
 

An-Najah National University 

Faculty of Graduate Studies 

 

 

Topological concepts on certain fuzzy topological 

spaces including intuitionistic fuzzy topological spaces 

 

 

By 

Mus'ab Bassam Ahmad Issa 

 

Supervised  

 Dr. Mohammad Al-Amleh 

 

 

 

 

 

This Thesis is Submitted in Partial Fulfillment of the  Requirements 

for the Degree of Master of Mathematics, Faculty of Graduate Studies, 

An-Najah National University, Nablus-Palestine. 

2018 



ii 

 

 

 

 

 

 

 

 

 

 

 

Topological Concepts On Certain Fuzzy Topological 

Spaces Including Intuitionistic Fuzzy Topological 

Spaces 

 
By  

Mus'ab Bassam Ahmad Issa  

 
This Thesis was Defended Successfully on 81/2/2011 and approved by: 

 

Defense Committee Members                                                    Signature                       

1. Dr. Mohammad Al-Amleh  / Supervisor                             ...….……… 

2. Dr. Saed Mallak                    / External Examiner             ....….……… 

3. Dr. Mohammad Abu Eideh   / Internal Examiner            …….……… 



iii 

 الإهداء

 أما ثمرة بحثي ىذا فأىدييا

إلى الرجل الحصين ذو القامة العالية الذي بذل حباب عرقو وكد واجتيد ليمدني بالعون والرشاد، 
الذي عممني أن الأعمال الكبيرة لا تتم إلا بالصبر والعزيمة والإصرار، اسـأل الله أن يمد في عمره 

 ويجزيو عني خير الجزاء. والدي العزيز د. بسام مناصرة

ء رسالة صنعتيا من أوراق الصبر وطرزتيا في ظلام الدىر بلا فتور إلى من نذرت عمرىا في أدا
أو كمل، رسالة تعمم العطاء كيف يكون العطاء وتعمم الوفاء كيف يكون الوفاء إليك أمي الحبيبة 

 اىدي ىذه الرسالة وشتان بين رسالة ورسالة

ني دائماً بين يدييا دعاء إلى زىرة الحياة ونورىا، البمسم الشافي خيمة الحنان وغيمة المكان تحمم
 متصل لمسماء، خطيبتي وزوجتي المستقبمية بإذن الله

إلى أخ لم تمده أمي بل ولدتو لي الأيام، يا من كنت خير عونٍ لي في غربتي وأليمتني الثبات، 
 صديقي ورفيق دربي الوفي المخمص أ. ىشام محمد ظريفة

 تي وأخواتيسندي وعوني ومصدر سعادتي أخو   إلى النجوم الخفية،

إلى روح جدتي الحاجة عائشة صوالحة " أم بسام " اسأل الله أن يجعل قبرىا روضة من رياض 
 الجنة ويجمعيا مع النبيين والصديقين والشيداء
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Topological concepts on certain fuzzy topological spaces including 

intuitionistic fuzzy topological spaces 

By 

Mus'ab Bassam Ahmad Issa 

Supervised 

Dr. Mohammad Al-Amleh 

Abstract 

In this thesis the topological concepts of  fuzzy topological spaces and 

intuitionistic fuzzy topological spaces were investigated and have been 

associated with their duals in classical topological spaces. 

Fuzzy sets, fuzzy points, fuzzy functions and fuzzy relations were 

presented along with their properties. Many topological concepts and 

properties were proved  to be true in  non fuzzy setting. 

Intuitionistic  Fuzzy sets, Intuitionistic  fuzzy points, Intuitionistic  fuzzy 

functions and Intuitionistic  fuzzy relations were presented along with their 

properties. Many topological concepts and properties were proved  to be 

true in  fuzzy setting. 

Also different approaches of separation axioms were investigated using Q-

neighborhood and fuzzy points and Intuitionistic  fuzzy points, and we 

studied another types of separation axioms on fuzzy setting and 

Intuitionistic  fuzzy setting. 
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Finally, fuzzy compactness and Intuitionistic  fuzzy compactness were 

introduced with a theorem proved the way they are related. 
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Chapter One 

Introduction To Fuzzy Sets 
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Chapter One 

Introduction To Fuzzy Sets 

Introduction 

Fuzzy sets, in mathematics, are sets having elements with a degree of 

membership. This concept was first generalized by Zadeh in 1965 in his 

famous paper [ 26 ], where the concept of fuzzy sets was introduced.  

In classical set theory, an element either belongs or doesn’t belong to the 

set, but in fuzzy set it is different, here, the element has a degree of 

membership between zero and one, which leads to a new definition of 

characteristic function. 

1.1 Fuzzy Sets  

In set theory a subset  A of a set  X can be identified with the 

characteristic function     that maps X to {0,1} by taken all elements in A 

to 1, while taken an elements in  X – A  to 0. 

        ( )  {
      if     
      if       

 

zadeh in [ 26 ] extended the definition of the characteristic function by 

replacing the set {0,1} by the closed interval [0,1] which is the basis to the 

new definition of fuzzy sets. 

Definition 1.1.1: [ 26 ] 

Let X be nonempty ( crisp ) regular set, a fuzzy subset    of X is 

characterized by a membership function   ( ) that maps X to the closed 
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interval [0,1];             ,   - and the value of   ( ) at   representing 

the grade of membership of    in    . 

In the case of characteristic function       *   +, if    ( )   , 

then the grade of membership is 0, and this means that    doesn’t belong to 

A, while if   ( )   , then the grade of membership is 1, and this means 

that   belongs to A. But in the case of fuzzy sets;   ( ) could be any other 

number from 0 to 1, the value 0 is used to represent complete 

nonmembership, the value 1 is used to represent complete membership, and 

values in between are used to represent intermediate degrees of 

membership. 

Example 1.1.2: 

Let   be nonempty regular set,    is fuzzy subset of       ( )       may 

mean that    is more likely to be in    ,    ( )      then    may be half 

way between belonging to    and not belonging to    . 

It’s clear that fuzzy subsets of    are generalize of regular subsets of     

on the other word, regular subset of    are a special case of fuzzy sets 

called crisp fuzzy sets where    ( )  *   +  ,   -  

We can represent a fuzzy subset of    by using different ways, in the 

following example we describe some of these ways: 
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Example 1.1.3: 

Consider the regular set    where    *       + and let     be a fuzzy 

subset of    that maps    to [0,1] by mapping:  

                               

We may represent     as the set of order pairs : 

   *(     ) (     ) (   ) (     )+ 

Or we may write it as:    *                 +. 

Example 1.1.4: 

Take X to be a set of people of age 25, a fuzzy subset “FAT” may be 

defined to be the answer of the question “to what degree a person   is fat”? 

the answer could come on a membership function based on a person’s fat:  

FAT( )  {

                 if       
              

  
    if          

                 if       

    

Graphically:  

 

 

We may say that the percentage of belonging for any person with weight 

    to being FAT is 100%, while a person with weight 70 kg fat has a 

percentage 75% and we write:  

1 

40 80 
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   (  )       or     

This grade of membership function is linear, but we may have the 

nonlinear function that reflects the importance of the fat needed. For 

example:  

FAT( )  {

                      if       
(              ) 

    
    if          

                      if       

    

 

 

 

There are other types of fuzzy subsets, one of them is the fuzzy constant 

subset of X, which is the function that takes all elements of X to a constant  

 , where    ,   -  and it is denoted by  . 

Special fuzzy constant subsets are   and   . 

1.2 Operations on Fuzzy sets 

After these new concepts of fuzzy sets were defined, we extend the 

usual operations on classical sets; including the union, intersection and 

complementation, to fuzzy sets as follows: 

 

 

1 

40 80 
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Definition 1.2.1: [ 26 ] 

Let    and    be two fuzzy subsets of  X, we say: 

        iff      ( )    ( )                     

Definition 1.2.2: [ 26 ] 

Let    and    be two fuzzy subsets of  X, the intersection, union and 

complement of fuzzy subsets, denotes respectively as      ,      ,  

  
  are also a fuzzy subsets of X and defined as follows: 

Intersection:    (     )( )  min*  ( )   ( )+ 

Union:             (     )( )  max*  ( )   ( )+ 

Complement:      
 ( )      ( ) 

These definition are generalized to any number of fuzzy subsets of X; 

so, for any family *         + of fuzzy subsets of X, where    is an 

index set, then we define: 

(⋁     )( )   sup*         + 

(⋀     )( )   inf  *         + 

We illustrate the previous definitions by the following examples: 
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Example 1.2.3: 

(1) Consider the regular set X where X *           +, take the fuzzy 

subsets: 

   *                      + 

      *                        + 

Then                              *                        + 

                                        *                      +  

And                                   
  *                      + 

(2) consider the regular set X where X= *       +, take an infinite number 

of fuzzy subsets: 

    *                  +  

    *                    +  

    *                      +  

    ⁞ 

Then   ⋁     
 
    *                 + 

And     ⋀     
 
    *                 + 

In case of continuous graph: 
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Example 1.2.4: 

Take X = [ 0, 5 ],     and     are as follow :  

 

 

 

Then 

  

 

 

 

To show that this definition extends the union, intersection and 

complementation applied on regular subset of X, we have:  

(    )( )  min *   ( )   ( ) + 

If     and       then    ( )    and    ( )   , which implies that 

min {   ( )   ( ) +   ; so (    )( )   ;  i.e        . 

But; if       or     , then    ( )    or    ( )   , which implies 

that min {   ( )   ( ) +   ; so (    )( )   ;  i.e        . 

Which complies with the classical definition of “ Intersection”. 

1 

1 2 3 4 5 

0.5 

1 

1 2 3 4 5 

0.5 

1 

1 2 3 4 5 

0.5 

1 

1 2 3 4 5 

0.5 

1 

1 2 3 4 5 

0.5 

𝜇𝐴 𝜇𝐵  

𝜇𝐴  𝜇𝐵  𝜇𝐴  𝜇𝐵  𝜇𝐴
𝑐  
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In similar manner, we may show the same for union and complementation. 

The next theorem shows that we can extend Demorgan’s laws from 

regular(crisp) sets to fuzzy sets: 

Theorem 1.2.5: [ 26 ] 

Let    ( )   and     ( )  be two fuzzy subsets of X, we have:  

(1) (     )
 ( )  (  

    
 )( ) 

(2) (     )
 ( )  (  

    
 )( ) 

Proof: (1) (     )
 ( )    (     )( ) 

                                                   max*  ( )   ( )+ 

                                                 {
    ( )     if     ( )    ( )

    ( )     if     ( )    ( )
 

                                                 {
    ( )     if       ( )      ( )

    ( )     if       ( )      ( )
 

                                                  min *    ( )      ( ) + 

                                                  min {   
 ( )     

 ( ) + 

                                                 (  
    

  )( ) 

(2)   (     )
 ( )    (     )( ) 

                                        min*  ( )   ( )+ 

                                      {
    ( )     if     ( )    ( )

    ( )     if     ( )    ( )
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                                      {
    ( )     if       ( )      ( )

    ( )     if       ( )      ( )
 

                                       max *    ( )      ( ) + 

                                       max {   
 ( )     

 ( ) + 

                                      (  
    

  )( ) 

This theorem can be generalized to any family of fuzzy subsets of X, 

specifically: 

(⋁     )
 
 (⋀    

 
 )  and  (⋀     )

 
 (⋁    

 
 ). 

Notion of  α – level is one of the basic notions of fuzzy sets, defining in 

the following definition: 

Definition 1.2.6: [ 24 ] 

The  α – level set of a fuzzy subset    denoted by   
  is a non-fuzzy 

subset of X, such that the grade of membership of its elements  ≥ α, where 

α > 0, that is: 

  
  *       ( )   +   where   α > 0. 

Also, we define 0 – level in case of X is the real line by: 

  
  the closure of   *       ( )   + )  in    . 

The support of   , denoted by     (  ), is a crisp subset of X whose 

elements all have nonzero membership grades in   .   
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                                (  )  *       ( )   + 

It  is obvious that      (  )     iff             ( )    for all    . 

We say that a fuzzy subset    of X, where X is infinite, is countable 

whenever     (  ) is countable. 

How we found the  α – level ? the answer of this question in the next 

example: 

Example 1.2.7: 

(1) In discrete case: 

Consider a regular set X, where X={         +,  

let     *                   + be a fuzzy subset  of   X,  then  

The  0.4 – level =  
    *       + 

The  0.8 – level =  
    *   + 

The  0.9 – level =  
      

And the      (  )  *         +   X. 

(2) In continuous case: 

Consider X =    (    ),  and  the  fuzzy  subset  of   X   given as  

  ( )  

{
 
 

 
 

 

   

 
        if       ,   -

                    if       ,   -
              if       ,   -

              elsewhere

  
 



12 

Graphically:  

 

 

The 0.3 – level at this fuzzy subset is     
    *      ( )     + 

   

 
             

                

Hence;    
    ,         -. 

In general, ( with respect to the previous example ); the α – level can be 

found as follows:      
  ,   

    
  -  

                  
  
   

 
     

        

and              
      

      

So,     
  ,           -. 

1.3  Convex Fuzzy Sets 

The convex of fuzzy sets was introduced by Zadeh in his famous paper, 

we assume for concreteness that X is a real Euclidean space   . 

Definition 1.3.1: [ 12 ] 

Let       
  ,    - 

(1) A fuzzy set    is convex if and only if  

1 

3  6 8 9 

0.5 
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  (    (   )  )  min *   (  )    (  ) + 

For                 ,    - 

(2) A fuzzy set    is strongly convex if and only if  

  (    (   )  )  min *   (  )    (  ) + 

For                 (    ). 

Note that any strongly convex  fuzzy set is convex, but the converse is 

not. 

A basic property of convex fuzzy sets is expressed by the following 

theorem: 

Theorem 1.3.2: [ 12 ] 

If    and    are two convex fuzzy sets, then their intersection also a 

convex fuzzy set. 

Proof: Let              

   (    (   )  )   min {    (    (   )  )   

                                     (    (   )  ) +  

Now; since       and      are convex 

  (    (   )  )  min *   (  )    (  ) + 

  (    (   )  )  min *   (  )    (  ) + 
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And hence  

   (    (   )  )   min { min *   (  )    (  ) +   

       min *   (  )    (  ) ++  

                min {min *   (  )    (  ) + min*   (  )    (  )++ 

                min *   (  )    (  ) + 

Thus     (    (   )  )   min *   (  )    (  ) + 

Therefor;       is  convex. 

Theorem 1.3.3: [ 12 ] 

(a) If      is convex fuzzy set, then support of     (     (    ) ) is a 

convex set. 

(b) If      is strongly convex fuzzy set, then      (    )      

Proof: (a) It is implied directly by definition of convex fuzzy set and 

definition of support of     . 

(b) If      is strongly convex fuzzy set, then from definition of strongly 

fuzzy set, for any                   and    
 

 
,  we obtain: 

  (  )     ( 
 

 
(     )  

 

 
(     )) 

                 min*   (     )   (     ) +    

           (   )  
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Therefor;               (   )                                      Q.E.D 

Remark:  From now we will replace a notation of fuzzy subset     by   

for more simply. 

1.4 Fuzzy Points 

There are many types of fuzzy subsets, one of them is a fuzzy point, it’s 

defined by Wong [24], and later on, other definitions were presented by 

Srivatava [22], Ming and Liu [19]. 

Definition 1.4.1: [ 24 ] 

Let X be a regular set, let x be a fixed element of X, a fuzzy point      is a 

fuzzy subset of X with the membership function : 

 ( )  {
      if              where    (   -
     elsewhere                                     

 

On the other word; a fuzzy point   is a fuzzy subset of X that take an 

element α to a number   (   - and the remaining elements to 0, and it 

will be denoted by       

It is clear that        ( )        ( )     and   (  * +)     

For example: If X  *      +, then the point      is a fuzzy subset 

*            +  
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Definition 1.4.2: [ 24 ] 

Let       be a fuzzy point and    a fuzzy subset of X, then we may say 

  in    or   contains     denoted       if and only if      ( ). 

                  ( ). 

For example: if X = *       +  and    *               + then        but  

      . 

Definition 1.4.3: [ 24 ] 

(1) A fuzzy point        in X is quasi-coincident with the fuzzy subset  

  of X, denoted by         if and only if      ( )    and it’s clear 

that               . 

For example: Let X = {         +   and    *                   +, then 

          since  0.5      

(2) A fuzzy subset     of X is quasi-coincident with the fuzzy subset    of  

X  if and only  if          such that    ( )   ( )   , and we write  

     . 

Note that:  

(i)            . 

(ii)               . 

(iii)        and     (     ( )   ( )  for each    in X, then        
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(iv)          and      are not quasi-coincident. 

Proposition 1.4.4 

We can write any fuzzy set   of X as the union of all fuzzy points in  , i.e 

  ⋃     . 

1.5 Fuzzy Membership: 

In 1974, C.K  Wong [ 24 ] define the concept of belonging of fuzzy point 

to a fuzzy set. Later on, different definitions of the same concept were 

added by M.Sarker [21] and Wong [ 24 ]. These definition were  given 

independently. At the first look the definitions seem to be the same but 

after investigation they are found to be different in many aspects. 

Proposition 1.5.1: 

Let      be a fuzzy point in X and let   be any fuzzy set in  , then we 

can write   as a union of its fuzzy points. 

i.e;   ⋁*(   )       ( ) where   supp( )+ 

or we may write   ⋁      . 

In the following definition we classify the different definitions of the 

relation “belonging” or  . 
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Definition 1.5.2: 

Let   be a fuzzy subset of a nonempty set   and let      be a fuzzy 

point in    we define the relation   as follow: 

1)         if and only if     ( ) 

2)         if and only if     ( ) 

3)         if and only if     ( ) 

Remarks 1.5.3: 

1)     ⋁  if and only if      or     , which is true for all 

definitions of   “   ”. 

For   :      ⋁   means   max*  ( )  ( ) + so    ( ) or 

   ( )           or        . 

The same will be true if we replace      by     and   . 

2)      ⋀  if and only if      and     , which is true for all 

definitions of   “   ”. 

For   :      ⋀   means   min*  ( )  ( ) + so    ( ) and 

   ( )          and        . 

The same will be true if we replace      by     and   . 

We can extend the previous remark to any finite number of fuzzy sets 

          . 
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In the case of arbitrary families of fuzzy sets *        +, there is a 

different between definitions of “   ”, we will explain this different in the 

following: 

Lemma 1.5.4: 

Let *        + be a family of fuzzy subset of X, then       for some    

has three cases about union: 

1)          for some           ⋁  . 

2)         for some           ⋁  . 

3) The statement         for some        ⋁    is false. 

Proof: (1) let         for some    then      ( ) for some  , so 

  sup*  ( )     +, then   ( ⋁  ) ( ). 

Therefor     ⋁    

Conversely, let      ⋁    then   sup*  ( )     +, that is there exist 

at least one   ( ) say    ( ) s.t      ( )  sup*  ( )     + 

Therefor         for some  . 

(2) straightforward. 

The converse of (2) may not be true, the following examples show that: 

Example [1] : let    *   + 

                     and      *          + 
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                                  *           + 

                                         

Then   ⋁    
 *         + 

Now;         ⋁    
  but            for each     

Example [2] : let    *   +  and     {  
   
} :         

Then ⋁    
 *    + and      ⋁    

  but          for each   . 

 (3) To show the statement is not true, we give a counter example: 

Example: let    *   + 

                     and      *          + 

                                  *           + 

                                          

Then   ⋁    
 *         + 

We observe that         ⋁    
  but            for each    and             

but          ⋁    
  

Lemma 1.5.5: [ 25 ]  

Let *        + be a family of fuzzy subset of X, then    ⋀   has three 

cases: 

1)     ⋀                  for all  . 
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2)     ⋀                  for all  . 

3) The statement       ⋀                for all     is not true.  

1.6  Functions on Fuzzy Sets 

The concept of fuzzy function was defined between two families of 

fuzzy subsets corresponding to a function between two regular  sets. 

Remark: we will use F(X) to be the family of all fuzzy subsets of X. 

Definition 1.6.1: [ 25 ] 

Let X and Y be two regular sets, and let   be any function from X into Y 

(          ), for any fuzzy subset   of X and for any fuzzy subset   of 

Y, we define     to be a fuzzy function between F(X) and F(Y) that takes a 

fuzzy subset of X to a fuzzy subset of Y, by : 

    ( )   ( )  

  ( )( )  {
sup* ( )       ( ) +    if       ( )   

                                                  if       ( )   
 

So; if     is a fuzzy subset of X, then    ( )  is a fuzzy subset of Y. 

Also we define the fuzzy function (  )-   as (  )- ( ) by : 

(  )  ( )( )   (  ( )) 

So; if   is a fuzzy subset of Y, then (  )- ( ) is a fuzzy subset of X. 
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Example 1.6.2: 

Consider X  *           + and Y  *         +  and        by  

                          ;  

Let     be the fuzzy subset of  X  such that   *                      + 

Then    ( ) is the fuzzy subset of  Y defined as : 

  ( )    ,   - 

              max* ( )  ( )+  max*       +                  

and     , since   - ( )   . 

Example 1.6.3: 

Consider X  *           + and Y  *         +  and         by  

                          ; 

Let     be the fuzzy subset of  Y  such that   *                 + 

Then (  )- ( ) is the fuzzy subset of X defined as : 

           (  )- ( )    ,   -  

                                              . 

We know that the image of fuzzy subset of X is a fuzzy subset of Y, and 

the invers image of a fuzzy subset of Y is also a fuzzy subset in X;(by 

definition). 



23 

In special case of fuzzy subset, fuzzy point, but the question is “ Is this 

notion true for fuzzy point” ? that is, if   is a fuzzy pint in X, is the image 

of   a fuzzy point in Y ? and if   is a fuzzy point in Y, is the invers image 

of    a fuzzy point in X? 

The answer of these questions are given in the following theorem: 

Theorem 1.6.4: [ 25 ] 

(1) If       is a fuzzy point in X, then   ( ) is a fuzzy point in Y, call it 

   where    ( )   ( )   . Such that  ( ) is the     ( ) and   is the 

value of   . 

Proof: If   - ( )          ( ) = 0. 

If   - ( )     then  ( )   sup{  ( )     - ( )+  and we have two 

cases: 

Case (1) : If    - ( )  then  

 ( )  sup{  ( )       ( ( ))+  *        +    

Case (1) : If    - ( )  then  

            ( )  sup{0, 0,    . 

Therefore;    ( )   ( )    is a fuzzy point in Y. 

(2) If       is a fuzzy point in Y, then  (  )- ( ) may not be a fuzzy 

point in X. 
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The following examples explain this result: 

Example (1): If   - ( )      then (  )- ( )    which is not a fuzzy 

point. 

Example (2): If   - ( ) has at least two elements (not singleton), say 

 - ( )  *    +, then (  )- ( )  *           + which is not a fuzzy 

point. 

According to the previous two examples, the only case that imply “if  

     is a fuzzy point in Y, then  (  )- ( ) is a fuzzy point in X” is if  

 - ( ) is singleton. 

     if   - ( )  is singleton, then (  )- ( ) is a fuzzy point in X. 

The following theorem shows what the fuzzy functions do on the quasi-

coincident relation between fuzzy sets: 

Theorem 1.6.5: [ 25 ] 

Let        be a function, and     ( )   ( ) be a fuzzy function, 

then for any fuzzy point       in X and for any fuzzy subset    of X, we 

have :  If          then     ( )       ( ).  

Proof:  we have         this implies that     ( )   ( )  

Now, we want to show that   ( )      ( ),          ( )( ( ))    

     ( )( ( ))    sup* ( )     - ( ( ))  

     ( )  

          since           
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The next theorem generalize the previous theorem for any fuzzy 

subsets: 

Theorem 1.6.6: [ 25 ] 

Let        be a function, and     ( )   ( ) be a fuzzy function, 

then for any fuzzy subsets     and     of  X, we have:  

If             then     ( )       ( ) 

Proof: Since       ; let     be a fixed element such that  ( )  

 ( )    

Consider   ( )( ( ))    ( )( ( ))  sup* ( )     - ( ( ))+ 

+ sup* ( )     - ( ( ))+   ( )   ( )     

Theorem 1.6.7: [ 25 ] 

Under the previous assumption 

Let      be a fuzzy point in Y such that   - ( )  * + and   a fuzzy 

subset of  Y,  then we have:  if              then  (  )- ( )     (  )- ( ) 

Proof:       (  )- ( )( )     ( ( ))     ( ) 

But                      ( )    

That is,  (  )- ( )     (  )- ( )  
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Chapter Two 

Intuitionistic Fuzzy Sets 

2.1   Intuitionistic Fuzzy Sets 

Definition 2.1.1: [ 2 ] 

Let X be a nonempty set, we define an intuitionistic fuzzy set ( IFS for 

short) as an object having the form   〈     〉 where    and   are fuzzy 

subsets of X such that     ( )    ( )    for all    X. 

  ( ) the degree of membership of     in     

  ( ) the degree of nonmembership of     in     

Note that, the ordinary fuzzy set A is special case of IFS, that can be 

written as  〈    〉,      if     is the complement of     then the IFS become 

a fuzzy set. 

Remark: The IFS  ̃  〈   〉 is the empty IFS, and   ̃  〈   〉 is the whole 

IFS. 

Example 2.1.2: 

Consider the regular set X, where X = *       +  

And let     *                   + and     *                   + 

Then    〈     〉 is IFS and as well is a fuzzy subset of X, since 

      
 . 
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Example 2.1.3: 

Let X =    (    ) 

Let    ( )  

{
 
 

 
 

  

 

 
      if        

 

 
      if        

   

 
  if        

       elsewhere     

    be the degree of membership of   in  

 . 

And   ( )  { 
 

 
    if       

                 
  be the degree of nonmembership of   in 

 . 

Then    〈     〉  is  IFS  of  X  and graphically as : 

 

 

 

2.2 Some Basic Operations on IFS’s 

Definition 2.2.1: [ 4, 13 ] 

Let   〈     〉 and   〈     〉 are two intuitionistic fuzzy subsets of 

X, we define inclusion, complement, union and intersection of them as: 

(1)         ( )    ( )   and     ( )    ( );      X  

(2)    〈     〉 

1 

2 4 5 

0.5 

1 

2 4 5 

0.5 

0.25 
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(3)     〈             〉 

(4)     〈             〉 

definitions  3) and  4) could be extended to any family of IFS’s. 

      If     〈        〉 where    , then ⋃     〈 ⋁      ⋀     〉 and 

⋂     〈 ⋀      ⋁     〉. 

We illustrate the previous definition by the following example: 

Example 2.2.2: 

Consider the regular set X, where X = {       +, and let  

  〈     〉 be IFS  where     *               +      *                +  

And    〈     〉  where     *               +,     *               +  

Since         ( )    ( )   and     ( )    ( );      X   then      . 

                    〈             〉  〈       〉  

And            〈             〉  〈       〉 

From this example we can see that since      ;       and 

     , as in classical set theory. 

The next theorem shows that we can extend Demorgan’s laws from regular 

sets to IFSs: 
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Theorem 2.2.3: [ 3 ] 

Let      and     be two IFSs of X, we have: 

(1) (   )        

(2) (   )        

Proof is clear. 

Note: It can be generalize to any number of IFSs. 

Here are the basic properties of inclusion and complementation: 

Corollary  2.2.4: [ 3 ] 

Let         and     be IFSs in X, where     , then: 

1 )       and           

2 )       for each       ⋃       

3 )       for each         ⋂      

4 )              

5 ) ( ̃)   ̃    and   ( ̃)   ̃ 
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2.3   Intuitionistic Fuzzy Points 

This definition deals with a natural generalization of fuzzy point given 

by Pu-Liu [ 9]; that what we call “Intuitionistic Fuzzy Point”. 

Definition 2.3.1: [ 8 ] 

Let X be a nonempty set and let    X a fixed element in X. If   (   - 

and   ,   ) such that      , then the intuitionistic fuzzy set 

 ̃   (   )  〈    
 
   〉 is called an intuitionistic fuzzy point (IFP for 

short) in X, where   denotes the degree of membership of   in  ̃ and     

the  degree  of  nonmembership  of     in   ̃. 

Other definition of IFP: 

Definition 2.3.2: [ 10 ] 

Let X be a nonempty set, and let     ,   - with        . An 

intuitionistic fuzzy point   ̃  written as  (   ) is defined to be an 

intuitionistic fuzzy subset of X, given by:  

 ̃( )   (   )( )  { 
(   )     if          
(   )       otherwise 

 

IFPs in X can sometimes be inconvenient when we express an IFS in X 

in terms of IFPs. This situation will occur if an IFS    contains some 

points     X such that    ( )     and   ( )  ,   ). Therefor we shall 

define “Vanishing IFPs” as follows: 
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Definition 2.3.3: [ 10 ] 

Let X be a nonempty set and     a fixed element in X, if   ,   ) then 

the IFS  ̃̃   ( )  〈       〉 is called vanishing intuitionistic fuzzy point 

( VIFP for short) in X. 

The following definition present some types of inclusion of an IFPs to an 

IFSs : 

Definition 2.3.4: [ 8 ] 

(1) let  ̃   (   ) be an IFP in X,  and    〈     〉  be  an  IFS  in  X, we  

may say   ̃ contained in   ( ̃    for short) if and only if  ̃   (   )  

 . 

On the other word,   ̃     if and only if       ( )  and      ( ). 

 (2) let   ̃̃   ( ) be a VIFP in X, and   〈     〉 an IFS in X,  ̃̃ is said 

to be in   (  ̃̃    for short ) if and only if   ( )    and      ( )  

Result 2.3.5: 

In intuitionistic fuzzy set theory, specifically in intuitionistic fuzzy 

points, we have in general an IFP   ̃   (   ) where     ,   - such that 

       , then we have the following cases: 

1 ) If     and    , then  ̃ is regular intuitionistic fuzzy point, and we 

call it intuitionistic fuzzy point ( IFP ). 
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2 ) If      and    , then  ̃ become vanishing intuitionistic fuzzy 

point ( VIFP ) and we denote it by  ̃̃. 

For example:  ̃̃  〈   〉 it’s VIFP. 

3 ) If    , then its become a regular fuzzy point. 

4 ) If      , then its become a regular fuzzy point. 

The following definition generalize the notion of quasi-coincident from 

fuzzy sets to IFS: 

Definition 2.3.6: [ 10 ] 

(1) An IFP   ̃   (   ) in X is said to be quasi-coincident with the IFS 

  〈     〉, denoted by   ̃        if and only if      ( )  or    

  ( ). 

(2) Two IFSs    〈     〉 and   〈     〉 in X, are said to be quasi-

coincident, denoted by           if and only if there exists an element    

X such that    ( )    ( ) or    ( )    ( ). 

Note: we denote the negation of           by the symbol        . 

Example 2.3.7: 

Let X = {     + and consider the IFS  

  〈 (              ) (              ) 〉 in X, take     then we write: 

 (       )          (       )       
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but    (       )        since          ( )  and          ( )  

2.4 Intuitionistic Fuzzy Functions   

We will define an IF functions between two families of IFSs by using a 

function between two fuzzy subsets corresponding to a function between 

two regular sets. 

Remark: we will use IF(X) to be a family of all intuitionistic fuzzy subsets 

of X. 

Definition 2.4.1: [ 14 ] 

Let X and Y be two nonempty regular sets, and let       and let 

    ( )   ( ) be a fuzzy function, then we define     ( )    ( ) to 

be an IF function. 

We define the image and the preimage of IFSs by:  

(i) If    〈     〉 is an IFS in X, then the image of   under   is an IFS 

in Y defined by : 

 ( )  〈   (  )   
  (    ) 〉  

where  

  (  )( )  {
      *   ( )        ( ) +  if      ( )   

                                           other wise
 

And  

   (    )( )  {
      *   ( )        ( ) +  if      ( )   

                                           other wise
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That’s to say  

 ( )  {
〈 ⋁   ( )

     ( )

 ⋀   ( )

  ( )

 〉    if      ( )   

 ̃                          if        ( )   

 

 (ii)  if    〈     〉 is an IFS in Y, then the preimage of    under    is an 

IFS in X defined by : 

( )  ( )  〈     (  )      (  ) 〉 

Where  

     (  )( )    ( ( )) 

And  

     (  )( )    ( ( )) 
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Chapter Three 

Fuzzy Topological Spaces 

3.1 Definition of  fuzzy topology  

Definition 3.1.1: [ 11 ] 

A fuzzy topology on a nonempty set X is a family τ of fuzzy subset of X   

i.e τ≤ F X) ) satisfy the following conditions: 

  (i)   ̅  ̅    . 

 (ii) If A, B   τ, then        

(iii) If *       + is any family of fuzzy sets in    then         

The pair (   ) is called a fuzzy topological space and the member of   are 

called open fuzzy sets, and their complements are called closed fuzzy sets. 

As ( regular ) topology; the indiscrete fuzzy topology contains only ) 

 ̅ and  ̅, while the discrete fuzzy topology contains all fuzzy sets, and the 

set of all crisp fuzzy sets in X is also a fuzzy topology. 

Theorem 3.1.2: [ 6 ] 

1) If    and    are fuzzy topologies on a nonempty set X, then their 

intersection is a fuzzy topology on X. 
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2) Under the previous assumption,       may not be a fuzzy topology. 

Proof: (1)(i)  ̅  and  ̅ belongs to    and   , then  ̅        and  ̅     

  . 

(ii) Let           then        and       ,Hence          . 

(iii) Let *       +       , then       and       for all    , 

Hence ⋁            . 

 (2) we consider the following example: 

Let   *     +, and  

Let    { ̅  ̅    *          +    *              +       

*            +       *            +} 

   { ̅  ̅    *              +}  are two fuzzy topologies on X. 

      * ̅  ̅                     +  

 Now             

Then       is not a fuzzy topology. 

The previous theorem can be generalize to any number of fuzzy topologies 

on X. 
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3.2   Neighborhood system: 

Remark: we will use    for   . 

Definition 3.2.1: [ 19 ] 

Let (   ) be a FTs, a fuzzy set   in (   ) is a neighborhood ( nbd for 

short) of a fuzzy point      iff there exist a fuzzy open set   such that 

      . 

In general, we can say that   is a nbd of a fuzzy set A iff there exists a 

fuzzy open set   s.t.      . 

Note : The nbd system is the family of all nbds of a fuzzy point   . 

Theorem 3.2.2: [ 19 ] 

Let   be a fuzzy set in a fuzzy topological space (   ), then the following 

are equivalent: 

1)   is fuzzy open. 

2) For each       ,   is a nbd of    

Proof: (1)  ( ) is a straightforward. It remains to  show (2)  ( ) 

The assumption ensure that for each    , there exists a fuzzy open set 

      s.t.         ,   it follows that   ⋁      ⋁      

by proposition 1.4.4  implies   ⋁     and consequently   ⋁   

which is fuzzy open. Therefor   is fuzzy open. 
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Theorem 3.2.3: [ 21 ] 

A fuzzy set   is open iff for each fuzzy set   contained in  ,   is a nbd of 

 . 

Proof:   clear. 

   since    , there exist an open fuzzy set    s.t.        

Hence      and   is open fuzzy set.                              Q.E.D 

3.3   Interior and Closure of fuzzy sets 

Definition 3.3.1: ( Interior) [ 20 ] 

Let   and   be fuzzy sets in FTs (   ) and let    , then   is called an 

interior fuzzy set of   iff   is a nbd of    

The union of all interior fuzzy sets of   is called the interior of   and 

denoted by   . 

i.e    ⋁*         +. 

Theorem 3.3.2: [ 20 ]  

Let   be a fuzzy set in a FTs (   ), then    is fuzzy open and it’s the 

largest open fuzzy set contained in  . 

Proof: By definition 3.3.1, clearly,    is itself an interior fuzzy set of  , 

hence there exists an open fuzzy set   s.t.       , but   is an interior 

fuzzy set of   (   interior because       ), hence     , which 
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implies that     . Thus    is fuzzy open and it’s the largest open fuzzy 

set contained in    

Corollary 3.3.3: [ 20 ] 

The fuzzy set   is open  if and only if         

Proof:    is open,      and     , this implies     . 

         and    is open, which implies   is open. 

Definition 3.3.4: ( Closure ) [ 20 ] 

Let (   ) be a FTs and let   be any fuzzy subset of   , then the closure of 

  denoted by cl( ) or  ̅ is defined by : 

cl(A) = ⋀*          +. 

We will consider some examples to compute the closure and the interior of 

some fuzzy sets in a FTs: 

Example 3.3.5:  

Given the following fuzzy sets       and   of    ,     - 

A                                                       B 

 

 

 

1 

0.5 1 

1 

0.5 1 
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C                                                      D       

 

 

Where    * ̅  ̅      + 

To find     ̅  

Firstly we find the fuzzy closed sets which are the complements of the 

members of   : 

 

                                                                  

 

 

                                                                 ̅ 

 

 

  ̅ 

 

 

1 

0.5 1 

1 

0.5 1 

1 

0.5 1 

1 

0.5 1 

1 

0.5 1 

1 

0.5 1 

1 

0.5 1 
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Now, the fuzzy closed set contaning in   are       and  . 

Therefor   ̅               

And the interior is     ̅. 

Example 3.3.6: 

Let   be the fuzzy topology generated by the fuzzy sets     and   such 

that          *            + 

                 *              +  

                 *              +  

Then   * ̅  ̅        *              + *              + *              +  

*              + *            + *              +} 

Now, its clear that       

To find   ( ), we need the fuzzy closed sets which are : 

 ̅  ̅ *            + *              + *              + *              +  

*              + *              + *              + *            +  

*              +  

Hence   ( )   ̅  
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Lemma 3.3.7: [ 20 ] 

Le   be a fuzzy set in a FTs (   ), then cl( ) is fuzzy closed set. 

Proof: We have cl( ) = *⋀      fuzzy closed and      + 

(⋀    )  ⋁   
 

   which is fuzzy open. 

Theorem 3.3.8: [ 20 ] 

Let (   ) be a fuzzy topological space, a fuzzy set   is fuzzy closed if and 

only if    cl( ). 

Proof: Assume that   cl( ), but  cl( ) is fuzzy closed, therefor   is 

fuzzy closed. 

Conversely, assume   is fuzzy closed, then by definition 3.3.4(closure), 

     for each   . Hence   ⋀     

Which implies   cl( ) 

Now, cl( )  ⋀*          +, that is cl( ) is the smallest closed 

fuzzy set containing  , but   is closed fuzzy set, this implies cl( )   . 

Therefor   cl( )  

Lemma 3.3.9: [ 20 ] 

Let (   ) be a fuzzy topological space, then for any   and   fuzzy subsets 

of   the following are true: 
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1)    ̅̅ ̅̅ ̅̅ ̅   ̅   ̅. 

2) (   )       . 

3) (  )    ̅̅ ̅. 

4) ( ̅)  (  ) . 

Proof: (1)    ̅̅ ̅̅ ̅̅ ̅  ⋀        closed and        

But   

 ̅   ̅  ⋀  
  closed
   

   ⋁    ⋀  
  closed
   

 

 

 ⋀(     )
     
    
    

      

 

 ⋀                
   closed
      

 

    ̅̅ ̅̅ ̅̅ ̅                  

 (2)            (   )  

                  (   )   

Hence        (   ) . 
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(3)          ⋁  *           + 

                       ⋀  *              +  

                       ⋀  *                  +  

                       ⋀  *                  +  

                         ̅̅ ̅   

(4)     ̅      ⋀  *             + 

                       ⋁  *                +  

                       ⋁  *             +  

                       (  )  . 

Corollary 3.3.10: [ 20 ] 

Let (   ) be a fuzzy topological space and let      be two fuzzy sets, then 

the following are true : 

1)    ̅̅ ̅̅ ̅̅ ̅   ̅   ̅. 

2) (   )       . 

Proof : Straightforward.  
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Chapter four 

Intuitionistic fuzzy topological spaces 

4.1 Definition of intuitionistic fuzzy topology 

Recall : (1) IFS(X) means all intuitionistic fuzzy sets of a set X. 

                 (2)    means fuzzy topology. 

Definition 4.1.1: [ 9 ] 

Let X be a nonempty set and let   IFS(X) then    is called an 

intuitionistic fuzzy topology on X (IFT, for short) if its satisfies the 

following conditions:  

1)  ̃  ̃    

2) If      , then        

3) If *        +   , then ⋃        

The pair (   ) is called an intuitionistic fuzzy topological space (IFTS) and 

the members of   are called intuitionistic fuzzy open sets (IFO) and their 

complement are called intuitionistic fuzzy closed sets (IFC). 

It’s clear that if (    ) is a fuzzy topological space, then (   ) is an IFTS, 

where   * 〈    〉      +. 
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Example 4.1.2 

 (1) Let X be a nonempty set and let  ind  { ̃  ̃}, then clearly  ind is an 

IFTS. In this case,  ind is called intuitionistic fuzzy indiscrete topology. 

(2) Let X be a nonempty set and let   dis  IFS X), then clearly  dis is an 

IFTS. In this case,  dis is called intuitionistic fuzzy discrete topology. 

Example 4.1.3 

Let    *     + 

  〈 {              } *              + 〉  

  〈 *              + *              + 〉  

  〈 *              + *              + 〉  

  〈 *              + *              + 〉  

Then the family   { ̃  ̃        } is an IFT on X. 

Lemma 4.1.4: [ 9 ] 

If (    ) be a fuzzy topological space such that    be not indiscrete, then 

we can construct two IFTSs on X as follow: 

(1)    { ̃  ̃}  * 〈    ̅〉       +. 

(2)    { ̃  ̃}  * 〈 ̅   
 〉       +. 

Where    * ̅  ̅+  *   + where      
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Proof : straightforward by definition of IFT.  

Notation 4.1.5: 

(a) IFO(X) denotes the set of all IFOs in X. 

(b) IFC(X) denotes the set of all IFCs in X. 

Theorem 4.1.6: [ 15 ] 

Let (   ) be IFTS, then the following are true: 

1)  ̃  ̃   IFC(X) 

2) If          ( ), then          ( )  

3) If *        +     ( ), then ⋂        ( )  

Proof: (1)  ̃     ̃   ̃   IFC(X). 

                     ̃     ̃   ̃   IFC(X). 

(2) suppose           ( ), then   
     

   IFO(X) 

                                              
     

  (      )
   IFO(X) 

So          IFC(X). 

(3) suppose *        +     ( ), then   
   IFO(X) for       

So           ⋃   
 

     ( ) 

But         ⋃   
 

  ( ⋂    )  
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Hence    ⋂        ( )  

From the previous theorem we conclude the following result. 

Result 4.1.7  

If  (   ) is finite IFTS, then the complement of elements in   forms an 

IFTS, and its true for fuzzy topology and general topology. 

Definition 4.1.8: [ 9, 16 ] 

Let  (    ), (    ) be two IFTSs, then    is said to be contained in    if 

and only  if  for  each         implies       . 

Theorem 4.1.9: [ 9 ] 

 (1) Let *      + be a family of  IFTs on X. Then  ⋂        is also an  

IFT on X. 

(2) Let    ,     be two  IFTs  on X. Then         may not be an IFT on X. 

Proof: (1) Let *      + be a family of  IFTs on X, we want to show that  

⋂         is an  IFT on X. 

[i]    ̃               ̃  ⋂       . 

        Similarly,  ̃  ⋂       . 

[ii]  Let        ⋂       , then           for each      and     

        hence            for each     
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        Thus,         ⋂       . 

[iii] Let *        +   ⋂       ,then *        +            

        and hence ⋃           for every      

        Thus ⋃        ⋂       . 

(2) By counter example:  

Let X *   +  

Let     { ̃  ̃ 〈*         + *         +〉 }, 

Let     { ̃  ̃ 〈*         + *         +〉 }, 

Then       { ̃  ̃ 〈*         + *         +〉 〈*         + *         +〉 } 

〈*         + *         +〉  〈*         + *         +〉         

Then       is not an IFT. 

Theorem 4.1.10 

If (   ) be any fuzzy  topological space, then    * 〈    〉     + is an 

IFTS. 

Proof: (i)        〈    〉  〈   〉  〈 ̅  ̅〉   ̃     

       and           〈    〉  〈   〉  〈 ̅  ̅〉   ̃     

(ii) let         〈     
 〉  〈     

 〉  〈        
    

 〉 
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But              and   
    

    

Thus   〈        
    

 〉     

(iii) let *        +    

Now, ⋃ 〈     
 〉  〈⋁      ⋀    

 
 〉  〈⋁      (⋁   ) 

 〉     

4.2 Basis and subbasis for IFTS 

Proposition 4.2.1: [ 23 ] 

We can write any IFS A in X as the union of all IFPs in A.  

                i.e      ⋃  ̃ ̃   

Definition 4.2.2: [ 23 ] 

Let  (   ) be an IFTS, then the collection      is called a base of IFT   

if for every  ̃     where G is any IFOS        such that  ̃    

   

The following is another definition of basis of IFT: 

Definition 4.2.3: [ 23 ] 

A collection    of IFSs on X is said to be basis ( or base ) for an IFT   on 

X if : 

(i)     for every  ̃ in X,       such that  ̃     
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(ii) if  ̃        where        , then        such that     ̃     

     . 

Theorem 4.2.4  

Let  (   ) be an IFTS and let   is a base for  , then the IFS G       G = 

⋃       where            

Proof :   suppose G     then for any  ̃   ,       such that  ̃    

  (by definition 4.2.2 ) 

Now, by proposition 4.2.1 we have    ⋃   ̃  . 

  clearly     , since   is an IFT on X, therefor any arbitrary union of 

members  of     belongs  to     That  is   ⋃           as       . 

Definition 4.2.5: [ 23 ] 

Let (   ) be an IFTS, then a subfamily    of    is called a subbase for   if  

the  family of  finite intersection of members of    forms a base for  . 

Given any collection    of IFSs in X containing  ̃ and  ̃, then the set   

consisting of arbitrary unions of finite intersection of members of   forms 

an IFT on X. This is the smallest IFT on X containing   and is called the 

IFT generated by  . 
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4.3 Intuitionistic fuzzy neighborhood 

Definition 4.3.1: [ 16 ] 

Let   ̃ be an IFP of an IFTS (   ). An IFS   is called an Intuitionistic 

fuzzy neighborhood ( IFN for short ) of   ̃ if there is an IFOS G in X such 

that   ̃     . 

Theorem 4.3.2: [ 16 ] 

Let (   ) be an IFTS, then an IFS A of X is an IFOS if and only if  A is an 

IFN  of   ̃  for  every   ̃   . 

Proof : let   be an IFOS, clearly A is an IFN of every  ̃   . 

Conversely, suppose that   is an IFN of every IFP belonging to    Let 

 ̃   , since   is an IFN of  ̃ , there is an IFOS   ̃  in X such that 

 ̃    ̃   . 

So we have   ⋃ *  ̃     ̃   +  ⋃ {  ̃     ̃   }    and hence 

  ⋃ {  ̃     ̃   } . Since each   ̃  is an IFOS, then   is also an IFOS 

in X. 
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4.4 Interior and closure of IFS  

Definition 4.4.1: [ 9 ] 

Let (   ) be an IFTS and   be an IFS in X, then the Intuitionistic fuzzy 

interior and Intuitionistic fuzzy closure of   are defining by : 

int( )  ⋃  *    is  an  IFOS  in  X  and     +  

cl( )  ⋂  *    is  an  IFCS  in  X  and     +  

We denote the interior of   by int( ) or   . Also we denote the closure of 

  by cl( ) or   . 

Note that int( ) is an IFOS and cl( ) is an IFCS in X. 

Theorem 4.4.2: [ 9 ] 

Let (   ) be an IFTS and   be an IFS in X, then : 

1)   is  an  IFOS  in  X  if and only if         

2)   is  an  IFCS  in  X  if and only if   cl( )     

Proof is trivial.  

Now we consider the following example to compute the interior and 

closure of IFS in IFTS  X: 
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Example 4.4.3: [ 9 ] 

In example 4.1.3, if    〈 {                 } *              + 〉 then : 

                        int( )  ⋃  *      and     +    

and                   cl( )  ⋂  *     is  an  IFCS  in  X  and     +   ̃. 

Theorem 4.4.4: [ 9 ] 

For any IFS   in an IFTS (   ), we have : 

1) cl(  )  (  )  

2) (  )  ( )  

Proof : (1) let   〈     〉 and suppose that the family  {   〈       〉  

    } be the IFOSs contained in  . 

Then      〈 ⋁      ⋀     〉 

Hence         (  )  〈 ⋀      ⋁     〉                                 .   *) 

Now     〈     〉  and          and         for every     , we 

obtain that  {  
  〈       〉      } is the family of IFCSs containing 

  , which implies  cl(  )  〈 ⋀      ⋁     〉               .    .   **) 

Hence from (*) and (**) we get  cl(  )  (  ) . 
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(2) let   〈     〉 and suppose that the family  {   〈       〉     } be 

the IFOSs containing   . 

Then    〈 ⋀      ⋁     〉 

Hence             ( )  〈 ⋁      ⋀     〉                                .   *) 

Now     〈     〉  and          and         for every     , we 

obtain that {  
  〈       〉      } is the family of IFOSs contained  in 

  , that is  (  )  〈 ⋁      ⋀     〉                              .    .   **) 

Hence from (*) and (**) we get  (  )  ( ) . 

Theorem 4.4.5: [ 9 ] 

Let (   ) be an IFTS and     be an IFSs in X, then the following hold : 

1) int( )     

2)   cl( ). 

3)     int  )  int  )  

4)     cl  )  cl  )  

5) int(int  ))     ( ). 

6) cl(cl  ))    ( ). 

7) int(   )     ( )     ( ). 

 



59 

8) cl(   )    ( )    ( ). 

9) int( ̃)   ̃    and     cl( ̃)   ̃. 

10) cl( ̃)   ̃    and     int( ̃)   ̃  
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Chapter five  

Compactness and separation axioms for fuzzy topology  
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Chapter five 

Compactness and separation axioms for fuzzy topology 

5.1 compact fuzzy topological spaces  

Definition 5.1.1: [ 5 ] 

A family   of fuzzy sets is a cover of fuzzy set   if and only if    

*      +. 

It is an open cover if and only if each members of   is an open fuzzy set. 

A  subcover  of     is a subfamily of     which  is  also  a cover. 

Definition 5.1.2: [ 5 ] 

A fuzzy topological space (   ) is compact if every cover of X by 

elements of   contains a finite subcover. 

i.e if             and  ⋁           , then there are finitely many index  

             such that  ⋁    
 
     . 

On the other world (   ) is compact if and only if each open cover of X 

has a finite subcover.  

Definition 5.1.3: [ 5 ] 

A fuzzy topological space (   ) will be called regular if for each fuzzy 

point     and each fuzzy closed set F such that       ̅, there exists 

fuzzy open set     and     such that        and     . 
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Definition 5.1.4: [ 1 ] 

Let (   ) be a fuzzy topology and Y fuzzy subset of X, then the pair 

(    ) is called a fuzzy topological subspace if the family    *  

     + satisfies the following conditions: 

1)                s.t.          . 

2)               s.t.   (   )       . 

Theorem 5.1.5:  

Every subspace of regular space is also regular. 

Proof : Let X be a fuzzy regular space and A be a subspace of X. We have 

to prove that A is regular. Recall that    = {   : G   τ}, where G = 

{(x,   ( ) : x   X} and    = {(x,     ( )) : x   A}. Let   be fuzzy point 

in A and    is closed set of A such that     . Since A is a subspace of X, 

therefore     X and there is a closed set F in X, which generated the closed 

subset    of A. Since X is regular space and      ̅ there exist open 

sets U and V such that     U = (x,   ) and F   V = (x,   ). Thus    = 

(x,     ),    = (x,     )are open sets in A such that        and        .  

Hence A is a regular subspace of X. 
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Definition 5.1.6: [ 7 ] 

A fuzzy topological space (   ) is normal if for each pair of closed sets 

       such that          ̅, there exist fuzzy open sets     and     such 

that                 and           ̅. 

Theorem 5.1.7  

A closed subset of normal space is normal.  

Proof : let (   ) be a fuzzy normal space and let    be  closed subset of X, 

then  (    ) is a subspace. 

Take       any two fuzzy closed subsets of   with        , since   is  

fuzzy closed subset of X           and since  (   ) is normal then 

there exist     ,       such that               and          ̅. 

Now,          and          are two fuzzy open subset of     such that 

         ,              and  (      )  (      )   ̅  

5.2 Separation axioms  

Definition 5.2.1: [ 22 ] 

A fuzzy topological space (   ) is said to be fuzzy    if and only if 

      ,           such that either  ( )    and  ( )    or 

 ( )    and   ( )   . 

Another definition for fuzzy   : 
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Definition 5.2.2: [ 22 ] 

A fuzzy topological space (   ) is said to be fuzzy    if and only if for any  

      two fuzzy singletons with       there exist a fuzzy open set    

such that         
   or         

 . 

Definition 5.2.3 [ 21 ] 

A fuzzy topological space (   ) is said to be fuzzy    if and only if 

                     such that ( )    ,  ( )    and  ( )   ,  

 ( )   . 

Another definition for fuzzy   : 

Definition 5.2.4 [ 21 ] 

A fuzzy topological space (   ) is said to be fuzzy    if and only if for any  

      two fuzzy singletons with       there exists two fuzzy open set 

     such that         
   and         

 . 

It is obvious that (   ) is  fuzzy     (   ) is  fuzzy      

The following example shows a    space may not be     

Example 5.2.5  

Let   *   +,    * ̅  ̅ *         + *          +  + 

For any         there exist   neighborhood of     such that      

  
  *       +. 
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Therefor    is  fuzzy    . 

But it is not fuzzy     by taking        , there is no     such that  

         
  *       +. 

Definition 5.2.6: [ 7 ] 

A fuzzy topological space (   ) is said to be fuzzy strong -    (in short    

or F -  ) if and only if every fuzzy singleton is closed fuzzy set. 

Example 5.2.7 

Let   *   +,    * ̅  ̅ *     + *     + *     +        (   )+ 

Then   is    space because every fuzzy singleton is closed. 

Theorem 5.2.8 [ 21 ] 

A fuzzy topological space (   ) is fuzzy    if and only if every crisp 

singleton is closed. 

It is clear that if (   ) is fuzzy    then (   ) is fuzzy   . 

Theorem 5.2.9  

Every  subspace  of     - space  is    . 

Proof : let  X be a    fuzzy topological space and   be a subspace of X. so  

   {       (      )    }. 

Let        such that      then       are two distinct points and as X 

is   , there exist       such that   ( )    ,  ( )    and  ( )    ,  
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 ( )   . Then     and     are fuzzy open set of   such that   ( )    , 

  ( )    and    ( )    ,    ( )   . 

This shows that    is     

Definition 5.2.10 [ 21 ] 

A fuzzy topological space (   ) is said to be fuzzy Hausdorff or  fuzzy    

if and only if for any two distinct fuzzy points        there exist 

disjoint        with      and     . 

Definition 5.2.11 [ 21 ] 

A fuzzy topological space (   ) is said to be fuzzy    if and only if for any  

      two fuzzy singletons with       there exists two fuzzy open set  

     such that         
   and         

  and      . 

Definition 5.2.12: [ 7 ] 

A fuzzy topological space (   ) is said to be fuzzy Urysohn (fuzzy  
 
 

 

 ) if 

and only if for every        two fuzzy singletons with       there exists 

two fuzzy open set       such that         
   and         

  and  

cl  )   cl  )) . 

It is easy to show that if  (   ) is fuzzy   
 
 

 

  then  (   ) is fuzzy    . 

Definition 5.2.13: [ 7 ] 

A fuzzy topological space (   ) is said to be fuzzy strong -    ( F -   ) if 

and only if it is     or F -    and regular. 
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In classical topological spaces, if we have a regular     space  (   ) then 

(   ) is     space, but in fuzzy topological spaces, if we have a regular     

space  (   ) then (   ) is fuzzy Urysohn space ( 
 
 

 

 ). 

Theorem 5.2.14 

Every subspace of     space is also     

Proof : we know that    is regular    space, and every subspace of   - 

space is    (by theorem 5.2.9) and every subspace of regular space is 

regular ( by theorem 5.1.4 ), this implies that every subspace of     space is  

    

Definition 5.2.15: [ 7 ] 

A fuzzy topological space (   ) is said to be fuzzy strong -    ( F -   ) if 

and only if it is     or F -    and normal. 

Theorem 5.2.16 [ 7 ] 

Every closed subspace of     space is also     

Proof : we know that    is normal    space, and every subspace of   - 

space is    (by theorem 5.2.9) and every closed subspace of normal space 

is normal, therefor  every closed subspace of     space is      
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Chapter six 

Compactness and separation axioms for IFTS 
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Chapter six 

Compactness and separation axioms for IFTS 

6.1 compact Intuitionistic fuzzy topological spaces  

Definition 6.1.1: [ 9 ] 

Let (   ) be an IFTS, if a family {〈       〉    } of IFOSs in X satisfy 

the condition  {〈       〉    }   ̃, then its called an IF open cover of 

X. 

A finite sub family of IFO cover {〈       〉    } of X, which is also an 

IFO cover of X is called a finite subcover of {〈       〉    }. 

Definition 6.1.2: [ 9 ] 

An IFTS  (   ) will be called IF compact if and only if every IFO cover of 

X has a finite subcover. 

Example 6.1.3 

Consider the IFTS (   ) where X  *   +. 

   〈(  

   
     

   

)  (  

   

   

   

)〉  and   { ̃  ̃}  *      + 

Note that ⋃       is an IFO cover for X but this cover has no finite 

subcover. 

Therefor the IFTS  (   ) is not compact. 
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Definition 6.1.4: [ 9 ] 

Let (   ) be an IFTS and   an IFS in X , if a family {〈       〉    } of 

IFOSs in X satisfy the condition   {〈       〉    }, then its called an 

IF open cover of   . 

A finite sub family of IFO cover {〈       〉    } of  , which is also an 

IFO cover of   is called a finite subcover of {〈       〉    }. 

Definition 6.1.5: [ 9 ]  

An IFS   〈     〉 in an IFTS (   ) is called IF compact if and only if 

every IFO cover of   has a finite subcover. 

Definition 6.1.6: [ 17 ] 

An IFTS  (   ) is called IF regular space if for every IFP  ̃ and every 

IFCS F such that  ̃     ̃, there exists an IFOSs     such that  ̃    

and    . 

Theorem 6.1.7: [ 17 ]  

If (   ) is regular IFTS then for any IFOS   and an IFP  ̃ such that 

 ̃      ̃, there exist an IFOS   such that   ̃         

Proof: suppose that  (   ) is regular IFTS  such that  ̃      ̃,   

〈     〉 then    〈     〉 is an IFCS in X. since X is regular,   two 

IFOSs     such that  ̃   ,      and      ̃. 
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Now,    is an IFCS in X such that        . Thus   ̃       and 

       so      

Hence   ̃         

Theorem 6.1.8  

Every subspace of IF regular space is also IF regular. 

Definition 6.1.9: [ 17 ] 

An IFTS  (   ) is called normal IFTS if for every pair of IFCSs        

such that        ̃ then there exists IFOSs       such that      , 

      and         ̃. 

Theorem 6.1.10: [ 17 ] 

If (   ) is normal IFTS then for every IFCS   of X and any IFOS    of X 

such that       ̃, there exists an IFOS   such that           

Proof: suppose that (   ) is normal IFTS. Let   be an IFCS in X and    be 

an IFOS in X such that        ̃, then    . 

Since X is normal and    is an IFCS in X, then   two IFOSs   and    such 

that         ̃  and     ,         

This implies that   
      and     

  but    
  is IFCS, therefor 

    
 .  Thus          . 
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6.2 separation axioms in IFTS 

Definition 6.2.1: [ 23 ] 

An IFTS (   ) is called IF    if and only if for any           

         such that   ( )  (   )     ( )  (   )  or   ( )  (   ), 

 ( )  (   ). 

Definition 6.2.2: [ 23 ] 

An IFTS (   ) is called IF    if and only if for any           

         such that   ( )  (   )     ( )  (   )  and   ( )  (   ), 

 ( )  (   ). 

Definition 6.2.3: [ 18 ] 

An IFTS (   ) is called IF   (or, Hausdorff ) if for any pair of disjoint 

IFPs or VIFPs   ̃  ̃ in X,  there exist         such that   ̃   ,  ̃    

and      ̃. 

Example 6.2.4: [ 23 ]  

Let   *   + and let    {  ̃  ̃ 〈(     ) (     )〉 〈(     ) (     )〉 } 

then (   ) is an IFTS  and it is an IF        and     spaces. 

It obvious that if  (   ) is IF    (   ) is IF     (   ) is IF     but 

none of the implication are reversible. 
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Definition 6.2.5: [ 23 ] 

An IFTS (   ) is called IF      if for every pair of distinct IFPs or 

VIFPs   ̃  ̃  in X,  there exist         such that   ̃   ,  ̃    and 

    . 

We have  (   )  is an IF      (   )  is an IF      but none of the 

implication are reversible.  

Theorem 6.2.6: [ 23 ] 

Every subspace of     space is     

Proof : let X be a    IFTS and   be a subspace of X. 

So    {   〈         〉        } where   〈     〉. 

Let        such that      . Since X is   , then          such that  

 ( )  (   )     ( )  (   )  or   ( )  (   ),   ( )  (   ). 

Thus there exist          such that   ( )  (   )      ( )  (   )  or  

  ( )  (   ),    ( )  (   ). 

This prove that the subspace   is IF     

Theorem 6.2.7: [ 23 ] 

Every subspace of     space is     

Proof : same as the previous theorem. 
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Theorem 6.2.8: [ 23 ] 

Every subspace of     space is     

Proof :  

let (   ) be an IF     space and let    be a subspace of X where    

{   〈         〉        } where   〈     〉. 

Let   ̃ and   ̃ be two distinct IFPs in   ( they have distinct supports ), then  

 ̃    ̃ are also distinct IFPs in X  but X is IF    ,  then there exist         

such that   ̃   ,   ̃    and       ̃. 

Thus there exists           such that   ̃    ,   ̃     and         ̃. 

This prove that the subspace   is also    space. 
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Conclusion 

Through this study it was found that many properties of topological 

spaces in a regular setting were extended to topological spaces in fuzzy 

setting including intuitionistic fuzzy setting. However, some other 

properties were not extended to fuzzy setting, while its extended to IF 

setting and some properties was extended to IF setting but not in fuzzy 

setting, which motivated the researchers to put down new definitions to 

conclude parallel theorems. 

There have been different definitions for the same property, this causes 

researches and studies to be scattered,  there have to be unification of 

definitions of different properties that will orient the research by all 

interested people to be in one direction and all efforts would be 

strengthened. 
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 ب 

المفاهيم التبولوجية عمى الفراغات التبولوجية الضبابية التي تتضمن الفراغات التبولوجية 
 الضبابية الحدسية 

 إعداد 
 مصعب بسام أحمد عيسى

 إشراف 
 محمد العممة د. 

  الممخص
في ىذه الرسالة قمنا بدراسة المفاىيم والخصائص التبولوجية لمفراغات التبولوجية الضبابية 
والفراغات التبولوجية الضبابية الحدسية وربطيا بتمك المفاىيم والخصائص لمفراغات التبولوجية 

 الكلاسيكية.

والعلاقات الضبابية مع خصائصيا، لقد تم اثبات  أيضاً، تم عرض المجموعات والنقط والاقترانات
ان العديد من المفاىيم و الخصائص التبولوجية ىي توسعة لتمك الخصائص في البيئة غير 

 الضبابية.

أيضاً، تم عرض المجموعات والنقط والاقترانات والعلاقات الضبابية الحدسية مع خصائصيا. لقد 
صائص التبولوجية ىي توسعة لتمك الخصائص في البيئة  تم اثبات ان العديد من المفاىيم و الخ

 الضبابية.

كذلك تم التحري عن المسارات المختمفة لفرضيات الانفصال باستخدام الجوار وكذلك النقاط 
الضبابية والنقاط الضبابية الحدسية، ولقد تم دراسة انواع اخرى من مسممات الفصل في الفضاءات 

 ات التبولوجية الضبابية الحدسية.التبولوجية الضبابية والفضاء

 وأخيراً، تم تقديم مفاىيم التراص الضبابي والتراص الحدسي واثباتات لمعلاقات بينيا.



 

 

 

 

 

 

 

 

 

 

 

 


