,0), U(y) =(0,1) or V(x) = (0,1), V(y) = (1,0).

Thus there exist Uy, V, € T4 such that U,(x) = (1,0), Uu(y) = (0,1) or

Va(x) = (0,1), Va(y) = (1,0).

This prove that the subspace A is IF T,.
Theorem 6.2.7: [ 23 ]

Every subspace of T, space is T;.

Proof : same as the previous theorem.
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Theorem 6.2.8: [ 23 ]
Every subspace of T, space is T,.
Proof :

let (X,7) be an IF T, space and let A be a subspace of X where 7, =

{GA = (,uGlA,VGlA>:x € A, G € T} Where G = (HG,VG>.

Let p and g be two distinct IFPs in A ( they have distinct supports ), then
P, g are also distinct IFPs in X but X is IF T,, then there exist U,V €t

suchthat pe U, geVand UNV = 0.
Thus there exists Uy, V, € T, suchthat p € Uy, g € Vyand U,nV, = 0.

This prove that the subspace A is also T, space.
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Conclusion

Through this study it was found that many properties of topological
spaces in a regular setting were extended to topological spaces in fuzzy
setting including intuitionistic fuzzy setting. However, some other
properties were not extended to fuzzy setting, while its extended to IF
setting and some properties was extended to IF setting but not in fuzzy
setting, which motivated the researchers to put down new definitions to

conclude parallel theorems.

There have been different definitions for the same property, this causes
researches and studies to be scattered, there have to be unification of
definitions of different properties that will orient the research by all
interested people to be in one direction and all efforts would be

strengthened.
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